WorldWideScience

Sample records for episodic aerosol events

  1. Episodes, events, and models

    Directory of Open Access Journals (Sweden)

    Sangeet eKhemlani

    2015-10-01

    Full Text Available We describe a novel computational theory of how individuals segment perceptual information into representations of events. The theory is inspired by recent findings in the cognitive science and cognitive neuroscience of event segmentation. In line with recent theories, it holds that online event segmentation is automatic, and that event segmentation yields mental simulations of events. But it posits two novel principles as well: first, discrete episodic markers track perceptual and conceptual changes, and can be retrieved to construct event models. Second, the process of retrieving and reconstructing those episodic markers is constrained and prioritized. We describe a computational implementation of the theory, as well as a robotic extension of the theory that demonstrates the processes of online event segmentation and event model construction. The theory is the first unified computational account of event segmentation and temporal inference. We conclude by demonstrating now neuroimaging data can constrain and inspire the construction of process-level theories of human reasoning.

  2. Investigation of local meteorological events and their relationship with ozone and aerosols during an ESCOMPTE photochemical episode

    Directory of Open Access Journals (Sweden)

    P. Augustin

    2006-11-01

    Full Text Available The international ESCOMPTE campaign, which took place in summer 2001 in the most highly polluted French region, was devoted to validate air pollution prediction models. Surface and remote sensing instruments (Lidar, Radar and Sodar were deployed over the Marseille area, along the Mediterranean coast, in order to investigate the fine structure of the sea-breeze circulation and its relationship with the pollutant concentrations. The geographical situation of the Marseille region combines a complex coastline and relief which both lead to a peculiar behaviour of the sea-breeze circulation. Several local sea breezes, perpendicular to the nearest coastline, settled in during the morning. In the afternoons, when the thermal gradient between the continental and marine surface grows up, a southerly or a westerly sea breeze may dominate. Their respective importance is then a function of time, space and altitude. Furthermore, an oscillation of the westerly sea breeze with a period of about 3 h is also highlighted. We show that these dynamical characteristics have profound influences on the atmospheric boundary-layer (ABL development and on pollutant concentrations. In fact, the direction and intensity of the sea-breeze determine the route and the transit time of the stable marine air flow over the continental surface. Thus, the ABL depth may exhibit several collapses correlated with the westerly sea-breeze pulsation. The ozone and aerosol concentrations are also related to the dynamical features. In the suburbs and parts of the city under pulsed sea breezes, a higher ABL depth and higher ozone concentrations are observed. In the city centre, this relationship between pulsed sea-breeze intensity and ozone concentration is different, emphasising the importance of the transit time and also the build-up of pollutants in the marine air mass along the route. Finally, the variations of aerosol concentration are also described according to the breeze direction.

  3. Investigation of local meteorological events and their relationship with ozone and aerosols during an ESCOMPTE photochemical episode

    Science.gov (United States)

    Augustin, P.; Delbarre, H.; Lohou, F.; Campistron, B.; Puygrenier, V.; Cachier, H.; Lombardo, T.

    2006-11-01

    The international ESCOMPTE campaign, which took place in summer 2001 in the most highly polluted French region, was devoted to validate air pollution prediction models. Surface and remote sensing instruments (Lidar, Radar and Sodar) were deployed over the Marseille area, along the Mediterranean coast, in order to investigate the fine structure of the sea-breeze circulation and its relationship with the pollutant concentrations. The geographical situation of the Marseille region combines a complex coastline and relief which both lead to a peculiar behaviour of the sea-breeze circulation. Several local sea breezes, perpendicular to the nearest coastline, settled in during the morning. In the afternoons, when the thermal gradient between the continental and marine surface grows up, a southerly or a westerly sea breeze may dominate. Their respective importance is then a function of time, space and altitude. Furthermore, an oscillation of the westerly sea breeze with a period of about 3 h is also highlighted. We show that these dynamical characteristics have profound influences on the atmospheric boundary-layer (ABL) development and on pollutant concentrations. In fact, the direction and intensity of the sea-breeze determine the route and the transit time of the stable marine air flow over the continental surface. Thus, the ABL depth may exhibit several collapses correlated with the westerly sea-breeze pulsation. The ozone and aerosol concentrations are also related to the dynamical features. In the suburbs and parts of the city under pulsed sea breezes, a higher ABL depth and higher ozone concentrations are observed. In the city centre, this relationship between pulsed sea-breeze intensity and ozone concentration is different, emphasising the importance of the transit time and also the build-up of pollutants in the marine air mass along the route. Finally, the variations of aerosol concentration are also described according to the breeze direction.

  4. Investigation of local meteorological events and their relationship with ozone and aerosols during an ESCOMPTE photochemical episode

    Directory of Open Access Journals (Sweden)

    P. Augustin

    2006-11-01

    Full Text Available The international ESCOMPTE campaign, which took place in summer 2001 in the most highly polluted French region, was devoted to validate air pollution prediction models. Surface and remote sensing instruments (Lidar, Radar and Sodar were deployed over the Marseille area, along the Mediterranean coast, in order to investigate the fine structure of the sea-breeze circulation and its relationship with the pollutant concentrations.

    The geographical situation of the Marseille region combines a complex coastline and relief which both lead to a peculiar behaviour of the sea-breeze circulation. Several local sea breezes, perpendicular to the nearest coastline, settled in during the morning. In the afternoons, when the thermal gradient between the continental and marine surface grows up, a southerly or a westerly sea breeze may dominate. Their respective importance is then a function of time, space and altitude. Furthermore, an oscillation of the westerly sea breeze with a period of about 3 h is also highlighted.

    We show that these dynamical characteristics have profound influences on the atmospheric boundary-layer (ABL development and on pollutant concentrations. In fact, the direction and intensity of the sea-breeze determine the route and the transit time of the stable marine air flow over the continental surface. Thus, the ABL depth may exhibit several collapses correlated with the westerly sea-breeze pulsation. The ozone and aerosol concentrations are also related to the dynamical features. In the suburbs and parts of the city under pulsed sea breezes, a higher ABL depth and higher ozone concentrations are observed. In the city centre, this relationship between pulsed sea-breeze intensity and ozone concentration is different, emphasising the importance of the transit time and also the build-up of pollutants in the marine air mass along the route. Finally, the variations of aerosol concentration are also described according to the

  5. Major events and minor episodes

    International Nuclear Information System (INIS)

    Amaldi, U.

    2014-01-01

    Bruno Pontecorvo was a freshly graduated twenty one years old physicist when he joined, in the summer of 1934, the research group led by Enrico Fermi. In October the Panisperna boys would make their most important discovery – radioactivity induced by slow neutrons – and shortly thereafter would be parted by personal and historical events. This paper describes some episodes of those early years and of later periods, sketching a portrait of the team: starting from the extraordinary human and scientific experience of via Panisperna, up to the patent negotiations in USA, to which Pontecorvo’s flight to URSS put an end with unexpected consequences; getting to his first return in Italy, allowed by the sovietic government in 1978, on the occasion of the conference celebrating Edoardo Amaldi’s 70. anniversary. That was the first of several encounters of the author of this paper with Bruno Pontecorvo, which are here briefly recounted, as minor episodes giving a personal perspective on the man.

  6. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    Science.gov (United States)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  7. An analysis of high fine aerosol loading episodes in north-central Spain in the summer 2013 - Impact of Canadian biomass burning episode and local emissions

    Science.gov (United States)

    Burgos, M. A.; Mateos, D.; Cachorro, V. E.; Toledano, C.; de Frutos, A. M.; Calle, A.; Herguedas, A.; Marcos, J. L.

    2018-07-01

    This work presents an evaluation of a surprising and unusual high turbidity summer period in 2013 recorded in the north-central Iberian Peninsula (IP). The study is made up of three main pollution episodes characterized by very high aerosol optical depth (AOD) values with the presence of fine aerosol particles: the strongest long-range transport Canadian Biomass Burning (BB) event recorded, one of the longest-lasting European Anthropogenic (A) episodes and an extremely strong regional BB. The Canadian BB episode was unusually strong with maximum values of AOD(440 nm) ∼ 0.8, giving rise to the highest value recorded by photometer data in the IP with a clearly established Canadian origin. The anthropogenic pollution episode originated in Europe is mainly a consequence of the strong impact of Canadian BB events over north-central Europe. As regards the local episode, a forest fire in the nature reserve near the Duero River (north-central IP) impacted on the population over 200 km away from its source. These three episodes exhibited fingerprints in different aerosol columnar properties retrieved by sun-photometers of the AErosol RObotic NETwork (AERONET) as well as in particle mass surface concentrations, PMx, measured by the European Monitoring and Evaluation Programme (EMEP). Main statistics, time series and scatterplots relate aerosol loads (aerosol optical depth, AOD and particulate matter, PM) with aerosol size quantities (Ångström Exponent and PM ratio). More detailed microphysical/optical properties retrieved by AERONET inversion products are analysed in depth to describe these events: contribution of fine and coarse particles to AOD and its ratio (the fine mode fraction), volume particle size distribution, fine volume fraction, effective radius, sphericity fraction, single scattering albedo and absorption optical depth. Due to its relevance in climate studies, the aerosol radiative effect has been quantified for the top and bottom of the atmosphere

  8. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    Science.gov (United States)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  9. Aerosol-ozone correlations during dust transport episodes

    Directory of Open Access Journals (Sweden)

    P. Bonasoni

    2004-01-01

    Full Text Available Its location in the Mediterranean region and its physical characteristics render Mt. Cimone (44°11′ N, 10°42′ E, the highest peak of the Italian northern Apennines (2165 m asl, particularly suitable to study the transport of air masses from the north African desert area to Europe. During these northward transports 12 dust events were registered in measurements of the aerosol concentration at the station during the period June–December 2000, allowing the study of the impact of mineral dust transports on free tropospheric ozone concentrations, which were also measured at Mt. Cimone. Three-dimensional backward trajectories were used to determine the air mass origin, while TOMS Aerosol Index data for the Mt. Cimone area were used to confirm the presence of absorbing aerosol over the measurement site. A trajectory statistical analysis allowed identifying the main source areas of ozone and aerosols. The analysis of these back trajectories showed that central Europe and north and central Italy are the major pollution source areas for ozone and fine aerosol, whereas the north African desert regions were the most important source areas for coarse aerosol and low ozone concentrations. During dust events, the Mt. Cimone mean volume concentration for coarse particles was 6.18 µm3/cm3 compared to 0.63 µm3/cm3 in dust-free conditions, while the ozone concentrations were 4% to 21% lower than the monthly mean background values. Our observations show that surface ozone concentrations were lower than the background values in air masses coming from north Africa, and when these air masses were also rich in coarse particles, the lowest ozone values were registered. Moreover, preliminary results on the possible impact of the dust events on PM10 and ozone values measured in Italian urban and rural areas showed that during the greater number of the considered dust events, significant PM10 increases and ozone decreases have occurred in the Po valley.

  10. Size evolution of ultrafine particles: Differential signatures of normal and episodic events

    International Nuclear Information System (INIS)

    Joshi, Manish; Khan, Arshad; Anand, S.; Sapra, B.K.

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. - Highlights: • Effect of firework emissions on atmospheric aerosol characteristics was studied. • Significant increase in ultrafine particle concentration was observed during firework bursting. • Size distribution evolution analysis of number concentration peaks has been performed. • Differential signatures of normal and episodic event were noted. - Notable increase in ultrafine particle concentration during firework bursting was seen. Normal and episodic event could be differentiated on the basis of size evolution analysis.

  11. Size evolution of ultrafine particles: Differential signatures of normal and episodic events.

    Science.gov (United States)

    Joshi, Manish; Khan, Arshad; Anand, S; Sapra, B K

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia

    Science.gov (United States)

    Hyer, Edward J.; Chew, Boon Ning

    2010-04-01

    Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM 10 concentrations above 150 μg m -3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM 10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM 10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM 10 observations during September-November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM 10, and 40% of PM 10 for days with 24-h average concentrations above 150 μg m -3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.

  13. Temporal compression in episodic memory for real-life events.

    Science.gov (United States)

    Jeunehomme, Olivier; Folville, Adrien; Stawarczyk, David; Van der Linden, Martial; D'Argembeau, Arnaud

    2018-07-01

    Remembering an event typically takes less time than experiencing it, suggesting that episodic memory represents past experience in a temporally compressed way. Little is known, however, about how the continuous flow of real-life events is summarised in memory. Here we investigated the nature and determinants of temporal compression by directly comparing memory contents with the objective timing of events as measured by a wearable camera. We found that episodic memories consist of a succession of moments of prior experience that represent events with varying compression rates, such that the density of retrieved information is modulated by goal processing and perceptual changes. Furthermore, the results showed that temporal compression rates remain relatively stable over one week and increase after a one-month delay, particularly for goal-related events. These data shed new light on temporal compression in episodic memory and suggest that compression rates are adaptively modulated to maintain current goal-relevant information.

  14. Aerosol events in the broader Mediterranean basin based on 7-year (2000–2007 MODIS C005 data

    Directory of Open Access Journals (Sweden)

    A. Gkikas

    2009-09-01

    Full Text Available Aerosol events (their frequency and intensity in the broader Mediterranean basin were studied using 7-year (2000–2007 aerosol data of optical depth (AOD at 550 nm from the MODerate Resolution Imaging Spectroradiometer (MODIS Terra. The complete spatial coverage of data revealed a significant spatial variability of aerosol events which is also dependent on their intensity. Strong events occur more often in the western and central Mediterranean basin (up to 14 events/year whereas extreme events (AOD up to 5.0 are systematically observed in the eastern Mediterranean basin throughout the year. There is also a significant seasonal variability with strong aerosol events occurring most frequently in the western part of the basin in summer and extreme episodes in the eastern part during spring. The events were also analyzed separately over land and sea revealing differences that are due to the different natural and anthropogenic processes, like dust transport (producing maximum frequencies of extreme episodes in spring over both land and sea or forest fires (producing maximum frequencies in strong episodes in summer over land. The inter-annual variability shows a gradual decrease in the frequency of all aerosol episodes over land and sea areas of the Mediterranean during the period 2000–2007, associated with an increase in their intensity (increased AOD values. The strong spatiotemporal variability of aerosol events indicates the need for monitoring them at the highest spatial and temporal coverage and resolution.

  15. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Engling, Guenter [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); He, Ke-bin [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu; Ma, Yong-liang; Liang, Lin-lin; Lu, Zi-feng [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Liu, Jiu-meng [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Weber, Rodney J. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States)

    2014-02-15

    The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K{sup +}) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K{sup +} (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter. -- Highlights: • Two episodes were identified based on the chemical composition of Beijing aerosol. • Levoglucosan and K{sup +} increased significantly during the biomass burning episode. • The firework episode was characterized by high concentrations of K{sup +}. • WSOC and oxalate exhibited secondary nature during both summer and winter. • High humidity can significantly enhance the formation of WSOC in winter. -- This study suggests the benefits of investigating aerosol composition separately during episode and non-episode periods, and introducing organic tracers to the speciation measurements of PM{sub 2.5}.

  16. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks

    International Nuclear Information System (INIS)

    Cheng, Yuan; Engling, Guenter; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Ma, Yong-liang; Liang, Lin-lin; Lu, Zi-feng; Liu, Jiu-meng; Zheng, Mei; Weber, Rodney J.

    2014-01-01

    The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K + ) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K + (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter. -- Highlights: • Two episodes were identified based on the chemical composition of Beijing aerosol. • Levoglucosan and K + increased significantly during the biomass burning episode. • The firework episode was characterized by high concentrations of K + . • WSOC and oxalate exhibited secondary nature during both summer and winter. • High humidity can significantly enhance the formation of WSOC in winter. -- This study suggests the benefits of investigating aerosol composition separately during episode and non-episode periods, and introducing organic tracers to the speciation measurements of PM 2.5

  17. [Optical properties of aerosol during haze-fog episodes in Beijing].

    Science.gov (United States)

    Yu, Xing-Na; Li, Xin-Mei; Deng, Zen-Grandeng; De, Qing-Yangzong; Yuan, Shuai

    2012-04-01

    The purpose of this study is to investigate the optical properties of aerosol during haze-fog episodes in Beijing. The aerosol optical depth (AOD), Angstrom exponent (alpha), size distribution and single scattering albedo (omega) during haze-fog episodes were analyzed between 2002 and 2008 using AERONENT data. During haze-fog episodes, the aerosol optical depth showed a decreasing trend with wavelengths, and showed high values with an average 1.34 at 440 nm. The magnitude of Angstrom exponent was relatively high during haze-fog episodes and the mean values reached 1.11. The frequency distribution of alpha was up to 94% when alpha > 0.9, indicating the predominance of fine particles during haze-fog episodes in Beijing. The aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The maxima (peaks) radius of fine mode showed an increasing trend with AOD, however, those of coarse mode showed a decreasing trend with AOD. The size distribution showed a distinct difference in dominant mode for the different AOD. The single scattering albedo showed an increasing trend with AOD during haze-fog episodes in Beijing. The mean value of omega was 0.89 at the four wavelengths and the omega exhibited a low sensitivity to wavelengths.

  18. Optical and radiative properties of aerosols during a severe haze episode over the North China Plain in December 2016

    Science.gov (United States)

    Zheng, Yu; Che, Huizheng; Yang, Leiku; Chen, Jing; Wang, Yaqiang; Xia, Xiangao; Zhao, Hujia; Wang, Hong; Wang, Deying; Gui, Ke; An, Linchang; Sun, Tianze; Yu, Jie; Kuang, Xiang; Li, Xin; Sun, Enwei; Zhao, Dapeng; Yang, Dongsen; Guo, Zengyuan; Zhao, Tianliang; Zhang, Xiaoye

    2017-12-01

    The optical and radiative properties of aerosols during a severe haze episode from 15 to 22 December 2016 over Beijing, Shijiazhuang, and Jiaozuo in the North China Plain were analyzed based on the ground-based and satellite data, meteorological observations, and atmospheric environmental monitoring data. The aerosol optical depth at 500 nm was 1.4 as the haze pollution developed. The Ångström exponent was > 0.80 for most of the study period. The daily single-scattering albedo was > 0.85 over all of the North China Plain on the most polluted days and was > 0.97 on some particular days. The volumes of fine and coarse mode particles during the haze event were approximately 0.05-0.21 and 0.01-0.43 μm3, respectively—that is, larger than those in the time without haze. The daily absorption aerosol optical depth was about 0.01-0.11 in Beijing, 0.01-0.13 in Shijiazhuang, and 0.01-0.04 in Jiaozuo, and the average absorption Ångström exponent varied between 0.6 and 2.0. The aerosol radiative forcing at the bottom of the atmosphere varied from -23 to -227,-34 to -199, and -29 to -191 W m-2 for the whole haze period, while the aerosol radiative forcing at the top of the atmosphere varied from -4 to -98, -10 to -51, and -21 to -143 W m-2 in Beijing, Shijiazhuang, and Jiaozuo, respectively. Satellite observations showed that smoke, polluted dust, and polluted continental components of aerosols may aggravate air pollution during haze episodes. The analysis of the potential source contribution function and concentration-weighted trajectory showed that the contribution from local emissions and pollutants transport from upstream areas were 190-450 and 100-410 μg m-3, respectively.

  19. Aerosol optical properties during firework, biomass burning and dust episodes in Beijing

    Science.gov (United States)

    Yu, Xingna; Shi, Chanzhen; Ma, Jia; Zhu, Bin; Li, Mei; Wang, Jing; Yang, Suying; Kang, Na

    2013-12-01

    In order to characterize the aerosol optical properties during different pollution episodes that occurred in Beijing, the aerosol loading, scattering, and size distributions are presented using solar and sky radiance measurements from 2001 to 2010 in this paper. A much higher aerosol loading than the background level was observed during the pollution episodes. The average aerosol optical depth (AOD) is largest during dust episodes coupled with the lowest Ångström exponent (α), while higher AOD and lower α were more correlated with firework and biomass burning days. The total mean AOD at 440, 675, 870 and 1020 nm were 0.24, 0.49, 0.64 and 1.38 in the clean, firework display, biomass burning and dust days, respectively. The mean α for dust days was 0.51 and exceeded 1.1 for the remaining episodes. The size distribution of the dusty periods was dominated by the coarse mode, but the coarse mode was similar magnitude to the fine mode during the firework and biomass burning days. The volume concentration of the coarse mode during the dust days increased by a magnitude of more than 2-8 times that derived in the other three aerosol conditions, suggesting that dust is the major contributor of coarse mode particles in Beijing. The single scattering albedo (SSA) values also increased during the pollution episodes. The overall mean SSA at the four wavelengths were 0.865, 0.911, 0.922 and 0.931 in clean, firework display, biomass burning, and dust days in Beijing, respectively. However, in the blue spectral range, the dust aerosols exhibited pronounced absorption.

  20. The characteristics of Beijing aerosol during two distinct episodes: impacts of biomass burning and fireworks.

    Science.gov (United States)

    Cheng, Yuan; Engling, Guenter; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Ma, Yong-liang; Liang, Lin-lin; Lu, Zi-feng; Liu, Jiu-meng; Zheng, Mei; Weber, Rodney J

    2014-02-01

    The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K(+)) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K(+) (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps

    Directory of Open Access Journals (Sweden)

    G. Aymoz

    2004-01-01

    Full Text Available A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC and Organic Carbon (OC are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.

  2. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    Science.gov (United States)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  3. Source characterization of ambient fine aerosol in Singapore during a haze episode in 2015

    Science.gov (United States)

    Hapsari Budisulistiorini, Sri; Riva, Matthieu; Williams, Michael; Miyakawa, Takuma; Komazaki, Yuichi; Chen, Jing; Surratt, Jason; Kuwata, Mikinori

    2017-04-01

    Recurring transboundary haze from Indonesia peatland fires in the previous decades has significantly elevated particulate matter (PM) concentration in Southeast Asia, particularly during the 2015 El Niño event. Previous studies have investigated chemical composition of particles emitted during haze episodes; however, they were limited to time-integrated samples and the number of identified compounds. Low time-resolution measurement results in co-variance of PM sources; therefore, higher time-resolution measurement is important in PM source apportionment. Between October 10-31, 2015, Aerodyne Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) was deployed for real-time chemical characterization of ambient submicron PM (NR-PM1) in Singapore. Simultaneously, PM2.5 filter samples were collected for molecular-level organic aerosol (OA) constituents, organic carbon (OC), elemental carbon (EC) and water-soluble OC (WSOC) analyses. OA constituents were quantified by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) and ultra-performance liquid chromatography interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode (UPLC/(-)ESI-HR-Q-TOFMS). OA and SO42- are dominant components of the haze particles, accounting for ˜77% and ˜12% of the total NR-PM1 mass, respectively. OC/EC ratio of 4.8 might indicate formation of secondary OA (SOA) and aerosols from biomass burning, including those from peat burning. OA fraction from ToF-ACSM measurements was analyzed for source apportionment using a bilinear model through multi-linear engine algorithm (ME-2) in graphical user interface SoFi (Source Finder). Five OA factors were identified: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), peat burning OA (PBOA), low-volatility oxygenated OA (LV-OOA), and semi-volatile oxygenated OA (SV-OOA). The HOA factor shows a distinct diurnal profile peaking in the morning and

  4. Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing

    International Nuclear Information System (INIS)

    Yu, Xingna; Kumar, K. Raghavendra; Lü, Rui; Ma, Jia

    2016-01-01

    Several dense haze-fog (HF) episodes were occurred in the North China Plain (NCP), especially over Beijing in January 2013 characterized by a long duration, a large influential region, and an extremely high PM 2.5 values (>500 μg m −3 ). In this study, we present the characteristics of aerosol optical properties and radiative forcing using Cimel sun-sky radiometer measurements during HF and no haze-fog (NHF) episodes occurred over Beijing during 1–31 January, 2013. The respective maximum values of daily mean aerosol optical depth at 440 nm (AOD 440 ) were observed to be 1.21, 1.43, 1.52, and 2.21 occurred on 12, 14 19, and 28 January. It was found that the Ångström exponent (AE) values were almost higher than 1.0 during all the days with its maximum on 26 January (1.53), suggests the dominance of fine-mode particles. The maximum (minimum) aerosol volume size distributions occurred during dense HF (NHF) days with larger particle volumes of fine-mode. The single scattering albedo, asymmetry parameter, and complex refractive index values during HF events suggest the abundance of fine-mode particles from anthropogenic (absorbing) activities mixed with scattering dust particles. The average shortwave direct aerosol radiative forcing (DARF) values at the bottom-of-atmosphere (BOA) during HF and NHF days were estimated to be 112.29 ± 42.18 W m −2 and −58.61 ± 13.09 W m −2 , while at the top-of-atmosphere (TOA) the forcing values were −45.78 ± 22.17 W m −2 and −18.64 ± 5.84 W m −2 , with the corresponding heating rate of 1.61 ± 0.48 K day −1 and 1.12 ± 0.31 K day −1 , respectively. The DARF values retrieved from the AERONET were in good agreement with the SBDART computed both at the TOA (r = 0.95) and the BOA (r = 0.97) over Beijing in January 2013. - Highlights: • Aerosol optical properties were reported during dense haze-fog (HF) episode. • High AE during HF episode observed dominance of fine mode

  5. Lidar data assimilation for improved analyses of volcanic aerosol events

    Science.gov (United States)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    Observations of hazardous events with release of aerosols are hardly analyzable by today's data assimilation algorithms, without producing an attenuating bias. Skillful forecasts of unexpected aerosol events are essential for human health and to prevent an exposure of infirm persons and aircraft with possibly catastrophic outcome. Typical cases include mineral dust outbreaks, mostly from large desert regions, wild fires, and sea salt uplifts, while the focus aims for volcanic eruptions. In general, numerical chemistry and aerosol transport models cannot simulate such events without manual adjustments. The concept of data assimilation is able to correct the analysis, as long it is operationally implemented in the model system. Though, the tangent-linear approximation, which describes a substantial precondition for today's cutting edge data assimilation algorithms, is not valid during unexpected aerosol events. As part of the European COPERNICUS (earth observation) project MACC II and the national ESKP (Earth System Knowledge Platform) initiative, we developed a module that enables the assimilation of aerosol lidar observations, even during unforeseeable incidences of extreme emissions of particulate matter. Thereby, the influence of the background information has to be reduced adequately. Advanced lidar instruments comprise on the one hand the aspect of radiative transfer within the atmosphere and on the other hand they can deliver a detailed quantification of the detected aerosols. For the assimilation of maximal exploited lidar data, an appropriate lidar observation operator is constructed, compatible with the EURAD-IM (European Air Pollution and Dispersion - Inverse Model) system. The observation operator is able to map the modeled chemical and physical state on lidar attenuated backscatter, transmission, aerosol optical depth, as well as on the extinction and backscatter coefficients. Further, it has the ability to process the observed discrepancies with lidar

  6. Variation of atmospheric aerosol components and sources during smog episodes in Debrecen, Hungary

    International Nuclear Information System (INIS)

    Angyal, A.; Kertész, Zs.; Szoboszlai, Z.; Szikszai, Z.; Ferenczi, Z.; Furu, E.; Tõrõk, Zs.

    2013-01-01

    Full text: Atmospheric particulate matter (APM) pollution is one of the leading environmental problems in densely populated urban environments. In most cities all around the world high aerosol pollution levels occurs regularly. Debrecen, an average middle-European city is no exception. Every year there are several days when the aerosol pollution level exceeds the alarm threshold value (100 μ-g/m 3 for PM10 in 24- hours average). When the PM10 pollution level remains over this limit value for days, it is called 'smog' by the authorities. In this work we studied the variation of the elemental components and sources of PM10, PM2.5 and PM coarse and their dependence on meteorological conditions in Debrecen during two smog episodes occurred in November 2011. Aerosol samples were collected with 2-hours time resolution with a PIXE International sequential streaker in an urban background site in the downtown of Debrecen. In order to get information about the size distribution of the aerosol elemental components 9-stage cascade impactors were also employed during the sampling campaigns. The elemental composition (Z ≥ 13) were determined by Particle Induced X-Ray Emission (PIXE) at the IBA Laboratory of Atomki. Concentrations of elemental carbon were measured with a smoke stain reflectometer. On this data base source apportionment was carried out by using the positive matrix factorisation (PMF) method. Four factors were identified for both size fractions, including soil dust, traffic, domestic heating, and oil combustion. The time pattern of the aerosol elemental components and PM sources exhibited strong dependence on the mixing layer thickness. We showed that domestic heating had a major contribution to the aerosol pollution. (This work was carried out in the frame of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and TÁMOP-4.2.2/B-10/1-2010-0024 project). (author)

  7. Episodic Memory Development: Theory of Mind Is Part of Re-Experiencing Experienced Events

    Science.gov (United States)

    Perner, Josef; Kloo, Daniela; Gornik, Edith

    2007-01-01

    Two experiments with 3 1/2- to 6 1/2-year-old children showed that theory-of-mind development is associated with the growth of episodic memory. Episodic memory was assessed by manipulating informational conditions such that they permit or prevent the formation of episodic memories in terms of re-experiencing the recalled event. Only experienced…

  8. Characterisation of Aerosols from Simulated Radiological Dispersion Events

    NARCIS (Netherlands)

    Di Lemma, F.G.

    2015-01-01

    The research described in this thesis aims at improving the evaluation of the radiaoctive aerosol release from different Radiological Dispersion Events (RDE's), such as accidents and sabotage involving radioactive and nuclear materials. These studies help in a better assessment of the source term as

  9. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  10. Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing.

    Science.gov (United States)

    Yu, Xingna; Kumar, K Raghavendra; Lü, Rui; Ma, Jia

    2016-03-01

    Several dense haze-fog (HF) episodes were occurred in the North China Plain (NCP), especially over Beijing in January 2013 characterized by a long duration, a large influential region, and an extremely high PM2.5 values (>500 μg m(-3)). In this study, we present the characteristics of aerosol optical properties and radiative forcing using Cimel sun-sky radiometer measurements during HF and no haze-fog (NHF) episodes occurred over Beijing during 1-31 January, 2013. The respective maximum values of daily mean aerosol optical depth at 440 nm (AOD440) were observed to be 1.21, 1.43, 1.52, and 2.21 occurred on 12, 14 19, and 28 January. It was found that the Ångström exponent (AE) values were almost higher than 1.0 during all the days with its maximum on 26 January (1.53), suggests the dominance of fine-mode particles. The maximum (minimum) aerosol volume size distributions occurred during dense HF (NHF) days with larger particle volumes of fine-mode. The single scattering albedo, asymmetry parameter, and complex refractive index values during HF events suggest the abundance of fine-mode particles from anthropogenic (absorbing) activities mixed with scattering dust particles. The average shortwave direct aerosol radiative forcing (DARF) values at the bottom-of-atmosphere (BOA) during HF and NHF days were estimated to be 112.29 ± 42.18 W m(-2) and -58.61 ± 13.09 W m(-2), while at the top-of-atmosphere (TOA) the forcing values were -45.78 ± 22.17 W m(-2) and -18.64 ± 5.84 W m(-2), with the corresponding heating rate of 1.61 ± 0.48 K day(-1) and 1.12 ± 0.31 K day(-1), respectively. The DARF values retrieved from the AERONET were in good agreement with the SBDART computed both at the TOA (r = 0.95) and the BOA (r = 0.97) over Beijing in January 2013. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Diagnosing causes of extreme aerosol optical depth events

    Science.gov (United States)

    Bernstein, D. N.; Sullivan, R.; Crippa, P.; Thota, A.; Pryor, S. C.

    2017-12-01

    Aerosol burdens and optical properties exhibit substantial spatiotemporal variability, and simulation of current and possible future aerosol burdens and characteristics exhibits relatively high uncertainty due to uncertainties in emission estimates and in chemical and physical processes associated with aerosol formation, dynamics and removal. We report research designed to improve understanding of the causes and characteristics of extreme aerosol optical depth (AOD) at the regional scale, and diagnose and attribute model skill in simulating these events. Extreme AOD events over the US Midwest are selected by identifying all dates on which AOD in a MERRA-2 reanalysis grid cell exceeds the local seasonally computed 90th percentile (p90) value during 2004-2016 and then finding the dates on which the highest number of grid cells exceed their local p90. MODIS AOD data are subsequently used to exclude events dominated by wildfires. MERRA-2 data are also analyzed within a synoptic classification to determine in what ways the extreme AOD events are atypical and to identify possible meteorological `finger-prints' that can be detected in regional climate model simulations of future climate states to project possible changes in the occurrence of extreme AOD. Then WRF-Chem v3.6 is applied at 12-km resolution and regridded to the MERRA-2 resolution over eastern North America to quantify model performance, and also evaluated using in situ measurements of columnar AOD (AERONET) and near-surface PM2.5 (US EPA). Finally the sensitivity to (i) spin-up time (including procedure used to spin-up the chemistry), (ii) modal versus sectional aerosol schemes, (iii) meteorological nudging, (iv) chemistry initial and boundary conditions, and (v) anthropogenic emissions is quantified. Despite recent declines in mean AOD, supraregional (> 1000 km) extreme AOD events continue to occur. During these events AOD exceeds 0.6 in many Midwestern grid cells for multiple consecutive days. In all

  12. Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode.

    Science.gov (United States)

    Pavagadhi, Shruti; Betha, Raghu; Venkatesan, Shriram; Balasubramanian, Rajasekhar; Hande, Manoor Prakash

    2013-04-01

    Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21-23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m(3)) as compared to that during the non-smoke haze period (27.0 μg/m(3)). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.

  13. Awareness of antiplatelet resistance in patient with repeated episodes of thrombotic events

    Science.gov (United States)

    Dalimunthe, N. N.; Hamonangan, R.; Antono, D.; Prasetya, I.; Rusdi, L.

    2018-03-01

    Antiplatelet has been the cornerstones management of acute coronary syndrome. However, numbers of patients on these agents had episodes of adverse cardiovascular events. A 65-year-old woman post cardiac coronary bypass surgery on dual antiplatelet therapy, Aspirin, and Clopidogrel underwent several episodes of thrombotic events despite good adhered to thedailyantiplatelet regimen.These recurrent events had led to clinical suspicious of antiplatelet resistance. Platelet function test was performed which indicates a poor platelet response to Clopidogrel. Clopidogrelwas discontinued and Ticagrelor was prescribed together with Aspirin. During two months of follow up, there is no episode of chest discomfort.

  14. EPISODIC EVENTS: THE EFFECT OF FLOODS ON NUTRIENT TRANSPORT IN A NORTHWESTERN, USA ESTUARY

    Science.gov (United States)

    To estimate the effects of storms on nutrient transport, dissolved nutrients and suspended sediment loads were measured relative to stream discharge in the Yaquina River, OR for three storm events. Episodic events, particularly high rainfall or flood events may transport high di...

  15. Preparing for what might happen: An episodic specificity induction impacts the generation of alternative future events.

    Science.gov (United States)

    Jing, Helen G; Madore, Kevin P; Schacter, Daniel L

    2017-12-01

    A critical adaptive feature of future thinking involves the ability to generate alternative versions of possible future events. However, little is known about the nature of the processes that support this ability. Here we examined whether an episodic specificity induction - brief training in recollecting details of a recent experience that selectively impacts tasks that draw on episodic retrieval - (1) boosts alternative event generation and (2) changes one's initial perceptions of negative future events. In Experiment 1, an episodic specificity induction significantly increased the number of alternative positive outcomes that participants generated to a series of standardized negative events, compared with a control induction not focused on episodic specificity. We also observed larger decreases in the perceived plausibility and negativity of the original events in the specificity condition, where participants generated more alternative outcomes, relative to the control condition. In Experiment 2, we replicated and extended these findings using a series of personalized negative events. Our findings support the idea that episodic memory processes are involved in generating alternative outcomes to anticipated future events, and that boosting the number of alternative outcomes is related to subsequent changes in the perceived plausibility and valence of the original events, which may have implications for psychological well-being. Published by Elsevier B.V.

  16. The Effects of Spatial Contextual Familiarity on Remembered Scenes, Episodic Memories, and Imagined Future Events

    Science.gov (United States)

    Robin, Jessica; Moscovitch, Morris

    2014-01-01

    Several recent studies have explored the effect of contextual familiarity on remembered and imagined events. The aim of this study was to examine the extent of this effect by comparing the effect of cuing spatial memories, episodic memories, and imagined future events with spatial contextual cues of varying levels of familiarity. We used…

  17. Do stressful life events predict medical treatment outcome in first episode of depression?

    DEFF Research Database (Denmark)

    Bock, Camilla; Bukh, Jens Drachmann; Vinberg, Maj

    2009-01-01

    BACKGROUND: It is unclear whether medical treatment outcome in first episode depression differ for patients with and without stressful life events prior to onset of depression. METHODS: Patients discharged with a diagnosis of a single depressive episode from a psychiatric in- or outpatient hospital......-II) and the interview of recent life events (IRLE). Medical treatment history was assessed in detail using standardised procedures (TRAQ). Remission was defined as a score or= 4 on TRAQ following (1) first trial of antidepressant treatment (2) two adequate trials of antidepressant treatment. RESULTS: A total of 399...... patients participated in the interview and among these 301 patients obtained a SCAN diagnosis of a single depressive episode. A total of 62.8% of the 301 patients experienced at least one moderate to severe stressful life event in a 6 months period prior to symptom onset. The presence of a stressful life...

  18. "What" and "where" was when? Memory for the temporal order of episodic events in children.

    Science.gov (United States)

    Scarf, Damian; Boden, Hannah; Labuschagne, Lisa G; Gross, Julien; Hayne, Harlene

    2017-12-01

    In the past, researchers have shown that the individual components of episodic memory (i.e "what," "where," and "when") may emerge at different points in development. Specifically, while children as young as three can accurately report the "what" and "where" of an event, they struggle to accurately report when the event occurred. One explanation for children's difficulty in reporting when an event took place is a rudimentary understanding, and ability to use, temporal terms. In the current experiment, we employed a physical timeline to aid children's reporting of the order in which a series of episodic events occurred. Overall, while 4-, 5-, and 6-year olds performed above chance, 3-year olds did not. Our findings suggest that 3-year olds' limited ability to produce temporal terms may not be the rate-limiting step preventing them from identifying when events occurred in their recent past. © 2017 Wiley Periodicals, Inc.

  19. Pathways, Impacts, and Policies on Severe Aerosol Injections into the Atmosphere: 2011 Severe Atmospheric Aerosols Events Conference

    KAUST Repository

    Weil, Martin; Grassl, Hartmut; Hoshyaripour, Gholamali; Kloster, Silvia; Kominek, Jasmin; Misios, Stergios; Scheffran, Juergen; Starr, Steven; Stenchikov, Georgiy L.; Sudarchikova, Natalia; Timmreck, Claudia; Zhang, Dan; Kalinowski, Martin

    2012-01-01

    The 2011 severe atmospheric events conference, held on August 11-12, 2011, Hamburg, Germany, discussed climatic and environmental changes as a result of various kinds of huge injections of aerosols into the atmosphere and the possible consequences for the world population. Various sessions of the conference dealt with different aspects of large aerosol injections and severe atmospheric aerosol events along the geologic time scale. A presentation about radiative heating of aerosols as a self-lifting mechanism in the Australian forest fires discussed the question of how the impact of tropical volcanic eruptions depends on the eruption season. H.-F. Graf showed that cloud-resolving plume models are more suitable to predict the volcanic plume height and dispersion than one-dimensional models. G. Stenchikov pointed out that the absorbing smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the solar heating and lofting effect.

  20. Pathways, Impacts, and Policies on Severe Aerosol Injections into the Atmosphere: 2011 Severe Atmospheric Aerosols Events Conference

    KAUST Repository

    Weil, Martin

    2012-09-01

    The 2011 severe atmospheric events conference, held on August 11-12, 2011, Hamburg, Germany, discussed climatic and environmental changes as a result of various kinds of huge injections of aerosols into the atmosphere and the possible consequences for the world population. Various sessions of the conference dealt with different aspects of large aerosol injections and severe atmospheric aerosol events along the geologic time scale. A presentation about radiative heating of aerosols as a self-lifting mechanism in the Australian forest fires discussed the question of how the impact of tropical volcanic eruptions depends on the eruption season. H.-F. Graf showed that cloud-resolving plume models are more suitable to predict the volcanic plume height and dispersion than one-dimensional models. G. Stenchikov pointed out that the absorbing smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the solar heating and lofting effect.

  1. Episodic Memory in Adults with Autistic Spectrum Disorders: Recall for Self- versus Other-Experienced Events

    Science.gov (United States)

    Hare, Dougal Julian; Mellor, Christine; Azmi, Sabiha

    2007-01-01

    People with autistic spectrum disorders (ASD) have difficulties in recalling recently experienced events, which is dependent upon intact functioning of several aspects of "self awareness". The current study examined impaired episodic recall in ASD and its relationship to specific impairments in aspects of "self awareness". Between-group…

  2. Life events, difficulties and onset of depressive episodes in later life

    NARCIS (Netherlands)

    Brilman, EI; Ormel, J

    Background. The importance of stressful life events and long-term difficulties in the onset of episodes of unipolar depression is well established for young and middle-aged persons, but less so for older people. Method. A prospective case-control study was nested in a large community survey of older

  3. Episodic events in long-term geological processes: A new classification and its applications

    Directory of Open Access Journals (Sweden)

    Dmitry A. Ruban

    2018-03-01

    Full Text Available Long-term geological processes are usually described with curves reflecting continuous changes in the characteristic parameters through the geological history, and such curves can be employed directly for recognition of episodic (relatively long-term events linked to these changes. The episodic events can be classified into several categories according to their scale (ordinary and anomalous events, “shape” (positive, negative, and neutral events, and relation to long-term trend change (successive, interruptive, facilitative, stabilizing, transformative, increasing, and decreasing. Many types of these events can be defined depending on the combination of the above-mentioned patterns. Of course, spatial rank, duration, and origin can be also considered in description of these events. The proposed classification can be applied to events in some real long-term geological processes, which include global sea-level changes, biodiversity dynamics, lithospheric plate number changes, and palaeoclimate changes. Several case examples prove the usefulness of the classification. It is established that the Early Valanginian (Early Cretaceous eustatic lowstand (the lowest position of the sea level in the entire Cretaceous was negative, but ordinary and only interruptive event. In the other case, it becomes clear that the only end-Ordovician and the Permian/Triassic mass extinctions transformed the trends of the biodiversity dynamics (from increase to decrease and from decrease to increase respectively, and the only Cretaceous/Paleogene mass extinction was really anomalous event on the Phanerozoic biodiversity curve. The new palaeontological data are employed to reconstruct the diversity dynamics of brachiopods in Germany (without the Alps and the Swiss Jura Mountains. The further interpretation of the both diversity curves implies that the Early Toarcian mass extinction affected the regional brachiopod faunas strongly, but this event was only decreasing

  4. Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests

    Science.gov (United States)

    Slowik, J. G.; Stroud, C.; Bottenheim, J. W.; Brickell, P. C.; Chang, R. Y.-W.; Liggio, J.; Makar, P. A.; Martin, R. V.; Moran, M. D.; Shantz, N. C.; Sjostedt, S. J.; van Donkelaar, A.; Vlasenko, A.; Wiebe, H. A.; Xia, A. G.; Zhang, J.; Leaitch, W. R.; Abbatt, J. P. D.

    2010-03-01

    Measurements of aerosol composition, volatile organic compounds, and CO are used to determine biogenic secondary organic aerosol (SOA) concentrations at a rural site 70 km north of Toronto. These biogenic SOA levels are many times higher than past observations and occur during a period of increasing temperatures and outflow from Northern Ontario and Quebec forests in early summer. A regional chemical transport model approximately predicts the event timing and accurately predicts the aerosol loading, identifying the precursors as monoterpene emissions from the coniferous forest. The agreement between the measured and modeled biogenic aerosol concentrations contrasts with model underpredictions for polluted regions. Correlations of the oxygenated organic aerosol mass with tracers such as CO support a secondary aerosol source and distinguish biogenic, pollution, and biomass burning periods during the field campaign. Using the Master Chemical Mechanism, it is shown that the levels of CO observed during the biogenic event are consistent with a photochemical source arising from monoterpene oxidation. The biogenic aerosol mass correlates with satellite measurements of regional aerosol optical depth, indicating that the event extends across the eastern Canadian forest. This regional event correlates with increased temperatures, indicating that temperature-dependent forest emissions can significantly affect climate through enhanced direct optical scattering and higher cloud condensation nuclei numbers.

  5. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake

    Science.gov (United States)

    Ito, Yoshihiro; Hino, Ryota; Kido, Motoyuki; Fujimoto, Hiromi; Osada, Yukihito; Inazu, Daisuke; Ohta, Yusaku; Iinuma, Takeshi; Ohzono, Mako; Miura, Satoshi; Mishina, Masaaki; Suzuki, Kensuke; Tsuji, Takeshi; Ashi, Juichiro

    2013-07-01

    We describe two transient slow slip events that occurred before the 2011 Tohoku-Oki earthquake. The first transient crustal deformation, which occurred over a period of a week in November 2008, was recorded simultaneously using ocean-bottom pressure gauges and an on-shore volumetric strainmeter; this deformation has been interpreted as being an M6.8 episodic slow slip event. The second had a duration exceeding 1 month and was observed in February 2011, just before the 2011 Tohoku-Oki earthquake; the moment magnitude of this event reached 7.0. The two events preceded interplate earthquakes of magnitudes M6.1 (December 2008) and M7.3 (March 9, 2011), respectively; the latter is the largest foreshock of the 2011 Tohoku-Oki earthquake. Our findings indicate that these slow slip events induced increases in shear stress, which in turn triggered the interplate earthquakes. The slow slip event source area on the fault is also located within the downdip portion of the huge-coseismic-slip area of the 2011 earthquake. This demonstrates episodic slow slip and seismic behavior occurring on the same portions of the megathrust fault, suggesting that the faults undergo slip in slow slip events can also rupture seismically.

  6. Episodic foresight beyond the very next event in 3- and 4-year-old children.

    Science.gov (United States)

    Boden, Hannah; Labuschagne, Lisa G; Hinten, Ashley E; Scarf, Damian

    2017-11-01

    Testing episodic foresight in children generally involves presenting them with a problem in one location (e.g., Room A) and, after a spending a delay in a different location, telling them they will be returning to Room A. Before they go, children are presented with a number of items, one of which will allow them to solve the problem in Room A. At around 3 to 4 years of age children display episodic foresight, selecting the item that will allow them to solve the problem. To date, however, no study has assessed whether 3- and 4-year-old children can plan beyond the very next event, selecting the correct item when there is a delay before returning to Room A. Here, we show that 3- and 4-year-old children can pass when a delay is imposed but that their performance is significantly worse than when they are planning for an immediate event. © 2017 Wiley Periodicals, Inc.

  7. The devil is in the details: Comparisons of episodic simulations of positive and negative future events.

    Science.gov (United States)

    Puig, Vannia A; Szpunar, Karl K

    2017-08-01

    Over the past decade, psychologists have devoted considerable attention to episodic simulation-the ability to imagine specific hypothetical events. Perhaps one of the most consistent patterns of data to emerge from this literature is that positive simulations of the future are rated as more detailed than negative simulations of the future, a pattern of results that is commonly interpreted as evidence for a positivity bias in future thinking. In the present article, we demonstrate across two experiments that negative future events are consistently simulated in more detail than positive future events when frequency of prior thinking is taken into account as a possible confounding variable and when level of detail associated with simulated events is assessed using an objective scoring criterion. Our findings are interpreted in the context of the mobilization-minimization hypothesis of event cognition that suggests people are especially likely to devote cognitive resources to processing negative scenarios. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Glucose enhancement of event-related potentials associated with episodic memory and attention

    OpenAIRE

    Brown, Louise; Riby, Leigh

    2013-01-01

    Previous studies have reported that increasing glycaemia by a glucose-containing drink enhances memory functioning. The aim of the present study was to extend this literature by examining the effects of glucose on episodic memory as well as attention processes, and to investigate associated event-related potential (ERP) markers. Fifteen minutes after treatment (25 g glucose or placebo drink), 35 participants performed an old/new recognition memory task and a Stroop colour naming task. Consist...

  9. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Volatile properties of atmospheric aerosols during nucleation events ...

    Indian Academy of Sciences (India)

    J. Earth Syst. ... position of nucleated particles, cloud condensa- ... the air sample heated by heating section, and (c) temperature profile inside ..... els of precursors and chemistry of aerosols affect ... global climate modeling: A review; Atmos.

  11. Mixing state of ambient aerosols during different fog-haze pollution episodes in the Yangtze River Delta, China

    Science.gov (United States)

    Hu, Rui; Wang, Honglei; Yin, Yan; Chen, Kui; Zhu, Bin; Zhang, Zefeng; Kang, Hui; Shen, Lijuan

    2018-04-01

    The mixing state of aerosol particles were investigated using a single particle aerosol mass spectrometer (SPAMS) during a regional fog-haze episode in the Yangtze River Delta (YRD) on 16-28 Dec., 2015. The aerosols were analyzed and clustered into 12 classes: aged elemental carbon (Aged-EC), internally mixed organics and elemental carbon (ECOC), organic carbon (OC), Biomass, Amine, Ammonium, Na-K, V-rich, Pb-rich, Cu-rich, Fe-rich and Dust. Results showed that particles in short-term rainfalls mixed with more nitrate and oxidized organics, while they mixed with more ammonium and sulfate in long-term rainfall. Due to anthropogenic activities, stronger winds and solar radiation, the particle counts increased and the size ranges of particles broadened in haze. Carbonaceous particles and Na-K mixed with enhanced secondary species during haze, and obviously were more acidic, especially for the ones with a size range of 0.6-1.2 μm. For local and long-range transported pollution, OC had distinct size distributions while the changes of ECOC were uniform. The secondary formation of ECOC contributed significantly in local pollution and affected much smaller particles (as small as 0.5 μm) in long-range transported pollution. And long-range transported pollution was more helpful for the growth of OC. Particles mixed with more chloride and nitrate/sulfate in local/long-range transported pollution.

  12. Estimation of the aerosol optical thickness distribution in the Northeast Asian forest fire episode in May 2003: Possible missing emissions

    Science.gov (United States)

    In, Hee-Jin; Kim, Yong Pyo

    2010-11-01

    During the study of the enhancement of aerosol optical thickness (AOT) which was derived by Community Multi-scale Air Quality (CMAQ) model for an active forest fire episode in Northeast Asia for May 2003 (In et al., 2009), it was found that CMAQ underestimated and overestimated AOT sporadically compared to the multiple satellite observations. Based on the AERONET surface AOT observation result, the WMO Global Telecommunications System (GTS) SYNOP system smoke/fire reports, and surface aerosol concentration data in Korea, it was found that these errors were resulted from missing of biomass burning emissions and coarse aerosols originating from soil. An inconsistency between surface observed and CMAQ estimate AOT and MODIS hot spot detects was found, which suggests that accuracy of MODIS fire products needs to be assessed in East Russian, China, and Korea in order to utilize them for national scale fire management in the region. The implement of origin and transport process of wind blown dust in current CMAQ is necessary to extend CMAQ capability in Northeast Asia.

