WorldWideScience

Sample records for epigenetics

  1. Transgenic Epigenetics: Using Transgenic Organisms to Examine Epigenetic Phenomena

    Directory of Open Access Journals (Sweden)

    Lori A. McEachern

    2012-01-01

    Full Text Available Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.

  2. The Epigenetic Cytocrin Pathway to the Nucleus. Epigenetic Factors, Epigenetic Mediators, and Epigenetic Traits. A Biochemist Perspective

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    2017-11-01

    Full Text Available A single word, Epigenetics, underlies one exciting subject in today's Science, with different sides and with interactions with philosophy. The apparent trivial description includes everything in between genotype and phenotype that occurs for a given unique DNA sequence/genome. This Perspective article first presents an historical overview and the reasons for the lack of consensus in the field, which derives from different interpretations of the diverse operative definitions of Epigenetics. In an attempt to reconcile the different views, we propose a novel concept, the “cytocrin system.” Secondly, the article questions the inheritability requirement and makes emphasis in the epigenetic mechanisms, known or to be discovered, that provide hope for combating human diseases. Hopes in cancer are at present in deep need of deciphering mechanisms to support ad hoc therapeutic approaches. Better perspectives are for diseases of the central nervous system, in particular to combat neurodegeneration and/or cognitive deficits in Alzheimer's disease. Neurons are post-mitotic cells and, therefore, epigenetic targets to prevent neurodegeneration should operate in non-dividing diseased cells. Accordingly, epigenetic-based human therapy may not need to count much on transmissible potential.

  3. Landscaping plant epigenetics.

    Science.gov (United States)

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  4. Epigenetics, eh! A meeting summary of the Canadian Conference on Epigenetics.

    Science.gov (United States)

    Rodenhiser, David I; Bérubé, Nathalie G; Mann, Mellissa R W

    2011-10-01

    In May 2011, the Canadian Conference on Epigenetics: Epigenetics Eh! was held in London, Canada. The objectives of this conference were to showcase the breadth of epigenetic research on environment and health across Canada and to provide the catalyst to develop collaborative Canadian epigenetic research opportunities, similar to existing international epigenetic initiatives in the US and Europe. With ten platform sessions and two sessions with over 100 poster presentations, this conference featured cutting-edge epigenetic research, presented by Canadian and international principal investigators and their trainees in the field of epigenetics and chromatin dynamics. An EpigenART competition included ten artists, creating a unique opportunity for artists and scientists to interact and explore their individual interpretations of this scientific discipline. The conference provided a unique venue for a significant cross-section of Canadian epigenetic researchers from diverse disciplines to meet, interact, collaborate and strategize at the national level.

  5. Epigenetics primer: why the clinician should care about epigenetics.

    Science.gov (United States)

    Duarte, Julio D

    2013-12-01

    Epigenetics describes heritable alterations of gene expression that do not involve DNA sequence variation and are changeable throughout an organism's lifetime. Not only can epigenetic status influence drug response, but it can also be modulated by drugs. In this review, the three major epigenetic mechanisms are described: covalent DNA modification, histone protein modification, and regulation by noncoding RNA. Further, this review describes how drug therapy can influence, and be influenced by, these mechanisms. Drugs with epigenetic mechanisms are already in use, with many more likely to be approved within the next few years. As the understanding of epigenetic processes improves, so will the ability to use these data in the clinic to improve patient care. © 2013 Pharmacotherapy Publications, Inc.

  6. Epigenetic rejuvenation.

    Science.gov (United States)

    Manukyan, Maria; Singh, Prim B

    2012-05-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  7. Epigenetics and Evolution: Transposons and the Stochastic Epigenetic Modification Model

    Directory of Open Access Journals (Sweden)

    Sergio Branciamore

    2015-04-01

    Full Text Available In addition to genetic variation, epigenetic variation and transposons can greatly affect the evolutionary fitnesses landscape and gene expression. Previously we proposed a mathematical treatment of a general epigenetic variation model that we called Stochastic Epigenetic Modification (SEM model. In this study we follow up with a special case, the Transposon Silencing Model (TSM, with, once again, emphasis on quantitative treatment. We have investigated the evolutionary effects of epigenetic changes due to transposon (T insertions; in particular, we have considered a typical gene locus A and postulated that (i the expression level of gene A depends on the epigenetic state (active or inactive of a cis- located transposon element T, (ii stochastic variability in the epigenetic silencing of T occurs only in a short window of opportunity during development, (iii the epigenetic state is then stable during further development, and (iv the epigenetic memory is fully reset at each generation. We develop the model using two complementary approaches: a standard analytical population genetics framework (di usion equations and Monte-Carlo simulations. Both approaches led to similar estimates for the probability of fixation and time of fixation of locus TA with initial frequency P in a randomly mating diploid population of effective size Ne. We have ascertained the e ect that ρ, the probability of transposon Modification during the developmental window, has on the population (species. One of our principal conclusions is that as ρ increases, the pattern of fixation of the combined TA locus goes from "neutral" to "dominant" to "over-dominant". We observe that, under realistic values of ρ, epigenetic Modifications can provide an e cient mechanism for more rapid fixation of transposons and cis-located gene alleles. The results obtained suggest that epigenetic silencing, even if strictly transient (being reset at each generation, can still have signi cant

  8. Obesity: epigenetic aspects.

    Science.gov (United States)

    Kaushik, Prashant; Anderson, James T

    2016-06-01

    Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.

  9. Epigenetic memory in mammals

    Directory of Open Access Journals (Sweden)

    Zoe eMigicovsky

    2011-06-01

    Full Text Available Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications and changes in small RNAs, a process called epigenetic memory. During a mammal’s lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ cells and the second occurs following fertilization. These processes may be both passive and active. In order for epigenetic inheritance to occur the epigenetic modifications must be able to escape reprogramming. There are several examples supporting this non-Mendelian mechanism of inheritance including the prepacking of early developmental genes in histones instead of protamines in sperm, genomic imprinting via methylation marks, the retention of CenH3 in mammalian sperm and the inheritance of piwi-associated interfering RNAs. The ability of mammals to pass on epigenetic information to their progeny provides clear evidence that inheritance is not restricted to DNA sequence and epigenetics plays a key role in producing viable offspring.

  10. Epigenetics: ambiguities and implications.

    Science.gov (United States)

    Stotz, Karola; Griffiths, Paul

    2016-12-01

    Everyone has heard of 'epigenetics', but the term means different things to different researchers. Four important contemporary meanings are outlined in this paper. Epigenetics in its various senses has implications for development, heredity, and evolution, and also for medicine. Concerning development, it cements the vision of a reactive genome strongly coupled to its environment. Concerning heredity, both narrowly epigenetic and broader 'exogenetic' systems of inheritance play important roles in the construction of phenotypes. A thoroughly epigenetic model of development and evolution was Waddington's aim when he introduced the term 'epigenetics' in the 1940s, but it has taken the modern development of molecular epigenetics to realize this aim. In the final sections of the paper we briefly outline some further implications of epigenetics for medicine and for the nature/nurture debate.

  11. Epigenetic considerations in aquaculture

    Directory of Open Access Journals (Sweden)

    Mackenzie R. Gavery

    2017-12-01

    Full Text Available Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.

  12. Epigenetics and cancer

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development. This is e......Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development....... This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic...

  13. [Nutritional epigenetics and epigenetic effects of human breast milk].

    Science.gov (United States)

    Lukoyanova, O L; Borovik, T E

    The article provides an overview of the current literature on nutritional epigenetics. There are currently actively studied hypothesis that nutrition especially in early life or in critical periods of the development, may have a role in modulating gene expression, and, therefore, have later effects on health in adults. Nutritional epigenetics concerns knowledge about the possible effects of nutrients on gene expression. Human breast milk is well-known for its ability in preventing necrotizing enterocolitis, infectious diseases, and also non-communicable diseases, such as obesity and related disorders. This paper discusses about presumed epigenetic effects of human breast milk and some its components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are stillunclear.

  14. Nutritional epigenetics

    Science.gov (United States)

    This chapter is intended to provide a timely overview of the current state of research at the intersection of nutrition and epigenetics. I begin by describing epigenetics and molecular mechanisms of eigenetic regulation, then highlight four classes of nutritional exposures currently being investiga...

  15. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  16. Epigenetics: beyond genes

    CSIR Research Space (South Africa)

    Fossey, A

    2009-06-01

    Full Text Available in forestry breeding. Keywords Gene regulation; chromatin; histone code hyporthesis; RNA silencing; post transcriptional gene silencing; forestry. Introduction to epigenetic phenomena Most living organisms share a vast amount of genetic information... (Rapp and Wendel, 2005). Epigenetic phenomena pervade all aspects of cell proliferation and plant development and are often in conflict with Mendelian models of genetics (Grant-Downton and Dickinson, 2005). A key element in many epigenetic effects...

  17. Epigenetics and obesity

    OpenAIRE

    Stöger, Reinhard

    2008-01-01

    Common DNA sequence variants inadequately explain variability in fat mass among individuals. Abnormal body weights are characteristic of specific imprinted-gene disorders. However, the relevance of imprinted genes to our understanding of obesity among the general population is uncertain. Hitherto unidentified imprinted genes and epigenetic mosaicism are two of the challenges for this emerging field of epigenetics. Subtle epigenetic differences in imprinted genes and gene networks are likely t...

  18. Epigenetics and Bruxism: Possible Role of Epigenetics in the Etiology of Bruxism.

    Science.gov (United States)

    Čalić, Aleksandra; Peterlin, Borut

    2015-01-01

    Bruxism is defined as a repetitive jaw muscle activity characterized by clenching or grinding of the teeth and/or bracing or thrusting of the mandible. There are two distinct circadian phenotypes for bruxism: sleep bruxism (SB) and awake bruxism, which are considered separate entities due to the putative difference in their etiology and phenotypic variance. The detailed etiology of bruxism so far remains unknown. Recent theories suggest the central regulation of certain pathophysiological or psychological pathways. Current proposed causes of bruxism appear to be a combination of genetic and environmental (G×E) factors, with epigenetics providing a robust framework for investigating G×E interactions, and their involvement in bruxism makes it a suitable candidate for epigenetic research. Both types of bruxism are associated with certain epigenetically determined disorders, such as Rett syndrome (RTT), Prader-Willi syndrome (PWS), and Angelman syndrome (AS), and these associations suggest a mechanistic link between epigenetic deregulation and bruxism. The present article reviews the possible role of epigenetic mechanisms in the etiology of both types of bruxism based on the epigenetic pathways involved in the pathophysiology of RTT, PWS, and AS, and on other epigenetic disruptions associated with risk factors for bruxism, including sleep disorders, altered stress response, and psychopathology.

  19. Epigenetics in natural animal populations.

    Science.gov (United States)

    Hu, J; Barrett, R D H

    2017-09-01

    Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally-mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. Epigenetics: What it is about?

    Directory of Open Access Journals (Sweden)

    Saade E.

    2014-01-01

    Full Text Available Epigenetics has captured the attention of scientists in the past decades, yet its scope has been continuously changing. In this paper, we give an overview on how and why its definition has evolved and suggest several clarification on the concepts used in this field. Waddington coined the term in 1942 to describe genes interaction with each other and with their environment and insisted on dissociating these events from development. Then, Holliday and others argued that epigenetic phenomena are characterized by their heritability. However, differentiated cells can maintain their phenotypes for decades without undergoing division, which points out the limitation of the «heritability» criterion for a particular phenomenon to qualify as epigenetic. «Epigenetic stability» encompasses traits preservation in both dividing and non dividing cells. Likewise, the use of the term «epigenetic regulation» has been misleading as it overlaps with «regulation of gene expression», whereas «epigenetic information» clearly distinguishes epigenetic from genetic phenomena. Consequently, how could epigenetic information be transmitted and perpetuated? The term «epigenetic templating» has been proposed to refer to a general mechanism of perpetuation of epigenetic information that is based on the preferential activity of enzymes that deposit a particular epigenetic mark on macromolecular complexes already containing the same mark. Another issue that we address is the role of epigenetic information. Not only it is important in allowing alternative interpretations of genetic information, but it appears to be important in protecting the genome, as can be illustrated by bacterial endonucleases that targets non methylated DNA – i. e. foreign DNA – and not the endogenous methylated DNA.

  1. Epigenetic modifications in prostate cancer.

    Science.gov (United States)

    Ngollo, Marjolaine; Dagdemir, Aslihan; Karsli-Ceppioglu, Seher; Judes, Gaelle; Pajon, Amaury; Penault-Llorca, Frederique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique J

    2014-01-01

    Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.

  2. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  3. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  4. Scrutinizing the epigenetics revolution

    Science.gov (United States)

    Meloni, Maurizio; Testa, Giuseppe

    2014-01-01

    Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as ‘epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID

  5. Epigenetics of reproductive infertility.

    Science.gov (United States)

    Das, Laxmidhar; Parbin, Sabnam; Pradhan, Nibedita; Kausar, Chahat; Patra, Samir K

    2017-06-01

    Infertility is a complex pathophysiological condition. It may caused by specific or multiple physical and physiological factors, including abnormalities in homeostasis, hormonal imbalances and genetic alterations. In recent times various studies implicated that, aberrant epigenetic mechanisms are associated with reproductive infertility. There might be transgenerational effects associated with epigenetic modifications of gametes and studies suggest the importance of alterations in epigenetic modification at early and late stages of gametogenesis. To determine the causes of infertility it is necessary to understand the altered epigenetic modifications of associated gene and mechanisms involved therein. This review is devoted to elucidate the recent mechanistic advances in regulation of genes by epigenetic modification and emphasizes their possible role related to reproductive infertility. It includes environmental, nutritional, hormonal and physiological factors and influence of internal structural architecture of chromatin nucleosomes affecting DNA and histone modifications in both male and female gametes, early embryogenesis and offspring. Finally, we would like to emphasize that research on human infertility by gene knock out of epigenetic modifiers genes must be relied upon animal models.

  6. Epigenetic regulation in dental pulp inflammation

    Science.gov (United States)

    Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L

    2016-01-01

    Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577

  7. Epigenetics: a new frontier in dentistry.

    Science.gov (United States)

    Williams, S D; Hughes, T E; Adler, C J; Brook, A H; Townsend, G C

    2014-06-01

    In 2007, only four years after the completion of the Human Genome Project, the journal Science announced that epigenetics was the 'breakthrough of the year'. Time magazine placed it second in the top 10 discoveries of 2009. While our genetic code (i.e. our DNA) contains all of the information to produce the elements we require to function, our epigenetic code determines when and where genes in the genetic code are expressed. Without the epigenetic code, the genetic code is like an orchestra without a conductor. Although there is now a substantial amount of published research on epigenetics in medicine and biology, epigenetics in dental research is in its infancy. However, epigenetics promises to become increasingly relevant to dentistry because of the role it plays in gene expression during development and subsequently potentially influencing oral disease susceptibility. This paper provides a review of the field of epigenetics aimed specifically at oral health professionals. It defines epigenetics, addresses the underlying concepts and provides details about specific epigenetic molecular mechanisms. Further, we discuss some of the key areas where epigenetics is implicated, and review the literature on epigenetics research in dentistry, including its relevance to clinical disciplines. This review considers some implications of epigenetics for the future of dental practice, including a 'personalized medicine' approach to the management of common oral diseases. © 2014 Australian Dental Association.

  8. Is Glioblastoma an Epigenetic Malignancy?

    International Nuclear Information System (INIS)

    Maleszewska, Marta; Kaminska, Bozena

    2013-01-01

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens

  9. Epigenetics in women's health care.

    Science.gov (United States)

    Pozharny, Yevgeniya; Lambertini, Luca; Clunie, Garfield; Ferrara, Lauren; Lee, Men-Jean

    2010-01-01

    Epigenetics refers to structural modifications to genes that do not change the nucleotide sequence itself but instead control and regulate gene expression. DNA methylation, histone modification, and RNA regulation are some of the mechanisms involved in epigenetic modification. Epigenetic changes are believed to be a result of changes in an organism's environment that result in fixed and permanent changes in most differentiated cells. Some environmental changes that have been linked to epigenetic changes include starvation, folic acid, and various chemical exposures. There are periods in an organism's life cycle in which the organism is particularly susceptible to epigenetic influences; these include fertilization, gametogenesis, and early embryo development. These are also windows of opportunity for interventions during the reproductive life cycle of women to improve maternal-child health. New data suggest that epigenetic influences might be involved in the regulation of fetal development and the pathophysiology of adult diseases such as cancer, diabetes, obesity, and neurodevelopmental disorders. Various epigenetic mechanisms may also be involved in the pathogenesis of preeclampsia and intrauterine growth restriction. Additionally, environmental exposures are being held responsible for causing epigenetic changes that lead to a disease process. Exposure to heavy metals, bioflavonoids, and endocrine disruptors, such as bisphenol A and phthalates, has been shown to affect the epigenetic memory of an organism. Their long-term effects are unclear at this point, but many ongoing studies are attempting to elucidate the pathophysiological effects of such gene-environment interactions. (c) 2010 Mount Sinai School of Medicine.

  10. Epigenetic Regulation of Adipokines

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2017-08-01

    Full Text Available Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.

  11. Epigenetics and obesity.

    Science.gov (United States)

    Campión, Javier; Milagro, Fermin; Martínez, J Alfredo

    2010-01-01

    The etiology of obesity is multifactorial, involving complex interactions among the genetic makeup, neuroendocrine status, fetal programming, and different unhealthy environmental factors, such as sedentarism or inadequate dietary habits. Among the different mechanisms causing obesity, epigenetics, defined as the study of heritable changes in gene expression that occur without a change in the DNA sequence, has emerged as a very important determinant. Experimental evidence concerning dietary factors influencing obesity development through epigenetic mechanisms has been described. Thus, identification of those individuals who present with changes in DNA methylation profiles, certain histone modifications, or other epigenetically related processes could help to predict their susceptibility to gain or lose weight. Indeed, research concerning epigenetic mechanisms affecting weight homeostasis may play a role in the prevention of excessive fat deposition, the prediction of the most appropriate weight reduction plan, and the implementation of newer therapeutic approaches. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Epigenetics of autism spectrum disorders.

    Science.gov (United States)

    Schanen, N Carolyn

    2006-10-15

    The autism spectrum disorders (ASD) comprise a complex group of behaviorally related disorders that are primarily genetic in origin. Involvement of epigenetic regulatory mechanisms in the pathogenesis of ASD has been suggested by the occurrence of ASD in patients with disorders arising from epigenetic mutations (fragile X syndrome) or that involve key epigenetic regulatory factors (Rett syndrome). Moreover, the most common recurrent cytogenetic abnormalities in ASD involve maternally derived duplications of the imprinted domain on chromosome 15q11-13. Thus, parent of origin effects on sharing and linkage to imprinted regions on chromosomes 15q and 7q suggest that these regions warrant specific examination from an epigenetic perspective, particularly because epigenetic modifications do not change the primary genomic sequence, allowing risk epialleles to evade detection using standard screening strategies. This review examines the potential role of epigenetic factors in the etiology of ASD.

  13. Epigenetics in Cancer: A Hematological Perspective.

    Directory of Open Access Journals (Sweden)

    Maximilian Stahl

    2016-10-01

    Full Text Available For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.

  14. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  15. Epigenetic regulation in obesity.

    Science.gov (United States)

    Drummond, Elaine M; Gibney, Eileen R

    2013-07-01

    Research suggests that 65% of variation in obesity is genetic. However, much of the known genetic associations have little known function and their effect size small, thus the gene-environment interaction, including epigenetic influences on gene expression, is suggested to be an important factor in the susceptibilty to obesity. This review will explore the potential of epigenetic markers to influence expression of genes associated with obesity. Epigenetic changes in utero are known to have direct implications on the phenotype of the offspring. More recently work has focused on how such epigenetic changes continue to regulate risk of obesity from infancy through to adulthood. Work has shown that, for example, hypomethylation of the MC4 gene causes an increase in expression, and has a direct impact on appetite and intake, and thus influences risk of obesity. Similar influences are also seen in other aspects of obesity including inflammation and adiposity. Maternal diet during foetal development has many epigenetic implications, which affect the offspring's risk factors for obesity during childhood and adulthood, and even in subsequent generations. Genes associated with risk of obesity, are susceptible to epigenetic mutations, which have subsequent effects on disease mechanisms, such as appetite and impaired glucose and insulin tolerance.

  16. The political implications of epigenetics.

    Science.gov (United States)

    Robison, Shea K

    2016-01-01

    Epigenetics, which is just beginning to attract public attention and policy discussion, challenges conventional understanding of gene-environment interaction and intergenerational inheritance and perhaps much more besides. Does epigenetics challenge modern political ideologies? I analyzed the narratives of obesity and epigenetics recently published in the more liberal New York Times and the more conservative Wall Street Journal. For the years 2010 through 2014, 50 articles on obesity and 29 articles on epigenetics were identified, and elements in their causal narratives were quantitatively analyzed using a well described narrative policy framework. The narratives on obesity aligned with the two newspapers' reputed ideologies. However, the narratives on epigenetics aligned with neither ideology but freely mixed liberal and conservative elements. This small study may serve as a starting point for broader studies of epigenetics as it comes to affect political ideologies and, in turn, public policies. The narrative mix reported here could yet prove vulnerable to ideological capture, or, more optimistically, could portend the emergence of a "third-way" narrative using epigenetics to question atomistic individualism and allowing for less divisiveness in public-health domains such as obesity.

  17. The danger of epigenetics misconceptions (epigenetics and stuff…).

    Science.gov (United States)

    Georgel, Philippe T

    2015-12-01

    Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the "Epigenetics" building). The fusion and convergence of these complementary fields is now often simply referred to as "Epigenetics". During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short "opinion" piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned.

  18. Epigenetics of Autism Spectrum Disorder.

    Science.gov (United States)

    Siu, Michelle T; Weksberg, Rosanna

    2017-01-01

    Autism spectrum disorder (ASD), one of the most common childhood neurodevelopmental disorders (NDDs), is diagnosed in 1 of every 68 children. ASD is incredibly heterogeneous both clinically and aetiologically. The etiopathogenesis of ASD is known to be complex, including genetic, environmental and epigenetic factors. Normal epigenetic marks modifiable by both genetics and environmental exposures can result in epigenetic alterations that disrupt the regulation of gene expression, negatively impacting biological pathways important for brain development. In this chapter we aim to summarize some of the important literature that supports a role for epigenetics in the underlying molecular mechanism of ASD. We provide evidence from work in genetics, from environmental exposures and finally from more recent studies aimed at directly determining ASD-specific epigenetic patterns, focusing mainly on DNA methylation (DNAm). Finally, we briefly discuss some of the implications of current research on potential epigenetic targets for therapeutics and novel avenues for future work.

  19. Conference Scene: epigenetics eh! The first formal meeting of the Canadian epigenetics community.

    Science.gov (United States)

    Underhill, Alan; Hendzel, Michael J

    2011-08-01

    In recognition of Canada's longstanding interest in epigenetics - and a particular linguistic interjection - the inaugural 'Epigenetics, Eh!' conference was held between 4-7 May 2011 in London, Ontario. The meeting struck an excellent balance between Canadian and international leaders in epigenetic research while also providing a venue to showcase up-and-coming talent. Almost without exception, presentations touched on the wide-ranging and severe consequences of epigenetic dysfunction, as well as current and emerging therapeutic opportunities. While gaining a deeper understanding of how DNA and histone modifications, together with multiple classes of ncRNAs, act to functionalize our genome, participants were also provided with a glimpse of the astounding complexity of chromatin structure, challenging existing dogma.

  20. Epigenetic Alterations in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Johannes eGräff

    2015-12-01

    Full Text Available Alzheimer’s disease (AD is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  1. Epigenetic Alterations in Alzheimer's Disease.

    Science.gov (United States)

    Sanchez-Mut, Jose V; Gräff, Johannes

    2015-01-01

    Alzheimer's disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  2. Epigenetic Determinism in Science and Society.

    Science.gov (United States)

    Waggoner, Miranda R; Uller, Tobias

    2015-04-03

    The epigenetic "revolution" in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism - or the belief that epigenetic mechanisms determine the expression of human traits and behaviors - matters for understandings of the influence of biology and society on population health.

  3. Engrampigenetics: Epigenetics of engram memory cells.

    Science.gov (United States)

    Ripoli, Cristian

    2017-05-15

    For long time, the epidemiology of late-onset sporadic Alzheimer's disease (AD) risk factors has centered on adult life-style. Recent studies have, instead, focused on the role of early life experiences in progression of such disease especially in the context of prenatal and postnatal life. Although no single unfavorable environmental event has been shown to be neither necessary nor sufficient for AD development, it is possible that the sum of several environmentally induced effects, over time, contribute to its pathophysiology through epigenetic mechanisms. Indeed, epigenetic changes are influenced by environmental factors and have been proposed to play a role in multifactorial pathologies such as AD. At the same time, recent findings suggest that epigenetic mechanisms are one method that neurons use to translate transient stimuli into stable memories. Thus, the characteristics of epigenetics being a critical link between the environment and genes and playing a crucial role in memory formation make candidate epigenetic mechanisms a natural substrate for AD research. Indeed, independent groups have reported several epigenetically dysregulated genes in AD models; however, the role of epigenetic mechanisms in AD has remained elusive owing to contradictory results. Here, I propose that restricting the analysis of epigenetic changes specifically to subpopulations of neurons (namely, engram memory cells) might be helpful in understanding the role of the epigenetic process in the memory-related specific epigenetic code and might constitute a new template for therapeutic interventions against AD. Copyright © 2016. Published by Elsevier B.V.

  4. Bioinformatics Tools for Genome-Wide Epigenetic Research.

    Science.gov (United States)

    Angarica, Vladimir Espinosa; Del Sol, Antonio

    2017-01-01

    Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of "computational epigenetics," including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how "computational epigenetics" has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.

  5. [Epigenetics of schizophrenia: a review].

    Science.gov (United States)

    Rivollier, F; Lotersztajn, L; Chaumette, B; Krebs, M-O; Kebir, O

    2014-10-01

    Schizophrenia is a frequent and disabling disease associated with heterogeneous psychiatric phenotypes. It emerges during childhood, adolescence or young adulthood and has dramatic consequences for the affected individuals, causing considerable familial and social burden, as well as increasing health expenses. Although some progress has been made in the understanding of their physiopathology, many questions remain unsolved, and the disease is still poorly understood. The prevailing hypothesis regarding psychotic disorders proposes that a combination of genetic and/or environmental factors, during critical periods of brain development increases the risk for these illnesses. Epigenetic regulations, such as DNA methylation, can mediate gene x environment interactions at the level of the genome and may provide a potential substrate to explain the variability in symptom severity and family heritability. Initially, epigenetics was used to design mitotic and meiotic changes in gene transcription that could not be attributed to genetic mutations. It referred later to changes in the epigenome not transmitted through the germline. Thus, epigenetics refers to a wide range of molecular mechanisms including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. These mechanisms alter the way the transcriptional factors bind the DNA, modulating its expression. Prenatal and postnatal environmental factors may affect these epigenetics factors, having responsability in long-term DNA transcription, and influencing the development of psychiatric disorders. The object of this review is to present the state of knowledge in epigenetics of schizophrenia, outlining the most recent findings in the matter. We did so using Pubmed, researching words such as 'epigenetics', 'epigenetic', 'schizophrenia', 'psychosis', 'psychiatric'. This review summarizes evidences mostly for two epigenetic mechanisms: DNA methylation and post

  6. Epigenetics in breast and prostate cancer.

    Science.gov (United States)

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.

  7. Epigenetics and lifestyle.

    Science.gov (United States)

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2011-06-01

    The concept of 'lifestyle' includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and miRNA expression. It has been identified that several lifestyle factors such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress and working on night shifts might modify epigenetic patterns. Most of the studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. This article reviews current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms.

  8. Environment, epigenetics and reproduction.

    Science.gov (United States)

    Skinner, Michael K

    2017-07-01

    A conference summary of the third biannual Kenya Africa Conference "Environment, Epigenetics and Reproduction" is provided. A partial special Environmental Epigenetics issue containing a number of papers in Volume 3, Issue 3 and 4 are discussed.

  9. Epigenetics of Obesity.

    Science.gov (United States)

    Lopomo, A; Burgio, E; Migliore, L

    2016-01-01

    Obesity is a metabolic disease, which is becoming an epidemic health problem: it has been recently defined in terms of Global Pandemic. Over the years, the approaches through family, twins and adoption studies led to the identification of some causal genes in monogenic forms of obesity but the origins of the pandemic of obesity cannot be considered essentially due to genetic factors, because human genome is not likely to change in just a few years. Epigenetic studies have offered in recent years valuable tools for the understanding of the worldwide spread of the pandemic of obesity. The involvement of epigenetic modifications-DNA methylation, histone tails, and miRNAs modifications-in the development of obesity is more and more evident. In the epigenetic literature, there are evidences that the entire embryo-fetal and perinatal period of development plays a key role in the programming of all human organs and tissues. Therefore, the molecular mechanisms involved in the epigenetic programming require a new and general pathogenic paradigm, the Developmental Origins of Health and Disease theory, to explain the current epidemiological transition, that is, the worldwide increase of chronic, degenerative, and inflammatory diseases such as obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. Obesity and its related complications are more and more associated with environmental pollutants (obesogens), gut microbiota modifications and unbalanced food intake, which can induce, through epigenetic mechanisms, weight gain, and altered metabolic consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Introduction to the Special Section on Epigenetics.

    Science.gov (United States)

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  11. Epigenetic Therapy in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Stephen V Liu

    2013-05-01

    Full Text Available Epigenetic dysregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  12. Eating Disorders and Epigenetics.

    Science.gov (United States)

    Thaler, Lea; Steiger, Howard

    2017-01-01

    Eating disorders (EDs) are characterized by intense preoccupation with shape and weight and maladaptive eating practices. The complex of symptoms that characterize EDs often arise through the activation of latent genetic potentials by environmental exposures, and epigenetic mechanisms are believed to link environmental exposures to gene expression. This chapter provides an overview of genetic factors acting in the etiology of EDs. It then provides a background to the hypothesis that epigenetic mechanisms link stresses such as obstetric complications and childhood abuse as well as effects of malnutrition to eating disorders (EDs). The chapter then summarizes the emerging body of literature on epigenetics and EDs-mainly studies on DNA methylation in samples of anorexia and bulimia. The available evidence base suggests that an epigenetically informed perspective contributes in valuable ways to the understanding of why people develop EDs.