  13. Primary organic pollutants in New Zealand urban aerosol in winter during high PM1 episodes

    International Nuclear Information System (INIS)

    Krivacsy, Zoltan; Blazso, Marianne; Shooter, David

    2006-01-01

    In the two biggest New Zealand cities, Auckland and Christchurch, the mass concentration of the PM 1 atmospheric aerosol can exceed the 50 μg m -3 24 h health guideline in winter. This high pollution level is thought to be caused mainly by old-fashioned domestic heating systems based on wood combustion. Therefore the chemistry of the carbonaceous aerosol has been investigated in several high-pollution level urban situations in order to assess the origin of the pollution. All the high concentration organic tracers, including levoglucosan and dehydroabietic acid, were characteristic for biomass burning. The findings have confirmed via advanced chemical analytical methods that domestic heating can be the main contributor to the high level of wintertime pollution, especially in Christchurch. The results are of great importance in supporting the ambition of authorities and environmental associations to change the domestic heating regimes. - PM 1 aerosol concentrations can exceed air quality guidelines during winter in Christchurch, New Zealand

  14. Episodic inflation events at Akutan Volcano, Alaska, during 2005-2017

    Science.gov (United States)

    Ji, Kang Hyeun; Yun, Sang-Ho; Rim, Hyoungrea

    2017-08-01

    Detection of weak volcano deformation helps constrain characteristics of eruption cycles. We have developed a signal detection technique, called the Targeted Projection Operator (TPO), to monitor surface deformation with Global Positioning System (GPS) data. We have applied the TPO to GPS data collected at Akutan Volcano from June 2005 to March 2017 and detected four inflation events that occurred in 2008, 2011, 2014, and 2016 with inflation rates of about 8-22 mm/yr above the background trend at a near-source site AV13. Numerical modeling suggests that the events should be driven by closely located sources or a single source in a shallow magma chamber at a depth of about 4 km. The inflation events suggest that magma has episodically accumulated in a shallow magma chamber.

  15. Prolonged cardiac effects of momentary assessed stressful events and worry episodes.

    Science.gov (United States)

    Pieper, Suzanne; Brosschot, Jos F; van der Leeden, Rien; Thayer, Julian F

    2010-07-01

    To test the hypothesize that increased heart rate (HR) and decreased heart rate variability (HRV) are not only due to concurrent stressful events and worries but also to stressors and worries occurring in the preceding hours or stressors anticipated to occur in the next hour. Worry was expected to mediate at least part of the prolonged effects of stressors. Ambulatory HR and HRV of 73 teachers were recorded for 4 days, during which the participants reported occurrence and duration of worry episodes and stressful events on an hourly basis, using computerized diaries. Multilevel regression models were used, accounting for effects of several biobehavioral variables. Stressful events were not associated with changes in HR or HRV. However, worry episodes had effects on concurrent HR and HRV (2.55 beats/minute; -5.76 milliseconds) and HR and HRV in the succeeding hour (3.05 beats/minute; -5.80 milliseconds) and 2 hours later (1.52 beats/minute; -3.14 milliseconds). These findings were independent of emotions, physical activity, posture, and other biobehavioral factors. Worry has effects on cardiac activity, and these effects were still visible after 2 hours. The latter finding suggests that a considerable part of prolonged activation may be induced by unconscious stress-related cognition.

  16. The oxidation of SO2 by NO2(g) at the air-water interface of aquated aerosol: implications for the rapid onset of haze-aerosol events in China

    Science.gov (United States)

    Li, L.; Colussi, A. J.; Hoffmann, M. R.

    2017-12-01

    Aqueous phase chemistry plays a vital role in the global atmosphere. The importance of heterogeneous chemistry has been recently underscored by the severe haze-fog pollution episodes experienced in Chinese megacities. A key finding is that despite reduced photochemistry during the wintertime haze events, the oxidation of S(IV) into sulfate aerosol occurs rapidly in spite of the low levels of ozone and H2O2. Field observations suggest that NO2 could serve as a suitable oxidant of S(IV) during the events under neutral pH conditions. However, the haze aerosols are mostly acidic. Furthermore, the air-water interface is more acidic than bulk-phase aquated system according to our recent findings. This work investigates the chemistry taking place as NO2(g) collides with the surface of aqueous S(IV) microdroplets as a function of pH to closely simulate actual haze aerosol events under atmospheric conditions. The reaction between NO2(g) and HSO3- (aq) is studied in situ under ambient temperature and pressure via online electrospray ionization mass spectrometry. The aqueous aerosols containing HSO3- is generated using a microjet which is exposed to NO2(g) alternatively, while the composition of the 1 nm interfacial liquid layer of the aerosol is instantaneously measured. The ratio of HSO3- to HSO4- is observed to decrease with the concomitant appearance of a strong m/z 62 signal upon NO2(g) exposure. The appearance of m/z 62 indicates the formation of NO3- via the disproportionation of NO2 (2NO2(g) + H2O (l) ⇌ H++NO3-(aq) + HONO(aq)) and thus impacts the ion-ion interactions of NO3- on the ratio of HSO3- to HSO4- in the outermost interfacial layers. Parallel experiments with NO3-(aq) additions are conducted to quantify the impact of NO3- on the the ratio, in order to unravel the contribution of NO2 to the oxidation of S(IV). After accounting for the HNO3 effect, it is concluded: (1) most NO2(g) is converted into NO3- via anion-catalyzed hydrolytic disproportionation; (2

  17. Study of aerosol behavior on the basis of morphological characteristics during festival events in India

    Science.gov (United States)

    Agrawal, Anubha; Upadhyay, Vinay K.; Sachdeva, Kamna

    2011-07-01

    Two important festival events were selected to assess their impacts on atmospheric chemistry by understanding settling velocity and emission time of aerosols. Using high volume sampler, aerosols were collected in a sequential manner to understand settling velocity and emission time of aerosols on a particular day. Composition and total suspended particulate load of the aerosols collected during the festivals were used as markers for strengthening the assessment. Terminal settling velocity of the aerosols were calculated using morphological and elemental compositional data, obtained from scanning electron microcopy (SEM) and energy dispersive X-ray (EDX) study. Aerosol load, black carbon, aromatic carbon and terminal velocity calculations were correlated to obtain conclusion that aerosols collected on the festival day might have been emitted prior to the festival. Settling time of aerosols collected on 17th and 19th October'09 during Diwali were found to be 36.5 (1.5 days) and 12.8 h, respectively. Carbon concentration estimated using EDX was found to be almost double in the sample collected after 2 days of the festival event. This strengthens our inference of time calculation where carbon with high concentration of load must have settled approximately after two days of the event. Settling time of aerosols collected on Holi morning and afternoon was found to be 1.7 and 24.8 h, respectively. Further, because of the small distance of 5.4 km between the meteorological station and sampling site, observed TSP values were compared with theoretical load values, calculated by using visibility values taken from the meteorological data. And it was found that both experimental and calculated values are close to each other about 50% of the times, which proves the assumption that experimental and meteorological data are comparable.

  18. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    2017-09-22

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.

  19. Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST

    Directory of Open Access Journals (Sweden)

    K. Sellegri

    2005-01-01

    Full Text Available Biogenic VOCs are important in the growth and possibly also in the early stages of formation of atmospheric aerosol particles. In this work, we present 10 min-time resolution measurements of organic trace gases at Hyytiälä, Finland during March 2002. The measurements were part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer and took place during a two-week period when nucleation events occurred with various intensities nearly every day. Using a ground-based Chemical Ionization Mass Spectrometer (CIMS instrument, the following trace gases were detected: acetone, TMA, DMA, mass 68amu (candidate=isoprene, monoterpenes, methyl vinyl ketone (MVK and methacrolein (MaCR and monoterpene oxidation products (MTOP. For all of them except for the amines, we present daily variations during different classes of nucleation events, and non-event days. BVOC oxidation products (MVK, MaCR and MTOP show a higher ratio to the CS on event days compared to non-event days, indicating that their abundance relative to the surface of aerosol available is higher on nucleation days. Moreover, BVOC oxidation products are found to show significant correlations with the condensational sink (CS on nucleation event days, which indicates that they are representative of less volatile organic compounds that contribute to the growth of the nucleated particles and generally secondary organic aerosol formation. Behaviors of BVOC on event and non event days are compared to the behavior of CO.

  20. Adverse life events increase risk for postpartum psychiatric episodes: A population-based epidemiologic study.

    Science.gov (United States)

    Meltzer-Brody, S; Larsen, J T; Petersen, L; Guintivano, J; Florio, A Di; Miller, W C; Sullivan, P F; Munk-Olsen, T

    2018-02-01

    Trauma histories may increase risk of perinatal psychiatric episodes. We designed an epidemiological population-based cohort study to explore if adverse childhood experiences (ACE) in girls increases risk of later postpartum psychiatric episodes. Using Danish registers, we identified women born in Denmark between January 1980 and December 1998 (129,439 childbirths). Exposure variables were ACE between ages 0 and 15 including: (1) family disruption, (2) parental somatic illness, (3) parental labor market exclusion, (4) parental criminality, (5) parental death, (6) placement in out-of-home care, (7) parental psychopathology excluding substance use, and (8) parental substance use disorder. Primary outcome was first occurrence of in- or outpatient contact 0-6 months postpartum at a psychiatric treatment facility with any psychiatric diagnoses, ICD-10, F00-F99 (N = 651). We conducted survival analyses using Cox proportional hazard regressions of postpartum psychiatric episodes. Approximately 52% of the sample experienced ACE, significantly increasing risk of any postpartum psychiatric diagnosis. Highest risks were observed among women who experienced out-of-home placement, hazard ratio (HR) 2.57 (95% CI: 1.90-3.48). Women experiencing two adverse life events had higher risks of postpartum psychiatric diagnosis HR: 1.88 (95% CI: 1.51-2.36), compared to those with one ACE, HR: 1.24 (95% CI: 1.03-49) and no ACE, HR: 1.00 (reference group). ACE primarily due to parental psychopathology and disability contributes to increased risk of postpartum psychiatric episodes; and greater numbers of ACE increases risk for postpartum psychiatric illness with an observed dose-response effect. Future work should explore genetic and environmental factors that increase risk and/or confer resilience. © 2017 Wiley Periodicals, Inc.

  1. Interaction between genetic polymorphisms and stressful life events in first episode depression

    DEFF Research Database (Denmark)

    Bukh, Jens Drachmann; Bock, Camilla; Vinberg, Maj

    2009-01-01

    of depression among participants. METHOD: We applied a case-only design, including 290 ethnically homogeneous patients suffering exclusively from first episode depression. Psychiatric mo-morbidity, personality traits and disorders and stressful life events in a six months period preceding onset of depression......BACKGROUND: A polymorphism in the serotonin transporter (5-HTT) gene seems to moderate the influence of stressful life events on depression. However, the results from previous studies of gene-environment interactions in depression are inconsistent and might be confounded by the history......A, 2A, and 2C. RESULTS: The low activity variants of the 5-HTT-linked polymorphic region in the serotonin transporter gene and the Met-allele of a single nucleotide polymorphism (Val66Met) in the gene encoding brain derived neurotrophic factor were independently associated with the presence...

  2. Accuracy of episodic autobiographical memory in children with early thyroid hormone deficiency using a staged event

    Directory of Open Access Journals (Sweden)

    Karen A. Willoughby

    2014-07-01

    Full Text Available Autobiographical memory (AM is a highly constructive cognitive process that often contains memory errors. No study has specifically examined AM accuracy in children with abnormal development of the hippocampus, a crucial brain region for AM retrieval. Thus, the present study investigated AM accuracy in 68 typically and atypically developing children using a staged autobiographical event, the Children's Autobiographical Interview, and structural magnetic resonance imaging. The atypically developing group consisted of 17 children (HYPO exposed during gestation to insufficient maternal thyroid hormone (TH, a critical substrate for hippocampal development, and 25 children with congenital hypothyroidism (CH, who were compared to 26 controls. Groups differed significantly in the number of accurate episodic details recalled and proportion accuracy scores, with controls having more accurate recollections of the staged event than both TH-deficient groups. Total hippocampal volumes and anterior hippocampal volumes were positively correlated with proportion accuracy scores, but not total accurate episodic details, in HYPO and CH. In addition, greater severity of TH deficiency predicted lower proportion accuracy scores in both HYPO and CH. Overall, these results indicate that children with early TH deficiency have deficits in AM accuracy and that the anterior hippocampus may play a particularly important role in accurate AM retrieval.

  3. Study of emission episodes of urban aerosol by ion beam analytical techniques

    International Nuclear Information System (INIS)

    Angyal, A.; Kertesz, Zs.; Szikszai, Z.; Szoboszlai, Z.; Furu, E.; Csedreki, L.; Daroczi, L.

    2010-01-01

    Complete text of publication follows. Aerosol pollution has impact on the climate and on human health. Thus investigation of atmospheric aerosol is important in urban environment such as Debrecen. One of the main goals of our study was to define the sources of the particles. The hourly evolution of atmospheric aerosol concentration was used to identify sources of fine (aerodynamic diameter < 2,5 μm) and coarse (10 μm ≥ aerodynamic diameter ≥ 2.5 μm) urban particulate matter in Debrecen. In both size fractions sources were found which were characterized by high heavy metal content. In this study we provide accurate information of the sources of coarse mode heavy metals by using nuclear and scanning electron microscopy. Single particle analysis of chosen samples was carried out on the ATOMKI Scanning Nuclear Microprobe Facility. Elemental composition for Z ≥ 6, morphology and size of around 500 coarse mode particles were determined by Scanning Transmission Ion Microscopy, light-element PIXE and PIXE analytical methods. Furthermore Scanning Electron Microscopy (SEM) was used to investigate particles morphology. The main components of the particles were Na, K, Ca, S, P and Fe with traces of Ti, V, Cr, Mn, Ni, Cu, Zn, Co, Pb. S-rich particles were enriched in one or more of the following elements: Na, Ca, K, Fe, Zn. Trace metals (Mn, Cu, Zn, Cr) occurred together Fe supposedly originated from industrial emission or traffic. P appeared in the Ca-rich particles. Particles with high concentration of Ni were rich in V, Fe and S. Thus this source was identified as residual combustion. V-rich particles occurred together with Fe, Mn and Cr. Their possible source was industry. Pb was attached to Ca, Fe, S containing particles. As result of the SEM study the following particle types (Figure 1.) were identified: semitransparent material (S-K-rich, S-Zn-rich, PCa-rich), spherical (FeO, Fe-Ni-Cr-V-rich), cubic (KCl, CaCl) and crystalline (S-Ca-rich). The main sources of

  4. Aerosol particle shrinkage event phenomenology in a South European suburban area during 2009-2015

    Science.gov (United States)

    Alonso-Blanco, E.; Gómez-Moreno, F. J.; Núñez, L.; Pujadas, M.; Cusack, M.; Artíñano, B.

    2017-07-01

    A high number of aerosol particle shrinkage cases (70) have been identified and analyzed from an extensive and representative database of aerosol size distributions obtained between 2009 and 2015 at an urban background site in Madrid (Spain). A descriptive classification based on the process from which the shrinkage began is proposed according which shrinkage events were divided into three groups: (1) NPF + shrinkage (NPF + S) events, (2) aerosol particle growth process + shrinkage (G + S) events, and (3) pure shrinkage (S) events. The largest number of shrinkages corresponded to the S-type followed by NPF + S, while the G + S events were the least frequent group recorded. Duration of shrinkages varied widely from 0.75 to 8.5 h and SR from -1.0 to -11.1 nm h-1. These processes typically occurred in the afternoon, around 18:00 UTC, caused by two situations: i) a wind speed increase usually associated with a change in the wind direction (over 60% of the observations) and ii) the reduction of photochemical activity at the end of the day. All shrinkages were detected during the warm period, mainly between May and August, when local meteorological conditions (high solar irradiance and temperature and low relative humidity), atmospheric processes (high photochemical activity) and availability of aerosol-forming precursors were favorable for their development. As a consequence of these processes, the particles concentration corresponding to the Aitken mode decreased into the nucleation mode. The accumulation mode did not undergo significant changes during these processes. In some cases, a dilution of the particulate content in the ambient air was observed. This work, goes further than others works dealing with aerosol particles shrinkages, as it incorporates as a main novelty a classification methodology for studying these processes. Moreover, compared to other studies, it is supported by a high and representative number of observations. Thus, this study contributes to

  5. Glucose enhancement of event-related potentials associated with episodic memory and attention.

    Science.gov (United States)

    Brown, Louise A; Riby, Leigh M

    2013-04-30

    Previous studies have reported that increasing glycaemia by a glucose-containing drink enhances memory functioning. The aim of the present study was to extend this literature by examining the effects of glucose on episodic memory as well as attention processes, and to investigate associated event-related potential (ERP) markers. Fifteen minutes after treatment (25 g glucose or placebo drink), 35 participants performed an old/new recognition memory task and a Stroop colour naming task. Consistent with previous research, when controlling for glucose regulation, cognitive facilitation was observed behaviourally for verbal memory, but there was also a trend towards attentional facilitation. Furthermore, across both domains, it was the most demanding task conditions that exhibited glucose sensitivity. In support of the behavioural results, the analysis of ERPs across treatment groups revealed an enhanced left-parietal old/new effect related to recollection, and also suggested modulation of attentional processes. The results suggest that glucose may facilitate attention as well as memory.

  6. Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2

    Science.gov (United States)

    Clarkson, Matthew O.; Stirling, Claudine H.; Jenkyns, Hugh C.; Dickson, Alexander J.; Porcelli, Don; Moy, Christopher M.; Pogge von Strandmann, Philip A. E.; Cooke, Ilsa R.; Lenton, Timothy M.

    2018-03-01

    Oceanic Anoxic Event 2 (OAE 2), occurring ˜94 million years ago, was one of the most extreme carbon cycle and climatic perturbations of the Phanerozoic Eon. It was typified by a rapid rise in atmospheric CO2, global warming, and marine anoxia, leading to the widespread devastation of marine ecosystems. However, the precise timing and extent to which oceanic anoxic conditions expanded during OAE 2 remains unresolved. We present a record of global ocean redox changes during OAE 2 using a combined geochemical and carbon cycle modeling approach. We utilize a continuous, high-resolution record of uranium isotopes in pelagic and platform carbonate sediments to quantify the global extent of seafloor anoxia during OAE 2. This dataset is then compared with a dynamic model of the coupled global carbon, phosphorus, and uranium cycles to test hypotheses for OAE 2 initiation. This unique approach highlights an intra-OAE complexity that has previously been underconstrained, characterized by two expansions of anoxia separated by an episode of globally significant reoxygenation coincident with the “Plenus Cold Event.” Each anoxic expansion event was likely driven by rapid atmospheric CO2 injections from multiphase Large Igneous Province activity.

  7. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin

    Directory of Open Access Journals (Sweden)

    G. Ancellet

    2016-04-01

    Full Text Available Long-range transport of biomass burning (BB aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa, a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio and the transport model analysis of the contribution of each aerosol source: (i pure BB layer, (ii weakly dusty BB, (iii significant mixture of BB and dust transported from the trade wind region, and (iv the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20–30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct

  8. Source apportionment of major and trace elements in aerosols during smog episodes in large cities in China

    Science.gov (United States)

    Furger, Markus; Rai, Pragati; Visser, Suzanne; Elser, Miriam; Canonaco, Francesco; Slowik, Jay G.; Huang, Ru-Jin; Prévôt, André S. H.; Baltensperger, Urs

    2017-04-01

    Air pollution in Chinese cities is one of the environmental problems China has to address to mitigate the impacts on human health, air quality and climate. Average concentrations of particulate matter exceed 100 μg m-3 in many places in China, and the government is developing and implementing strategies to reduce the load of pollutants by various measures. A characterization of airborne particulate matter (PM), especially its composition and sources, will help in optimizing reduction and mitigation strategies for air pollution. We collected PM10 aerosols with a rotating drum impactor (RDI) in Xi'an in December 2013 and in Beijing in January 2014 with 30-min time resolution and for three size ranges (cut-off sizes 10, 2.5 and 1 μm). Each campaign encompassed one or more high pollution episodes in the respective city. Elements from Na to Pb were analyzed with synchrotron radiation induced X-ray fluorescence spectrometry (SR-XRF), and the resulting time series were used for source apportionment performed with the Multilinear-Engine 2 (ME-2) implementation of the Positive Matrix Factorization algorithm. The preliminary computations yielded 5 factors for Beijing, namely road dust, sea salt, traffic-related, industrial, coal combustion. For Xi'an an additional desert dust factor was found. Further refinement could be expected from including the smaller size fractions, e.g. a sulfur-rich factor for secondary sulfate or a reacted chlorine factor in the fine mode fraction.

  9. Event-related brain potentials in memory: correlates of episodic, semantic and implicit memory.

    Science.gov (United States)

    Wieser, Stephan; Wieser, Heinz Gregor

    2003-06-01

    To study cognitive evoked potentials, recorded from scalp EEG and foramen ovale electrodes, during activation of explicit and implicit memory. The subgroups of explicit memory, episodic and semantic memory, are looked at separately. A word-learning task was used, which has been shown to activate hippocampus in H(2)(15)O positron emission tomography studies. Subjects had to study and remember word pairs using different learning strategies: (i) associative word learning (AWL), which activates the episodic memory, (ii) deep single word encoding (DSWE), which activates the semantic memory, and (iii) shallow single word encoding (SSWE), which activates the implicit memory and serves as a baseline. The test included the 'remember/know' paradigm as a behavioural learning control. During the task condition, a 10-20 scalp EEG with additional electrodes in both temporal lobes regions was recorded from 11 healthy volunteers. In one patient with mesiotemporal lobe epilepsy, the EEG was recorded from bilateral foramen ovale electrodes directly from mesial temporal lobe structures. Event-related potentials (ERPs) were calculated off-line and visual and statistical analyses were made. Associative learning strategy produced the best memory performance and the best noetic awareness experience, whereas shallow single word encoding produced the worst performance and the smallest noetic awareness. Deep single word encoding performance was in between. ERPs differed according to the test condition, during both encoding and retrieval, from both the scalp EEG and the foramen ovale electrode recordings. Encoding showed significant differences between the shallow single word encoding (SSWE), which is mainly a function of graphical characteristics, and the other two strategies, deep single word (DSWE) and associative learning (AWL), in which there is a semantic processing of the meaning. ERPs generated by these two categories, which are both functions of explicit memory, differed as well

  10. Composite study of aerosol export events from East Asia and North America

    Directory of Open Access Journals (Sweden)

    Y. Luan

    2013-02-01

    Full Text Available We use satellite observations of aerosol optical depth (AOD from the Moderate Resolution Imaging Spectrometer (MODIS together with the GEOS-Chem global chemical transport model to contrast export of aerosols from East Asia and North America during 2004–2010. The GEOS-Chem model reproduces the spatial distribution and temporal variations of Asian aerosol outflow generally well, although a low bias (−30% is found in the model fine mode AOD, particularly during summer. We use the model to identify 244 aerosol pollution export events from E. Asia and 251 export events from N. America over our 7-year study period. When these events are composited by season, we find that the AOD in the outflow is enhanced by 50–100% relative to seasonal mean values. The composite Asian plume splits into one branch going poleward to the Arctic in 3–4 days, with the other crossing the Pacific Ocean in 6–8 days. A fraction of the aerosols is trapped in the subtropical Pacific High during spring and summer. The N. American plume travels to the northeast Atlantic, reaching Europe after 4–5 days. Part of the composite plume turns anticyclonically in the Azores High, where it slowly decays. Both the Asian and N. American export events are favored by a dipole structure in sea-level pressure anomalies, associated with mid-latitude cyclone activity over the respective source regions. This dipole structure during outflow events is a strong feature for all seasons except summer, when convection becomes more important. The observed AOD in the E. Asian outflow exhibits stronger seasonality, with a spring maximum, than the N. American outflow, with a broad spring/summer maximum. The large spring AOD in the Asian outflow is the result of enhanced sulfate and dust aerosol concentrations, but is also due to a larger export efficiency of sulfate and SO2 from the Asian boundary layer relative to the N. American boundary layer. While the N. American sulfate outflow

  11. Impacts of Anthropogenic Aerosols on Regional Climate: Extreme Events, Stagnation, and the United States Warming Hole

    Science.gov (United States)

    Mascioli, Nora R.

    Extreme temperatures, heat waves, heavy rainfall events, drought, and extreme air pollution events have adverse effects on human health, infrastructure, agriculture and economies. The frequency, magnitude and duration of these events are expected to change in the future in response to increasing greenhouse gases and decreasing aerosols, but future climate projections are uncertain. A significant portion of this uncertainty arises from uncertainty in the effects of aerosol forcing: to what extent were the effects from greenhouse gases masked by aerosol forcing over the historical observational period, and how much will decreases in aerosol forcing influence regional and global climate over the remainder of the 21st century? The observed frequency and intensity of extreme heat and precipitation events have increased in the U.S. over the latter half of the 20th century. Using aerosol only (AER) and greenhouse gas only (GHG) simulations from 1860 to 2005 in the GFDL CM3 chemistry-climate model, I parse apart the competing influences of aerosols and greenhouse gases on these extreme events. I find that small changes in extremes in the "all forcing" simulations reflect cancellations between the effects of increasing anthropogenic aerosols and greenhouse gases. In AER, extreme high temperatures and the number of days with temperatures above the 90th percentile decline over most of the U.S., while in GHG high temperature extremes increase over most of the U.S. The spatial response patterns in AER and GHG are significantly anti-correlated, suggesting a preferred regional mode of response that is largely independent of the type of forcing. Extreme precipitation over the eastern U.S. decreases in AER, particularly in winter, and increases over the eastern and central U.S. in GHG, particularly in spring. Over the 21 st century under the RCP8.5 emissions scenario, the patterns of extreme temperature and precipitation change associated with greenhouse gas forcing dominate. The

  12. [Event-related potentials P₃₀₀ with memory function and psychopathology in first-episode paranoid schizophrenia].

    Science.gov (United States)

    Liu, Wei-bo; Chen, Qiao-zhen; Yin, Hou-min; Zheng, Lei-lei; Yu, Shao-hua; Chen, Yi-ping; Li, Hui-chun

    2011-11-01

    To investigate the variability of event-related potentials P(300) and the relationship with memory function/psychopathology in patients with first-episode paranoid schizophrenia. Thirty patients with first-episode paranoid schizophrenia (patient group) and twenty health subjects (control group) were enrolled in the study. The auditory event-related potentials P₃₀₀ at the scalp electrodes Cz, Pz and Wechsler Memory Scale (WMS) were examined in both groups, Positive And Negative Syndrome Scale (PANSS) was evaluated in patient group. In comparison with control group, patients had longer latency of P₃₀₀ [(390.6 ± 47.6)ms at Cz and (393.3 ± 50.1)ms at Pz] (Pparanoid schizophrenia has memory deficit, which can be evaluated comprehensively by P₃₀₀ and WMS. The longer latency of P₃₀₀ might be associated with the increased severity of first-episode paranoid schizophrenia.

  13. The Role of Episodic Memory in Controlled Evaluative Judgments about Attitudes: An Event-Related Potential Study

    Science.gov (United States)

    Johnson, Ray, Jr.; Simon, Elizabeth J.; Henkell, Heather; Zhu, John

    2011-01-01

    Event-related potentials (ERPs) are unique in their ability to provide information about the timing of activity in the neural networks that perform complex cognitive processes. Given the dearth of extant data from normal controls on the question of whether attitude representations are stored in episodic or semantic memory, the goal here was to…

  14. Event-Related fMRI Studies of Episodic Encoding and Retrieval: Meta-Analyses Using Activation Likelihood Estimation

    Science.gov (United States)

    Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.

    2009-01-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…

  15. Characteristics of aerosol pollution during heavy haze events in Suzhou, China

    Science.gov (United States)

    Tian, M.; Wang, H. B.; Chen, Y.; Yang, F. M.; Zhang, X. H.; Zou, Q.; Zhang, R. Q.; Ma, Y. L.; He, K. B.

    2015-11-01

    A comprehensive measurement was carried out to analyze the heavy haze events in Suzhou in January 2013 when extremely severe haze pollution occurred in many cities in China especially in the East. Hourly concentrations of PM2.5, chemical composition (including water-soluble inorganic ions, OC, and EC), and gas-phase precursors were obtained via on-line monitoring system. Based on these data, detailed aerosol composition, light extinction and gas-phase precursors were analyzed to understand the characteristics of the haze events, moreover, the formation mechanism of nitrate and sulfate in PM2.5 and the regional sources deduced from trajectory and PSCF were discussed to explore the origin of the heavy aerosol pollution. The results showed that frequent haze events were occurred on January 2013 and the concentrations of PM2.5 often exceeded 150 μg m-3 during the haze occurrence, with a maximum concentration of 324 μg m-3 on 14 January 2013. Unfavorable weather conditions (high RH, and low rainfall, wind speed and atmospheric pressure), high concentration of secondary aerosol species (including SO42-, NO3-, NH4+, and SOC) and precursors were observed during the haze events. Additionally, OM, (NH4)2SO4, NH4NO3 were demonstrated to be the major contributors to the visibility impairment but the share differed from haze events. This study also found that the high concentration of sulfate might be explained by the heterogeneous reactions in the aqueous surface layer of pre-existing particles or in cloud processes while nitrate might be mainly formed through homogeneous gas-phase reactions. The results of trajectory clustering and the PSCF method manifested that aerosol pollutions in the studied areas were mainly affected by local activities and surrounding sources transported from nearby cities.

  16. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    Science.gov (United States)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  17. Episodic and semantic components of autobiographical memories and imagined future events in post-traumatic stress disorder.

    Science.gov (United States)

    Brown, Adam D; Addis, Donna Rose; Romano, Tracy A; Marmar, Charles R; Bryant, Richard A; Hirst, William; Schacter, Daniel L

    2014-01-01

    Individuals with post-traumatic stress disorder (PTSD) tend to retrieve autobiographical memories with less episodic specificity, referred to as overgeneralised autobiographical memory. In line with evidence that autobiographical memory overlaps with one's capacity to imagine the future, recent work has also shown that individuals with PTSD also imagine themselves in the future with less episodic specificity. To date most studies quantify episodic specificity by the presence of a distinct event. However, this method does not distinguish between the numbers of internal (episodic) and external (semantic) details, which can provide additional insights into remembering the past and imagining the future. This study employed the Autobiographical Interview (AI) coding scheme to the autobiographical memory and imagined future event narratives generated by combat veterans with and without PTSD. Responses were coded for the number of internal and external details. Compared to combat veterans without PTSD, those with PTSD generated more external than internal details when recalling past or imagining future events, and fewer internal details were associated with greater symptom severity. The potential mechanisms underlying these bidirectional deficits and clinical implications are discussed.

  18. Memory of occasional events in rats: individual episodic memory profiles, flexibility, and neural substrate.

    Science.gov (United States)

    Veyrac, Alexandra; Allerborn, Marina; Gros, Alexandra; Michon, Frederic; Raguet, Louise; Kenney, Jana; Godinot, Florette; Thevenet, Marc; Garcia, Samuel; Messaoudi, Belkacem; Laroche, Serge; Ravel, Nadine

    2015-05-13

    In search for the mechanisms underlying complex forms of human memory, such as episodic recollection, a primary challenge is to develop adequate animal models amenable to neurobiological investigation. Here, we proposed a novel framework and paradigm that provides means to quantitatively evaluate the ability of rats to form and recollect a combined knowledge of what happened, where it happened, and when or in which context it happened (referred to as episodic-like memory) after a few specific episodes in situations as close as possible to a paradigm we recently developed to study episodic memory in humans. In this task, rats have to remember two odor-drink associations (what happened) encountered in distinct locations (where it happened) within two different multisensory enriched environments (in which context/occasion it happened), each characterized by a particular combination of odors and places. By analyzing licking behavior on each drinking port, we characterized quantitatively individual recollection profiles and showed that rats are able to incidentally form and recollect an accurate, long-term integrated episodic-like memory that can last ≥ 24 d after limited exposure to the episodes. Placing rats in a contextually challenging recollection situation at recall reveals the ability for flexible use of episodic memory as described in humans. We further report that reversible inactivation of the dorsal hippocampus during recall disrupts the animal's capacity to recollect the complete episodic memory. Cellular imaging of c-Fos and Zif268 brain activation reveals that episodic memory recollection recruits a specific, distributed network of hippocampal-prefrontal cortex structures that correlates with the accuracy of the integrated recollection performance. Copyright © 2015 the authors 0270-6474/15/337575-12$15.00/0.

  19. Childhood traumatic events and types of auditory verbal hallucinations in first-episode schizophrenia patients.

    Science.gov (United States)

    Misiak, Błażej; Moustafa, Ahmed A; Kiejna, Andrzej; Frydecka, Dorota

    2016-04-01

    Evidence is accumulating that childhood trauma might be associated with higher severity of positive symptoms in patients with psychosis and higher incidence of psychotic experiences in non-clinical populations. However, it remains unknown whether the history of childhood trauma might be associated with particular types of auditory verbal hallucinations (AVH). We assessed childhood trauma using the Early Trauma Inventory Self-Report - Short Form (ETISR-SF) in 94 first-episode schizophrenia (FES) patients. Lifetime psychopathology was evaluated using the Operational Criteria for Psychotic Illness (OPCRIT) checklist, while symptoms on the day of assessment were examined using the Positive and Negative Syndrome Scale (PANSS). Based on ETISR-SF, patients were divided into those with and without the history of childhood trauma: FES(+) and FES(-) patients. FES(+) patients had significantly higher total number of AVH types and Schneiderian first-rank AVH as well as significantly higher PANSS P3 item score (hallucinatory behavior) in comparison with FES(-) patients. They experienced significantly more frequently third person AVH and abusive/accusatory/persecutory voices. These differences remained significant after controlling for education, PANSS depression factor score and chlorpromazine equivalent. Linear regression analysis revealed that the total number of AVH types was predicted by sexual abuse score after controlling for above mentioned confounders. This effect was significant only in females. Our results indicate that the history of childhood trauma, especially sexual abuse, is associated with higher number AVH in females but not in males. Third person AVH and abusive/accusatory/persecutory voices, representing Schneiderian first-rank symptoms, might be particularly related to childhood traumatic events. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Rehearsal for Assessment of atmospheric optical Properties during biomass burning Events and Long-range transportation episodes at Metropolitan Area of São Paulo-Brazil (RAPEL)

    Science.gov (United States)

    Lopes, Fábio J. S.; Luis Guerrero-Rascado, Juan; Benavent-Oltra, Jose A.; Román, Roberto; Moreira, Gregori A.; Marques, Marcia T. A.; da Silva, Jonatan J.; Alados-Arboledas, Lucas; Artaxo, Paulo; Landulfo, Eduardo

    2018-04-01

    During the period of August-September 2016 an intensive campaign was carried out to assess aerosol properties in São Paulo-Brazil aiming to detect long-range aerosol transport events and to characterize the instrument regarding data quality. Aerosol optical properties retrieved by the GALION - LALINET SPU lidar station and collocated AERONET sunphotometer system are presented as extinction/ backscatter vertical profiles with microphysical products retrieved with GRASP inversion algorithm.

  1. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes

    Science.gov (United States)

    O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.

    2008-07-01

    Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.

  2. High secondary aerosol contribution to particulate pollution during haze events in China

    Science.gov (United States)

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R.; Slowik, Jay G.; Platt, Stephen M.; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M.; Bruns, Emily A.; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H.

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

  3. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    Science.gov (United States)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  4. The Influence of Aerosol Hygroscopicity on Precipitation Intensity During a Mesoscale Convective Event

    Science.gov (United States)

    Kawecki, Stacey; Steiner, Allison L.

    2018-01-01

    We examine how aerosol composition affects precipitation intensity using the Weather and Research Forecasting Model with Chemistry (version 3.6). By changing the prescribed default hygroscopicity values to updated values from laboratory studies, we test model assumptions about individual component hygroscopicity values of ammonium, sulfate, nitrate, and organic species. We compare a baseline simulation (BASE, using default hygroscopicity values) with four sensitivity simulations (SULF, increasing the sulfate hygroscopicity; ORG, decreasing organic hygroscopicity; SWITCH, using a concentration-dependent hygroscopicity value for ammonium; and ALL, including all three changes) to understand the role of aerosol composition on precipitation during a mesoscale convective system (MCS). Overall, the hygroscopicity changes influence the spatial patterns of precipitation and the intensity. Focusing on the maximum precipitation in the model domain downwind of an urban area, we find that changing the individual component hygroscopicities leads to bulk hygroscopicity changes, especially in the ORG simulation. Reducing bulk hygroscopicity (e.g., ORG simulation) initially causes fewer activated drops, weakened updrafts in the midtroposphere, and increased precipitation from larger hydrometeors. Increasing bulk hygroscopicity (e.g., SULF simulation) simulates more numerous and smaller cloud drops and increases precipitation. In the ALL simulation, a stronger cold pool and downdrafts lead to precipitation suppression later in the MCS evolution. In this downwind region, the combined changes in hygroscopicity (ALL) reduces the overprediction of intense events (>70 mm d-1) and better captures the range of moderate intensity (30-60 mm d-1) events. The results of this single MCS analysis suggest that aerosol composition can play an important role in simulating high-intensity precipitation events.

  5. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2012-01-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak

  6. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  7. Protective Role of Educational Level on Episodic Memory Aging: An Event-Related Potential Study

    Science.gov (United States)

    Angel, Lucie; Fay, Severine; Bouazzaoui, Badiaa; Baudouin, Alexia; Isingrini, Michel

    2010-01-01

    The aim of the present experiment was to investigate whether educational level could modulate the effect of aging on episodic memory and on the electrophysiological correlates of retrieval success. Participants were divided into four groups based on age (young vs. older) and educational level (high vs. low), with 14 participants in each group.…

  8. Aerosol radiative forcing during African desert dust events (2005–2010 over Southeastern Spain

    Directory of Open Access Journals (Sweden)

    A. Valenzuela

    2012-11-01

    Full Text Available The daily (24 h averages of the aerosol radiative forcing (ARF at the surface and the top of the atmosphere (TOA were calculated during desert dust events over Granada (southeastern Spain from 2005 to 2010. A radiative transfer model (SBDART was utilized to simulate the solar irradiance values (0.31–2.8 μm at the surface and TOA, using as input aerosol properties retrieved from CIMEL sun photometer measurements via an inversion methodology that uses the sky radiance measurements in principal plane configuration and a spheroid particle shape approximation. This inversion methodology was checked by means of simulated data from aerosol models, and the derived aerosol properties were satisfactorily compared against well-known AERONET products. Good agreement was found over a common spectral interval (0.2–4.0 μm between the simulated SBDART global irradiances at surface and those provided by AERONET. In addition, simulated SBDART solar global irradiances at the surface have been successfully validated against CM-11 pyranometer measurements. The comparison indicates that the radiative transfer model slightly overestimates (mean bias of 3% the experimental solar global irradiance. These results show that the aerosol optical properties used to estimate ARF represent appropriately the aerosol properties observed during desert dust outbreak over the study area. The ARF mean monthly values computed during desert dust events ranged from −13 ± 8 W m−2 to −34 ± 15 W m−2 at surface, from −4 ± 3 W m−2 to −13 ± 7 W m−2 at TOA and from +6 ± 4 to +21 ± 12 W m−2 in the atmosphere. We have checked if the differences found in aerosol optical properties among desert dust sectors translate to differences in ARF. The mean ARF at surface (TOA were −20 ± 12 (−5 ± 5 W m−2, −21 ± 9 (−7 ± 5 W m−2 and −18 ± 9 (−6 ± 5 W m−2 for sector A

  9. Influence of aerosol-cloud interaction on austral summer precipitation over Southern Africa during ENSO events

    Science.gov (United States)

    Ruchith, R. D.; Sivakumar, V.

    2018-04-01

    In the present study, we are investigating the role of aerosols-and clouds in modulating the austral summer precipitation (December-February) during ENSO events over southern Africa region for the period from 2002 to2012 by using satellite and complimentary data sets. Aerosol radiative forcing (ARF) and Cloud radiative forcing (CRF) shows distinct patterns for El-Nina and La-Nina years. Further analysis were carried out by selecting the four Southern Africa regions where the precipitation shows remarkable difference during El-Nino and La-Nina years. These regions are R1 (33°S-24°S, 18°E-30°E), R2 (17°S-10°S, 24°E-32°E), R3 (19°S-9°S, 33°E-41°E) and R4 (7°S-0°S, 27°E-36°E). Aerosol Optical depth (AOD) shows considerable differences during these events. In region R1, R2 and R3 AOD shows more abundance in El-Nino years as compared to La-Nina years where as in R4 the AOD shows more abundance in La-Nina years. Cloud Droplet Effective radius (CDER) shows higher values during La-Nina years over R1, R2 and R3 regions but in R4 region CDER shows higher values in El-Nino years. Aerosol indirect effect (AIE) is estimated both for fixed cloud liquid water path (CLWP) and for fixed cloud ice path (CIP) bins, ranging from 1 to 300 gm -2 at 25 gm -2 interval over all the selected regions for El-Nino and La-Nina years. The results indicate more influence of positive indirect effect (Twomey effect) over R1 and R3 region during El-Nino years as compared to La-Nina years. This analysis reveals the important role of aerosol on cloud-precipitation interaction mechanism illustrating the interlinkage between dynamics and microphysics during austral summer season over southern Africa.

  10. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  11. A Study of The Direct Aerosol Forcing At Ground Level For A Pollution Event During The Escompte Campaign

    Science.gov (United States)

    Mallet, M.; Roger, J. C.; Dubuisson, P.; Putaud, J. P.; van Dingenen, R.; Despiau, S.

    Radiative forcing by aerosol particles is one of the largest source of uncertainties in predicting climate change (IPCC, 2001). Indeed, quantitative estimates of this effect are still uncertain due to little knowledge of these atmospheric particles. Atmospheric particles influence the Earth's radiation balance both directly and indirectly. The indi- rect effect denotes the effect of aerosols acting as cloud condensation nuclei, possibly modifying cloud albedo and cloud lifetime. The direct effect is due to scattering and absorption of radiation and each of these processes depends mainly on the refractive index and the size distribution of aerosol particles. During the ESCOMPTE campaign, which took place in coastal Mediterranean area during the summer 2001, we estimated these aerosol micro-physical properties during a pollution event at two different sites. The first is an urban site (the city of Marseille), and the second is a rural area located fifty kilometers inland. The aerosol size distribution was measured with an SMPS for the particles with radii 1 µm. The chemi- cal composition (including different ionic compounds , dust, elemental and organic carbon) was deduced from chromatography analysis. The aerosol optical properties calculated from measured aerosol physical and chemical properties at ground level (from Mie theory) are used as input to a shortwave radiative transfer model. Then, this model is used to calculate the diurnally averaged direct aerosol forcing at surface and to compare this values with those measured from the ARAT aircraft and surface pyranometer during the campaign.

  12. The symbiotic star CI Cygni: S-process episode or accretion event

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Webbink, R.F.; Gallagher, J.S.; Truran, J.W.

    1982-01-01

    Evidence that the symbiotic star C I Cygni is an eclipsing binary is reviewed. It is shown that the 's-process episode' described by Audouze et al. (1981) during its 1975 outburst arises from superposition of normal gM4 absorption features on the continuum of the hot component during eclipse ingress, and not to sudden enhancements of rare earth elements. The peculiar velocity displacements of absorption lines with different excitation potentials during this episode are identified as signatures of an optically thick accretion disk, which dominates the visible spectrum during outburst. The data presented by Audouze et al., and the shape of the light curve thus provide evidence that the outburst is accretion-powered. (orig.)

  13. Symbiotic star CI Cygni: S-process episode or accretion event

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, S J; Webbink, R F; Gallagher, J S; Truran, J W

    1982-02-01

    Evidence that the symbiotic star C I Cygni is an eclipsing binary is reviewed. It is shown that the s-process episode described by Audouze et al. (1981) during its 1975 outburst arises from superposition of normal gM4 absorption features on the continuum of the hot component during eclipse ingress, and not to sudden enhancements of rare earth elements. The peculiar velocity displacements of absorption lines with different excitation potentials during this episode are identified as signatures of an optically thick accretion disk, which dominates the visible spectrum during outburst. The data presented by Audouze et al., and the shape of the light curve thus provide evidence that the outburst is accretion-powered.

  14. Atmospheric washout of radioactive aerosol for different types of precipitation events

    International Nuclear Information System (INIS)

    Bernauer, Felix

    2015-01-01

    Ionizing radiation is widely used in many applications such as medical diagnostics and radiotherapy, where the beneficial aspect of radiation exposure is obvious. However, the exposure of human beings to ionizing radiation may also have some negative effects on human health. After the Fukushima Dai-Ichi nuclear power plant accident measured deposition patterns did not match to patterns predicted by atmospheric transport models used in decision support systems. It was suggested that one reason for these discrepancies might be that these models do not differentiate between deposition by rain and snow. Up to now much effort has been spent on the theoretical and experimental investigation of the washout of atmospheric aerosol particles by rain. In contrast, only limited knowledge is available on the washout efficiency of snow, due to the complexity of the process. Therefore, the aim of the presented work was to analyze wet deposition of aerosol particles and particle bound radionuclides in different types of precipitation events. The thesis focused on below-cloud scavenging of aerosol particles in a size range from 10 nm to 510 nm in solid phase precipitation events. It is based on measurements of natural precipitation and natural aerosol particle concentration that were performed in the free atmosphere, at the Environmental Research Station Schneefernerhaus. For this purpose, a method was developed to characterize and classify precipitation events, which goes beyond the common differentiation between liquid, mixed and solid phase precipitation. The method included use of a 2D-Video Disdrometer (2DVD), that was adapted for the detection of mixed and solid phase hydrometeors (e.g. snowflakes). A new matching algorithm, that was developed for this thesis, allowed detection of solid, mixed and liquid phase hydrometeors with a maximum dimension larger than 0.5 mm. On the basis of shape and velocity descriptors, a classification algorithm that differentiates between three

  15. Atmospheric washout of radioactive aerosol for different types of precipitation events

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Felix

    2015-12-15

    Ionizing radiation is widely used in many applications such as medical diagnostics and radiotherapy, where the beneficial aspect of radiation exposure is obvious. However, the exposure of human beings to ionizing radiation may also have some negative effects on human health. After the Fukushima Dai-Ichi nuclear power plant accident measured deposition patterns did not match to patterns predicted by atmospheric transport models used in decision support systems. It was suggested that one reason for these discrepancies might be that these models do not differentiate between deposition by rain and snow. Up to now much effort has been spent on the theoretical and experimental investigation of the washout of atmospheric aerosol particles by rain. In contrast, only limited knowledge is available on the washout efficiency of snow, due to the complexity of the process. Therefore, the aim of the presented work was to analyze wet deposition of aerosol particles and particle bound radionuclides in different types of precipitation events. The thesis focused on below-cloud scavenging of aerosol particles in a size range from 10 nm to 510 nm in solid phase precipitation events. It is based on measurements of natural precipitation and natural aerosol particle concentration that were performed in the free atmosphere, at the Environmental Research Station Schneefernerhaus. For this purpose, a method was developed to characterize and classify precipitation events, which goes beyond the common differentiation between liquid, mixed and solid phase precipitation. The method included use of a 2D-Video Disdrometer (2DVD), that was adapted for the detection of mixed and solid phase hydrometeors (e.g. snowflakes). A new matching algorithm, that was developed for this thesis, allowed detection of solid, mixed and liquid phase hydrometeors with a maximum dimension larger than 0.5 mm. On the basis of shape and velocity descriptors, a classification algorithm that differentiates between three

  16. Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results

    International Nuclear Information System (INIS)

    Mironova, I A; Usoskin, I G

    2014-01-01

    This letter presents a summary of a phenomenological study of the response of the polar stratosphere to strong solar energetic particle (SEP) events corresponding to ground level enhancements (GLEs) of cosmic rays. This work is focused on evaluation of the possible influence of the atmospheric ionization caused by SEPs upon formation of aerosol particles in the stratosphere over polar regions. Following case studies of two major SEP/GLE events, in January 2005 and September 1989, and their possible effects on polar stratospheric aerosols, we present here the results of an analysis of variations of the daily profiles of the stratospheric aerosol parameters (aerosol extinction for different wavelengths, as well as Ångstrom exponent) for both polar hemispheres during SEP/GLE events of July 2000, April 2001 and October 2003, which form already five clear cases corresponding to extreme and strong SEP/GLE events. The obtained results suggest that an enhancement of ionization rate by a factor of about two in the polar region with night/cold/winter conditions can lead to the formation/growing of aerosol particles in the altitude range of 10–25 km. We also present a summary of the investigated effects based on the phenomenological study of the atmospheric application of extreme SEP events. (paper)

  17. Personal semantics: Is it distinct from episodic and semantic memory? An electrophysiological study of memory for autobiographical facts and repeated events in honor of Shlomo Bentin.

    Science.gov (United States)

    Renoult, Louis; Tanguay, Annick; Beaudry, Myriam; Tavakoli, Paniz; Rabipour, Sheida; Campbell, Kenneth; Moscovitch, Morris; Levine, Brian; Davidson, Patrick S R

    2016-03-01

    Declarative memory is thought to consist of two independent systems: episodic and semantic. Episodic memory represents personal and contextually unique events, while semantic memory represents culturally-shared, acontextual factual knowledge. Personal semantics refers to aspects of declarative memory that appear to fall somewhere in between the extremes of episodic and semantic. Examples include autobiographical knowledge and memories of repeated personal events. These two aspects of personal semantics have been studied little and rarely compared to both semantic and episodic memory. We recorded the event-related potentials (ERPs) of 27 healthy participants while they verified the veracity of sentences probing four types of questions: general (i.e., semantic) facts, autobiographical facts, repeated events, and unique (i.e., episodic) events. Behavioral results showed equivalent reaction times in all 4 conditions. True sentences were verified faster than false sentences, except for unique events for which no significant difference was observed. Electrophysiological results showed that the N400 (which is classically associated with retrieval from semantic memory) was maximal for general facts and the LPC (which is classically associated with retrieval from episodic memory) was maximal for unique events. For both ERP components, the two personal semantic conditions (i.e., autobiographical facts and repeated events) systematically differed from semantic memory. In addition, N400 amplitudes also differentiated autobiographical facts from unique events. Autobiographical facts and repeated events did not differ significantly from each other but their corresponding scalp distributions differed from those associated with general facts. Our results suggest that the neural correlates of personal semantics can be distinguished from those of semantic and episodic memory, and may provide clues as to how unique events are transformed to semantic memory. Copyright © 2015 Elsevier

  18. Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern central India

    Science.gov (United States)

    Nirmalkar, Jayant; Deshmukh, Dhananjay K.; Deb, Manas K.; Tsai, Ying I.; Sopajaree, Khajornsak

    2015-09-01

    The impact of biomass burning in atmospheric aerosols load is poorly known. We investigated the impact of biomass burning through molecular markers on the concentration of PM2.5 aerosol samples collected from a rural site in eastern central India during three episodic periods from October to November 2011. The collected PM2.5 samples were chemically quantified for potassium as well as sugars and dicarboxylic acids using ion chromatography. Levoglucosan and glucose were found as the most abundant sugar compounds and sugar-alcohols showed the predominance of mannitol whereas oxalic acid was the most abundant diacid followed by maleic acid in PM2.5 aerosols. Substantially enhanced concentrations of K+ as well as levoglucosan and glucose were observed in eastern central India. Analysis of the source specific molecular markers and ratios of sugars and diacids infer that combustion of biomass was the major emission sources of organic compounds associated with PM2.5 aerosols over eastern central India. We applied Spearman correlation analysis and principal component analysis to further investigate the sources of measured sugars and diacids. The concentrations of K+ and levoglucosan were significantly correlated with sugars and diacids that verifying their common sources from biomass burning emission. This study demonstrates that biomass burning for domestic heating and cooking purposes and agricultural activities significantly influence the air quality of eastern central India during the investigation period. The obtained data in this research is helpful for the global scientific community to assessments and remedial of air quality parameters in rural areas of developing countries under similar atmospheric circumstances.

  19. Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system: Chapter 11

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael; Johnson, Jessica H.; Miklius, Asta; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Episodic variations in magma pressures and flow rates at Kīlauea Volcano, defined by a characteristic temporal evolution and termed deflation-inflation (DI) events, have been observed since at least the 1990s. DI events consist of transient, days-long deflations and subsequent reinflations of the summit region, accompanied since 2008 by fluctuations in the surface height of Kīlauea's summit lava lake. After a delay of minutes to hours, these events also often appear along the volcano's East Rift Zone in ground deformation data and as temporary reductions in eruption rate (sometimes followed by brief surges). Notable pauses in DI activity have preceded many eruptive events at Kīlauea. We analyzed more than 500 DI events recorded by borehole tiltmeters at the summit during 2000–2013. Inverse modeling suggests that DI-related ground deformation at the summit is generated by pressure transients in a shallow magma reservoir located beneath the east margin of Halema‘uma‘u Crater and that this reservoir has remained remarkably stable for more than a decade. Utilizing tilt data and variation in the level of the summit lava lake during a large DI event, we estimate a reservoir volume of approximately 1 km3 (0.2–5.5 km3 at 95% confidence).

  20. An Event Related Potentials Study of Semantic Coherence Effect during Episodic Encoding in Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Lâle Battal Merlet

    2018-01-01

    Full Text Available The objective of this electrophysiological study was to investigate the processing of semantic coherence during encoding in relation to episodic memory processes promoted at test, in schizophrenia patients, by using the N400 paradigm. Eighteen schizophrenia patients and 15 healthy participants undertook a recognition memory task. The stimuli consisted of pairs of words either semantically related or unrelated to a given category name (context. During encoding, both groups exhibited an N400 external semantic coherence effect. Healthy controls also showed an N400 internal semantic coherence effect, but this effect was not present in patients. At test, related stimuli were accompanied by an FN400 old/new effect in both groups and by a parietal old/new effect in the control group alone. In the patient group, external semantic coherence effect was associated with FN400, while, in the control group, it was correlated to the parietal old/new effect. Our results indicate that schizophrenia patients can process the contextual information at encoding to enhance familiarity process for related stimuli at test. Therefore, cognitive rehabilitation therapies targeting the implementation of semantic encoding strategies can mobilize familiarity which in turn can overcome the recollection deficit, promoting successful episodic memory performance in schizophrenia patients.

  1. [Microphysics of atmospheric aerosols during winter haze/fog events in Nanjing].

    Science.gov (United States)

    Yang, Jun; Niu, Zhong-qing; Shi, Chun-e; Liu, Duan-yang; Li, Zi-hua

    2010-07-01

    Intensive field observations of fog/haze events, including simultaneous measurements of aerosol particle and fog droplet size distributions, were conducted in Nanjing in November, 2007. Four weather conditions (fog, mist, wet haze and haze) were distinguished based on visibility and liquid water content firstly. Then, the microphysical characteristics of coarse and fine particles in each condition were investigated. The results showed the dominant sequence of the four weather conditions was hazemist-->wet haze-->fog-->, wet haze-->misthaze. The lasting time of pre-fog wet haze was longer than that of post-fog wet haze. The number, surface area and volume concentration of coarse particles with diameter larger than 2.0 micron in fog were much higher than those in the other three conditions, and the smallest concentrations were observed in haze. The size distributions of surface area and volume concentration exhibited multi-peak in fog droplets, while it showed single peak for coarse particles in haze, mist and wet haze. For the fine particles with diameter larger than 0.010 microm, the spectral shapes of surface area concentration are similar in fog (mist) and wet haze (haze) condition. The dominant size ranges of fine particle number concentration were in 0.04-0.13 microm and 0.02-0.14 microm for fog and wet haze, separately. The same dominant size ranges located in 0.02-0.06 microm for both mist and haze. During the transition processes from haze, mist and wet haze to fog, the concentration of smaller particles (less than 0.060-0.090 microm) reduced and vice versa for the corresponding larger particles. Temporal variation of aerosol number concentration correlated well with the root mean diameters negatively during the observation period. The number concentration of aerosol was the lowest and the mean diameter was the largest in fog periods.

  2. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

    Science.gov (United States)

    Tariq, Salman; Zia, ul-Haq; Ali, Muhammad

    2016-02-01

    Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of

  3. Physical characterization of aerosol particles during the Chinese New Year’s firework events

    Science.gov (United States)

    Zhang, Min; Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Wang, Tao; Yang, Xin; Gong, Youguo; Geng, Fuhai; Chen, Changhong

    2010-12-01

    Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100-500 nm) and PM 1 mass concentration, with a maximum total number concentration of 3.8 × 10 4 cm -3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm -3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM 1 exhibited on average above 150 μg m -3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.

  4. Characteristics of aerosol pollution during heavy haze events in Suzhou, China

    Directory of Open Access Journals (Sweden)

    M. Tian

    2016-06-01

    Full Text Available Extremely severe haze weather events occurred in many cities in China, especially in the east part of the country, in January 2013. Comprehensive measurements including hourly concentrations of PM2.5 and its major chemical components (water-soluble inorganic ions, organic carbon (OC, and elemental carbon (EC and related gas-phase precursors were conducted via an online monitoring system in Suzhou, a medium-sized city in Jiangsu province, just east of Shanghai. PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less frequently exceeded 150 µg m−3 on hazy days, with the maximum reaching 324 µg m−3 on 14 January 2013. Unfavorable weather conditions (high relative humidity (RH, and low rainfall, wind speed, and atmospheric pressure were conducive to haze formation. High concentrations of secondary aerosol species (including SO42−, NO3−, NH4+, and SOC and gaseous precursors were observed during the first two haze events, while elevated primary carbonaceous species emissions were found during the third haze period, pointing to different haze formation mechanisms. Organic matter (OM, (NH42SO4, and NH4NO3 were found to be the major contributors to visibility impairment. High concentrations of sulfate and nitrate might be explained by homogeneous gas-phase reactions under low RH conditions and by heterogeneous processes under relatively high RH conditions. Analysis of air mass trajectory clustering and potential source contribution function showed that aerosol pollution in the studied areas was mainly caused by local activities and surrounding sources transported from nearby cities.

  5. Very low frequency earthquakes (VLFEs) detected during episodic tremor and slip (ETS) events in Cascadia using a match filter method indicate repeating events

    Science.gov (United States)

    Hutchison, A. A.; Ghosh, A.

    2016-12-01

    Very low frequency earthquakes (VLFEs) occur in transitional zones of faults, releasing seismic energy in the 0.02-0.05 Hz frequency band over a 90 s duration and typically have magntitudes within the range of Mw 3.0-4.0. VLFEs can occur down-dip of the seismogenic zone, where they can transfer stress up-dip potentially bringing the locked zone closer to a critical failure stress. VLFEs also occur up-dip of the seismogenic zone in a region along the plate interface that can rupture coseismically during large megathrust events, such as the 2011 Tohoku-Oki earthquake [Ide et al., 2011]. VLFEs were first detected in Cascadia during the 2011 episodic tremor and slip (ETS) event, occurring coincidentally with tremor [Ghosh et al., 2015]. However, during the 2014 ETS event, VLFEs were spatially and temporally asynchronous with tremor activity [Hutchison and Ghosh, 2016]. Such contrasting behaviors remind us that the mechanics behind such events remain elusive, yet they are responsible for the largest portion of the moment release during an ETS event. Here, we apply a match filter method using known VLFEs as template events to detect additional VLFEs. Using a grid-search centroid moment tensor inversion method, we invert stacks of the resulting match filter detections to ensure moment tensor solutions are similar to that of the respective template events. Our ability to successfully employ a match filter method to VLFE detection in Cascadia intrinsically indicates that these events can be repeating, implying that the same asperities are likely responsible for generating multiple VLFEs.

  6. Fine-scale application of WRF-CAM5 during a dust storm episode over East Asia: Sensitivity to grid resolutions and aerosol activation parameterizations

    Science.gov (United States)

    Wang, Kai; Zhang, Yang; Zhang, Xin; Fan, Jiwen; Leung, L. Ruby; Zheng, Bo; Zhang, Qiang; He, Kebin

    2018-03-01

    radiations, T2, precipitation, and air quality (e.g., decreasing O3) through complex aerosol-radiation-cloud-chemistry feedbacks. The inclusion of adsorptive activation of dust particles in the FN series scheme has similar impacts on the meteorology and air quality but to lesser extent as compared to differences between the FN series and AG schemes. Compared to the overall differences between the FN series and AG schemes, impacts of adsorptive activation of dust particles can contribute significantly to the increase of total CDNC (∼45%) during dust storm events and indicate their importance in modulating regional climate over East Asia.

  7. Impact of dust and smoke mixing on column-integrated aerosol properties from observations during a severe wildfire episode over Valencia (Spain).

    Science.gov (United States)

    Gómez-Amo, J L; Estellés, V; Marcos, C; Segura, S; Esteve, A R; Pedrós, R; Utrillas, M P; Martínez-Lozano, J A

    2017-12-01

    The most destructive wildfire experienced in Spain since 2004 occurred close to Valencia in summer 2012. A total of 48.500ha were affected by two wildfires, which were mostly active during 29-30 June. The fresh smoke plume was detected at the Burjassot measurement station simultaneously to a severe dust episode. We propose an empirical method to evaluate the dust and smoke mixing and its impact on the microphysical and optical properties. For this, we combine direct-sun measurements with a Cimel CE-318 sun-photometer with an inversion methodology, and the Mie theory to derive the column-integrated size distribution, single scattering albedo (SSA) and asymmetry parameter (g). The mixing of dust and smoke greatly increased the aerosol load and modified the background aerosol properties. Mineral dust increased the aerosol optical depth (AOD) up to 1, while the smoke plume caused an extreme AOD peak of 8. The size distribution of the mixture was bimodal, with a fine and coarse modes dominated by the smoke particles and mineral dust, respectively. The SSA and g for the dust-smoke mixture show a marked sensitivity on the smoke mixing-ratio, mainly at longer wavelengths. Mineral dust and smoke share a similar SSA at 440nm (~0.90), but with opposite spectral dependency. A small dust contribution to the total AOD substantially affects the SSA of the mixture, and also SSA at 1020nm increases from 0.87 to 0.95. This leads to a different spectral behaviour of SSA that changes from positive (smoke plume) to negative (dust), depending on the dust and smoke mixing-ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Physical and Chemical Aerosol Properties At An Urban and A Rural Site During An Episode of Strong Photochemical Activity During Escompte

    Science.gov (United States)

    van Dingenen, R.; Putaud, J. P.; dell'Acqua, A.; Martins-Dos Santos, S.; Viidanoja, J.; Raes, F.

    During the ESCOMPTE campaign (10 June to 14 July, 2001), JRC mobile laboratories for aerosol physical and chemical measurements were deployed at two ground-based sites: Vallon Dol, located at the Northern edge of the Marseille agglomeration and Vi- non, a rural site about 80 km North-East of Marseille. Both sites were equipped with on-line instrumentation for number size distributions in the diameter size range 6nm to 10µm (10 minute time resolution), equivalent black carbon (15 minute time reso- lution), major anions and cations (15 minute time resolution). Time-integrated filter sampling at each site with a time resolution of 6-12 hours was performed with 2 sets of virtual impactors, separating the fine and coarse aerosol fraction. One set, loaded with quartz filters, was analyzed off-line using the `evolved gas analysis` technique for organic and elemental carbon. The second set, loaded with paper filters, was analyzed for dust (by ashing) and ionic composition. On top of the common instrumentation, the urban site was additionally performing on-line PM10 measurements (TEOM with sample equilibration system, 10 minute time resolution) and, during intensive obser- vation periods (IOP), size-segregated sampling with a 8 stage low-pressure Berner im- pactor (6-12 hours time resolution). In this presentation we will focus on data obtained during the second IOP (20-6 to 26-6). During this episode, the sea-breeze transported Marseille pollution plume was clearly observed at the Vinon rural site. Comparison of the aerosol properties at both sites will allow to evaluate the processes that contribute to the (trans)formation of particulate matter in the particular conditions of a marine air mass, mixed with local pollution and undergoing strong photochemical processes during in-land transport.

  9. Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials

    Science.gov (United States)

    Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel

    2009-01-01

    The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…

  10. The role of life events and psychological factors in the onset of first and recurrent mood episodes in bipolar offspring : Results from the Dutch Bipolar Offspring Study

    NARCIS (Netherlands)

    Kemner, S. M.; Mesman, E.; Nolen, W. A.; Eijckemans, M. J C; Hillegers, M. H J

    2015-01-01

    Background Life events are an established risk factor for the onset and recurrence of unipolar and bipolar mood episodes, especially in the presence of genetic vulnerability. The dynamic interplay between life events and psychological context, however, is less studied. In this study, we investigated

  11. The role of life events and psychological factors in the onset of first and recurrent mood episodes in bipolar offspring : results from the Dutch Bipolar Offspring Study

    NARCIS (Netherlands)

    Kemner, S. M.; Mesman, E.; Nolen, W. A.; Eijckemans, M. J. C.; Hillegers, M. H. J.

    Background Life events are an established risk factor for the onset and recurrence of unipolar and bipolar mood episodes, especially in the presence of genetic vulnerability. The dynamic interplay between life events and psychological context, however, is less studied. In this study, we investigated

  12. The Impacts of Episodic Storm and Flood Events on Carbon and Sediment Delivery to Gulf of Mexico Sediments

    Science.gov (United States)

    Schreiner, K. M.; Carlin, J. A.; Sayers, L.; Swenson, J.

    2017-12-01

    Marine sediments are an important long-term reservoir for both recently fixed organic carbon (OC) and ancient rock derived OC, much of which is delivered by rivers. The ratio between these two sources of OC in turn regulates atmospheric levels of oxygen and carbon dioxide over geologic time, making this riverine delivery of OC, primarily carried by sediments, an important flux in the global carbon cycle. However, while the overall magnitude of these fluxes are relatively well known, it remains to be determined the importance of episodic events, like storms and floods, in the flux of OC from terrestrial to marine environments. Here, we present data from a 34 cm core collected from the Gulf of Mexico at a mid-shelf distal depocenter for the Brazos River in 2015, during a strong El Nino when that area of the country was experiencing 100-year flood events and anomalously high river flow. Based on analysis of the radioactive isotope 7Be, approximately the top 7-8 cm of the sediment in this core was deposited during this flood event. Both bulk elemental (C, N, and stable carbon isotopes) and chemical biomarker (lignin-phenol) data has been combined to provide information of the origin and chemistry of the OC in this core both before and during flooding. C:N and d13C indicate a mixture of marine-sourced and terrestrially-sourced OC throughout the length of the core with very little variation between the flood layer and deeper sediments. However, lignin-phenol concentrations are higher in flood-deposited sediment, indicating that this sediment is likely terrestrially-sourced. Lignin-phenol indicators of OC degradation state (Acid:Aldehyde ratios) indicate that flood sediment is fresher and less degraded than deeper sediments. Taken together, these results indicate that 1. Bulk analyses are not enough to determine OC source and the importance of flood events in OC cycling and 2. Episodic events like floods could have an oversized impact on OC storage in marine sediments.

  13. Using high complexity analysis to probe the evolution of organic aerosol during pollution events in Beijing

    Science.gov (United States)

    Hamilton, J.; Dixon, W.; Dunmore, R.; Squires, F. A.; Swift, S.; Lee, J. D.; Rickard, A. R.; Sun, Y.; Xu, W.

    2017-12-01

    There is increasing evidence that exposure to air pollution results in significant impacts on human health. In Beijing, home to over 20 million inhabitants, particulate matter levels are very high by international standards, with official estimates of an annual mean PM2.5 concentration in 2014 of 86 μg m-3, nearly 9 times higher than the WHO guideline. Changes in particle composition during pollution events will provide key information on sources and can be used to inform strategies for pollution mitigation and health benefits. The organic fraction of PM is an extremely complex mixture reflecting the diversity of sources to the atmosphere. In this study we attempt to harness the chemical complexity of OA by developing an extensive database of over 700 mass spectra, built using literature data and sources specific tracers (e.g. diesel emission characterisation experiments and SOA generated in chamber simulations). Using a high throughput analysis method (15 min), involving UHPLC coupled to Orbitrap mass spectrometry, chromatograms are integrated, compared to the library and a list of identified compounds produced. Purpose built software based on R is used to automatically produce time series, alongside common aerosol metrics and data visualisation techniques, dramatically reducing analysis times. Offline measurements of organic aerosol composition were made as part of the Sources and Emissions of Air Pollutants in Beijing project, a collaborative program between leading UK and Chinese research groups. Rather than studying only a small number of 24 hr PM samples, we collected 250 filters samples at a range of different time resolutions, from 30 minutes to 12 hours, depending on the time of day and PM loadings. In total 643 species were identified based on their elemental formula and retention time, with species ranging from C2-C22 and between 1-13 oxygens. A large fraction of the OA species observed were organosulfates and/or nitrates. Here we will present

  14. Picocyanobacteria Dominance in Deep Biomass Layers: Relation to Diatom Presence and Episodic Events.

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.

    2016-02-01

    In Offshore Marine and Large Lake Waters, most of the biomass and the productivity of phytoplankton occur below surface observation capabilities. Sub-mixed layer phytoplankton populations develop, increase, persist, and decay in relation to physical structure such as pycnocline density gradients interacting with progressively changing light fields. Basin-scale meteorological events and persistence of major invasive species have also left marks on biogeochemical cycling and ecosystem function in Lake Michigan. Among the former are precipitation and turbulence alterations brought on by unusual winter ice cover and a century-scale flood during 2008. Dampened seasonal silicate cycling indicated a basin-wide reduction of diatom production following mussel establishment. Communities in Lake Michigan shifted from diatom and big cell-dominated to small cell picocyanobacteria-dominated phytoplankton. Picocyanobacteria were beneficiaries of profound oligotrophication of the ecosystem starting in 2003. Photosynthetic parameters of pre-2003 Deep Biomass populations dominated by diatoms were systematically different from the cyanobacterial epoch following quagga mussel establishment and increase in depth of 1% incident light to 50-60m. Deep cyanobacterial production has now often been on the same scale as overlying waters. Photophysiology changes in a smooth depth gradient in this clear water as opposed to previous abrupt transition to shade adaptation. Among these many physicochemical permutations, community structure has consistently been a tradeoff between diatoms and picocyanobacteria. Opposing fluctuations of biomass favor one or the other on seasonal time frames of sequential years, with a complete system reset between each (winter mixing). For the Great Flood example, diatom surface blooms increased light extinction and drove the deep biomass maximum up - as populations settled into the pycnocline they had already outcompeted the picocyanobacteria. The opposite was true

  15. Incidence of stressful life events and influence of sociodemographic and clinical variables on the onset of first-episode psychosis.

    Science.gov (United States)

    Butjosa, Anna; Gómez-Benito, Juana; Huerta-Ramos, Elena; Del Cacho, Núria; Barajas, Ana; Baños, Iris; Usall, Judith; Dolz, Montserrat; Sánchez, Bernardo; Carlson, Janina; Maria Haro, Josep; Ochoa, Susana

    2016-11-30

    This study presents a quantitative analysis of the incidence of stressful life events (SLEs) and the variables gender, age at onset, family history and psychotic symptoms in patients with first-episode psychosis (FEP). A descriptive, cross-sectional methodology was used to interview 68 patients with FEP between 13 and 47 years of age. The Psychiatric Epidemiology Research Interview Life Events Scale collected one-year period prior to onset of FEP - used to analyse the subcategories academic, work, love and marriage, children, residence, legal affairs, finances and social activities-, Positive and Negative Syndrome Scale, and Clinical Global Impression-Schizophrenia scale were used to assess the relevance of certain SLEs during adolescence. Age at onset showed a significant negative correlation with the categories academic and social activities. By contrast, it showed a positive correlation with work and children. A significant relationship was found between paternal family history and social activities and between maternal family history and academic and love and marriage. Finally, an inverse relationship was observed between negative symptoms and the categories children and finance. Depressive symptoms were significantly correlated with the category academic. Our results show the importance of SLEs during adolescence and suggest that there is a clear need to develop preventive actions that promote effective strategies for dealing with the accumulation of psychosocial stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    Science.gov (United States)

    Sun, Tianze; Che, Huizheng; Qi, Bing; Wang, Yaqiang; Dong, Yunsheng; Xia, Xiangao; Wang, Hong; Gui, Ke; Zheng, Yu; Zhao, Hujia; Ma, Qianli; Du, Rongguang; Zhang, Xiaoye

    2018-03-01

    The climatological variation of aerosol properties and the planetary boundary layer (PBL) during 2013-2015 over the Yangtze River Delta (YRD) region were investigated by employing ground-based Micro Pulse Lidar (MPL) and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF) model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD) in June and September is higher due to high single scattering albedo (SSA) from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH) is greater (means ranging from 1.23 to 1.84 km) and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by stable weather conditions

  17. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China

    Directory of Open Access Journals (Sweden)

    T. Sun

    2018-03-01

    Full Text Available The climatological variation of aerosol properties and the planetary boundary layer (PBL during 2013–2015 over the Yangtze River Delta (YRD region were investigated by employing ground-based Micro Pulse Lidar (MPL and CE-318 sun-photometer observations. Combining Moderate Resolution Imaging Spectroradiometer (MODIS and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO satellite products, enhanced haze pollution events affected by different types of aerosol over the YRD region were analyzed through vertical structures, spatial distributions, backward trajectories, and the potential source contribution function (PSCF model. The results show that aerosols in the YRD are dominated by fine-mode particles, except in March. The aerosol optical depth (AOD in June and September is higher due to high single scattering albedo (SSA from hygroscopic growth, but it is lower in July and August due to wet deposition from precipitation. The PBL height (PBLH is greater (means ranging from 1.23 to 1.84 km and more variable in the warmer months of March to August, due to the stronger diurnal cycle and exchange of heat. Northern fine-mode pollutants are brought to the YRD at a height of 1.5 km. The SSA increases, blocking the radiation to the surface, and cooling the surface, thereby weakening turbulence, lowering the PBL, and in turn accelerating the accumulation of pollutants, creating a feedback to the cooling effect. Originated from the deserts in Xinjiang and Inner Mongolia, long-range transported dust masses are seen at heights of about 2 km over the YRD region with an SSA440 nm below 0.84, which heat air and raise the PBL, accelerating the diffusion of dust particles. Regional transport from biomass-burning spots to the south of the YRD region bring mixed aerosol particles at a height below 1.5 km, resulting in an SSA440 nm below 0.89. During the winter, the accumulation of the local emission layer is facilitated by

  18. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Niu, Hongya [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, Hebei 056038 (China); Zhang, Daizhou [Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Wu, Zhijun [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Chen, Chen [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Beijing Municipal Environmental Monitoring Center, Beijing 100044 (China); Wu, Yusheng; Shang, Dongjie [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Hu, Min, E-mail: minhu@pku.edu.cn [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China)

    2016-09-15

    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1–7 μm with a peak of number concentration at about 3.5 μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm{sup −3}, which was much lower than that in heavily polluted days (6300 cm{sup −3}). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2–0.5 μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. - Highlights: • A dust event transported at high altitude through Beijing was investigated. • The dust event caused high variation in surface aerosol number concentrations. • Fine particles in the floating dust period probably consisted of ammonium sulfate. • Passage of the dust induced a favorable condition for new particle formation.

  19. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols

    International Nuclear Information System (INIS)

    Hu, Wei; Niu, Hongya; Zhang, Daizhou; Wu, Zhijun; Chen, Chen; Wu, Yusheng; Shang, Dongjie; Hu, Min

    2016-01-01

    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1–7 μm with a peak of number concentration at about 3.5 μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm"−"3, which was much lower than that in heavily polluted days (6300 cm"−"3). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2–0.5 μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. - Highlights: • A dust event transported at high altitude through Beijing was investigated. • The dust event caused high variation in surface aerosol number concentrations. • Fine particles in the floating dust period probably consisted of ammonium sulfate. • Passage of the dust induced a favorable condition for new particle formation.

  20. Nonlinear response of hail precipitation rate to environmental moisture content: A real case modeling study of an episodic midlatitude severe convective event

    Science.gov (United States)

    Li, Mingxin; Zhang, Fuqing; Zhang, Qinghong; Harrington, Jerry Y.; Kumjian, Matthew R.

    2017-07-01

    The dependence of hail production on initial moisture content in a simulated midlatitude episodic convective event occurred in northeast China on 10-11 June 2005 was investigated using the Weather Research and Forecasting (WRF) model with a double-moment microphysics scheme where both graupel and hail are considered. Three sensitivity experiments were performed by modifying the initial water vapor mixing ratio profile to 90% ("Q-10%"), 105% ("Q+5%"), and 110% ("Q+10%") of the initial conditions used for the control simulation. It was found that increasing the initial water vapor content caused the hail and total precipitation rates to increase during the first 5 h. The precipitation response to increasing water vapor content was monotonic for this first episode; however, for the event's second episode, the hail precipitation rate responds to the initial water vapor profile nonlinearly, while the total precipitation rate responds mostly monotonically. In particular, simulation Q+5% achieves the largest hail production rate while simulation Q+10% has the largest total precipitation rate. In contrast, during the second episode simulation Q-10% has the strongest vertical motion, produces the most cloud ice and snow, but has the lowest hail production. Analysis shows that increasing the initial moisture content directly increases the precipitation during the first episode, which subsequently induces a stronger, longer-lasting cold pool that limits the development of deep convection during the second episode.

  1. Chemical Composition Based Aerosol Optical Properties According to Size Distribution and Mixture Types during Smog and Asian Dust Events in Seoul, Korea

    Science.gov (United States)

    Jung, Chang Hoon; Lee, Ji Yi; Um, Junshik; Lee, Seung Soo; Kim, Yong Pyo

    2018-02-01

    This study investigated the optical properties of aerosols involved in different meteorological events, including smog and Asian dust days. Carbonaceous components and inorganic species were measured in Seoul, Korea between 25 and 31 March 2012. Based on the measurements, the optical properties of aerosols were calculated by considering composition, size distribution, and mixing state of aerosols. To represent polydisperse size distributions of aerosols, a lognormal size distribution with a wide range of geometric mean diameters and geometric standard deviations was used. For the optical property calculations, the Mie theory was used to compute single-scattering properties of aerosol particles with varying size and composition. Analysis of the sampled data showed that the water-soluble components of organic matter increased on smog days, whereas crustal elements increased on dust days. The water content significantly influenced the optical properties of aerosols during the smog days as a result of high relative humidity and an increase in the water-soluble component. The absorption coefficients depended on the aerosol mixture type and the aerosol size distributions. Therefore, to improve our knowledge on radiative impacts of aerosols, especially the regional impacts of aerosols in East Asia, accurate measurements of aerosols, such as size distribution, composition, and mixture type, under different meteorological conditions are required.

  2. Aerosol optical, microphysical and radiative forcing properties during variable intensity African dust events in the Iberian Peninsula

    Science.gov (United States)

    Fernández, A. J.; Molero, F.; Salvador, P.; Revuelta, A.; Becerril-Valle, M.; Gómez-Moreno, F. J.; Artíñano, B.; Pujadas, M.

    2017-11-01

    Aerosol measurements at two AERONET (AErosol RObotic NETwork) sites of the Iberian Peninsula: Madrid (40°.45N, 3.72W) and La Coruña (43°.36N, 8°.42W) have been analyzed for the period 2012-2015 to assess aerosol optical properties (intensive and extensive) throughout the atmospheric column and their radiative forcing (RF) and radiative forcing efficiency (RFeff) estimates at the Bottom and Top Of Atmosphere (BOA and TOA respectively). Specific conditions as dust-free and African dust have been considered for the study. Unprecedented, this work uses the quantification of the African dust aerosol at ground level which allows us to study such AERONET products at different intensity levels of African events: Low (L), High (H) and very high (VH). The statistical difference between dust-free and African dust conditions on the aforementioned parameters, quantified by means of the non-parametric Kolmogorov-Smirnov test, is quite clear in Madrid, however it is not in La Coruña. Scattering Angstrom Exponent (SAE) and Absorption Angstrom Exponent (AAE) were found to be 1.64 ± 0.29 and 1.14 ± 0.23 respectively in Madrid for dust-free conditions because typical aerosol sources are traffic emissions and residential heating, and black carbon is an important compound in this aerosol kind. On the other hand, SAE and AAE were 0.96 ± 0.60 and 1.44 ± 0.51 for African dust conditions in this location. RF (at shortwave radiation) seems to decrease as the African dust contribution at ground level is larger which indicates the cooling effect of African dust aerosol in Madrid. We have also proved the potential of a 2D-cluster analysis based on AAE and SAE to differentiate both situations in Madrid. Conversely, it is suggested that aerosols observed in La Coruña under dust-free conditions might come from different sources. Then, SAE and AAE are not good enough indicators to distinguish between dust-free and African dust conditions. Besides, as La Coruña is at a further distance

  3. Combining metric episodes with semantic event concepts within the Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; McGhee, S.

    2013-05-01

    This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.

  4. PBO Borehole Strainmeters: 2017 Episodic Tremor and Slip Event for Southern Vancouver Island, BC, Canada through Olympia, WA, USA

    Science.gov (United States)

    Van Boskirk, E. J.; Hodgkinson, K. M.; Gottlieb, M. H.; Johnson, W.; Henderson, D. B.; Mencin, D.; Mattioli, G. S.

    2017-12-01

    The Plate Boundary Observatory's (PBO) borehole strainmeters along the Cascadia Subduction Zone (CSZ) record the development and migration of Episodic Tremor and Slip (ETS). Along the southern Vancouver Island to Olympia, WA portion of the CSZ ETS events seem to repeat every 14 months. ETS events are non-volcanic tremor swarms that occur over periods of weeks, often migrating along segments of the subduction zone and can release the energy equivalent to a M7 or greater earthquake. Each ETS event is different; initial propagation location, ETS movement, duration, and direction all vary. Constraints provided by strainmeter observations of ETS events illuminate strain release patterns along the subducting slab interface and may help resolve questions regarding the location of the locked zone of the slab and what role ETS events play in the CSZ earthquake cycle. The 2017 CSZ ETS began in early February continuing through early April. Beginning in the northern Olympic Peninsula, near Port Angeles, it migrated south towards Olympia over the course of a week. After a two week pause it resumed under the Straits of Juan de Fuca and propagated northwest under Vancouver Island. There are 15 PBO borehole strainmeters along this segment, and ETS strain observations correlate with seismic and GPS measurements. The PBO borehole strainmeters are sensitive even over great distances from the ETS epicenters, and observe compression or extension relative to the ETS migration. Openly available PBO borehole strainmeter data used by the community has made significant contributions to understanding the ETS process, including the determination that ETS slip is tidally modulated. Data are publically available through UNAVCO and IRIS, which provide links to online tutorials and scripts. There are 32 strainmeters covering the CSZ from southern Vancouver Island, Canada to northern California, USA, and data spans back to 2005. Each site has a Gladwin tensor borehole strainmeter, a Malin three

  5. Sequence of pathogenic events in cynomolgus macaques infected with aerosolized monkeypox virus.

    Science.gov (United States)

    Tree, J A; Hall, G; Pearson, G; Rayner, E; Graham, V A; Steeds, K; Bewley, K R; Hatch, G J; Dennis, M; Taylor, I; Roberts, A D; Funnell, S G P; Vipond, J

    2015-04-01

    To evaluate new vaccines when human efficacy studies are not possible, the FDA's "Animal Rule" requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (10(5) PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it would be unethical and

  6. The Cognitive Aging of Episodic Memory: A View Based On The Event-Related Brain Potential (ERP

    Directory of Open Access Journals (Sweden)

    David eFriedman

    2013-08-01

    Full Text Available A cardinal feature of older-adult cognition is a decline, relative to the young, in the encoding and retrieval of personally-relevant events, i.e. episodic memory (EM. A consensus holds that familiarity, a relatively automatic feeling of knowing that can support recognition-memory judgments, is preserved with aging. By contrast, recollection, which requires the effortful, strategic recovery of contextual detail, declines as we age. Over the last decade, ERPs have become increasingly important tools in the study of the aging of EM, because a few, well-researched EM effects have been associated with the cognitive processes thought to underlie successful EM performance. EM effects are operationalized by subtracting the ERPs elicited by correctly-rejected, new items from those to correctly recognized, old items. Although highly controversial, the mid-frontal effect (a positive component between ~300 and 500 ms, maximal at fronto-central scalp sites is thought to reflect familiarity-based recognition. A positivity between ~500 and 800 ms, maximal at left-parietal scalp, has been labeled the left-parietal EM effect. A wealth of evidence suggests that this brain activity reflects recollection-based retrieval. Here, I review the ERP evidence in support of the hypothesis that familiarity is maintained while recollection is compromised in older relative to young adults. I consider the possibility that the inconsistency in findings may be due to individual differences in performance, executive function and quality of life indices, such as socio-economic status.

  7. Springtime major pollution events by aerosol over Paris Area: From a case study to a multiannual analysis

    Science.gov (United States)

    Chazette, Patrick; Royer, Philippe

    2017-08-01

    A study of the intense spring pollution events occurring between 2007 and 2016 on the Paris Area is presented using ground-based and spaceborne measurements. Emphasis is placed on 2011 where data included ground-based lidar measurements. This last period corresponds with the highest regional pollution levels of the past decade. The information threshold (daily average of (mass concentration of particles with aerodynamic diameter less than 10 μm) PM10 > 50 μg m-3) was exceeded 16 times, while the alert threshold (daily average of PM10 > 80 μg m-3) was exceeded twice. The information (alert) threshold exists to protect the most fragile people (the entire population). Ground-based and spaceborne measurements demonstrate the benefit of their synergy as each is representative of specific space and time scales. The operational products of the spaceborne instruments Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and the Moderate Resolution Imaging Spectroradiometer are used. For 2011, CALIOP vertical profiles are inversed to assess the backscatter to extinction ratio, which is then successfully compared with similar results derived from the CALIOP operational products, a ground-based lidar and Sun photometers. The aerosols are identified to be polluted continental and polluted dust aerosols following the criteria used for the inversion of the CALIOP profiles. Aerosol typing is consistent between the ground-based and spaceborne lidars, demonstrating the importance of CALIOP for other years where the ground-based lidar was not in operation. The main pollution sources responsible for the spring aerosol pollution, occurring during anticyclonic meteorological conditions, are identified as coming from Western Europe: Benelux, Rhine-Ruhr area, and the Lorraine area.

  8. Molecular composition of rainwater and aerosol during rain events in León, Spain, using high resolution mass spectrometry.

    Science.gov (United States)

    Fee, Anna

    2017-04-01

    Anna Fee (1), Markus Kalberer (1), Roberto Fraile (2), Amaya Castro (2), Ana. I. Calvo (2), Carlos Blanco-Alegre (2), Fernanda Oduber (2) and Mário Cerqueira (3). 1 Department of Chemistry, University of Cambridge, UK. 2 Department of Applied Chemistry and Physics, IMARENAB, University of León, Spain. 3 Department of Environmental Planning, University of Aveiro, Portugal. A wide range of atmospheric compounds which are present in rainwater are often also present in aerosol. They can be taken up during cloud droplet formation (in-cloud scavenging) or washed out during precipitation (below-cloud scavenging). Such compounds including aromatic hydrocarbons and organic nitrogen containing compounds are hazardous to health. In this study, the organic chemical composition of rainwater and aerosol from rain events in León, Spain, is being analysed using high resolution mass spectrometry. Collected rainwater along with high volume and low volume filters from rain events which occurred during spring, summer and winter of 2016 have been selected for analysis. Rainwater samples were prepared using Polymeric Reversed Phase Solid Phase Extraction (SPE) and filters have been extracted in water with and without SPE. Three different SPE polymer based sorbents were tested; one for extracting neutral compounds and two which are more suitable for extracting organic compounds containing sulphate and other polar functional groups. The sorbent for extracting neutral compounds was found to yield a higher number of compounds from the sample extraction than the other two varieties. Kendrick masses, Van Krevelen plots and carbon oxidation states have been investigated to identify compounds and patterns. Preliminary results show a predominance in peaks with O/C ratios between 0.2 and 0.7 and H/C ratios between 1 and 2 in both rain and aerosol samples which indicates substituted aromatic compounds. Cellulose material and fatty acids may also be present. The rain samples also have a

  9. Investigation of local meteorological events and their relationship with ozone and aerosols during an ESCOMPTE photochemical episode

    OpenAIRE

    Augustin , P.; Delbarre , H.; Lohou , F.; Campistron , B.; Puygrenier , V.; Cachier , H.; Lombardo , T.

    2006-01-01

    The international ESCOMPTE campaign, which took place in summer 2001 in the most highly polluted French region, was devoted to validate air pollution prediction models. Surface and remote sensing instruments (Lidar, Radar and Sodar) were deployed over the Marseille area, along the Mediterranean coast, in order to investigate the fine structure of the sea-breeze circulation and its relationship with the pollutant concentrations.

    The geographical situation of the Marseille ...

  10. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory

    OpenAIRE

    Hasselmo, Michael E.; Giocomo, Lisa M.; Yoshida, Motoharu

    2009-01-01

    Understanding the mechanisms of episodic memory requires linking behavioural data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within these brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in b...

  11. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory.

    Science.gov (United States)

    Hasselmo, Michael E; Giocomo, Lisa M; Brandon, Mark P; Yoshida, Motoharu

    2010-12-31

    Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event

    Science.gov (United States)

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  13. Influence of extreme events on health-related aerosol particle deposition in an urban site during summer

    Science.gov (United States)

    Belmonte, Paula; Castro, Amaya; Calvo, Ana Isabel; Alves, Célia; Duarte, Márcio; Alonso-Blanco, Elisabeth; Fraile, Roberto

    2014-05-01

    Urban populations are exposed to aerosol particles that enter in the human respiratory track posing an important risk to human health. Particle sampling conventions have been established, expressed as curves describing "penetration" to the region of interest in terms of the particle aerodynamic diameter. The inhalable, thoracic, traqueo-bronchial and respirable fractions have been estimated according to the International Standard ISO 7708:1995. This study presents the analysis of aerosol size distributions and its deposition in the human respiratory tract according to ISO 7708. The influence of ambient conditions in an urban area affected by heat waves and wildfires in the summer months has been analyzed. A laser spectrometer PCASP-X was used to characterize the aerosol size distributions. This device registers particle sizes between 0.1 and 10 microns in 31 channels. The spectrometer was installed in the city of León (Spain), between June and September 2012, and 24 measurements were carried out daily to determine the size of the ambient particles in the urban area. The measurements were averaged over 15-minute intervals. A weather station was installed at 3 m above the ground to register automatically data on precipitation, pressure, temperature, relative humidity wind speed and direction. The refractive index of the particles was estimated for each value of relative humidity, as the relative humidity of the ambient atmosphere affects the size and the complex refractive index of aerosols. Afterwards, raw size bins were corrected from the estimated refractive indices using a program based on Mie Theory. The regional government provided data on the exact location of summer wildfires in the province of Leon, as well as data on the land area affected. A persistent and intense thermal inversion of subsidence caused an intense pollution episode in the city during the main wildfire, which broke out at a distance of about 60 km from the sampling point. Furthermore, the

  14. Foresight beyond the very next event: Four-year-olds can link past and deferred future episodes

    Directory of Open Access Journals (Sweden)

    Jonathan eRedshaw

    2013-07-01

    Full Text Available Previous experiments have demonstrated that by four years of age children can use information from a past episode to solve a problem for the very next future episode. However, it remained unclear whether four-year-olds can similarly use such information to solve a problem for a more removed future episode that is not of immediate concern. In the current study we introduced four-year-olds to problems in one room before taking them to another room and distracting them for 15 minutes. The children were then offered a choice of items to place into a bucket that was to be taken back to the first room when a five-minute sand-timer had completed a cycle. Across two conceptually distinct domains, the children placed the item that could solve the deferred future problem above chance level. This result demonstrates that by 48 months many children can recall a problem from the past and act in the present to solve that problem for a deferred future episode. We discuss implications for theories about the nature of episodic foresight.

  15. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2006-01-01

    Full Text Available We analyze the relationship between daily fine particle mass concentration (PM2.5 and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72 with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC as defined by U.S. Environmental Protection Agency (EPA from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7% for the "Good" AQC and 89.1% (±3.6% for the "Moderate" AQC.

  16. Massive post-fire flowering events in a tropical mountain region of Brazil: high episodic supply of floral resources

    Directory of Open Access Journals (Sweden)

    Abel Augusto Conceição

    2013-12-01

    Full Text Available The species Vellozia sincorana L.B.Sm. & Ayensu is key to biodiversity conservation in the tropical mountain region of Brazil. The massive post-fire flowering of this endemic species provides a large, episodic supply of floral resources, mostly nectar, to animals.

  17. An insight into the formation of severe ozone episodes: modeling the 21/03/01 event in the ESCOMPTE region

    Science.gov (United States)

    Lasry, Fanny; Coll, Isabelle; Buisson, Emmanuel

    2005-03-01

    High ozone concentrations are observed more and more frequently in the lower troposphere. The development of such polluted episodes is linked to a complex set of chemical, physical and dynamical parameters that interact with each other. To improve air quality, it is necessary to understand and quantify the role of all these processes on the intensity of ozone formation. The ESCOMPTE program, especially dedicated to the numerical simulation of photochemical episodes, offers an ideal frame to investigate details of the roles of many of these processes through 3D modeling. This paper presents the analysis, with a 3D eulerian model, of a severe and local episode of ozone pollution that occurred on the 21st of March 2001 in the ESCOMPTE region. This episode is particularly interesting due to the intensity of the observed ozone peaks (450 μg/m 3 during 15 mn) but also because it did not occur in summer but at the beginning of spring. As part of the premodeling work of the ESCOMPTE program, this study focuses on the sensitivity of the simulated ozone peaks to various chemical and physical phenomena (long-range transport, industrial emissions, local dynamic phenomena…) to determine their influence on the rise of high local photooxidant concentrations and to better picture the photochemistry of the ESCOMPTE region. Through sensitivity tests to dynamical calculation resolution and emissions, this paper shows how the combination of sea and pond breezes with emissions of reactive VOCs can generate local intense ozone peaks.

  18. Predicting the occurrence of embolic events: an analysis of 1456 episodes of infective endocarditis from the Italian Study on Endocarditis (SEI)

    Science.gov (United States)

    2014-01-01

    Background Embolic events are a major cause of morbidity and mortality in patients with infective endocarditis. We analyzed the database of the prospective cohort study SEI in order to identify factors associated with the occurrence of embolic events and to develop a scoring system for the assessment of the risk of embolism. Methods We retrospectively analyzed 1456 episodes of infective endocarditis from the multicenter study SEI. Predictors of embolism were identified. Risk factors identified at multivariate analysis as predictive of embolism in left-sided endocarditis, were used for the development of a risk score: 1 point was assigned to each risk factor (total risk score range: minimum 0 points; maximum 2 points). Three categories were defined by the score: low (0 points), intermediate (1 point), or high risk (2 points); the probability of embolic events per risk category was calculated for each day on treatment (day 0 through day 30). Results There were 499 episodes of infective endocarditis (34%) that were complicated by ≥ 1 embolic event. Most embolic events occurred early in the clinical course (first week of therapy: 15.5 episodes per 1000 patient days; second week: 3.7 episodes per 1000 patient days). In the total cohort, the factors associated with the occurrence of embolism at multivariate analysis were prosthetic valve localization (odds ratio, 1.84), right-sided endocarditis (odds ratio, 3.93), Staphylococcus aureus etiology (odds ratio, 2.23) and vegetation size ≥ 13 mm (odds ratio, 1.86). In left-sided endocarditis, Staphylococcus aureus etiology (odds ratio, 2.1) and vegetation size ≥ 13 mm (odds ratio, 2.1) were independently associated with embolic events; the 30-day cumulative incidence of embolism varied with risk score category (low risk, 12%; intermediate risk, 25%; high risk, 38%; p endocarditis, a simple scoring system, which combines etiology and vegetation size with time on antimicrobials, might contribute to a

  19. Modeling of episodic particulate matter events using a 3-D air quality model with fine grid: Applications to a pair of cities in the US/Mexico border

    Science.gov (United States)

    Choi, Yu-Jin; Hyde, Peter; Fernando, H. J. S.

    High (episodic) particulate matter (PM) events over the sister cities of Douglas (AZ) and Agua Prieta (Sonora), located in the US-Mexico border, were simulated using the 3D Eulerian air quality model, MODELS-3/CMAQ. The best available input information was used for the simulations, with pollution inventory specified on a fine grid. In spite of inherent uncertainties associated with the emission inventory as well as the chemistry and meteorology of the air quality simulation tool, model evaluations showed acceptable PM predictions, while demonstrating the need for including the interaction between meteorology and emissions in an interactive mode in the model, a capability currently unavailable in MODELS-3/CMAQ when dealing with PM. Sensitivity studies on boundary influence indicate an insignificant regional (advection) contribution of PM to the study area. The contribution of secondary particles to the occurrence of high PM events was trivial. High PM episodes in the study area, therefore, are purely local events that largely depend on local meteorological conditions. The major PM emission sources were identified as vehicular activities on unpaved/paved roads and wind-blown dust. The results will be of immediate utility in devising PM mitigation strategies for the study area, which is one of the US EPA-designated non-attainment areas with respect to PM.

  20. Estimates of the width of the wetting zone along a fracture subjected to an episodic infiltration event in variably saturated, densely welded tuff

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1988-01-01

    A central issue to be addressed within the Nevada Nuclear Waste Storage Investigations (NNWSI) is the role which fractures will play as the variably saturated, fractured rock mass surrounding the waste package responds to heating, cooling, and episodic infiltration events. Understanding the role of fractures during such events will, in part, depend on our ability to make geophysical measurements of perturbations in the moisture distribution in the vicinity of fractures. In this study we first examine the details of the perturbation in the moisture distribution in and around a fracture subjected to an episodic infiltration event, and then integrate that behavior over the scale at which moisture measurements are likely to be made during the Engineered Barrier Design Test of the NNWSI project. To model this system we use the TOUGH hydrothermal code and fracture and matrix properties considered relevant to the welded ash flow tuff found in the Topopah Spring member at Yucca Mountain as well as in the Grouse Canyon member within G-Tunnel at the Nevada Test Site. Our calculations provide insight into the anticipated spatial and temporal resolution obtainable through the use of the geophysical techniques being considered. These calculations should prove useful both in planning the implementation of these methods as well as in the interpretation of their results. 41 refs., 28 figs

  1. An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: observational-based analysis of surface temperature

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2016-05-01

    Full Text Available A major continental-scale biomass burning smoke event from 28–30 June 2015, spanning central Canada through the eastern seaboard of the United States, resulted in unforecasted drops in daytime high surface temperatures on the order of 2–5  °C in the upper Midwest. This event, with strong smoke gradients and largely cloud-free conditions, provides a natural laboratory to study how aerosol radiative effects may influence numerical weather prediction (NWP forecast outcomes. Here, we describe the nature of this smoke event and evaluate the differences in observed near-surface air temperatures between Bismarck (clear and Grand Forks (overcast smoke, to evaluate to what degree solar radiation forcing from a smoke plume introduces daytime surface cooling, and how this affects model bias in forecasts and analyses. For this event, mid-visible (550 nm smoke aerosol optical thickness (AOT, τ reached values above 5. A direct surface cooling efficiency of −1.5 °C per unit AOT (at 550 nm, τ550 was found. A further analysis of European Centre for Medium-Range Weather Forecasts (ECMWF, National Centers for Environmental Prediction (NCEP, United Kingdom Meteorological Office (UKMO near-surface air temperature forecasts for up to 54 h as a function of Moderate Resolution Imaging Spectroradiometer (MODIS Dark Target AOT data across more than 400 surface stations, also indicated the presence of the daytime aerosol direct cooling effect, but suggested a smaller aerosol direct surface cooling efficiency with magnitude on the order of −0.25 to −1.0 °C per unit τ550. In addition, using observations from the surface stations, uncertainties in near-surface air temperatures from ECMWF, NCEP, and UKMO model runs are estimated. This study further suggests that significant daily changes in τ550 above 1, at which the smoke-aerosol-induced direct surface cooling effect could be comparable in magnitude with model uncertainties, are rare events

  2. Pre-emergency-department care-seeking patterns are associated with the severity of presenting condition for emergency department visit and subsequent adverse events: a timeframe episode analysis.

    Directory of Open Access Journals (Sweden)

    Chien-Lung Chan

    Full Text Available Many patients treated in Emergency Department (ED visits can be treated at primary or urgent care sectors, despite the fact that a number of ED visitors seek other forms of care prior to an ED visit. However, little is known regarding how the pre-ED activity episodes affect ED visits.We investigated whether care-seeking patterns involve the use of health care services of various types prior to ED visits and examined the associations of these patterns with the severity of the presenting condition for the ED visit (EDVS and subsequent events.This retrospective observational study used administrative data on beneficiaries of the universal health care insurance program in Taiwan. The service type, treatment capacity, and relative diagnosis were used to classify pre-ED visits into 8 care types. Frequent pattern analysis was used to identify sequential care-seeking patterns and to classify 667,183 eligible pre-ED episodes into patterns. Generalized linear models were developed using generalized estimating equations to examine the associations of these patterns with EDVS and subsequent events.The results revealed 17 care-seeking patterns. The EDVS and likelihood of subsequent events significantly differed among patterns. The ED severity index of patterns differ from patterns seeking directly ED care (coefficients ranged from -0.05 to 0.13, and the odds-ratios for the likelihood of subsequent ED visits and hospitalization ranged from 1.18 to 1.86 and 1.16 to 2.84, respectively.The pre-ED care-seeking patterns differ in severity of presenting condition and subsequent events that may represent different causes of ED visit. Future health policy maker may adopt different intervention strategies for targeted population to reduce unnecessary ED visit effectively.

  3. Pre-emergency-department care-seeking patterns are associated with the severity of presenting condition for emergency department visit and subsequent adverse events: a timeframe episode analysis.

    Science.gov (United States)

    Chan, Chien-Lung; Lin, Wender; Yang, Nan-Ping; Lai, K Robert; Huang, Hsin-Tsung

    2015-01-01

    Many patients treated in Emergency Department (ED) visits can be treated at primary or urgent care sectors, despite the fact that a number of ED visitors seek other forms of care prior to an ED visit. However, little is known regarding how the pre-ED activity episodes affect ED visits. We investigated whether care-seeking patterns involve the use of health care services of various types prior to ED visits and examined the associations of these patterns with the severity of the presenting condition for the ED visit (EDVS) and subsequent events. This retrospective observational study used administrative data on beneficiaries of the universal health care insurance program in Taiwan. The service type, treatment capacity, and relative diagnosis were used to classify pre-ED visits into 8 care types. Frequent pattern analysis was used to identify sequential care-seeking patterns and to classify 667,183 eligible pre-ED episodes into patterns. Generalized linear models were developed using generalized estimating equations to examine the associations of these patterns with EDVS and subsequent events. The results revealed 17 care-seeking patterns. The EDVS and likelihood of subsequent events significantly differed among patterns. The ED severity index of patterns differ from patterns seeking directly ED care (coefficients ranged from -0.05 to 0.13), and the odds-ratios for the likelihood of subsequent ED visits and hospitalization ranged from 1.18 to 1.86 and 1.16 to 2.84, respectively. The pre-ED care-seeking patterns differ in severity of presenting condition and subsequent events that may represent different causes of ED visit. Future health policy maker may adopt different intervention strategies for targeted population to reduce unnecessary ED visit effectively.