  13. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  14. Epigenetic Modifications: Therapeutic Potential in Cancer

    Directory of Open Access Journals (Sweden)

    Manisha Sachan

    2015-08-01

    Full Text Available Epigenetic modifications and alterations in chromatin structure and function contribute to the cumulative changes observed as normal cells undergo malignant transformation. These modifications and enzymes (DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases related to them have been deeply studied to develop new drugs, epigenome-targeted therapies and new diagnostic tools. Epigenetic modifiers aim to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. Four of them (azacitidine, decitabine, vorinostat and romidepsin are approved by the U.S. Food and Drug Administration. This article provides an overview about the known functional roles of epigenetic enzymes in cancer development.

  15. EPA Workshop on Epigenetics and Cumulative Risk ...

    Science.gov (United States)

    Agenda Download the Workshop Agenda (PDF) The workshop included presentations and discussions by scientific experts pertaining to three topics (i.e., epigenetic changes associated with diverse stressors, key science considerations in understanding epigenetic changes, and practical application of epigenetic tools to address cumulative risks from environmental stressors), to address several questions under each topic, and included an opportunity for attendees to participate in break-out groups, provide comments and ask questions. Workshop Goals The workshop seeks to examine the opportunity for use of aggregate epigenetic change as an indicator in cumulative risk assessment for populations exposed to multiple stressors that affect epigenetic status. Epigenetic changes are specific molecular changes around DNA that alter expression of genes. Epigenetic changes include DNA methylation, formation of histone adducts, and changes in micro RNAs. Research today indicates that epigenetic changes are involved in many chronic diseases (cancer, cardiovascular disease, obesity, diabetes, mental health disorders, and asthma). Research has also linked a wide range of stressors including pollution and social factors with occurrence of epigenetic alterations. Epigenetic changes have the potential to reflect impacts of risk factors across multiple stages of life. Only recently receiving attention is the nexus between the factors of cumulative exposure to environmental

  16. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  17. Epigenetics, autism spectrum, and neurodevelopmental disorders.

    Science.gov (United States)

    Rangasamy, Sampathkumar; D'Mello, Santosh R; Narayanan, Vinodh

    2013-10-01

    Epigenetic marks are modifications of DNA and histones. They are considered to be permanent within a single cell during development, and are heritable across cell division. Programming of neurons through epigenetic mechanisms is believed to be critical in neural development. Disruption or alteration in this process causes an array of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Recent studies have provided evidence for an altered epigenetic landscape in ASDs and demonstrated the central role of epigenetic mechanisms in their pathogenesis. Many of the genes linked to the ASDs encode proteins that are involved in transcriptional regulation and chromatin remodeling. In this review we highlight selected neurodevelopmental disorders in which epigenetic dysregulation plays an important role. These include Rett syndrome, fragile X syndrome, Prader-Willi syndrome, Angelman syndrome, and Kabuki syndrome. For each of these disorders, we discuss how advances in our understanding of epigenetic mechanisms may lead to novel therapeutic approaches.

  18. EpiGeNet: A Graph Database of Interdependencies Between Genetic and Epigenetic Events in Colorectal Cancer.

    Science.gov (United States)

    Balaur, Irina; Saqi, Mansoor; Barat, Ana; Lysenko, Artem; Mazein, Alexander; Rawlings, Christopher J; Ruskin, Heather J; Auffray, Charles

    2017-10-01

    The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.

  19. The multifaceted interplay between lipids and epigenetics.

    Science.gov (United States)

    Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T

    2016-06-01

    The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.

  20. Epigenetic Modifications and Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru

    2013-01-01

    Full Text Available Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2 and matrix metalloproteinase-9 (MMP-9 are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1, and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.

  1. Epigenetic Mechanisms and Therapeutic Perspectives for Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Kunio Miyake

    2012-04-01

    Full Text Available The number of children with mild neurodevelopmental disorders, such as autism, has been recently increasing in advanced countries. This increase is probably caused by environmental factors rather than genetic factors, because it is unlikely that genetic mutation rates suddenly increased within a short period. Epigenetics is a mechanism that regulates gene expression, depending not on the underlying DNA sequence but on the chemical modifications of DNA and histone proteins. Because mental stress can alter the epigenetic status in neuronal cells, environmental factors may alter brain function through epigenetic changes. However, one advantage of epigenetic changes is their reversibility. Therefore, diseases due to abnormal epigenetic regulation are theoretically treatable. In fact, several drugs for treating mental diseases are known to have restoring effects on aberrant epigenetic statuses, and a novel therapeutic strategy targeting gene has been developed. In this review, we discuss epigenetic mechanisms of congenital and acquired neurodevelopmental disorders, drugs with epigenetic effects, novel therapeutic strategies for epigenetic diseases, and future perspectives in epigenetic medicine.

  2. Behavioral epigenetics.

    Science.gov (United States)

    Moore, David S

    2017-01-01

    Why do we grow up to have the traits we do? Most 20th century scientists answered this question by referring only to our genes and our environments. But recent discoveries in the emerging field of behavioral epigenetics have revealed factors at the interface between genes and environments that also play crucial roles in development. These factors affect how genes work; scientists now know that what matters as much as which genes you have (and what environments you encounter) is how your genes are affected by their contexts. The discovery that what our genes do depends in part on our experiences has shed light on how Nature and Nurture interact at the molecular level inside of our bodies. Data emerging from the world's behavioral epigenetics laboratories support the idea that a person's genes alone cannot determine if, for example, he or she will end up shy, suffering from cardiovascular disease, or extremely smart. Among the environmental factors that can influence genetic activity are parenting styles, diets, and social statuses. In addition to influencing how doctors treat diseases, discoveries about behavioral epigenetics are likely to alter how biologists think about evolution, because some epigenetic effects of experience appear to be transmissible from generation to generation. This domain of research will likely change how we think about the origins of human nature. WIREs Syst Biol Med 2017, 9:e1333. doi: 10.1002/wsbm.1333 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  3. Epigenetics and depression: return of the repressed.

    Science.gov (United States)

    Dalton, Victoria S; Kolshus, Erik; McLoughlin, Declan M

    2014-02-01

    Epigenetics has recently emerged as a potential mechanism by which adverse environmental stimuli can result in persistent changes in gene expression. Epigenetic mechanisms function alongside the DNA sequence to modulate gene expression and ultimately influence protein production. The current review provides an introduction and overview of epigenetics with a particular focus on preclinical and clinical studies relevant to major depressive disorder (MDD). PubMed and Web of Science databases were interrogated from January 1995 up to December 2012 using combinations of search terms, including "epigenetic", "microRNA" and "DNA methylation" cross referenced with "depression", "early life stress" and "antidepressant". There is an association between adverse environmental stimuli, such as early life stress, and epigenetic modification of gene expression. Epigenetic changes have been reported in humans with MDD and may serve as biomarkers to improve diagnosis. Antidepressant treatments appear to reverse or initiate compensatory epigenetic alterations that may be relevant to their mechanism of action. As a narrative review, the current report was interpretive and qualitative in nature. Epigenetic modification of gene expression provides a mechanism for understanding the link between long-term effects of adverse life events and the changes in gene expression that are associated with depression. Although still a developing field, in the future, epigenetic modifications of gene expression may provide novel biomarkers to predict future susceptibility and/or onset of MDD, improve diagnosis, and aid in the development of epigenetics-based therapies for depression. © 2013 Published by Elsevier B.V.

  4. Epigenetic architecture and miRNA: reciprocal regulators

    DEFF Research Database (Denmark)

    Wiklund, Erik D; Kjems, Jørgen; Clark, Susan J

    2010-01-01

    Deregulation of epigenetic and microRNA (miRNA) pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected......RNAs) are considered especially promising in clinical applications, and their biogenesis and function is a subject of active research. In this review, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer....

  5. Epigenetic Alterations in Alzheimer’s Disease

    Science.gov (United States)

    Sanchez-Mut, Jose V.; Gräff, Johannes

    2015-01-01

    Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD. PMID:26734709

  6. Anxiety and Epigenetics.

    Science.gov (United States)

    Bartlett, Andrew A; Singh, Rumani; Hunter, Richard G

    2017-01-01

    Anxiety disorders are highly prevalent psychiatric disorders often comorbid with depression and substance abuse. Twin studies have shown that anxiety disorders are moderately heritable. Yet, genome-wide association studies (GWASs) have failed to identify gene(s) significantly associated with diagnosis suggesting a strong role for environmental factors and the epigenome. A number of anxiety disorder subtypes are considered "stress related." A large focus of research has been on the epigenetic and anxiety-like behavioral consequences of stress. Animal models of anxiety-related disorders have provided strong evidence for the role of stress on the epigenetic control of the hypothalamic-pituitary-adrenal (HPA) axis and of stress-responsive brain regions. Neuroepigenetics may continue to explain individual variation in susceptibility to environmental perturbations and consequently anxious behavior. Behavioral and pharmacological interventions aimed at targeting epigenetic marks associated with anxiety may prove fruitful in developing treatments.

  7. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  8. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps.

    Science.gov (United States)

    O'Dea, Rose E; Noble, Daniel W A; Johnson, Sheri L; Hesselson, Daniel; Nakagawa, Shinichi

    2016-01-01

    Rapid environmental change is predicted to compromise population survival, and the resulting strong selective pressure can erode genetic variation, making evolutionary rescue unlikely. Non-genetic inheritance may provide a solution to this problem and help explain the current lack of fit between purely genetic evolutionary models and empirical data. We hypothesize that epigenetic modifications can facilitate evolutionary rescue through 'epigenetic buffering'. By facilitating the inheritance of novel phenotypic variants that are generated by environmental change-a strategy we call 'heritable bet hedging'-epigenetic modifications could maintain and increase the evolutionary potential of a population. This process may facilitate genetic adaptation by preserving existing genetic variation, releasing cryptic genetic variation and/or facilitating mutations in functional loci. Although we show that examples of non-genetic inheritance are often maladaptive in the short term, accounting for phenotypic variance and non-adaptive plasticity may reveal important evolutionary implications over longer time scales. We also discuss the possibility that maladaptive epigenetic responses may be due to 'epigenetic traps', whereby evolutionarily novel factors (e.g. endocrine disruptors) hack into the existing epigenetic machinery. We stress that more ecologically relevant work on transgenerational epigenetic inheritance is required. Researchers conducting studies on transgenerational environmental effects should report measures of phenotypic variance, so that the possibility of both bet hedging and heritable bet hedging can be assessed. Future empirical and theoretical work is required to assess the relative importance of genetic and epigenetic variation, and their interaction, for evolutionary rescue.

  9. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Peromyscus as a Mammalian Epigenetic Model

    Directory of Open Access Journals (Sweden)

    Kimberly R. Shorter

    2012-01-01

    Full Text Available Deer mice (Peromyscus offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.

  11. Transgenerational epigenetics: Inheritance of global cytosine methylation and methylation-related epigenetic markers in the shrub Lavandula latifolia.

    Science.gov (United States)

    Herrera, Carlos M; Alonso, Conchita; Medrano, Mónica; Pérez, Ricardo; Bazaga, Pilar

    2018-04-01

    The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants. © 2018 Botanical Society of America.

  12. Epigenetics and assisted reproductive technologies

    DEFF Research Database (Denmark)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv Bente

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been...

  13. Epigenetics of obesity: beyond the genome sequence.

    Science.gov (United States)

    Cordero, Paul; Li, Jiawei; Oben, Jude A

    2015-07-01

    After the study of the gene code as a trigger for obesity, epigenetic code has appeared as a novel tool in the diagnosis, prognosis and treatment of obesity, and its related comorbidities. This review summarizes the status of the epigenetic field associated with obesity, and the current epigenetic-based approaches for obesity treatment. Thanks to technical advances, novel and key obesity-associated polymorphisms have been described by genome-wide association studies, but there are limitations with their predictive power. Epigenetics is also studied for disease association, which involves decoding of the genome information, transcriptional status and later phenotypes. Obesity could be induced during adult life by feeding and other environmental factors, and there is a strong association between obesity features and specific epigenetic patterns. These patterns could be established during early life stages, and programme the risk of obesity and its comorbidities during adult life. Furthermore, recent studies have shown that DNA methylation profile could be applied as biomarkers of diet-induced weight loss treatment. High-throughput technologies, recently implemented for commercial genetic test panels, could soon lead to the creation of epigenetic test panels for obesity. Nonetheless, epigenetics is a modifiable risk factor, and different dietary patterns or environmental insights during distinct stages of life could lead to rewriting of the epigenetic profile.

  14. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Epigenetics in autism and other neurodevelopmental diseases.

    Science.gov (United States)

    Miyake, Kunio; Hirasawa, Takae; Koide, Tsuyoshi; Kubota, Takeo

    2012-01-01

    Autism was previously thought to be caused by environmental factors. However, genetic factors are now considered to be more contributory to the pathogenesis of autism, based on the recent findings of mutations in the genes which encode synaptic molecules associated with the communication between neurons. Epigenetic is a mechanism that controls gene expression without changing DNA sequence but by changing chromosomal histone modifications and its abnormality is associated with several neurodevelopmental diseases. Since epigenetic modifications are known to be affected by environmental factors such as nutrition, drugs and mental stress, autistic diseases are not only caused by congenital genetic defects, but may also be caused by environmental factors via epigenetic mechanism. In this chapter, we introduce autistic diseases caused by epigenetic failures and discuss epigenetic changes by environmental factors and discuss new treatments for neurodevelopmental diseases based on the recent epigenetic findings.

  16. Epigenetics: general characteristics and implications for oral health

    Directory of Open Access Journals (Sweden)

    Ji-Yun Seo

    2015-02-01

    Full Text Available Genetic information such as DNA sequences has been limited to fully explain mechanisms of gene regulation and disease process. Epigenetic mechanisms, which include DNA methylation, histone modification and non-coding RNAs, can regulate gene expression and affect progression of disease. Although studies focused on epigenetics are being actively investigated in the field of medicine and biology, epigenetics in dental research is at the early stages. However, studies on epigenetics in dentistry deserve attention because epigenetic mechanisms play important roles in gene expression during tooth development and may affect oral diseases. In addition, understanding of epigenetic alteration is important for developing new therapeutic methods. This review article aims to outline the general features of epigenetic mechanisms and describe its future implications in the field of dentistry.

  17. Epigenetics and colorectal cancer pathogenesis.

    Science.gov (United States)

    Bardhan, Kankana; Liu, Kebin

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  18. Epigenetics and Colorectal Cancer Pathogenesis

    International Nuclear Information System (INIS)

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy

  19. Epigenetics and Colorectal Cancer Pathogenesis

    Directory of Open Access Journals (Sweden)

    Kebin Liu

    2013-06-01

    Full Text Available Colorectal cancer (CRC develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  20. Epigenetics and Colorectal Cancer Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Kankana; Liu, Kebin, E-mail: Kliu@gru.edu [Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912 (United States)

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  1. The epigenetic landscape of alcoholism.

    Science.gov (United States)

    Krishnan, Harish R; Sakharkar, Amul J; Teppen, Tara L; Berkel, Tiffani D M; Pandey, Subhash C

    2014-01-01

    Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism. © 2014 Elsevier Inc. All rights reserved.

  2. Epigenetics: the language of the cell?

    Science.gov (United States)

    Huang, Biao; Jiang, Cizhong; Zhang, Rongxin

    2014-02-01

    Epigenetics is one of the most rapidly developing fields of biological research. Breakthroughs in several technologies have enabled the possibility of genome-wide epigenetic research, for example the mapping of human genome-wide DNA methylation. In addition, with the development of various high-throughput and high-resolution sequencing technologies, a large number of functional noncoding RNAs have been identified. Massive studies indicated that these functional ncRNA also play an important role in epigenetics. In this review, we gain inspiration from the recent proposal of the ceRNAs hypothesis. This hypothesis proposes that miRNAs act as a language of communication. Accordingly, we further deduce that all of epigenetics may functionally acquire such a unique language characteristic. In summary, various epigenetic markers may not only participate in regulating cellular processes, but they may also act as the intracellular 'language' of communication and are involved in extensive information exchanges within cell.

  3. Epigenetic inheritance in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.

    2016-01-01

    Epigenetic variation, such as changes in DNA methylations, regulatory small RNAs (sRNAs) and chromatin modifications can be induced by environmental stress. There is increasing information that such induced epigenetic modifications can be transmitted to offspring, potentially mediating adaptive

  4. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  5. Environmental chemical exposures and human epigenetics

    Science.gov (United States)

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  6. Epigenetic Dysregulation in Laryngeal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Thian-Sze Wong

    2012-01-01

    Full Text Available Laryngeal carcinoma is a common head and neck cancer with poor prognosis. Patients with laryngeal carcinoma usually present late leading to the reduced treatment efficacy and high rate of recurrence. Despite the advance in the use of molecular markers for monitoring human cancers in the past decades, there are still no reliable markers for use to screen laryngeal carcinoma and follow the patients after treatment. Epigenetics emerged as an important field in understanding the biology of the human malignancies. Epigenetic alterations refer to the dysregulation of gene, which do not involve the alterations of the DNA sequence. Major epigenetic changes including methylation imbalance, histone modification, and small RNA dysregulation could play a role in the development of human malignancies. Global epigenetic change is now regarded as a molecular signature of cancer. The characteristics and behavior of a cancer could be predicted based on the specific epigenetic pattern. We here provide a review on the understanding of epigenetic dysregulation in laryngeal carcinoma. Further knowledge on the initiation and progression of laryngeal carcinoma at epigenetic level could promote the translation of the knowledge to clinical use.

  7. Evolutionary significance of epigenetic variation

    NARCIS (Netherlands)

    Richards, C.L.; Verhoeven, K.J.F.; Bossdorf, O.; Wendel, J.F.; Greilhuber, J.; Dolezel, J.; Leitch, I.J.

    2012-01-01

    Several chapters in this volume demonstrate how epigenetic work at the molecular level over the last few decades has revolutionized our understanding of genome function and developmental biology. However, epigenetic processes not only further our understanding of variation and regulation at the

  8. Conference scene: Select Biosciences Epigenetics Europe 2010.

    Science.gov (United States)

    Razvi, Enal S

    2011-02-01

    The field of epigenetics is now on a geometric rise, driven in a large part by the realization that modifiers of chromatin are key regulators of biological processes in vivo. The three major classes of epigenetic effectors are DNA methylation, histone post-translational modifications (such as acetylation, methylation or phosphorylation) and small noncoding RNAs (most notably microRNAs). In this article, I report from Select Biosciences Epigenetics Europe 2010 industry conference held on 14-15 September 2010 at The Burlington Hotel, Dublin, Ireland. This industry conference was extremely well attended with a global pool of delegates representing the academic research community, biotechnology companies and pharmaceutical companies, as well as the technology/tool developers. This conference represented the current state of the epigenetics community with cancer/oncology as a key driver. In fact, it has been estimated that approximately 45% of epigenetic researchers today identify cancer/oncology as their main area of focus vis-à-vis their epigenetic research efforts.

  9. Using Epigenetic Therapy to Overcome Chemotherapy Resistance.

    Science.gov (United States)

    Strauss, Julius; Figg, William D

    2016-01-01

    It has been known for decades that as cancer progresses, tumors develop genetic alterations, making them highly prone to developing resistance to therapies. Classically, it has been thought that these acquired genetic changes are fixed. This has led to the paradigm of moving from one cancer therapy to the next while avoiding past therapies. However, emerging data on epigenetic changes during tumor progression and use of epigenetic therapies have shown that epigenetic modifications leading to chemotherapy resistance have the potential to be reversible with epigenetic therapy. In fact, promising clinical data exist that treatment with epigenetic agents can diminish chemotherapy resistance in a number of tumor types including chronic myelogenous leukemia, colorectal, ovarian, lung and breast cancer. The potential for epigenetic-modifying drugs to allow for treatment of resistant disease is exciting and clinical trials have just begun to evaluate this area. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Epigenetic Inheritance Across the Landscape

    Directory of Open Access Journals (Sweden)

    Amy Vaughn Whipple

    2016-10-01

    Full Text Available The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome-environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.

  11. Epigenetic Inheritance across the Landscape.

    Science.gov (United States)

    Whipple, Amy V; Holeski, Liza M

    2016-01-01

    The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here, we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome-environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.

  12. The physics of epigenetics

    Science.gov (United States)

    Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2016-04-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.

  13. Epigenetics and Cellular Metabolism

    OpenAIRE

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  14. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  15. Genetics and epigenetics of obesity.

    Science.gov (United States)

    Herrera, Blanca M; Keildson, Sarah; Lindgren, Cecilia M

    2011-05-01

    Obesity results from interactions between environmental and genetic factors. Despite a relatively high heritability of common, non-syndromic obesity (40-70%), the search for genetic variants contributing to susceptibility has been a challenging task. Genome wide association (GWA) studies have dramatically changed the pace of detection of common genetic susceptibility variants. To date, more than 40 genetic variants have been associated with obesity and fat distribution. However, since these variants do not fully explain the heritability of obesity, other forms of variation, such as epigenetics marks, must be considered. Epigenetic marks, or "imprinting", affect gene expression without actually changing the DNA sequence. Failures in imprinting are known to cause extreme forms of obesity (e.g. Prader-Willi syndrome), but have also been convincingly associated with susceptibility to obesity. Furthermore, environmental exposures during critical developmental periods can affect the profile of epigenetic marks and result in obesity. We review the most recent evidence for genetic and epigenetic mechanisms involved in the susceptibility and development of obesity. Only a comprehensive understanding of the underlying genetic and epigenetic mechanisms, and the metabolic processes they govern, will allow us to manage, and eventually prevent, obesity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. CROSSOVERS BETWEEN EPIGENESIS AND EPIGENETICS. A MULTICENTER APPROACH TO THE HISTORY OF EPIGENETICS (1901-1975).

    Science.gov (United States)

    Costa, Rossella; Frezza, Giulia

    2014-01-01

    The origin of epigenetics has been traditionally traced back to Conrad Hal Waddington's foundational work in 1940s. The aim of the present paper is to reveal a hidden history of epigenetics, by means of a multicenter approach. Our analysis shows that genetics and embryology in early XX century--far from being non-communicating vessels--shared similar questions, as epitomized by Thomas Hunt Morgan's works. Such questions were rooted in the theory of epigenesis and set the scene for the development of epigenetics. Since the 1950s, the contribution of key scientists (Mary Lyon and Eduardo Scarano), as well as the discussions at the international conference of Gif-sur-Yvette (1957) paved the way for three fundamental shifts of focus: 1. From the whole embryo to the gene; 2. From the gene to the complex extranuclear processes of development; 3. From cytoplasmic inheritance to the epigenetics mechanisms.

  17. Epigenetics in Breast and Prostate Cancer

    OpenAIRE

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V.

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methy...

  18. New insights into the epigenetics of inflammatory rheumatic diseases.

    Science.gov (United States)

    Ballestar, Esteban; Li, Tianlu

    2017-10-01

    Over the past decade, awareness of the importance of epigenetic alterations in the pathogenesis of rheumatic diseases has grown in parallel with a general recognition of the fundamental role of epigenetics in the regulation of gene expression. Large-scale efforts to generate genome-wide maps of epigenetic modifications in different cell types, as well as in physiological and pathological contexts, illustrate the increasing recognition of the relevance of epigenetics. To date, although several reports have demonstrated the occurrence of epigenetic alterations in a wide range of inflammatory rheumatic conditions, epigenomic information is rarely used in a clinical setting. By contrast, several epigenetic biomarkers and treatments are currently in use for personalized therapies in patients with cancer. This Review highlights advances from the past 5 years in the field of epigenetics and their application to inflammatory rheumatic diseases, delineating the future lines of development for a rational use of epigenetic information in clinical settings and in personalized medicine. These advances include the identification of epipolymorphisms associated with clinical outcomes, DNA methylation as a contributor to disease susceptibility in rheumatic conditions, the discovery of novel epigenetic mechanisms that modulate disease susceptibility and the development of new epigenetic therapies.

  19. Epigenetics and cerebral organoids

    DEFF Research Database (Denmark)

    Forsberg, Sheena Louise; Ilieva, Mirolyuba; Maria Michel, Tanja

    2018-01-01

    also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome......-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state...... of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms....

  20. Epigenetics Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  1. Epigenetic Mechanisms Underlie Genome Development

    Science.gov (United States)

    Lamm, Ehud

    2013-01-01

    Technological and methodological advances, in particular next-generation sequencing and chromatin profiling, has led to a deluge of data on epigenetic mechanisms and processes. Epigenetic regulation in the brain is no exception. In this commentary, Ehud Lamm writes that extending existing frameworks for thinking about psychological development to…

  2. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation...... diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer....

  3. Transgenerational epigenetic effects on animal behaviour.

    Science.gov (United States)

    Jensen, Per

    2013-12-01

    Over the last decade a shift in paradigm has occurred with respect to the interaction between environment and genes. It is now clear that animal genomes are regulated to a large extent as a result of input from environmental events and experiences, which cause short- and long-term modifications in epigenetic markings of DNA and histones. In this review, the evidence that such epigenetic modifications can affect the behaviour of animals is explored, and whether such acquired behaviour alterations can transfer across generation borders. First, the mechanisms by which experiences cause epigenetic modifications are examined. This includes, for example, methylation of cytosine in CpG positions and acetylation of histones, and studies showing that this can be modified by early experiences. Secondly, the evidence that specific modifications in the epigenome can be the cause of behaviour variation is reviewed. Thirdly, the extent to which this phenotypically active epigenetic variants can be inherited either through the germline or through reoccurring environmental conditions is examined. A particularly interesting observation is that epigenetic modifications are often linked to stress, and may possibly be mediated by steroid effects. Finally, the idea that transgenerationally stable epigenetic variants may serve as substrates for natural selection is explored, and it is speculated that they may even predispose for directed, non-random mutations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  5. Epigenetic inheritance, prions and evolution

    Indian Academy of Sciences (India)

    The field of epigenetics has grown explosively in the past two decades or so. As currently defined, epigenetics deals with heritable, metastable and usually reversible changes that do not involve alterations in DNA sequence, but alter the way that information encoded inDNAis utilized.The bulk of current research in ...

  6. Epigenetics and Colorectal Cancer

    Science.gov (United States)

    Lao, Victoria Valinluck; Grady, William M.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in the world. It results from an accumulation of genetic and epigenetic changes in colon epithelial cells that transforms them into adenocarcinomas. There have been major advances in our understanding of cancer epigenetics over the last decade, particularly regarding aberrant DNA methylation. Assessment of the colon cancer epigenome has revealed that virtually all colorectal cancers have aberrantly methylated genes and the average colorectal cancer methylome has hundreds to thousands of abnormally methylated genes. As with gene mutations in the cancer genome, a subset of these methylated genes, called driver genes, is presumed to play a functional role in colorectal cancer. The assessment of methylated genes in colorectal cancers has also revealed a unique molecular subgroup of colorectal cancers called CpG Island Methylator Phenotype (CIMP) cancers; these tumors have a particularly high frequency of methylated genes. The advances in our understanding of aberrant methylation in colorectal cancer has led to epigenetic alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in the assessment of epigenetic alterations in colorectal cancer and their clinical applications has shown that these alterations will be commonly used in the near future as molecular markers to direct the prevention and treatment of colorectal cancer. PMID:22009203

  7. [Epigenetics and obesity].

    Science.gov (United States)

    Casanello, Paola; Krause, Bernardo J; Castro-Rodríguez, José A; Uauy, Ricardo

    Current evidence supports the notion that exposure to various environmental conditions in early life may induce permanent changes in the epigenome that persist throughout the life-course. This article focuses on early changes associated with obesity in adult life. A review is presented on the factors that induce changes in whole genome (DNA) methylation in early life that are associated with adult onset obesity and related disorders. In contrast, reversal of epigenetic changes associated with weight loss in obese subjects has not been demonstrated. This contrasts with well-established associations found between obesity related DNA methylation patterns at birth and adult onset obesity and diabetes. Epigenetic markers may serve to screen indivuals at risk for obesity and assess the effects of interventions in early life that may delay or prevent obesity in early life. This might contribute to lower the obesity-related burden of death and disability at the population level. The available evidence indicates that epigenetic marks are in fact modifiable, based on modifications in the intrauterine environment and changes in food intake, physical activity and dietary patterns patterns during pregnancy and early years of adult life. This offers the opportunity to intervene before conception, during pregnancy, infancy, childhood, and also in later life. There must be documentation on the best preventive actions in terms of diet and physical activity that will modify or revert the adverse epigenetic markers, thus preventing obesity and diabetes in suceptible individuals and populations. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Takeo Kubota

    2016-05-01

    Full Text Available Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs. Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  9. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders.

    Science.gov (United States)

    Kubota, Takeo; Mochizuki, Kazuki

    2016-05-14

    Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs). Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  10. Epigenetic mechanisms in the initiation of hematological malignancies

    Directory of Open Access Journals (Sweden)

    Ali Maleki

    2011-10-01

    Full Text Available Background: Cancer development is not restricted to the genetic changes, but also to epigenetic changes. Epigenetic processes are very important in the development of hematological malignancies. The main epigenetic alterations are aberrations in DNA methylation, post-translational modifications of histones, chromatin remodeling and microRNAs patterns, and these are associated with tumor genesis. All the various cellular pathways contributing to the neoplastic phenotype are affected by epigenetic genes in cancer. These pathways can be explored as biomarkers in clinical use for early detection of disease, malignancy classification and response to treatment with classical chemotherapy agents and epigenetic drugs. Materials and Method: A literature review was performed using PUBMED from 1985 to 2008. Cross referencing of discovered articles was also reviewed.Results: In chronic lymphocytic leukemia, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. In myelodysplastic syndrome (MDS, CDKN2B (alias, P15, a cyclin-dependent kinase inhibitor that negatively regulates the cell cycle, has been shown to be hypermethylated in marrow stem (CD34+ cells in patients with MDS. At present both Vidaza and Decitabine (DNA methyltransferase inhibitors are approved for the treatment of MDS.Conclusion: Unlike mutations or deletions, DNA hypermethylation and histone deacetylation are potentially reversible by pharmacological inhibition, therefore those epigenetic changes have been recognized as promising novel therapeutic targets in hematopoietic malignances. In this review, we discussed molecular mechanisms of epigenetics, epigenetic changes in hematological malignancies and epigenetic based treatments

  11. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Science.gov (United States)

    Sarkar, Sibaji; Horn, Garrick; Moulton, Kimberly; Oza, Anuja; Byler, Shannon; Kokolus, Shannon; Longacre, McKenna

    2013-01-01

    Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics. PMID:24152442

  12. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Directory of Open Access Journals (Sweden)

    McKenna Longacre

    2013-10-01

    Full Text Available Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  13. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  14. Epigenetics in Prostate Cancer

    OpenAIRE

    Albany, Costantine; Alva, Ajjai S.; Aparicio, Ana M.; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M.

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequ...

  15. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma; Kinouchi, Kenichiro; Sassone-Corsi, Paolo

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  16. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  17. Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Shatadru Ghosh Roy

    2016-11-01

    Full Text Available Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV, the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers—both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV–host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.

  18. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  19. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition

    Science.gov (United States)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M.; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention.

  20. Epigenetics in prostate cancer.

    Science.gov (United States)

    Albany, Costantine; Alva, Ajjai S; Aparicio, Ana M; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a "normal" epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  1. Epigenetics of hypoxic pulmonary arterial hypertension following intrauterine growth retardation rat: epigenetics in PAH following IUGR

    Directory of Open Access Journals (Sweden)

    Xu Xue-Feng

    2013-02-01

    Full Text Available Abstract Background Accumulating evidence reveals that intrauterine growth retardation (IUGR can cause varying degrees of pulmonary arterial hypertension (PAH later in life. Moreover, epigenetics plays an important role in the fetal origin of adult disease. The goal of this study was to investigate the role of epigenetics in the development of PAH following IUGR. Methods The IUGR rats were established by maternal undernutrition during pregnancy. Pulmonary vascular endothelial cells (PVEC were isolated from the rat lungs by magnetic-activated cell sorting (MACS. We investigated epigenetic regulation of the endothelin-1 (ET-1 gene in PVEC of 1-day and 6-week IUGR rats, and response of IUGR rats to hypoxia. Results The maternal nutrient restriction increased the histone acetylation and hypoxia inducible factor-1α (HIF-1α binding levels in the ET-1 gene promoter of PVEC in IUGR newborn rats, and continued up to 6 weeks after birth. These epigenetic changes could result in an IUGR rat being highly sensitive to hypoxia later in life, causing more significant PAH or pulmonary vascular remodeling. Conclusions These findings suggest that epigenetics is closely associated with the development of hypoxic PAH following IUGR, further providing a new insight for improved prevention and treatment of IUGR-related PAH.

  2. Epigenetic impact of curcumin on stroke prevention

    OpenAIRE

    Kalani, Anuradha; Kamat, Pradip K; Kalani, Komal; Tyagi, Neetu

    2014-01-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering ...

  3. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  4. Environmentally induced epigenetic toxicity: potential public health concerns.

    Science.gov (United States)

    Marczylo, Emma L; Jacobs, Miriam N; Gant, Timothy W

    2016-09-01

    Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.

  5. Transgenerational epigenetics and environmental justice.

    Science.gov (United States)

    Rothstein, Mark A; Harrell, Heather L; Marchant, Gary E

    2017-07-01

    Human transmission to offspring and future generations of acquired epigenetic modifications has not been definitively established, although there are several environmental exposures with suggestive evidence. This article uses three examples of hazardous substances with greater exposures in vulnerable populations: pesticides, lead, and diesel exhaust. It then considers whether, if there were scientific evidence of transgenerational epigenetic inheritance, there would be greater attention given to concerns about environmental justice in environmental laws, regulations, and policies at all levels of government. To provide a broader perspective on environmental justice the article discusses two of the most commonly cited approaches to environmental justice. John Rawls's theory of justice as fairness, a form of egalitarianism, is frequently invoked for the principle that differential treatment of individuals is justified only if actions are designed to benefit those with the greatest need. Another theory, the capabilities approach of Amartya Sen and Martha Nussbaum, focuses on whether essential capabilities of society, such as life and health, are made available to all individuals. In applying principles of environmental justice the article considers whether there is a heightened societal obligation to protect the most vulnerable individuals from hazardous exposures that could adversely affect their offspring through epigenetic mechanisms. It concludes that unless there were compelling evidence of transgenerational epigenetic harms, it is unlikely that there would be a significant impetus to adopt new policies to prevent epigenetic harms by invoking principles of environmental justice.

  6. Epigenetic changes in solid and hematopoietic tumors.

    Science.gov (United States)

    Toyota, Minoru; Issa, Jean-Pierre J

    2005-10-01

    There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.

  7. Prostate cancer epigenetics and its clinical implications.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan

    2016-01-01

    Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  8. Prostate cancer epigenetics and its clinical implications

    Directory of Open Access Journals (Sweden)

    Srinivasan Yegnasubramanian

    2016-01-01

    Full Text Available Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  9. Epigenetic diet: impact on the epigenome and cancer

    Science.gov (United States)

    Hardy, Tabitha M; Tollefsbol, Trygve O

    2011-01-01

    A number of bioactive dietary components are of particular interest in the field of epigenetics. Many of these compounds display anticancer properties and may play a role in cancer prevention. Numerous studies suggest that a number of nutritional compounds have epigenetic targets in cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents can alter normal epigenetic states as well as reverse abnormal gene activation or silencing. Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial. Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors act to modify the epigenome and may be incorporated into an ‘epigenetic diet’. Bioactive nutritional components of an epigenetic diet may be incorporated into one’s regular dietary regimen and used therapeutically for medicinal or chemopreventive purposes. This article will primarily focus on dietary factors that have been demonstrated to influence the epigenome and that may be used in conjunction with other cancer prevention and chemotherapeutic therapies. PMID:22022340

  10. Cancer Control and Prevention by Nutrition and Epigenetic Approaches

    OpenAIRE

    Verma, Mukesh

    2012-01-01

    Significance: Epigenetics involves alterations in gene expression without changing the nucleotide sequence. Because some epigenetic changes can be reversed chemically, epigenetics has tremendous implications for disease intervention and treatment. Recent Advances: After epigenetic components in cancer were characterized, genes and pathways are being characterized in other diseases such as diabetes, obesity, and neurological disorders. Observational, experimental, and clinical studies in diffe...

  11. Epigenetic variation in asexually reproducing organisms

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Preite, V.

    2014-01-01

    The role that epigenetic inheritance can play in adaptation may differ between sexuals and asexuals because (1) the dynamics of adaptation differ under sexual and asexual reproduction and the opportunities offered by epigenetic inheritance may affect these dynamics differently; and (2) in asexual

  12. Epigenetic Regulation in Prostate Cancer Progression.

    Science.gov (United States)

    Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro

    2018-01-01

    An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

  13. Epigenetics in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Costantine Albany

    2011-01-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  14. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Beerman, Isabel; Rossi, Derrick J.

    2014-01-01

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  15. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  16. Introduction to the Special Section on Epigenetics

    Science.gov (United States)

    Lester, Barry M.; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field…

  17. Comparative in silico profiling of epigenetic modifiers in human tissues.

    Science.gov (United States)

    Son, Mi-Young; Jung, Cho-Rok; Kim, Dae-Soo; Cho, Hyun-Soo

    2018-04-06

    The technology of tissue differentiation from human pluripotent stem cells has attracted attention as a useful resource for regenerative medicine, disease modeling and drug development. Recent studies have suggested various key factors and specific culture methods to improve the successful tissue differentiation and efficient generation of human induced pluripotent stem cells. Among these methods, epigenetic regulation and epigenetic signatures are regarded as an important hurdle to overcome during reprogramming and differentiation. Thus, in this study, we developed an in silico epigenetic panel and performed a comparative analysis of epigenetic modifiers in the RNA-seq results of 32 human tissues. We demonstrated that an in silico epigenetic panel can identify epigenetic modifiers in order to overcome epigenetic barriers to tissue-specific differentiation.

  18. Potential of epigenetic therapies in the management of solid tumors

    International Nuclear Information System (INIS)

    Valdespino, Victor; Valdespino, Patricia M

    2015-01-01

    Cancer is a complex disease with both genetic and epigenetic origins. The growing field of epigenetics has contributed to our understanding of oncogenesis and tumor progression, and has allowed the development of novel therapeutic drugs. First-generation epigenetic inhibitor drugs have obtained modest clinical results in two types of hematological malignancy. Second-generation epigenetic inhibitors are in development, and have intrinsically greater selectivity for their molecular targets. Solid tumors are more genetic and epigenetically complex than hematological malignancies, but the transcriptome and epigenome biomarkers have been identified for many of these malignancies. This solid tumor molecular aberration profile may be modified using specific or quasi-specific epidrugs together with conventional and innovative anticancer treatments. In this critical review, we briefly analyze the strategies to select the targeted epigenetic changes, enumerate the second-generation epigenetic inhibitors, and describe the main signs indicating the potential of epigenetic therapies in the management of solid tumors. We also highlight the work of consortia or academic organizations that support the undertaking of human epigenetic therapeutic projects as well as some examples of transcriptome/epigenome profile determination in clinical assessment of cancer patients treated with epidrugs. There is a good chance that epigenetic therapies will be able to be used in patients with solid tumors in the future. This may happen soon through collaboration of diverse scientific groups, making the selection of targeted epigenetic aberration(s) more rapid, the design and probe of drug candidates, accelerating in vitro and in vivo assays, and undertaking new cancer epigenetic-therapy clinical trails

  19. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition.

    Science.gov (United States)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The Emerging Role of Epigenetics in Inflammation and Immunometabolism.

    Science.gov (United States)

    Raghuraman, Sukanya; Donkin, Ida; Versteyhe, Soetkin; Barrès, Romain; Simar, David

    2016-11-01

    Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 diabetes mellitus, and these are associated with alterations in the phenotype, function, and trafficking patterns of these cells. The first step in the development of effective therapeutic strategies is the identification of distinct epigenetic signatures associated with metabolic disorders. In this review we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract epigenetically driven metabolic complications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Potential of Epigenetic Therapies in Non-cancerous Conditions

    Directory of Open Access Journals (Sweden)

    Raymond eYung

    2014-12-01

    Full Text Available There has been an explosion of knowledge in the epigenetics field in the past 20 years. The first epigenetic therapies have arrived in the clinic for cancer treatments. In contrast, much of the promise of epigenetic therapies for non-cancerous conditions remains in the laboratories. The current review will focus on the recent progress that has been made in understanding the pathogenic role of epigenetics in immune and inflammatory conditions, and how the knowledge may provide much needed new therapeutic targets for many autoimmune diseases. Dietary factors are increasingly recognized as potential modifiers of epigenetic marks that can influence health and diseases across generations. The current epigenomics revolution will almost certainly complement the explosion of personal genetics medicine to help guide treatment decisions and disease risk stratification.

  2. Epigenetic modifications and diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Marpadga A. Reddy

    2012-09-01

    Full Text Available Diabetic nephropathy (DN is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a “metabolic memory” of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.

  3. Epigenetics: A way to bridge the gap between biological fields.

    Science.gov (United States)

    Nicoglou, Antonine; Merlin, Francesca

    2017-12-01

    The concept of epigenetics has evolved since Waddington defined it from the late 1930s as the study of the causal mechanisms at work in development. It has become a multi-faceted notion with different meanings, depending on the disciplinary context it is used. In this article, we first analyse the transformations of the concept of epigenetics, from Waddington to contemporary accounts, in order to identify its different meanings and traditions, and to come up with a typology of epigenetics throughout its history. Second, we show on this basis that epigenetics has progressively turned its main focus from biological problems regarding development, toward issues concerning evolution. Yet, both these different epistemological aspects of epigenetics still coexist. Third, we claim that the classical opposition between epigenesis and preformationism as ways of thinking about the developmental process is part of the history of epigenetics and has contributed to its current various meanings. With these objectives in mind, we first show how Waddington introduced the term "epigenetics" in a biological context in order to solve a developmental problem, and we then build on this by presenting Nanney's, Riggs' and Holliday's definitions, which form the basis for the current conception of "molecular epigenetics". Then, we show that the evo-devo research field is where some particular uses of epigenetics have started shifting from developmental issues to evolutionary problems. We also show that epigenetics has progressively focused on the issue of epigenetic inheritance within the Extended Evolutionary Synthesis' framework. Finally, we conclude by presenting a typology of the different conceptions of epigenetics throughout time, and analyse the connections between them. We argue that, since Waddington, epigenetics, as an integrative research area, has been used to bridge the gap between different biological fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Epigenetics and environmental impacts in cattle

    Science.gov (United States)

    This chapter reviews the major advances in the field of epigenetics as well as the environmental impacts of cattle. Many findings from our own research endeavors related to the topic of this chapter are also introduced. The phenotypic characterization of an animal can be changed through epigenetic ...

  5. Imaging epigenetics in Alzheimer's disease.

    Science.gov (United States)

    Lista, Simone; Garaci, Francesco G; Toschi, Nicola; Hampel, Harald

    2013-01-01

    Sporadic Alzheimer's disease (AD) is a prevalent, complex and chronically progressive brain disease. Its course is non-linear, dynamic, adaptive to maladaptive, and compensatory to decompensatory, affecting large-scale neural networks through a plethora of mechanistic and signaling pathway alterations that converge into regional and cell type-specific neurodegeneration and, finally, into clinically overt cognitive and behavioral decline. This decline includes reductions in the activities of daily living, quality of life, independence, and life expectancy. Evolving lines of research suggest that epigenetic mechanisms may play a crucial role during AD development and progression. Epigenetics designates molecular mechanisms that alter gene expression without modifications of the genetic code. This topic includes modifications on DNA and histone proteins, the primary elements of chromatin structure. Accumulating evidence has revealed the relevant processes that mediate epigenetic modifications and has begun to elucidate how these processes are apparently dysregulated in AD. This evidence has led to the clarification of the roles of specific classes of therapeutic compounds that affect epigenetic pathways and characteristics of the epigenome. This insight is accompanied by the development of new methods for studying the global patterns of DNA methylation and chromatin alterations. In particular, high-throughput sequencing approaches, such as next-generation DNA sequencing techniques, are beginning to drive the field into the next stage of development. In parallel, genetic imaging is beginning to answer additional questions through its ability to uncover genetic variants, with or without genome-wide significance, that are related to brain structure, function and metabolism, which impact disease risk and fundamental network-based cognitive processes. Neuroimaging measures can further be used to define AD systems and endophenotypes. The integration of genetic neuroimaging

  6. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  7. Epigenetics and the Developmental Origins of Health and ...

    Science.gov (United States)

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modifications, noncoding RNAs and recruited protein complexes are elements of the epigenetic regulation of gene transcription. These heritable but reversible changes in gene function are dynamic and labile during specific stages of the reproductive cycle and development. Epigenetic marks may be maintained throughout an individual's lifespan and can alter the life-long risk of disease; the nature of these epigenetic marks and their potential alteration by environmental factors is an area of active research. This chapter provides an overview of epigenetic regulation, particularly as it occurs as an essential component of embryo-fetal development. In this chapter we will present key features of DNA methylation and histone protein modifications, including the enzymes involved and the effects of these modifications on gene transcription. We will discuss the interplay of these dynamic modifications and the emerging role of noncoding RNAs in epigenetic gene regulation.

  8. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  9. Discussing epigenetics in Southern California

    Science.gov (United States)

    2012-01-01

    With the goal of discussing how epigenetic control and chromatin remodeling contribute to the various processes that lead to cellular plasticity and disease, this symposium marks the collaboration between the Institut National de la Santé et de la Recherche Médicale (INSERM) in France and the University of California, Irvine (UCI). Organized by Paolo Sassone-Corsi (UCI) and held at the Beckman Center of the National Academy of Sciences at the UCI campus December 15–16, 2011, this was the first of a series of international conferences on epigenetics dedicated to the scientific community in Southern California. The meeting also served as the official kick off for the newly formed Center for Epigenetics and Metabolism at the School of Medicine, UCI (http://cem.igb.uci.edu). PMID:22414797

  10. Epigenetic Mechanisms of Depression and Antidepressants Action

    Science.gov (United States)

    Vialou, Vincent; Feng, Jian; Robison, Alfred J.; Nestler, Eric J.

    2013-01-01

    Epigenetic mechanisms, which control chromatin structure and function, mediate changes in gene expression that occur in response to diverse stimuli. Recent research has established that environmental events and behavioral experience induce epigenetic changes at particular gene loci that help shape neuronal plasticity and function, and hence behavior, and that some of these changes can be very stable and even persist for a lifetime. Increasing evidence supports the hypothesis that aberrations in chromatin remodeling and subsequent effects on gene expression within limbic brain regions contribute to the pathogenesis of depression and other stress-related disorders such as post-traumatic stress disorder and other anxiety syndromes. Likewise, the gradually developing but persistent therapeutic effects of antidepressant medications may be achieved in part via epigenetic mechanisms. This review discusses recent advances in understanding epigenetic regulation of stress-related disorders and focuses on three distinct aspects of stress-induced epigenetic pathology: the effects of stress and antidepressant treatment during adulthood, the life-long effects of early life stress on subsequent stress vulnerability, and the possible trans-generational transmission of stress-induced abnormalities. PMID:23020296

  11. Targeting Epigenetics to Prevent Obesity Promoted Cancers.

    Science.gov (United States)

    Berger, Nathan A; Scacheri, Peter C

    2018-03-01

    Epigenetic changes in DNA and associated chromatin proteins are increasingly being considered as important mediators of the linkage between obesity and cancer. Although multiple agents, targeted at epigenetic changes, are being tested for therapy of established cancers, this issue of Cancer Prevention Research carries two articles demonstrating that the bromodomain inhibitor I-BET-762 can attenuate adipose tissue-promoted cancers. Although I-BET-762 significantly delayed, rather than completely prevented, the onset of adiposity-promoted transformation and malignancy, these experiments provide important proof of principle for the strategies of targeting epigenetic changes to disrupt the obesity-cancer linkage. Because bromodomain proteins represent only one of multiple epigenetic mediators, it is probable that targeting other epigenetic processes, alone or in combination, may serve to even more effectively disrupt the obesity promotion of cancer. Given the magnitude of the current obesity pandemic and its impact on cancer, preventive measures to disrupt this linkage are critically important. Cancer Prev Res; 11(3); 125-8. ©2018 AACR See related article by Chakraborty et al., p. 129 . ©2018 American Association for Cancer Research.

  12. Epigenetics and maternal nutrition: nature v. nurture.

    Science.gov (United States)

    Simmons, Rebecca

    2011-02-01

    Under- and over-nutrition during pregnancy has been linked to the later development of diseases such as diabetes and obesity. Epigenetic modifications may be one mechanism by which exposure to an altered intrauterine milieu or metabolic perturbation may influence the phenotype of the organism much later in life. Epigenetic modifications of the genome provide a mechanism that allows the stable propagation of gene expression from one generation of cells to the next. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodelling and histone modifications play key roles in adipogenesis and the development of obesity. Epigenetic modifications affecting processes important to glucose regulation and insulin secretion have been described in the pancreatic β-cells and muscle of the intrauterine growth-retarded offspring, characteristics essential to the pathophysiology of type-2 diabetes. Epigenetic regulation of gene expression contributes to both adipocyte determination and differentiation in in vitro models. The contributions of histone acetylation, histone methylation and DNA methylation to the process of adipogenesis in vivo remain to be evaluated.

  13. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for ...

  14. The epigenetic switches for neural development and psychiatric disorders.

    Science.gov (United States)

    Lv, Jingwen; Xin, Yongjuan; Zhou, Wenhao; Qiu, Zilong

    2013-07-20

    The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted. Copyright © 2013. Published by Elsevier Ltd.

  15. Bifurcation in epigenetics: Implications in development, proliferation, and diseases

    Science.gov (United States)

    Jost, Daniel

    2014-01-01

    Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.

  16. Epigenetics and Vasculitis: a Comprehensive Review.

    Science.gov (United States)

    Renauer, Paul; Coit, Patrick; Sawalha, Amr H

    2016-06-01

    Vasculitides represent a group of relatively rare systemic inflammatory diseases of the blood vessels. Despite recent progress in understanding the genetic basis and the underlying pathogenic mechanisms in vasculitis, the etiology and pathogenesis of vasculitis remain incompletely understood. Epigenetic dysregulation plays an important role in immune-mediated diseases, and the contribution of epigenetic aberrancies in vasculitis is increasingly being recognized. Histone modifications in the PR3 and MPO gene loci might be mechanistically involved in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Similarly, other studies revealed important epigenetic contribution to other vasculitides, including Kawasaki disease and IgA vasculitis. More recently, genome-wide epigenomic studies have been performed in several vasculitides. A recent genome-wide DNA methylation study uncovered an important role for epigenetic remodeling of cytoskeleton-related genes in the pathogenesis of Behçet's disease and suggested that reversal of some of these DNA methylation changes associates with disease remission. Genome-wide DNA methylation profiling characterized the inflammatory response in temporal artery tissue from patients with giant cell arteritis and showed increased activation of calcineurin/nuclear factor of activated T cells (NFAT) signaling, prompting the suggestion that a specific calcineurin/NFAT inhibitor that is well tolerated and with the added beneficial anti-platelet activity, such as dipyridamole, might be of therapeutic potential in giant cell arteritis. While epigenetic studies in systemic vasculitis are still in their infancy, currently available data clearly indicate that investigating the epigenetic mechanisms underlying these diseases will help to better understand the pathogenesis of vasculitis and provide novel targets for the development of disease biomarkers and new therapies.

  17. Design of small-molecule epigenetic modulators

    Science.gov (United States)

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  18. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2004-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulating cellular gene expression...

  19. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2005-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulating cellular gene expression...

  20. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle

    2003-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulation cellular gene expression...

  1. The Emerging Role of Epigenetics in Inflammation and Immunometabolism

    DEFF Research Database (Denmark)

    Raghuraman, Sukanya; Donkin, Ida; Versteyhe, Soetkin

    2016-01-01

    Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 ...... we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract...

  2. Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies

    Directory of Open Access Journals (Sweden)

    Silvia Consalvi

    2016-01-01

    Full Text Available In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD.

  3. [Epigenetics' implication in autism spectrum disorders: A review].

    Science.gov (United States)

    Hamza, M; Halayem, S; Mrad, R; Bourgou, S; Charfi, F; Belhadj, A

    2017-08-01

    The etiology of autism spectrum disorders (ASD) is complex and multifactorial, and the roles of genetic and environmental factors in its emergence have been well documented. Current research tends to indicate that these two factors act in a synergistic manner. The processes underlying this interaction are still poorly known, but epigenetic modifications could be the mediator in the gene/environment interface. The epigenetic mechanisms have been implicated in susceptibility to stress and also in the pathogenesis of psychiatric disorders including depression and schizophrenia. Currently, several studies focus on the consideration of the etiological role of epigenetic regulation in ASD. The object of this review is to present a summary of current knowledge of an epigenetic hypothesis in ASD, outlining the recent findings in this field. Using Pubmed, we did a systematic review of the literature researching words such as: autism spectrum disorders, epigenetics, DNA methylation and histone modification. Epigenetic refers to the molecular process modulating gene expression without changes in the DNA sequence. The most studied epigenetic mechanisms are those that alter the chromatin structure including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. In ASD several arguments support the epigenetic hypothesis. In fact, there is a frequent association between ASD and genetic diseases whose epigenetic etiologies are recognized. A disturbance in the expression of genes involved in the epigenetic regulation has also been described in this disorder. Some studies have demonstrated changes in the DNA methylation of several autism candidate genes including the gene encoding the oxytocin receptor (OXTR), the RELN and the SHANK3 genes. Beyond the analysis of candidate genes, recent epigenome-wide association studies have investigated the methylation level of several other genes and showed hypomethylation of the whole DNA in brain

  4. Individuality and epigenetics in obesity.

    Science.gov (United States)

    Campión, J; Milagro, F I; Martínez, J A

    2009-07-01

    Excessive weight gain arises from the interactions among environmental factors, genetic predisposition and the individual behavior. However, it is becoming evident that interindividual differences in obesity susceptibility depend also on epigenetic factors. Epigenetics studies the heritable changes in gene expression that do not involve changes to the underlying DNA sequence. These processes include DNA methylation, covalent histone modifications, chromatin folding and, more recently described, the regulatory action of miRNAs and polycomb group complexes. In this review, we focus on experimental evidences concerning dietary factors influencing obesity development by epigenetic mechanisms, reporting treatment doses and durations. Moreover, we present a bioinformatic analysis of promoter regions for the search of future epigenetic biomarkers of obesity, including methylation pattern analyses of several obesity-related genes (epiobesigenes), such as FGF2, PTEN, CDKN1A and ESR1, implicated in adipogenesis, SOCS1/SOCS3, in inflammation, and COX7A1 LPL, CAV1, and IGFBP3, in intermediate metabolism and insulin signalling. The identification of those individuals that at an early age could present changes in the methylation profiles of specific genes could help to predict their susceptibility to later develop obesity, which may allow to prevent and follow-up its progress, as well as to research and develop newer therapeutic approaches.

  5. Epigenetics in prostate cancer: biologic and clinical relevance.

    Science.gov (United States)

    Jerónimo, Carmen; Bastian, Patrick J; Bjartell, Anders; Carbone, Giuseppina M; Catto, James W F; Clark, Susan J; Henrique, Rui; Nelson, William G; Shariat, Shahrokh F

    2011-10-01

    Prostate cancer (PCa) is one of the most common human malignancies and arises through genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications, and microRNAs (miRNA) and produce heritable changes in gene expression without altering the DNA coding sequence. To review progress in the understanding of PCa epigenetics and to focus upon translational applications of this knowledge. PubMed was searched for publications regarding PCa and DNA methylation, histone modifications, and miRNAs. Reports were selected based on the detail of analysis, mechanistic support of data, novelty, and potential clinical applications. Aberrant DNA methylation (hypo- and hypermethylation) is the best-characterized alteration in PCa and leads to genomic instability and inappropriate gene expression. Global and locus-specific changes in chromatin remodeling are implicated in PCa, with evidence suggesting a causative dysfunction of histone-modifying enzymes. MicroRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen receptor signaling and apoptosis. There are important connections between common genetic alterations (eg, E twenty-six fusion genes) and the altered epigenetic landscape. Owing to the ubiquitous nature of epigenetic alterations, they provide potential biomarkers for PCa detection, diagnosis, assessment of prognosis, and post-treatment surveillance. Altered epigenetic gene regulation is involved in the genesis and progression of PCa. Epigenetic alterations may provide valuable tools for the management of PCa patients and be targeted by pharmacologic compounds that reverse their nature. The potential for epigenetic changes in PCa requires further exploration and validation to enable translation to the clinic. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Chromatin resetting mechanisms preventing trangenerational inheritance of epigenetic states

    Directory of Open Access Journals (Sweden)

    Mayumi eIwasaki

    2015-05-01

    Full Text Available Epigenetic regulation can be altered by environmental cues including abiotic and biotic stresses. In most cases, environmentally-induced epigenetic changes are transient, but in some cases they are maintained for extensive periods of time and may even be transmitted to the next generation. However, the underlying mechanisms of transgenerational transmission of environmentally-induced epigenetic states remain largely unknown. Such traits can be adaptive, but also can have negative consequences if the parentally inherited epigenetic memory interferes with canonical environmental responses of the progeny. This review highlights recent insights into the mechanisms preventing transgenerational transmission of environmentally-induced epigenetic states in plants, which resemble those of germline reprogramming in mammals.

  7. Maintaining epigenetic inheritance during DNA replication in plants

    Directory of Open Access Journals (Sweden)

    Francisco eIglesias

    2016-02-01

    Full Text Available Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are remembered temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance. This memory effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants.

  8. Epigenetic Basis of Morphological Variation and Phenotypic Plasticity in Arabidopsis thaliana

    NARCIS (Netherlands)

    Kooke, R.; Johannes, F.; Wardenaar, R.; Becker, F.F.M.; Etcheverry, M.; Colot, V.; Vreugdenhil, D.; Keurentjes, J.J.B.

    2015-01-01

    Epigenetics is receiving growing attention in the plant science community. Epigenetic modifications are thought to play a particularly important role in fluctuating environments. It is hypothesized that epigenetics contributes to plant phenotypic plasticity because epigenetic modifications, in

  9. The political implications of epigenetics Emerging narratives and ideologies.

    Science.gov (United States)

    Robison, Shea K

    2016-01-01

    Epigenetics, which is just beginning to attract public attention and policy discussion, challenges conventional understanding of gene-environment interaction and intergenerational inheritance and perhaps much more besides. Does epigenetics challenge modern political ideologies? I analyzed the narratives of obesity and epigenetics recently published in the more liberal New York Times and the more conservative Wall Street Journal. For the years 2010 through 2014, 50 articles on obesity and 29 articles on epigenetics were identified, and elements in their causal narratives were quantitatively analyzed using a well described narrative policy framework. The narratives on obesity aligned with the two newspapers' reputed ideologies. However, the narratives on epigenetics aligned with neither ideology but freely mixed liberal and conservative elements. This small study may serve as a starting point for broader studies of epigenetics as it comes to affect political ideologies and, in turn, public policies. The narrative mix reported here could yet prove vulnerable to ideological capture, or, more optimistically, could portend the emergence of a "third-way" narrative using epigenetics to question atomistic individualism and allowing for less divisiveness in public-health domains such as obesity.

  10. Epigenetic cell response to an influence of ionizing radiation

    International Nuclear Information System (INIS)

    Mikheev, A.N.; Gushcha, N.I.; Malinovskij, Yu.Yu.