  4. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  5. Performance of MODIS C6 Aerosol Product during Frequent Haze-Fog Events: A Case Study of Beijing

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-05-01

    Full Text Available The newly released MODIS Collection 6 aerosol products have been widely used to evaluate fine particulate matter with a 10 km Dark Target aerosol optic depth (DT AOD product, a new 3 km DT AOD product and an enhanced Deep Blue (DB AOD product. However, the representativeness of MODIS AOD products under different air quality conditions remains unclear. In this study, we obtained all three types of MODIS Terra AOD from 2001 to 2015 and Aqua AOD from 2003 to 2015 for the Beijing region to study the performance of the different AOD products (Collection 6 under different air quality situations. The validation of three MODIS AOD products suggests that DB AOD has the highest accuracy with an expected error (EE envelope (containing at least 67% of the matchups on a scatter plot of 0.05 + 0.15τ, followed by 10 km DT AOD (0.08 + 0.2τ and 3 km DT AOD (0.35 + 0.15τ, specifically for Beijing. Near-surface PM2.5 concentrations during the passage of MODIS from 2013 to 2015 were also obtained to categorize air quality as unpolluted, moderately, and heavily polluted, as well as to analyze the performance of the different AOD products under different air quality conditions. Very few MODIS 3 km DT retrievals appeared on heavily polluted days, making it almost impossible to play an effective role in air quality applications in Beijing. While the DB AOD allowed for considerable retrievals under all air quality conditions, it had a coarse spatial resolution. These results demonstrate that the MODIS 3 km DT AOD product may not be the appropriate proxy to be used in the satellite retrieval of surface PM2.5, especially for those areas with frequent haze-fog events like Beijing.

  6. In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia.

    Science.gov (United States)

    Behera, Sailesh N; Cheng, Jinping; Balasubramanian, Rajasekhar

    2015-10-01

    The characterization of aerosol acidity has received increased attention in recent years due to its influence on atmospheric visibility, climate change and human health. Distribution of water soluble inorganic (WSI) ions in 12 different size fractions of aerosols was investigated under two different atmospheric conditions (smoke-haze and non-haze periods) in 2012 using the Micro-Orifice Uniform Deposit Impactor (MOUDI) and nano-MOUDI for the first time in Singapore. To estimate the in situ acidity ([H(+)]Ins) and in situ aerosol pH (pHIS), the Aerosol Inorganic Model version-IV under deliquescent mode of airborne particles was used at prevailing ambient temperature and relative humidity. The study revealed an increase in the levels of airborne particulate matter (PM) mass and concentrations of WSI ions for all size fractions during the smoke-haze period, which was caused by the trans-boundary transport of biomass burning-impacted air masses from Indonesia. A bimodal distribution was observed for concentrations of SO4(2-), NO3(-), Cl(-), K(+) and Na(+), whereas concentrations of NH4(+), Ca(2+) and Mg(2+) showed a single mode distribution. The concentration of WSI ions in PM1.8 during the smoke-haze period increased by 3.8 (for SO4(2-)) to 10.5 (for K(+)) times more than those observed during the non-haze period. The pHIS were observed to be lower during the smoke-haze period than that during the non-haze period for all size fractions of PM, indicating that atmospheric aerosols were more acidic due to the influence of biomass burning emissions. The particles in the accumulation mode were more acidic than those in the coarse mode.

  7. Developmental differences in episodic memory across school ages: evidence from enacted events performed by self and others.

    Science.gov (United States)

    Badinlou, Farzaneh; Kormi-Nouri, Reza; Mousavi Nasab, S M Hossein; Knopf, Monika

    2017-01-01

    The aim of this study was to examine action memory as a form of episodic memory among school-aged subjects. Most research on action memory has focused on memory changes in adult populations. This study explored the action memory of children over time. A total of 410 school-aged child participants, comprising 201 girls and 208 boys in four age groups (8, 10, 12, and 14), were included in this study. We studied two forms of action encoding, subject-performed tasks (SPTs) and experimenter-performed tasks (EPTs), which were compared with one verbal encoding task as a control condition. At retrieval, we used three memory tests (free recall, cued recall, and recognition). We observed significant differences in memory performance in children aged 8-14 years with respect to free recall and cued recall but not recognition. The largest memory enhancement was observed for the SPTs in the 8-14-year-old participants under all test conditions. Participants performed equally well on the free recall of SPTs and EPTs, whereas they displayed better performances on the cued recall and recognition of SPTs compared to EPTs. The strategic nature of SPTs and the distinction between item-specific information and relational information are discussed.

  8. Temporal consistency of lidar observations during aerosol transport events in the framework of the ChArMEx/ADRIMED campaign at Minorca in June 2013

    Directory of Open Access Journals (Sweden)

    P. Chazette

    2016-03-01

    Full Text Available We performed synergetic daytime and nighttime active and passive remote-sensing observations at Minorca (Balearic Islands, Spain, over more than 3 weeks during the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Effect in the Mediterranean (ChArMEx/ADRIMED special observation period (SOP 1a, June–July 2013. We characterized the aerosol optical properties and type in the low and middle troposphere using an automated procedure combining Rayleigh–Mie–Raman lidar (355, 387 and 407 nm with depolarization (355 nm and AERONET Cimel® sun-photometer data. Results show a high variability due to varying dynamical forcing. The mean column-averaged lidar backscatter-to-extinction ratio (BER was close to 0.024 sr−1 (lidar ratio of  ∼ 41.7 sr, with a large dispersion of ±33 % over the whole observation period due to changing atmospheric transport regimes and aerosol sources. The ground-based remote-sensing measurements, coupled with satellite observations, allowed the documentation of (i dust particles up to 5 km (above sea level in altitude originating from Morocco and Algeria from 15 to 18 June with a peak in aerosol optical thickness (AOT of 0.25 ± 0.05 at 355 nm, (ii a long-range transport of biomass burning aerosol (AOT  =  0.18 ± 0.16 related to North American forest fires detected from 26 to 28 June 2013 by the lidar between 2 and 7 km and (iii mixture of local sources including marine aerosol particles and pollution from Spain. During the biomass burning event, the high value of the particle depolarization ratio (8–14 % may imply the presence of dust-like particles mixed with the biomass burning aerosols in the mid-troposphere. For the field campaign period, we also show linearity with SEVIRI retrievals of the aerosol optical thickness despite 35 % relative bias, which is discussed as a function of aerosol type.

  9. The age and origin of carbon in fire aerosols during El Niño-induced haze events in Singapore

    Science.gov (United States)

    Wiggins, E. B.; Czimczik, C. I.; Santos, G. M.; Chen, Y.; Xu, X.; Randerson, J. T.

    2017-12-01

    During the onset of the 2015-2016 El Niño, fires in Indonesia and Malaysia created a massive regional haze event that severely degraded air quality in many urban centers and resulted in significant land-atmosphere CO2 emissions with average daily CO2 emissions of 11.2 Tg during September - October. Many lines of evidence indicate that peat fires are a dominant contributor to biomass burning emissions in the region. However, El Nino-induced drought is also known to increase deforestation fires and agricultural waste burning, and there are relatively few observational constraints that provide a quantitative partitioning of emissions among these fire types. Nor have there been regionally-integrated estimates of the age of carbon that is combusted in peatland fires. This information is critical for linking haze-related mortality with the anthropogenic build-up of atmospheric CO2. Measuring the age of carbon (14C content) in airborne particulate matter provides a mean to apportion how different fire types contribute to regional air pollution. Here we measured the 14C content of 39 particulate matter (PM2.5) samples collected in Singapore from September 2014 through October 2015, with the aim of assessing the age and origin of the haze-inducing carbonaceous aerosol. We found that the 14C content of the fire aerosols in Singapore was -59.8 ± 61.6‰, well below atmospheric background levels of 24 ± 3‰, and consistent with an age of 430 ± 520 years before present. Atmospheric transport modeling confirmed that fire emissions originating from Sumatra and Borneo were the dominant contributor to the elevated PM2.5 in Singapore. The 14C measurements provide independent confirmation that fire emissions in the region originate primarily from peat burning, and should be treated as a component of the net land use change flux that contributes to climate warming. Our analysis also highlights the dual benefits for air quality and climate mitigation of improving fire management

  10. Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode

    Science.gov (United States)

    Meroni, A.; Pirovano, G.; Gilardoni, S.; Lonati, G.; Colombi, C.; Gianelle, V.; Paglione, M.; Poluzzi, V.; Riva, G. M.; Toppetti, A.

    2017-12-01

    Traditional aerosol mechanisms underestimate the observed organic aerosol concentration, especially due to the lack of information on secondary organic aerosol (SOA) formation and processing. In this study we evaluate the chemical and transport model CAMx during a one-month in winter (February 2013) over a 5 km resolution domain, covering the whole Po valley (Northern Italy). This works aims at investigating the effects of chemical and physical atmospheric processing on modelling results and, in particular, to evaluate the CAMx sensitivity to organic aerosol (OA) modelling schemes: we will compare the recent 1.5D-VBS algorithm (CAMx-VBS) with the traditional Odum 2-product model (CAMx-SOAP). Additionally, the thorough diagnostic analysis of the reproduction of meteorology, precursors and aerosol components was intended to point put strength and weaknesses of the modelling system and address its improvement. Firstly, we evaluate model performance for criteria PM concentration. PM10 concentration was underestimated both by CAMx-SOAP and even more by CAMx-VBS, with the latter showing a bias ranging between -4.7 and -7.1 μg m-3. PM2.5 model performance was to some extent better than PM10, showing a mean bias ranging between -0.5 μg m-3 at rural sites and -5.5 μg m-3 at urban and suburban sites. CAMx performance for OA was clearly worse than for the other PM compounds (negative bias ranging between -40% and -75%). The comparisons of model results with OA sources (identified by PMF analysis) shows that the VBS scheme underestimates freshly emitted organic aerosol while SOAP overestimates. The VBS scheme correctly reproduces biomass burning (BBOA) contributions to primary OA concentrations (POA). In contrast VBS slightly underestimates the contribution from fossil-fuel combustion (HOA), indicating that POA emissions related to road transport are either underestimated or associated to higher volatility classes. The VBS scheme under-predictes the SOA too, but to a lesser

  11. Episodic Memories

    Science.gov (United States)

    Conway, Martin A.

    2009-01-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of "episodic elements," summary records of experience often in the form of visual images, associated to a "conceptual frame" that provides a…

  12. Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study.

    Science.gov (United States)

    Ford, Jaclyn H; Giovanello, Kelly S; Guskiewicz, Kevin M

    2013-10-15

    Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions.

  13. Remote Sensing of Clouds And Precipitation: Event-Based Characterization, Life Cycle Evolution, and Aerosol Influences

    Science.gov (United States)

    Esmaili, Rebekah Bradley

    contiguous United States. There was agreement on seasonal totals, but closer examination shows that the average intensity and duration of events is too high, and too infrequent compared to events detected on the ground. Awareness of the strengths and limitations, particularly in context of high-resolution cloud development, can enhance SPPs and can complement climate model simulations.

  14. Motion events in English as a fourth language: a linguistic analysis of a selected episode in multilingual learner narratives

    Directory of Open Access Journals (Sweden)

    Martina Irsara

    2015-01-01

    Full Text Available Abstract - This article reports on a study that investigated the description of motion events in narrative texts written by 13-14 and 17-18 year olds learning English as a fourth language at schools where multilingualism is a key objective. The focus was placed on the learners’ references to the animate beings featured in the story and their use of verbs and satellites in order to describe the movement situations elicited from the image selected for analysis from the wordless picture story the teenagers had to retell in words. The main objective of the study was to draw a comparison between the two age or proficiency-level groups within a functional-pragmatic framework. The learners’ narrative and linguistic choices in their motion-event constructions were analysed, with a number of comments made on the basis of the participants’ other languages. Findings revealed preferences and tendencies that were partly similar and partly different in the two school grades. The predominant figures turned out to be the same at both proficiency levels, with the use of superordinates to fill lexical gaps identified as one of the main communication strategies and the more frequent use of personal pronouns characterising the higher-level texts. With the exception of the motion undertaken by one figure, the motion events depicted were described with similar verbs, and a non-target like use of the satellites after and behind was noticed in both age groups. The article is argued to constitute the basis for further investigations into motion events in multilingual learners’ texts.Riassunto - L’articolo costituisce uno studio sulla descrizione degli eventi di moto in testi narrativi prodotti da giovani di 13-14 e 17-18 anni apprendenti di inglese come quarta lingua. Il lavoro si concentra sui riferimenti degli alunni alle entità in movimento con funzione di Figura e sul loro uso di verbi e Satelliti indicanti i percorsi delle entità negli estratti

  15. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events.

    Science.gov (United States)

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.

  16. An air pollution episode and its formation mechanism during the tropical cyclone Nuri's landfall in a coastal city of south China

    Science.gov (United States)

    Yang, John Xun; Lau, Alexis Kai Hon; Fung, Jimmy Chi Hung; Zhou, Wen; Wenig, Mark

    2012-07-01

    In this work we investigated an air pollution episode during the landfall process of a tropical cyclone (TC) in Hong Kong. TCs affect air condition and account for most air pollution episodes in summer of this region. In August 2008, TC Nuri made direct landfall in Hong Kong. Before its landfall, an air pollution episode occurred, where major pollutants like SO2 and PM10 increased eight and six times higher respectively. Rather than using single measurement method, we combined ground air sampling, lidar, sunphotometer and satellite lidar CALIPSO with focus on aerosol to study the episode mechanism, and some new phenomena were found. During the episode, it was found that heavy inland aerosol plumes existed in areas larger than urbanized regions and were elevated vertically and transported southward. During episode, planetary boundary layer (PBL) expansion and height increase were observed, which is different from previous reported PBL compression and height decrease. While vertical subsidence and horizontal stagnation and consequently local aerosol accumulation were attributed as the main episode cause in previous cases, our observation showed that transported aerosols dominated in this TC landfall event. This can be further confirmed by examining aerosol chemical composition, size distribution and single scattering albedo, where transported related species showed significantly change and local indicators remained relatively stable. Invigorated cloud droplets were found on the boundary layer top upon aerosol elevation. The results indicate that site difference and TC tracks should be considered for analyzing episode formation mechanism. They can cause difference in the strength of vertical subsidence and horizontal advection and affect pollution flow direction, which subsequently results in different pollution formation processes.

  17. Radiocarbon analysis of BC and OC in PM10 aerosols at Cape Hedo, Okinawa, Japan, during long-range transport events from East Asian countries

    International Nuclear Information System (INIS)

    Handa, Daishi; Nakajima, Hitomi; Arakaki, Takemitsu; Kumata, Hidetoshi; Shibata, Yasuyuki; Uchida, Masao

    2010-01-01

    We determined the 14 C/ 12 C ratio and concentrations of black carbon (BC) and organic carbon (OC) in airborne particulate matter (APM) with diameter 10 ) collected in Okinawa, Japan, between March and June 2008. During Asian dust events in March and April, APM and OC concentrations in PM 10 aerosols were approximately threefold and twofold higher than those during the non-Asian-dust period in June. 'Refractory' BC concentrations (i.e., because of refraction, 10 aerosols collected during the Asian dust events (mean = 41.5% and 62.3%, respectively) than for those collected in the non-Asian-dust period (mean = 67.2% and 93.8%, respectively), indicating a strong influence of fossil-fuel-derived carbon during Asian dust events. One sample showed high OC concentration but relatively low BC concentration, suggesting formation during the long-range transport of biogenic organic compounds. The results suggest that not only fossil-fuel-derived air pollutants but also organic compounds derived from biomass in Asia should be considered to better characterize long-range transported aerosols.

  18. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  19. Episodic and Semantic Memory Contribute to Familiar and Novel Episodic Future Thinking.

    Science.gov (United States)

    Wang, Tong; Yue, Tong; Huang, Xi Ting

    2016-01-01

    Increasing evidence indicates that episodic future thinking (EFT) relies on both episodic and semantic memory; however, event familiarity may importantly affect the extent to which episodic and semantic memory contribute to EFT. To test this possibility, two behavioral experiments were conducted. In Experiment 1, we directly compared the proportion of episodic and semantic memory used in an EFT task. The results indicated that more episodic memory was used when imagining familiar future events compared with novel future events. Conversely, significantly more semantic memory was used when imagining novel events compared with familiar events. Experiment 2 aimed to verify the results of Experiment 1. In Experiment 2, we found that familiarity moderated the effect of priming the episodic memory system on EFT; particularly, it increased the time required to construct a standard familiar episodic future event, but did not significantly affect novel episodic event reaction time. Collectively, these findings support the hypothesis that event familiarity importantly moderates episodic and semantic memory's contribution to EFT.

  20. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shili; Pan, Yuepeng, E-mail: panyuepeng@mail.iap.ac.cn; Liu, Zirui; Wen, Tianxue; Wang, Yuesi, E-mail: wys@mail.iap.ac.cn

    2014-08-30

    Highlights: • Anthropogenic species substantially accumulated in both fine and coarse particles. • Secondary organic carbon in PM{sub 1.1} decreased from clear to haze days. • The mass peak shifted to larger particles from clear to haze days. • The NO{sub 3}{sup −}/SO{sub 4}{sup 2−} ratio decreased with enhanced haze pollution. • Both mobile local and stationary regional sources were vital for haze formation. - Abstract: Using size-resolved filter sampling and chemical characterization, high concentrations of water-soluble ions, carbonaceous species and heavy metals were found in both fine (PM{sub 2.1}) and coarse (PM{sub 2.1–9}) particles in Beijing during haze events in early 2013. Even on clear days, average mass concentration of submicron particles (PM{sub 1.1}) was several times higher than that previously measured in most of abroad urban areas. A high concentration of particulate matter on haze days weakens the incident solar radiation, which reduces the generation rate of secondary organic carbon in PM{sub 1.1}. We show that the peak mass concentration of particles shifted from 0.43–0.65 μm on clear days to 0.65–1.1 μm on lightly polluted days and to 1.1–2.1 μm on heavily polluted days. The peak shifts were also found for the following species: organic carbon, elemental carbon, NH{sub 4}{sup +}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −}, K, Cu, Zn, Cd and Pb. Our findings demonstrate that secondary inorganic aerosols (36%) and organic matter (26%) dominated the fine particle mass on heavily polluted days, while their contribution reduced to 29% and 18%, respectively, on clear days. Besides fine particles, anthropogenic chemical species also substantially accumulated in the coarse mode, which suggests that particles with aerodynamic diameter larger than 2.1 μm cannot be neglected during severe haze events.

  1. XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation

    Science.gov (United States)

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.; Richter, Andreas

    2018-02-01

    A cloud identification algorithm used for cloud masking, which is based on the spatial variability of reflectances at the top of the atmosphere in visible wavelengths, has been developed for the retrieval of aerosol properties by MODIS. It is shown that the spatial pattern of cloud reflectance, as observed from space, is very different from that of aerosols. Clouds show a high spatial variability in the scale of a hundred metres to a few kilometres, whereas aerosols in general are homogeneous. The concept of spatial variability of reflectances at the top of the atmosphere is mainly applicable over the ocean, where the surface background is sufficiently homogeneous for the separation between aerosols and clouds. Aerosol retrievals require a sufficiently accurate cloud identification to be able to mask these ground scenes. However, a conservative mask will exclude strong aerosol episodes and a less conservative mask could introduce cloud contamination that biases the retrieved aerosol optical properties (e.g. aerosol optical depth and effective radii). A detailed study on the effect of cloud contamination on aerosol retrievals has been performed and parameters are established determining the threshold value for the MODIS aerosol cloud mask (3×3-STD) over the ocean. The 3×3-STD algorithm discussed in this paper is the operational cloud mask used for MODIS aerosol retrievals over the ocean.A prolonged pollution haze event occurred in the northeast part of China during the period 16-21 December 2016. To assess the impact of such events, the amounts and distribution of aerosol particles, formed in such events, need to be quantified. The newly launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3 is the successor of the MEdium Resolution Imaging Spectrometer (MERIS). It provides measurements of the radiance and reflectance at the top of the atmosphere, which can be used to retrieve the aerosol optical thickness (AOT) from synoptic to global scales. In this

  2. Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event.

    Science.gov (United States)

    van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O

    2012-11-01

    The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.

  3. Simulations of Sulfate-Nitrate-Ammonium (SNA) aerosols during the extreme haze events over Northern China in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Liu, Zhiquan; Fast, Jerome D.; Ban, Junmei

    2016-08-30

    Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 μg m-3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 μg m-3), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous reactions. As the parameterizations of those reactions is not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory

  4. In-situ, sunphotometer and Raman lidar observations of aerosol transport events in the western Mediterranean during the June 2013 ChArMEx campaign

    Science.gov (United States)

    Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia

    2014-05-01

    We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are highlighted in our

  5. Effects of memory strategy training on performance and event-related brain potentials of children with ADHD in an episodic memory task.

    Science.gov (United States)

    Jonkman, Lisa M; Hurks, Petra P; Schleepen, Tamara M J

    2016-10-01

    Evidence for memory problems in children with attention deficit hyperactivity disorder (ADHD) is accumulating. Attempting to counter such problems, in the present study children with ADHD aged 8-12 years underwent a six-week metacognitive memory strategy training (MST) or one of two other active trainings, either a metacognitive attention-perceptual-motor training (APM) or placebo training consisting of playing board games (PLA). Effects of the training on episodic memory and underlying brain processes were investigated by comparing performance and event-related brain potentials (ERPs) on pre- and post-training sessions in an old/new recognition task between the three training groups. Potential far transfer effects of the memory strategy training were investigated by measuring performance on neuropsychological attention and memory-span tasks and parent-rated ADHD symptoms. The metacognitive memory strategy training led to significantly improved memory performance and enhanced amplitude of left parietal P600 activity associated with the process of memory recollection when compared to PLA, but APM training evoked similar improvements. Memory performance gains were significantly correlated with the memory-related ERP effects. Preliminary far transfer effects of MST training were found on attention and working memory performance and on parent-rated ADHD symptoms, although these results need replication with larger and better IQ-matched groups.

  6. Source-reconstruction of event-related fields reveals hyperfunction and hypofunction of cortical circuits in antipsychotic-naive, first-episode schizophrenia patients during Mooney face processing.

    Science.gov (United States)

    Rivolta, Davide; Castellanos, Nazareth P; Stawowsky, Cerisa; Helbling, Saskia; Wibral, Michael; Grützner, Christine; Koethe, Dagmar; Birkner, Katharina; Kranaster, Laura; Enning, Frank; Singer, Wolf; Leweke, F Markus; Uhlhaas, Peter J

    2014-04-23

    Schizophrenia is characterized by dysfunctions in neural circuits that can be investigated with electrophysiological methods, such as EEG and MEG. In the present human study, we examined event-related fields (ERFs), in a sample of medication-naive, first-episode schizophrenia (FE-ScZ) patients (n = 14) and healthy control participants (n = 17) during perception of Mooney faces to investigate the integrity of neuromagnetic responses and their experience-dependent modification. ERF responses were analyzed for M100, M170, and M250 components at the sensor and source levels. In addition, we analyzed peak latency and adaptation effects due to stimulus repetition. FE-ScZ patients were characterized by significantly impaired sensory processing, as indicated by a reduced discrimination index (A'). At the sensor level, M100 and M170 responses in FE-ScZ were within the normal range, whereas the M250 response was impaired. However, source localization revealed widespread elevated activity for M100 and M170 in FE-ScZ and delayed peak latencies for the M100 and M250 responses. In addition, M170 source activity in FE-ScZ was not modulated by stimulus repetitions. The present findings suggest that neural circuits in FE-ScZ may be characterized by a disturbed balance between excitation and inhibition that could lead to a failure to gate information flow and abnormal spreading of activity, which is compatible with dysfunctional glutamatergic neurotransmission.

  7. Unexpected spatial impact of treatment plant discharges induced by episodic hydrodynamic events: Modelling Lagrangian transport of fine particles by Northern Current intrusions in the bays of Marseille (France).

    Science.gov (United States)

    Millet, Bertrand; Pinazo, Christel; Banaru, Daniela; Pagès, Rémi; Guiart, Pierre; Pairaud, Ivane

    2018-01-01

    Our study highlights the Lagrangian transport of solid particles discharged at the Marseille Wastewater Treatment Plant (WWTP), located at Cortiou on the southern coastline. We focused on episodic situations characterized by a coastal circulation pattern induced by intrusion events of the Northern Current (NC) on the continental shelf, associated with SE wind regimes. We computed, using MARS3D-RHOMA and ICHTHYOP models, the particle trajectories from a patch of 5.104 passive and conservative fine particles released at the WWTP outlet, during 2 chosen representative periods of intrusion of the NC in June 2008 and in October 2011, associated with S-SE and E-SE winds, respectively. Unexpected results highlighted that the amount of particles reaching the vulnerable shorelines of both northern and southern bays accounted for 21.2% and 46.3% of the WWTP initial patch, in June 2008 and October 2011, respectively. Finally, a conceptual diagram is proposed to highlight the mechanisms of dispersion within the bays of Marseille of the fine particles released at the WWTP outlet that have long been underestimated.

  8. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  9. Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays

    Science.gov (United States)

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Cruz Minguillón, Mari; Pey, Jorge; Rodriguez, Sergio; Vicente Miró, José; Felis, Carles; Gibbons, Wes

    The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L'Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO 2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m -3), aluminium (as Al 2O 3 from around 600 to 2200 ng m -3), titanium (from 200 to 700 ng m -3), magnesium (from 100 to 500 ng m -3), lead (from 17 to 379 ng m -3), barium (from 39 to 322 ng m -3), strontium (from 3 to 112 ng m -3), copper (from 12 to 71 ng m -3), and antimony (from 1 to 52 ng m -3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.

  10. Intense dust episodes in the Mediterranean and possible effects on atmospheric lapse rates

    Science.gov (United States)

    Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Gavrouzou, Maria

    2016-04-01

    Dust aerosols are major contributor to the atmospheric particulate matter, having significant effects on climate and weather patterns as well as on human health, not to mention others like agriculture or ocean chlorophyll. Moreover, these effects are maximized under conditions of massive dust concentration in the atmosphere, namely dust episodes or events. Such events are caused by uplifting and transport of dust from arid and semi-arid areas under favorable synoptic conditions. The Mediterranean basin, nearby to the greatest world deserts of North Africa and Middle East, frequently undergoes dust episodes. During such Mediterranean episodes, the number and mass concentration of dust is high, due to the proximity of its source areas. The dust episodes, through the direct interaction of dust primarily withthe shortwave but also with longwave radiation can lead to strong local warming in the atmosphere, possibly causing temperature inversion during daytime. The existence of such temperature inversions, associated with intense dust episodes in the Mediterranean, is the focus in this study. The methodology followed to achieve the scientific goal of the study consists in the use of a synergy of different data. This synergy enables: (i) the determination of intense dust episodes over the Mediterranean, (ii) the investigation and specification of temperature lapse rates and inversions during the days of dust episodes and (iii) the identification of vertical distribution of aerosols in the atmosphere over specific locations during the days of the episodes. These objectives are achieved through the use of data from: (i) the AERosol Robotic NETwork (AERONET) network, (ii) the Upper Air Observations (radiosondes) database of the University of Wyoming (UoW) and (iii) the European Aerosol Research Lidar Network (EARLINET) database. The study period spans the years from 2000 to 2013, constrained by the data availability of the databases. A key element of the methodology is the

  11. Simulation of aerosol radiative properties with the ORISAM-RAD model during a pollution event (ESCOMPTE 2001)

    Science.gov (United States)

    Mallet, M.; Pont, V.; Liousse, C.; Roger, J. C.; Dubuisson, P.

    The aim of this study is to present the organic and inorganic spectral aerosol module-radiative (ORISAM-RAD) module, allowing the 3D distribution of aerosol radiative properties (aerosol optical depth, single scattering albedo and asymmetry parameter) from the ORISAM module. In this work, we test ORISAM-RAD for one selected day (24th June) during the ESCOMPTE (expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions) experiment for an urban/industrial aerosol type. The particle radiative properties obtained from in situ and AERONET observations are used to validate our simulations. In a first time, simulations obtained from ORISAM-RAD indicate high aerosol optical depth (AOD)˜0.50-0.70±0.02 (at 440 nm) in the aerosol pollution plume, slightly lower (˜10-20%) than AERONET retrievals. In a second time, simulations of the single scattering albedo ( ωo) have been found to well reproduce the high spatial heterogeneities observed over this domain. Concerning the asymmetry parameter ( g), ORISAM-RAD simulations reveal quite uniform values over the whole ESCOMPTE domain, comprised between 0.61±0.01 and 0.65±0.01 (at 440 nm), in excellent agreement with ground based in situ measurements and AERONET retrievals. Finally, the outputs of ORISAM-RAD have been used in a radiative transfer model in order to simulate the diurnal direct radiative forcing at different locations (urban, industrial and rural). We show that anthropogenic aerosols strongly decrease surface solar radiation, with diurnal mean surface forcings comprised between -29.0±2.9 and -38.6±3.9 W m -2, depending on the sites. This decrease is due to the reflection of solar radiations back to space (-7.3±0.8<Δ FTOA<-12.3±1.2 W m -2) and to its absorption into the aerosol layer (21.1±2.1<Δ FATM<26.3±2.6 W m -2). These values are found to be consistent with those measured at local scale.

  12. Advancing Littoral Zone Aerosol Prediction via Holistic Studies in Regime-Dependent Flows: August 3-9, 2016 Middle East Dust Event

    Science.gov (United States)

    Solbrig, J. E.; Miller, S. D.; van den Heever, S. C.; Kreidenweis, S. M.; Oo, M. M.; Zupanski, M.; Zhang, J.; Wang, J.; Holz, R.; Albers, S. C.; Grasso, L. D.; Kliewer, A.; Bukowski, J.; Park, J.; Saleeby, S. M.; Wu, T. C.

    2017-12-01

    Coastal regions represent a complex environment for meteorological processes, their effect on aerosol distributions, and the resulting impacts of those aerosols. These regions are rife with discontinuities that make dynamical processes difficult to predict and confound optical retrieval algorithms with highly variable and poorly characterized backgrounds. Local dynamics can be complicated by interactions between maritime and continental airmasses and the presence of coastal terrain. Additionally, coastal shallow water and high-turbidity produce backgrounds with high water leaving radiance which biases results from remote sensing retrievals. Here we present the highlights of the first two years of work from a Multi-disciplinary University Research Initiative entitled Holistic Analysis of Aerosol in Littoral Environments (HAALE-MURI) with specific focus on a dust event that occurred during the period of August 3-9 2016. During this period, two large dust plumes were observed advecting across the Arabian Peninsula. The first, embedded in a dry airmass, moved across the peninsula from north-west to south-east. This plume eventually stalls as it encounters a moist airmass, likely driven by the sea breeze. Embedded in the moist airmass is a second dust plume lofted from Oman, which then advects northwards over the Persian Gulf. This case presents significant challenges for forecasting, remote sensing, and data assimilation due to a complex meteorological environment and variable coastal bright-water backgrounds. The project team, who endeavor to advance our fundamental understanding of the factors that govern aerosol distribution, optical properties, and microphysical properties in the coastal regions, have focused on this case as our first in-depth case study. We demonstrate new retrieval techniques during both day and night including retrievals over bright coastal waters, a novel approach to in-line data assimilation of aerosol properties including AOT, and the results

  13. The Episodic Nature of Episodic-Like Memories

    Science.gov (United States)

    Easton, Alexander; Webster, Lisa A. D.; Eacott, Madeline J.

    2012-01-01

    Studying episodic memory in nonhuman animals has proved difficult because definitions in humans require conscious recollection. Here, we assessed humans' experience of episodic-like recognition memory tasks that have been used with animals. It was found that tasks using contextual information to discriminate events could only be accurately…

  14. Neural Correlates of Opposing Effects of Emotional Distraction on Working Memory and Episodic Memory: An Event Related fMRI Investigation

    Directory of Open Access Journals (Sweden)

    Florin eDolcos

    2013-06-01

    Full Text Available A fundamental question in the emotional memory literature is why emotion enhances memory in some conditions but disrupts memory in other conditions. For example, separate studies have shown that emotional stimuli tend to be better remembered in long-term episodic memory (EM, whereas emotional distracters tend to impair working memory (WM maintenance. The first goal of this study was to directly compare the neural correlates of EM enhancement (EME and WM impairing (WMI effects, and the second goal was to explore individual differences in these mechanisms. During event-related fMRI, participants maintained faces in WM while being distracted by emotional or neutral pictures presented during the delay period. EM for the distracting pictures was tested after scanning and was used to identify successful encoding activity for the picture distracters. The first goal yielded two findings: (1 Emotional pictures that disrupted face WM but enhanced subsequent EM were associated with increased amygdala and hippocampal activity (ventral system coupled with reduced dorsolateral PFC activity (dorsal system; (2 Trials in which emotion enhanced EM without disrupting WM were associated with increased ventrolateral PFC activity. The ventral-dorsal switch can explain EME and WMI, while the ventrolateral PFC effect suggests a coping mechanism. The second goal yielded two additional findings: (3 Participants who were more susceptible to WMI showed greater amygdala increases and PFC reductions; (4 Amygdala activity increased and dlPFC activity decreased with measures of impulsivity. Taken together, the results clarify the mechanisms linking the enhancing and impairing effects of emotion on memory.

  15. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia

    Directory of Open Access Journals (Sweden)

    I. B. Konovalov

    2015-12-01

    Full Text Available Chemistry transport models (CTMs are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB; this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO measured in Finland (in the city of Kuopio, nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile strongly underestimated values of ΔPM10/ΔCO observed in Kuopio (by a factor of 2, employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas

  16. Influence of biomass burning on mixing state of sub-micron aerosol particles in the North China Plain

    Science.gov (United States)

    Kecorius, Simonas; Ma, Nan; Teich, Monique; van Pinxteren, Dominik; Zhang, Shenglan; Gröβ, Johannes; Spindler, Gerald; Müller, Konrad; Iinuma, Yoshiteru; Hu, Min; Herrmann, Hartmut; Wiedensohler, Alfred

    2017-09-01

    Particulate emissions from crop residue burning decrease the air quality as well as influence aerosol radiative properties on a regional scale. The North China Plain (NCP) is known for the large scale biomass burning (BB) of field residues, which often results in heavy haze pollution episodes across the region. We have been able to capture a unique BB episode during the international CAREBeijing-NCP intensive field campaign in Wangdu in the NCP (38.6°N, 115.2°E) from June to July 2014. It was found that aerosol particles originating from this BB event showed a significantly different mixing state compared with clean and non-BB pollution episodes. BB originated particles showed a narrower probability density function (PDF) of shrink factor (SF). And the maximum was found at shrink factor of 0.6, which is higher than in other episodes. The non-volatile particle number fraction during the BB episode decreased to 3% and was the lowest measured value compared to all other predefined episodes. To evaluate the influence of particle mixing state on aerosol single scattering albedo (SSA), SSA at different RHs was simulated using the measured aerosol physical-chemical properties. The differences between the calculated SSA for biomass burning, clean and pollution episodes are significant, meaning that the variation of SSA in different pollution conditions needs to be considered in the evaluation of aerosol direct radiative effects in the NCP. And the calculated SSA was found to be quite sensitive on the mixing state of BC, especially at low-RH condition. The simulated SSA was also compared with the measured values. For all the three predefined episodes, the measured SSA are very close to the calculated ones with assumed mixing states of homogeneously internal and core-shell internal mixing, indicating that both of the conception models are appropriate for the calculation of ambient SSA in the NCP.

  17. Simultaneous aerosol mass spectrometry and chemical ionisation mass spectrometry measurements during a biomass burning event in the UK: insights into nitrate chemistry

    Directory of Open Access Journals (Sweden)

    E. Reyes-Villegas

    2018-03-01

    Full Text Available Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires or fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrogen chemistry was observed during Bonfire Night with nitrogen containing compounds in both gas and aerosol phases and further N2O5 and ClNO2 concentrations, which depleted early next morning due to photolysis of NO3 radicals and ceasing production. Particulate organic oxides of nitrogen (PONs concentrations of 2.8 µg m−3 were estimated using the m ∕ z 46 : 30 ratios from aerosol mass spectrometer (AMS measurements, according to previously published methods. Multilinear engine 2 (ME-2 source apportionment was performed to determine organic aerosol (OA concentrations from different sources after modifying the fragmentation table and it was possible to identify two PON factors representing primary (pPON_ME2 and secondary (sPON_ME2 contributions. A slight improvement in the agreement between the source apportionment of the AMS and a collocated AE-31 Aethalometer was observed after modifying the prescribed fragmentation in the AMS organic spectrum (the fragmentation table to determine PON sources, which resulted in an r2 =  0.894 between biomass burning organic aerosol (BBOA and babs_470wb compared to an r2 =  0.861 obtained without the modification. Correlations between OA sources and measurements made using time-of-flight chemical ionisation mass spectrometry with an iodide adduct ion were performed in order to determine possible gas tracers to be used in future ME-2 analyses to constrain solutions. During Bonfire Night, strong correlations (r2 were observed between BBOA and methacrylic acid (0.92, acrylic acid (0.90, nitrous acid (0.86, propionic acid, (0.85 and hydrogen cyanide (0

  18. Simultaneous aerosol mass spectrometry and chemical ionisation mass spectrometry measurements during a biomass burning event in the UK: insights into nitrate chemistry

    Science.gov (United States)

    Reyes-Villegas, Ernesto; Priestley, Michael; Ting, Yu-Chieh; Haslett, Sophie; Bannan, Thomas; Le Breton, Michael; Williams, Paul I.; Bacak, Asan; Flynn, Michael J.; Coe, Hugh; Percival, Carl; Allan, James D.

    2018-03-01

    Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires or fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrogen chemistry was observed during Bonfire Night with nitrogen containing compounds in both gas and aerosol phases and further N2O5 and ClNO2 concentrations, which depleted early next morning due to photolysis of NO3 radicals and ceasing production. Particulate organic oxides of nitrogen (PONs) concentrations of 2.8 µg m-3 were estimated using the m / z 46 : 30 ratios from aerosol mass spectrometer (AMS) measurements, according to previously published methods. Multilinear engine 2 (ME-2) source apportionment was performed to determine organic aerosol (OA) concentrations from different sources after modifying the fragmentation table and it was possible to identify two PON factors representing primary (pPON_ME2) and secondary (sPON_ME2) contributions. A slight improvement in the agreement between the source apportionment of the AMS and a collocated AE-31 Aethalometer was observed after modifying the prescribed fragmentation in the AMS organic spectrum (the fragmentation table) to determine PON sources, which resulted in an r2 = 0.894 between biomass burning organic aerosol (BBOA) and babs_470wb compared to an r2 = 0.861 obtained without the modification. Correlations between OA sources and measurements made using time-of-flight chemical ionisation mass spectrometry with an iodide adduct ion were performed in order to determine possible gas tracers to be used in future ME-2 analyses to constrain solutions. During Bonfire Night, strong correlations (r2) were observed between BBOA and methacrylic acid (0.92), acrylic acid (0.90), nitrous acid (0.86), propionic acid, (0.85) and hydrogen cyanide (0.76). A series of oxygenated species

  19. Imagining the personal past: Episodic counterfactuals compared to episodic memories and episodic future projections

    DEFF Research Database (Denmark)

    Özbek, Müge; Bohn, Annette; Berntsen, Dorthe

    2017-01-01

    Episodic counterfactuals are imagined events that could have happened, but did not happen, in a person’s past. Such imagined past events are important aspects of mental life, affecting emotions, decisions, and behaviors. However, studies examining their phenomenological characteristics and content...... are few. Here we introduced a new method to systematically compare self-generated episodic counterfactuals to self-generated episodic memories and future projections with regard to their phenomenological characteristics (e.g., imagery, emotional valence, rehearsal) and content (e.g., reference to cultural...... distance. The findings show that imagined events are phenomenologically different from memories of experienced events, consistent with reality monitoring theory, and that imagined future events are different from both actual and imagined past events, consistent with some theories of motivation....

  20. Episodic and Semantic Memory Contribute to Familiar and Novel Episodic Future Thinking

    OpenAIRE

    Tong Wang; Tong Yue; Xi ting Huang

    2016-01-01

    Abstract Increasing evidence indicates that episodic future thinking (EFT) relies on both episodic and semantic memory; however, event familiarity may importantly affect the extent to which episodic and semantic memory contribute to EFT. To test this possibility, two behavioral experiments were conducted. In Experiment 1, we directly compared the proportion of episodic and semantic memory used in an EFT task. The results indicated that more episodic memory was used when imagining familiar fut...

  1. Antarctic aerosols - A review

    Science.gov (United States)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  2. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  3. Bridging the Faraoni and Selli oceanic anoxic events: short and repetitive dys- and anaerobic episodes during the late Hauterivian to early Aptian in the central Tethys

    Science.gov (United States)

    Föllmi, K. B.; Bôle, M.; Jammet, N.; Froidevaux, P.; Godet, A.; Bodin, S.; Adatte, T.; Matera, V.; Fleitmann, D.; Spangenberg, J. E.

    2011-06-01

    A detailed stratigraphical and geochemical analysis was performed on the upper part of the Maiolica Formation outcropping in the Breggia (southern Switzerland) and Capriolo sections (northern Italy). In these localities, the Maiolica Formation consists of well-bedded, partly siliceous, pelagic, micritic carbonate, which lodges numerous thin, dark and organic-rich layers. Stable-isotope, phosphorus, organic-carbon and a suite of redox-sensitive trace-metal contents (RSTE: Mo, U, Co, V and As) were measured. Higher densities of organic-rich layers were identified in the uppermost Hauterivian, lower Barremian and the Barremian-Aptian boundary intervals, whereas the upper Barremian interval and the interval immediately following the Barremian-Aptian boundary interval are characterized by lower densities of organic-rich layers. TOC contents, RSTE pattern and Corg:Ptot ratios indicate that most layers were deposited under dysaerobic rather than anaerobic conditions and that latter conditions were likely restricted to short intervals in the latest Hauterivian, the early Barremian and the pre-Selli early Aptian. Correlations are possible with organic-rich intervals in central Italy (the Gorgo a Cerbara section) and the Boreal northwest German Basin, and with the facies and drowning pattern in the evolution of the Helvetic segment of the northern Tethyan carbonate platform. Our data and correlations suggest that the latest Hauterivian witnessed the progressive installation of dysaerobic conditions in the Tethys, which went along with the onset in sediment condensation, phosphogenesis and platform drowning on the northern Tethyan margin, and which culminated in the Faraoni anoxic episode. This brief episode is followed by further episodes of dysaerobic conditions in the Tethys and the northwest German Basin, which became more frequent and progressively stronger in the late early Barremian. Platform drowning persisted and did not halt before the latest early Barremian. The

  4. Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2013-05-01

    Full Text Available We describe the challenges associated with the interpretation of extinction coefficient measurements by the Stratospheric Aerosol and Gas Experiment (SAGE II in the presence of clouds. In particular, we have found that tropospheric aerosol analyses are highly dependent on a robust method for identifying when clouds affect the measured extinction coefficient. Herein, we describe an improved cloud identification method that appears to capture cloud/aerosol events more effectively than early methods. In addition, we summarize additional challenges to observing the Asian Tropopause Aerosol Layer (ATAL using SAGE II observations. Using this new approach, we perform analyses of the upper troposphere, focusing on periods in which the UTLS (upper troposphere/lower stratosphere is relatively free of volcanic material (1989–1990 and after 1996. Of particular interest is the Asian monsoon anticyclone where CALIPSO (Cloud-Aerosol Lidar Pathfinder Satellite Observations has observed an aerosol enhancement. This enhancement, called the ATAL, has a similar morphology to observed enhancements in long-lived trace gas species like CO. Since the CALIPSO record begins in 2006, the question of how long this aerosol feature has been present requires a new look at the long-lived SAGE II data sets despite significant hurdles to its use in the subtropical upper troposphere. We find that there is no evidence of ATAL in the SAGE II data prior to 1998. After 1998, it is clear that aerosol in the upper troposphere in the ATAL region is substantially enhanced relative to the period before that time. In addition, the data generally supports the presence of the ATAL beginning in 1999 and continuing through the end of the mission, though some years (e.g., 2003 are complicated by the presence of episodic enhancements most likely of volcanic origin.

  5. Episodic future thinking and episodic counterfactual thinking: intersections between memory and decisions.

    Science.gov (United States)

    Schacter, Daniel L; Benoit, Roland G; De Brigard, Felipe; Szpunar, Karl K

    2015-01-01

    This article considers two recent lines of research concerned with the construction of imagined or simulated events that can provide insight into the relationship between memory and decision making. One line of research concerns episodic future thinking, which involves simulating episodes that might occur in one's personal future, and the other concerns episodic counterfactual thinking, which involves simulating episodes that could have happened in one's personal past. We first review neuroimaging studies that have examined the neural underpinnings of episodic future thinking and episodic counterfactual thinking. We argue that these studies have revealed that the two forms of episodic simulation engage a common core network including medial parietal, prefrontal, and temporal regions that also supports episodic memory. We also note that neuroimaging studies have documented neural differences between episodic future thinking and episodic counterfactual thinking, including differences in hippocampal responses. We next consider behavioral studies that have delineated both similarities and differences between the two kinds of episodic simulation. The evidence indicates that episodic future and counterfactual thinking are characterized by similarly reduced levels of specific detail compared with episodic memory, but that the effects of repeatedly imagining a possible experience have sharply contrasting effects on the perceived plausibility of those events during episodic future thinking versus episodic counterfactual thinking. Finally, we conclude by discussing the functional consequences of future and counterfactual simulations for decisions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Comparative Cognition: Action Imitation Using Episodic Memory.

    Science.gov (United States)

    Crystal, Jonathon D

    2016-12-05

    Humans encounter a myriad of actions or events and later recall some of these events using episodic memory. New research suggests that dogs can imitate recently encountered actions using episodic memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pre-Emergency-Department Care-Seeking Patterns Are Associated with the Severity of Presenting Condition for Emergency Department Visit and Subsequent Adverse Events: A Timeframe Episode Analysis

    OpenAIRE

    Chan, Chien-Lung; Lin, Wender; Yang, Nan-Ping; Lai, K. Robert; Huang, Hsin-Tsung

    2015-01-01

    Background Many patients treated in Emergency Department (ED) visits can be treated at primary or urgent care sectors, despite the fact that a number of ED visitors seek other forms of care prior to an ED visit. However, little is known regarding how the pre-ED activity episodes affect ED visits. Objectives We investigated whether care-seeking patterns involve the use of health care services of various types prior to ED visits and examined the associations of these patterns with the severity ...

  8. Divergent thinking and constructing episodic simulations.

    Science.gov (United States)

    Addis, Donna Rose; Pan, Ling; Musicaro, Regina; Schacter, Daniel L

    2016-01-01

    Divergent thinking likely plays an important role in simulating autobiographical events. We investigated whether divergent thinking is differentially associated with the ability to construct detailed imagined future and imagined past events as opposed to recalling past events. We also examined whether age differences in divergent thinking might underlie the reduced episodic detail generated by older adults. The richness of episodic detail comprising autobiographical events in young and older adults was assessed using the Autobiographical Interview. Divergent thinking abilities were measured using the Alternative Uses Task. Divergent thinking was significantly associated with the amount of episodic detail for imagined future events. Moreover, while age was significantly associated with imagined episodic detail, this effect was strongly related to age-related changes in episodic retrieval rather than divergent thinking.

  9. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  10. Radioecological impact of Saharan dusts fallout. Case study of a major event on the 21. of february 2004 in south part of France; Impact radioecologique des retombees de poussieres sahariennes. Episode majeur du 21/02/2004 dans le sud de la France

    Energy Technology Data Exchange (ETDEWEB)

    Masson, O.; Pourcelot, L.; Gurriaran, R.; Paulat, P

    2005-07-01

    Lithometeors, Sirocco or more commonly 'red mud' are all in fact related to a single phenomenon which affects France every year: the wind transport and deposit of desert particles from the Sahara. On the 21. of February 2004, the southern part of France is swept by a weather event of wind transport of Saharan particles. The recordings of atmospheric dust contamination and the deposit of dust, which results from it, make an episode of exceptional width. In a few hours, the thickness of the deposit exceeds 1 mm (up to 4 mm in Corsica) with a maximum density of surface charge of 50 g.m{sup -2} (50 tons per km{sup 2}). The loads of the PM{sub 10} type particles in the air, recorded by associations of monitoring of the quality of the air, indicate concentrations multiplied to the maximum by 10 and an influence on the ground of the plume ranging between 300 000 and 350 000 km{sup 2}. To the end, 2 million tons are deposited on a portion of the territory located at the south of a line from Nantes to Besancon. This event also had a significant radio-ecological impact, leading to significant {sup 137}Cs, {sup (239+240)}Pu, {sup 241}Am, activity levels of 38 Bq. kg{sup -1} sec, 1 Bq. kg{sup -1} sec and 0,46 Bq. kg{sup -1} sec, respectively. Quality of air monitoring organisations recorded 10-fold increases in the concentration of charged PM{sub 10} {sup 2}type particles within the cloud; ground coverage stretched over a 300 000 km{sup 2} surface area. Across this whole area, the artificial radioactivity deposits are estimated to 37.10{sup 10} Bq. In term of flow of deposit, this episode represents, with him only, i.e. in a few hours, a {sup 137}Cs deposition equivalent to that recorded on average in a cumulated time of one year. Data from this study show that these weather-climatic episodes generate today, environmental samples which on average, present the highest levels and flux of artificial radioactivities, more than those in the sediments of the Rhone river

  11. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain

    Directory of Open Access Journals (Sweden)

    X. J. Shen

    2011-02-01

    Full Text Available Atmospheric particle number size distributions (size range 0.003–10 μm were measured between March 2008 and August 2009 at Shangdianzi (SDZ, a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass

  12. On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    J. Backman

    2012-12-01

    Full Text Available Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of São Paulo (MASP, population 20 million accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 × 104–3.2 × 104 cm−3 frequently exceeding 4 × 104 cm−3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength varied in the range 12–33 Mm−1 and 21–64 Mm−1, respectively. The former one is equal to 1.8–5.0 μg m−3 of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (ω0 varied in the range 0.59–0.76. Overall, this suggests a top of atmosphere (TOA warming effect. However

  13. The interplay and etiological continuity of neuroticism, difficulties, and life events in the etiology of major and subsyndromal, first and recurrent depressive episodes in later life

    NARCIS (Netherlands)

    Ormel, J; Oldehinkel, AJ; Brilman, EI

    Objective: Stressful life events, longterm difficulties, and high neuroticism are established risk factors for depression. Less is known about their role in late-life depression, how they modify or mediate one another's effects, and whether this differs between major and subsyndromal, first and

  14. Mechanisms controlling primary and new production in a global ecosystem model – Part II: The role of the upper ocean short-term periodic and episodic mixing events

    Directory of Open Access Journals (Sweden)

    E. E. Popova

    2006-01-01

    Full Text Available The use of 6 h, daily, weekly and monthly atmospheric forcing resulted in dramatically different predictions of plankton productivity in a global 3-D coupled physical-biogeochemical model. Resolving the diurnal cycle of atmospheric variability by use of 6 h forcing, and hence also diurnal variability in UML depth, produced the largest difference, reducing predicted global primary and new production by 25% and 10% respectively relative to that predicted with daily and weekly forcing. This decrease varied regionally, being a 30% reduction in equatorial areas primarily because of increased light limitation resulting from deepening of the mixed layer overnight as well as enhanced storm activity, and 25% at moderate and high latitudes primarily due to increased grazing pressure resulting from late winter stratification events. Mini-blooms of phytoplankton and zooplankton occur in the model during these events, leading to zooplankton populations being sufficiently well developed to suppress the progress of phytoplankton blooms. A 10% increase in primary production was predicted in the peripheries of the oligotrophic gyres due to increased storm-induced nutrient supply end enhanced winter production during the short term stratification events that are resolved in the run forced by 6 h meteorological fields. By resolving the diurnal cycle, model performance was significantly improved with respect to several common problems: underestimated primary production in the oligotrophic gyres; overestimated primary production in the Southern Ocean; overestimated magnitude of the spring bloom in the subarctic Pacific Ocean, and overestimated primary production in equatorial areas. The result of using 6 h forcing on predicted ecosystem dynamics was profound, the effects persisting far beyond the hourly timescale, and having major consequences for predicted global and new production on an annual basis.