    1999-01-01

    Importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. Inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify level of spontaneous genetic instability inherited in a number of cell generations on epigenetic mechanism [ru

  11. Epigenetics: relevance and implications for public health.

    Science.gov (United States)

    Rozek, Laura S; Dolinoy, Dana C; Sartor, Maureen A; Omenn, Gilbert S

    2014-01-01

    Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.

  12. Epigenetics in radiotherapy: Where are we heading?

    International Nuclear Information System (INIS)

    Smits, Kim M.; Melotte, Veerle; Niessen, Hanneke E.C.; Dubois, Ludwig; Oberije, Cary; Troost, Esther G.C.; Starmans, Maud H.W.; Boutros, Paul C.; Vooijs, Marc; Engeland, Manon van; Lambin, Philippe

    2014-01-01

    Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide clinical decision-making. Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the current knowledge on epigenetics in radiotherapy

  13. Exploiting Epigenetic Alterations in Prostate Cancer.

    Science.gov (United States)

    Baumgart, Simon J; Haendler, Bernard

    2017-05-09

    Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.

  14. Exploiting Epigenetic Alterations in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Simon J. Baumgart

    2017-05-01

    Full Text Available Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.

  15. Epigenetic targets in the diagnosis and treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Murugesan Manoharan

    2007-02-01

    Full Text Available Prostate cancer (PC is one of leading cause of cancer related deaths in men. Various aspects of cancer epigenetics are rapidly evolving and the role of 2 major epigenetic changes including DNA methylation and histone modifications in prostate cancer is being studied widely. The epigenetic changes are early event in the cancer development and are reversible. Novel epigenetic markers are being studied, which have the potential as sensitive diagnostic and prognostic marker. Variety of drugs targeting epigenetic changes are being studied, which can be effective individually or in combination with other conventional drugs in PC treatment. In this review, we discuss epigenetic changes associated with PC and their potential diagnostic and therapeutic applications including future areas of research.

  16. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2005-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosophila, plants, and the fission yeast S. pombe...

  17. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2004-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosophila, plants, and the fission yeast S. pombe...

  18. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle

    2003-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosphilia, plants, and the fission yeast S. pombe...

  19. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  20. Imagining roles for epigenetics in health promotion research.

    Science.gov (United States)

    McBride, Colleen M; Koehly, Laura M

    2017-04-01

    Discoveries from the Human Genome Project have invigorated discussions of epigenetic effects-modifiable chemical processes that influence DNA's ability to give instructions to turn gene expression on or off-on health outcomes. We suggest three domains in which new understandings of epigenetics could inform innovations in health promotion research: (1) increase the motivational potency of health communications (e.g., explaining individual differences in health outcomes to interrupt optimistic biases about health exposures); (2) illuminate new approaches to targeted and tailored health promotion interventions (e.g., relapse prevention targeted to epigenetic responses to intervention participation); and (3) inform more sensitive measures of intervention impact, (e.g., replace or augment self-reported adherence). We suggest a three-step process for using epigenetics in health promotion research that emphasizes integrating epigenetic mechanisms into conceptual model development that then informs selection of intervention approaches and outcomes. Lastly, we pose examples of relevant scientific questions worth exploring.

  1. Epigenetics in comparative biology: why we should pay attention.

    Science.gov (United States)

    Burggren, Warren W; Crews, David

    2014-07-01

    The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat "old wine in new bottles" and represents a reformulation of the old debate of preformationism versus epigenesis-one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which "true" epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., "the epigenetics of cancer"). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret "sunsetting" of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic

  2. Machine learning for epigenetics and future medical applications

    OpenAIRE

    Holder, Lawrence B.; Haque, M. Muksitul; Skinner, Michael K.

    2017-01-01

    ABSTRACT Understanding epigenetic processes holds immense promise for medical applications. Advances in Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets associated with the germline transmission of epigenetic transgenerational inheritance of disease and novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems w...

  3. Epigenetic game theory and its application in plants. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Zhang, Yuan-Ming; Zhang, Yinghao; Guo, Mingyue

    2017-03-01

    Wang's et al. article [1] is the first to integrate game theory (especially evolutionary game theory) with epigenetic modification of zygotic genomes. They described and assessed a modeling framework based on evolutionary game theory to quantify, how sperms and oocytes interact through epigenetic processes, to determine embryo development. They also studied the internal mechanisms for normal embryo development: 1) evolutionary interactions between DNA methylation of the paternal and maternal genomes, and 2) the application of game theory to formulate and quantify how different genes compete or cooperate to regulate embryogenesis through methylation. Although it is not very comprehensive and profound regarding game theory modeling, this article bridges the gap between evolutionary game theory and the epigenetic control of embryo development by powerful ordinary differential equations (ODEs). The epiGame framework includes four aspects: 1) characterizing how epigenetic game theory works by the strategy matrix, in which the pattern and relative magnitude of the methylation effects on embryogenesis, are described by the cooperation and competition mechanisms, 2) quantifying the game that the direction and degree of P-M interactions over embryo development can be explained by the sign and magnitude of interaction parameters in model (2), 3) modeling epigenetic interactions within the morula, especially for two coupled nonlinear ODEs, with explicit functions in model (4), which provide a good fit to the observed data for the two sexes (adjusted R2 = 0.956), and 4) revealing multifactorial interactions in embryogenesis from the coupled ODEs in model (2) to triplet ODEs in model (6). Clearly, this article extends game theory from evolutionary game theory to epigenetic game theory.

  4. Epigenetics of human asthma and allergy: promises to keep.

    Science.gov (United States)

    Devries, Avery; Vercelli, Donata

    2013-09-01

    The interest in asthma epigenetics is high because epigenetic mechanisms likely contribute to the environmental origins of the disease and its phenotypic variability. This review presents the main findings of asthma epigenetics and the challenges that still delay progress. We examined the current literature on asthma epigenetics (31 reviews and 25 original data publications). We focused on DNA methylation studies in populations. Both genome-wide and candidate gene studies have explored DNA methylation in allergic disease. Genome-wide studies ask whether and which regions of the genome are differentially methylated in relation to the phenotype of interest. Identification of such regions provides clues about the identity of the genes, pathways and networks underpinning a phenotype and connects these networks to the phenotype through epigenetic mechanisms. Candidate gene studies examine DNA methylation in genes chosen because of their known or hypothesized role in immunity, responses to environmental stimuli or disease pathogenesis. Most existing studies in asthma and allergy focused on candidate genes involved in the response to environmental pollutants. Asthma epigenetics is still in its infancy. The paucity of primary literature originates from methodological and analytical challenges of genome-wide studies, the difficulties in interpreting small differences in DNA methylation, and the need to develop robust bioinformatic tools for pathway, network and system analyses of epigenetic data. Once these challenges have been overcome, epigenetic studies will likely provide important insights about the inception and pathogenesis of allergic disease and will help define disease endotypes.

  5. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility.

    Science.gov (United States)

    Nilsson, Eric E; Skinner, Michael K

    2015-01-01

    Environmental insults, such as exposure to toxicants or nutritional abnormalities, can lead to epigenetic changes that are in turn related to increased susceptibility to disease. The focus of this review is on the transgenerational inheritance of such epigenetic abnormalities (epimutations), and how it is that these inherited epigenetic abnormalities can lead to increased disease susceptibility, even in the absence of continued environmental insult. Observations of environmental toxicant specificity and exposure-specific disease susceptibility are discussed. How epimutations are transmitted across generations and how epigenetic changes in the germline are translated into an increased disease susceptibility in the adult is reviewed with regard to disease etiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Epigenetics and Child Psychiatry: Ethical and Legal Issues.

    Science.gov (United States)

    Thomas, Christopher R

    2015-10-01

    Epigenetics has the potential to revolutionize diagnosis and treatment in psychiatry, especially child psychiatry, as it may offer the opportunity for early detection and prevention, as well as development of new treatments. As with the previous introduction of genetic research in psychiatry, there is also the problem of unrealistic expectations and new legal and ethical problems. This article reviews the potential contributions and problems of epigenetic research in child psychiatry. Previous legal and ethical issues in genetic research serve as a guide to those in epigenetic research. Recommendations for safeguards and guidelines on the use of epigenetics with children and adolescents are outlined based on the identified issues. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.

    Science.gov (United States)

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong

    2018-02-01

    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  8. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  9. Advances on research epigenetic change of hybrid and polyploidy ...

    African Journals Online (AJOL)

    A large proportion of these variations are epigenetic in nature. Epigenetic can be defined as a change of the study in the regulation of gene activity and expression that are not driven by gene sequence information. However, the ramifications of epigenetic in plant biology are immense, yet unappreciated. In contrast to the ...

  10. Re: Epigenetics of Cellular Reprogramming

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-12-01

    Full Text Available EDITORIAL COMMENT Cells have some specific molecular and physiological properties that act their functional process. However, many cells have an ability of efficient transition from one type to another. This ability is named plasticity. This process occurs due to epigenetic reprogramming that involves changes in transcription and chromatin structure. Some changes during reprogramming that have been identified in recent years as genomic demethylation (both histone and DNA, histone acetylation and loss of heterochromatin during the development of many diseases such as infertility and cancer progression. In this review, the authors focused on the latest work addressing the mechanisms surrounding the epigenetic regulation of various types of reprogramming, including somatic cell nuclear transfer, cell fusion and transcription factor- and microRNA-induced pluripotency. There are many responsible factors such as genes, cytokines, proteins, co-factors (i.e. vitamin C in this local area network. The exact mechanisms by which these changes are achieved and the detailed interplay between the players responsible, however, remain relatively unclear. In the treatment of diseases, such as infertility, urooncology, reconstructive urology, etc., epigenetic changes and cellular reprogramming will be crucial in the near future. Central to achieving that goal is a more thorough understanding of the epigenetic state of fully reprogrammed cells. By the progress of researches on this topic, new treatment modalities will be identified for these diseases.

  11. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease.

    Science.gov (United States)

    Martos, Suzanne N; Tang, Wan-Yee; Wang, Zhibin

    2015-07-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. What obesity research tells us about epigenetic mechanisms

    OpenAIRE

    Youngson, Neil A.; Morris, Margaret J.

    2013-01-01

    The pathophysiology of obesity is extremely complex and is associated with extensive gene expression changes in tissues throughout the body. This situation, combined with the fact that all gene expression changes are thought to have associated epigenetic changes, means that the links between obesity and epigenetics will undoubtedly be vast. Much progress in identifying epigenetic changes induced by (or inducing) obesity has already been made, with candidate and genome-wide approaches. These d...

  13. Design of small molecule epigenetic modulators.

    Science.gov (United States)

    Pachaiyappan, Boobalan; Woster, Patrick M

    2014-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be categorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Computer-Aided Drug Design in Epigenetics

    Science.gov (United States)

    Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng

    2018-03-01

    Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.

  15. Computer-Aided Drug Design in Epigenetics

    Science.gov (United States)

    Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng

    2018-01-01

    Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field. PMID:29594101

  16. Epigenetics in adipose tissue, obesity, weight loss, and diabetes.

    Science.gov (United States)

    Martínez, J Alfredo; Milagro, Fermín I; Claycombe, Kate J; Schalinske, Kevin L

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them.

  17. Epigenetic information in gametes: Gaming from before fertilization. Comment on ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Shi, Junchao; Zhang, Xudong; Liu, Ying; Chen, Qi

    2017-03-01

    In their interesting article [1] Wang et al. proposed a mathematical model based on evolutionary game theory [2] to tackle the fundamental question in embryo development, that how sperm and egg interact with each other, through epigenetic processes, to form a zygote and direct successful embryo development. This work is based on the premise that epigenetic reprogramming (referring to the erasure and reconstruction of epigenetic marks, such as DNA methylation and histone modifications) after fertilization might be of paramount importance to maintain the normal development of embryos, a premise we fully agree, given the compelling experimental evidence reported [3]. Wang et al. have specifically chosen to employ the well-studied DNA methylation reprogramming process during mammalian early embryo development, as a basis to develop their mathematical model, namely epigenetic game theory (epiGame). They concluded that the DNA methylation pattern in mammalian early embryo could be formulated and quantified, and their model can be further used to quantify the interactions, such as competition and/or cooperation of expressed genes that maximize the fitness of embryos. The efforts by Wang et al. in quantitatively and systematically analyzing the beginning of life apparently hold value and represent a novel direction for future embryo development research from both theoretical and experimental biologists. On the other hand, we see their theory still at its infancy, because there are plenty more parameters to consider and there are spaces for debates, such as the cases of haploid embryo development [4]. Here, we briefly comment on the dynamic process of epigenetic reprogramming that goes beyond DNA methylation, a dynamic interplay that involves histone modifications, non-coding RNAs, transposable elements et al., as well as the potential input of the various types of 'hereditary' epigenetic information in the gametes - a game that has started before the fertilization.

  18. Epigenetics of host-pathogen interactions: the road ahead and the road behind.

    Directory of Open Access Journals (Sweden)

    Elena Gómez-Díaz

    Full Text Available A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer. With the (partial elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host-pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host-pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host-pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host-pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host-pathogen interactions.

  19. Applications and extensions of epigenetic game theory. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Wang, Yaqun

    2017-03-01

    The authors are to be congratulated for a thought-provoking article [1], which reviews the epigenetic game theory (epiGame) that utilizes differential equations to study the epigenetic control of embryo development. It is a novel application of evolutionary game theory and provides biology researchers with useful methodologies to address scientific questions related to biological coordination of competition and cooperation.

  20. Epigenetic changes detected in micropropagated hop plants.

    Science.gov (United States)

    Peredo, Elena L; Arroyo-García, Rosa; Revilla, M Angeles

    2009-07-01

    Micropropagation is a widely used technique in hops (Humulus lupulus L.). However, to the best of our knowledge, the genetic and epigenetic stability of the microplants has never been tested before. In the present study, two hop accessions were established in vitro and micropropagated for 2 years. The genetic and epigenetic stability of the in vitro plants was analyzed with several molecular techniques: random amplified DNA polymorphism (RAPD), retrotransposon microsatellite amplified polymorphism (REMAP), and methylation-sensitive amplification polymorphism (MSAP). No genetic variation among control and treated plants was found, even after 12 cycles of micropropagation. Epigenetic variation was detected, first, when field and in vitro samples were compared. Nearly a 30% of the detected fragments presented the same pattern of alterations in all the vitroplants. Second, lower levels of epigenetic variation were detected among plants from the different subcultures. Part of this detected variation seemed to be accumulated along the 12 sequential subcultures tested.

  1. Machine learning for epigenetics and future medical applications.

    Science.gov (United States)

    Holder, Lawrence B; Haque, M Muksitul; Skinner, Michael K

    2017-07-03

    Understanding epigenetic processes holds immense promise for medical applications. Advances in Machine Learning (ML) are critical to realize this promise. Previous studies used epigenetic data sets associated with the germline transmission of epigenetic transgenerational inheritance of disease and novel ML approaches to predict genome-wide locations of critical epimutations. A combination of Active Learning (ACL) and Imbalanced Class Learning (ICL) was used to address past problems with ML to develop a more efficient feature selection process and address the imbalance problem in all genomic data sets. The power of this novel ML approach and our ability to predict epigenetic phenomena and associated disease is suggested. The current approach requires extensive computation of features over the genome. A promising new approach is to introduce Deep Learning (DL) for the generation and simultaneous computation of novel genomic features tuned to the classification task. This approach can be used with any genomic or biological data set applied to medicine. The application of molecular epigenetic data in advanced machine learning analysis to medicine is the focus of this review.

  2. The epigenetics of nuclear envelope organization and disease

    International Nuclear Information System (INIS)

    Schirmer, Eric C.

    2008-01-01

    Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics

  3. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  4. Epigenetics in mammary gland biology and cancer

    Science.gov (United States)

    In the post genome era, the focus has shifted to understanding the mechanisms that regulate the interpretation of the genetic code. "Epigenetics" as a research field is taking center stage. Epigenetics is a term which is now being used throughout the scientific community in different contexts from p...

  5. Epigenetic modifications: An important mechanism in diabetic disturbances.

    Science.gov (United States)

    Rorbach-Dolata, Anna; Kubis, Adriana; Piwowar, Agnieszka

    2017-11-29

    In the search for explanations of diabetes pathomechanisms, especially the development of its vascular complications (micro- and macrovascular ), although current, good metabolic control of diabetes, attention was drawn to the role of epigenetic inheritance associated with epigenetic modifications of histone proteins and DNA in hyperglycemia conditions. This study showed the significant role of DNA methylation and histone epigenetic modifications (a different nature and a different degree) in the transmission of information that is not connected with gene inheritance but concerns the persistent changes induced by hyperglycemia..Attention was paid to the role of DNA methylation of pancreatic cells in the pathogenesis of type 1 diabetes, but also type 2. The important role of DNA methylation changes in a so-called intrauterine growth restriction (IUGR) as reason of subsequent development of diabetes was particularly emphasized. In the pathogenesis of type 2 diabetes and its complications, especially microvascular complications, the greatest share and importance of epigenetic modifications on mitochondrial DNA metylation are the most important. The multidirectionality Complicaand complexity of epigenetic modifications of histone proteins indicate their importance in the development of diabetic disturbances. An especially important role is attributed to methylation and acetylation of histone proteins, in particular on arginine and lysine, whose changes occur most frequently. Moreover, epigenetic modifications of the enzymes, especially methylases, responsible for these processes are the underlying. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may be a useful prognostic biomarker of susceptibility to the disease development in the future. Moreover, they may become a potential target for future therapeutic interventions for clinical disorders in diabetes.

  6. Epigenetic alteration of sedimentary rocks at hydrogenic uranium deposit

    International Nuclear Information System (INIS)

    Ding Wanlie; Shen Kefeng

    2001-01-01

    The author introduces the concept, the recognition criteria, the genesis and classification of the epigenetic alteration of sedimentary rocks in brief, and expounds the mineral-geochemical indications and characteristics of oxidation and reduction alterations in different geochemical zones in detail, and proposes the two models of ore-controlling zonation of epigenetic alteration. The authors finally introduce research methods of epigenetic alteration

  7. Epigenetics Europe conference. Munich, Germany, 8-9 September 2011.

    Science.gov (United States)

    Jeltsch, Albert

    2011-12-01

    At the Epigenetics Europe conference in Munich, Germany, held on 8-9 September 2011, 19 speakers from different European countries were presenting novel data and concepts on molecular epigenetics. The talks were mainly focused on questions of the generation, maintenance, flexibility and erasure of DNA methylation patterns in context of other epigenetic signals like histone tail modifications and ncRNAs.

  8. Computer-Aided Drug Design in Epigenetics

    Directory of Open Access Journals (Sweden)

    Wenchao Lu

    2018-03-01

    Full Text Available Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.

  9. Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: "Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition" by Qian Wang et al.

    Science.gov (United States)

    Zhang, Le; Zhang, Shaoxiang

    2017-03-01

    A body of research [1-7] has already shown that epigenetic reprogramming plays a critical role in maintaining the normal development of embryos. However, the mechanistic quantitation of the epigenetic interactions between sperms and oocytes and the related impact on embryo development are still not clear [6,7]. In this study, Wang et al., [8] develop a modeling framework that addresses this question by integrating game theory and the latest discoveries of the epigenetic control of embryo development. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Transgenerational stress-adaption: an opportunity for ecological epigenetics.

    Science.gov (United States)

    Weinhold, Arne

    2018-01-01

    In the recent years, there has been considerable interest to investigate the adaptive transgenerational plasticity of plants and how a "stress memory" can be transmitted to the following generation. Although, increasing evidence suggests that transgenerational adaptive responses have widespread ecological relevance, the underlying epigenetic processes have rarely been elucidated. On the other hand, model plant species have been deeply investigated in their genome-wide methylation landscape without connecting this to the ecological reality of the plant. What we need is the combination of an ecological understanding which plant species would benefit from transgenerational epigenetic stress-adaption in their natural habitat, combined with a deeper molecular analysis of non-model organisms. Only such interdisciplinary linkage in an ecological epigenetic study could unravel the full potential that epigenetics could play for the transgenerational stress-adaption of plants.

  11. Epigenetic control of CD8+ T cell differentiation.

    Science.gov (United States)

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  12. Erwin Schroedinger, Francis Crick and epigenetic stability

    Directory of Open Access Journals (Sweden)

    Ogryzko Vasily V

    2008-04-01

    Full Text Available Abstract Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  13. Erwin Schroedinger, Francis Crick and epigenetic stability.

    Science.gov (United States)

    Ogryzko, Vasily V

    2008-04-17

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  14. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  15. Epigenetics and human obesity.

    Science.gov (United States)

    van Dijk, S J; Molloy, P L; Varinli, H; Morrison, J L; Muhlhausler, B S

    2015-01-01

    Recent technological advances in epigenome profiling have led to an increasing number of studies investigating the role of the epigenome in obesity. There is also evidence that environmental exposures during early life can induce persistent alterations in the epigenome, which may lead to an increased risk of obesity later in life. This paper provides a systematic review of studies investigating the association between obesity and either global, site-specific or genome-wide methylation of DNA. Studies on the impact of pre- and postnatal interventions on methylation and obesity are also reviewed. We discuss outstanding questions, and introduce EpiSCOPE, a multidisciplinary research program aimed at increasing the understanding of epigenetic changes in emergence of obesity. An electronic search for relevant articles, published between September 2008 and September 2013 was performed. From the 319 articles identified, 46 studies were included and reviewed. The studies provided no consistent evidence for a relationship between global methylation and obesity. The studies did identify multiple obesity-associated differentially methylated sites, mainly in blood cells. Extensive, but small, alterations in methylation at specific sites were observed in weight loss intervention studies, and several associations between methylation marks at birth and later life obesity were found. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Eventually this may help in predicting an individual's obesity risk at a young age and opens possibilities for introducing targeted prevention strategies. It has also become clear that several epigenetic marks are modifiable, by changing the exposure in utero, but also by lifestyle changes in adult life, which implies that there is the potential for interventions to be introduced in postnatal life to modify

  16. [Epigenetics 2.0: The multiple faces of the genome].

    Science.gov (United States)

    Rubinstein, Marcelo

    2016-09-01

    Epigenetics is the branch of genetics that studies the dynamic relationship between stable genotypes and varying phenotypes. To this end, epigenetics aims to discover the molecular mechanisms that explain how different nutrients and hormones, environmental changes, and emotional, social and cognitive experiences modify gene expression and behaviors, even permanently so. Psychiatry has learned that diseases with strong genetic predisposition, such as schizophrenia, show a concordance of around 50% between monozygotic twins, thus evidencing the importance of the genetic background and the presence of environmental variables that stimulate or block phenotypic development. The interest in epigenetics has increased during the last few years due to fundamental discoveries made in molecular and behavioral genetics, although within this framework factual knowledge coexists with fictional expectations and wrong concepts. Is it possible that epigenetic variants modify temperament and human behavior? May abused or neglected children develop long-lasting epigenetic marks in their DNA? May bipolar states correlate with different epigenetic signatures? Studying these subjects in not an easy task, but experiments performed in lab animals suggest that these conjectures are reasonable, although there is still a long distance between hypotheses and scientifically proven facts.

  17. Epigenetics and obesity: a relationship waiting to be explained.

    Science.gov (United States)

    Symonds, Michael E; Budge, Helen; Frazier-Wood, Alexis C

    2013-01-01

    Obesity can have multifactorial causes that may change with development and are not simply attributable to one's genetic constitution. To date, expensive and laborious genome-wide association studies have only ascribed a small contribution of genetic variants to obesity. The emergence of the field of epigenetics now offers a new paradigm with which to study excess fat mass. Currently, however, there are no compelling epigenetic studies to explain the role of epigenetics in obesity, especially from a developmental perspective. It is clear that until there are advances in the understanding of the main mechanisms by which different fat types, i.e. brown, beige, and white, are established and how these differ between depots and species, population-based studies designed to determine specific aspects of epigenetics will be potentially limited. Obesity is a slowly evolving condition that is not simply explained by changes in the intake of one macronutrient. The latest advances in epigenetics, coupled with the establishment of relevant longitudinal models of obesity, which incorporate functionally relevant end points, may now permit the precise contribution of epigenetic modifications to excess fat mass to be effectively studied. © 2013 S. Karger AG, Basel.

  18. Study on epigenetic alterations of ore-enclosing sedimentary rocks

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Komarova, G.V.

    1985-01-01

    Epigenetic alterations of sedimentary rocks under effect of exogenous undeground waters of various types: near-surface, ground, stratum, and deep circulation waters, are considered. Association to postsedimentary tectonic structures, confinement of neogenesis to areas of high permeability (porous or crack one), geochemical contradictions between mineral neogenis and facial outlook of deposits, noncoincidence of variability gradient of authigenous mineral associations with variability of primary facial signs of deposits, regular position of mineral formations and ore concentrations in epigenetic mineralogo-geochemical zonation are referred to epigenetic criteria. The complex of epigenetic alterations accompanying mineralization is frequently used as a search sign of uranium deposit of a certain type

  19. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells

    DEFF Research Database (Denmark)

    Kristensen, Dina Graae; Skakkebæk, Niels E; Rajpert-De Meyts, Ewa

    2013-01-01

    in humans. However, the common precursor of testicular cancers- the carcinoma in situ (CIS) cell- is thought to be an arrested foetal germ cell. Therefore studies of CIS cells may leverage information on human foetal germ cell development and, in particular, when neoplastic transformation is initiated....... In this review, we will focus on current knowledge of the epigenetics of CIS cells and relate it to the epigenetic changes occurring in early developing germ cells of mice during specification, migration and colonization. We will focus on DNA methylation and some of the best studied histone modifications like H3...... event in the initiation of testicular germ cell cancer. Even though only sparse information is available on epigenetic cues in human foetal germ cells, these indicate that the developmental patterns differ from the findings in mice and emphasize the need for further studies of foetal germ cell...

  20. Mapping the Technological Knowledge Landscape: The Case of Epigenetics.

    Science.gov (United States)

    Song, Chie Hoon; Yoon, Janghyeok; Ko, Namuk; Han, Jeung-Whan

    2016-01-01

    Epigenetics is a biomedical novelty in drug design and disease control whose mechanisms play a significant role in transferring environmental signals to determine patterns of gene expression. Systematic identification of the main trends in epigenetics patenting activity provides insights into fundamental building blocks of this research field and policy guidance to funding agencies. The review aims at providing a comprehensive overview of the research and development trend in epigenetics by mapping the knowledge structure in patent landscape. Citation-based patent network analysis was performed to visualize the technological landscape. We focus on identifying the structure of the knowledge networks to study the technological trajectories. Patents that play an integral part in the dissemination and bridging of the technical knowledge are located and ranked. The latent topics in patent documents are highlighted by means of a topic modeling technique. Visualization of the patent network results in four main clusters. The first two clusters deal with the inhibition of histone deacetylase (HDAC). The third cluster covers inventions related to DNA methylation, which represents an epigenetic signaling tool that cells use to control gene expression. The fourth cluster encompasses computing systems and data mining techniques for identifying combinations of genetic and epigenetic attributes related to health and lifestyle improvements. We are in the growth period of gathering knowledge on various mechanisms of epigenetic regulation. There is enormous potential for improving healthcare through better understanding of the interrelationships between epigenetic control of gene expression and compounds that trigger these modifications.

  1. An emerging role for epigenetic factors in relation to executive function.

    Science.gov (United States)

    Ibrahim, Omar; Sutherland, Heidi G; Haupt, Larisa M; Griffiths, Lyn R

    2017-11-20

    Executive function (EF) includes a range of decision-making and higher-order thinking processes. Although the genetic basis of EF has been studied and reviewed, epigenetic factors that influence EF are an emerging field of interest; here, we summarize the current research. Work relating to different word combinations of 'Executive Function' and 'Epigenetic' was identified through three academic search directories. Inclusion criteria were human populations, EF testing, epigenetic testing or genotyping related to epigenetic regulation. To date, 14 studies have been reported, which examined epigenetic variation, in particular DNA methylation, in relation to EF assessments conducted in human subjects, with some positive associations found. Study populations included healthy cohorts, as well as psychiatric and neurological patient cohorts. Epigenetics in relation to EF is an emerging area of investigation with relatively few studies to date. Most assay DNA methylation, with some studies suggesting that epigenetic factors can be associated with EF. EF constitutes complex phenotypic and genotypic correlates that differ because of cohort attributes as well as the targeted task examined. Larger studies are required to further elucidate the contribution of epigenetic factors to EF with the identification of epigenetic modifications influencing EF having potential to provide new biomarkers for neuropsychiatric disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  2. Epigenetic effects of human breast milk.

    Science.gov (United States)

    Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello

    2014-04-24

    A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant's health and his later life.

  3. Epigenetic Effects of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2014-04-01

    Full Text Available A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life.

  4. Epigenetic Markers of Renal Function in African Americans

    Directory of Open Access Journals (Sweden)

    Samantha M. Bomotti

    2013-01-01

    Full Text Available Chronic kidney disease (CKD is an increasing concern in the United States due to its rapidly rising prevalence, particularly among African Americans. Epigenetic DNA methylation markers are becoming important biomarkers of chronic diseases such as CKD. To better understand how these methylation markers play a role in kidney function, we measured 26,428 DNA methylation sites in 972 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA study. We then evaluated (1 whether epigenetic markers are associated with estimated glomerular filtration rate (eGFR, (2 whether the significantly associated markers are also associated with traditional risk factors and/or novel biomarkers for eGFR, and (3 how much additional variation in eGFR is explained by epigenetic markers beyond established risk factors and biomarkers. The majority of methylation markers most significantly associated with eGFR (24 out of the top 30 appeared to function, at least in part, through pathways related to aging, inflammation, or cholesterol. However, six epigenetic markers were still able to significantly predict eGFR after adjustment for other risk factors. This work shows that epigenetic markers may offer valuable new insight into the complex pathophysiology of CKD in African Americans.

  5. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    Science.gov (United States)

    Hopp, Lydia; Nersisyan, Lilit; Löffler-Wirth, Henry; Arakelyan, Arsen; Binder, Hans

    2015-01-01

    We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation. PMID:26506391

  6. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    Directory of Open Access Journals (Sweden)

    Lydia Hopp

    2015-10-01

    Full Text Available We systematically studied the expression of more than fifty histone and DNA (demethylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.

  7. Clinical implications of epigenetic regulation in oral cancer.

    Science.gov (United States)

    D'Souza, Wendy; Saranath, Dhananjaya

    2015-12-01

    Oral cancer is a high incidence cancer which is of major public health concern in India being the most common cancer in males and fifth most common cancer in females in India, contributing to 26% of the global oral cancer burden. The major risk factors of oral cancer are tobacco, alcohol and high risk Human Papilloma Virus type 16/18. However, only 3-12% of the high risk individuals with dysplasia develop oral cancer. Thus, individual genomic variants representing the genomic constitution and epigenetic alterations play a critical role in the development of oral cancer. Extensive epigenetic studies on the molecular lesions including oncogenes, tumor suppressor genes, genes associated with apoptosis, DNA damage repair have been reported. The current review highlights epigenetic regulation with a focus on molecular biomarkers and epidrug therapy in oral cancer. Epigenetic regulation by hypermethylation, histone modifications and specific microRNAs are often associated with early events and advanced stages in oral cancer, and thus indicate epidrug therapy for intervention. The presence of epigenetic marks in oral lesions, cancers and tumor associated mucosa emphasizes indications as biomarkers and epidrugs with therapeutic potential for better patient management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Endocrine control of epigenetic mechanisms in male reproduction.

    Science.gov (United States)

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  9. Epigenetic drift in the aging genome

    DEFF Research Database (Denmark)

    Tan, Qihua; Heijmans, Bastiaan T; Hjelmborg, Jacob V B

    2016-01-01

    for 10 years (age at intake 73-82 years). Biological pathway analysis and survival analysis were also conducted on CpGs showing longitudinal change in their DNA-methylation levels. Classical twin models were fitted to each CpG site to estimate the genetic and environmental effects on DNA...... × 10-07. Pathway analysis of genes linked to these CpGs identified biologically meaningful gene-sets involved in cellular-signalling events and in transmission across chemical synapses, which are important molecular underpinnings of aging-related degenerative disorders. CONCLUSION: Our epigenome......BACKGROUND: Current epigenetic studies on aging are dominated by the cross-sectional design that correlates subjects' ages or age groups with their measured epigenetic profiles. Such studies have been more aimed at age prediction or building up the epigenetic clock of age rather than focusing...

  10. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  11. Epigenetics application in the diagnosis and treatment of bladder cancer.

    Science.gov (United States)

    Harb-de la Rosa, Alfredo; Acker, Matthew; Kumar, Raj A; Manoharan, Murugesan

    2015-10-01

    Bladder cancer is the sixth most common cancer in the Western world. Patients with bladder cancer require close monitoring, which may include frequent cystoscopy and urine cytology. Such monitoring results in significant health care cost. The application of epigenetics may allow for a risk adapted approach and more cost-effective method of monitoring. A number of epigenetic changes have been described for many cancer sites, including the urinary bladder. In this review, we discuss the use of epigenetics in bladder cancer and the potential diagnostic and therapeutic applications. A comprehensive search of the English medical literature was conducted in PubMed using the terms microRNA regulation, DNA methylation, histone modification and bladder cancer. The most important epigenetic changes include DNA methylation, histone modification and microRNA regulation. Both DNA hypomethylation and hypermethylation have been associated with higher rate of cancer. The association of epigenetic changes with bladder cancer has led to the research of its diagnostic and prognostic implications as well as to the development of novel drugs to target these changes with the aim of achieving a survival benefit. Recently, epigenetics has been shown to play a much greater role than previously anticipated in the initiation and propagation of many tumors. The use of epigenetics for the diagnosis and treatment of bladder cancer is an evolving and promising field. The possibility of reversing epigenetic changes may facilitate additional cancer treatment options in the future.

  12. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Thomas A. Milne

    2012-09-01

    Full Text Available Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  13. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ballabio, Erica; Milne, Thomas A., E-mail: thomas.milne@imm.ox.ac.uk [MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS (United Kingdom)

    2012-09-10

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  14. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    International Nuclear Information System (INIS)

    Ballabio, Erica; Milne, Thomas A.

    2012-01-01

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis

  15. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  16. Imbalanced class learning in epigenetics.

    Science.gov (United States)

    Haque, M Muksitul; Skinner, Michael K; Holder, Lawrence B

    2014-07-01

    In machine learning, one of the important criteria for higher classification accuracy is a balanced dataset. Datasets with a large ratio between minority and majority classes face hindrance in learning using any classifier. Datasets having a magnitude difference in number of instances between the target concept result in an imbalanced class distribution. Such datasets can range from biological data, sensor data, medical diagnostics, or any other domain where labeling any instances of the minority class can be time-consuming or costly or the data may not be easily available. The current study investigates a number of imbalanced class algorithms for solving the imbalanced class distribution present in epigenetic datasets. Epigenetic (DNA methylation) datasets inherently come with few differentially DNA methylated regions (DMR) and with a higher number of non-DMR sites. For this class imbalance problem, a number of algorithms are compared, including the TAN+AdaBoost algorithm. Experiments performed on four epigenetic datasets and several known datasets show that an imbalanced dataset can have similar accuracy as a regular learner on a balanced dataset.

  17. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  18. Rice epigenomics and epigenetics: challenges and opportunities.

    Science.gov (United States)

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. 2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanie Lee

    2009-08-14

    Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditional and new model organisms are selected from plants, fungi, and metazoans.

  20. Dietary factors and epigenetic regulation for prostate cancer prevention.

    Science.gov (United States)

    Ho, Emily; Beaver, Laura M; Williams, David E; Dashwood, Roderick H

    2011-11-01

    The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.

  1. Distinguishing epigenetic marks of developmental and imprinting regulation

    Directory of Open Access Journals (Sweden)

    McEwen Kirsten R

    2010-01-01

    Full Text Available Abstract Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two

  2. Nutritional influences on epigenetics and age-related disease

    Science.gov (United States)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  3. Theory of epigenetic coding.

    Science.gov (United States)

    Elder, D

    1984-06-07

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.

  4. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics

    Directory of Open Access Journals (Sweden)

    Dipanjan Bhattacharjee

    2016-01-01

    Full Text Available Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person’s individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind’s fight against cancer.

  5. Epigenetics in Medullary Thyroid Cancer: From Pathogenesis to Targeted Therapy.

    Science.gov (United States)

    Vitale, Giovanni; Dicitore, Alessandra; Messina, Erika; Sciammarella, Concetta; Faggiano, Antongiulio; Colao, Annamaria

    2016-01-01

    Medullary thyroid carcinoma (MTC) originates from the parafollicular C cells of the thyroid gland. Mutations of the RET proto-oncogene are implicated in the pathogenesis of MTC. Germline activating mutations of this gene have been reported in about 88-98% of familial MTCs, while somatic mutations of RET gene have been detected in about 23-70% of sporadic forms. Although these genetic events are well characterized, much less is known about the role of epigenetic abnormalities in MTC. The present review reports a detailed description of epigenetic abnormalities (DNA methylation, histone modifications and miRNA profile), probably involved in the pathogenesis and progression of MTC. A systematic review was performed using Pubmed and Google patents databases. We report the current understanding of epigenetic patterns in MTC and discuss the potential use of current knowledge in designing novel therapeutic strategies through epigenetic drugs, focusing on recent patents in this field. Taking into account the reversibility of epigenetic alterations and the recent development in this field, epigenetic therapy may emerge for clinical use in the near future for patients with advanced MTC.

  6. Epigenetics in schistosomes: what we know and what we need know

    Directory of Open Access Journals (Sweden)

    Liu Weiwei

    2016-11-01

    Full Text Available Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.

  7. Dynamic epigenetic responses to muscle contraction

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Zierath, Juleen R; Barrès, Romain

    2014-01-01

    Skeletal muscle is a malleable organ that responds to a single acute exercise bout by inducing the expression of genes involved in structural, metabolic and functional adaptations. Several epigenetic mechanisms including histone H4 deacetylation and loss of promoter methylation have been implicated...... in modifying exercise-responsive gene expression. These transient changes suggest that epigenetic mechanisms are not restricted to early stages of human development but are broad dynamic controllers of genomic plasticity in response to environmental factors....

  8. Epigenetic polypharmacology: from combination therapy to multitargeted drugs.

    Science.gov (United States)

    de Lera, Angel R; Ganesan, A

    The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed.

  9. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes12

    Science.gov (United States)

    Martínez, J. Alfredo; Milagro, Fermín I.; Claycombe, Kate J.; Schalinske, Kevin L.

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them. PMID:24425725

  10. The epigenetic bottleneck of neurodegenerative and psychiatric diseases.

    Science.gov (United States)

    Sananbenesi, Farahnaz; Fischer, Andre

    2009-11-01

    The orchestrated expression of genes is essential for the development and survival of every organism. In addition to the role of transcription factors, the availability of genes for transcription is controlled by a series of proteins that regulate epigenetic chromatin remodeling. The two most studied epigenetic phenomena are DNA methylation and histone-tail modifications. Although a large body of literature implicates the deregulation of histone acetylation and DNA methylation with the pathogenesis of cancer, recently epigenetic mechanisms have also gained much attention in the neuroscientific community. In fact, a new field of research is rapidly emerging and there is now accumulating evidence that the molecular machinery that regulates histone acetylation and DNA methylation is intimately involved in synaptic plasticity and is essential for learning and memory. Importantly, dysfunction of epigenetic gene expression in the brain might be involved in neurodegenerative and psychiatric diseases. In particular, it was found that inhibition of histone deacetylases attenuates synaptic and neuronal loss in animal models for various neurodegenerative diseases and improves cognitive function. In this article, we will summarize recent data in the novel field of neuroepigenetics and discuss the question why epigenetic strategies are suitable therapeutic approaches for the treatment of brain diseases.

  11. Epigenetics: An Emerging Framework for Advanced Practice Psychiatric Nursing.

    Science.gov (United States)

    DeSocio, Janiece E

    2016-07-01

    The aims of this paper are to synthesize and report research findings from neuroscience and epigenetics that contribute to an emerging explanatory framework for advanced practice psychiatric nursing. Discoveries in neuroscience and epigenetics reveal synergistic mechanisms that support the integration of psychotherapy, psychopharmacology, and psychoeducation in practice. Advanced practice psychiatric nurses will benefit from an expanded knowledge base in neuroscience and epigenetics that informs and explains the scientific rationale for our integrated practice. © 2015 Wiley Periodicals, Inc.

  12. Multiple levels of epigenetic control for bone biology and pathology.

    Science.gov (United States)

    Montecino, Martin; Stein, Gary; Stein, Janet; Zaidi, Kaleem; Aguilar, Rodrigo

    2015-12-01

    Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Prostate Cancer: Epigenetic Alterations, Risk Factors, and Therapy

    Directory of Open Access Journals (Sweden)

    Mankgopo M. Kgatle

    2016-01-01

    Full Text Available Prostate cancer (PCa is the most prevalent urological cancer that affects aging men in South Africa, and mechanisms underlying prostate tumorigenesis remain elusive. Research advancements in the field of PCa and epigenetics have allowed for the identification of specific alterations that occur beyond genetics but are still critically important in the pathogenesis of tumorigenesis. Anomalous epigenetic changes associated with PCa include histone modifications, DNA methylation, and noncoding miRNA. These mechanisms regulate and silence hundreds of target genes including some which are key components of cellular signalling pathways that, when perturbed, promote tumorigenesis. Elucidation of mechanisms underlying epigenetic alterations and the manner in which these mechanisms interact in regulating gene transcription in PCa are an unmet necessity that may lead to novel chemotherapeutic approaches. This will, therefore, aid in developing combination therapies that will target multiple epigenetic pathways, which can be used in conjunction with the current conventional PCa treatment.

  14. Nanotechnology Approaches to Studying Epigenetic Changes in Cancer

    Science.gov (United States)

    Riehn, Robert

    2011-03-01

    Placing polyelectrolytes into confined geometries has a profound effect on their molecular configuration. For instance, placing long DNA molecules into channels with a cross-section of about 100 nm 2 stretches them out to about 70% of their contour length. We are using this effect to map epigenetic changes on single DNA and chromatin strands. This mapping on single molecules becomes central in the study of the heterogeneity of cell population in cancer, since rapid change of epigenetic makeup, propagated through rare cancer stem cells, is a hallmark of its progression. We demonstrate the basic building blocks for the single-molecule epigenetic analysis of genomic sized DNA. In particular, we have achieved the mapping of methylated regions in DNA with heterogeneous 5-methyl cytosine modification using a specific fluorescent marker. We further show that chromatin with an intact histone structure can be stretched similar to DNA, and that the epigenetic state of histone tails can be detected using fluorescent antibodies.

  15. Epigenetics of prostate cancer and the prospect of identification of novel drug targets by RNAi screening of epigenetic enzymes.

    Science.gov (United States)

    Björkman, Mari; Rantala, Juha; Nees, Matthias; Kallioniemi, Olli

    2010-10-01

    Alterations in epigenetic processes probably underlie most human malignancies. Novel genome-wide techniques, such as chromatin immunoprecipitation and high-throughput sequencing, have become state-of-the-art methods to map the epigenomic landscape of development and disease, such as in cancers. Despite these advances, the functional significance of epigenetic enzymes in cancer progression, such as prostate cancer, remain incompletely understood. A comprehensive mapping and functional understanding of the cancer epigenome will hopefully help to facilitate development of novel cancer therapy targets and improve future diagnostics. The authors have developed a novel cell microarray-based high-content siRNA screening technique suitable to address the putative functional role and impact of all known putative and novel epigenetic enzymes in cancer, including prostate cancer.

  16. At the Frontier of Epigenetics of Brain Sex Differences

    OpenAIRE

    Margaret M Mccarthy; Bridget M Nugent

    2015-01-01

    The notion that epigenetics may play an important role in the establishment and maintenance of sex differences in the brain has garnered great enthusiasm but the reality in terms of actual advances has been slow. Two general approaches include the comparison of a particular epigenetic mark in males vs. females and the inhibition of key epigenetic enzymes or co-factors to determine if this eliminates a particular sex difference in brain or behavior. The majority of emphasis has been on candida...

  17. Epigenetic control of plant immunity.

    Science.gov (United States)

    Alvarez, María E; Nota, Florencia; Cambiagno, Damián A

    2010-07-01

    In eukaryotic genomes, gene expression and DNA recombination are affected by structural chromatin traits. Chromatin structure is shaped by the activity of enzymes that either introduce covalent modifications in DNA and histone proteins or use energy from ATP to disrupt histone-DNA interactions. The genomic 'marks' that are generated by covalent modifications of histones and DNA, or by the deposition of histone variants, are susceptible to being altered in response to stress. Recent evidence has suggested that proteins generating these epigenetic marks play crucial roles in the defence against pathogens. Histone deacetylases are involved in the activation of jasmonic acid- and ethylene-sensitive defence mechanisms. ATP-dependent chromatin remodellers mediate the constitutive repression of the salicylic acid-dependent pathway, whereas histone methylation at the WRKY70 gene promoter affects the activation of this pathway. Interestingly, bacterial-infected tissues show a net reduction in DNA methylation, which may affect the disease resistance genes responsible for the surveillance against pathogens. As some epigenetic marks can be erased or maintained and transmitted to offspring, epigenetic mechanisms may provide plasticity for the dynamic control of emerging pathogens without the generation of genomic lesions.

  18. Epigenetics and Epigenomics of Plants.

    Science.gov (United States)

    Yadav, Chandra Bhan; Pandey, Garima; Muthamilarasan, Mehanathan; Prasad, Manoj

    2018-01-23

    The genetic material DNA in association with histone proteins forms the complex structure called chromatin, which is prone to undergo modification through certain epigenetic mechanisms including cytosine DNA methylation, histone modifications, and small RNA-mediated methylation. Alterations in chromatin structure lead to inaccessibility of genomic DNA to various regulatory proteins such as transcription factors, which eventually modulates gene expression. Advancements in high-throughput sequencing technologies have provided the opportunity to study the epigenetic mechanisms at genome-wide levels. Epigenomic studies using high-throughput technologies will widen the understanding of mechanisms as well as functions of regulatory pathways in plant genomes, which will further help in manipulating these pathways using genetic and biochemical approaches. This technology could be a potential research tool for displaying the systematic associations of genetic and epigenetic variations, especially in terms of cytosine methylation onto the genomic region in a specific cell or tissue. A comprehensive study of plant populations to correlate genotype to epigenotype and to phenotype, and also the study of methyl quantitative trait loci (QTL) or epiGWAS, is possible by using high-throughput sequencing methods, which will further accelerate molecular breeding programs for crop improvement. Graphical Abstract.

  19. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research

    Science.gov (United States)

    Pagliaroli, Luca; Vető, Borbála; Arányi, Tamás; Barta, Csaba

    2016-01-01

    Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder marked by the appearance of multiple involuntary motor and vocal tics. TS presents high comorbidity rates with other disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). TS is highly heritable and has a complex polygenic background. However, environmental factors also play a role in the manifestation of symptoms. Different epigenetic mechanisms may represent the link between these two causalities. Epigenetic regulation has been shown to have an impact in the development of many neuropsychiatric disorders, however very little is known about its effects on Tourette Syndrome. This review provides a summary of the recent findings in genetic background of TS, followed by an overview on different epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression. Epigenetic studies in other neurological and psychiatric disorders are discussed along with the TS-related epigenetic findings available in the literature to date. Moreover, we are proposing that some general epigenetic mechanisms seen in other neuropsychiatric disorders may also play a role in the pathogenesis of TS. PMID:27462201

  20. Twins for epigenetic studies of human aging and development

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; Thomassen, Mads

    2013-01-01

    Most of the complex traits including aging phenotypes are caused by the interaction between genome and environmental conditions and the interface of epigenetics may be a central mechanism. Although modern technologies allow us high-throughput profiling of epigenetic patterns already at genome level...... and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable sample of twins is helping to bridge the gap between gene activity and the environments through epigenetic mechanisms unlimited by DNA sequence variations. We propose to extend the classical twin...... design to study the aging-related molecular epigenetic phenotypes and link them with environmental exposures especially early life events. Different study designs and application issues will be highlighted and novel approaches introduced with aim at making uses of twins in assessing the environmental...

  1. The Interaction between Epigenetics, Nutrition and the Development of Cancer

    Directory of Open Access Journals (Sweden)

    Karen S. Bishop

    2015-01-01

    Full Text Available Unlike the genome, the epigenome can be modified and hence some epigenetic risk markers have the potential to be reversed. Such modifications take place by means of drugs, diet or environmental exposures. It is widely accepted that epigenetic modifications take place during early embryonic and primordial cell development, but it is also important that we gain an understanding of the potential for such changes later in life. These “later life” epigenetic modifications in response to dietary intervention are the focus of this paper. The epigenetic modifications investigated include DNA methylation, histone modifications and the influence of microRNAs. The epigenotype could be used not only to predict susceptibility to certain cancers but also to assess the effectiveness of dietary modifications to reduce such risk. The influence of diet or dietary components on epigenetic modifications and the impact on cancer initiation or progression has been assessed herein.

  2. The Real Culprit in Systemic Lupus Erythematosus: Abnormal Epigenetic Regulation

    Science.gov (United States)

    Wu, Haijing; Zhao, Ming; Chang, Christopher; Lu, Qianjin

    2015-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE. PMID:25988383

  3. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    Science.gov (United States)

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  4. Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention

    Science.gov (United States)

    Romani, Massimo; Pistillo, Maria Pia; Banelli, Barbara

    2015-01-01

    Epigenetics provides the key to transform the genetic information into phenotype and because of its reversibility it is considered an ideal target for therapeutic interventions. This paper reviews the basic mechanisms of epigenetic control: DNA methylation, histone modifications, chromatin remodeling, and ncRNA expression and their role in disease development. We describe also the influence of the environment, lifestyle, nutritional habits, and the psychological influence on epigenetic marks and how these factors are related to cancer and other diseases development. Finally we discuss the potential use of natural epigenetic modifiers in the chemoprevention of cancer to link together public health, environment, and lifestyle. PMID:26339624

  5. Prostate Cancer Epigenetics: A Review on Gene Regulation

    Directory of Open Access Journals (Sweden)

    Lena Diaw

    2007-01-01

    Full Text Available Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect gene regulation and play important roles either independently or by interaction in tumor initiation and progression. This review will discuss the genes associated with epigenetic alterations in prostate cancer progression: their regulation and importance as possible markers for the disease.

  6. Epstein-Barr virus: a master epigenetic manipulator.

    Science.gov (United States)

    Scott, Rona S

    2017-10-01

    Like all herpesviruses, the ability of Epstein-Barr virus (EBV) to establish life-long persistent infections is related to a biphasic viral lifecycle that involves latency and reactivation/lytic replication. Memory B cells serve as the EBV latency compartment where silencing of viral gene expression allows maintenance of the viral genome, avoidance of immune surveillance, and life-long carriage. Upon viral reactivation, viral gene expression is induced for replication, progeny virion production, and viral spread. EBV uses the host epigenetic machinery to regulate its distinct viral gene expression states. However, epigenetic manipulation by EBV affects the host epigenome by reprogramming cells in ways that leave long-lasting, oncogenic phenotypes. Such virally-induced epigenetic alterations are evident in EBV-associated cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preserving human potential as freedom: a framework for regulating epigenetic harms.

    Science.gov (United States)

    Khan, Fazal

    2010-01-01

    Epigenetics is a rapidly evolving scientific field of inquiry examining how a wide range of environmental, social, and nutritional exposures can dramatically control how genes are expressed without changing the underlying DNA. Research has demonstrated that epigenetics plays a large role in human development and in disease causation. In a sense, epigenetics blurs the distinction between "nature" and "nurture" as experiences (nurture) become a part of intrinsic biology (nature). Remarkably, some epigenetic modifications are durable across generations, meaning that exposures from our grandparents' generation might affect our health now, even if we have not experienced the same exposures. In the same vein, current exposures could affect the health of not only individuals currently living but also future generations. Given the relative novelty of epigenetics research and the multifactorial nature of human development and disease causation, it is unlikely that conclusive proof can be established showing that particular exposures lead to epigenetic risks that manifest into specific conditions. Using the Capabilities Approach ("CA") developed by Amartya Sen and Martha Nussbaum, this article argues that epigenetic risk is not merely a medical issue, but that it more generally implicates the underlying fairness and justice of our social contract. For instance, how we develop mentally or physically has a tremendous impact upon our inherent capabilities and our set of life options. The CA prompts us to ask questions such as: (1) what impact do particular epigenetic risks have on our ability to exercise free choices; (2) are these risks avoidable; and (3) how are these risks distributed across society? Due to the complex nature of epigenetic risk, tort law is predictably incapable of addressing this harm. Further, while regulatory agencies possess the statutory authority to begin addressing epigenetic harms, currently these agencies are not attuned to measure or to respond to

  8. Regulation of gene expression and pain states by epigenetic mechanisms.

    Science.gov (United States)

    Géranton, Sandrine M; Tochiki, Keri K

    2015-01-01

    The induction of inflammatory or neuropathic pain states is known to involve molecular activity in the spinal superficial dorsal horn and dorsal root ganglia, including intracellular signaling events which lead to changes in gene expression. These changes ultimately cause alterations in macromolecular synthesis, synaptic transmission, and structural architecture which support central sensitization, a process required for the establishment of long-term pain states. Epigenetic mechanisms are essential for long-term synaptic plasticity and modulation of gene expression. This is because epigenetic modifications are known to regulate gene transcription by aiding the physical relaxation or condensation of chromatin. These processes are therefore potential regulators of the molecular changes underlying permanent pain states. A handful of studies have emerged in the field of pain epigenetics; however, the field is still very much in its infancy. This chapter draws upon other specialities which have extensively investigated epigenetic mechanisms, such as learning and memory and oncology. After defining epigenetics as well as the recent field of "neuroepigenetics" and the main molecular mechanisms involved, this chapter describes the role of these mechanisms in the synaptic plasticity seen in learning and memory, and address those epigenetic mechanisms that have been linked with the development of acute and prolonged pain states. Finally, the idea that long-lasting epigenetic modifications could contribute to the transition from acute to chronic pain states by supporting maladaptive molecular changes is discussed. © 2015 Elsevier Inc. All rights reserved.

  9. Recent developments in epigenetics of acute and chronic kidney diseases.

    Science.gov (United States)

    Reddy, Marpadga A; Natarajan, Rama

    2015-08-01

    The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post-translational modifications of histones in chromatin, are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNAme and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.

  10. The path to epigenetic treatment of memory disorders.

    Science.gov (United States)

    Mikaelsson, Mikael A; Miller, Courtney A

    2011-07-01

    A new line of neuroscience research suggests that epigenetics may be the site of nature and nurture integration by providing the environment with a mechanism to directly influence the read-out of our genome. Epigenetic mechanisms in the brain are a series of post-translational chromatin and DNA modifications driven by external input. Given the critical hub that epigenetics appears to be, neuroscientists have come to suspect its fundamental influence on how our minds change in response to our unique environment and, in turn, how these changes can then impact our future interactions with the environment. The field of learning and memory is becoming particularly interested in understanding the cognitive influence of epigenetics. With the majority of us working with an eye toward therapeutics, the question naturally arises: "Has neuroepigenetics gotten us closer to treating memory disorders and if so, where do we go from here?" This review will begin with a brief exploration of recent advances in our understanding of how epigenetic mechanisms contribute to learning and memory processes that are susceptible to failure. Next the implications for disorders of cognition, such as Alzheimer's disease, will be discussed. Finally, we will use parallels from the field of cancer to speculate on where we should consider heading from here in the pursuit of therapeutics. Published by Elsevier Inc.

  11. Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential.

    Directory of Open Access Journals (Sweden)

    Hélio Belo

    Full Text Available Fanconi anaemia (FA is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average. Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.

  12. [Epigenetic alterations in acute lymphoblastic leukemia].

    Science.gov (United States)

    Navarrete-Meneses, María Del Pilar; Pérez-Vera, Patricia

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  13. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming.

    Science.gov (United States)

    Nugent, Bridget M; Bale, Tracy L

    2015-10-01

    Fetal development could be considered a sensitive period wherein exogenous insults and changes to the maternal milieu can have long-term impacts on developmental programming. The placenta provides the fetus with protection and necessary nutrients for growth, and responds to maternal cues and changes in nutrient signaling through multiple epigenetic mechanisms. The X-linked enzyme O-linked-N-acetylglucosamine transferase (OGT) acts as a nutrient sensor that modifies numerous proteins to alter various cellular signals, including major epigenetic processes. This review describes epigenetic alterations in the placenta in response to insults during pregnancy, the potential links of OGT as a nutrient sensor to placental epigenetics, and the implications of placental epigenetics in long-term neurodevelopmental programming. We describe the role of placental OGT in the sex-specific programming of hypothalamic-pituitary-adrenal (HPA) axis programming deficits by early prenatal stress as an example of how placental signaling can have long-term effects on neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Epigenetic mechanisms in experience-driven memory formation and behavior

    Science.gov (United States)

    Puckett, Rosemary E; Lubin, Farah D

    2011-01-01

    Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior. PMID:22126252

  15. Epigenetics of psoriatic disease: A systematic review and critical appraisal.

    Science.gov (United States)

    Pollock, Remy A; Abji, Fatima; Gladman, Dafna D

    2017-03-01

    Psoriasis is an inflammatory disease of the skin that is sometimes accompanied by an auto-inflammatory arthritis called psoriatic arthritis (PsA). Psoriasis and PsA are multifactorial diseases that result from complex interactions of environmental and genetic risk factors. Epigenetic marks, which are labile chemical marks with diverse functions, form a layer of biological information that sits at the interface of genetics and the environment. Aberrant epigenetic regulation has been previously implicated in other rheumatological disorders. The purpose of this review is to summarize and critically evaluate the nascent literature on epigenetics in psoriasis and PsA. A systematic review yielded 52 primary articles after applying inclusion and exclusion criteria. Data were extracted using a standardized template and study quality assessed using a methodological quality checklist. Studies reflect a broad range of epigenetic sub-disciplines, the most common being DNA methylation, followed by the parent of origin effect or genomic imprinting, expression or activity of epigenetic modifying enzymes, and histone modifications. Epidemiological studies demonstrating excessive paternal transmission provided the earliest evidence of epigenetic deregulation in psoriatic disease, however few studies have examined its molecular mechanisms. Methylation studies evolved rapidly from low resolution global to targeted analyses of known psoriatic disease susceptibility loci such as HLA-C*0602. The recent explosion of epigenome-wide association studies has provided us with novel insights into psoriasis pathogenesis, and the mechanism of action of UVB, methotrexate, and anti-TNF therapies, as well as molecular signatures of psoriasis that may have clinical relevance. Finally, recent studies of pharmacological inhibitors of epigenetic modifier enzymes demonstrate their potential applicability as novel treatment modalities for psoriasis. Challenges of epigenetics research in psoriasis and Ps

  16. Molecular targets of epigenetic regulation and effectors of environmental influences

    International Nuclear Information System (INIS)

    Choudhuri, Supratim; Cui Yue; Klaassen, Curtis D.

    2010-01-01

    The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.

  17. Local epigenetic reprogramming induced by G-quadruplex ligands

    Science.gov (United States)

    Guilbaud, Guillaume; Murat, Pierre; Recolin, Bénédicte; Campbell, Beth C.; Maiter, Ahmed; Sale, Julian E.; Balasubramanian, Shankar

    2017-11-01

    DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.

  18. Is epigenetics an important link between early life events and adult disease?

    Science.gov (United States)

    Epigenetic mechanisms provide one potential explanation for how environmental influences in early life cause long-term changes in chronic disease susceptibility. Whereas epigenetic dysregulation is increasingly implicated in various rare developmental syndromes and cancer, the role of epigenetics in...