  15. Proximal stratigraphy and event sequence of the c. 5600 cal. yr BP Whakatane rhyolite eruption episode from Haroharo volcano, Okataina Volcanic Centre, New Zealand

    International Nuclear Information System (INIS)

    Kobayashi, T.; Nairn, I.; Smith, V.; Shane, P.

    2005-01-01

    The c. 5600 cal. yr BP Whakatane eruption episode consisted of a sequence of intracaldera rhyolite eruptions from at least five vents spread over 11 km of the Haroharo linear vent zone within Okataina Volcanic Centre. Initial vent-opening eruptions from the Haroharo vent produced coarse lithic clast 'blast beds' and pyroclastic density currents surges). These were immediately followed by eruption of very mobile pumiceous pyroclastic surges from the Makatiti vent 6 km to the southwest. Major plinian eruptions from the Makatiti vent then dispersed Whakatane Tephra pumice fall deposits (bulk volume c. 6 km 3 ) across the northeastern North Island while smaller explosive eruptions produced pyroclastic flows and falls from the Haroharo-Rotokohu vents and at the Pararoa vent on the caldera rim 11 km northeast from Makatiti. The pyroclastic eruptions at all vents were followed by the extrusion of lava flows and domes; extruded lava volumes ranged from 0.03 km 3 for the Pararoa dome to 7.5 km 3 for the Makatiti-Tapahoro lava flows and domes. Minor variations in whole rock and glass chemistry show that the three main vent areas each tapped a slightly different high-silica rhyolite magma. About 10 km 3 of M-type magma was erupted from the Makatiti-Tapahoro vents; c. 1.3 km 3 of H-type magma from the Haroharo-Rotokohu vents, and 0.04 km 3 of P-type magma from the Pararoa vent. There are no significant weathering or erosional breaks within the Whakatane eruptive sequence, which suggests that all Whakatane eruptions occurred within a short time interval. However, extrusion of the Haroharo dome within the Makatiti pyroclastic eruption sequence suggests a duration of c. 2 yr for the main pyroclastic eruption phase. Emplacement of the following voluminous (7.5 km 3 ) lavas from the Makatiti-Tapahoro vents would have occurred over >10 yr at the c. 10-20 m 3 /s inferred extrusion rates. (author). 19 refs., 16 figs., 7 tabs

  16. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  17. Episodic memory and the witness trump card.

    Science.gov (United States)

    Henry, Jeremy; Craver, Carl

    2018-01-01

    We accept Mahr & Csibra's (M&C's) causal claim that episodic memory provides humans with the means for evaluating the veracity of reports about non-occurrent events. We reject their evolutionary argument that this is the proper function of episodic memory. We explore three intriguing implications of the causal claim, for cognitive neuropsychology, comparative psychology, and philosophy.

  18. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  19. [A new assessment for episodic memory. Episodic memory test and caregiver's episodic memory test].

    Science.gov (United States)

    Ojea Ortega, T; González Álvarez de Sotomayor, M M; Pérez González, O; Fernández Fernández, O

    2013-10-01

    The purpose of the episodic memory test and the caregiver's episodic memory test is to evaluate episodic memory according to its definition in a way that is feasible for families and achieves high degrees of sensitivity and specificity. We administered a test consisting of 10 questions about episodic events to 332 subjects, of whom 65 had Alzheimer's disease (AD), 115 had amnestic MCI (aMCI) and 152 showed no cognitive impairment according to Reisberg's global deterioration scale (GDS). We calculated the test's sensitivity and specificity to distinguish AD from episodic aMCI and from normal ageing. The area under the ROC curve for the diagnosis of aMCI was 0.94 and the best cut-off value was 20; for that value, sensitivity was 89% and specificity was 82%. For a diagnosis of AD, the area under the ROC curve was 0.99 and the best cut-off point was 17, with a sensitivity of 98% and a specificity of 91%. A subsequent study using similar methodology yielded similar results when the test was administered directly by the caregiver. The episodic memory test and the caregiver's episodic memory test are useful as brief screening tools for identifying patients with early-stage AD. It is suitable for use by primary care medical staff and in the home, since it can be administered by a caregiver. The test's limitations are that it must be administered by a reliable caregiver and the fact that it measures episodic memory only. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  20. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    Science.gov (United States)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  1. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM: particulate matter characteristics during fall and winter seasons in Hong Kong

    Directory of Open Access Journals (Sweden)

    C. Sun

    2016-02-01

    Full Text Available Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA, characterized by application of Positive Matrix Factorization (PMF, and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  2. Neural correlates of opposing effects of emotional distraction on perception and episodic memory: An event-related fMRI investigation

    Directory of Open Access Journals (Sweden)

    Andrea Taylor Shafer

    2012-09-01

    Full Text Available A main question in emotion and memory literature concerns the relationship between the immediate impact of emotional distraction on perception and the long-term impact of emotion on memory. While previous research shows both automatic and resource-mediated mechanisms to be involved in initial emotion processing and memory, it remains unclear what the exact relationship between the immediate and long-term effects is, and how this relationship may change as a function of manipulations at perception favoring the engagement of either more automatic or mediated mechanisms. Using event-related fMRI, we varied the degree of resource availability for processing task-irrelevant emotional information, to determine how the initial (impairing impact of emotional distraction related to the long-term (enhancing impact of emotion on memory. Results showed that a direct relationship between emotional distraction and memory was dependent on automatic mechanisms, as this was found only under conditions of limited resource availability and engagement of amygdala (AMY-hippocampal (HC mechanisms to both impairing and enhancing effects. A hemispheric disassociation was also identified in AMY-HC, where while both sides were associated with emotional distraction and left AMY and anterior HC were linked to emotional memory, functional asymmetry was only identified in the posterior HC, with only the left side contributing to emotional memory. Finally, areas dissociating between the two opposing effects included the medial frontal, precentral, superior temporal, and middle occipital gyri (linked to emotional distraction, and the superior parietal cortex (linked to emotional memory. These findings demonstrate the relationship between emotional distraction and memory is context dependent and that specific brain regions may be more or less susceptible to the direction of emotional modulation (increased or decreased, depending on the task manipulation and processes

  3. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    Science.gov (United States)

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibilitysmog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes. Copyright © 2014. Published by Elsevier B.V.

  4. Surface aerosol measurements at Barrow during AGASP

    International Nuclear Information System (INIS)

    Bodhaine, B.A.; Dutton, E.G.; DeLuisi, J.J.

    1984-01-01

    Surface aerosol measurements were made at the Barrow GMCC Observatory during the AGASP flight series in March 1983. The condensation nucleus, scattering extinction coefficient, size distribution, and total aerosol optical depth measurements all clearly show conditions of background Arctic haze for March 9-11, a series of haze episodes during March 12-16, and a return to background haze for March 17-18. Angstrom exponents calculated from scattering coefficient data were low during March 9-11, relatively higher during March 12-14, and highest during March 15-18. Surface aerosol data and aerosol optical depth data are in good qualitative agreement for the 10-day period studied. Background haze was present when trajectories circled the Arctic basin, and haze episodes occurred when trajectories originated in western Asia and Europe

  5. Aerosol studies

    International Nuclear Information System (INIS)

    Cristy, G.A.; Fish, M.E.

    1978-01-01

    As part of the continuing studies of the effects of very severe reactor accidents, an effort was made to develop, test, and improve simple, effective, and inexpensive methods by which the average citizen, using only materials readily available, could protect his residence, himself, and his family from injury by toxic aerosols. The methods for protection against radioactive aerosols should be equally effective against a clandestine biological attack by terrorists. The results of the tests to date are limited to showing that spores of the harmless bacterium, bacillus globegii (BG), can be used as a simulant for the radioactive aerosols. An aerosol generator of Lauterbach type was developed which will produce an essentially monodisperse aerosol at the rate of 10 9 spores/min. Analytical techniques have been established which give reproducible results. Preliminary field tests have been conducted to check out the components of the system. Preliminary tests of protective devices, such as ordinary vacuum sweepers, have given protection factors of over 1000

  6. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  7. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    Directory of Open Access Journals (Sweden)

    B. Sič

    2015-02-01

    the desert dust representation in the African dust outflow region (from −1.01 to −0.22. The updates in sedimentation produced a modest difference; the MNMB with MODIS data from 0.10 in the updated configuration went to 0.11 in the updated configuration only without the sedimentation updates. Yet, the updates in the emissions and the wet deposition made a stronger impact on the results; the MNMB was 0.27 and 0.21 in updated configurations only without emission, and only without wet deposition updates, respectively. Also, the lifetime, the extent, and the strength of the episodic aerosol events are better reproduced in the updated configuration. The wet deposition processes and the differences between the various configurations that were tested greatly influence the representation of the episodic events. However, wet deposition is not a continuous process; it has a local and episodic signature and its representation depends strongly on the precipitation regime in the model.

  8. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    OpenAIRE

    A. K. Y. Lee; J. P. D. Abbatt; W. R. Leaitch; S.-M. Li; S. J. Sjostedt; S. J. Sjostedt; J. J. B. Wentzell; J. Liggio; A. M. Macdonald

    2016-01-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identifie...

  9. Characterization of urban aerosol sources in Debrecen, Hungary

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, T.; Angyal, A.; Dobos, E.; Borbely-Kiss, I.

    2009-01-01

    through direct emission and re-suspended soil dust, sulphates originating from combustion and regional background, domestic heating, agriculture, mixture of salts of different origins, and a yet unidentified source in the fine fraction enriched with Cl. Other sources were also identified by detecting several emission episodes. These events often involved Cl and heavy metals, and the origin of most of them is still unclear. In May 2008 a Saharan dust intrusion reached Europe. The Saharan influence was observed through the considerable increase in the concentration of Al, Si, Ca, Fe and Ti in the coarse size fraction on 20 th of May, and through the characteristic elemental ratios of Ti/Fe and Ti/Ca on 21 st - 24 th May. These episodes, however they bear little significance from the point of view of aerosol impact in the city, serve as a basis to reach a better understanding of short and long range aerosol transport. Results of this study were presented on the 7 th International Conference on Air Quality Science and Application, the 19 th International Conference on Ion Beam Analysis and the 9 th Hungarian Aerosol Conference. Acknowledgements This work was supported by the Hungarian Research Fund OTKA and the EGT Norwegian Financial Mechanism Programme (contract no. NNF78829) and the EU co-funded Economic Competitiveness Operative Program (contract no. GVOP-3.2.1.-2004-04-0402/3.0).

  10. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    Science.gov (United States)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  11. Children's episodic memory.

    Science.gov (United States)

    Ghetti, Simona; Lee, Joshua

    2011-07-01

    Episodic memory develops during childhood and adolescence. This trajectory depends on several underlying processes. In this article, we first discuss the development of the basic binding processes (e.g., the processes by which elements are bound together to form a memory episode) and control processes (e.g., reasoning and metamemory processes) involved in episodic remembering. Then, we discuss the role of these processes in false-memory formation. In the subsequent sections, we examine the neural substrates of the development of episodic memory. Finally, we discuss atypical development of episodic memory. As we proceed through the article, we suggest potential avenues for future research. WIREs Cogni Sci 2011 2 365-373 DOI: 10.1002/wcs.114 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  13. Rats Remember Items in Context Using Episodic Memory.

    Science.gov (United States)

    Panoz-Brown, Danielle; Corbin, Hannah E; Dalecki, Stefan J; Gentry, Meredith; Brotheridge, Sydney; Sluka, Christina M; Wu, Jie-En; Crystal, Jonathon D

    2016-10-24

    Vivid episodic memories in people have been characterized as the replay of unique events in sequential order [1-3]. Animal models of episodic memory have successfully documented episodic memory of a single event (e.g., [4-8]). However, a fundamental feature of episodic memory in people is that it involves multiple events, and notably, episodic memory impairments in human diseases are not limited to a single event. Critically, it is not known whether animals remember many unique events using episodic memory. Here, we show that rats remember many unique events and the contexts in which the events occurred using episodic memory. We used an olfactory memory assessment in which new (but not old) odors were rewarded using 32 items. Rats were presented with 16 odors in one context and the same odors in a second context. To attain high accuracy, the rats needed to remember item in context because each odor was rewarded as a new item in each context. The demands on item-in-context memory were varied by assessing memory with 2, 3, 5, or 15 unpredictable transitions between contexts, and item-in-context memory survived a 45 min retention interval challenge. When the memory of item in context was put in conflict with non-episodic familiarity cues, rats relied on item in context using episodic memory. Our findings suggest that rats remember multiple unique events and the contexts in which these events occurred using episodic memory and support the view that rats may be used to model fundamental aspects of human cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. First Episode Psychosis

    Science.gov (United States)

    ... About Psychosis Treatment Share Fact Sheet: First Episode Psychosis Download PDF Download ePub Order a free hardcopy En Español Facts About Psychosis The word psychosis is used to describe conditions ...

  15. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-06-01

    Full Text Available This study introduces an observation-based dust identification approach and applies it to reconstruct long-term dust climatology in the western United States. Long-term dust climatology is important for quantifying the effects of atmospheric aerosols on regional and global climate. Although many routine aerosol monitoring networks exist, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose an approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24

  16. Aerosol Deposition and Solar Panel Performance

    Science.gov (United States)

    Arnott, W. P.; Rollings, A.; Taylor, S. J.; Parks, J.; Barnard, J.; Holmes, H.

    2015-12-01

    Passive and active solar collector farms are often located in relatively dry desert regions where cloudiness impacts are minimized. These farms may be susceptible to reduced performance due to routine or episodic aerosol deposition on collector surfaces. Intense episodes of wind blown dust deposition may negatively impact farm performance, and trigger need to clean collector surfaces. Aerosol deposition rate depends on size, morphology, and local meteorological conditions. We have developed a system for solar panel performance testing under real world conditions. Two identical 0.74 square meter solar panels are deployed, with one kept clean while the other receives various doses of aerosol deposition or other treatments. A variable load is used with automation to record solar panel maximum output power every 10 minutes. A collocated sonic anemometer measures wind at 10 Hz, allowing for both steady and turbulent characterization to establish a link between wind patterns and particle distribution on the cells. Multispectral photoacoustic instruments measure aerosol light scattering and absorption. An MFRSR quantifies incoming solar radiation. Solar panel albedo is measured along with the transmission spectra of particles collected on the panel surface. Key questions are: At what concentration does aerosol deposition become a problem for solar panel performance? What are the meteorological conditions that most strongly favor aerosol deposition, and are these predictable from current models? Is it feasible to use the outflow from an unmanned aerial vehicle hovering over solar panels to adequately clean their surface? Does aerosol deposition from episodes of nearby forest fires impact performance? The outlook of this research is to build a model that describes environmental effects on solar panel performance. Measurements from summer and fall 2015 will be presented along with insights gleaned from them.

  17. Lifespan trends of autobiographical remembering: episodicity and search for meaning.

    Science.gov (United States)

    Habermas, Tilmann; Diel, Verena; Welzer, Harald

    2013-09-01

    Autobiographical memories of older adults show fewer episodic and more non-episodic elements than those of younger adults. This semantization effect is attributed to a loss of episodic memory ability. However the alternative explanation by an increasing proclivity to search for meaning has not been ruled out to date. To test whether a decrease in episodicity and an increase in meaning-making in autobiographical narratives are related across the lifespan, we used different instructions, one focussing on specific episodes, the other on embedding events in life, in two lifespan samples. A continuous decrease of episodic quality of memory (memory specificity, narrative quality) was confirmed. An increase of search for meaning (interpretation, life story integration) was confirmed only up to middle adulthood. This non-inverse development of episodicity and searching for meaning in older age speaks for an autonomous semantization effect that is not merely due to an increase in interpretative preferences. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. On the Development of Episodic Memory: Two Basic Questions

    DEFF Research Database (Denmark)

    Dahl, Jonna Jelsbak; Sonne, Trine; Kingo, Osman Skjold

    2013-01-01

    In this focused review we present and discuss two basic questions related to the early development of episodic memory in children: (1) “What is an episode?”, and (2) “How do preverbal children recall a specific episode of a recurring event?” First, a brief introduction to episodic memory...... is outlined. We argue in favor of employing a definition of episodic memory allowing us to investigate the development of episodic memory by purely behavioral measures. Second, research related to each of the two questions are presented and discussed, at first separately, and subsequently together. We argue...... and attempt to demonstrate, that pursuing answers to both questions is of crucial importance – both conceptually and methodologically - if we are ever to understand the early development of episodic memory. ...

  19. Original sounding and drifting balloon-borne measurements in the western Mediterranean with the aerosol counter/sizer LOAC during summer ChArMEx campaigns, with a focus on desert dust events

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Verdier, Nicolas; Chazette, Patrick; Crenn, Vincent; Sciare, Jean; Totems, Julien; Durand, Pierre; Barret, Brice; Jambert, Corinne; Mallet, Marc; Menut, Laurent; Mailler, Sylvain; Basart, Sara; Baldasano, José Maria

    2015-04-01

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of ~250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles (12° and 60°), allowing the determination of the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 µm and some identification of the nature of particles dominating different size classes. Following laboratory calibration, the sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with other in situ sensors at the surface and with remote sensing measurements on the vertical were performed to give confidence in measurements. The instrument has been operated at the surface, under all kinds of balloons up to more than 35 km in altitude, including tethered, sounding, open stratospheric and new boundary-layer pressurized drifting balloons (BLPB) from CNES, and was tested on board a small UAV. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Presented results are focused on the LOAC balloon-borne measurements performed in the western Mediterranean basin during MISTRALS/ChArMEx campaigns (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-hjome.org; http://charmex.lsce.ipsl.fr), with a focus on African dust events. Two test flights with a first version of LOAC under sounding balloons were first successfully performed in late June 2012 near Marseille during an intense dust event. In 2013, 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France

  20. Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi'an, China

    Science.gov (United States)

    Di, Huige; Hua, Hangbo; Cui, Yan; Hua, Dengxin; He, Tingyao; Wang, Yufeng; Yan, Qing

    2017-02-01

    In this study, a multi-wavelength polarization lidar was developed at the Lidar Center for Atmosphere Remote Sensing, in Xi'an, China to study the vertical distribution of the optical and microphysical properties of smog aerosols. To better understand smog, two events with different haze conditions observed in January 2015 were analyzed in detail. Using these data, we performed a vertical characterization of smog evolution using the lidar range-squared-corrected signal and the aerosol depolarization ratio. Using inversion with regularization, we retrieved the vertical distribution of aerosol microphysical properties, including volume size distribution, volume concentration, number concentration and effective radius. We also used the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model to analyze aerosol sources during the two episodes. Our results show that the most polluted area in the lower troposphere during smog episodes is located below a height of 1 km above the ground level; under more severe smog conditions, it can be below 0.5 km. In the case of severe smog, we found a large number of spherical and fine particles concentrated in the very low troposphere, even below 0.5 km. Surprisingly, a dust layer with a slight depolarization ratio was observed above the smog layer.

  1. Episodic memory, semantic memory, and amnesia.

    Science.gov (United States)

    Squire, L R; Zola, S M

    1998-01-01

    Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.

  2. Episodic-like memory in the rat.

    Science.gov (United States)

    Babb, Stephanie J; Crystal, Jonathon D

    2006-07-11

    A fundamental question in comparative cognition is whether animals remember unique, personal past experiences. It has long been argued that memories for specific events (referred to as episodic memory) are unique to humans. Recently, considerable evidence has accumulated to show that food-storing birds possess critical behavioral elements of episodic memory, referred to as episodic-like memory in acknowledgment of the fact that behavioral criteria do not assess subjective experiences. Here we show that rats have a detailed representation of remembered events and meet behavioral criteria for episodic-like memory. We provided rats with access to locations baited with distinctive (e.g., grape and raspberry) or nondistinctive (regular chow) flavors. Locations with a distinctive flavor replenished after a long but not a short delay, and locations with the nondistinctive flavor never replenished. One distinctive flavor was devalued after encoding its location by prefeeding that flavor (satiation) or by pairing it with lithium chloride (acquired taste aversion), while the other distinctive flavor was not devalued. The rats selectively decreased revisits to the devalued distinctive flavor but not to the nondevalued distinctive flavor. The present studies demonstrate that rats selectively encode the content of episodic-like memories.

  3. Constructive episodic simulation, flexible recombination, and memory errors.

    Science.gov (United States)

    Schacter, Daniel L; Carpenter, Alexis C; Devitt, Aleea; Roberts, Reece P; Addis, Donna Rose

    2018-01-01

    According to Mahr & Csibra (M&C), the view that the constructive nature of episodic memory is related to its role in simulating future events has difficulty explaining why memory is often accurate. We hold this view, but disagree with their conclusion. Here we consider ideas and evidence regarding flexible recombination processes in episodic retrieval that accommodate both accuracy and distortion.

  4. How Does Intentionality of Encoding Affect Memory for Episodic Information?

    Science.gov (United States)

    Craig, Michael; Butterworth, Karla; Nilsson, Jonna; Hamilton, Colin J.; Gallagher, Peter; Smulders, Tom V.

    2016-01-01

    Episodic memory enables the detailed and vivid recall of past events, including target and wider contextual information. In this paper, we investigated whether/how encoding intentionality affects the retention of target and contextual episodic information from a novel experience. Healthy adults performed (1) a "What-Where-When"…

  5. Comparison of sodium aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.; Fermandjian, J.; Bunz, H.; L'homme, A.; Lhiaubet, G.; Himeno, Y.; Kirby, C.R.; Mitsutsuka, N.

    1984-01-01

    Although hypothetical fast reactor accidents leading to severe core damage are very low probability events, their consequences are to be assessed. During such accidents, one can envisage the ejection of sodium, mixed with fuel and fission products, from the primary circuit into the secondary containment. Aerosols can be formed either by mechanical dispersion of the molten material or as a result of combustion of the sodium in the mixture. Therefore considerable effort has been devoted to study the different sodium aerosol phenomena. To ensure that the problems of describing the physical behaviour of sodium aerosols were adequately understood, a comparison of the codes being developed to describe their behaviour was undertaken. The comparison consists of two parts. The first is a comparative study of the computer codes used to predict aerosol behaviour during a hypothetical accident. It is a critical review of documentation available. The second part is an exercise in which code users have run their own codes with a pre-arranged input. For the critical comparative review of the computer models, documentation has been made available on the following codes: AEROSIM (UK), MAEROS (USA), HAARM-3 (USA), AEROSOLS/A2 (France), AEROSOLS/B1 (France), and PARDISEKO-IIIb (FRG)

  6. Episodic reinstatement in the medial temporal lobe.

    Science.gov (United States)

    Staresina, Bernhard P; Henson, Richard N A; Kriegeskorte, Nikolaus; Alink, Arjen

    2012-12-12

    The essence of episodic memory is our ability to reexperience past events in great detail, even in the absence of external stimulus cues. Does the phenomenological reinstatement of past experiences go along with reinstating unique neural representations in the brain? And if so, how is this accomplished by the medial temporal lobe (MTL), a brain region intimately linked to episodic memory? Computational models suggest that such reinstatement (also termed "pattern completion") in cortical regions is mediated by the hippocampus, a key region of the MTL. Although recent functional magnetic resonance imaging studies demonstrated reinstatement of coarse item properties like stimulus category or task context across different brain regions, it has not yet been shown whether reinstatement can be observed at the level of individual, discrete events-arguably the defining feature of episodic memory-nor whether MTL structures like the hippocampus support this "true episodic" reinstatement. Here we show that neural activity patterns for unique word-scene combinations encountered during encoding are reinstated in human parahippocampal cortex (PhC) during retrieval. Critically, this reinstatement occurs when word-scene combinations are successfully recollected (even though the original scene is not visually presented) and does not encompass other stimulus domains (such as word-color associations). Finally, the degree of PhC reinstatement across retrieval events correlated with hippocampal activity, consistent with a role of the hippocampus in coordinating pattern completion in cortical regions.

  7. Recirculation, stagnation and ventilation: The 2014 legionella episode

    Science.gov (United States)

    Russo, Ana; Soares, Pedro M. M.; Gouveia, Célia M.; Cardoso, Rita M.; Trigo, Ricardo M.

    2017-04-01

    Legionella transmission through the atmosphere is unusual, but not unprecedented. A scientific paper published in 2006 reports a surge in Pas-de-Calais, France, in which 86 people have been infected by bacteria released by a cooling tower more than 6 km away [3]. Similarly, in Norway, in 2005, there was another case where contamination spread beyond 10 km, although more concentrated within a radius of 1 km from an industrial unit [2]. An unprecedented large Legionella outbreak occurred in November 2014 nearby Lisbon, Portugal. As of 7 November 2014, 375 individuals become hill and 12 died infected by the Legionella pneumophila bacteria, contracted by inhalation of steam droplets of contaminated water (aerosols). These droplets are so small that can carry the bacteria directly to the lungs, depositing it in the alveoli. One way of studying the propagation of legionella episodes is through the use of aerosol dispersion models. However, such approaches often require detailed 3D high resolution wind data over the region, which isn't often available for long periods. The likely impact of wind on legionella transmission can also be understood based on the analysis of special types of flow conditions such as stagnation, recirculation and ventilation [1, 4]. The Allwine and Whiteman (AW) approach constitutes a straightforward method to assess the assimilative and dispersal capacities of different airsheds [1,4], as it only requires hourly wind components. Thus, it has the advantage of not needing surface and upper air meteorological observations and a previous knowledge of the atmospheric transport and dispersion conditions. The objective of this study is to analyze if the legionella outbreak event which took place in November 2014 had extreme potential recirculation and/or stagnation characteristics. In order to accomplish the proposed objective, the AW approach was applied for a hindcast time-series covering the affected area (1989-2007) and then for an independent

  8. Aerosol filtration

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.; De Smet, M.; Trine, J.; Hertschap, M.

    1984-01-01

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m 3 /h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m 3 /h at 400 0 C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134 Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  9. First episode schizophrenia

    African Journals Online (AJOL)

    with schizophrenia present clinically with psychotic, negative and cognitive ... changes in their emotions, cognition or behaviour which may indicate a ... contribute 80% to the risk of schizophrenia developing. A number of .... Positive symptoms ... Depression ... treatment of first episode schizophrenia is of critical importance.

  10. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  11. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  12. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Ellicott, Evan; Badarinath, K.V.S.; Vermote, Eric

    2011-01-01

    Agricultural residue burning is one of the major causes of greenhouse gas emissions and aerosols in the Indo-Ganges region. In this study, we characterize the fire intensity, seasonality, variability, fire radiative energy (FRE) and aerosol optical depth (AOD) variations during the agricultural residue burning season using MODIS data. Fire counts exhibited significant bi-modal activity, with peak occurrences during April-May and October-November corresponding to wheat and rice residue burning episodes. The FRE variations coincided with the amount of residues burnt. The mean AOD (2003-2008) was 0.60 with 0.87 (+1σ) and 0.32 (-1σ). The increased AOD during the winter coincided well with the fire counts during rice residue burning season. In contrast, the AOD-fire signal was weak during the summer wheat residue burning and attributed to dust and fossil fuel combustion. Our results highlight the need for 'full accounting of GHG's and aerosols', for addressing the air quality in the study area. - Highlights: → MODIS data could capture rice and wheat residue burning events. → The total FRP was high during the rice burning season than the wheat. → MODIS AOD variations coincided well with rice burning events than wheat. → AOD values exceeding one suggested intense air pollution. - This research work highlights the satellite derived fire products and their potential in characterizing the agricultural residue burning events and air pollution.

  13. Episodic spontaneous hypothermia: a periodic childhood syndrome.

    Science.gov (United States)

    Ruiz, Cynthia; Gener, Blanca; Garaizar, Carmen; Prats, José M

    2003-04-01

    Episodic spontaneous hypothermia is an infrequent disorder, with unknown pathogenic mechanisms. A systemic cause or underlying brain lesion has not been found for the disease. We report four new patients, 3-9 years old, with episodic hypothermia lower than 35 degrees C, marked facial pallor, and absent shivering. The episodes could last a few hours or four days, and recurred once a week or every 2-3 months. Two patients also demonstrated bradycardia, mild hypertension, and somnolence during the events; in one of them, profuse sweating was also a feature, and all four presented with either headache, a periodic childhood syndrome, or both (recurrent abdominal pain, cyclic vomiting, or vertigo). Three patients reported a family history of migraine. Neurologic examination, endocrine function, and imaging studies were normal. Migraine prophylactic therapy was of moderate efficacy. Spontaneous resolution was observed in one patient. The clinical characteristics of the syndrome allow for its inclusion as a childhood periodic syndrome related to migraine.

  14. Episodic-like memory in zebrafish.

    Science.gov (United States)

    Hamilton, Trevor J; Myggland, Allison; Duperreault, Erika; May, Zacnicte; Gallup, Joshua; Powell, Russell A; Schalomon, Melike; Digweed, Shannon M

    2016-11-01

    Episodic-like memory tests often aid in determining an animal's ability to recall the what, where, and which (context) of an event. To date, this type of memory has been demonstrated in humans, wild chacma baboons, corvids (Scrub jays), humming birds, mice, rats, Yucatan minipigs, and cuttlefish. The potential for this type of memory in zebrafish remains unexplored even though they are quickly becoming an essential model organism for the study of a variety of human cognitive and mental disorders. Here we explore the episodic-like capabilities of zebrafish (Danio rerio) in a previously established mammalian memory paradigm. We demonstrate that when zebrafish were presented with a familiar object in a familiar context but a novel location within that context, they spend more time in the novel quadrant. Thus, zebrafish display episodic-like memory as they remember what object they saw, where they saw it (quadrant location), and on which occasion (yellow or blue walls) it was presented.

  15. Physical properties of the arctic summer aerosol particles in relation ...

    Indian Academy of Sciences (India)

    The sea-salt particles of marine origin generated within the Arctic circle are identified as the main source of the Arctic summer aerosols. ... concentration starts decreasing within a few minutes from the start of these events but requires a few hours to restore to the normal background aerosol level after the end of event.

  16. The European aerosol budget in 2006

    Directory of Open Access Journals (Sweden)

    J. M. J. Aan de Brugh

    2011-02-01

    Full Text Available This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension. We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95% and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%. We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match, while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional aerosol budgets, as presented in the current study.

  17. Air pollution impact on aerosol variability over mega cities using remote sensing technology: case study, Cairo, Egypt

    International Nuclear Information System (INIS)

    El-Askary, H.

    2006-01-01

    Air pollution problems over mega cities differ greatly and are influenced by a number of factors, including topography, demography, meteorology, level and rate of industrialization and socioeconomic development. Cairo is considered a key city for economy, education, politics industry and technology in the Middle East.Increasing business and industrial activities in the city accompanied by shortage of the institutional capabilities for monitoring and control, in addition to environmental impact negligence that prevails over many of the production sectors, have contributed to excessive air pollution problems that have reached the level of crisis. A contributor to this problem is natural and man made effects such as dust and aerosols uptakes. Such pollution episodes are observed during the months of October showing the so called B lack Cloud . Such pollution leads to wide variability of aerosols behavior over Cairo. Hence, aerosol related parameters obtained from satellite measurements have been studied here. Aerosol optical depth (AOD) behavior showed a dual maxima nature in each year from 2000 till 2005 during the months of (April, May) and October confirming dust and air pollution events, respectively. Such behavior is confirmed by the high negative correlation with the aerosol fine mode fraction (FMF) reaching -0.75. FMF product confirms a higher value during the months of October representing the Black Cloud episodes due to fine particles contribution in these events rather than during the dust events. However, lower values are observed in the last two years due to the new control measures enforced by the government for the environment protection. The difference between the AOD and FMF showed a higher contribution of the fine grains during the Black Cloud events rather than coarser grains during dust events as expected. Among the sources known to contribute to the black cloud formation is the fire burns over the Nile Delta region during the months of September

  18. Concealed semantic and episodic autobiographical memory electrified.

    Science.gov (United States)

    Ganis, Giorgio; Schendan, Haline E

    2012-01-01

    Electrophysiology-based concealed information tests (CIT) try to determine whether somebody possesses concealed information about a crime-related item (probe) by comparing event-related potentials (ERPs) between this item and comparison items (irrelevants). Although the broader field is sometimes referred to as "memory detection," little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addresses the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth) and episodic autobiographical probes (a secret date learned just before the study). Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive complex (LPC) than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. These findings show that the type of memory associated with a probe has both theoretical and practical importance for CIT research.

  19. Concealed semantic and episodic autobiographical memory electrified

    Directory of Open Access Journals (Sweden)

    Giorgio eGanis

    2013-01-01

    Full Text Available Electrophysiology-based concealed information tests (CIT try to determine whether somebody possesses concealed information about a probe item by comparing event-related potentials (ERPs between this item and comparison items (irrelevants. Although the broader field is sometimes referred to as memory detection, little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addressed the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth and episodic autobiographical probes (a secret date learned just before the study. Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing semantic knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive component (LPC than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. Thus, the type of memory associated with a probe has both theoretical and practical importance for CIT research.

  20. Concealed semantic and episodic autobiographical memory electrified

    Science.gov (United States)

    Ganis, Giorgio; Schendan, Haline E.

    2013-01-01

    Electrophysiology-based concealed information tests (CIT) try to determine whether somebody possesses concealed information about a crime-related item (probe) by comparing event-related potentials (ERPs) between this item and comparison items (irrelevants). Although the broader field is sometimes referred to as “memory detection,” little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addresses the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth) and episodic autobiographical probes (a secret date learned just before the study). Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive complex (LPC) than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. These findings show that the type of memory associated with a probe has both theoretical and practical importance for CIT research. PMID:23355816

  1. Episodic Specificity in Acquiring Thematic Knowledge of Novel Words from Descriptive Episodes.

    Science.gov (United States)

    Zhang, Meichao; Chen, Shuang; Wang, Lin; Yang, Xiaohong; Yang, Yufang

    2017-01-01

    The current study examined whether thematic relations of the novel words could be acquired via descriptive episodes, and if yes, whether it could be generalized to thematically related words in a different scenario. In Experiment 1, a lexical decision task was used where the novel words served as primes for target words in four conditions: (1) corresponding concepts of the novel words, (2) thematically related words in the same episodes as that in learning condition, (3) thematically related words in different episodes, or (4) unrelated words served as targets. Event related potentials elicited by the targets revealed that compared to the unrelated words, the corresponding concepts and thematically related words in the same episodes elicited smaller N400s with a frontal-central distribution, whereas the thematically related words in different episodes elicited an enhanced late positive component. Experiment 2 further showed a priming effect of the corresponding concepts on the thematically related words in the same episodes as well as in a different episode, indicating that the absence of a priming effect of the learned novel words on the thematically related words in different episode could not be attributed to inappropriate selection of thematically related words in the two conditions. These results indicate that only the corresponding concepts and the thematically related words in the learning episodes were successfully primed, whereas the thematic association between the novel words and the thematically related words in different scenarios could only be recognized in a late processing stage. Our findings suggest that thematic knowledge of novel words is organized via separate scenarios, which are represented in a clustered manner in the semantic network.

  2. Perspectives on Episodic-like and Episodic Memory

    OpenAIRE

    Bettina M Pause; Armin eZlomuzica; Kiyoka eKinugawa; Jean eMariani; Reinhard ePietrowsky; Ekrem eDere

    2013-01-01

    Episodic memory refers to the conscious recollection of a personal experience that contains information on what has happened and also where and when it happened. Recollection from episodic memory also implies a kind of first-person subjectivity that has been termed autonoetic consciousness. Episodic memory is extremely sensitive to cerebral aging and neurodegenerative diseases. In Alzheimer’s disease deficits in episodic memory function are among the first cognitive symptoms observed. Further...

  3. The Role of Episodic and Semantic Memory in Episodic Foresight

    Science.gov (United States)

    Martin-Ordas, Gema; Atance, Cristina M.; Louw, Alyssa

    2012-01-01

    In this paper we describe a special form of future thinking, termed "episodic foresight" and its relation with episodic and semantic memory. We outline the methodologies that have largely been developed in the last five years to assess this capacity in young children and non-human animals. Drawing on Tulving's definition of episodic and semantic…

  4. Perspectives on Episodic-Like and Episodic Memory

    Science.gov (United States)

    Pause, Bettina M.; Zlomuzica, Armin; Kinugawa, Kiyoka; Mariani, Jean; Pietrowsky, Reinhard; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the conscious recollection of a personal experience that contains information on what has happened and also where and when it happened. Recollection from episodic memory also implies a kind of first-person subjectivity that has been termed autonoetic consciousness. Episodic memory is extremely sensitive to cerebral aging and neurodegenerative diseases. In Alzheimer’s disease deficits in episodic memory function are among the first cognitive symptoms observed. Furthermore, impaired episodic memory function is also observed in a variety of other neuropsychiatric diseases including dissociative disorders, schizophrenia, and Parkinson disease. Unfortunately, it is quite difficult to induce and measure episodic memories in the laboratory and it is even more difficult to measure it in clinical populations. Presently, the tests used to assess episodic memory function do not comply with even down-sized definitions of episodic-like memory as a memory for what happened, where, and when. They also require sophisticated verbal competences and are difficult to apply to patient populations. In this review, we will summarize the progress made in defining behavioral criteria of episodic-like memory in animals (and humans) as well as the perspectives in developing novel tests of human episodic memory which can also account for phenomenological aspects of episodic memory such as autonoetic awareness. We will also define basic behavioral, procedural, and phenomenological criteria which might be helpful for the development of a valid and reliable clinical test of human episodic memory. PMID:23616754

  5. Assessment of source-receptor relationships of aerosols: An integrated forward and backward modeling approach

    Science.gov (United States)

    Kulkarni, Sarika

    This dissertation presents a scientific framework that facilitates enhanced understanding of aerosol source -- receptor (S/R) relationships and their impact on the local, regional and global air quality by employing a complementary suite of modeling methods. The receptor -- oriented Positive Matrix Factorization (PMF) technique is combined with Potential Source Contribution Function (PSCF), a trajectory ensemble model, to characterize sources influencing the aerosols measured at Gosan, Korea during spring 2001. It is found that the episodic dust events originating from desert regions in East Asia (EA) that mix with pollution along the transit path, have a significant and pervasive impact on the air quality of Gosan. The intercontinental and hemispheric transport of aerosols is analyzed by a series of emission perturbation simulations with the Sulfur Transport and dEposition Model (STEM), a regional scale Chemical Transport Model (CTM), evaluated with observations from the 2008 NASA ARCTAS field campaign. This modeling study shows that pollution transport from regions outside North America (NA) contributed ˜ 30 and 20% to NA sulfate and BC surface concentration. This study also identifies aerosols transported from Europe, NA and EA regions as significant contributors to springtime Arctic sulfate and BC. Trajectory ensemble models are combined with source region tagged tracer model output to identify the source regions and possible instances of quasi-lagrangian sampled air masses during the 2006 NASA INTEX-B field campaign. The impact of specific emission sectors from Asia during the INTEX-B period is studied with the STEM model, identifying residential sector as potential target for emission reduction to combat global warming. The output from the STEM model constrained with satellite derived aerosol optical depth and ground based measurements of single scattering albedo via an optimal interpolation assimilation scheme is combined with the PMF technique to

  6. Aerosol scrubbers

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Submerged Gravel Scrubber is an air cleaning system developed by the Department of Energy's Liquid Metal Reactor Program. The Scrubber System has been patented by the Department of Energy. This technology is being transferred to industry by the DOE. Its basic principles can be adapted for individual applications and the commercialized version can be used to perform a variety of tasks. The gas to be cleaned is percolated through a continuously washed gravel bed. The passage of the gas through the gravel breaks the stream into many small bubbles rising in a turbulent body of water. These conditions allow very highly efficient removal of aerosols from the gas

  7. Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns

    Directory of Open Access Journals (Sweden)

    S. Bucci

    2018-04-01

    observed, with layers advected mainly above 2000 m, but subsequently sinking and mixing in the PBL. As a consequence, a non-negligible occurrence of mineral dust is observed close to the ground ( ∼ 7 % of occurrence during a 1-month campaign. The observations unambiguously show Saharan dust layers intruding the Po Valley mixing layer and directly affecting the aerosol concentrations near the surface. Finally, lidar observations also indicate strong variability in aerosol on shorter timescales (hourly. Firstly, these highlight events of hygroscopic growth of anthropogenic aerosol, visible as shallow layers of low depolarization near the ground. Such events are identified during early morning hours at high relative humidity (RH conditions (RH  > 80 %. The process is observed concurrently with high PM1 nitrate concentration (up to 15 µg cm−3 and hence mainly explicable by deliquescence of fine anthropogenic particles, and during mineral dust intrusion episodes, when water condensation on dust particles could instead represent the dominant contribution. Secondly, lidar images show frequent events (mean daily occurrence of  ∼  22 % during the whole campaign of rapid uplift of mineral depolarizing particles in afternoon–evening hours up to 2000 m a.s.l. height. The origin of such particles cannot be directly related to long-range transport events, being instead likely linked to processes of soil particle resuspension from agricultural lands.

  8. Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns

    Science.gov (United States)

    Bucci, Silvia; Cristofanelli, Paolo; Decesari, Stefano; Marinoni, Angela; Sandrini, Silvia; Größ, Johannes; Wiedensohler, Alfred; Di Marco, Chiara F.; Nemitz, Eiko; Cairo, Francesco; Di Liberto, Luca; Fierli, Federico

    2018-04-01

    , but subsequently sinking and mixing in the PBL. As a consequence, a non-negligible occurrence of mineral dust is observed close to the ground ( ˜ 7 % of occurrence during a 1-month campaign). The observations unambiguously show Saharan dust layers intruding the Po Valley mixing layer and directly affecting the aerosol concentrations near the surface. Finally, lidar observations also indicate strong variability in aerosol on shorter timescales (hourly). Firstly, these highlight events of hygroscopic growth of anthropogenic aerosol, visible as shallow layers of low depolarization near the ground. Such events are identified during early morning hours at high relative humidity (RH) conditions (RH > 80 %). The process is observed concurrently with high PM1 nitrate concentration (up to 15 µg cm-3) and hence mainly explicable by deliquescence of fine anthropogenic particles, and during mineral dust intrusion episodes, when water condensation on dust particles could instead represent the dominant contribution. Secondly, lidar images show frequent events (mean daily occurrence of ˜ 22 % during the whole campaign) of rapid uplift of mineral depolarizing particles in afternoon-evening hours up to 2000 m a.s.l. height. The origin of such particles cannot be directly related to long-range transport events, being instead likely linked to processes of soil particle resuspension from agricultural lands.

  9. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  10. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  11. P300 is attenuated during dissociative episodes.

    Science.gov (United States)

    Kirino, Eiji

    2006-02-01

    The present study examined the pathophysiology of dissociative phenomena using the P300 component of event-related potentials, quantitative electroencephalography (QEEG), and morphology measures of computed tomography scan. Event-related potentials during an auditory oddball paradigm and QEEG in resting state were recorded. Patients exhibited attenuation of P300 amplitudes compared with controls during dissociative episodes, but exhibited recovery to control levels in remission. Patients had a larger Sylvian fissure-brain ratio than did controls. QEEG findings revealed no significant differences between the patients and controls or between episodes and remission in the patient group. Attenuation of the P300 can be interpreted as the result of a negative feedback loop from the medial temporal lobe to the cortex, which decreases the amount of information flow, allocation of attentional resources, and updating of working memory to avoid both excessive long-term memory system activity in medial temporal lobe and resurgence of affect-laden memories.

  12. The Composition of Episodic Memory.

    Science.gov (United States)

    Underwood, Benton J.; And Others

    This study examined the interrelationships among a number of episodic memory tasks and among various attributes of memory. A sample of 200 college students was tested for ten sessions; 28 different measures of episodic memory were obtained. In addition, five measures of semantic memory were available. Results indicated that episodic and semantic…

  13. Aerosols and the lungs

    International Nuclear Information System (INIS)

    1987-01-01

    The lectures of the colloquium are discussed in summary form. There were 5 lectures on aerosol deposition, 5 on aerosol elimination, 7 on toxicology, and 7 on the uses of aerosols in medical therapy. In some cases aerosols with radioactive labels were used. Several lectures reviewed the kinetics and toxicology of airborne environmental pollutants. (MG) [de

  14. Primary aerosol and secondary inorganic aerosol budget over the Mediterranean Basin during 2012 and 2013

    Science.gov (United States)

    Guth, Jonathan; Marécal, Virginie; Josse, Béatrice; Arteta, Joaquim; Hamer, Paul

    2018-04-01

    In the frame of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), we analyse the budget of primary aerosols and secondary inorganic aerosols over the Mediterranean Basin during the years 2012 and 2013. To do this, we use two year-long numerical simulations with the chemistry-transport model MOCAGE validated against satellite- and ground-based measurements. The budget is presented on an annual and a monthly basis on a domain covering 29 to 47° N latitude and 10° W to 38° E longitude. The years 2012 and 2013 show similar seasonal variations. The desert dust is the main contributor to the annual aerosol burden in the Mediterranean region with a peak in spring, and sea salt being the second most important contributor. The secondary inorganic aerosols, taken as a whole, contribute a similar level to sea salt. The results show that all of the considered aerosol types, except for sea salt aerosols, experience net export out of our Mediterranean Basin model domain, and thus this area should be considered as a source region for aerosols globally. Our study showed that 11 % of the desert dust, 22.8 to 39.5 % of the carbonaceous aerosols, 35 % of the sulfate and 9 % of the ammonium emitted or produced into the study domain are exported. The main sources of variability for aerosols between 2012 and 2013 are weather-related variations, acting on emissions processes, and the episodic import of aerosols from North American fires. In order to assess the importance of the anthropogenic emissions of the marine and the coastal areas which are central for the economy of the Mediterranean Basin, we made a sensitivity test simulation. This simulation is similar to the reference simulation but with the removal of the international shipping emissions and the anthropogenic emissions over a 50 km wide band inland along the coast. We showed that around 30 % of the emissions of carbonaceous aerosols and 35 to 60 % of the exported carbonaceous aerosols originates from the marine and

  15. Investigating the episodic buffer

    Directory of Open Access Journals (Sweden)

    Alan Baddeley

    2010-10-01

    Full Text Available A brief account is presented of the three-component working memory model proposed by Baddeley and Hitch. This is followed by an account of some of the problems it encountered in explaining how information from different subsystems with different codes could be combined, and how it was capable of communicating with long-term memory. In order to account for these, a fourth component was proposed, the episodic buffer. This was assumed to be a multidimensional store of limited capacity that can be accessed through conscious awareness. In an attempt to test and develop the concept, a series of experiments have explored the role of working memory in the binding of visual features into objects and verbal sequences into remembered sentences. The experiments use a dual task paradigm to investigate the role of the various subcomponents of working memory in binding. In contrast to our initial assumption, the episodic buffer appears to be a passive store, capable of storing bound features and making them available to conscious awareness, but not itself responsible for the process of binding.

  16. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  17. Evidence for holistic episodic recollection via hippocampal pattern completion.

    Science.gov (United States)

    Horner, Aidan J; Bisby, James A; Bush, Daniel; Lin, Wen-Jing; Burgess, Neil

    2015-07-02

    Recollection is thought to be the hallmark of episodic memory. Here we provide evidence that the hippocampus binds together the diverse elements forming an event, allowing holistic recollection via pattern completion of all elements. Participants learn complex 'events' from multiple overlapping pairs of elements, and are tested on all pairwise associations. At encoding, element 'types' (locations, people and objects/animals) produce activation in distinct neocortical regions, while hippocampal activity predicts memory performance for all within-event pairs. When retrieving a pairwise association, neocortical activity corresponding to all event elements is reinstated, including those incidental to the task. Participant's degree of incidental reinstatement correlates with their hippocampal activity. Our results suggest that event elements, represented in distinct neocortical regions, are bound into coherent 'event engrams' in the hippocampus that enable episodic recollection--the re-experiencing or holistic retrieval of all aspects of an event--via a process of hippocampal pattern completion and neocortical reinstatement.

  18. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  19. Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen

    Science.gov (United States)

    Weller, Rolf; Legrand, Michel; Preunkert, Susanne

    2018-02-01

    We measured aerosol size distributions and conducted bulk and size-segregated aerosol sampling during two summer campaigns in January 2015 and January 2016 at the continental Antarctic station Kohnen (Dronning Maud Land). Physical and chemical aerosol properties differ conspicuously during the episodic impact of a distinctive low-pressure system in 2015 (LPS15) compared to the prevailing clear sky conditions. The approximately 3-day LPS15 located in the eastern Weddell Sea was associated with the following: marine boundary layer air mass intrusion; enhanced condensation particle concentrations (1400 ± 700 cm-3 compared to 250 ± 120 cm-3 under clear sky conditions; mean ± SD); the occurrence of a new particle formation event exhibiting a continuous growth of particle diameters (Dp) from 12 to 43 nm over 44 h (growth rate 0.6 nm h-1); peaking methane sulfonate (MS-), non-sea-salt sulfate (nss-SO42-), and Na+ concentrations (190 ng m-3 MS-, 137 ng m-3 nss-SO42-, and 53 ng m-3 Na+ compared to 24 ± 15, 107 ± 20, and 4.1 ± 2.2 ng m-3, respectively, during clear sky conditions); and finally an increased MS- / nss-SO42- mass ratio βMS of 0.4 up to 2.3 (0.21 ± 0.1 under clear sky conditions) comparable to typical values found at coastal Antarctic sites. Throughout the observation period a larger part of MS- could be found in super-micron aerosol compared to nss-SO42-, i.e., (10 ± 2) % by mass compared to (3.2 ± 2) %, respectively. On the whole, under clear sky conditions aged aerosol characterized by usually mono-modal size distributions around Dp = 60 nm was observed. Although our observations indicate that the sporadic impacts of coastal cyclones were associated with enhanced marine aerosol entry, aerosol deposition on-site during austral summer should be largely dominated by typical steady clear sky conditions.

  20. First-episode psychosis

    DEFF Research Database (Denmark)

    Simonsen, Erik

    2011-01-01

    . Patients with first-episode psychosis had significantly high NEO-PI-R scores for neuroticism and agreeableness, and lower scores for conscientiousness and extroversion. The median time for remission in the total sample was three months. Female gender and better premorbid functioning were predictive of less...... negative symptoms and shorter duration of untreated psychosis (DUP) was predictive for shorter time to remission, stable remission, less severe positive psychotic symptoms, and better social functioning. Female gender, better premorbid social functioning and more education also contributed to a better...... should warn clinicians to pay attention to the more elaborate needs of these patients. A re-evaluation at three months should reveal that non-remitted patients with longer DUPs indicate high risk of continuous non-remission. A possible shift to clozapine for this group should be strongly considered....