  19. Eusocial insects as emerging models for behavioural epigenetics.

    Science.gov (United States)

    Yan, Hua; Simola, Daniel F; Bonasio, Roberto; Liebig, Jürgen; Berger, Shelley L; Reinberg, Danny

    2014-10-01

    Understanding the molecular basis of how behavioural states are established, maintained and altered by environmental cues is an area of considerable and growing interest. Epigenetic processes, including methylation of DNA and post-translational modification of histones, dynamically modulate activity-dependent gene expression in neurons and can therefore have important regulatory roles in shaping behavioural responses to environmental cues. Several eusocial insect species - with their unique displays of behavioural plasticity due to age, morphology and social context - have emerged as models to investigate the genetic and epigenetic underpinnings of animal social behaviour. This Review summarizes recent studies in the epigenetics of social behaviour and offers perspectives on emerging trends and prospects for establishing genetic tools in eusocial insects.

  20. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer

    NARCIS (Netherlands)

    Falahi, Fahimeh; van Kruchten, Michel; Martinet, Nadine; Hospers, Geesiena; Rots, Marianne G.

    2014-01-01

    DNA methylation and histone modifications are important epigenetic modifications associated with gene (dys) regulation. The epigenetic modifications are balanced by epigenetic enzymes, so-called writers and erasers, such as DNA (de)methylases and histone (de)acetylases. Aberrant epigenetic

  1. Epigenetic Effects of Environmental Chemicals Bisphenol A and Phthalates

    Directory of Open Access Journals (Sweden)

    Steven Shoei-Lung Li

    2012-08-01

    Full Text Available The epigenetic effects on DNA methylation, histone modification, and expression of non-coding RNAs (including microRNAs of environmental chemicals such as bisphenol A (BPA and phthalates have expanded our understanding of the etiology of human complex diseases such as cancers and diabetes. Multiple lines of evidence from in vitro and in vivo models have established that epigenetic modifications caused by in utero exposure to environmental toxicants can induce alterations in gene expression that may persist throughout life. Epigenetics is an important mechanism in the ability of environmental chemicals to influence health and disease, and BPA and phthalates are epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the hypomethylating effect of BPA was prevented by maternal dietary supplementation with a methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and mice. BPA exposure of human placental cell lines has been shown to alter microRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of estrogen receptor (ESR1 promoter-associated CpG islands, indicating that altered ESR1 mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to phthalate DEHP was also shown to increase DNA methylation and expression levels of DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and phthalates in female rats were found to be transgenerational. Finally, the available new technologies for global analysis of epigenetic alterations will provide insight into the extent and patterns of alterations between human normal and diseased tissues.

  2. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series)

    OpenAIRE

    Loscalzo, Joseph; Handy, Diane E.

    2014-01-01

    Abstract Epigenetics refers to heritable traits that are not a consequence of DNA sequence. Three classes of epigenetic regulation exist: DNA methylation, histone modification, and noncoding RNA action. In the cardiovascular system, epigenetic regulation affects development, differentiation, and disease propensity or expression. Defining the determinants of epigenetic regulation offers opportunities for novel strategies for disease prevention and treatment.

  3. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series).

    Science.gov (United States)

    Loscalzo, Joseph; Handy, Diane E

    2014-06-01

    Epigenetics refers to heritable traits that are not a consequence of DNA sequence. Three classes of epigenetic regulation exist: DNA methylation, histone modification, and noncoding RNA action. In the cardiovascular system, epigenetic regulation affects development, differentiation, and disease propensity or expression. Defining the determinants of epigenetic regulation offers opportunities for novel strategies for disease prevention and treatment.

  4. Genetic, epigenetic and exogenetic information in development and evolution.

    Science.gov (United States)

    Griffiths, Paul E

    2017-10-06

    The idea that development is the expression of information accumulated during evolution and that heredity is the transmission of this information is surprisingly hard to cash out in strict, scientific terms. This paper seeks to do so using the sense of information introduced by Francis Crick in his sequence hypothesis and central dogma of molecular biology. It focuses on Crick's idea of precise determination. This is analysed using an information-theoretic measure of causal specificity. This allows us to reconstruct some of Crick's claims about information in transcription and translation. Crick's approach to information has natural extensions to non-coding regions of DNA, to epigenetic marks, and to the genetic or environmental upstream causes of those epigenetic marks. Epigenetic information cannot be reduced to genetic information. The existence of biological information in epigenetic and exogenetic factors is relevant to evolution as well as to development.

  5. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation.

    Science.gov (United States)

    Chisolm, Danielle A; Weinmann, Amy S

    2018-04-26

    Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4 + T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.

  6. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  7. Genetics and epigenetics of rheumatoid arthritis

    Science.gov (United States)

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  8. Mitochondrial regulation of epigenetics and its role in human diseases

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Tollefsbol, Trygve O; Singh, Keshav K

    2012-01-01

    as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction....... In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead...... to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role....

  9. Age-specific epigenetic drift in late-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sun-Chong Wang

    Full Text Available Despite an enormous research effort, most cases of late-onset Alzheimer's disease (LOAD still remain unexplained and the current biomedical science is still a long way from the ultimate goal of revealing clear risk factors that can help in the diagnosis, prevention and treatment of the disease. Current theories about the development of LOAD hinge on the premise that Alzheimer's arises mainly from heritable causes. Yet, the complex, non-Mendelian disease etiology suggests that an epigenetic component could be involved. Using MALDI-TOF mass spectrometry in post-mortem brain samples and lymphocytes, we have performed an analysis of DNA methylation across 12 potential Alzheimer's susceptibility loci. In the LOAD brain samples we identified a notably age-specific epigenetic drift, supporting a potential role of epigenetic effects in the development of the disease. Additionally, we found that some genes that participate in amyloid-beta processing (PSEN1, APOE and methylation homeostasis (MTHFR, DNMT1 show a significant interindividual epigenetic variability, which may contribute to LOAD predisposition. The APOE gene was found to be of bimodal structure, with a hypomethylated CpG-poor promoter and a fully methylated 3'-CpG-island, that contains the sequences for the epsilon4-haplotype, which is the only undisputed genetic risk factor for LOAD. Aberrant epigenetic control in this CpG-island may contribute to LOAD pathology. We propose that epigenetic drift is likely to be a substantial mechanism predisposing individuals to LOAD and contributing to the course of disease.

  10. Epigenetic battle of the sexes. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Wu, Song

    2017-03-01

    Qian Wang et al. present an interesting framework, named epigenetic game theory, for modeling sex-based epigenetic dynamics during embryogenesis from a new viewpoint of evolutionary game theory [1]. That is, epigenomes of sperms and oocytes may coordinate through either cooperation or competition, or both, to affect the fitness of embryos. The work uses a set of ordinary differential equations (ODEs) to describe longitudinal trajectories of DNA methylation levels in both parental and maternal gametes and their dependence on each other. The insights gained from this review, i.e. dynamic methylation profiles and their interaction are potentially important to many fields, such as biomedicine and agriculture.

  11. Milk’s Role as an Epigenetic Regulator in Health and Disease

    Directory of Open Access Journals (Sweden)

    Bodo C. Melnik

    2017-03-01

    Full Text Available It is the intention of this review to characterize milk’s role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic “doping system” of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow’s milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow’s milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.

  12. Analysis of epigenetic modifications of DNA in human cells

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Treppendahl, Marianne Bach; Grønbæk, Kirsten

    2013-01-01

    Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found...

  13. Bisphenol A in Reproduction: Epigenetic Effects.

    Science.gov (United States)

    Chianese, Rosanna; Troisi, Jacopo; Richards, Sean; Scafuro, Marika; Fasano, Silvia; Guida, Maurizio; Pierantoni, Riccardo; Meccariello, Rosaria

    2018-02-21

    Bisphenol A (BPA) is an endocrine disrupting chemical widely used in the manufacture of polycarbonate plastic and epoxy resin to produce a multitude of consumer products, food and drink containers, and medical devices. BPA is similar to estradiol in structure and thus interferes in steroid signalling with different outcomes on reproductive health depending on doses, life stage, mode, and timing of exposure. In this respect, it has an emerging and controversial role as a "reproductive toxicant" capable of inducing short and long-term effects including the modulation of gene expression through epigenetic modification (i.e. methylation of CpG islands, histone modifications and production of non-coding RNA) with direct and trans-generational effects on exposed organisms and their offspring, respectively. This review provides an overview about BPA effects on reproductive health and aims to summarize the epigenetic effects of BPA in male and female reproduction. BPA exerts epigenetic effects in both male and female reproduction. In males, BPA affects spermatogenesis and sperm quality and possible trans-generational effects on the reproductive ability of the offspring. In females, BPA affects ovary, embryo development, and gamete quality for successful in vivo and in vitro fertilization (IVF). The exact mechanisms of BPA-mediated effects in reproduction are not fully understood; however, the environmental exposure to BPA - especially in fetal and neonatal period - deserves attention to preserve the reproductive ability in both sexes and to reduce the epigenetic risk for the offspring. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. An epigenetic biomarker of aging for lifespan and healthspan

    Science.gov (United States)

    Levine, Morgan E.; Lu, Ake T.; Quach, Austin; Chen, Brian H.; Assimes, Themistocles L.; Bandinelli, Stefania; Hou, Lifang; Baccarelli, Andrea A.; Stewart, James D.; Li, Yun; Whitsel, Eric A.; Wilson, James G; Reiner, Alex P; Aviv, Abraham; Lohman, Kurt; Liu, Yongmei; Ferrucci, Luigi

    2018-01-01

    Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation of epigenetic biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized that incorporation of composite clinical measures of phenotypic age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the development of a more powerful epigenetic biomarker of aging. Using an innovative two-step process, we develop a new epigenetic biomarker of aging, DNAm PhenoAge, that strongly outperforms previous measures in regards to predictions for a variety of aging outcomes, including all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this biomarker was developed using data from whole blood, it correlates strongly with age in every tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that increased epigenetic, relative to chronological age, is associated with increased activation of pro-inflammatory and interferon pathways, and decreased activation of transcriptional/translational machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging. PMID:29676998

  15. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.

    Science.gov (United States)

    Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos

    2014-09-04

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.

  16. Interactions between epigenetics and metabolism in cancers

    International Nuclear Information System (INIS)

    Yun, Jihye; Johnson, Jared L.; Hanigan, Christin L.; Locasale, Jason W.

    2012-01-01

    Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. While it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, most of the enzymatic machinery of epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  17. Epigenetic mechanisms in schizophrenia.

    Science.gov (United States)

    Akbarian, Schahram

    2014-09-01

    Schizophrenia is a major psychiatric disorder that lacks a unifying neuropathology, while currently available pharmacological treatments provide only limited benefits to many patients. This review will discuss how the field of neuroepigenetics could contribute to advancements of the existing knowledge on the neurobiology and treatment of psychosis. Genome-scale mapping of DMA methylation, histone modifications and variants, and chromosomal loopings for promoter-enhancer interactions and other epigenetic determinants of genome organization and function are likely to provide important clues about mechanisms contributing to dysregulated expression of synaptic and metabolic genes in schizophrenia brain, including the potential links to the underlying genetic risk architecture and environmental exposures. In addition, studies in animal models are providing a rapidly increasing list of chromatin-regulatory mechanisms with significant effects on cognition and complex behaviors, thereby pointing to the therapeutic potential of epigenetic drug targets in the nervous system.

  18. Epigenetics and brain evolution.

    Science.gov (United States)

    Keverne, Eric B

    2011-04-01

    Fundamental aspects of mammalian brain evolution occurred in the context of viviparity and placentation brought about by the epigenetic regulation of imprinted genes. Since the fetal placenta hormonally primes the maternal brain, two genomes in one individual are transgenerationally co-adapted to ensure maternal care and nurturing. Advanced aspects of neocortical brain evolution has shown very few genetic changes between monkeys and humans. Although these lineages diverged at approximately the same time as the rat and mouse (20 million years ago), synonymous sequence divergence between the rat and mouse is double that when comparing monkey with human sequences. Paradoxically, encephalization of rat and mouse are remarkably similar, while comparison of the human and monkey shows the human cortex to be three times the size of the monkey. This suggests an element of genetic stability between the brains of monkey and man with a greater emphasis on epigenetics providing adaptable variability.

  19. Epigenetic Regulatory Mechanisms Induced by Resveratrol

    Directory of Open Access Journals (Sweden)

    Guilherme Felipe Santos Fernandes

    2017-11-01

    Full Text Available Resveratrol (RVT is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT, histone deacetylase (HDAC and lysine-specific demethylase-1 (LSD1.

  20. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Epigenetics in adipose tissue, obesity, weight loss and diabetes

    Science.gov (United States)

    Given the role that the diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that the environmental factors can cause cell type-dependent epigenetic changes, inc...

  2. How stable 'should' epigenetic modifications be? Insights from adaptive plasticity and bet hedging.

    Science.gov (United States)

    Herman, Jacob J; Spencer, Hamish G; Donohue, Kathleen; Sultan, Sonia E

    2014-03-01

    Although there is keen interest in the potential adaptive value of epigenetic variation, it is unclear what conditions favor the stability of these variants either within or across generations. Because epigenetic modifications can be environmentally sensitive, existing theory on adaptive phenotypic plasticity provides relevant insights. Our consideration of this theory suggests that stable maintenance of environmentally induced epigenetic states over an organism's lifetime is most likely to be favored when the organism accurately responds to a single environmental change that subsequently remains constant, or when the environmental change cues an irreversible developmental transition. Stable transmission of adaptive epigenetic states from parents to offspring may be selectively favored when environments vary across generations and the parental environment predicts the offspring environment. The adaptive value of stability beyond a single generation of parent-offspring transmission likely depends on the costs of epigenetic resetting. Epigenetic stability both within and across generations will also depend on the degree and predictability of environmental variation, dispersal patterns, and the (epi)genetic architecture underlying phenotypic responses to environment. We also discuss conditions that favor stability of random epigenetic variants within the context of bet hedging. We conclude by proposing research directions to clarify the adaptive significance of epigenetic stability. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  3. Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus

    Science.gov (United States)

    Sommese, Linda; Zullo, Alberto; Mancini, Francesco Paolo; Fabbricini, Rossella; Soricelli, Andrea; Napoli, Claudio

    2017-01-01

    ABSTRACT Epigenetics is involved in the altered expression of gene networks that underlie insulin resistance and insufficiency. Major genes controlling β-cell differentiation and function, such as PAX4, PDX1, and GLP1 receptor, are epigenetically controlled. Epigenetics can cause insulin resistance through immunomediated pro-inflammatory actions related to several factors, such as NF-kB, osteopontin, and Toll-like receptors. Hereafter, we provide a critical and comprehensive summary on this topic with a particular emphasis on translational and clinical aspects. We discuss the effect of epigenetics on β-cell regeneration for cell replacement therapy, the emerging bioinformatics approaches for analyzing the epigenetic contribution to type 2 diabetes mellitus (T2DM), the epigenetic core of the transgenerational inheritance hypothesis in T2DM, and the epigenetic clinical trials on T2DM. Therefore, prevention or reversion of the epigenetic changes occurring during T2DM development may reduce the individual and societal burden of the disease. PMID:28059593

  4. Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma

    International Nuclear Information System (INIS)

    Maes, Ken; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Vanderkerken, Karin; De Bruyne, Elke

    2013-01-01

    Multiple myeloma (MM) is an incurable B-cell malignancy. Therefore, new targets and drugs are urgently needed to improve patient outcome. Epigenetic aberrations play a crucial role in development and progression in cancer, including MM. To target these aberrations, epigenetic modulating agents, such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi), are under intense investigation in solid and hematological cancers. A clinical benefit of the use of these agents as single agents and in combination regimens has been suggested based on numerous studies in pre-clinical tumor models, including MM models. The mechanisms of action are not yet fully understood but appear to involve a combination of true epigenetic changes and cytotoxic actions. In addition, the interactions with the BM niche are also affected by epigenetic modulating agents that will further determine the in vivo efficacy and thus patient outcome. A better understanding of the molecular events underlying the anti-tumor activity of the epigenetic drugs will lead to more rational drug combinations. This review focuses on the involvement of epigenetic changes in MM pathogenesis and how the use of DNMTi and HDACi affect the myeloma tumor itself and its interactions with the microenvironment

  5. Epigenetic transmission of Holocaust trauma: can nightmares be inherited?

    Science.gov (United States)

    Kellermann, Natan Pf

    2013-01-01

    The Holocaust left its visible and invisible marks not only on the survivors, but also on their children. Instead of numbers tattooed on their forearms, however, they may have been marked epigenetically with a chemical coating upon their chromosomes, which would represent a kind of biological memory of what the parents experienced. as a result, some suffer from a general vulnerability to stress while others are more resilient. Previous research assumed that such transmission was caused by environmental factors, such as the parents' childrearing behavior. New research, however, indicates that these transgenerational effects may have been also (epi) genetically transmitted to their children. Integrating both hereditary and environmental factors, epigenetics adds a new and more comprehensive psychobiological dimension to the explanation of transgenerational transmission of trauma. Specifically, epigenetics may explain why latent transmission becomes manifest under stress. a general theoretical overview of epigenetics and its relevance to research on trauma transmission is presented.

  6. Epigenetic variation in mangrove plants occurring in contrasting natural environment.

    Directory of Open Access Journals (Sweden)

    Catarina Fonseca Lira-Medeiros

    2010-04-01

    Full Text Available Epigenetic modifications, such as cytosine methylation, are inherited in plant species and may occur in response to biotic or abiotic stress, affecting gene expression without changing genome sequence. Laguncularia racemosa, a mangrove species, occurs in naturally contrasting habitats where it is subjected daily to salinity and nutrient variations leading to morphological differences. This work aims at unraveling how CpG-methylation variation is distributed among individuals from two nearby habitats, at a riverside (RS or near a salt marsh (SM, with different environmental pressures and how this variation is correlated with the observed morphological variation.Significant differences were observed in morphological traits such as tree height, tree diameter, leaf width and leaf area between plants from RS and SM locations, resulting in smaller plants and smaller leaf size in SM plants. Methyl-Sensitive Amplified Polymorphism (MSAP was used to assess genetic and epigenetic (CpG-methylation variation in L. racemosa genomes from these populations. SM plants were hypomethylated (14.6% of loci had methylated samples in comparison to RS (32.1% of loci had methylated samples. Within-population diversity was significantly greater for epigenetic than genetic data in both locations, but SM also had less epigenetic diversity than RS. Frequency-based (G(ST and multivariate (beta(ST methods that estimate population structure showed significantly greater differentiation among locations for epigenetic than genetic data. Co-Inertia analysis, exploring jointly the genetic and epigenetic data, showed that individuals with similar genetic profiles presented divergent epigenetic profiles that were characteristic of the population in a particular environment, suggesting that CpG-methylation changes may be associated with environmental heterogeneity.In spite of significant morphological dissimilarities, individuals of L. racemosa from salt marsh and riverside presented

  7. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets.

    Science.gov (United States)

    Lindsay, Cameron; Seikaly, Hadi; Biron, Vincent L

    2017-01-31

    Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.

  8. Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease

    Science.gov (United States)

    Beerman, Isabel; Rossi, Derrick J.

    2015-01-01

    Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761

  9. Computational micromodel for epigenetic mechanisms.

    LENUS (Irish Health Repository)

    Raghavan, Karthika

    2010-11-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.

  10. Concepts of epigenetics in prostate cancer development.

    Science.gov (United States)

    Cooper, C S; Foster, C S

    2009-01-27

    Substantial evidence now supports the view that epigenetic changes have a role in the development of human prostate cancer. Analyses of the patterns of epigenetic alteration are providing important insights into the origin of this disease and have identified specific alterations that may serve as useful diagnostic and prognostic biomarkers. Examination of cancer methylation patterns supports a stem cell origin of prostate cancer. It is well established that methylation of GSTpi is a marker of prostate cancer, and global patterns of histone marking appear to be linked to cancer prognosis with levels of acetylated histones H3K9, H3K18, and H4K12, and of dimethylated H4R3 and H3K4, dividing low-grade prostate cancer (Gleason 6 or less) into two prognostically separate groups. Elevated levels of several components of the polycomb group protein complex, EZH2, BMI1, and RING1, can also act as biomarkers of poor clinical outcome. Many components of the epigenetic machinery, including histone deacetylase (whose expression level is linked to the TMPRSS2:ERG translocation) and the histone methylase EZH2, are potential therapeutic targets. The recent discovery of the role of small RNAs in governing the epigenetic status of individual genes offers exciting new possibilities in therapeutics and chemoprevention.

  11. Epigenetic Risk Factors in PTSD and Depression

    Directory of Open Access Journals (Sweden)

    Florian Joachim Raabe

    2013-08-01

    Full Text Available Epidemiological and clinical studies have shown that children exposed to adverse experiences are at increased risk for the development of depression, anxiety disorders and PTSD. A history of child abuse and maltreatment increases the likelihood of being subsequently exposed to traumatic events or of developing PTSD as an adult. The brain is highly plastic during early life and encodes acquired information into lasting memories that normally subserve adaptation. Translational studies in rodents showed that enduring sensitization of neuronal and neuroendocrine circuits in response to early life adversity are likely risk factors of life time vulnerability to stress. Hereby, the hypothalamic-pituitary-adrenal (HPA axis integrates cognitive, behavioural and emotional responses to early-life stress and can be epigenetically programmed during sensitive windows of development. Epigenetic mechanisms, comprising reciprocal regulation of chromatin structure and DNA methylation, are important to establish and maintain sustained, yet potentially reversible, changes in gene transcription. The relevance of these findings for the development of PTSD requires further studies in humans where experience-dependent epigenetic programming can additionally depend on genetic variation in the underlying substrates which may protect from or advance disease development. Overall, identification of early-life stress associated epigenetic risk markers informing on previous stress history can help to advance early diagnosis, personalized prevention and timely therapeutic interventions, thus reducing long-term social and health costs.

  12. New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer

    Directory of Open Access Journals (Sweden)

    Ma Yuehua

    2009-06-01

    Full Text Available Abstract DNA methylation and histone acetylation are two well known epigenetic chromatin modifications. Epigenetic agents leading to DNA hypomethylation and histone hyperacetylation have been approved for treatment of hematological disorders. The first histone deacetylase inhibitor, vorinostat, has been licensed for cutaneous T cell lymphoma treatment. More than 11 new epigenetic agents are in various stages of clinical development for therapy of multiple cancer types. In this review we summarize novel histone deacetylase inhibitors and new regimens from clinical trials for epigenetic therapy of cancer.

  13. Prenatal and early life influences on epigenetic age in children

    DEFF Research Database (Denmark)

    Simpkin, Andrew J; Hemani, Gibran; Suderman, Matthew

    2016-01-01

    age for these samples. AA was defined as the residuals from regressing epigenetic age on actual age. AA was tested for associations with cross-sectional clinical variables in children. We identified associations between AA and sex, birth weight, birth by caesarean section and several maternal......). In children, epigenetic AA measures are associated with several clinically relevant variables, and early life exposures appear to be associated with changes in AA during adolescence. Further research into epigenetic aging, including the use of causal inference methods, is required to better our understanding......DNA methylation-based biomarkers of aging are highly correlated with actual age. Departures of methylation-estimated age from actual age can be used to define epigenetic measures of child development or age acceleration (AA) in adults. Very little is known about genetic or environmental...

  14. The epigenetics of obesity

    Science.gov (United States)

    Maternal nutrition at the time of conception and during pregnancy is considered a factor for individual differences in having obesity. The mechanisms underlying this association are likely partially epigenetic in nature, but pinning down the exact nature, location, and timing of these changes remain...

  15. Integrating evolutionary game theory into epigenetic study of embryonic development. Comment on ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Wang, Zuoheng

    2017-03-01

    DNA methylation is an essential component in the epigenetic regulation of embryonic development, and plays a crucial role in various biological processes, including repression of gene transcription, parent-of-origin genomic imprinting, and X-chromosome inactivation [1-5]. Understanding the epigenetic processes in different stages of embryo development has become an important research topic in the field. It has potential to offer new insight into reproductive medicine and contribute to the improvement of long-term health outcomes.

  16. Application of epigenetic data in human health risk assessment.

    Science.gov (United States)

    Cote, Ila L; McCullough, Shaun D; Hines, Ronald N; Vandenberg, John J

    2017-11-06

    Despite the many recent advances in the field of epigenetics, application of this knowledge in environmental health risk assessment has been limited. In this paper, we identify opportunities for application of epigenetic data to support health risk assessment. We consider current applications and present a vision for the future.

  17. Three epigenetic information channels and their different roles in evolution

    NARCIS (Netherlands)

    Shea, N.; Pen, I.; Uller, T.

    There is increasing evidence for epigenetically mediated transgenerational inheritance across taxa. However, the evolutionary implications of such alternative mechanisms of inheritance remain unclear. Herein, we show that epigenetic mechanisms can serve two fundamentally different functions in

  18. Epigenetic Regulation of Telomere Maintenance

    Czech Academy of Sciences Publication Activity Database

    Fojtová, M.; Fajkus, Jiří

    2014-01-01

    Roč. 143, 1-3 (2014), s. 125-135 ISSN 1424-8581 Institutional support: RVO:68081707 Keywords : Chromatin * DNA methylation * Epigenetic s Subject RIV: BO - Biophysics Impact factor: 1.561, year: 2014

  19. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  20. First Barcelona Conference on Epigenetics and Cancer

    Science.gov (United States)

    Palau, Anna; Perucho, Manuel; Esteller, Manel; Buschbeck, Marcus

    2014-01-01

    The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Challenges, opportunities and perspectives” took place November 21–22, 2013 in Barcelona. The 2013 BCEC is the first edition of a series of annual conferences jointly organized by five leading research centers in Barcelona. These centers are the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), the Biomedical Campus Bellvitge with its Program of Epigenetics and Cancer Biology (PEBC), the Centre for Genomic Regulation (CRG), the Institute for Biomedical Research (IRB), and the Molecular Biology Institute of Barcelona (IBMB). Manuel Perucho and Marcus Buschbeck from the Institute of Predictive and Personalized Medicine of Cancer put together the scientific program of the first conference broadly covering all aspects of epigenetic research ranging from fundamental molecular research to drug and biomarker development and clinical application. In one and a half days, 23 talks and 50 posters were presented to a completely booked out audience counting 270 participants. PMID:24413145

  1. Interactions between epigenetics and metabolism in cancers

    Directory of Open Access Journals (Sweden)

    Jihye eYun

    2012-11-01

    Full Text Available Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. Although it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA, are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, many enzymes that carry out post-translational modifications that alter epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  2. Ontogeny and Phylogeny from an Epigenetic Point of View.

    Science.gov (United States)

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  3. Sex, stress, and epigenetics: regulation of behavior in animal models of mood disorders

    Directory of Open Access Journals (Sweden)

    Hodes Georgia E

    2013-01-01

    Full Text Available Abstract Women have a higher incidence of stress related disorders including depression and generalized anxiety disorder, and epigenetic mechanisms likely contribute to this sex difference. Evidence from preclinical research suggests that epigenetic mechanisms are responsible for both sexual dimorphism of brain regions and sensitivity of the stress response. Epigenetic modifications such as DNA methylation and histone modifications can occur transgenerationally, developmentally, or in response to environmental stimuli such as stress exposure. This review will provide an overview of the various forms of epigenetic modifications observed in the central nervous system and will explain how these mechanisms contribute to a sexually dimorphic brain. It will also discuss the ways in which epigenetic alterations coincide with, and functionally contribute to, the behavioral response to stress across the lifespan. Ultimately, this review will focus on novel research utilizing animal models to investigate sex differences in epigenetic mechanisms that influence susceptibility to stress. Exploration of this relationship reveals epigenetic mechanisms with the potential to explain sexual dimorphism in the occurrence of stress related disorders.

  4. Combining genomic and proteomic approaches for epigenetics research

    Science.gov (United States)

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  5. Epigenetic remodeling and modification to preserve skeletogenesis in vivo.

    Science.gov (United States)

    Godfrey, Tanner C; Wildman, Benjamin J; Javed, Amjad; Lengner, Christopher J; Hassan, Mohammad Quamarul

    2018-12-01

    Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a Cl ZIP ) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.

  6. Epigenetic reprogramming in mammalian species after SCNT-based cloning.

    Science.gov (United States)

    Niemann, Heiner

    2016-07-01

    The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Epigenetics of prostate cancer].

    Science.gov (United States)

    Yi, Xiao-Ming; Zhou, Wen-Quan

    2010-07-01

    Prostate cancer is one of the most common malignant tumors in males, and its etiology and pathogenesis remain unclear. Epigenesis is involved in prostate cancer at all stages of the process, and closely related with its growth and metastasis. DNA methylation and histone modification are the most important manifestations of epigenetics in prostate cancer. The mechanisms of carcinogenesis of DNA methylation include whole-genome hypomethylation, aberrant local hypermethylation of promoters and genomic instability. DNA methylation is closely related to the process of prostate cancer, as in DNA damage repair, hormone response, tumor cell invasion/metastasis, cell cycle regulation, and so on. Histone modification causes corresponding changes in chromosome structure and the level of gene transcription, and it may affect the cycle, differentiation and apoptosis of cells, resulting in prostate cancer. Some therapies have been developed targeting the epigenetic changes in prostate cancer, including DNA methyltransferases and histone deacetylase inhibitors, and have achieved certain desirable results.

  8. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    International Nuclear Information System (INIS)

    Mann, Monica; Cortez, Valerie; Vadlamudi, Ratna K.

    2011-01-01

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications

  9. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  10. Epigenetic Modifications and Potential New Treatment Targets in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Lorena Perrone

    2014-01-01

    Full Text Available Retinopathy is a debilitating vascular complication of diabetes. As with other diabetic complications, diabetic retinopathy (DR is characterized by the metabolic memory, which has been observed both in DR patients and in DR animal models. Evidences have provided that after a period of poor glucose control insulin or diabetes drug treatment fails to prevent the development and progression of DR even when good glycemic control is reinstituted (glucose normalization, suggesting a metabolic memory phenomenon. Recent studies also underline the role of epigenetic chromatin modifications as mediators of the metabolic memory. Indeed, epigenetic changes may lead to stable modification of gene expression, participating in DR pathogenesis. Moreover, increasing evidences suggest that environmental factors such as chronic hyperglycemia are implicated DR progression and may also affect the epigenetic state. Here we review recent findings demonstrating the key role of epigenetics in the progression of DR. Further elucidation of epigenetic mechanisms, acting both at the cis- and trans-chromatin structural elements, will yield new insights into the pathogenesis of DR and will open the way for the discovery of novel therapeutic targets to prevent DR progression.