  1. Moral judgment in episodic amnesia.

    Science.gov (United States)

    Craver, Carl F; Keven, Nazim; Kwan, Donna; Kurczek, Jake; Duff, Melissa C; Rosenbaum, R Shayna

    2016-08-01

    To investigate the role of episodic thought about the past and future in moral judgment, we administered a well-established moral judgment battery to individuals with hippocampal damage and deficits in episodic thought (insert Greene et al. 2001). Healthy controls select deontological answers in high-conflict moral scenarios more frequently when they vividly imagine themselves in the scenarios than when they imagine scenarios abstractly, at some personal remove. If this bias is mediated by episodic thought, individuals with deficits in episodic thought should not exhibit this effect. We report that individuals with deficits in episodic memory and future thought make moral judgments and exhibit the biasing effect of vivid, personal imaginings on moral judgment. These results strongly suggest that the biasing effect of vivid personal imagining on moral judgment is not due to episodic thought about the past and future. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Why do we remember? The communicative function of episodic memory.

    Science.gov (United States)

    Mahr, Johannes; Csibra, Gergely

    2017-01-19

    Episodic memory has been analyzed in a number of different ways in both philosophy and psychology, and most controversy has centered on its self-referential, 'autonoetic' character. Here, we offer a comprehensive characterization of episodic memory in representational terms, and propose a novel functional account on this basis. We argue that episodic memory should be understood as a distinctive epistemic attitude taken towards an event simulation. On this view, episodic memory has a metarepresentational format and should not be equated with beliefs about the past. Instead, empirical findings suggest that the contents of human episodic memory are often constructed in the service of the explicit justification of such beliefs. Existing accounts of episodic memory function that have focused on explaining its constructive character through its role in 'future-oriented mental time travel' neither do justice to its capacity to ground veridical beliefs about the past nor to its representational format. We provide an account of the metarepresentational structure of episodic memory in terms of its role in communicative interaction. The generative nature of recollection allows us to represent and communicate the reasons for why we hold certain beliefs about the past. In this process, autonoesis corresponds to the capacity to determine when and how to assert epistemic authority in making claims about the past. A domain where such claims are indispensable are human social engagements. Such engagements commonly require the justification of entitlements and obligations, which is often possible only by explicit reference to specific past events.

  3. Interdependence of episodic and semantic memory: Evidence from neuropsychology

    OpenAIRE

    GREENBERG, DANIEL L.; VERFAELLIE, MIEKE

    2010-01-01

    Tulving's (1972) theory of memory draws a distinction between general knowledge (semantic memory) and memory for events (episodic memory). Neuropsychological studies have generally examined each type of memory in isolation, but theorists have long argued that these two forms of memory are interdependent. Here we review several lines of neuropsychological research that have explored the interdependence of episodic and semantic memory. The studies show that these forms of memory can affect each...

  4. Mental images in episodic memory

    OpenAIRE

    Han, KyungHun

    2009-01-01

    Episodic memory, i.e. memorization of information within a spatiotemporal environment, is affected by Alzheimer's disease (AD) but its loss may also occur in the normal aging process. The purpose of this study is to analyze and evaluate episodic memory in patients with AD by examining their cognitive skills in episodic memory through the introspection technique. A new method was used, wherein we assessed mental images of the subject's own past recalled in the mind like projected pictures and ...

  5. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  6. Emotion episodes of Afrikaans-speaking employees in the workplace

    Directory of Open Access Journals (Sweden)

    Cara S. Jonker

    2013-07-01

    Research purpose: The objective of this study was to determine the positive and negative emotion episodes and frequencies of working Afrikaans-speaking adults. Motivation for the study: To date, no study has been conducted to determine emotion episodes amongst White Afrikaans-speaking working adults in South Africa. Gooty, Connelly, Griffith and Gupta also argue for research on emotions in the natural settings in which they occur – the workplace. Research design, approach and method: A survey design with an availability sample was used. The participants (N = 179 consisted of White Afrikaans-speaking working adults. The Episode Grid was administered to capture the emotion episodes. Main findings: The main emotion episodes reported on with positive content included goal achievement, receiving recognition and personal incidents. Emotion episodes with negative content included categories such as behaviour of work colleagues, acts of boss/superior/management and task requirements. Practical and/or managerial implications: The findings are useful for managers who want to enhance the emotional quality of the work-life of employees. Changes could be made, for example, to practices of giving recognition within work environments and the clarification of task requirements. The knowledge on emotion episodes could be very useful in planning interventions. Contribution and/or value-adding: The findings and results of this study provided insight into emotion episodes as events in the workplace can cause positive and negative workplace experiences. This information should be taken into consideration with regard to wellness and emotion measurement efforts.

  7. Volcanic Tephra ejected in south eastern Asia is the sole cause of all historic ENSO events. This natural aerosol plume has been intensified by an anthropogenic plume in the same region in recent decades which has intensified some ENSO events and altered the Southern Oscillation Index characteristics

    Science.gov (United States)

    Potts, K. A.

    2017-12-01

    ENSO events are the most significant perturbation of the climate system. Previous attempts to link ENSO with volcanic eruptions typically failed because only large eruptions across the globe which eject tephra into the stratosphere were considered. I analyse all volcanic eruptions in South Eastern (SE) Asia (10ºS to 10ºN and from 90ºE to 160ºE) the most volcanically active area in the world with over 23% of all eruptions in the Global Volcanism Program database occurring here and with 5 volcanoes stated to have erupted nearly continuously for 30 years. SE Asia is also the region where the convective arm of the thermally direct Walker Circulation occurs driven by the intense equatorial solar radiation which creates the high surface temperature. The volcanic tephra plume intercepts some of the solar radiation by absorption/reflection which cools the surface and heats the atmosphere creating a temperature inversion compared to periods without the plume. This reduces convection and causes the Walker Cell and Trade Winds to weaken. This reduced wind speed causes the central Pacific Ocean to warm which creates convection there which further weakens the Walker Cell. With the reduced wind stress the western Pacific warm pool migrates east. This creates an ENSO event which continues until the tephra plume reduces, typically when the SE Asian monsoon commences, and convection is re-established over SE Asia and the Pacific warm pool migrates back to the west. Correlations of SE Asian tephra and the ENSO indices are typically over 0.80 at p indices. If two events A and B correlate 5 options are available: 1. A causes B; 2. B causes A; 3. C, another event, causes A &B simultaneously; 4. It's a coincidence; and 5. The relationship is complex with feedback. The volcanic correlations only allow options 1 or 4 as ENSO cannot cause volcanoes to erupt and are backed up by several independent satellite datasets. I conclude volcanic and anthropogenic aerosols over SE Asia are the

  8. The evolution of episodic memory

    Science.gov (United States)

    Allen, Timothy A.; Fortin, Norbert J.

    2013-01-01

    One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) Annu Rev Psychol 53:1–25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologs in other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. The implication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-specific divergences that have developed on top of the fundamental episodic memory architecture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area. PMID:23754432

  9. Visual perspective in remembering and episodic future thought.

    Science.gov (United States)

    McDermott, Kathleen B; Wooldridge, Cynthia L; Rice, Heather J; Berg, Jeffrey J; Szpunar, Karl K

    2016-01-01

    According to the constructive episodic simulation hypothesis, remembering and episodic future thinking are supported by a common set of constructive processes. In the present study, we directly addressed this assertion in the context of third-person perspectives that arise during remembering and episodic future thought. Specifically, we examined the frequency with which participants remembered past events or imagined future events from third-person perspectives. We also examined the different viewpoints from which third-person perspective events were remembered or imagined. Although future events were somewhat more likely to be imagined from a third-person perspective, the spatial viewpoint distributions of third-person perspectives characterizing remembered and imagined events were highly similar. These results suggest that a similar constructive mechanism may be at work when people remember events from a perspective that could not have been experienced in the past and when they imagine events from a perspective that could not be experienced in the future. The findings are discussed in terms of their consistency with--and as extensions of--the constructive episodic simulation hypothesis.

  10. The Generalized Quantum Episodic Memory Model.

    Science.gov (United States)

    Trueblood, Jennifer S; Hemmer, Pernille

    2017-11-01

    Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory. Copyright © 2016 Cognitive Science Society, Inc.

  11. Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction.

    Science.gov (United States)

    Race, Elizabeth; Keane, Margaret M; Verfaellie, Mieke

    2011-07-13

    The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well characterized MTL damage and healthy controls constructed narratives about (1) future events, (2) past events, and (3) visually presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking.

  12. Medial Temporal Lobe Damage Causes Deficits in Episodic Memory and Episodic Future Thinking Not Attributable to Deficits in Narrative Construction

    Science.gov (United States)

    Race, Elizabeth; Keane, Margaret M.; Verfaellie, Mieke

    2015-01-01

    The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well-characterized MTL damage and healthy controls constructed narratives about (a) future events, (b) past events, and (c) visually-presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking. PMID:21753003

  13. Trace elements in the sea surface microlayer: rapid responses to changes in aerosol deposition

    Directory of Open Access Journals (Sweden)

    Alina M. Ebling

    2017-08-01

    Full Text Available Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. In this study, samples of aerosols, sea surface microlayer, and underlying water column were collected in the Florida Keys during a dusty season (July 2014 and non-dusty season (May 2015 and analyzed for the dissolved and particulate elements Al, Fe, Ni, Cu, Zn, and Pb. Microlayer samples were collected using a cylinder of ultra-pure SiO2 (quartz glass, a novel adaptation of the glass plate technique. A significant dust deposition event occurred during the 2014 sampling period which resulted in elevated concentrations of trace elements in the microlayer. Residence times in the microlayer from this event ranged from 12 to 94 minutes for dissolved trace elements and from 1.3 to 3.4 minutes for particulate trace elements. These residence times are potentially long enough for the atmospherically derived trace elements to undergo chemical and biological alterations within the microlayer. Characterizing the trace element distributions within the three regimes is an important step towards our overall goals of understanding the rates and mechanisms of the solubilization of trace elements following aeolian dust deposition and how this might affect microorganisms in surface waters.

  14. AEROSOL AND GAS MEASUREMENT

    Science.gov (United States)

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  15. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  16. Secondary Aerosol Formation over the ESCOMPTE Area: Results from airborne Aerosol and Trace Gas Measurements

    Science.gov (United States)

    van Dingenen, R.; Martins-Dos Santos, S.; Putaud, J. P.; Allet, C.; Bretton, E.; Perros, P.

    2003-04-01

    From June 10th to July 14th 2001, the ESCOMPTE campaign took place in the Marseille-Berre area in Southern France. The goal of the campaign was to produce a high quality 3-D data base from emissions, transport and air composition measurements during urban photochemical pollution episodes at the meso-scale. The CAATER AEROPLUM project was embedded within this international field campaign. AEROPLUM aimed at mapping size distributions of aerosols and photo-oxidants in the mixed layer over the ESCOMPTE domain, using the ARAT Fokker 27 as measurement platform. Aircraft sub-micrometer aerosol measurements are validated during overpasses against ground-based measurements, carried out with similar instrumentation. We will present and discuss data during periods of seabreeze, transporting coastal industrial and urban pollution land-inwards. This leads to intense photochemical activity, evidenced by elevated O_3 concentrations and aerosol levels.

  17. Negative Emotional Content Disrupts the Coherence of Episodic Memories

    OpenAIRE

    Bisby, James A.; Horner, Aidan J.; Bush, Daniel; Burgess, Neil

    2017-01-01

    Events are thought to be stored in episodic memory as coherent representations, in which the constituent elements are bound together so that a cue can trigger reexperience of all elements via pattern completion. Negative emotional content can strongly influence memory, but opposing theories predict strengthening or weakening of memory coherence. Across a series of experiments, participants imagined a number of person-location-object events with half of the events including a negative element ...

  18. Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China

    Science.gov (United States)

    Zhang, Zhisheng; Engling, Guenter; Lin, Chuan-Yao; Chou, Charles C.-K.; Lung, Shih-Chun C.; Chang, Shih-Yu; Fan, Shaojia; Chan, Chuen-Yu; Zhang, Yuan-Hang

    2010-08-01

    Intensive measurements of aerosol (PM 10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43-473 ng m -3) and non-sea-salt potassium (0.83-3.2 μg m -3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM 10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.

  19. Aerosols and Climate

    Indian Academy of Sciences (India)

    Large warming by elevated aerosols · AERONET – Global network (NASA) · Slide 25 · Slide 26 · Slide 27 · Slide 28 · Slide 29 · Slide 30 · Slide 31 · Long-term trends - Trivandrum · Enhanced warming over Himalayan-Gangetic region · Aerosol Radiative Forcing Over India _ Regional Aerosol Warming Experiment ...

  20. Effects on incidental memory of affective tone in associated past and future episodes: influence of emotional intelligence.

    Science.gov (United States)

    Toyota, Hiroshi

    2011-02-01

    The present study examined the effects of emotion elicited by episodes (past events or expected future events) and the relationship between individual differences in emotional intelligence and memory. Participants' emotional intelligence was assessed on the Japanese version of Emotional Skills and Competence Questionnaire. They rated the pleasantness of episodes they associated with targets, and then performed unexpected free recall tests. When the targets were associated with episodes that were past events, all participants recalled more of the targets associated with pleasant and unpleasant episodes than those associated with neutral episodes. However, when the targets were associated with episodes expected to occur in the future, only participants with higher emotional intelligence scores recalled more of the targets associated with pleasant and unpleasant episodes. The participants with lower emotional intelligence scores recalled the three target types with similar accuracy. These results were interpreted as showing that emotional intelligence is associated with the processing of targets associated with future episodes as retrieval cues.

  1. Superficial Priming in Episodic Recognition

    Science.gov (United States)

    Dopkins, Stephen; Sargent, Jesse; Ngo, Catherine T.

    2010-01-01

    We explored the effect of superficial priming in episodic recognition and found it to be different from the effect of semantic priming in episodic recognition. Participants made recognition judgments to pairs of items, with each pair consisting of a prime item and a test item. Correct positive responses to the test item were impeded if the prime…

  2. Attentional episodes in visual perception

    NARCIS (Netherlands)

    Wyble, Brad; Potter, Mary C.; Bowman, Howard; Nieuwenstein, Mark

    Is one's temporal perception of the world truly as seamless as it appears? This article presents a computationally motivated theory suggesting that visual attention samples information from temporal episodes (episodic simultaneous type/serial token model; Wyble, Bowman, & Nieuwenstein, 2009). Breaks

  3. Biomass burning aerosol detection over Buenos Aires City, August 2009

    International Nuclear Information System (INIS)

    Otero, L A; Ristori, P R; Pawelko, E E; Pallotta, J V; D'Elia, R L; Quel, E J

    2011-01-01

    At the end of August 2009, a biomass burning aerosol intrusion event was detected at the Laser and Applications Research Center, CEILAP (CITEFA-CONICET) (34.5 deg. S - 58.5 deg. W) at Villa Martelli, in Buenos Aires, Argentina. This center has a sunphotometer from the AERONET-NASA global network, UV solar radiation sensors, a meteorological station and an aerosol lidar system. The aerosol origin was determined by means of back-trajectories and satellite images. This work studies the aerosol air mass optical characterization and their effect in UV solar radiation.

  4. A Comparison of Preschoolers' Memory, Knowledge, and Anticipation of Events

    Science.gov (United States)

    Quon, Elizabeth; Atance, Cristina M.

    2010-01-01

    This study examined the development of the episodic and semantic memory systems, with an emphasis on the emergence of the two aspects of the former: episodic memory (the ability to re-experience a past event) and episodic future thinking (the ability to pre-experience a future event). Three-, 4-, and 5-year olds were randomly assigned to one of…

  5. Spatial-temporal characteristics of haze and vertical distribution of aerosols over the Yangtze River Delta of China.

    Science.gov (United States)

    Cao, Yueqian; Zhang, Wu; Wang, Wenjing

    2018-04-01

    Variation of haze events occurred in the Yangtze River Delta (YRD) of China, the characteristics of meteorological elements and the vertical distribution of aerosols during haze episodes were analyzed by utilizing data of ground observation, radiosonde and CALIPSO. The results illustrate that the frequency of haze events between 1981 and 2010 peaked in winter but bottomed out in summer and decreased from north to south in the YRD region, reaching at the lowest point in "low frequency center" - Shanghai. When haze happened, the most seriously affected area was 2-4km above the ground and the concentrated range of total backscattering coefficient (TBC) that decreased with altitude was 0.8×10 -3 -2.5×10 -3 km -1 ·sr -1 . Particulate depolarization ratio (PDR) was less than 40% in a large part and 93% aerosols over the YRD area were regular particles, while the irregular ones concentrated on 2km above the surface and the irregularity rose up but the diversity diminished when altitude increased. Color ratio (CR) was lower than 1.2 mostly at all altitudes and distributed asymmetrically above the ground. Nearly 80% aerosols under 10km were fine particles (CR1.0) clustered at 2-4km. Large particles (CR>1.2) aggregated in lower troposphere massively yet relatively smaller ones gathered in middle and upper troposphere. In the YRD region, aerosols with more powerful capabilities were wider and less regular than the ones of Northwestern China. Copyright © 2017. Published by Elsevier B.V.

  6. Autobiographical Memory and Episodic Future Thinking

    DEFF Research Database (Denmark)

    Rasmussen, Katrine; Berntsen, Dorthe

    Recalling the past and imagining the future is thought to employ very similar cognitive mechanisms. The strategic retrieval of specific past autobiographical events has been shown to depend on executive processes, and to be affected by cue imageability. The cognitive mechanisms underlying...... that autobiographical memory and episodic future thinking were affected similarly by cue imageability, suggesting that retrieval strategy can be manipulated in similar ways for both temporal directions. Furthermore, executive control processes (as measured by verbal fluency) was correlated with fluency and number...... of details in both memories and future thoughts, indicating the involvement of some common component processes in autobiographical memory and future thinking....

  7. Elements of episodic-like memory in animal models.

    Science.gov (United States)

    Crystal, Jonathon D

    2009-03-01

    Representations of unique events from one's past constitute the content of episodic memories. A number of studies with non-human animals have revealed that animals remember specific episodes from their past (referred to as episodic-like memory). The development of animal models of memory holds enormous potential for gaining insight into the biological bases of human memory. Specifically, given the extensive knowledge of the rodent brain, the development of rodent models of episodic memory would open new opportunities to explore the neuroanatomical, neurochemical, neurophysiological, and molecular mechanisms of memory. Development of such animal models holds enormous potential for studying functional changes in episodic memory in animal models of Alzheimer's disease, amnesia, and other human memory pathologies. This article reviews several approaches that have been used to assess episodic-like memory in animals. The approaches reviewed include the discrimination of what, where, and when in a radial arm maze, dissociation of recollection and familiarity, object recognition, binding, unexpected questions, and anticipation of a reproductive state. The diversity of approaches may promote the development of converging lines of evidence on the difficult problem of assessing episodic-like memory in animals.

  8. Aging-related episodic memory decline: are emotions the key?

    Science.gov (United States)

    Kinugawa, Kiyoka; Schumm, Sophie; Pollina, Monica; Depre, Marion; Jungbluth, Carolin; Doulazmi, Mohamed; Sebban, Claude; Zlomuzica, Armin; Pietrowsky, Reinhard; Pause, Bettina; Mariani, Jean; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the recollection of personal experiences that contain information on what has happened and also where and when these events took place. Episodic memory function is extremely sensitive to cerebral aging and neurodegerative diseases. We examined episodic memory performance with a novel test in young (N = 17, age: 21–45), middle-aged (N = 16, age: 48–62) and aged but otherwise healthy participants (N = 8, age: 71–83) along with measurements of trait and state anxiety. As expected we found significantly impaired episodic memory performance in the aged group as compared to the young group. The aged group also showed impaired working memory performance as well as significantly decreased levels of trait anxiety. No significant correlation between the total episodic memory and trait or state anxiety scores was found. The present results show an age-dependent episodic memory decline along with lower trait anxiety in the aged group. Yet, it still remains to be determined whether this difference in anxiety is related to the impaired episodic memory performance in the aged group. PMID:23378831

  9. Balancing through episodic learning

    DEFF Research Database (Denmark)

    Scheuer, John Damm

    2013-01-01

    Peter Jarvis’s theory about learning suggests that human beings learn and change as a result of hearing, seeing, smelling, tasting, touching, and feeling. They change and learn by interacting with other humans, things, and events in certain time-space contexts and by reflecting upon these, as well...... as upon wished-for future states or past experiences, knowledge, and history, and upon what these experiences mean to one’s own self and identity. This chapter explores how female top managers have to reflect and find a balance in their work-family lives on the basis of interaction with, and inputs from...

  10. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Science.gov (United States)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  11. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    Science.gov (United States)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  12. Data assimilation of CALIPSO aerosol observations

    Directory of Open Access Journals (Sweden)

    T. T. Sekiyama

    2010-01-01

    Full Text Available We have developed an advanced data assimilation system for a global aerosol model with a four-dimensional ensemble Kalman filter in which the Level 1B data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO were successfully assimilated for the first time, to the best of the authors' knowledge. A one-month data assimilation cycle experiment for dust, sulfate, and sea-salt aerosols was performed in May 2007. The results were validated via two independent observations: 1 the ground-based lidar network in East Asia, managed by the National Institute for Environmental Studies of Japan, and 2 weather reports of aeolian dust events in Japan. Detailed four-dimensional structures of aerosol outflows from source regions over oceans and continents for various particle types and sizes were well reproduced. The intensity of dust emission at each grid point was also corrected by this data assimilation system. These results are valuable for the comprehensive analysis of aerosol behavior as well as aerosol forecasting.

  13. Episodic memory in nonhuman animals.

    Science.gov (United States)

    Templer, Victoria L; Hampton, Robert R

    2013-09-09

    Episodic memories differ from other types of memory because they represent aspects of the past not present in other memories, such as the time, place, or social context in which the memories were formed. Focus on phenomenal experience in human memory, such as the sense of 'having been there', has resulted in conceptualizations of episodic memory that are difficult or impossible to apply to nonhuman species. It is therefore a significant challenge for investigators to agree on objective behavioral criteria that can be applied in nonhuman animals and still capture features of memory thought to be critical in humans. Some investigators have attempted to use neurobiological parallels to bridge this gap; however, defining memory types on the basis of the brain structures involved rather than on identified cognitive mechanisms risks missing crucial functional aspects of episodic memory, which are ultimately behavioral. The most productive way forward is likely a combination of neurobiology and sophisticated cognitive testing that identifies the mental representations present in episodic memory. Investigators that have refined their approach from asking the naïve question "do nonhuman animals have episodic memory" to instead asking "what aspects of episodic memory are shared by humans and nonhumans" are making progress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  15. Characteristics of Turbulent Transfer during Episodes of Heavy Haze Pollution in Beijing in Winter 2016/17

    Science.gov (United States)

    Ren, Yan; Zheng, Shuwen; Wei, Wei; Wu, Bingui; Zhang, Hongsheng; Cai, Xuhui; Song, Yu

    2018-02-01

    We analyzed the structure and evolution of turbulent transfer and the wind profile in the atmospheric boundary layer in relation to aerosol concentrations during an episode of heavy haze pollution from 6 December 2016 to 9 January 2017. The turbulence data were recorded at Peking University's atmospheric science and environment observation station. The results showed a negative correlation between the wind speed and the PM2.5 concentration. The turbulence kinetic energy was large and showed obvious diurnal variations during unpolluted (clean) weather, but was small during episodes of heavy haze pollution. Under both clean and heavy haze conditions, the relation between the non-dimensional wind components and the stability parameter z/ L followed a 1/3 power law, but the normalized standard deviations of the wind speed were smaller during heavy pollution events than during clean periods under near-neutral conditions. Under unstable conditions, the normalized standard deviation of the potential temperature σ θ /| θ *| was related to z/ L, roughly following a -1/3 power law, and the ratio during pollution days was greater than that during clean days. The three-dimensional turbulence energy spectra satisfied a -2/3 power exponent rate in the high-frequency band. In the low-frequency band, the wind velocity spectrum curve was related to the stability parameters under clear conditions, but was not related to atmospheric stratification under polluted conditions. In the dissipation stage of the heavy pollution episode, the horizontal wind speed first started to increase at high altitudes and then gradually decreased at lower altitudes. The strong upward motion during this stage was an important dynamic factor in the dissipation of the heavy haze.

  16. Radioactive aerosols. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Natanson, G L

    1956-01-01

    Tabulations are given presenting various published data on safe atmospheric concentrations of various radioactive and non-radioactive aerosols. Methods of determination of active aerosol concentrations and dispersion as well as the technical applications of labeled aerosols are discussed. The effect of atomic explosions are analyzed considering the nominal atomic bomb based on /sup 235/U and /sup 232/Pu equivalent to 20,000 tons of TNT.

  17. Aerosols CFA 97

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    During the thirteen congress on aerosols several papers were presented about the behaviour of radioactive aerosols and their impact on environment, or the exposure to radon and to its daughters, the measurement of the size of the particulates of the short-lived radon daughters and two papers about the behaviour of aerosols in containment during a fission products release in the primary circuit and susceptible to be released in atmosphere in the case of containment failure. (N.C.)

  18. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

    Science.gov (United States)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2015-03-01

    Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main

  19. Remember Bach: an investigation in episodic memory for music.

    Science.gov (United States)

    Eschrich, Susann; Münte, Thomas F; Altenmüller, Eckart O

    2005-12-01

    Emotional events are remembered better than nonemotional ones, especially after a long period of time. In this study, we investigated whether emotional music is kept better in episodic long-term memory than less emotional music and to which extent musical structure is important.

  20. Development in the Organization of Episodic Memories in Middle Childhood and Adolescence

    OpenAIRE

    Yan eChen; Helena Margaret McAnally; Elaine eReese

    2013-01-01

    The basic elements of autobiographical or episodic memory are established in early childhood, although the exact age at which memories gain episodic status is still under contention. The self-memory system proposed that adults use “lifetime periods” to group episodic memories together into chapters of the life story – an evolving and internalized account of significant life events that are self-defining. Two studies examined at what point in development children or adolescents begin to take a...

  1. Regional variation of carbonaceous aerosols from space and simulations

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    Satellite remote sensing provides us with a systematic monitoring in a global scale. As such, aerosol observation via satellites is known to be useful and effective. However, before attempting to retrieve aerosol properties from satellite data, the efficient algorithms for aerosol retrieval need to be considered. The characteristics and distributions of atmospheric aerosols are known to be complicated, owing to both natural factors and human activities. It is known that the biomass burning aerosols generated by the large-scale forest fires and burn agriculture have influenced the severity of air pollution. Nevertheless the biomass burning episodes increase due to global warming and climate change and vice versa. It is worth noting that the near ultra violet (NUV) measurements are helpful for the detection of carbonaceous particles, which are the main component of aerosols from biomass burning. In this work, improved retrieval algorithms for biomass burning aerosols are shown by using the measurements observed by GLI and POLDER-2 on Japanese short term mission ADEOS-2 in 2003. The GLI sensor has 380nm channel. For detection of biomass burning episodes, the aerosol optical thickness of carbonaceous aerosols simulated with the numerical model simulations (SPRINTARS) is available as well as fire products from satellite imagery. Moreover the algorithm using shorter wavelength data is available for detection of absorbing aerosols. An algorithm based on the combined use of near-UV and violet data has been introduced in our previous work with ADEOS (Advanced Earth Observing Satellite) -2 /GLI measurements [1]. It is well known that biomass burning plume is a seasonal phenomenon peculiar to a particular region. Hence, the mass concentrations of aerosols are frequently governed with spatial and/or temporal variations of biomass burning plumes. Accordingly the satellite data sets for our present study are adopted from the view points of investigation of regional and seasonal

  2. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  3. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  4. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio; Scribano, Gianfranco

    2016-01-01

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can

  5. Aerosol layer height from synergistic use of VIIRS and OMPS

    Science.gov (United States)

    Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.

    2017-12-01

    This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.

  6. Direct radiative forcing due to aerosols in Asia during March 2002.

    Science.gov (United States)

    Park, Soon-Ung; Jeong, Jaein I

    2008-12-15

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust+BC+OC+SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m(-2), of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (-6.8 W m(-2)), about 31% at the top of atmosphere (-2.9 W m(-2)) and about 13% in the atmosphere (3.8 W m(-2)), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest radiative

  7. Direct radiative forcing due to aerosols in Asia during March 2002

    International Nuclear Information System (INIS)

    Park, Soon-Ung; Jeong, Jaein I.

    2008-01-01

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km 2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust + BC + OC + SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R 2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m -2 , of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (- 6.8 W m -2 ), about 31% at the top of atmosphere (- 2.9 W m -2 ) and about 13% in the atmosphere (3.8 W m -2 ), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest

  8. Factitious psychogenic nonepileptic paroxysmal episodes

    Directory of Open Access Journals (Sweden)

    Alissa Romano

    2014-01-01

    Full Text Available Mistaking psychogenic nonepileptic paroxysmal episodes (PNEPEs for epileptic seizures (ES is potentially dangerous, and certain features should alert physicians to a possible PNEPE diagnosis. Psychogenic nonepileptic paroxysmal episodes due to factitious seizures carry particularly high risks of morbidity or mortality from nonindicated emergency treatment and, often, high costs in wasted medical treatment expenditures. We report a case of a 28-year-old man with PNEPEs that were misdiagnosed as ES. The patient had been on four antiseizure medications (ASMs with therapeutic serum levels and had had multiple intubations in the past for uncontrolled episodes. He had no episodes for two days of continuous video-EEG monitoring. He then disconnected his EEG cables and had an episode of generalized stiffening and cyanosis, followed by jerking and profuse bleeding from the mouth. The manifestations were unusually similar to those of ES, except that he was clearly startled by spraying water on his face, while he was stiff in all extremities and unresponsive. There were indications that he had sucked blood from his central venous catheter to expel through his mouth during his PNEPEs while consciously holding his breath. Normal video-EEG monitoring; the patient's volitional and deceptive acts to fabricate the appearance of illness, despite pain and personal endangerment; and the absence of reward other than remaining in a sick role were all consistent with a diagnosis of factitious disorder.

  9. Episodic payments (bundling): PART I.

    Science.gov (United States)

    Jacofsky, D J

    2017-10-01

    Episodic, or bundled payments, is a concept now familiar to most in the healthcare arena, but the models are often misunderstood. Under a traditional fee-for-service model, each provider bills separately for their services which creates financial incentives to maximise volumes. Under a bundled payment, a single entity, often referred to as a convener (maybe the hospital, the physician group, or a third party) assumes the risk through a payer contract for all services provided within a defined episode of care, and receives a single (bundled) payment for all services provided for that episode. The time frame around the intervention is variable, but defined in advance, as are included and excluded costs. Timing of the actual payment in a bundle may either be before the episode occurs (prospective payment model), or after the end of the episode through a reconciliation (retrospective payment model). In either case, the defined costs over the defined time frame are borne by the convener. Cite this article: Bone Joint J 2017;99-B:1280-5. ©2017 The British Editorial Society of Bone & Joint Surgery.

  10. Pollutants identification of ambient aerosols by two types of aerosol mass spectrometers over southeast coastal area, China.

    Science.gov (United States)

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Li, Lei

    2018-02-01

    Two different aerosol mass spectrometers, Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Aerosol Mass Spectrometer (SPAMS) were deployed to identify the aerosol pollutants over Xiamen, representing the coastal urban area. Five obvious processes were classified during the whole observation period. Organics and sulfate were the dominant components in ambient aerosols over Xiamen. Most of the particles were in the size range of 0.2-1.0μm, accounting for over 97% of the total particles measured by both instruments. Organics, as well as sulfate, measured by AMS were in good correlation with measured by SPAMS. However, high concentration of NH 4 + was obtained by AMS, while extremely low value of NH 4 + was detected by SPAMS. Contrarily, high particle number counts of NO 3 - and Cl - were given by SPAMS while low concentrations of NO 3 - and Cl - were measured by AMS. The variations of POA and SOA obtained from SPAMS during event 1 and event 2 were in accordance with the analysis of HOA and OOA given by AMS, suggesting that both of AMS and SPAMS can well identify the organic clusters of aerosol particles. Overestimate or underestimate of the aerosol sources and acidity would be present in some circumstances when the measurement results were used to analyze the aerosol properties, because of the detection loss of some species for both instruments. Copyright © 2017. Published by Elsevier B.V.

  11. Recent increase in aerosol loading over the Australian arid zone

    Science.gov (United States)

    Mitchell, R. M.; Campbell, S. K.; Qin, Y.

    2009-10-01

    Collocated sun photometer and nephelometer measurements at Tinga Tingana in the Australian Outback over the decade 1997-2007 show a significant increase in aerosol loading following the onset of severe drought conditions in 2002. The mean mid-visible scattering coefficient obtained from nephelometer measurements over the period 2003-2007 is approximately double that recorded over the preceding 5 yr, with consistent trends in the column aerosol optical depth derived from the sun photometer. This increase is confined to the season of dust activity, particularly September to March. In contrast, background aerosol levels during May, June and July remained stable. The enhanced aerosol loadings during the latter 5 yr of the study period can be understood as a combination of dune destabilisation through loss of ephemeral vegetation and surface crust, and the changing supply of fluvial sediments to ephemeral lakes and floodplains within the Lake Eyre Basin. Major dust outbreaks are generally highly localised, although significant dust activity was observed at Tinga Tingana on 50% of days when a major event occurred elsewhere in the Lake Eyre Basin, suggesting frequent basin-wide dust mobilisation. Combined analysis of aerosol optical depth and scattering coefficient shows weak correlation between the surface and column aerosol (R2=0.24). The aerosol scale height is broadly distributed with a mode typically between 2-3 km, with clearly defined seasonal variation. Climatological analysis reveals bimodal structure in the annual cycle of aerosol optical depth, with a summer peak related to maximal dust activity, and a spring peak related to lofted fine-mode aerosol. There is evidence for an increase in near-surface aerosol during the period 2003-2007 relative to 1997-2002, consistent with an increase in dust activity. This accords with an independent finding of increasing aerosol loading over the Australian region as a whole, suggesting that rising dust activity over the Lake

  12. Insights into a historic severe haze event in Shanghai: synoptic situation, boundary layer and pollutants

    Directory of Open Access Journals (Sweden)

    C. Leng

    2016-07-01

    Full Text Available A historic haze event, characterized by lengthy, large-scale and severe pollution, occurred in the Yangtze River Delta (YRD of China from 1 to 10 December 2013. This haze event significantly influenced air quality throughout the region, especially in urban areas. Aerosol physical, chemical and optical properties were measured in Shanghai. Sometimes the 1 h average particle concentration (e.g., PM2.5 exceeded 600 µg m−3. Inorganic water-soluble ions in particles, trace gases and aerosol optical coefficients had a similar tendency to increase evidently from clear to hazy episodes. A combination of various factors contributed to the formation and evolution of the haze event, among which meteorological conditions, local anthropogenic emissions and pollutants are the major factors. High pressure system, calm surface wind and subsidence airflow were responsible for the decrease of planetary boundary layer (PBL and the accumulation of pollutants. Atmospheric visibility correlated strongly with relative humidity (RH, particle number in size of 600–1400 nm other than particulate water-soluble species and particle mass (PM2.5. The particle hygroscopicity plays an important role in atmospheric visibility reduction. The results are somewhat helpful to forecast and eliminate regional atmospheric pollution in China.

  13. Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy during the first MINATROC campaign

    Directory of Open Access Journals (Sweden)

    R. Van Dingenen

    2005-01-01

    Full Text Available Aerosol physical properties were measured at the Monte Cimone Observatory (Italy from 1 June till 6 July 2000. The measurement site is located in the transition zone between the continental boundary layer and the free troposphere (FT, at the border between the Mediterranean area and Central Europe, and is exposed to a variety of air masses. Sub-μm number size distributions, aerosol hygroscopicity near 90% RH, refractory size distribution at 270°C and equivalent black carbon mass were continuously measured. Number size distributions and hygroscopic properties indicate that the site is exposed to aged continental air masses, however during daytime it is also affected by upslope winds. The mixing of this transported polluted boundary layer air masses with relatively clean FT air leads to frequent nucleation events around local noon. Night-time size distributions, including fine and coarse fractions for each air mass episode, have been parameterized by a 3-modal lognormal distribution. Number and volume concentrations in the sub-μm modes are strongly affected by the air mass origin, with highest levels in NW-European air masses, versus very clean, free tropospheric air coming from the N-European sector. During a brief but distinct dust episode, the coarse mode is clearly enhanced. The observed hygroscopic behavior of the aerosol is consistent with the chemical composition described by Putaud et al. (2004, but no closure between known chemical composition and measured hygroscopicity could be made because the hygroscopic properties of the water-soluble organic matter (WSOM are not known. The data suggest that WSOM is slightly-to-moderately hygroscopic (hygroscopic growth factor GF at 90% relative humidity between 1.05 and 1.51, and that this property may well depend on the air mass origin and history. External mixing of aerosol particles is observed in all air masses through the occurrence of two hygroscopicity modes (average GF of 1.22 and 1

  14. Air-Sea exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions

    Science.gov (United States)

    Kim, Michelle J.; Novak, Gordon A.; Zoerb, Matthew C.; Yang, Mingxi; Blomquist, Byron W.; Huebert, Barry J.; Cappa, Christopher D.; Bertram, Timothy H.

    2017-04-01

    We report simultaneous, underway eddy covariance measurements of the vertical flux of isoprene, total monoterpenes, and dimethyl sulfide (DMS) over the Northern Atlantic Ocean during fall. Mean isoprene and monoterpene sea-to-air vertical fluxes were significantly lower than mean DMS fluxes. While rare, intense monoterpene sea-to-air fluxes were observed, coincident with elevated monoterpene mixing ratios. A statistically significant correlation between isoprene vertical flux and short wave radiation was not observed, suggesting that photochemical processes in the surface microlayer did not enhance isoprene emissions in this study region. Calculations of secondary organic aerosol production rates (PSOA) for mean isoprene and monoterpene emission rates sampled here indicate that PSOA is on average <0.1 μg m-3 d-1. Despite modest PSOA, low particle number concentrations permit a sizable role for condensational growth of monoterpene oxidation products in altering particle size distributions and the concentration of cloud condensation nuclei during episodic monoterpene emission events from the ocean.

  15. Apathy in first episode psychosis patients

    DEFF Research Database (Denmark)

    Evensen, Julie; Røssberg, Jan Ivar; Barder, Helene

    2012-01-01

    Apathy is a common symptom in first episode psychosis (FEP), and is associated with poor functioning. Prevalence and correlates of apathy 10 years after the first psychotic episode remain unexplored.......Apathy is a common symptom in first episode psychosis (FEP), and is associated with poor functioning. Prevalence and correlates of apathy 10 years after the first psychotic episode remain unexplored....

  16. Episodic and Semantic Memory: Implications for the Role of Emotion in Advertising.

    Science.gov (United States)

    Thorson, Esther

    In an examination of the way people store and retrieve information from advertising, this paper draws a distinction between "semantic" memory, which stores general knowledge about the world, and "episodic" memory, which stores information about specific events. It then argues that episodic memory plays a more significant role…

  17. Risk of Recurrent Pancreatitis and Progression to Chronic Pancreatitis After a First Episode of Acute Pancreatitis

    NARCIS (Netherlands)

    Ahmed Ali, Usama; Issa, Yama; Hagenaars, Julia C.; Bakker, Olaf J.; van Goor, Harry; Nieuwenhuijs, Vincent B.; Bollen, Thomas L.; van Ramshorst, Bert; Witteman, Ben J.; Brink, Menno A.; Schaapherder, Alexander F.; Dejong, Cornelis H.; Spanier, B. W. Marcel; Heisterkamp, Joos; van der Harst, Erwin; van Eijck, Casper H.; Besselink, Marc G.; Gooszen, Hein G.; van Santvoort, Hjalmar C.; Boermeester, Marja A.

    2016-01-01

    Patients with a first episode of acute pancreatitis can develop recurrent or chronic pancreatitis (CP). However, little is known about the incidence or risk factors for these events. We performed a cross-sectional study of 669 patients with a first episode of acute pancreatitis admitted to 15 Dutch

  18. Risk of Recurrent Pancreatitis and Progression to Chronic Pancreatitis After a First Episode of Acute Pancreatitis

    NARCIS (Netherlands)

    Ahmed Ali, Usama; Issa, Yama; Hagenaars, Julia C.; Bakker, Olaf J.; van Goor, Harry; Nieuwenhuijs, Vincent B.; Bollen, Thomas L.; van Ramshorst, Bert; Witteman, Ben J.; Brink, Menno A.; Schaapherder, Alexander F.; Dejong, Cornelis H.; Spanier, B. W Marcel; Heisterkamp, Joos; van der Harst, Erwin; van Eijck, Casper H.; Besselink, Marc G.; Gooszen, Hein G.; van Santvoort, Hjalmar C.; Boermeester, Marja A.

    2016-01-01

    Background & Aims: Patients with a first episode of acute pancreatitis can develop recurrent or chronic pancreatitis (CP). However, little is known about the incidence or risk factors for these events. Methods: We performed a cross-sectional study of 669 patients with a first episode of acute

  19. Sleep Benefits in Parallel Implicit and Explicit Measures of Episodic Memory

    Science.gov (United States)

    Weber, Frederik D.; Wang, Jing-Yi; Born, Jan; Inostroza, Marion

    2014-01-01

    Research in rats using preferences during exploration as a measure of memory has indicated that sleep is important for the consolidation of episodic-like memory, i.e., memory for an event bound into specific spatio-temporal context. How these findings relate to human episodic memory is unclear. We used spontaneous preferences during visual…

  20. Magnetic resonance imaging findings at the first episode of acute optic neuritis

    DEFF Research Database (Denmark)

    Soelberg, K; Skejoe, H P B; Grauslund, J

    2018-01-01

    BACKGROUND: Optic neuritis (ON) is a focal demyelinating event, which may evolve into multiple sclerosis (MS). OBJECTIVE: To study MRI characteristics in the acute phase of the first ON episode. METHODS: A prospective population-based study was performed on 31 patients with a first episode of acu...

  1. Risk of Recurrent Pancreatitis and Progression to Chronic Pancreatitis After a First Episode of Acute Pancreatitis

    NARCIS (Netherlands)

    Ali, U.A.; Issa, Y.; Hagenaars, J.C.; Bakker, O.J.; Goor, H. van; Nieuwenhuijs, V.B.; Bollen, T.L.; Ramshorst, B. van; Witteman, B.J.; Brink, M.A.; Schaapherder, A.F.; Dejong, C.H.; Spanier, B.W.; Heisterkamp, J.; Harst, E. van der; Eijck, C.H. van; Besselink, M.G.; Gooszen, H.G.; Santvoort, H.C. van; Boermeester, M.A.

    2016-01-01

    BACKGROUND & AIMS: Patients with a first episode of acute pancreatitis can develop recurrent or chronic pancreatitis (CP). However, little is known about the incidence or risk factors for these events. METHODS: We performed a cross-sectional study of 669 patients with a first episode of acute

  2. Episodic Memory: A Comparative Approach

    Science.gov (United States)

    Martin-Ordas, Gema; Call, Josep

    2013-01-01

    Historically, episodic memory has been described as autonoetic, personally relevant, complex, context-rich, and allowing mental time travel. In contrast, semantic memory, which is theorized to be free of context and personal relevance, is noetic and consists of general knowledge of facts about the world. The field of comparative psychology has adopted this distinction in order to study episodic memory in non-human animals. Our aim in this article is not only to reflect on the concept of episodic memory and the experimental approaches used in comparative psychology to study this phenomenon, but also to provide a critical analysis of these paradigms. We conclude the article by providing new avenues for future research. PMID:23781179

  3. Episodic and Semantic Autobiographical Memory and Everyday Memory during Late Childhood and Early Adolescence.

    Science.gov (United States)

    Willoughby, Karen A; Desrocher, Mary; Levine, Brian; Rovet, Joanne F

    2012-01-01

    Few studies have examined both episodic and semantic autobiographical memory (AM) performance during late childhood and early adolescence. Using the newly developed Children's Autobiographical Interview (CAI), the present study examined the effects of age and sex on episodic and semantic AM and everyday memory in 182 children and adolescents. Results indicated that episodic and semantic AM both improved between 8 and 16 years of age; however, age-related changes were larger for episodic AM than for semantic AM. In addition, females were found to recall more episodic AM details, but not more semantic AM details, than males. Importantly, this sex difference in episodic AM recall was attenuated under conditions of high retrieval support (i.e., the use of probing questions). The ability to clearly visualize past events at the time of recollection was related to children's episodic AM recall performance, particularly the retrieval of perceptual details. Finally, similar age and sex effects were found between episodic AM and everyday memory ability (e.g., memory for everyday activities). More specifically, older participants and females exhibited better episodic AM and everyday memory performance than younger participants and males. Overall, the present study provides important new insight into both episodic and semantic AM performance, as well as the relation between episodic AM and everyday memory, during late childhood and adolescence.

  4. Episodic and Semantic Autobiographical Memory and Everyday Memory during Late Childhood and Early Adolescence

    Science.gov (United States)

    Willoughby, Karen A.; Desrocher, Mary; Levine, Brian; Rovet, Joanne F.

    2012-01-01

    Few studies have examined both episodic and semantic autobiographical memory (AM) performance during late childhood and early adolescence. Using the newly developed Children’s Autobiographical Interview (CAI), the present study examined the effects of age and sex on episodic and semantic AM and everyday memory in 182 children and adolescents. Results indicated that episodic and semantic AM both improved between 8 and 16 years of age; however, age-related changes were larger for episodic AM than for semantic AM. In addition, females were found to recall more episodic AM details, but not more semantic AM details, than males. Importantly, this sex difference in episodic AM recall was attenuated under conditions of high retrieval support (i.e., the use of probing questions). The ability to clearly visualize past events at the time of recollection was related to children’s episodic AM recall performance, particularly the retrieval of perceptual details. Finally, similar age and sex effects were found between episodic AM and everyday memory ability (e.g., memory for everyday activities). More specifically, older participants and females exhibited better episodic AM and everyday memory performance than younger participants and males. Overall, the present study provides important new insight into both episodic and semantic AM performance, as well as the relation between episodic AM and everyday memory, during late childhood and adolescence. PMID:22403560

  5. Why do we remember? The communicative function of episodic memory

    Science.gov (United States)

    Mahr, Johannes B.; Csibra, Gergely

    2017-01-01

    Short Abstract We propose a novel account of episodic memory function based on a conceptual and empirical analysis of its role in belief formation. We provide a critique of the view that episodic memory serves future-directed imagination, and argue that the central features of this capacity can instead be explained by the role it plays in human communication. On this view, episodic memory allows us to communicatively support our interpretations of the past by gauging when we can assert epistemic authority. This capacity is ineliminable in justification of, and negotiations about, social commitments established by past interactions. Long Abstract Episodic memory has been analyzed in a number of different ways in both philosophy and psychology, and most controversy has centered on its self-referential, ‘autonoetic’ character. Here, we offer a comprehensive characterization of episodic memory in representational terms, and propose a novel functional account on this basis. We argue that episodic memory should be understood as a distinctive epistemic attitude taken towards an event simulation. On this view, episodic memory has a metarepresentational format and should not be equated with beliefs about the past. Instead, empirical findings suggest that the contents of human episodic memory are often constructed in the service of the explicit justification of such beliefs. Existing accounts of episodic memory function that have focused on explaining its constructive character through its role in ‘future-oriented mental time travel’ neither do justice to its capacity to ground veridical beliefs about the past nor to its representational format. We provide an account of the metarepresentational structure of episodic memory in terms of its role in communicative interaction. The generative nature of recollection allows us to represent and communicate the reasons for why we hold certain beliefs about the past. In this process, autonoesis corresponds to the capacity to

  6. Effects of Learned Episodic Event Structure on Prospective Duration Judgments

    Science.gov (United States)

    Faber, Myrthe; Gennari, Silvia P.

    2017-01-01

    The field of psychology of time has typically distinguished between prospective timing and retrospective duration estimation: in prospective timing, participants attend to and encode time, whereas in retrospective estimation, estimates are based on the memory of what happened. Prior research on prospective timing has primarily focused on…

  7. Improved realism of confidence for an episodic memory event

    Directory of Open Access Journals (Sweden)

    Sandra Buratti

    2012-09-01

    Full Text Available We asked whether people can make their confidence judgments more realistic (accurate by adjusting them, with the aim of improving the relationship between the level of confidence and the correctness of the answer. This adjustment can be considered to include a so-called second-order metacognitive judgment. The participants first gave confidence judgments about their answers to questions about a video clip they had just watched. Next, they attempted to increase their accuracy by identifying confidence judgments in need of adjustment and then modifying them. The participants managed to increase their metacognitive realism, thus decreasing their absolute bias and improving their calibration, although the effects were small. We also examined the relationship between confidence judgments that were adjusted and the retrieval fluency and the phenomenological memory quality participants experienced when first answering the questions; this quality was one of either Remember (associated with concrete, vivid details or Know (associated with a feeling of familiarity. Confidence judgments associated with low retrieval fluency and the memory quality of knowing were modified more often. In brief, our results provide evidence that people can improve the realism of their confidence judgments, mainly by decreasing their confidence for incorrect answers. Thus, this study supports the conclusion that people can perform successful second-order metacognitive judgments.

  8. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  9. Aerosol in the containment

    International Nuclear Information System (INIS)

    Lanza, S.; Mariotti, P.

    1986-01-01

    The US program LACE (LWR Aerosol Containment Experiments), in which Italy participates together with several European countries, Canada and Japan, aims at evaluating by means of a large scale experimental activity at HEDL the retention in the pipings and primary container of the radioactive aerosol released following severe accidents in light water reactors. At the same time these experiences will make available data through which the codes used to analyse the behaviour of the aerosol in the containment and to verify whether by means of the codes of thermohydraulic computation it is possible to evaluate with sufficient accuracy variable influencing the aerosol behaviour, can be validated. This report shows and compares the results obtained by the participants in the LACE program with the aerosol containment codes NAVA 5 and CONTAIN for the pre-test computations of the test LA 1, in which an accident called containment by pass is simulated

  10. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment

    International Nuclear Information System (INIS)

    Cousin, F.

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  11. Light extinction by aerosols during summer air pollution

    Science.gov (United States)

    Kaufman, Y. J.; Fraser, R. S.

    1983-01-01

    In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.

  12. Seasonal dependence of aerosol processing in urban Philadelphia

    Science.gov (United States)

    Avery, A. M.; Waring, M. S.; DeCarlo, P. F.

    2017-12-01

    Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower

  13. Modelling of air quality for Winter and Summer episodes in Switzerland. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andreani-Aksoyoglu, S.; Keller, J.; Barmpadimos, L.; Oderbolz, D.; Tinguely, M.; Prevot, A. [Paul Scherrer Institute (PSI), Laboratory of Atmospheric Chemistry, Villigen (Switzerland); Alfarra, R. [University of Manchester, Manchester (United Kingdom); Sandradewi, J. [Jisca Sandradewi, Hoexter (Germany)

    2009-05-15

    This final report issued by the General Energy Research Department and its Laboratory of Atmospheric Chemistry at the Paul Scherrer Institute (PSI) reports on the results obtained from the modelling of regional air quality for three episodes, January-February 2006, June 2006 and January 2007. The focus of the calculations is on particulate matter concentrations, as well as on ozone levels in summer. The model results were compared with the aerosol data collected by an Aerosol Mass Spectrometer (AMS), which was operated during all three episodes as well as with the air quality monitoring data from further monitoring programs. The air quality model used in this study is described and the results obtained for various types of locations - rural, city, high-altitude and motorway-near - are presented and discussed. The models used are described.

  14. Considering the role of semantic memory in episodic future thinking: evidence from semantic dementia.

    Science.gov (United States)

    Irish, Muireann; Addis, Donna Rose; Hodges, John R; Piguet, Olivier

    2012-07-01

    Semantic dementia is a progressive neurodegenerative condition characterized by the profound and amodal loss of semantic memory in the context of relatively preserved episodic memory. In contrast, patients with Alzheimer's disease typically display impairments in episodic memory, but with semantic deficits of a much lesser magnitude than in semantic dementia. Our understanding of episodic memory retrieval in these cohorts has greatly increased over the last decade, however, we know relatively little regarding the ability of these patients to imagine and describe possible future events, and whether episodic future thinking is mediated by divergent neural substrates contingent on dementia subtype. Here, we explored episodic future thinking in patients with semantic dementia (n=11) and Alzheimer's disease (n=11), in comparison with healthy control participants (n=10). Participants completed a battery of tests designed to probe episodic and semantic thinking across past and future conditions, as well as standardized tests of episodic and semantic memory. Further, all participants underwent magnetic resonance imaging. Despite their relatively intact episodic retrieval for recent past events, the semantic dementia cohort showed significant impairments for episodic future thinking. In contrast, the group with Alzheimer's disease showed parallel deficits across past and future episodic conditions. Voxel-based morphometry analyses confirmed that atrophy in the left inferior temporal gyrus and bilateral temporal poles, regions strongly implicated in semantic memory, correlated significantly with deficits in episodic future thinking in semantic dementia. Conversely, episodic future thinking performance in Alzheimer's disease correlated with atrophy in regions associated with episodic memory, namely the posterior cingulate, parahippocampal gyrus and frontal pole. These distinct neuroanatomical substrates contingent on dementia group were further qualified by correlational

  15. [Episodic autobiographical memory in depression: a review].

    Science.gov (United States)

    Lemogne, C; Piolino, P; Jouvent, R; Allilaire, J-F; Fossati, P

    2006-10-01

    Autobiographical memory and personal identity (self) are linked by a reciprocal relationship. Autobiographical memory is critical for both grounding and changing the self. Individuals' current self-views, beliefs, and goals influence their recollections of the past. According to Tulving, episodic memory is characterized by autonoetic consciousness, which is associated with a sense of the self in the past (emotions and goals) and mental reliving of an experience. Its close relationship with self and emotion strongly involves episodic autobiographical memory in the psychopathology of depression. However, due to methodological and conceptual issues, little attention has been paid to episodic autobiographical memory in depression. Since the seminal work of Williams et al. 15 years ago, there is now growing interest around this issue. We reviewed the evidence for three major features of autobiographical memory functioning in depression: an increase in general memory retrieval (overgenerality), a mood-congruent memory effect and the high occurrence of intrusive memories of stressful events. Although it was first observed among suicidal patients, overgenerality is actually associated with both depression and post-traumatic stress disorder. Overgenerality is not associated with anxious disorders other than post-traumatic stress disorder, obsessive-compulsive disorder, or borderline personality disorder. Most of controlled studies carried out on autobiographical memory in depression rely on the Williams' Autobiographical Memory Test (AMT). When presented with positive and negative cue words and asked to retrieve specific personal events, depressed patients (unlike matched controls) are less specific in their memories. They tend to recall repeated events (categorical overgeneral memories) rather than single episodes (specific memories). Overgenerality in depression is: 1) more evident with positive than with negative events (mood-congruent memory effect); 2) related to

  16. DARE : Dedicated Aerosols Retrieval Experiment

    NARCIS (Netherlands)

    Smorenburg, K.; Courrèges-Lacoste, G.B.; Decae, R.; Court, A.J.; Leeuw, G. de; Visser, H.

    2004-01-01

    At present there is an increasing interest in remote sensing of aerosols from space because of the large impact of aerosols on climate, earth observation and health. TNO has performed a study aimed at improving aerosol characterisation using a space based instrument and state-of-the-art aerosol

  17. A critical evaluation of the validity of episodic future thinking: A clinical neuropsychology perspective.

    Science.gov (United States)

    Ward, Amanda M

    2016-11-01

    Episodic future thinking is defined as the ability to mentally simulate a future event. Although episodic future thinking has been studied extensively in neuroscience, this construct has not been explored in depth from the perspective of clinical neuropsychology. The aim of this critical narrative review is to assess the validity and clinical implications of episodic future thinking. A systematic review of episodic future thinking literature was conducted. PubMed and PsycInfo were searched through July 2015 for review and empirical articles with the following search terms: "episodic future thinking," "future mental simulation," "imagining the future," "imagining new experiences," "future mental time travel," "future autobiographical experience," and "prospection." The review discusses evidence that episodic future thinking is important for adaptive functioning, which has implications for neurological populations. To determine the validity of episodic future thinking, the construct is evaluated with respect to related constructs, such as imagination, episodic memory, autobiographical memory, prospective memory, narrative construction, and working memory. Although it has been minimally investigated, there is evidence of convergent and discriminant validity for episodic future thinking. Research has not addressed the incremental validity of episodic future thinking. Practical considerations of episodic future thinking tasks and related constructs in a clinical neuropsychological setting are considered. The utility of episodic future thinking is currently unknown due to the lack of research investigating the validity of episodic future thinking. Future work is discussed, which could determine whether episodic future thinking is an important missing piece in standard clinical neuropsychological assessment. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Memory sources of dreams: the incorporation of autobiographical rather than episodic experiences.

    Science.gov (United States)

    Malinowski, Josie E; Horton, Caroline L

    2014-08-01

    The present study aimed to explore autobiographical memories (long-lasting memories about the self) and episodic memories (memories about discrete episodes or events) within dream content. We adapted earlier episodic memory study paradigms and reinvestigated the incorporation of episodic memory sources into dreams, operationalizing episodic memory as featuring autonoetic consciousness, which is the feeling of truly re-experiencing or reliving a past event. Participants (n = 32) recorded daily diaries and dream diaries, and reported on wake-dream relations for 2 weeks. Using a new scale, dreams were rated for their episodic richness, which categorized memory sources of dreams as being truly episodic (featuring autonoetic consciousness), autobiographical (containing segregated features of experiences that pertained to waking life) or otherwise. Only one dream (0.5%) was found to contain an episodic memory. However, the majority of dreams (>80%) were found to contain low to moderate incorporations of autobiographical memory features. These findings demonstrate the inactivity of intact episodic memories, and emphasize the activity of autobiographical memory and processing within dreams. Taken together, this suggests that memories for personal experiences are experienced fragmentarily and selectively during dreaming, perhaps in order to assimilate these memories into the autobiographical memory schema. © 2014 European Sleep Research Society.

  19. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  20. Automatic cough episode detection using a vibroacoustic sensor.

    Science.gov (United States)

    Mlynczak, Marcel; Pariaszewska, Katarzyna; Cybulski, Gerard

    2015-08-01

    Cough monitoring is an important element of the diagnostics of respiratory diseases. The European Respiratory Society recommends objective assessment of cough episodes and the search for methods of automatic analysis to make obtaining the quantitative parameters possible. The cough "events" could be classified by a microphone and a sensor that measures the vibrations of the chest. Analysis of the recorded signals consists of calculating the features vectors for selected episodes and of performing automatic classification using them. The aim of the study was to assess the accuracy of classification based on an artificial neural networks using vibroacoustic signals collected from chest. Six healthy, young men and eight healthy, young women carried out an imitated cough, hand clapping, speech and shouting. Three methods of parametrization were used to prepare the vectors of episode features - time domain, time-frequency domain and spectral modeling. We obtained the accuracy of 95% using artificial neural networks.

  1. Interdependence of episodic and semantic memory: evidence from neuropsychology.

    Science.gov (United States)

    Greenberg, Daniel L; Verfaellie, Mieke

    2010-09-01

    Tulving's (1972) theory of memory draws a distinction between general knowledge (semantic memory) and memory for events (episodic memory). Neuropsychological studies have generally examined each type of memory in isolation, but theorists have long argued that these two forms of memory are interdependent. Here we review several lines of neuropsychological research that have explored the interdependence of episodic and semantic memory. The studies show that these forms of memory can affect each other both at encoding and at retrieval. We suggest that theories of memory should be revised to account for all of the interdependencies between episodic and semantic memory; they should also incorporate forms of memory that do not fit neatly into either category.

  2. Organic aerosols from biomass burning in Amazonian rain forest and their impact onto the environment

    International Nuclear Information System (INIS)

    Cecinato, A.; Mabilia, R.; De Castro Vasconcellos, P.

    2001-01-01

    A field campaign performed in Southern Brazilian Amazonia in 1993 has proved that this region is subjected to fallout of particulated exhausts released by fires of forestal biomass. In fact, organic content of aerosols collected at urban sites located on the border of pluvial forest, about 50 km from fires, was similar to that of biomass burning exhausts. Aerosol composition is indicative of dolous origin of fires. However, organic contents seems to be influenced by two additional sources, i. e. motor vehicle and high vegetation emission. Chemical pattern of organic aerosols released by biomass burning of forest seems to promote occurrence of photochemical smog episodes in that region [it

  3. Characterization of biomass burning aerosols from forest fire in Indonesia

    Science.gov (United States)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  4. [Neural Mechanisms Underlying the Processing of Temporal Information in Episodic Memory and Its Disturbance].

    Science.gov (United States)

    Iwata, Saeko; Tsukiura, Takashi

    2017-11-01

    Episodic memory is defined as memory for personally experienced events, and includes memory content and contextual information of time and space. Previous neuroimaging and neuropsychological studies have demonstrated three possible roles of the temporal context in episodic memory. First, temporal information contributes to the arrangement of temporal order for sequential events in episodic memory, and this process is involved in the lateral prefrontal cortex. The second possible role of temporal information in episodic memory is the segregation between memories of multiple events, which are segregated by cues of different time information. The role of segregation is associated with the orbitofrontal regions including the orbitofrontal cortex and basal forebrain region. Third, temporal information in episodic memory plays an important role in the integration of multiple components into a coherent episodic memory, in which episodic components in the different modalities are combined by temporal information as an index. The role of integration is mediated by the medial temporal lobe including the hippocampus and parahippocampal gyrus. Thus, temporal information in episodic memory could be represented in multiple stages, which are involved in a network of the lateral prefrontal, orbitofrontal, and medial temporal lobe regions.

  5. Impact of Dust on Air Quality and Radiative Forcing : AN Episodic Study for the Megacity Istanbul Using RegCM4.1

    Science.gov (United States)

    Agacayak, T.; Kindap, T.; Unal, A.; Mallet, M.; Pozzoli, L.; Karaca, M.; Solmon, F.

    2012-04-01

    Istanbul is a megacity (with population over 15 million) that has significant levels of Particulate Matter concentrations. It is suspected that long-range transport of Saharan dust is one of the main contributors. The purpose of this study is to investigate the relationship between high PM concentrations and dust transport using atmospheric modeling, satellite data as well as in-situ observations. Measurements of PM10 concentrations at 10 different stations in Istanbul for the period 2004-2010 were provided by the Turkish Ministry of Environment. Daily mean PM10 concentrations exceeding the European standard of 50 µg/m3 were found to be, on average, 49 days for the Spring period, 45 days for the Winter period, and 41 days for the Fall period. DREAM model output (Nickovic et al. 2001; Perez et al. 2006) suggests that high PM10 concentrations correlate highly with mineral dust transport episodes from Saharan desert (i.e., 23% for winter and 58% for spring). In this study, we have utilized RegCM4.1 model to further investigate the Saharan dust transport in the selected episodes. During the period between March 21st and 24th, 2008, observed daily mean of PM10 concentrations reach up to 140 µg/m3 in Istanbul. Simulations conducted by RegCM4.1 provides AOD (350-640 nm model band) values ranging between 0.04 and 0.98during this episode. Central Anatolia is affected from the dust transport on 21 and 22 March 2008, with a daily mean AOD of 0.9. On 23th March 2008, the dust plume reaches the Marmara Sea and AOD increases about 1.0 over the region according to both DREAM and RegCM4.1 model outputs. On the fourth day of the episode, the dust event stops and AOD decreases to 0.5 over the region. Asymmetry parameters can be seen as 0.62 during the dust episode, while single scattering albedo is about 0.93 during the entire dust episode over Istanbul. The effect of the dust episode on the regional radiative budget over Istanbul was also estimated. Model results indicate a daily

  6. Characterizing aerosol transport into the Canadian High Arctic using aerosol mass spectrometry and Lagrangian modelling

    Science.gov (United States)

    Kuhn, T.; Damoah, R.; Bacak, A.; Sloan, J. J.

    2010-05-01

    We report the analysis of measurements made using an aerosol mass spectrometer (AMS; Aerodyne Research Inc.) that was installed in the Polar Environment Atmospheric Research Laboratory (PEARL) in summer 2006. PEARL is located in the Canadian high Arctic at 610 m above sea level on Ellesmere Island (80° N 86° W). PEARL is unique for its remote location in the Arctic and because most of the time it is situated within the free troposphere. It is therefore well suited as a receptor site to study the long range tropospheric transport of pollutants into the Arctic. Some information about the successful year-round operation of an AMS at a high Arctic site such as PEARL will be reported here, together with design considerations for reliable sampling under harsh low-temperature conditions. Computational fluid dynamics calculations were made to ensure that sample integrity was maintained while sampling air at temperatures that average -40 °C in the winter and can be as low as -55 °C. Selected AMS measurements of aerosol mass concentration, size, and chemical composition recorded during the months of August, September and October 2006 will be reported. During this period, sulfate was at most times the predominant aerosol component with on average 0.115 μg m-3 (detection limit 0.003 μg m-3). The second most abundant component was undifferentiated organic aerosol, with on average 0.11 μg m-3 detection limit (0.04 μg m-3). The nitrate component, which averaged 0.007 μg m-3, was above its detection limit (0.002 μg m-3), whereas the ammonium ion had an apparent average concentration of 0.02 μg m-3, which was approximately equal to its detection limit. A few episodes having increased mass concentrations and lasting from several hours to several days are apparent in the data. These were investigated further using a statistical analysis to determine their common characteristics. High correlations among some of the components arriving during the short term episodes provide

  7. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  8. Projected Changes in Persistent Extreme Warm-Season Weather Events: The Role of Quasi-Resonant Amplification

    Science.gov (United States)

    Mann, M. E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B. A.; Miller, S. K.; Coumou, D.

    2017-12-01

    Persistent episodes of extreme weather in the Northern Hemisphere summer are typically associated with high-amplitude quasi-stationary atmospheric Rossby waves with zonal wavenumbers. Such disturbances are favoured by the phenomenon of Quasi-Resonant Amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally-averaged surface temperature field. Examining future state-of-the-art (CMIP5) climate model projections we find that such events are likely to increase by 50% over the next century under business-as-usual carbon emissions, but there is considerable variation among climate models, with some models predicting a near tripling of QRA events by the end of the century. These results are strongly dependent on assumptions regarding the prominence of changes in radiative forcing associated with anthropogenic aerosols over the next century.

  9. Life stress and family history for depression: the moderating role of past depressive episodes.

    Science.gov (United States)

    Monroe, Scott M; Slavich, George M; Gotlib, Ian H

    2014-02-01

    Three of the most consistently reported and powerful predictors of depression are a recent major life event, a positive family history for depression, and a personal history of past depressive episodes. Little research, however, has evaluated the inter-relations among these predictors in depressed samples. Such information is descriptively valuable and potentially etiologically informative. In the present article we summarize the existing literature and test four predictions in a sample of 62 clinically depressed individuals: (1) participants who experienced a major life event prior to onset would be less likely than participants who did not experience a major life event to have a positive family history for depression; (2) participants with a recent major life event would have fewer lifetime episodes of depression than would participants without; (3) participants with a positive family history for depression would have more lifetime episodes of depression than would participants with a negative family history for depression; and (4) we would obtain a 3-way interaction in which participants with a positive family history and without a major life event would have the most lifetime episodes, whereas participants with a negative family history and a major life event would have the fewest lifetime episodes. The first three predictions were confirmed, and the fourth prediction partially confirmed. These novel findings begin to elucidate the complex relations among these three prominent risk factors for depression, and point to avenues of research that may help illuminate the origins of depressive episodes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The OCAPI collaborative platform: study of two particle pollution episodes in 2016 in Paris

    Science.gov (United States)

    Foret, Gilles; Michoud, Vincent; Formenti, Paola; Gratien, Aline; Beekmann, Matthias; Peinado, Florian; Favez, Olivier; Haeffelin, Martial; Dupont, Jean-Charles; Bodichon, Renaud; Gros, Valérie; Ghersi, Véronique; Meleux, Frédérik; Xuéref-Rémy, Irène

    2017-04-01

    Air pollution and its impacts are subject to an expanded interest since the middle of the 20th century, especially in urban areas which gathered an important part of emission sources. These polluted urban air masses are composed by a complex mixture of gases and aerosols coming from various emission sources (vehicular traffic, industries, residential heating, agricultural activities, natural sources) or chemical processes. To efficiently reduce this pollution and its impacts on population, it is important to understand its drivers, its sources and its impact on human health. To get some insights in Paris air pollution, a collaborative measurement platform called OCAPI ("Observation de la Composition Atmosphérique Parisienne de l'IPSL") has been built and implies several Parisian research laboratories of IPSL institute (CEREA, LSCE, LMD, LISA, LATMOS, LERMA and METIS) as well as public agencies and institutes in charge of Paris air pollution monitoring (AIRPARIF, INERIS). OCAPI platform aims at gathering skills and instruments of these laboratories to measure the composition and dynamics of Paris atmosphere. In this framework, multi-site measurements were performed during two intense particle pollution episodes which occurred in March 2016 and between November and December 2016. These two episodes were characterized by different meteorological conditions and different type of emission sources. Indeed, March episode was related to intense agricultural activities and high ammonium nitrate contribution to aerosol composition; while end of year episode was related to low wind speed, cold conditions and thin boundary layer which favoured the stagnation of locally emitted pollutants. This latter episode was characterized by large contribution of organics in aerosol composition. In this presentation, a study of these two episodes will be presented. We will first present the context and the OCAPI platform. Then, first results of dynamics and aerosol composition

  11. Functional brain imaging of episodic memory decline in ageing.

    Science.gov (United States)

    Nyberg, L

    2017-01-01

    The episodic long-term memory system supports remembering of events. It is considered to be the most age-sensitive system, with an average onset of decline around 60 years of age. However, there is marked interindividual variability, such that some individuals show faster than average change and others show no or very little change. This variability may be related to the risk of developing dementia, with elevated risk for individuals with accelerated episodic memory decline. Brain imaging with functional magnetic resonance imaging (MRI) of blood oxygen level-dependent (BOLD) signalling or positron emission tomography (PET) has been used to reveal the brain bases of declining episodic memory in ageing. Several studies have demonstrated a link between age-related episodic memory decline and the hippocampus during active mnemonic processing, which is further supported by studies of hippocampal functional connectivity in the resting state. The hippocampus interacts with anterior and posterior neocortical regions to support episodic memory, and alterations in hippocampus-neocortex connectivity have been shown to contribute to impaired episodic memory. Multimodal MRI studies and more recently hybrid MRI/PET studies allow consideration of various factors that can influence the association between the hippocampal BOLD signal and memory performance. These include neurovascular factors, grey and white matter structural alterations, dopaminergic neurotransmission, amyloid-Β and glucose metabolism. Knowledge about the brain bases of episodic memory decline can guide interventions to strengthen memory in older adults, particularly in those with an elevated risk of developing dementia, with promising results for combinations of cognitive and physical stimulation. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  12. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  13. Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2006-01-01

    Full Text Available In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT, Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm and visible wavelengths (500 nm, together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety

  14. Worrying about the future: An episodic specificity induction impacts problem solving, reappraisal, and well-being.

    Science.gov (United States)

    Jing, Helen G; Madore, Kevin P; Schacter, Daniel L

    2016-04-01

    Previous research has demonstrated that an episodic specificity induction--brief training in recollecting details of a recent experience--enhances performance on various subsequent tasks thought to draw upon episodic memory processes. Existing work has also shown that mental simulation can be beneficial for emotion regulation and coping with stressors. Here we focus on understanding how episodic detail can affect problem solving, reappraisal, and psychological well-being regarding worrisome future events. In Experiment 1, an episodic specificity induction significantly improved participants' performance on a subsequent means-end problem solving task (i.e., more relevant steps) and an episodic reappraisal task (i.e., more episodic details) involving personally worrisome future events compared with a control induction not focused on episodic specificity. Imagining constructive behaviors with increased episodic detail via the specificity induction was also related to significantly larger decreases in anxiety, perceived likelihood of a bad outcome, and perceived difficulty to cope with a bad outcome, as well as larger increases in perceived likelihood of a good outcome and indicated use of active coping behaviors compared with the control. In Experiment 2, we extended these findings using a more stringent control induction, and found preliminary evidence that the specificity induction was related to an increase in positive affect and decrease in negative affect compared with the control. Our findings support the idea that episodic memory processes are involved in means-end problem solving and episodic reappraisal, and that increasing the episodic specificity of imagining constructive behaviors regarding worrisome events may be related to improved psychological well-being. (c) 2016 APA, all rights reserved).

  15. Intra and inter-continental aerosol transport and local and regional impacts

    Science.gov (United States)

    Charles, Leona Ann Marie

    vertical layering of aerosols in the troposphere from passive remote sensing measurements. Therefore, the connection with air pollution is very poor. Furthermore, the vertical structure of the aerosol is very important in assessing transport events and how they mix with the Planetary Boundary Layer (PBL). The need to fill this data gap and supply vertical information on plume detection has led to the launch of the Cloud Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) space borne lidar system, which can in principle provide vertical profiles of aerosol backscatter that can be used in the assimilation schemes. One particular problem which needs to be addressed, is the fact that the relationship between the optical scattering coefficients (or AOD) and the PM2.5 mass is not simple. Finally, regarding non-attainment of National Ambient Air Quality Standards (NAAQS), it has also been shown that a significant portion of the PM2.5 aerosol mass can be due to non-local sources. This fact is critical in assessing the appropriate strategy in emission controls, as part of the state implementation plan (SIP) to come into compliance. However, these studies are usually based on statistical analysis tools such as Positive Factor Analysis (PFA), and are not applicable to any single measurement. In addition, little is known about the impact of episodic long range transport as a possible mechanism for affecting local pollution. Such a mechanism cannot be investigated by statistical means or by any existing air transport models which do not consider high altitude plumes (aerosol layers), and must be studied solely with an appropriate suite of measurements including the simultaneous use of sky radiometers, lidars and satellites. Furthermore, since fine particulate matter is so crucial to identify, multi-wavelength determination of aerosol properties such as angstrom coefficient are necessary. It is our purpose to investigate the possibility that such long range transport events can

  16. Preschool children's proto-episodic memory assessed by deferred imitation.

    Science.gov (United States)

    Burns, Patrick; Russell, Charlotte; Russell, James

    2015-01-01

    In two experiments, both employing deferred imitation, we studied the developmental origins of episodic memory in two- to three-year-old children by adopting a "minimalist" view of episodic memory based on its What-When-Where ("WWW": spatiotemporal plus semantic) content. We argued that the temporal element within spatiotemporal should be the order/simultaneity of the event elements, but that it is not clear whether the spatial content should be egocentric or allocentric. We also argued that episodic recollection should be configural (tending towards all-or-nothing recall of the WWW elements). Our first deferred imitation experiment, using a two-dimensional (2D) display, produced superior-to-chance performance after 2.5 years but no evidence of configural memory. Moreover, performance did not differ from that on a What-What-What control task. Our second deferred imitation study required the children to reproduce actions on an object in a room, thereby affording layout-based spatial cues. In this case, not only was there superior-to-chance performance after 2.5 years but memory was also configural at both ages. We discuss the importance of allocentric spatial cues in episodic recall in early proto-episodic memory and reflect on the possible role of hippocampal development in this process.

  17. Modelling episodic acidification of surface waters: the state of science.

    Science.gov (United States)

    Eshleman, K N; Wigington, P J; Davies, T D; Tranter, M

    1992-01-01

    Field studies of chemical changes in surface waters associated with rainfall and snowmelt events have provided evidence of episodic acidification of lakes and streams in Europe and North America. Modelling these chemical changes is particularly challenging because of the variability associated with hydrological transport and chemical transformation processes in catchments. This paper provides a review of mathematical models that have been applied to the problem of episodic acidification. Several empirical approaches, including regression models, mixing models and time series models, support a strong hydrological interpretation of episodic acidification. Regional application of several models has suggested that acidic episodes (in which the acid neutralizing capacity becomes negative) are relatively common in surface waters in several regions of the US that receive acid deposition. Results from physically based models have suggested a lack of understanding of hydrological flowpaths, hydraulic residence times and biogeochemical reactions, particularly those involving aluminum. The ability to better predict episodic chemical responses of surface waters is thus dependent upon elucidation of these and other physical and chemical processes.

  18. Elements of episodic-like memory in animals.

    Science.gov (United States)

    Clayton, N S; Griffiths, D P; Emery, N J; Dickinson, A

    2001-09-29

    A number of psychologists have suggested that episodic memory is a uniquely human phenomenon and, until recently, there was little evidence that animals could recall a unique past experience and respond appropriately. Experiments on food-caching memory in scrub jays question this assumption. On the basis of a single caching episode, scrub jays can remember when and where they cached a variety of foods that differ in the rate at which they degrade, in a way that is inexplicable by relative familiarity. They can update their memory of the contents of a cache depending on whether or not they have emptied the cache site, and can also remember where another bird has hidden caches, suggesting that they encode rich representations of the caching event. They make temporal generalizations about when perishable items should degrade and also remember the relative time since caching when the same food is cached in distinct sites at different times. These results show that jays form integrated memories for the location, content and time of caching. This memory capability fulfils Tulving's behavioural criteria for episodic memory and is thus termed 'episodic-like'. We suggest that several features of episodic memory may not be unique to humans.

  19. Remembering the past and imagining the future: Identifying and enhancing the contribution of episodic memory

    Science.gov (United States)

    Schacter, Daniel L; Madore, Kevin P

    2016-01-01

    Recent studies have shown that imagining or simulating future events relies on many of the same cognitive and neural processes as remembering past events. According to the constructive episodic simulation hypothesis (Schacter and Addis, 2007), such overlap indicates that both remembered past and imagined future events rely heavily on episodic memory: future simulations are built on retrieved details of specific past experiences that are recombined into novel events. An alternative possibility is that commonalities between remembering and imagining reflect the influence of more general, non-episodic factors such as narrative style or communicative goals that shape the expression of both memory and imagination. We consider recent studies that distinguish the contributions of episodic and non-episodic processes in remembering the past and imagining the future by using an episodic specificity induction – brief training in recollecting the details of a past experience – and also extend this approach to the domains of problem solving and creative thinking. We conclude by suggesting that the specificity induction may target a process of scene construction that contributes to episodic memory as well as to imagination, problem solving, and creative thinking. PMID:28163775

  20. Assessing the factors related with winter haze events in Europe and Asia

    Science.gov (United States)

    Dällenbach, Kaspar Rudolf; El Haddad, Imad; Bozzetti, Carlo; Gates Slowik, Jay; Huang, Ru-Jin; Ho, Kin Fai; Cao, Jun Ji; Krepelova, Adela; Zotter, Peter; Canonaco, Francesco; Zhang, Yanlin; Ciobanu, Viorela Gabriela; Vlachou, Athanasia; Piazzalunga, Andrea; Fermo, Paola; Baltensperger, Urs; Szidat, Sönke; Prévôt, André Stéphane Henry

    2014-05-01

    collected at different sites in Switzerland and China during winter-time haze events. Data are analysed with the multilinear engine ME-2 (Paatero 1999), and in combination with markers improved estimates of source contributions are obtained. Mostly secondary OA make the largest proportion of OA during winter haze episodes. Primary sources include wood, traffic, cooking in Switzerland, while coal contributions are additionally found in China. Also dust related organic aerosol is only found in China. Source contribution and emission profiles at different stations will be discussed and related to the prevailing meteorological and combustion conditions for both regions. Cassée, F., et al., (2009) Inhal. Toxicol., 25, 802-812 Canonaco, F., et al., (2013) AMT., 6,3649-3661 Jimenez J. L., et al., (2009) Science, 326 Lanz, V., et al. (2007) ACP., 7, 1503-1522. Paatero, P. (1999), J. Comp. Graph. Stat., 8, 854-888.

  1. Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2011-12-01

    Full Text Available The volcanic eruption of Grimsvötn in Iceland in May 2011 affected surface-layer air quality at several locations in Northern Europe. In Helsinki, Finland, the main pollution episode lasted for more than 8 h around the noon of 25 May. We characterized this episode by relying on detailed physical, chemical and optical aerosol measurements. The analysis was aided by air mass trajectory calculations, satellite measurements, and dispersion model simulations. During the episode, volcanic ash particles were present at sizes from less than 0.5 μm up to sizes >10 μm. The mass mean diameter of ash particles was a few μm in the Helsinki area, and the ash enhanced PM10 mass concentrations up to several tens of μg m−3. Individual particle analysis showed that some ash particles appeared almost non-reacted during the atmospheric transportation, while most of them were mixed with sea salt or other type of particulate matter. Also sulfate of volcanic origin appeared to have been transported to our measurement site, but its contribution to the aerosol mass was minor due the separation of ash-particle and sulfur dioxide plumes shortly after the eruption. The volcanic material had very little effect on PM1 mass concentrations or sub-micron particle number size distributions in the Helsinki area. The aerosol scattering coefficient was increased and visibility was slightly decreased during the episode, but in general changes in aerosol optical properties due to volcanic aerosols seem to be difficult to be distinguished from those induced by other pollutants present in a continental boundary layer. The case investigated here demonstrates clearly the power of combining surface aerosol measurements, dispersion model simulations and satellite measurements in analyzing surface air pollution episodes caused by volcanic eruptions. None of these three approaches alone would be sufficient to forecast, or even to unambiguously identify

  2. Horizontal and vertical structure of reactive bromine events probed by bromine monoxide MAX-DOAS

    Directory of Open Access Journals (Sweden)

    W. R. Simpson

    2017-08-01

    Full Text Available Heterogeneous photochemistry converts bromide (Br− to reactive bromine species (Br atoms and bromine monoxide, BrO that dominate Arctic springtime chemistry. This phenomenon has many impacts such as boundary-layer ozone depletion, mercury oxidation and deposition, and modification of the fate of hydrocarbon species. To study environmental controls on reactive bromine events, the BRomine, Ozone, and Mercury EXperiment (BROMEX was carried out from early March to mid-April 2012 near Barrow (Utqiaġvik, Alaska. We measured horizontal and vertical gradients in BrO with multiple-axis differential optical absorption spectroscopy (MAX-DOAS instrumentation at three sites, two mobile and one fixed. During the campaign, a large crack in the sea ice (an open lead formed pushing one instrument package ∼ 250 km downwind from Barrow (Utqiaġvik. Convection associated with the open lead converted the BrO vertical structure from a surface-based event to a lofted event downwind of the lead influence. The column abundance of BrO downwind of the re-freezing lead was comparable to upwind amounts, indicating direct reactions on frost flowers or open seawater was not a major reactive bromine source. When these three sites were separated by ∼ 30 km length scales of unbroken sea ice, the BrO amount and vertical distributions were highly correlated for most of the time, indicating the horizontal length scales of BrO events were typically larger than ∼ 30 km in the absence of sea ice features. Although BrO amount and vertical distribution were similar between sites most of the time, rapid changes in BrO with edges significantly smaller than this ∼ 30 km length scale episodically transported between the sites, indicating BrO events were large but with sharp edge contrasts. BrO was often found in shallow layers that recycled reactive bromine via heterogeneous reactions on snowpack. Episodically, these surface-based events propagated aloft when

  3. Sodium oxide aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  4. Sodium aerosol recovering device

    International Nuclear Information System (INIS)

    Fujimori, Koji; Ueda, Mitsuo; Tanaka, Kazuhisa.

    1997-01-01

    A main body of a recovering device is disposed in a sodium cooled reactor or a sodium cooled test device. Air containing sodium aerosol is sucked into the main body of the recovering device by a recycling fan and introduced to a multi-staged metal mesh filter portion. The air about against each of the metal mesh filters, and the sodium aerosol in the air is collected. The air having a reduced sodium aerosol concentration circulates passing through a recycling fan and pipelines to form a circulation air streams. Sodium aerosol deposited on each of the metal mesh filters is scraped off periodically by a scraper driving device to prevent clogging of each of the metal filters. (I.N.)

  5. Aerosol chemical physics

    International Nuclear Information System (INIS)

    Marlow, W.H.

    1982-01-01

    A classification of the research fields in the chemical physics of aerosol microparticles is given. The emphasis lies on the microphysics of isolated particles and clusters and on physical transformations and thermodynamics. (LDN)

  6. Sodium oxide aerosol filtration

    International Nuclear Information System (INIS)

    Duverger de Cuy, G.

    1979-01-01

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  7. Aerosols and Climate

    Indian Academy of Sciences (India)

    aerosols, clouds, radiation and climate. ... the solar radiation to pass through but absorb most of infrared radiation emitted .... Fine soil and sand particles become airborne due to wind. Over ..... its sampling is difficult compared to other species.

  8. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  9. Obesity and episodic memory function.

    Science.gov (United States)

    Loprinzi, Paul D; Frith, Emily

    2018-04-17

    Obesity-related lifestyle factors, such as physical activity behavior and dietary intake, have been shown to be associated with episodic memory function. From animal work, there is considerable biological plausibility linking obesity with worse memory function. There are no published systematic reviews evaluating the effects of obesity on episodic memory function among humans, and examining whether physical activity and diet influences this obesity-memory link. Thus, the purpose of this systematic review was to evaluate the totality of research examining whether obesity is associated with episodic memory function, and whether physical activity and dietary behavior confounds this relationship. A review approach was employed, using PubMed, PsychInfo, and Sports Discus databases. Fourteen studies met our criteria. Among these 14 reviewed studies, eight were cross-sectional, four were prospective, and two employed a randomized controlled experimental design. Twelve of the 14 studies did not take into consideration dietary behavior in their analysis, and similarly, nine of the 14 studies did not take into consideration participant physical activity behavior. Among the 14 studies, ten found an inverse association of weight status on memory function, but for one of these studies, this association was attenuated after controlling for physical activity. Among the 14 evaluated studies, four did not find a direct effect of weight status on memory. Among the four null studies, one, however, found an indirect effect of BMI on episodic memory and another found a moderation effect of BMI and age on memory function. It appears that obesity may be associated with worse memory function, with the underlying mechanisms discussed herein. At this point, it is uncertain whether adiposity, itself, is influencing memory changes, or rather, whether adiposity-related lifestyle behaviors (e.g., physical inactivity and diet) are driving the obesity-memory relationship.

  10. Emergency Protection from Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  11. Emergency protection from aerosols

    International Nuclear Information System (INIS)

    Cristy, G.A.; Chester, C.V.

    1981-07-01

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved

  12. MISR Aerosol Typing

    Science.gov (United States)

    Kahn, Ralph A.

    2014-01-01

    AeroCom is an open international initiative of scientists interested in the advancement of the understanding of global aerosol properties and aerosol impacts on climate. A central goal is to more strongly tie and constrain modeling efforts to observational data. A major element for exchanges between data and modeling groups are annual meetings. The meeting was held September 20 through October 2, 1014 and the organizers would like to post the presentations.

  13. Early detection of first-episode psychosis

    DEFF Research Database (Denmark)

    Larsen, Tor K; Melle, Ingrid; Auestad, Bjørn

    2006-01-01

    Early intervention is assumed to improve outcome in first-episode psychosis, but this has not been proven.......Early intervention is assumed to improve outcome in first-episode psychosis, but this has not been proven....

  14. Dispersion and transport of tropospheric aerosol and pollutants in the Western Mediterranean: the role of the Po Valley under different transport regimes

    Science.gov (United States)

    Bucci, Silvia; Fierli, Federico; Ravetta, François; Raut, Jean Christophe; Cristofanelli, Paolo; Decesari, Stefano; Diliberto, Luca; Größ, Johannes; Pap, Ines; Weinhold, Kay; Wiedensohler, Alfred; Cairo, Francesco

    2016-04-01

    This work reports a characterization of the vertical variability of tropospheric aerosol and gaseous pollutants, over the western Mediterranean, during the 2012 summer season. In particular, we investigate the role of the Po Valley region as a receptor and emissive region of both natural and anthropogenic aerosol. The observational analysis, based on a comprehensive database of meteorological, aerosol and chemical measurements, is integrated with a model analysis using the Lagrangian transport system FLEXPART combined with emission databases, and WRF-Chem, the Weather Research and Forecasting (WRF) model coupled with Chemistry. Observations have been performed in the framework of the Supersito project by Regional Agency of Prevention and Environment of the Emilia Romagna region (ARPA-ER, Ital), the TRAQA campaign (TRAnsport et Qualité de l'Air au dessus du bassin Méditerranéen) performed in the ChArMEx (Chemistry-Aerosol Mediterranean Experiment) project, and the european project PEGASOS (Pan-European Gas-AeroSOl-climate interaction Study). An alternation between different transport regimes characterized the 2012 summer, resulting in a large variability of aerosol and pollution at different time and spatial scales. Particles of different nature have been discriminated basing on optical properties retrieved from lidar data and supported by in-situ observations and transport analysis. Results show that, during the analysed season, aerosol in the Po Valley was mainly confined below 2000 m and dominated (50% of detections) by spherical particles. Two events of dust advection from northern Africa were identified (19th-21th June and 29th June-2nd July), with intrusion and mixing with local pollution in the PBL and a non-negligible occurrence (~7%) of dust at the ground. Frequent events (22% of occurrence) of non-spherical particles resuspension, likely due to uplift of mineral soil particles, were observed from the ground to 2000 m during afternoon and evening. In the

  15. Episodic and semantic content of memory and imagination: A multilevel analysis.

    Science.gov (United States)

    Devitt, Aleea L; Addis, Donna Rose; Schacter, Daniel L

    2017-10-01

    Autobiographical memories of past events and imaginations of future scenarios comprise both episodic and semantic content. Correlating the amount of "internal" (episodic) and "external" (semantic) details generated when describing autobiographical events can illuminate the relationship between the processes supporting these constructs. Yet previous studies performing such correlations were limited by aggregating data across all events generated by an individual, potentially obscuring the underlying relationship within the events themselves. In the current article, we reanalyzed datasets from eight studies using a multilevel approach, allowing us to explore the relationship between internal and external details within events. We also examined whether this relationship changes with healthy aging. Our reanalyses demonstrated a largely negative relationship between the internal and external details produced when describing autobiographical memories and future imaginations. This negative relationship was stronger and more consistent for older adults and was evident both in direct and indirect measures of semantic content. Moreover, this relationship appears to be specific to episodic tasks, as no relationship was observed for a nonepisodic picture description task. This negative association suggests that people do not generate semantic information indiscriminately, but do so in a compensatory manner, to embellish episodically impoverished events. Our reanalysis further lends support for dissociable processes underpinning episodic and semantic information generation when remembering and imagining autobiographical events.

  16. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    OpenAIRE

    Rannik, Üllar; Zhou, Luxi; Zhou, Putian; Gierens, Rosa; Mammarella, Ivan; Sogachev, Andrey; Boy, Michael

    2016-01-01

    A 1-D atmospheric boundary layer (ABL) model coupled with a detailed atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict the ABL and detailed aerosol population (characterized by the number size distribution) time evolution. The model was applied over a period of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transforma...

  17. Source memory rehabilitation: A review toward recommendations for setting up a strategy training aimed at the "What, Where, and When" of episodic retrieval

    NARCIS (Netherlands)

    El Haj, M.; Kessels, R.P.C.; Allain, P.

    2016-01-01

    Source memory is a core component of episodic recall as it allows for the reconstruction of contextual details characterizing the acquisition of episodic events. Unlike episodic memory, little is known about source memory rehabilitation. Our review addresses this issue by emphasizing several

  18. Source memory rehabilitation: A review toward recommendations for setting up a strategy training aimed at the "what, where, and when" of episodic retrieval

    NARCIS (Netherlands)

    El Haj, M.; Kessels, R.P.C.; Allain, P.

    2016-01-01

    Source memory is a core component of episodic recall as it allows for the reconstruction of contextual details characterizing the acquisition of episodic events. Unlike episodic memory, little is known about source memory rehabilitation. Our review addresses this issue by emphasizing several

  19. Meteorological conditions during a severe, prolonged regional heavy air pollution episode in eastern China from December 2016 to January 2017

    Science.gov (United States)

    Deng, Xueliang; Cao, Weihua; Huo, Yanfeng; Yang, Guanying; Yu, Caixia; He, Dongyan; Deng, Weitao; Fu, Wei; Ding, Heming; Zhai, Jing; Cheng, Long; Zhao, Xuhui

    2018-03-01

    A severe, prolonged and harmful regional heavy air pollution episode occurred in eastern China from December 2016 to January 2017. In this paper, the pollutant characteristics and the meteorological formation mechanism of this pollution event, including climate anomalies, surface weather conditions, planetary boundary layer structure and large-scale circulation features, were analysed based on observational pollution data, surface meteorological data, sounding data and ERA-Interim reanalysis data. The results are as follows. (1) Five pollution stages were identified in eastern China. The two most severe episodes occurred from December 27, 2016 to January 4, 2017 and from January 8 to 12 2017. During these two pollution episodes, fine mode particles were major contributors, and hourly PM2.5 concentrations often exceeded 150 μg/m3, reaching a maximum of 333 μg/m3 at Fuyang station. Gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of PM2.5. (2) Compared with the same period over the years 2000-2016, 2017 presented meteorological field climate anomalies in conjunction with unfavourable surface conditions (weak winds, high relative humidity, fewer hours of sunshine, high cloud cover) and adverse atmospheric circulation (weak East Asian winter monsoon and an abnormal geopotential height of 500 hPa), which caused poorer visibility in 2017 than in the other analysed years. (3) During the development of heavy pollution event, unfavourable surface weather conditions, including poorer visibility, weaker pressure, higher relative humidity, lower wind speed with unfavourable wind direction and less precipitation suppressed the horizontal diffusion ability of air pollutants. Furthermore, the unfavourable structure of the atmospheric boundary layer was the key cause of the rapid PM2.5 increase. The deep, strong temperature inversion layer and weak vertical wind velocity could have suppressed vertical motion and enhanced

  20. Aerosol effects on UV radiation

    International Nuclear Information System (INIS)

    Koepke, P.; Reuder, J.; Schwander, H.

    2000-01-01

    The reduction of erythemally weighted UV-irradiance (given as UV index, UVI) due to aerosols is analyzed by variation of the tropospheric particles in a wide, but realistic range. Varied are amount and composition of the particles and relative humidity and thickness of the mixing layer. The reduction of UVI increases with aerosol optical depth and the UV change is around 10% for a change aerosol optical depth from 0.25 to 0.1 and 0.4 respectively. Since both aerosol absorption and scattering are of relevance, the aerosol effect depends besides total aerosol amount on relative amount of soot and on relative humidity

  1. Hourly variation of elemental components of urban aerosol in Debrecen

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Dobos, E.; Szoboszlai, Z.; Borbely-Kiss, I.

    2007-01-01

    Complete text of publication follows. With the use of accelerator based PIXE elemental analysis technique and statistical methods, systematic investigation of aerosol samples have been performed in the Institute of Nuclear Research of the Hungarian Academy of Sciences for 20 years determining the elemental composition, size distribution, seasonal and long term time variation, sources and lung deposition probabilities of atmospheric aerosol characteristic to the east-Hungary region. In continuation of this research we observed the short-term time variation of the elemental components in spring and in autumn 2007, at the end and the beginning of the heating season. We studied the changes in the elemental concentrations, their periodicity, correlation with other elements and meteorological parameters. The sampling was done with a PIXE International streaker sampler, which enables a time-discrete record of fine (PM2.5) and coarse (PM10-2.5) size fractions. Sampling campaigns were carried out in the garden of the Atomki on 10-16 April and 10-19 October. Elemental concentration data (Z > 12) with 2h time resolution were determined on the two size fractions. Statistical evaluation and source determination were carried out with the positive mass factorization method developed for aerosol source characterization by US EPA. Six sources of the urban aerosols were identified: 2 types of soil - loess and sand - biomass burning, sulfate originating form long range transport processes, an unknown source enriched with chlorine and heavy metals originating form traffic. The hourly contribution of some sources for the week 12-19 October is presented on figure 1. In the time trend of soil and heavy metals a periodicity can be observed: the peaks in the morning and in the evening of working days fall together with traffic rush hours. Peaks of biomass burning appear during nights and mornings indicating its origin of domestic heating. Several emission episodes were also detected. Such

  2. Gender Differences among Patients with a Single Depressive Episode

    DEFF Research Database (Denmark)

    Bukh, Jens D; Bock, Camilla; Vinberg, Maj

    2010-01-01

    BACKGROUND: Studies on gender differences in depression have usually included a mixture of patients with first-episode, chronic and recurrent depression. Consequently, the results might be confounded by the history of depression among participants. The present study evaluated gender differences......, personality traits and disorders, stressful life events, family history, and treatment response. RESULTS: Female patients showed a higher level of neuroticism and more residual anxiety symptoms after treatment of the depression. There were no gender differences in severity of depression, psychiatric co...

  3. Guided episodic sampling for capturing and characterizing industrial plumes

    Science.gov (United States)

    Ou-Yang, Chang-Feng; Liao, Wei-Cheng; Chang, Chih-Chung; Hsieh, Hsin-Cheng; Wang, Jia-Lin

    2018-02-01

    An integrated sampling technique, dubbed trigger sampling, was developed to capture characteristic industrial emissions or plumes. In the field experiment, a hydrogen sulfide (H2S) analyzer was used as the triggering instrument at the boundary of a refinery plant due to frequent complaints of foul smell from local residents. Ten episodic samples were captured when the H2S level surpassed the prescribed trigger level of 8.5 ppbv over a three-day period. Three non-episodic (blank) samples and 23 road-side samples were also collected for comparison. All the 36 flask samples were analyzed by gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) for 108 volatile organic compounds (VOCs). The total VOC abundance of the event samples was exceedingly higher than the non-episodic samples by over 80 times in the extreme case. Alkanes were found to be the dominant constituents in the event samples, amounting to over 90% of the total VOC concentrations vs. only 30-40% for the blank and metropolitan samples. In addition, light alkanes in the event samples were highly correlated with the trigger species H2S (R2 = 0.82), implying their common origin. The matrix of chemical composition vs. sample types permitted easy visualization of the dominance of light alkanes for the event samples compared to other types of samples. Principle component analysis (PCA) identified two major contributors to cover 93% of the total variance arising from the 36 samples, further quantifying the distinction of the triggered episodic samples from the contrast samples. The proposed trigger sampling is a coupling of fast-and-slow measurement techniques. In this example, the fast-response H2S analyzer served to "guide" sampling to capture industrial plumes which were then characterized by a relatively slow method of GC-MS/FID for detailed chemical composition representative of the prominent sources.

  4. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan

    Science.gov (United States)

    Chang, Shih-Yu; Lee, Chung-Te; Chou, Charles C.-K.; Liu, Shaw-Chen; Wen, Tian-Xue

    The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas-aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl -, NO 2-, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m -3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.

  5. Manifestation of Aerosol Indirect Effects in Arctic Clouds

    Science.gov (United States)

    Lubin, D.; Vogelmann, A. M.

    2009-12-01

    The first aerosol indirect effect has traditionally been conceived as an enhancement of shortwave cloud reflectance in response to decreased effective droplet size at fixed liquid water path, as cloud nucleating aerosol becomes entrained in the cloud. The high Arctic, with its pervasive low-level stratiform cloud cover and frequent episodes of anthropogenic aerosol (Artic "haze"), has in recent years served as a natural laboratory for research on actual manifestations of aerosol indirect effects. This paper will review the surprising set of developments: (1) the detection of the indirect effect as a source of surface warming, rather than cooling, throughout early spring, (2) a transition to a cooling effect in late spring, corresponding to the beginning of the sea ice melt season, and (3) detection of an indirect effect during summer, outside of the "Arctic haze" season. This paper will also discuss measurements of spectral shortwave irradiance (350-2200 nm) made at Barrow, Alaska, during the U.S. Department of Energy's Indirect and Semi-Direct Aerosol Campaign (ISDAC), which reveal complications in our conception of the indirect effect related to the ice phase in Arctic stratiform clouds.

  6. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    Science.gov (United States)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  7. A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans

    Directory of Open Access Journals (Sweden)

    Anne-Lise eSaive

    2014-06-01

    Full Text Available We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What positioned at three specific locations (Where within a visual context (Which context. During the retrieval test, which occurred 24 to 72 hours after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors.

  8. A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans

    Science.gov (United States)

    Saive, Anne-Lise; Royet, Jean-Pierre; Ravel, Nadine; Thévenet, Marc; Garcia, Samuel; Plailly, Jane

    2014-01-01

    We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What) positioned at three specific locations (Where) within a visual context (Which context). During the retrieval test, which occurred 24–72 h after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors. PMID:24936176

  9. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  10. Using imagination to understand the neural basis of episodic memory

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Maguire, Eleanor A.

    2008-01-01

    Functional MRI (fMRI) studies investigating the neural basis of episodic memory recall, and the related task of thinking about plausible personal future events, have revealed a consistent network of associated brain regions. Surprisingly little, however, is understood about the contributions individual brain areas make to the overall recollective experience. In order to examine this, we employed a novel fMRI paradigm where subjects had to imagine fictitious experiences. In contrast to future thinking, this results in experiences that are not explicitly temporal in nature or as reliant on self-processing. By using previously imagined fictitious experiences as a comparison for episodic memories, we identified the neural basis of a key process engaged in common, namely scene construction, involving the generation, maintenance and visualisation of complex spatial contexts. This was associated with activations in a distributed network, including hippocampus, parahippocampal gyrus, and retrosplenial cortex. Importantly, we disambiguated these common effects from episodic memory-specific responses in anterior medial prefrontal cortex, posterior cingulate cortex and precuneus. These latter regions may support self-schema and familiarity processes, and contribute to the brain's ability to distinguish real from imaginary memories. We conclude that scene construction constitutes a common process underlying episodic memory and imagination of fictitious experiences, and suggest it may partially account for the similar brain networks implicated in navigation, episodic future thinking, and the default mode. We suggest that further brain regions are co-opted into this core network in a task-specific manner to support functions such as episodic memory that may have additional requirements. PMID:18160644

  11. Modeling of meteorology, chemistry and aerosol for the 2017 Utah Winter Fine Particle Study

    Science.gov (United States)

    McKeen, S. A.; Angevine, W. M.; McDonald, B.; Ahmadov, R.; Franchin, A.; Middlebrook, A. M.; Fibiger, D. L.; McDuffie, E. E.; Womack, C.; Brown, S. S.; Moravek, A.; Murphy, J. G.; Trainer, M.