  11. Epigenetic Targets for Reversing Immune Defects Caused by Alcohol Exposure

    Science.gov (United States)

    Curtis, Brenda J.; Zahs, Anita; Kovacs, Elizabeth J.

    2013-01-01

    Alcohol consumption alters factors that modify gene expression without changing the DNA code (i.e., epigenetic modulators) in many organ systems, including the immune system. Alcohol enhances the risk for developing several serious medical conditions related to immune system dysfunction, including acute respiratory distress syndrome (ARDS), liver cancer, and alcoholic liver disease (ALD). Binge and chronic drinking also render patients more susceptible to many infectious pathogens and advance the progression of HIV infection by weakening both innate and adaptive immunity. Epigenetic mechanisms play a pivotal role in these processes. For example, alcohol-induced epigenetic variations alter the developmental pathways of several types of immune cells (e.g., granulocytes, macrophages, and T-lymphocytes) and through these and other mechanisms promote exaggerated inflammatory responses. In addition, epigenetic mechanisms may underlie alcohol’s ability to interfere with the barrier functions of the gut and respiratory systems, which also contribute to the heightened risk of infections. Better understanding of alcohol’s effects on these epigenetic processes may help researchers identify new targets for the development of novel medications to prevent or ameliorate alcohol’s detrimental effects on the immune system. PMID:24313169

  12. [Early attachement relationships and epigenetic customization].

    Science.gov (United States)

    Rocchi, Giordana; Serio, Valentina; Carluccio, Giuseppe Mattia; Marini, Isabella; Meuti, Valentina; Zaccagni, Michela; Giacchetti, Nicoletta; Aceti, Franca

    2015-01-01

    Recently, new findings in epigenetic science switched the focus from the observation of physiological intragenomic dynamics to the idea of an environmental co-construction of phenotypic expression. In psichodynamic field, objectual relations and attachement theoreticians emphasized the interpersonal dimension of individual development, focusing the attention on the relational matrix of self organization. The construction of stable affective-behavioral traits throughout different parenting styles has actually found a coincidence in ethological studies, which have explored the epigenetic processes underlying the relationship between caregiving and HPA stress responsiveness. An adequate parenting style seems to support affective regulation throughout psychobiological hidden moderators, which would tend to rebalance the physiological systems homeostasis; an unconfident attachment style would promote, on the other hand, the allostatic load rise. Sites of longlife epigenetic susceptibility have also been identified in humans; although associated with risk of maladaptive developing in adverse environmental conditions, they seem to confer protection under favorable conditions. This persisting possibility of reorganization of stable traits throughout lifetime, which seems to be activated by a relevant environmental input, grant to significant relationships, and to therapeutical one as well, an implicit reconditioning potential which could result into the configuration of new stable affective-behavioral styles.

  13. Epigenetics of early-life lead exposure and effects on brain development.

    Science.gov (United States)

    Senut, Marie-Claude; Cingolani, Pablo; Sen, Arko; Kruger, Adele; Shaik, Asra; Hirsch, Helmut; Suhr, Steven T; Ruden, Douglas

    2012-12-01

    The epigenetic machinery plays a pivotal role in the control of many of the body's key cellular functions. It modulates an array of pliable mechanisms that are readily and durably modified by intracellular or extracellular factors. In the fast-moving field of neuroepigenetics, it is emerging that faulty epigenetic gene regulation can have dramatic consequences on the developing CNS that can last a lifetime and perhaps even affect future generations. Mounting evidence suggests that environmental factors can impact the developing brain through these epigenetic mechanisms and this report reviews and examines the epigenetic effects of one of the most common neurotoxic pollutants of our environment, which is believed to have no safe level of exposure during human development: lead.

  14. Transgenerational epigenetics of parental exposure to ionising radiation and other mutagens

    International Nuclear Information System (INIS)

    Dubrova, Yuri E.

    2013-01-01

    Recent studies have established that epigenetic changes play an important role in many common human diseases, including cancer. Given that the epigenetic landscape of the mammalian cell is not fixed and undergoes massive reprogramming during development, it can potentially be affected by a variety of environmental factors. As the majority of the de novo epigenetic marks, including DNA methylation, are faithfully reproduced during DNA replication, they are transmissible through many cell divisions and, in some cases, can be passed from parents to their offspring. An increasing body of experimental evidence from animal and human studies suggests that environmentally-induced epigenetic changes can be inherited by subsequent generations and can result in transgenerational phenotypic alterations, including predisposition to common diseases

  15. Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer

    Directory of Open Access Journals (Sweden)

    Mariangela Morlando

    2018-02-01

    Full Text Available Long noncoding RNAs (lncRNAs are important regulators of the epigenetic status of the human genome. Besides their participation to normal physiology, lncRNA expression and function have been already associated to many diseases, including cancer. By interacting with epigenetic regulators and by controlling chromatin topology, their misregulation may result in an aberrant regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has characterized cancer development and progression.

  16. Epigenetic Aspects of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Ulrike Schmidt

    2011-01-01

    Full Text Available Development of psychiatric diseases such as posttraumatic stress disorder (PTSD invokes, as with most complex diseases, both genetic and environmental factors. The era of genome-wide high throughput technologies has sparked the initiation of genotype screenings in large cohorts of diseased and control individuals, but had limited success in identification of disease causing genetic variants. It has become evident that these efforts at the genomic level need to be complemented with endeavours in elucidating the proteome, transcriptome and epigenetic profiles. Epigenetics is attractive in particular because there is accumulating evidence that the lasting impact of adverse life events is reflected in certain covalent modifications of the chromatin.

  17. Adiposopathy and epigenetics: an introduction to obesity as a transgenerational disease.

    Science.gov (United States)

    Bays, Harold; Scinta, Wendy

    2015-11-01

    To examine the contribution of generational epigenetic dysregulation to the inception of obesity and its adiposopathic consequences. Sources for this review included searches of PubMed, Google Scholar, and international government/major association websites using terms including adiposity, adiposopathy, epigenetics, genetics, and obesity. Excessive energy storage in adipose tissue often results in fat cell and fat organ dysfunction, which may cause metabolic and fat mass disorders. The adverse clinical manifestations of obesity are not solely due to the amount of body fat (adiposity), but are also dependent on anatomical and functional perturbations (adiposopathy or 'sick fat'). This review describes extragenetic factors and genetic conditions that promote obesity. It also serves as an introduction to epigenetic dysregulation (i.e., abnormalities in gene expression that occur without alteration in the genetic code itself), which may contribute to obesity and adiposopathic metabolic health outcomes in offspring. Within the epigenetic paradigm, obesity is a transgenerational disease, with weight lost or gained by either parent potentially impacting generational risk for obesity and its complications. Epigenetics may be an important contributor to the emergence of obesity and its complications as global epidemics. Although transgenerational epigenetic influences present challenges, they may also present interventional opportunities, via justifying weight management for individuals before, during, and after pregnancy and for future generations.

  18. Computational Micromodel for Epigenetic Mechanisms

    Science.gov (United States)

    Raghavan, Karthika; Ruskin, Heather J.; Perrin, Dimitri; Goasmat, Francois; Burns, John

    2010-01-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach. PMID:21152421

  19. Epigenetic changes in myelofibrosis

    DEFF Research Database (Denmark)

    Nielsen, Helene Myrtue; Andersen, Christen Lykkegaard; Westman, Maj

    2017-01-01

    , in 'inflammatory disease' in MF mononuclear cells, and in 'immunological diseases' in MF granulocytes. Only few differentially methylated CpG sites were common among the three cell populations. Mutations in the epigenetic regulators ASXL1 (47%) and TET2 (20%) were not associated with a specific DNA methylation...

  20. Epigenetics in the Neoliberal "Regime of Truth": A Biopolitical Perspective on Knowledge Translation.

    Science.gov (United States)

    Dupras, Charles; Ravitsky, Vardit

    2016-01-01

    Recent findings in epigenetics have been attracting much attention from social scientists and bioethicists because they reveal the molecular mechanisms by which exposure to socioenvironmental factors, such as pollutants and social adversity, can influence the expression of genes throughout life. Most surprisingly, some epigenetic modifications may also be heritable via germ cells across generations. Epigenetics may be the missing molecular evidence of the importance of using preventive strategies at the policy level to reduce the incidence and prevalence of common diseases. But while this "policy translation" of epigenetics introduces new arguments in favor of public health strategies and policy-making, a more "clinical translation" of epigenetics is also emerging. It focuses on the biochemical mechanisms and epigenetic variants at the origin of disease, leading to novel biomedical means of assessing epigenetic susceptibility and reversing detrimental epigenetic variants. In this paper, we argue that the impetus to create new biomedical interventions to manipulate and reverse epigenetic variants is likely to garner more attention than effective social and public health interventions and therefore also to garner a greater share of limited public resources. This is likely to happen because of the current biopolitical context in which scientific findings are translated. This contemporary neoliberal "regime of truth," to use a term from Michel Foucault, greatly influences the ways in which knowledge is being interpreted and implemented. Building on sociologist Thomas Lemke's Foucauldian "analytics of biopolitics" and on literature from the field of science and technology studies, we present two sociological trends that may impede the policy translation of epigenetics: molecularization and biomedicalization. These trends, we argue, are likely to favor the clinical translation of epigenetics-in other words, the development of new clinical tools fostering what has been

  1. German-Catalan workshop on epigenetics and cancer.

    Science.gov (United States)

    Vizoso, Miguel; Esteller, Manel

    2013-09-01

    In the First German-Catalan Workshop on Epigenetics and Cancer held in Heidelberg, Germany (June 17-19, 2013), cutting-edge laboratories (PEBC, IMPPC, DKFZ, and the Collaborative Research Centre Medical Epigenetics of Freiburg) discussed the latest breakthroughs in the field. The importance of DNA demethylation, non-coding and imprinted genes, metabolic stress, and cell transdifferentiation processes in cancer and non-cancer diseases were addressed in several lectures in a very participative and dynamic atmosphere.   The meeting brought together leading figures in the field of cancer epigenetics to present their research work from the last five years. Experts in different areas of oncology described important advances in colorectal, lung, neuroblastoma, leukemia, and lymphoma cancers. The workshop also provided an interesting forum for pediatrics, and focused on the need to improve the treatment of childhood tumors in order to avoid, as far as possible, brain damage and disruption of activity in areas of high plasticity. From the beginning, the relevance of "omics" and the advances in genome-wide analysis platforms, which allow cancer to be studied in a more comprehensive and inclusive way, was very clear. Modern "omics" offer the possibility of identifying metastases of uncertain origin and establishing epigenetic signatures linked to a specific cluster of patients with a particular prognosis. In this context, invited speakers described novel tumor-associated histone variants and DNA-specific methylation, highlighting their close connection with other processes such as cell-lineage commitment and stemness.

  2. PET Imaging of Epigenetic Influences on Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Paul J. Couto

    2015-01-01

    Full Text Available The precise role of environment-gene interactions (epigenetics in the development and progression of Alzheimer’s disease (AD is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD.

  3. Cancer Progenitor Cells: The Result of an Epigenetic Event?

    Science.gov (United States)

    Lapinska, Karolina; Faria, Gabriela; McGonagle, Sandra; Macumber, Kate Morgan; Heerboth, Sarah; Sarkar, Sibaji

    2018-01-01

    The concept of cancer stem cells was proposed in the late 1990s. Although initially the idea seemed controversial, the existence of cancer stem cells is now well established. However, the process leading to the formation of cancer stem cells is still not clear and thus requires further research. This article discusses epigenetic events that possibly produce cancer progenitor cells from predisposed cells by the influence of their environment. Every somatic cell possesses an epigenetic signature in terms of histone modifications and DNA methylation, which are obtained during lineage-specific differentiation of pluripotent stem cells, which is specific to that particular tissue. We call this signature an epigenetic switch. The epigenetic switch is not fixed. Our epigenome alters with aging. However, depending on the predisposition of the cells of a particular tissue and their microenvironment, the balance of the switch (histone modifications and the DNA methylation) may be tilted to immortality in a few cells, which generates cancer progenitor cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Discussing epigenetics in Southern California: a report from the International Symposium on Epigenetic Control and Cellular Plasticity, UCI, December 15-16, 2011.

    Science.gov (United States)

    Rattner, Barbara P

    2012-04-01

    With the goal of discussing how epigenetic control and chromatin remodeling contribute to the various processes that lead to cellular plasticity and disease, this symposium marks the collaboration between the Institut National de la Santé et de la Recherche Médicale (INSERM) in France and the University of California, Irvine (UCI). Organized by Paolo Sassone-Corsi (UCI) and held at the Beckman Center of the National Academy of Sciences at the UCI campus December 15-16, 2011, this was the first of a series of international conferences on epigenetics dedicated to the scientific community in Southern California. The meeting also served as the official kick off for the newly formed Center for Epigenetics and Metabolism at the School of Medicine, UCI (http://cem.igb.uci.edu).

  5. Epigenetic susceptibility factors for prostate cancer with aging.

    Science.gov (United States)

    Damaschke, N A; Yang, B; Bhusari, S; Svaren, J P; Jarrard, D F

    2013-12-01

    Increasing age is a significant risk factor for prostate cancer. The prostate is exposed to environmental and endogenous stress that may underlie this remarkable incidence. DNA methylation, genomic imprinting, and histone modifications are examples of epigenetic factors known to undergo change in the aging and cancerous prostate. In this review we examine the data linking epigenetic alterations in the prostate with aging to cancer development. An online search of current and past peer reviewed literature on epigenetic changes with cancer and aging was performed. Relevant articles were analyzed. Epigenetic changes are responsible for modifying expression of oncogenes and tumor suppressors. Several of these changes may represent a field defect that predisposes to cancer development. Focal hypermethylation occurs at CpG islands in the promoters of certain genes including GSTP1, RARβ2, and RASSF1A with both age and cancer, while global hypomethylation is seen in prostate cancer and known to occur in the colon and other organs. A loss of genomic imprinting is responsible for biallelic expression of the well-known Insulin-like Growth Factor 2 (IGF2) gene. Loss of imprinting (LOI) at IGF2 has been documented in cancer and is also known to occur in benign aging prostate tissue marking the presence of cancer. Histone modifications have the ability to dictate chromatin structure and direct gene expression. Epigenetic changes with aging represent molecular mechanisms to explain the increased susceptibly of the prostate to develop cancer in older men. These changes may provide an opportunity for diagnostic and chemopreventive strategies given the epigenome can be modified. © 2013 Wiley Periodicals, Inc.

  6. Replication stress, a source of epigenetic aberrations in cancer?

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    . Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono......-methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor-promoting insults is recognized as a significant source...... of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis....

  7. Epigenetics and allergy: from basic mechanisms to clinical applications.

    Science.gov (United States)

    Potaczek, Daniel P; Harb, Hani; Michel, Sven; Alhamwe, Bilal Alashkar; Renz, Harald; Tost, Jörg

    2017-04-01

    Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.

  8. Role of epigenetics in developmental biology and transgenerational inheritance.

    Science.gov (United States)

    Skinner, Michael K

    2011-03-01

    The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution. Copyright © 2011 Wiley-Liss, Inc.

  9. Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases.

    Science.gov (United States)

    Niller, Hans Helmut; Banati, Ferenc; Salamon, Daniel; Minarovits, Janos

    2016-01-01

    Latent Epstein-Bar virus genomes undergo epigenetic modifications which are dependent on the respective tissue type and cellular phenotype. These define distinct viral epigenotypes corresponding with latent viral gene expression profiles. Viral Latent Membrane Proteins 1 and 2A can induce cellular DNA methyltransferases, thereby influencing the methylation status of the viral and cellular genomes. Therefore, not only the viral genomes carry epigenetic modifications, but also the cellular genomes adopt major epigenetic alterations upon EBV infection. The distinct cellular epigenotypes of EBV-infected cells differ from the epigenotypes of their normal counterparts. In Burkitt lymphoma (BL), nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC) significant changes in the host cell methylome with a strong tendency towards CpG island hypermethylation are observed. Hypermethylated genes unique for EBVaGC suggest the existence of an EBV-specific "epigenetic signature". Contrary to the primary malignancies carrying latent EBV genomes, lymphoblastoid cells (LCs) established by EBV infection of peripheral B cells in vitro are characterized by a massive genome-wide demethylation and a significant decrease and redistribution of heterochromatic histone marks. Establishing complete epigenomes of the diverse EBV-associated malignancies shall clarify their similarities and differences and further clarify the contribution of EBV to the pathogenesis, especially for the epithelial malignancies, NPC and EBVaGC.

  10. Epigenetic therapy in myeloproliferative neoplasms: evidence and perspectives

    Science.gov (United States)

    Vannucchi, Alessandro M; Guglielmelli, Paola; Rambaldi, Alessandro; Bogani, Costanza; Barbui, Tiziano

    2009-01-01

    The classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), which include polycythaemia vera, essential thrombocythaemia and primary myelofibrosis, originate from a stem cell-derived clonal myeloproliferation that manifests itself with variable haematopoietic cell lineage involvement; they are characterized by a high degree of similarities and the chance to transform each to the other and to evolve into acute leukaemia. Their molecular pathogenesis has been associated with recurrent acquired mutations in janus kinase 2 (JAK2) and myeloproliferative leukemia virus oncogene (MPL). These discoveries have simplified the diagnostic approach and provided a number of clues to understanding the phenotypic expression of MPNs; furthermore, they represented a framework for developing and/or testing in clinical trials small molecules acting as tyrosine kinase inhibitors. On the other hand, evidence of abnormal epigenetic gene regulation as a mechanism potentially contributing to the pathogenesis and the phenotypic diversity of MPNs is still scanty; however, study of epigenetics in MPNs represents an active field of research. The first clinical trials with epigenetic drugs have been completed recently, whereas others are still ongoing; results have been variable and at present do not allow any firm conclusion. Novel basic and translational information concerning epigenetic gene regulation in MPNs and the perspectives for therapy will be critically addressed in this review. PMID:19522842

  11. An introduction to the science of epigenetics

    Directory of Open Access Journals (Sweden)

    JB Thapa

    2013-03-01

    Full Text Available Epigenetics has emerged as an important new discipline. This review provides deeper insights into understanding basic defects in methylation, histone modification, and RNA induced silencing of tumours. These mechanisms have important diagnostic and therapeutic implications for many tumours and diseases. New anti-epigenetic based drug therapies have been developed and drug trials are underway. The future will see further developments in this field. Journal of Pathology of Nepal (2013 Vol. 3, No.1, Issue 5, 408-410 DOI: http://dx.doi.org/10.3126/jpn.v3i5.7870

  12. Epigenetic developmental programs and adipogenesis: implications for psychotropic induced obesity.

    Science.gov (United States)

    Chase, Kayla; Sharma, Rajiv P

    2013-11-01

    Psychotropic agents are notorious for their ability to increase fat mass in psychiatric patients. The two determinants of fat mass are the production of newly differentiated adipocytes (adipogenesis), and the volume of lipid accumulation. Epigenetic programs have a prominent role in cell fate commitments and differentiation required for adipogenesis. In parallel, epigenetic effects on energy metabolism are well supported by several genetic models. Consequently, a variety of psychotropics, often prescribed in combinations and for long periods, may utilize a common epigenetic effector path causing an increase in adipogenesis or reduction in energy metabolism. In particular, the recent discovery that G protein coupled signaling cascades can directly modify epigenetic regulatory enzymes implicates surface receptor activity by psychotropic medications. The potential therapeutic implications are also suggested by the effects of the clinically approved antidepressant tranylcypromine, also a histone demethylase inhibitor, which has impressive therapeutic effects on metabolism in the obese phenotype.

  13. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the ...

  14. A new concept: Epigenetic game theory. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Zheng, Xiu-Deng; Tao, Yi

    2017-03-01

    The evolutionary significance of the interaction between paternal and maternal genomes in fertilized zygotes is a very interesting and challenging question. Wang et al. developed the concept of epigenetic game theory, and they try to use this concept to explain the interaction between paternal and maternal genomes in fertilized zygotes [1]. They emphasize that the embryogenesis can be considered as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. More specifically, they integrate game theory to model the pattern of coordination of paternal genome and maternal genomes mediated by DNA methylation dynamics, and they called this epigenetic game theory.

  15. Prostate Cancer Epigenetics: A Review on Gene Regulation

    OpenAIRE

    Diaw, Lena; Woodson, Karen; Gillespie, John W.

    2007-01-01

    Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect gene regulation and play ...

  16. MicroRNAs as New Characters in the Plot between Epigenetics and Prostate Cancer.

    Science.gov (United States)

    Paone, Alessio; Galli, Roberta; Fabbri, Muller

    2011-01-01

    Prostate cancer (PCA) still represents a leading cause of death. An increasing number of studies have documented that microRNAs (miRNAs), a subgroup of non-coding RNAs with gene regulatory functions, are differentially expressed in PCA respect to the normal tissue counterpart, suggesting their involvement in prostate carcinogenesis and dissemination. Interestingly, it has been shown that miRNAs undergo the same regulatory mechanisms than any other protein coding gene, including epigenetic regulation. In turn, miRNAs can also affect the expression of oncogenes and tumor suppressor genes by targeting effectors of the epigenetic machinery, therefore indirectly affecting the epigenetic controls on these genes. Among the genes that undergo this complex regulation, there is the androgen receptor (AR), a key therapeutic target for PCA. This review will focus on the role of epigenetically regulated and epigenetically regulating miRNAs in PCA and on the fine regulation of AR expression, as mediated by this miRNA-epigenetics interaction.

  17. MicroRNAs as new Characters in the Plot between Epigenetics and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Alessio ePaone

    2011-09-01

    Full Text Available Prostate cancer (PCA still represents a leading cause of death. An increasing number of studies have documented that microRNAs (miRNAs, a subgroup of non-coding RNAs with gene regulatory functions, are differentially expressed in PCA respect to the normal tissue counterpart, suggesting their involvement in prostate carcinogenesis and dissemination. Interestingly, it has been shown that miRNAs undergo the same regulatory mechanisms than any other protein coding gene, including epigenetic regulation. In turn, miRNAs can also affect the expression of oncogenes and tumor suppressor genes by targeting effectors of the epigenetic machinery, therefore indirectly affecting the epigenetic controls on these genes. Among the genes that undergo this complex regulation, there is the androgen receptor (AR, a key therapeutic target for PCA. This review will focus on the role of epigenetically regulated and epigenetically regulating miRNAs in prostate cancer and on the fine regulation of AR expression, as mediated by this miRNA-epigenetics interaction.

  18. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Kotaro [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194 (Japan); Semi, Katsunori [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507 (Japan); Yamada, Yasuhiro, E-mail: y-yamada@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507 (Japan)

    2014-12-05

    Highlights: • Epigenetic regulation of failed reprogramming-associated cancer cells is discussed. • Similarity between pediatric cancer and reprogramming-associated cancer is discussed. • Concept for epigenetic cancer is discussed. - Abstract: Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by the transient expression of reprogramming factors. During the reprogramming process, somatic cells acquire the ability to undergo unlimited proliferation, which is also an important characteristic of cancer cells, while their underlying DNA sequence remains unchanged. Based on the characteristics shared between pluripotent stem cells and cancer cells, the potential involvement of the factors leading to reprogramming toward pluripotency in cancer development has been discussed. Recent in vivo reprogramming studies provided some clues to understanding the role of reprogramming-related epigenetic regulation in cancer development. It was shown that premature termination of the in vivo reprogramming result in the development of tumors that resemble pediatric cancers. Given that epigenetic modifications play a central role during reprogramming, failed reprogramming-associated cancer development may have provided a proof of concept for epigenetics-driven cancer development in vivo.

  19. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo

    International Nuclear Information System (INIS)

    Ohnishi, Kotaro; Semi, Katsunori; Yamada, Yasuhiro

    2014-01-01

    Highlights: • Epigenetic regulation of failed reprogramming-associated cancer cells is discussed. • Similarity between pediatric cancer and reprogramming-associated cancer is discussed. • Concept for epigenetic cancer is discussed. - Abstract: Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by the transient expression of reprogramming factors. During the reprogramming process, somatic cells acquire the ability to undergo unlimited proliferation, which is also an important characteristic of cancer cells, while their underlying DNA sequence remains unchanged. Based on the characteristics shared between pluripotent stem cells and cancer cells, the potential involvement of the factors leading to reprogramming toward pluripotency in cancer development has been discussed. Recent in vivo reprogramming studies provided some clues to understanding the role of reprogramming-related epigenetic regulation in cancer development. It was shown that premature termination of the in vivo reprogramming result in the development of tumors that resemble pediatric cancers. Given that epigenetic modifications play a central role during reprogramming, failed reprogramming-associated cancer development may have provided a proof of concept for epigenetics-driven cancer development in vivo

  20. Noncoding Elements: Evolution and Epigenetic Regulation

    KAUST Repository

    Seridi, Loqmane

    2016-03-09

    When the human genome project was completed, it revealed a surprising result. 98% of the genome did not code for protein of which more than 50% are repeats— later known as ”Junk DNA”. However, comparative genomics unveiled that many noncoding elements are evolutionarily constrained; thus luckily to have a role in genome stability and regulation. Though, their exact functions remained largely unknown. Several large international consortia such as the Functional Annotation of Mammalian Genomes (FANTOM) and the Encyclopedia of DNA Elements (ENCODE) were set to understand the structure and the regulation of the genome. Specifically, these endeavors aim to measure and reveal the transcribed components and functional elements of the genome. One of the most the striking findings of these efforts is that most of the genome is transcribed, including non-conserved noncoding elements and repeat elements. Specifically, we investigated the evolution and epigenetic properties of noncoding elements. 1. We compared genomes of evolutionarily distant species and showed the ubiquity of constrained noncoding elements in metazoa. 2. By integrating multi-omic data (such as transcriptome, nucleosome profiling, histone modifications), I conducted a comprehensive analysis of epigenetic properties (chromatin states) of conserved noncoding elements in insects. We showed that those elements have distinct and protective sequence features, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. 3. I focused on the relationship between enhancers and repetitive elements. Using Cap Analysis of Gene Expression (CAGE) and RNASeq, I compiled a full catalog of active enhancers (a class of noncoding elements) during myogenesis of human primary cells of healthy donors and donors affected by Duchenne muscular dystrophy (DMD). Comparing the two time-courses, a significant change in the epigenetic

  1. Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits

    NARCIS (Netherlands)

    Johannes, Frank; Porcher, Emmanuelle; Teixeira, Felipe K.; Saliba-Colombani, Vera; Simon, Matthieu; Agier, Nicolas; Bulski, Agnes; Albuisson, Juliette; Heredia, Fabiana; Audigier, Pascal; Bouchez, David; Dillmann, Christine; Guerche, Philippe; Hospital, Frederic; Colot, Vincent

    Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic

  2. Epigenetic regulation of ageing: linking environmental inputs to genomic stability

    Science.gov (United States)

    Benayoun, Bérénice A.; Pollina, Elizabeth A.; Brunet, Anne

    2016-01-01

    Preface Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodeling by environmental stimuli impacts several aspects of transcription and genomic stability, with important consequences on longevity, and outline epigenetic differences between the ‘mortal soma’ and the ‘immortal germline’. Finally, we discuss the inheritance of ageing characteristics and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases. PMID:26373265

  3. Recent developments on the role of epigenetics in obesity and metabolic disease.

    Science.gov (United States)

    van Dijk, Susan J; Tellam, Ross L; Morrison, Janna L; Muhlhausler, Beverly S; Molloy, Peter L

    2015-01-01

    The increased prevalence of obesity and related comorbidities is a major public health problem. While genetic factors undoubtedly play a role in determining individual susceptibility to weight gain and obesity, the identified genetic variants only explain part of the variation. This has led to growing interest in understanding the potential role of epigenetics as a mediator of gene-environment interactions underlying the development of obesity and its associated comorbidities. Initial evidence in support of a role of epigenetics in obesity and type 2 diabetes mellitus (T2DM) was mainly provided by animal studies, which reported epigenetic changes in key metabolically important tissues following high-fat feeding and epigenetic differences between lean and obese animals and by human studies which showed epigenetic changes in obesity and T2DM candidate genes in obese/diabetic individuals. More recently, advances in epigenetic methodologies and the reduced cost of epigenome-wide association studies (EWAS) have led to a rapid expansion of studies in human populations. These studies have also reported epigenetic differences between obese/T2DM adults and healthy controls and epigenetic changes in association with nutritional, weight loss, and exercise interventions. There is also increasing evidence from both human and animal studies that the relationship between perinatal nutritional exposures and later risk of obesity and T2DM may be mediated by epigenetic changes in the offspring. The aim of this review is to summarize the most recent developments in this rapidly moving field, with a particular focus on human EWAS and studies investigating the impact of nutritional and lifestyle factors (both pre- and postnatal) on the epigenome and their relationship to metabolic health outcomes. The difficulties in distinguishing consequence from causality in these studies and the critical role of animal models for testing causal relationships and providing insight into underlying

  4. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  5. A nursing theory-guided framework for genetic and epigenetic research.

    Science.gov (United States)

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  6. Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae).

    Science.gov (United States)

    Herrera, Carlos M; Medrano, Mónica; Bazaga, Pilar

    2013-01-01

    Despite the importance of assessing the stability of epigenetic variation in non-model organisms living in real-world scenarios, no studies have been conducted on the transgenerational persistence of epigenetic structure in wild plant populations. This gap in knowledge is hindering progress in the interpretation of natural epigenetic variation. By applying the methylation-sensitive amplified fragment length polymorphism (MSAP) technique to paired plant-pollen (i.e., sporophyte-male gametophyte) DNA samples, and then comparing methylation patterns and epigenetic population differentiation in sporophytes and their descendant gametophytes, we investigated transgenerational constancy of epigenetic structure in three populations of the perennial herb Helleborus foetidus (Ranunculaceae). Single-locus and multilocus analyses revealed extensive epigenetic differentiation between sporophyte populations. Locus-by-locus comparisons of methylation status in individual sporophytes and descendant gametophytes showed that ~75% of epigenetic markers persisted unchanged through gametogenesis. In spite of some epigenetic reorganization taking place during gametogenesis, multilocus epigenetic differentiation between sporophyte populations was preserved in the subsequent gametophyte stage. In addition to illustrating the efficacy of applying the MSAP technique to paired plant-pollen DNA samples to investigate epigenetic gametic inheritance in wild plants, this paper suggests that epigenetic differentiation between adult plant populations of H. foetidus is likely to persist across generations.