    2017-12-01

    The Utah Winter Fine Particle Study (UWFPS-17) field project took place during January and February of 2017 within the populated region of the Great Salt Lake, Utah. The study focused on understanding the meteorology and chemistry associated with high particulate matter (PM) levels often observed near Salt Lake City during stable wintertime conditions. Detailed composition and meteorological observations were taken from the NOAA Twin-Otter aircraft and several surface sites during the study period, and extremely high aerosol conditions were encountered for two cold-pool episodes occurring in the last 2 weeks of January. A clear understanding of the photochemical and aerosol processes leading to these high PM events is still lacking. Here we present high spatiotemporal resolution simulations of meteorology, PM and chemistry over Utah from January 13 to February 1, 2017 using the WRF/Chem photochemical model. Correctly characterizing the meteorology is difficult due to the complex terrain and shallow inversion layers. We discuss the approach and limitations of the simulated meteorology, and evaluate low-level pollutant mixing using vertical profiles from missed airport approaches by the NOAA Twin-Otter performed routinely during each flight. Full photochemical simulations are calculated using NOx, ammonia and VOC emissions from the U.S. EPA NEI-2011 emissions inventory. Comparisons of the observed vertical column amounts of NOx, ammonia, aerosol nitrate and ammonium with model results shows the inventory estimates for ammonia emissions are low by a factor of four and NOx emissions are low by nearly a factor of two. The partitioning of both nitrate and NH3 between gas and particle phase depends strongly on the NH3 and NOx emissions to the model and calculated NOx to nitrate conversion rates. These rates are underestimated by gas-phase chemistry alone, even though surface snow albedo increases photolysis rates by nearly a factor of two. Several additional conversion

  12. Hypoxic Episodes in Bronchopulmonary Dysplasia.

    Science.gov (United States)

    Martin, Richard J; Di Fiore, Juliann M; Walsh, Michele C

    2015-12-01

    Hypoxic episodes are troublesome components of bronchopulmonary dysplasia (BPD) in preterm infants. Immature respiratory control seems to be the major contributor, superimposed on abnormal respiratory function. Relatively short respiratory pauses may precipitate desaturation and bradycardia. This population is predisposed to pulmonary hypertension; it is likely that pulmonary vasoconstriction also plays a role. The natural history has been well-characterized in the preterm population at risk for BPD; however, the consequences are less clear. Proposed associations of intermittent hypoxia include retinopathy of prematurity, sleep disordered breathing, and neurodevelopmental delay. Future study should address whether these associations are causal relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Analysing recurrent events in exercise science and sports medicine ...

    African Journals Online (AJOL)

    Episodic or recurrent events are a class of data that is frequently reported in health sciences research. The purpose of this paper is to highlight the prevalence of published reports, especially within the South African context, that have used inappropriate statistical techniques when dealing with episodic events and to urge ...

  14. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-11-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3-12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model

  15. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2016-11-01

    Full Text Available The largest 7 Southeast Asian Studies (7SEAS operations period within the Maritime Continent (MC occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC, and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3–12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and

  16. Aerosol Meteorology of Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study - Part 2: Philippine Receptor Observations of Fine-Scale Aerosol Behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; hide

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the MY Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 312h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model

  17. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3$-$12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite

  18. Episodic Memories in Anxiety Disorders: Clinical Implications

    Science.gov (United States)

    Zlomuzica, Armin; Dere, Dorothea; Machulska, Alla; Adolph, Dirk; Dere, Ekrem; Margraf, Jürgen

    2014-01-01

    The aim of this review is to summarize research on the emerging role of episodic memories in the context of anxiety disorders (AD). The available literature on explicit, autobiographical, and episodic memory function in AD including neuroimaging studies is critically discussed. We describe the methodological diversity of episodic memory research in AD and discuss the need for novel tests to measure episodic memory in a clinical setting. We argue that alterations in episodic memory functions might contribute to the etiology of AD. We further explain why future research on the interplay between episodic memory function and emotional disorders as well as its neuroanatomical foundations offers the promise to increase the effectiveness of modern psychological treatments. We conclude that one major task is to develop methods and training programs that might help patients suffering from AD to better understand, interpret, and possibly actively use their episodic memories in a way that would support therapeutic interventions and counteract the occurrence of symptoms. PMID:24795583

  19. Episodic memories in anxiety disorders: Clinical implications

    Directory of Open Access Journals (Sweden)

    Armin eZlomuzica

    2014-04-01

    Full Text Available The aim of this review is to summarize research on the emerging role of episodic memories in the context of anxiety disorders (AD. The available literature on explicit-, autobiographical- and episodic memory function in AD including neuroimaging studies is critically discussed. We describe the methodological diversity of episodic memory research in AD and discuss the need for novel tests to measure episodic memory in a clinical setting. We argue that alterations in episodic memory functions might contribute to the etiology of AD. We further explain why future research on the interplay between episodic memory function and emotional disorders as well as its neuroanatomical foundations offers the promise to increase the effectiveness of modern psychological treatments. We conclude that one major task is to develop methods and training programs that might help patients suffering from AD to better understand, interpret and possibly actively use their episodic memories in a way that would support therapeutic interventions and counteract the occurrence of symptoms.

  20. The aerosols and the greenhouse effect; Aerosoler og klimaeffekten

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Trond; Kirkevaag, Alf; Seland, Oeyvind; Debernard, Jens Boldingh; Kristjansson, Jon Egill; Storelvmo, Trude

    2008-07-01

    The article discussed the aerosol effects on the climatic changes and points out that the climate models do not incorporate these components satisfactorily mostly due to insufficient knowledge of the aerosol pollution sources. The direct and indirect effects of aerosols are mentioned as well as the climate response (tk)

  1. Influence of Intense secondary aerosol formation and long range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: Results from KORUS-AQ

    Science.gov (United States)

    Kim, H.; Zhang, Q.

    2017-12-01

    Non-refractory submicrometer particulate matter (NR-PM1) was measured in the Seoul Metropolitan Area (SMA), Korea, using an HR-ToF-AMS from April 14 to June 15, 2016, as a part of the KORUS-AQ campaign. The average concentration of PM1 was 22.1 µg m-3, which was composed of 44% organics, 20% SO4, 17% NO3, and 12 % NH4. Organics had an average O/C ratio of 0.49 and an average OM/OC ratio of 1.82. Four distinct sources of OA were identified via PMF analysis of the HR-ToF-AMS data: hydrocarbon like OA (HOA), cooking OA (COA),semi-volatile oxygenated OA (SV-OOA) and a low volatility oxygenated OA (LV-OOA). Our results indicate that air quality in SMA during KORUS-AQ was influenced strongly by secondary aerosol formation with SO4, NO3, NH4, SV-OOA, and LV-OOA together accounting for 76% of the PM1 mass. Due to high temperature and elevated ozone concentrations, photochemical reactions during daytime promoted the formation of SV-OOA, LV-OOA and SO4. In addition, aqueous-phase or heterogeneous reactions likely promoted efficient formation of NO3 whereas gas-to-particle partitioning processes appeared to have enhanced nighttime SV-OOA and NO3 formation. From May 20 to May 23, LV-OOA was significantly enhanced and accounted for up to 41% of the PM1 mass. Since this intense LV-OOA formation event was associated with large enhancement of VOCs, high concentration of Ox , strong solar radiation, and stagnant conditions, it appeared to be related to local photochemical formation. We also have investigated the formation and evolution mechanisms of severe haze episodes. Unlike the cases observed in winter when haze episodes were mainly caused by intense local emissions coupled with stagnant meteorological conditions, the spring haze events observed in this study appeared to be attributed by both regional and local factors. For example, episodes of long range transport of plumes were followed by calm meteorology conditions, which promoted the formation and accumulation of local

  2. Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days

    Directory of Open Access Journals (Sweden)

    K. H. Lee

    2010-12-01

    Full Text Available In East Asia, satellite observation is important because aerosols from natural and anthropogenic sources have been recognized as a major source of regional and global air pollution. However, retrieving aerosols properties from satellite observations over land can be difficult because of the surface reflection, complex aerosol composition, and aerosol absorption. In this study, a new aerosol retrieval method called as the Moderate Resolution Imaging Spectroradiometer (MODIS satellite aerosol retrieval (MSTAR was developed and applied to three different aerosol event cases over East Asia. MSTAR uses a separation technique that can distinguish aerosol reflectance from top-of-atmosphere (TOA reflectance. The aerosol optical thickness (AOT was determined by comparing this aerosol reflectance with pre-calculated values. Three case studies show how the methodology identifies discrepancies between measured and calculated values to retrieve more accurate AOT. The comparison between MODIS and the Aerosol Robotic Network (AERONET showed improvement using the suggested methodology with the cluster-based look-up-tables (LUTs (linear slope = 0.94, R = 0.92 than using operational MODIS collection 5 aerosol products (linear slope = 0.78, R = 0.87. In conclusion, the suggested methodology is shown to work well with aerosol models acquired by statistical clustering of the observation data in East Asia.

  3. Remote sensing of aerosols by synergy of caliop and modis

    OpenAIRE

    Kudo Rei; Nishizawa Tomoaki; Higurashi Akiko; Oikawa Eiji

    2018-01-01

    For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obt...

  4. Impact of Transpacific Aerosol on Air Quality over the United States: A Perspective from Aerosol-Cloud-Radiation Interactions

    Science.gov (United States)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2015-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3- month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 micro-g/cu m over the west coast and about 0.5 micro-g/cu m over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (+/-6 micro-g/cu m3) and ozone (+/-12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  5. Stable generator of polydisperse aerosol

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel

    2001-01-01

    Roč. 32, Suppl. 1 (2001), s. S823-S824 ISSN 0021-8502. [European Aerosol Conference 2001. Leipzig, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR IAA4031105 Institutional research plan: CEZ:AV0Z4031919 Keywords : aerosol generator * fine aerosol * polydisperse aerosol Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.605, year: 2001

  6. Fast Multispectral Fireball Analyses and the Relation to Particles’ Aerosolization

    International Nuclear Information System (INIS)

    Sharon, A.; Halevy, I.; Sattinger, D.; Berenstein, Z.; Neuman, R.; Banaim, P.; Pinhas, M.; Yaar, I.

    2014-01-01

    One of the key questions in analyzing the consequent risk following an explosion of radiological dispersal device (RDD) is the final radioactive particles’ size distribution caused by the detonation. Fine, respirable, aerosols behave different when compare it to large, non respirable, aerosols or to inertial particles. While aerosols (both, respirable and non respirable) are trapped inside the detonation cloud moving downwind with the cloud, heavier, inertial particles escape the initial fireball and settled on the ground at a short distances due to hydrodynamic drug. Respirable aerosols are mostly risky when inhaled into the body (internal radiation) while non respirable are risky as an external exposure agents (both on the skin and from a distance). Knowing the size distribution of the radioactive particles will, thus, enable more realistic risk assessment predictions of such events. Fast multispectral radiometry of detonation fireballs can be used as novel tool for the estimation of the RA material final size distribution

  7. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    OpenAIRE

    Niemi , J. V.; Saarikoski , S.; Tervahattu , H.; Mäkelä , T.; Hillamo , R.; Vehkamäki , H.; Sogacheva , L.; Kulmala , M.

    2006-01-01

    Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m−3, backward air mass trajectories from south-east), intermediate period (PM1~5 µg m−3, backtrajectories from north-east) and clean period (PM1~2 µg m−3, backtrajectories from north-west/north). The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were st...

  8. Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ

    Science.gov (United States)

    Kim, Hwajin; Zhang, Qi; Heo, Jongbae

    2018-05-01

    semivolatile species and formation of SV-OOA and nitrate. During a period of 4 days (from 20 to 23 May ), LV-OOA increased dramatically and accounted for up to 41 % of the PM1 mass. This intense LV-OOA formation event was associated with large enhancements of both anthropogenic and biogenic VOCs (e.g., isoprene and toluene), high concentration of Ox ( = O3 + NO2), strong solar radiation, and stagnant conditions, suggesting that it was mainly driven by local photochemical formation. We have also investigated the formation and evolution mechanisms of severe haze episodes. Unlike the winter haze events which were mainly caused by intense local emissions coupled with stagnant meteorological conditions, the spring haze events appeared to be influenced by both regional and local factors. For example, there were episodes of long-range transport of plumes followed by calm meteorology conditions, which promoted the formation and accumulation of local secondary species, leading to high concentrations of PM. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that the concentrations and composition of PM are controlled by various factors, including meteorological conditions, local anthropogenic emissions, and upwind sources.

  9. Long-term Aerosol Lidar Measurements At CNR-IMAA

    Science.gov (United States)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pandolfi, M.; Pappalardo, G.

    2006-12-01

    Actual estimations of the aerosol effect on the radiation budget are affected by a large uncertainties mainly due to the high inhomogeneity and variability of atmospheric aerosol, in terms of concentration, shape, size distribution, refractive index and vertical distribution. Long-term measurements of vertical profiles of aerosol optical properties are needed to reduce these uncertainties. At CNR-IMAA (40° 36'N, 15° 44' E, 760 m above sea level), a lidar system for aerosol study is operative since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network). Until August 2005, it provided independent measurements of aerosol extinction and backscatter at 355 nm and aerosol backscatter profiles at 532 nm. After an upgrade of the system, it provides independent measurements of aerosol extinction and backscatter profiles at 355 and 532 nm, and of aerosol backscatter profiles at 1064 nm and depolarization ratio at 532 nm. For these measurements, lidar ratio at 355 and 532 nm and Angstrom exponent profiles at 355/532 nm are also obtained. Starting on May 2000, systematic measurements are performed three times per week according to the EARLINET schedule and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. A climatological study has been carried out in terms of the seasonal behavior of the PBL height and of the aerosol optical properties calculated inside the PBL itself. In the free troposphere, an high occurrences of Saharan dust intrusions (about 1 day of Saharan dust intrusion every 10 days) has been observed at CNR-IMAA because of the short distance from the Sahara region. During 6 years of observations, very peculiar cases of volcanic aerosol emitted by Etna volcano and aerosol released by large forest fires burning occurred in Alaska and Canada have been observed in the free troposphere at our site. Particular attention is devoted to lidar ratio both for the

  10. Effects of saccadic bilateral eye movements on episodic and semantic autobiographical memory fluency.

    Science.gov (United States)

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance.

  11. Episodic foresight and anxiety: Proximate and ultimate perspectives.

    Science.gov (United States)

    Miloyan, Beyon; Bulley, Adam; Suddendorf, Thomas

    2016-03-01

    In this paper, we examine the relationship between episodic foresight and anxiety from an evolutionary perspective, proposing that together they confer an advantage for modifying present moment decision-making and behaviour in the light of potential future threats to fitness. We review the body of literature on the role of episodic foresight in anxiety, from both proximate and ultimate perspectives. We propose that anxious feelings associated with episodic simulation of possible threat-related future events serve to imbue these simulations with motivational currency. Episodic and semantic details of a future threat may be insufficient for motivating its avoidance, but anxiety associated with a simulation can provoke adaptive threat management. As such, we detail how anxiety triggered by a self-generated, threat-related future simulation prepares the individual to manage that threat (in terms of its likelihood and/or consequences) over greater temporal distances than observed in other animals. We then outline how anxiety subtypes may represent specific mechanisms for predicting and managing particular classes of fitness threats. This approach offers an inroad for understanding the nature of characteristic future thinking patterns in anxiety disorders and serves to illustrate the adaptive function of the mechanism from which clinical anxiety deviates. © 2015 The British Psychological Society.

  12. Dynamic switching between semantic and episodic memory systems.

    Science.gov (United States)

    Kompus, Kristiina; Olsson, Carl-Johan; Larsson, Anne; Nyberg, Lars

    2009-09-01

    It has been suggested that episodic and semantic long-term memory systems interact during retrieval. Here we examined the flexibility of memory retrieval in an associative task taxing memories of different strength, assumed to differentially engage episodic and semantic memory. Healthy volunteers were pre-trained on a set of 36 face-name pairs over a 6-week period. Another set of 36 items was shown only once during the same time period. About 3 months after the training period all items were presented in a randomly intermixed order in an event-related fMRI study of face-name memory. Once presented items differentially activated anterior cingulate cortex and a right prefrontal region that previously have been associated with episodic retrieval mode. High-familiar items were associated with stronger activation of posterior cortices and a left frontal region. These findings fit a model of memory retrieval by which early processes determine, on a trial-by-trial basis, if the task can be solved by the default semantic system. If not, there is a dynamic shift to cognitive control processes that guide retrieval from episodic memory.

  13. Aerosols, clouds and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, S [University of Arizona, Tucson, AZ (USA). Inst. of Atmospheric Physics

    1991-01-01

    Most of the so-called 'CO{sub 2} effect' is, in fact, an 'H{sub 2}O effect' brought into play by the climate modeler's assumption that planetary average temperature dictates water-vapor concentration (following Clapeyron-Clausius). That assumption ignores the removal process, which cloud physicists know to be influenced by the aerosol, since the latter primarily controls cloud droplet number and size. Droplet number and size are also influential for shortwave (solar) energy. The reflectance of many thin to moderately thick clouds changes when nuclei concentrations change and make shortwave albedo susceptible to aerosol influence.

  14. A stratospheric aerosol increase

    Science.gov (United States)

    Rosen, J. M.; Hofmann, D. J.

    1980-01-01

    Large disturbances were noted in the stratospheric aerosol content in the midlatitude Northern Hemisphere commencing about 7 months after the eruption of La Soufriere and less than 1 month after the eruption of Sierra Negra. The aerosol was characterized by a very steep size distribution in the 0.15 to 0.25 micron radius range and contained a volatile component. Measurements near the equator and at the South Pole indicate that the disturbance was widespread. These observations were made before the May 18 eruption of Mt. St. Helens.

  15. Radon dose and aerosols

    International Nuclear Information System (INIS)

    Planinic, J.; Radolic, V.; Faj, Z.; Vukovic, B.

    2000-01-01

    The equilibrium factor value (F) was measured in the NRPB radon chamber and the corresponding track density ratio (r = D/D 0 ) of bare (D) and diffusion (D 0 ) LR-115 nuclear track detectors was determined, as well as the regression equation F(r). Experiments with LR-115 nuclear track detectors and aerosol sources (burning candle and cigarette) were carried out in the Osijek University radon chamber and afterwards an empirical relationship between the equilibrium factor and aerosol concentration was derived. For the purpose of radon dose equivalent assessment, procedures for determining the unattached fraction of radon progeny were introduced using two nuclear track detectors. (author)

  16. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  17. First Observations of SO2 from the Satellite Suomi NPP OMPS: Widespread Air Pollution Events Over China

    Science.gov (United States)

    Yang, Kai; Dickerson, Russell R.; Carn, Simon A.; Ge, Cui; Wang, Jun

    2013-01-01

    Severe smog episodes over China in January 2013 received worldwide attention. This air pollution was distinguished by heavy loadings of fine particulate matter and SO2. To characterize these episodes, we employed the Ozone Mapping and Profiler Suite, Nadir Mapper (OMPS NM), an ultraviolet (UV) spectrometer flying on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft since October 2011. We developed an advanced algorithm to quantify SO2 in the lower troposphere and achieved high-quality retrievals from OMPS NM, which are characterized by high precision, approx. 0.2 Dobson Units (DU; 1 DU = 2.69 x 10(exp 16) molecules/sq cm) for instantaneous field of view SO2 data and low biases (within +/-0.2 DU). Here we report SO2 retrievals and UV aerosol index data for these pollution events. The SO2 columns and the areas covered by high pollutant concentrations are quantified; the results reveal for the first time the full extent (an area of approx. 10(exp 6) sq km containing up to 60 kt of SO2) of these episodes.

  18. Propagation of respiratory aerosols by the vuvuzela.

    Directory of Open Access Journals (Sweden)

    Ka-Man Lai

    Full Text Available Vuvuzelas, the plastic blowing horns used by sports fans, recently achieved international recognition during the FIFA World Cup soccer tournament in South Africa. We hypothesised that vuvuzelas might facilitate the generation and dissemination of respiratory aerosols. To investigate the quantity and size of aerosols emitted when the instrument is played, eight healthy volunteers were asked to blow a vuvuzela. For each individual the concentration of particles in expelled air was measured using a six channel laser particle counter and the duration of blowing and velocity of air leaving the vuvuzela were recorded. To allow comparison with other activities undertaken at sports events each individual was also asked to shout and the measurements were repeated while using a paper cone to confine the exhaled air. Triplicate measurements were taken for each individual. The mean peak particle counts were 658 × 10(3 per litre for the vuvuzela and 3.7 × 10(3 per litre for shouting, representing a mean log(10 difference of 2.20 (95% CI: 2.03,2.36; p 97% of particles captured from either the vuvuzela or shouting were between 0.5 and 5 microns in diameter. Mean peak airflows recorded for the vuvuzela and shouting were 6.1 and 1.8 litres per second respectively. We conclude that plastic blowing horns (vuvuzelas have the capacity to propel extremely large numbers of aerosols into the atmosphere of a size able to penetrate the lower lung. Some respiratory pathogens are spread via contaminated aerosols emitted by infected persons. Further investigation is required to assess the potential of the vuvuzela to contribute to the transmission of aerosol borne diseases. We recommend, as a precautionary measure, that people with respiratory infections should be advised not to blow their vuvuzela in enclosed spaces and where there is a risk of infecting others.

  19. GRIP LANGLEY AEROSOL RESEARCH GROUP EXPERIMENT (LARGE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Langley Aerosol Research Group Experiment (LARGE) measures ultrafine aerosol number density, total and non-volatile aerosol number density, dry aerosol size...

  20. Atypical Neurophysiology Underlying Episodic and Semantic Memory in Adults with Autism Spectrum Disorder

    OpenAIRE

    Massand, E.; Bowler, D. M.

    2015-01-01

    Individuals with autism spectrum disorder (ASD) show atypicalities in episodic memory (Boucher et al. in Psychological Bulletin, 138 (3), 458-496, 2012). We asked participants to recall the colours of a set of studied line drawings (episodic judgement), or to recognize line drawings alone (semantic judgement). Cycowicz et al. (Journal of Experimental Child Psychology, 65, 171-237, 2001) found early (300 ms onset) posterior old-new event-related potential effects for semantic judgements in typ...

  1. Caregiver psychoeducation for first-episode psychosis.

    LENUS (Irish Health Repository)

    McWilliams, Stephen

    2010-01-01

    International best-practice guidelines for the management of first-episode psychosis have recommended the provision of psychoeducation for multifamily groups. While there is ample evidence of their efficacy in multiepisode psychosis, there is a paucity of evidence supporting this approach specifically for first-episode psychosis. We sought to determine whether a six-week caregiver psychoeducation programme geared specifically at first-episode psychosis improves caregiver knowledge and attitudes.

  2. Dust-wind interactions can intensify aerosol pollution over eastern China.

    Science.gov (United States)

    Yang, Yang; Russell, Lynn M; Lou, Sijia; Liao, Hong; Guo, Jianping; Liu, Ying; Singh, Balwinder; Ghan, Steven J

    2017-05-11

    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (±0.05) m s -1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies.

  3. Recovery from episodic acidification delayed by drought and high sea salt deposition

    Directory of Open Access Journals (Sweden)

    H. Laudon

    2008-03-01

    Full Text Available For the prediction of episodic acidification large uncertainties are connected to climatic variability and its effect on drought conditions and sea-salt episodes. In this study data on 342 hydrological episodes in 25 Swedish streams, sampled over 10 years, have been analyzed using a recently developed episode model. The results demonstrate that drought is the most important factor modulating the magnitude of the anthropogenic influence on pH and ANC during episodes. These modulating effects are especially pronounced in southern and central Sweden, where the historically high acid deposition has resulted in significant S pools in catchment soils. The results also suggest that the effects of episodic acidification are becoming less severe in many streams, but this amelioration is less clear in coastal streams subject to high levels of sea-salt deposition. Concurrently with the amelioration of the effects of episodic acidification, regional climate models predict that temperatures will increase in Sweden during the coming decades, accompanied by reductions in summer precipitation and more frequent storms during fall and winter in large areas of the country. If these predictions are realized delays in streams' recovery from episodic acidification events can be expected.

  4. Episodic autobiographical memory is associated with variation in the size of hippocampal subregions.

    Science.gov (United States)

    Palombo, Daniela J; Bacopulos, Agnes; Amaral, Robert S C; Olsen, Rosanna K; Todd, Rebecca M; Anderson, Adam K; Levine, Brian

    2018-02-01

    Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA 2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA 2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA 1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans. © 2017 Wiley Periodicals, Inc.

  5. Diagnosis of Epilepsy and Related Episodic Disorders.

    Science.gov (United States)

    St Louis, Erik K; Cascino, Gregory D

    2016-02-01

    This review identifies the diverse and variable clinical presentations associated with epilepsy that may create challenges in diagnosis and treatment. Epilepsy has recently been redefined as a disease characterized by one or more seizures with a relatively high recurrence risk (ie, 60% or greater likelihood). The implication of this definition for therapy is that antiepileptic drug therapy may be initiated following a first seizure in certain situations.EEG remains the most commonly used study in the evaluation of people with epilepsy. Routine EEG may assist in diagnosis, classification of seizure type(s), identification of treatment, and monitoring the efficacy of therapy. Video-EEG monitoring permits seizure classification, assessment of psychogenic nonepileptic seizures, and evaluation of candidacy for epilepsy surgery. MRI is pivotal in elucidating the etiology of the seizure disorder and in suggesting the localization of seizure onset. This article reviews the new International League Against Epilepsy practical clinical definition for epilepsy and the differential diagnosis of other physiologic paroxysmal spells, including syncope, parasomnias, transient ischemic attacks, and migraine, as well as psychogenic nonepileptic seizures. The initial investigational approaches to new-onset epilepsy are considered, including neuroimaging and neurophysiologic investigations with interictal and ictal video-EEG. Neurologists should maintain a high index of suspicion for epilepsy when children or adults present with a single paroxysmal spell or recurrent episodic events.

  6. Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    Directory of Open Access Journals (Sweden)

    M. L. Pöhlker

    2016-12-01

    Full Text Available Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015. The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation (S  =  0.11 to 1.10 % and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S  =  1.10 % to 172 nm at S  =  0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit  =  0.14 ± 0.03, higher values for the accumulation mode (κAcc  =  0.22 ± 0.05, and an overall mean value of κmean  =  0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.

  7. Negative emotional content disrupts the coherence of episodic memories.

    Science.gov (United States)

    Bisby, James A; Horner, Aidan J; Bush, Daniel; Burgess, Neil

    2018-02-01

    Events are thought to be stored in episodic memory as coherent representations, in which the constituent elements are bound together so that a cue can trigger reexperience of all elements via pattern completion. Negative emotional content can strongly influence memory, but opposing theories predict strengthening or weakening of memory coherence. Across a series of experiments, participants imagined a number of person-location-object events with half of the events including a negative element (e.g., an injured person), and memory was tested across all within event associations. We show that the presence of a negative element reduces memory for associations between event elements, including between neutral elements encoded after a negative element. The presence of a negative element reduces the coherence with which a multimodal event is remembered. Our results, supported by a computational model, suggest that coherent retrieval from neutral events is supported by pattern completion, but that negative content weakens associative encoding which impairs this process. Our findings have important implications for understanding the way traumatic events are encoded and support therapeutic strategies aimed at restoring associations between negative content and its surrounding context. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Egocentric-updating during navigation facilitates episodic memory retrieval.

    Science.gov (United States)

    Gomez, Alice; Rousset, Stéphane; Baciu, Monica

    2009-11-01

    Influential models suggest that spatial processing is essential for episodic memory [O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. London: Oxford University Press]. However, although several types of spatial relations exist, such as allocentric (i.e. object-to-object relations), egocentric (i.e. static object-to-self relations) or egocentric updated on navigation information (i.e. self-to-environment relations in a dynamic way), usually only allocentric representations are described as potentially subserving episodic memory [Nadel, L., & Moscovitch, M. (1998). Hippocampal contributions to cortical plasticity. Neuropharmacology, 37(4-5), 431-439]. This study proposes to confront the allocentric representation hypothesis with an egocentric updated with self-motion representation hypothesis. In the present study, we explored retrieval performance in relation to these two types of spatial processing levels during learning. Episodic remembering has been assessed through Remember responses in a recall and in a recognition task, combined with a "Remember-Know-Guess" paradigm [Gardiner, J. M. (2001). Episodic memory and autonoetic consciousness: A first-person approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1413), 1351-1361] to assess the autonoetic level of responses. Our results show that retrieval performance was significantly higher when encoding was performed in the egocentric-updated condition. Although egocentric updated with self-motion and allocentric representations are not mutually exclusive, these results suggest that egocentric updating processing facilitates remember responses more than allocentric processing. The results are discussed according to Burgess and colleagues' model of episodic memory [Burgess, N., Becker, S., King, J. A., & O'Keefe, J. (2001). Memory for events and their spatial context: models and experiments. Philosophical Transactions of the Royal Society of London. Series B

  9. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    Science.gov (United States)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  10. Dissociative fugue: Recurrent episodes in a young adult

    Directory of Open Access Journals (Sweden)

    Chintan Madhusudan Raval

    2015-01-01

    Full Text Available Dissociative fugue is a rare disorder which has been described as sudden, unexpected, travel away from home or one′s customary place of daily activities, with the inability to recall some or all of one′s past. There is no systematic data existing on it and very few cases reported in the literature. Here we report a case of fugue in a young adult male who travelled 8 times away from his home during last 1΍ year. He has a loss of memory for episodes with patchy recall of few events. Longest duration of fugue episode was of 1-month. The case describes mode of presentation to hospital and treatment given to restore his identity and reunite him in society and family.

  11. Does reactivation trigger episodic memory change? A meta-analysis.

    Science.gov (United States)

    Scully, Iiona D; Napper, Lucy E; Hupbach, Almut

    2017-07-01

    According to the reconsolidation hypothesis, long-term memories return to a plastic state upon their reactivation, leaving them vulnerable to interference effects and requiring re-storage processes or else these memories might be permanently lost. The present study used a meta-analytic approach to critically evaluate the evidence for reactivation-induced changes in human episodic memory. Results indicated that reactivation makes episodic memories susceptible to physiological and behavioral interference. When applied shortly after reactivation, interference manipulations altered the amount of information that could be retrieved from the original learning event. This effect was more pronounced for remote memories and memories of narrative structure. Additionally, new learning following reactivation reliably increased the number of intrusions from new information into the original memory. These findings support a dynamic view of long-term memory by showing that memories can be changed long after they were acquired. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Procrastination, consideration of future consequences, and episodic future thinking.

    Science.gov (United States)

    Rebetez, Marie My Lien; Barsics, Catherine; Rochat, Lucien; D'Argembeau, Arnaud; Van der Linden, Martial

    2016-05-01

    Despite the intrinsic temporal nature of procrastination, little research has examined the link between this form of self-regulatory failure and the consideration of future consequences, and no study has addressed the link between procrastination and episodic future thinking. The aim of the present study was to explore these relationships. Participants were asked to project themselves into possible future events and to rate the amount of sensory-perceptual details and autonoetic consciousness associated with their representations. They were also asked to complete questionnaires that assessed procrastination, the consideration of future consequences, and negative affect. Results showed that both the consideration of future consequences and episodic future thinking were associated with procrastination, and in particular with procrastination-related decision making abilities and procrastination-related motivational dispositions, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Aerosol optical properties and radiative forcing in the high Himalaya based on measurements at the Nepal Climate Observatory-Pyramid site (5079 m a.s.l.

    Directory of Open Access Journals (Sweden)

    S. Marcq

    2010-07-01

    Full Text Available Intense anthropogenic emissions over the Indian sub-continent lead to the formation of layers of particulate pollution that can be transported to the high altitude regions of the Himalaya-Hindu-Kush (HKH. Aerosol particles contain a substantial fraction of strongly absorbing material, including black carbon (BC, organic compounds (OC, and dust all of which can contribute to atmospheric warming, in addition to greenhouse gases. Using a 3-year record of continuous measurements of aerosol optical properties, we present a time series of key climate relevant aerosol properties including the aerosol absorption (σap and scattering (σsp coefficients as well as the single-scattering albedo (w0. Results of this investigation show substantial seasonal variability of these properties, with long range transport during the pre- and post-monsoon seasons and efficient precipitation scavenging of aerosol particles during the monsoon season. The monthly averaged scattering coefficients range from 0.1 Mm−1 (monsoon to 20 Mm−1 while the average absorption coefficients range from 0.5 Mm−1 to 3.5 Mm−1. Both have their maximum values during the pre-monsoon period (April and reach a minimum during Monsoon (July–August. This leads to dry w0 values from 0.86 (pre-monsoon to 0.79 (monsoon seasons. Significant diurnal variability due to valley wind circulation is also reported. Using aerosol optical depth (AOD measurements, we calculated the resulting direct local radiative forcing due to aerosols for selected air mass cases. We found that the presence of absorbing particulate material can locally induce an additional top of the atmosphere (TOA forcing of 10 to 20 W m−2 for the first atmospheric layer (500 m above surface. The TOA positive forcing depends on the presence of snow at the surface, and takes place preferentially during episodes of

  14. Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen

    Science.gov (United States)

    Stachlewska, Iwona S.; Ritter, Christoph; Böckmann, Christine; Engelmann, Ronny

    2018-04-01

    Arctic Haze event was observed on 5-8 April 2015 using simultaneously Near-range Aerosol Raman Lidar of IGFUW and Koldewey Aerosol Raman Lidar of AWI, both based at AWIPEV German-French station in Ny-Ålesund, Spitsbergen. The alterations in particle abundance and altitude of the aerosol load observed on following days of the event is analyzed. The daytime profiles of particle optical properties were obtained for both lidars, and then served as input for microphysical parameters inversion. The results indicate aerosol composition typical for the Arctic Haze. However, in some layers, a likely abundance of aqueous aerosol or black carbon originating in biomass burning over Siberia, changes measurably the Arctic Haze properties.

  15. Biomass burning and its effects on fine aerosol acidity, water content and nitrogen partitioning

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nenes, Athanasios; Paraskevopoulou, Despina; Fourtziou, Luciana; Stavroulas, Iasonas; Liakakou, Eleni; Myriokefalitakis, Stelios; Daskalakis, Nikos; Weber, Rodney; Kanakidou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2017-04-01

    Aerosol acidity is an important property that drives the partitioning of semi-volatile species, the formation of secondary particulate matter and metal and nutrient solubility. Aerosol acidity varies considerably between aerosol types, RH, temperature, the degree of atmospheric chemical aging and may also change during transport. Among aerosol different sources, sea salt and dust have been well studied and their impact on aerosol acidity and water uptake is more or less understood. Biomass burning (BB) on the other hand, despite its significance as a source in a regional and global scale, is much less understood. Currently, there is no practical and accurate enough method, to directly measure the pH of in-situ aerosol. The combination of thermodynamic models, with targeted experimental observations can provide reliable predictions of aerosol particle water and pH, using as input the concentration of gas/aerosol species, temperature (T), and relative humidity (RH). As such an example, ISORROPIA-II (Fountoukis and Nenes, 2007) has been used for the thermodynamic analysis of measurements conducted in downtown Athens during winter 2013, in order to evaluate the effect of BB on aerosol water and acidity. Biomass burning, especially during night time, was found to contribute significantly to the increased organics concentrations, but as well to the BC component associated with wood burning, particulate nitrates, chloride, and potassium. These increased concentrations were found to impact on fine aerosol water, with Winorg having an average concentration of 11±14 μg m-3 and Worg 12±19 μg m-3 with the organic component constituting almost 38% of the total calculated submicron water. When investigating the fine aerosol acidity it was derived that aerosol was generally acidic, with average pH during strong BB influence of 2.8±0.5, value similar to the pH observed for regional aerosol influenced by important biomass burning episodes at the remote background site of

  16. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2006-01-01

    Full Text Available Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%, and inorganic aerosol fraction (40% including nitrate (8%, sulfate (22% and ammonium (10%. The secondary organic aerosols (SOA represent 12% of the total aerosol mass, while the

  17. Examination of aerosol distributions and radiative effects over the Bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model

    Directory of Open Access Journals (Sweden)

    R. Cherian

    2012-02-01

    Full Text Available In this paper we analyse aerosol loading and its direct radiative effects over the Bay of Bengal (BoB and Arabian Sea (AS regions for the Integrated Campaign on Aerosols, gases and Radiation Budget (ICARB undertaken during 2006, using satellite data from the MODerate Resolution Imaging Spectroradiometer (MODIS on board the Terra and Aqua satellites, the Aerosol Index from the Ozone Monitoring Instrument (OMI on board the Aura satellite, and the European-Community Hamburg (ECHAM5.5 general circulation model extended by Hamburg Aerosol Module (HAM. By statistically comparing with large-scale satellite data sets, we firstly show that the aerosol properties measured during the ship-based ICARB campaign and simulated by the model are representative for the BoB and AS regions and the pre-monsoon season. In a second step, the modelled aerosol distributions were evaluated by a comparison with the measurements from the ship-based sunphotometer, and the satellite retrievals during ICARB. It is found that the model broadly reproduces the observed spatial and temporal variability in aerosol optical depth (AOD over BoB and AS regions. However, AOD was systematically underestimated during high-pollution episodes, especially in the BoB leg. We show that this underprediction of AOD is mostly because of the deficiencies in the coarse mode, where the model shows that dust is the dominant component. The analysis of dust AOD along with the OMI Aerosol Index indicate that missing dust transport that results from too low dust emission fluxes over the Thar Desert region in the model caused this deficiency. Thirdly, we analysed the spatio-temporal variability of AOD comparing the ship-based observations to the large-scale satellite observations and simulations. It was found that most of the variability along the track was from geographical patterns, with a minor influence by single events. Aerosol fields were homogeneous enough to yield a good statistical agreement

  18. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2008-06-01

    Full Text Available A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E, a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3 during the initial days, which, however, increased (0.86 as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 μm particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 μmaerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  19. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Misra, A. [Physical Research Lab., Ahmedabad (India); Jayaraman, A. [National Atmospheric Research Lab., Gadanki (India)

    2008-07-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13 N, 75.70 E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 {mu}m) particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 {mu}maerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours. (orig.)

  20. American Association for Aerosol Research (AAAR) `95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  1. Hydroxymethane sulfonate as a possible explanation for observed high levels of particulate sulfur during severe winter haze episodes in Beijing, China.

    Science.gov (United States)

    Moch, J.; Jacob, D.; Mickley, L. J.; Cheng, Y.; Li, M.; Munger, J. W.; Wang, Y.

    2017-12-01

    Observed PM2.5 during severe winter haze in Beijing, China, may reach levels as high as 880 μg m-3, with sulfur compounds contributing significantly to PM2.5 composition. Such sulfur has been traditionally assumed to be sulfate, even though models fail to generate such large sulfate enhancements under cold and hazy conditions. We show that particulate sulfur in wintertime Beijing possibly occurs as an S(IV)-HCHO adduct, hydroxymethane sulfonate (HMS), formed by reaction of aqueous-phase HCHO and S(IV) in cloud droplets. We use a 1-D chemistry model extending from the surface through the boundary layer to examine the potential role of HMS during the Beijing haze events of December 2011 and January 2013. Observed and assimilated meteorological fields including cloud liquid water were applied to the model, and we test the sensitivity of HMS formation to cloud pH and ambient SO2 and HCHO. Surface observations from the two haze events show excess ammonium in the aerosol, indicating cloud pH may be relatively high. Model results show that once cloud pH exceeds 4.5, HMS can accumulate rapidly, reaching a few hundred μg m-3 in a few hours. The timing of HMS formation is controlled by the presence of cloud liquid water, with eddy driven diffusion bringing HMS to the surface. The magnitude of HMS peaks is limited by the supply of HCHO. HMS episodes in the model end gradually over 1-3 days as fresh air is entrained into the boundary layer; in observations these episodes typically end when increasing wind speeds destabilize the boundary layer and disperses pollution. We find that consideration of HMS as a source of particulate sulfur significantly improves model match with observations. For example, assuming cloud pH of 5 and average surface SO2 and HCHO levels of 50 ppb and 5.5 ppb, we calculate mean HMS as 43.8 μg m-3 in January 2013, within 7 μg m-3 of observed particulate sulfur. Our 1-D model also captures the timing and magnitude of peak particulate sulfur in January

  2. [Size distributions of aerosol during the Spring Festival in Nanjing].

    Science.gov (United States)

    Wang, Hong-Lei; Zhu, Bin; Shen, Li-Juan; Liu, Xiao-Hui; Zhang, Ze-Feng; Yang, Yang

    2014-02-01

    In order to investigate the firework burning impacts on spectrum distribution of atmospheric aerosol during the Spring Festival in Nanjing, number concentration and mass concentration of aerosol as well as mass concentration of gas pollutants were measured during January 19-31, 2012. The results indicated that the concentration of aerosol between 10-20 nm decreased, aerosol concentration in the range of 50-100 nm, 100-200 nm and 200-500 nm increased during the firework burning period comparing to those during the non-burning period. However, there was no obvious variation for aerosol between 20-50 nm and 0.5-10 microm. The spectrum distribution of number concentration was bimodal during the non-burning period and unimodal during the burning period, with the peak value shifting to large diameter section. The mass concentration presented a bimodal distribution, the value of PM2.5/PM10 and PM10/PM10 increased by 10% during the burning period. The firework burning events had big influence on the density of aerosol between 1.0-2.1 microm.

  3. Variability of aerosol vertical distribution in the Sahel

    Directory of Open Access Journals (Sweden)

    O. Cavalieri

    2010-12-01

    continent by the monsoon flow.

    During summer months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2 and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude. In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites.

    Summer is in fact characterized by extensive and fast convective phenomena.

    Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity.

    The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland.

  4. Chemical Components, Variation, and Source Identification of PM1 during the Heavy Air Pollution Episodes in Beijing in December 2016

    Science.gov (United States)

    Zhang, Yangmei; Wang, Yaqiang; Zhang, Xiaoye; Shen, Xiaojing; Sun, Junying; Wu, Lingyan; Zhang, Zhouxiang; Che, Haochi

    2018-02-01

    Air pollution is a current global concern. The heavy air pollution episodes (HPEs) in Beijing in December 2016 severely influenced visibility and public health. This study aims to survey the chemical compositions, sources, and formation processes of the HPEs. An aerodyne quadruple aerosol mass spectrometer (Q-AMS) was utilized to measure the non-refractory PM1 (NR-PM1) mass concentration and size distributions of the main chemical components including organics, sulfate, nitrate, ammonium, and chloride in situ during 15-23 December 2016. The NR-PM1 mass concentration was found to increase from 6 to 188 μg m-3 within 5 days. During the most serious polluted episode, the PM1 mass concentration was about 2.6 times that during the first pollution stage and even 40 times that of the clean days. The formation rates of PM2.5 in the five pollution stages were 26, 22, 22, 32, and 67 μg m-3 h-1, respectively. Organics and nitrate occupied the largest proportion in the polluted episodes, whereas organics and sulfate dominated the submicron aerosol during the clean days. The size distribution of organics is always broader than those of other species, especially in the clean episodes. The peak sizes of the interested species grew gradually during different HPEs. Aqueous reaction might be important in forming sulfate and chloride, and nitrate was formed via oxidization and condensation processes. PMF (positive matrix factorization) analysis on AMS mass spectra was employed to separate the organics into different subtypes. Two types of secondary organic aerosol with different degrees of oxidation consisted of 43% of total organics. By contrast, primary organics from cooking, coal combustion, and traffic emissions comprised 57% of the organic aerosols during the HPEs.

  5. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations

    Science.gov (United States)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong

    2018-06-01

    Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation

  6. Low hygroscopicity of ambient fresh carbonaceous aerosols from pyrotechnics smoke

    Science.gov (United States)

    Carrico, Christian M.; Gomez, Samantha L.; Dubey, Manvendra K.; Aiken, Allison C.

    2018-04-01

    Pyrotechnics (fireworks) displays are common for many cultures worldwide, with Independence Day celebrations occurring annually on July 4th as the most notable in the U.S. Given an episodic nature, fireworks aerosol properties are poorly characterized. Here we report observations of optical properties of fresh smoke emissions from Independence Day fireworks smoke sampled at Los Alamos National Laboratory, New Mexico U.S.A. on 4-5 July 2016. Aerosol optical properties were measured with a photoacoustic extinctiometer (PAX, DMT, Inc., Model 870 nm) at low RH laboratory testing with ground-level sparklers showed that pyrotechnics smoke can generate a strong hygroscopic response, however. As confirmed with chemical analysis, the chemistry of the fireworks was key to defining the hygroscopic response. Sparkler smoke was dominated by salt species such as hygroscopic potassium chloride while it lacked the black powder explosives in aerial fireworks that contribute organic and elemental carbon to its non-hygroscopic smoke.

  7. The role of ammonia in the chemistry of atmospheric aerosols

    International Nuclear Information System (INIS)

    Brosset, C.

    1979-01-01

    Data is presented on the concentrations of hydrogen and ammonium ions in aerosol samples taken under various meteorological conditions in different areas of Sweden, and implications for the atmospheric chemistry of aerosols are discussed. Particle compositions at coastal and inland stations were determined during situations when particle concentrations increased as much as a hundred times due to atmospheric transport from Europe or air movements from the east or west. Analysis of particle compositions during both types of particle episodes reveals variations in the H(+)/NH4(+) ratio which indicate that particles present over agricultural areas take up ammonia from the ground and release it over a forest district with acid lakes. The ratio is found to be dependent on the atmospheric partial pressure of ammonia at equilibrium, with the flow of ammonia to or from the ground and transport conditions also likely to influence the ratio

  8. Towards a functional organization of episodic memory in the medial temporal lobe.

    Science.gov (United States)

    Eichenbaum, Howard; Sauvage, Magdalena; Fortin, Norbert; Komorowski, Robert; Lipton, Paul

    2012-08-01

    Here we describe a model of medial temporal lobe organization in which parallel "what" and "where" processing streams converge within the hippocampus to represent events in the spatio-temporal context in which they occurred; this circuitry also mediates the retrieval of context from event cues and vice versa, which are prototypes of episodic recall. Evidence from studies in animals are reviewed in support of this model, including experiments that distinguish characteristics of episodic recollection from familiarity, neuropsychological and recording studies that have identified a key role for the hippocampus in recollection and in associating events with the context in which they occurred, and distinct roles for parahippocampal region areas in separate "what" and "where" information processing that contributes to recollective and episodic memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Autobiographical memory and episodic future thinking after moderate to severe traumatic brain injury

    DEFF Research Database (Denmark)

    Rasmussen, Katrine Willemoes; Berntsen, Dorthe

    2014-01-01

    Converging evidence suggests that autobiographical memory and episodic future thinking share a common neurocognitive basis. Although previous research has shown that traumatic brain injury (TBI) can impair the ability to remember the personal past, episodic future thinking has not previously been...... asked to report a series of events that had happened to them in the past and a series of events that might happen to them in the future. Transcriptions were scored according to a reliable system for categorizing internal (episodic) and external (semantic) information. For each event described......, participants also completed two modified Autobiographical Memory Questionnaire items to assess self-reported phenomenal qualities associated with remembering and imagining. In addition, TBI patients underwent neuropsychological assessment. Results revealed that TBI patients recalled/imagined proportionally...

  10. Remote sensing of aerosols by synergy of caliop and modis

    Directory of Open Access Journals (Sweden)

    Kudo Rei

    2018-01-01

    Full Text Available For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.

  11. Remote sensing of aerosols by synergy of caliop and modis

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Higurashi, Akiko; Oikawa, Eiji

    2018-04-01

    For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.

  12. Episodic Future Thinking in Semantic Dementia: A Cognitive and fMRI Study

    Science.gov (United States)

    Viard, Armelle; Piolino, Pascale; Belliard, Serge; de La Sayette, Vincent; Desgranges, Béatrice; Eustache, Francis

    2014-01-01

    Semantic dementia (SD) is characterized by gradual loss of semantic memory. While episodic autobiographical memory seems relatively preserved, behavioral studies suggest that episodic future thinking is impaired. We used fMRI to measure brain activity in four SD patients (JPL, EP, LL, EG) while they envisioned future events and remembered personal past events. Twelve healthy elders served as controls. Episodic quality, emotion, mental imagery and level of consciousness (via remember/know judgements) were checked at debriefing. We analyzed the future compared to the past for each patient. All patients presented lateral temporal atrophy, but varied in terms of frontal and anterior hippocampal atrophy. Patient JPL presented atrophy in bilateral superior medial frontal gyri and left anterior hippocampus and was unable to engage in episodic future thinking, despite hyperactivations in frontal and occipital regions. Patient EP presented no atrophy in the anterior hippocampus, but atrophy in bilateral superior medial frontal gyrus and had difficulties to engage in episodic future thinking. Patient LL presented atrophy in left anterior hippocampus, but hyperactivated its right counterpart for future compared to past thinking, permitting her to project efficiently in the future in an episodic way. Patient EG presented no atrophy in the superior medial frontal gyri or anterior hippocampi and was able to engage in episodic future thinking. Altogether, patients' future projections differed depending on the severity and localization of their atrophy. The functional integrity of bilateral superior medial frontal gyri and anterior hippocampus appear crucial for episodic future thinking: atrophy of both structures strongly impairs future projection, while integrity of these structures or hyperactivation of residual tissue normalizes episodic future projection. PMID:25333997

  13. Episodic future thinking in semantic dementia: a cognitive and FMRI study.

    Directory of Open Access Journals (Sweden)

    Armelle Viard

    Full Text Available Semantic dementia (SD is characterized by gradual loss of semantic memory. While episodic autobiographical memory seems relatively preserved, behavioral studies suggest that episodic future thinking is impaired. We used fMRI to measure brain activity in four SD patients (JPL, EP, LL, EG while they envisioned future events and remembered personal past events. Twelve healthy elders served as controls. Episodic quality, emotion, mental imagery and level of consciousness (via remember/know judgements were checked at debriefing. We analyzed the future compared to the past for each patient. All patients presented lateral temporal atrophy, but varied in terms of frontal and anterior hippocampal atrophy. Patient JPL presented atrophy in bilateral superior medial frontal gyri and left anterior hippocampus and was unable to engage in episodic future thinking, despite hyperactivations in frontal and occipital regions. Patient EP presented no atrophy in the anterior hippocampus, but atrophy in bilateral superior medial frontal gyrus and had difficulties to engage in episodic future thinking. Patient LL presented atrophy in left anterior hippocampus, but hyperactivated its right counterpart for future compared to past thinking, permitting her to project efficiently in the future in an episodic way. Patient EG presented no atrophy in the superior medial frontal gyri or anterior hippocampi and was able to engage in episodic future thinking. Altogether, patients' future projections differed depending on the severity and localization of their atrophy. The functional integrity of bilateral superior medial frontal gyri and anterior hippocampus appear crucial for episodic future thinking: atrophy of both structures strongly impairs future projection, while integrity of these structures or hyperactivation of residual tissue normalizes episodic future projection.

  14. Intrusions in Episodic Memory: Reconsolidation or Interference?

    Science.gov (United States)

    Klingmüller, Angela; Caplan, Jeremy B.; Sommer, Tobias

    2017-01-01

    It would be profoundly important if reconsolidation research in animals and other memory domains generalized to human episodic memory. A 3-d-list-discrimination procedure, based on free recall of objects, with a contextual reminder cue (the testing room), has been thought to demonstrate reconsolidation of human episodic memory (as noted in a…

  15. Recall from Semantic and Episodic Memory.

    Science.gov (United States)

    Gillund, Gary; Perlmutter, Marion

    Although research in episodic recall memory, comparing younger and older adults, favors the younger adults, findings in semantic memory research are less consistent. To examine age differences in semantic and episodic memory recall, 72 young adults (mean age, 20.8) and 72 older adults (mean age 71) completed three memory tests under varied…

  16. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available Solar ultraviolet radiation (UVR) levels are affected by airborne aerosols, such as particles and gases released during biomass burning events. Two large-scale fires in South Africa were identified and selected based on their proximity to solar UVR...

  17. Climatological aspects of aerosol optical properties in Northern Greece

    Director