  7. Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae.

    Directory of Open Access Journals (Sweden)

    Carlos M Herrera

    Full Text Available Despite the importance of assessing the stability of epigenetic variation in non-model organisms living in real-world scenarios, no studies have been conducted on the transgenerational persistence of epigenetic structure in wild plant populations. This gap in knowledge is hindering progress in the interpretation of natural epigenetic variation. By applying the methylation-sensitive amplified fragment length polymorphism (MSAP technique to paired plant-pollen (i.e., sporophyte-male gametophyte DNA samples, and then comparing methylation patterns and epigenetic population differentiation in sporophytes and their descendant gametophytes, we investigated transgenerational constancy of epigenetic structure in three populations of the perennial herb Helleborus foetidus (Ranunculaceae. Single-locus and multilocus analyses revealed extensive epigenetic differentiation between sporophyte populations. Locus-by-locus comparisons of methylation status in individual sporophytes and descendant gametophytes showed that ~75% of epigenetic markers persisted unchanged through gametogenesis. In spite of some epigenetic reorganization taking place during gametogenesis, multilocus epigenetic differentiation between sporophyte populations was preserved in the subsequent gametophyte stage. In addition to illustrating the efficacy of applying the MSAP technique to paired plant-pollen DNA samples to investigate epigenetic gametic inheritance in wild plants, this paper suggests that epigenetic differentiation between adult plant populations of H. foetidus is likely to persist across generations.

  8. Learning epigenetic regulation from mycobacteria

    Directory of Open Access Journals (Sweden)

    Sanjeev Khosla

    2016-01-01

    Full Text Available In a eukaryotic cell, the transcriptional fate of a gene is determined by the profile of the epigenetic modifications it is associated with and the conformation it adopts within the chromatin. Therefore, the function that a cell performs is dictated by the sum total of the chromatin organization and the associated epigenetic modifications of each individual gene in the genome (epigenome. As the function of a cell during development and differentiation is determined by its microenvironment, any factor that can alter this microenvironment should be able to alter the epigenome of a cell. In the study published in Nature Communications (Yaseen [2015] Nature Communications 6:8922 doi: 10.1038/ncomms9922, we show that pathogenic Mycobacterium tuberculosis has evolved strategies to exploit this pliability of the host epigenome for its own survival. We describe the identification of a methyltransferase from M. tuberculosis that functions to modulate the host epigenome by methylating a novel, non-canonical arginine, H3R42 in histone H3. In another study, we showed that the mycobacterial protein Rv2966c methylates cytosines present in non-CpG context within host genomic DNA upon infection. Proteins with ability to directly methylate host histones H3 at a novel lysine residue (H3K14 has also been identified from Legionella pnemophilia (RomA. All these studies indicate the use of non-canonical epigenetic mechanisms by pathogenic bacteria to hijack the host transcriptional machinery.

  9. General-Purpose Genotype or How Epigenetics Extend the Flexibility of a Genotype

    Directory of Open Access Journals (Sweden)

    Rachel Massicotte

    2012-01-01

    Full Text Available This project aims at investigating the link between individual epigenetic variability (not related to genetic variability and the variation of natural environmental conditions. We studied DNA methylation polymorphisms of individuals belonging to a single genetic lineage of the clonal diploid fish Chrosomus eos-neogaeus sampled in seven geographically distant lakes. In spite of a low number of informative fragments obtained from an MSAP analysis, individuals of a given lake are epigenetically similar, and methylation profiles allow the clustering of individuals in two distinct groups of populations among lakes. More importantly, we observed a significant pH variation that is consistent with the two epigenetic groups. It thus seems that the genotype studied has the potential to respond differentially via epigenetic modifications under variable environmental conditions, making epigenetic processes a relevant molecular mechanism contributing to phenotypic plasticity over variable environments in accordance with the GPG model.

  10. Oslo Epigenetics Symposium 2012. Oslo, Norway, 8-9 November 2012.

    Science.gov (United States)

    Collas, Philippe; Eskeland, Ragnhild

    2013-02-01

    The Oslo Epigenetics Symposium 2012 held in Oslo, Norway, brought together ten speakers from several European countries and the USA for an evening public lecture and a full day of presentations on emerging topics in the field of epigenetics, gene regulation and organization of the cell nucleus.

  11. Cow's milk allergy in Dutch children: an epigenetic pilot survey

    NARCIS (Netherlands)

    Petrus, Nicole C. M.; Henneman, Peter; Venema, Andrea; Mul, Adri; van Sinderen, Femke; Haagmans, Martin; Mook, Olaf; Hennekam, Raoul C.; Sprikkelman, Aline B.; Mannens, Marcel

    2016-01-01

    Background: Cow's milk allergy (CMA) is a common disease in infancy. Early environmental factors are likely to contribute to CMA. It is known that epigenetic gene regulation can be altered by environmental factors. We have set up a proof of concept study, aiming to detect epigenetic associations

  12. The Key Role of Epigenetics in the Persistence of Asexual Lineages

    Directory of Open Access Journals (Sweden)

    Emilie Castonguay

    2012-01-01

    Full Text Available Asexual organisms, often perceived as evolutionary dead ends, can be long-lived and geographically widespread. We propose that epigenetic mechanisms could play a crucial role in the evolutionary persistence of these lineages. Genetically identical organisms could rely on phenotypic plasticity to face environmental variation. Epigenetic modifications could be the molecular mechanism enabling such phenotypic plasticity; they can be influenced by the environment and act at shorter timescales than mutation. Recent work on the asexual vertebrate Chrosomus eos-neogaeus (Pisces: Cyprinidae provides broad insights into the contribution of epigenetics in genetically identical individuals. We discuss the extension of these results to other asexual organisms, in particular those resulting from interspecific hybridizations. We finally develop on the evolutionary relevance of epigenetic variation in the context of heritability.

  13. Trans-differentiation via Epigenetics: A New Paradigm in the Bone Regeneration.

    Science.gov (United States)

    Cho, Young-Dan; Ryoo, Hyun-Mo

    2018-02-01

    In regenerative medicine, growing cells or tissues in the laboratory is necessary when damaged cells can not heal by themselves. Acquisition of the required cells from the patient's own cells or tissues is an ideal option without additive side effects. In this context, cell reprogramming methods, including the use of induced pluripotent stem cells (iPSCs) and trans-differentiation, have been widely studied in regenerative research. Both approaches have advantages and disadvantages, and the possibility of de-differentiation because of the epigenetic memory of iPSCs has strengthened the need for controlling the epigenetic background for successful cell reprogramming. Therefore, interest in epigenetics has increased in the field of regenerative medicine. Herein, we outline in detail the cell trans-differentiation method using epigenetic modification for bone regeneration in comparison to the use of iPSCs.

  14. Epigenetics, obesity and early-life cadmium or lead exposure.

    Science.gov (United States)

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.

  15. Epigenetics and autism.

    Science.gov (United States)

    Mbadiwe, Tafari; Millis, Richard M

    2013-01-01

    This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase C β 1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs) associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies.

  16. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view.

    Science.gov (United States)

    Hodjat, Mahshid; Rahmani, Soheila; Khan, Fazlullah; Niaz, Kamal; Navaei-Nigjeh, Mona; Mohammadi Nejad, Solmaz; Abdollahi, Mohammad

    2017-07-01

    Epigenotoxicology is an emerging field of study that investigates the non-genotoxic epigenetic effects of environmental toxicants resulting in alteration of normal gene expression and disruption of cell function. Recent findings on the role of toxicant-induced epigenetic modifications in the development of degenerative diseases have opened up a promising research direction to explore epigenetic therapy approaches and related prognostic biomarkers. In this review, we presented comprehensive data on epigenetic alterations identified in various diseases, including cancer, autoimmune disorders, pulmonary conditions as well as cardiovascular, gastrointestinal and bone disease. Although data on abnormalities of DNA methylation and their role in the development of diseases are abundant, less is known about the impact of histone modifications and microRNA expressions. Further, we discussed the effects of selected common environmental toxicants on epigenetic modifications and their association with particular abnormalities. A number of different environmental toxicants have been identified for their role in aberrant DNA methylation, histone modifications, and microRNA expression. Such epigenetic effects were shown to be tissue-type specific and highly associated with the level and duration of exposure. Finally, we described present and future therapeutic strategies, including medicines and dietary compounds for combating the toxicant-induced epigenetic alterations. There are currently seven histone deacetylase inhibitors and two DNA methyltransferase inhibitors approved for clinical use and many other promising candidates are in preclinical and clinical testing. Dietary compounds are thought to be the effective and safe strategies for treating and prevention of epigenetic pathophysiological conditions. Still more concentrated epigenetic researches are required for evaluation of chemical toxicity and identifying the causal association between key epigenetic alteration and

  17. Microbiome, inflammation, epigenetic alterations, and mental diseases.

    Science.gov (United States)

    Alam, Reza; Abdolmaleky, Hamid M; Zhou, Jin-Rong

    2017-09-01

    Major mental diseases such as autism, bipolar disorder, schizophrenia, and major depressive disorder are debilitating illnesses with complex etiologies. Recent findings show that the onset and development of these illnesses cannot be well described by the one-gene; one-disease approach. Instead, their clinical presentation is thought to result from the regulative interplay of a large number of genes. Even though the involvement of many genes are likely, up regulating and activation or down regulation and silencing of these genes by the environmental factors play a crucial role in contributing to their pathogenesis. Much of this interplay may be moderated by epigenetic changes. Similar to genetic mutations, epigenetic modifications such as DNA methylation, histone modifications, and RNA interference can influence gene expression and therefore may cause behavioral and neuronal changes observed in mental disorders. Environmental factors such as diet, gut microbiota, and infections have significant role in these epigenetic modifications. Studies show that bioactive nutrients and gut microbiota can alter either DNA methylation and histone signatures through a variety of mechanisms. Indeed, microbes within the human gut may play a significant role in the regulation of various elements of "gut-brain axis," via their influence on inflammatory cytokines and production of antimicrobial peptides that affect the epigenome through their involvement in generating short chain fatty acids, vitamin synthesis, and nutrient absorption. In addition, they may participate in-gut production of many common neurotransmitters. In this review we will consider the potential interactions of diet, gastrointestinal microbiome, inflammation, and epigenetic alterations in psychiatric disorders. © 2017 Wiley Periodicals, Inc.

  18. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Science.gov (United States)

    Tricker, Penny J

    2015-01-01

    The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defense "priming" and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity's adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  19. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Directory of Open Access Journals (Sweden)

    Penny J Tricker

    2015-09-01

    Full Text Available The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defence ‘priming’ and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity’s adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  20. Nutrition, epigenetic mechanisms, and human disease

    National Research Council Canada - National Science Library

    Maulik, Nilanjana; Maulik, Gautam

    2011-01-01

    .... The text discusses the basics of nutrigenomics and epigenetic regulation, types of nutrition influencing genetic imprinting, and the role of nutrition in modulating an individual's predisposition to disease...

  1. Gathering by the Red Sea highlights links between environment and epigenetics

    KAUST Repository

    Li, Mo; Borrelli, Emiliana; Magistretti, Pierre J.; Izpisua Belmonte, Juan Carlos; Sassone-Corsi, Paolo; Orlando, Valerio

    2017-01-01

    , and how the environment may impinge on epigenetic control, are topics of growing debate. Those themes were the focus of the inaugural international King Abdullah University of Science and Technology (KAUST) Research Conference on Environmental Epigenetics

  2. Recent Findings in Alzheimer Disease and Nutrition Focusing on Epigenetics.

    Science.gov (United States)

    Athanasopoulos, Dimitrios; Karagiannis, George; Tsolaki, Magda

    2016-09-01

    Alzheimer disease (AD) is a chronic neurodegenerative disease with no effective cure so far. The current review focuses on the epigenetic mechanisms of AD and how nutrition can influence the course of this disease through regulation of gene expression, according to the latest scientific findings. The search strategy was the use of scientific databases such as PubMed and Scopus in order to find relative research or review articles published in the years 2012-2015. By showing the latest data of various nutritional compounds, this study aims to stimulate the scientific community to recognize the value of nutrition in this subject. Epigenetics is becoming a very attractive subject for researchers because it can shed light on unknown aspects of complex diseases like AD. DNA methylation, histone modifications, and microRNAs are the principal epigenetic mechanisms involved in AD pathophysiology. Nutrition is an environmental factor that is related to AD through epigenetic pathways. Vitamin B-12, for instance, can alter the one-carbon metabolism and thus interfere in the DNA methylation process. The research results might seem ambiguous about the clinical role of nutrition, but there is strengthening evidence that proper nutrition can not only change epigenetic biomarker levels but also prevent the development of late-onset AD and attenuate cognition deficit. Nutrition might grow to become a preventive and even therapeutic alternative against AD, especially if combined with other antidementia interventions, brain exercise, physical training, etc. Epigenetic biomarkers can be a very helpful tool to help researchers find the exact nutrients needed to create specific remedies, and perhaps the same biomarkers can be used even in patient screening in the future. © 2016 American Society for Nutrition.

  3. Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

    Directory of Open Access Journals (Sweden)

    Massimo De Felici

    2011-01-01

    Full Text Available The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.

  4. Nutrients and the Pancreas: An Epigenetic Perspective

    Directory of Open Access Journals (Sweden)

    Andee Weisbeck

    2017-03-01

    Full Text Available Pancreatic cancer is the fourth most common cause of cancer-related deaths with a dismal average five-year survival rate of six percent. Substitutional progress has been made in understanding how pancreatic cancer develops and progresses. Evidence is mounting which demonstrates that diet and nutrition are key factors in carcinogenesis. In particular, diets low in folate and high in fruits, vegetables, red/processed meat, and saturated fat have been identified as pancreatic cancer risk factors with a proposed mechanism involving epigenetic modifications or gene regulation. We review the current literature assessing the correlation between diet, epigenetics, and pancreatic cancer.

  5. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  6. Comparative epigenetics: relevance to the regulation of production and health traits in cattle.

    Science.gov (United States)

    Doherty, Rachael; O' Farrelly, Cliona; Meade, Kieran G

    2014-08-01

    With the development of genomic, transcriptomic and bioinformatic tools, recent advances in molecular technologies have significantly impacted bovine bioscience research and are revolutionising animal selection and breeding. Integration of epigenetic information represents yet another challenging molecular frontier. Epigenetics is the study of biochemical modifications to DNA and to histones, the proteins that provide stability to DNA. These epigenetic changes are induced by environmental stimuli; they alter gene expression and are potentially heritable. Epigenetics research holds the key to understanding how environmental factors contribute to phenotypic variation in traits of economic importance in cattle including development, nutrition, behaviour and health. In this review, we discuss the potential applications of epigenetics in bovine research, using breakthroughs in human and murine research to signpost the way. © 2014 Stichting International Foundation for Animal Genetics.

  7. Epigenetics and Autism

    OpenAIRE

    Mbadiwe, Tafari; Millis, Richard M.

    2013-01-01

    This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase C ? 1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overac...

  8. Epigenetics of Autoantigens: New Opportunities for Therapy of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Marko Radic

    2013-01-01

    Full Text Available The field of epigenetics requires that traditional divisions between scientific disciplines give way to cross-fertilization of concepts and ideas from different areas of investigation. Such is the case with research in autoimmunity. Recent discoveries of stimuli that induce autoimmunity reveal that epigenetic marks of autoantigens are recognized by autoreactive B and T cell receptors. Thus, insights into the initiation of autoimmunity, its prevention and therapy will arise from understanding the biochemistry, cell biology and microbiology of autoantigen epigenetics. Here, we highlight potential benefits from the inhibition of a histone modifying enzyme and the administration of a phosphorylated, spliceosome-derived peptide, in the treatment of autoimmunity.

  9. The epigenetic effects of assisted reproductive technologies: ethical considerations.

    Science.gov (United States)

    Roy, M-C; Dupras, C; Ravitsky, V

    2017-08-01

    The use of assisted reproductive technologies (ART) has increased significantly, allowing many coping with infertility to conceive. However, an emerging body of evidence suggests that ART could carry epigenetic risks for those conceived through the use of these technologies. In accordance with the Developmental Origins of Health and Disease hypothesis, ART could increase the risk of developing late-onset diseases through epigenetic mechanisms, as superovulation, fertilization methods and embryo culture could impair the embryo's epigenetic reprogramming. Such epigenetic risks raise ethical issues for all stakeholders: prospective parents and children, health professionals and society. This paper focuses on ethical issues raised by the consideration of these risks when using ART. We apply two key ethical principles of North American bioethics (respect for autonomy and non-maleficence) and suggest that an ethical tension may emerge from conflicting duties to promote the reproductive autonomy of prospective parents on one hand, and to minimize risks to prospective children on the other. We argue that this tension is inherent to the entire enterprise of ART and thus cannot be addressed by individual clinicians in individual cases. We also consider the implications of the 'non-identity problem' in this context. We call for additional research that would allow a more robust evidence base for policy. We also call upon professional societies to provide clinicians with guidelines and educational resources to facilitate the communication of epigenetic risks associated with ART to patients, taking into consideration the challenges of communicating risk information whose validity is still uncertain.

  10. Epigenetics modifications and therapeutic prospects in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Maria Graziella eCatalano

    2012-03-01

    Full Text Available At present no successful treatment is available for advanced thyroid cancer, which comprises poorly differentiated, anaplastic, and metastatic or recurrent differentiated thyroid cancer not responding to radioiodine. In the last few years, biologically targeted therapies for advanced thyroid carcinomas have been proposed on the basis of the recognition of key oncogenic mutations. Although the results of several phase II trials look promising, none of the patients treated had a complete response, and only a minority of them had a partial response, suggesting that the treatment is, at best, effective in stabilizing patients with progressive disease. Epigenetic refers to the study of heritable changes in gene expression that occur without any alteration in the primary DNA sequence. The epigenetic processes establish and maintain the global and local chroma¬tin states that determine gene expression. Epigenetic abnormalities are present in almost all cancers and, together with genetic changes, drive tumour progression. Various genes involved in the control of cell proliferation and invasion (p16INK4A, RASSF1A,PTEN, Rap1GAP, TIMP3, DAPK, RARβ2, E-cadherin, and CITED1 as well as genes specific of thyroid differentiation (Na+/I- symport, TSH receptor, pendrin, SL5A8, and TTF-1 present aberrant methylation in thyroid cancer.This review deals with the most frequent epigenetic alterations in thyroid cancer and focuses on epigenetic therapy, whose goal is to target the chromatin in rapidly dividing tumour cells and potentially restore normal cell functions. Experimental data and clinical trials, especially using deacetylase inhibitors and demethylating agents, are discussed.

  11. Epigenetic Influences During the Periconception Period and Assisted Reproduction.

    Science.gov (United States)

    Amoako, Akwasi A; Nafee, Tamer M; Ola, Bolarinde

    2017-01-01

    The periconception period starts 6 months before conception and lasts until the tenth week of gestation. In this chapter, we will focus on epigenetic modifications to DNA and gene expression within this period and during assisted reproduction. There are two critical times during the periconception window when significant epigenetic 'reprogramming' occur: one during gametogenesis and another during the pre-implantation embryonic stage. Furthermore, assisted conception treatments, laboratory protocols and culture media can affect the embryo development and birth weights in laboratory animals. There is, however, an ongoing debate as to whether epigenetic changes in humans, causing embryo mal-development, placenta dysfunction and birth defects, result from assisted reproductive technologies or are consequences of pre-existing medical and/or genetic conditions in the parents. The periconception period starts from ovarian folliculogenesis, through resumption of oogenesis, fertilisation, peri-implantation embryo development, embryogenesis until the end of organogenesis. In men, it is the period from spermatogenesis to epididymal sperm storage and fertilisation. Gametes and developing embryos are sensitive to environmental factors during this period, and epigenetic modifications can occur in response to adverse lifestyles and environmental factors. We now know that lifestyle factors such as advanced parentage age, obesity or undernutrition, smoking, excessive alcohol and caffeine intake and recreational drugs used during gamete production and embryogenesis could induce epigenetic alterations, which could impact adversely on pregnancy outcomes and health of the offspring. Furthermore, these can also result in a permanent and irreversible effect in a dose-dependent manner, which can be passed on to the future generations.

  12. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia.

    Science.gov (United States)

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin

    2015-08-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  13. Sexually selected traits: a fundamental framework for studies on behavioral epigenetics.

    Science.gov (United States)

    Jašarević, Eldin; Geary, David C; Rosenfeld, Cheryl S

    2012-01-01

    Emerging evidence suggests that epigenetic-based mechanisms contribute to various aspects of sex differences in brain and behavior. The major obstacle in establishing and fully understanding this linkage is identifying the traits that are most susceptible to epigenetic modification. We have proposed that sexual selection provides a conceptual framework for identifying such traits. These are traits involved in intrasexual competition for mates and intersexual choice of mating partners and generally entail a combination of male-male competition and female choice. These behaviors are programmed during early embryonic and postnatal development, particularly during the transition from the juvenile to adult periods, by exposure of the brain to steroid hormones, including estradiol and testosterone. We evaluate the evidence that endocrine-disrupting compounds, including bisphenol A, can interfere with the vital epigenetic and gene expression pathways and with the elaboration of sexually selected traits with epigenetic mechanisms presumably governing the expression of these traits. Finally, we review the evidence to suggest that these steroid hormones can induce a variety of epigenetic changes in the brain, including the extent of DNA methylation, histone protein alterations, and even alterations of noncoding RNA, and that many of the changes differ between males and females. Although much previous attention has focused on primary sex differences in reproductive behaviors, such as male mounting and female lordosis, we outline why secondary sex differences related to competition and mate choice might also trace their origins back to steroid-induced epigenetic programming in disparate regions of the brain.

  14. Lost in translation. New unexplored avenues for neuropsychopharmacology: epigenetics and microRNAs.

    Science.gov (United States)

    Tardito, Daniela; Mallei, Alessandra; Popoli, Maurizio

    2013-02-01

    Mood and anxiety disorders are among the major causes of disability worldwide. Despite clear need for better therapies, efforts to develop novel drugs have been relatively unsuccessful. One major reason is lack of translation into neuropsychopharmacology of the impressive recent array of knowledge accrued by clinical and preclinical researches on the brain. Here focus is on epigenetics mechanisms, including microRNAs, which seem particularly promising for the identification of new targets for alternative pharmacological approaches. First, the current knowledge about epigenetic mechanisms, including DNA methylation, posttranslational modification of histone proteins, focusing on histone methylation and acetylation, and posttranscriptional modulation of gene expression by microRNAs is described. Then evidence showing involvement of epigenetics and microRNAs in the pathophysiology of mood and anxiety disorders as well as evidence showing that some of the currently employed antidepressants and mood stabilizers also affect epigenetic and microRNA mechanisms are reviewed. Finally current evidence and novel approaches in favor of drugs regulating epigenetic and microRNA mechanisms as potential therapeutics for these disorders are discussed. Although still in its infancy, research investigating the effects of pharmacological modulation of epigenetic and microRNA mechanisms in neuropsychiatric disorders continues to provide encouraging findings, suggesting new avenues for treatment of mood and anxiety disorders.

  15. Epigenetic differences between sister chromatids?

    NARCIS (Netherlands)

    Lansdorp, Peter M.; Falconer, Ester; Tao, Jiang; Brind'Amour, Julie; Naumann, Ulrike; Kanz, L; Fibbe, WE; Lengerke, C; Dick, JE

    2012-01-01

    Semi-conservative replication ensures that the DNA sequence of sister chromatids is identical except for replication errors and variation in the length of telomere repeats resulting from replicative losses and variable end processing. What happens with the various epigenetic marks during DNA

  16. Investigation of epigenetic gene regulation in Arabidopsis modulated by gamma radiation

    International Nuclear Information System (INIS)

    Woo, Hye Ryun; Kim, Jae Sung; Lee, Myung Jin; Lee, Dong Joon; Kim, Young Min; Jung, Joon Yong; Han, Wan Keun; Kang, Soo Jin

    2011-12-01

    To investigate epigenetic gene regulation in Arabidopsis modulated by gamma radiation, we examined the changes in DNA methylation and histone modification after gamma radiation and investigated the effects of gamma radiation on epigenetic information and gene expression. We have selected 14 genes with changes in DNA methylation by gamma radiation, analyzed the changes of histone modification in the selected genes to reveal the relationship between DNA methylation and histone modification by gamma radiation. We have also analyzed the effects of gamma radiation on gene expression to investigate the relationship between epigenetic information and gene expression by gamma radiation. The results will be useful to reveal the effects of gamma radiation on DNA methylation, histone modification and gene expression. We anticipate that the information generated in this proposal will help to find out the mechanism underlying the changes in epigenetic information by gamma radiation

  17. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.; Snoek, L.B.; Oplaat, C.; Biere, A.; Putten, van der W.H.; Verhoeven, K.J.F.

    2015-01-01

    Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test if northward range expansion of

  18. Epigenetic Modifications of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kathleen Saavedra

    2016-08-01

    Full Text Available Major depressive disorder (MDD is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.

  19. The role of epigenetics in genetic and environmental epidemiology.

    Science.gov (United States)

    Ladd-Acosta, Christine; Fallin, M Daniele

    2016-02-01

    Epidemiology is the branch of science that investigates the causes and distribution of disease in populations in order to provide preventative measures and promote human health. The fields of genetic and environmental epidemiology primarily seek to identify genetic and environmental risk factors for disease, respectively. Epigenetics is emerging as an important piece of molecular data to include in these studies because it can provide mechanistic insights into genetic and environmental risk factors for disease, identify potential intervention targets, provide biomarkers of exposure, illuminate gene-environment interactions and help localize disease-relevant genomic regions. Here, we describe the importance of including epigenetics in genetic and environmental epidemiology studies, provide a conceptual framework when considering epigenetic data in population-based studies and touch upon the many challenges that lie ahead.

  20. Epigenetic Findings in Autism: New Perspectives for Therapy

    Directory of Open Access Journals (Sweden)

    James Jeffrey Bradstreet

    2013-09-01

    Full Text Available Autism and autism spectrum disorders (ASDs are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.

  1. Epigenetic effects of green tea polyphenols in cancer

    Science.gov (United States)

    Henning, Susanne M; Wang, Piwen; Carpenter, Catherine L; Heber, David

    2014-01-01

    Epigenetics describes heritable alterations of gene expression and chromatin organization without changes in DNA sequence. Both hypermethylation and hypomethylation of DNA can affect gene expression and the multistep process of carcinogenesis. Epigenetic changes are reversible and may be targeted by dietary interventions. Bioactive compounds from green tea (GT) such as (–)-epigallocatechin gallate have been shown to alter DNA methyltransferase activity in studies of esophageal, oral, skin, Tregs, lung, breast and prostate cancer cells, which may contribute to the chemopreventive effect of GT. Three out of four mouse model studies have confirmed the inhibitory effect of (–)-epigallocatechin gallate on DNA methylation. A human study demonstrated that decreased methylation of CDX2 and BMP-2 in gastric carcinoma was associated with higher GT consumption. It is the goal of this review to summarize our current knowledge of the potential of GT to alter epigenetic processes, which may be useful in chemoprevention. PMID:24283885

  2. Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis

    Directory of Open Access Journals (Sweden)

    Afroza Khanam Irin

    2015-01-01

    Full Text Available Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL. This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNA methylation or acetylation of histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional context specific to Parkinson’s disease (PD and Multiple Sclerosis (MS.

  3. The Art of Interpreting Epigenetic Activity | Center for Cancer Research

    Science.gov (United States)

    Even though all the cells of the human body share a common genomic blueprint, epigenetic activity such as DNA methylation, introduces molecular diversity that results in functionally and biologically different cellular constituents. In cancers, this ability of epigenetic activity to introduce molecular diversity is emerging as a powerful classifier of biological aggressiveness.

  4. Epigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models.

    Science.gov (United States)

    Wang, Xinlei; Zang, Miao; Xiao, Guanghua

    2013-06-15

    Epigenetics is the study of changes to the genome that can switch genes on or off and determine which proteins are transcribed without altering the DNA sequence. Recently, epigenetic changes have been linked to the development and progression of disease such as psychiatric disorders. High-throughput epigenetic experiments have enabled researchers to measure genome-wide epigenetic profiles and yield data consisting of intensity ratios of immunoprecipitation versus reference samples. The intensity ratios can provide a view of genomic regions where protein binding occur under one experimental condition and further allow us to detect epigenetic alterations through comparison between two different conditions. However, such experiments can be expensive, with only a few replicates available. Moreover, epigenetic data are often spatially correlated with high noise levels. In this paper, we develop a Bayesian hierarchical model, combined with hidden Markov processes with four states for modeling spatial dependence, to detect genomic sites with epigenetic changes from two-sample experiments with paired internal control. One attractive feature of the proposed method is that the four states of the hidden Markov process have well-defined biological meanings and allow us to directly call the change patterns based on the corresponding posterior probabilities. In contrast, none of existing methods can offer this advantage. In addition, the proposed method offers great power in statistical inference by spatial smoothing (via hidden Markov modeling) and information pooling (via hierarchical modeling). Both simulation studies and real data analysis in a cocaine addiction study illustrate the reliability and success of this method. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Investigating Epigenetic Effects of Prenatal Exposure to Toxic Metals in Newborns: Challenges and Benefits.

    Science.gov (United States)

    Nye, Monica D; Fry, Rebecca C; Hoyo, Cathrine; Murphy, Susan K

    2014-01-01

    Increasing evidence suggest that epigenetic alterations can greatly impact human health, and that epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) may be particularly relevant in responding to environmental toxicant exposure early in life. The epigenome plays a vital role in embryonic development, tissue differentiation and disease development by controlling gene expression. In this review we discuss what is currently known about epigenetic alterations in response to prenatal exposure to inorganic arsenic (iAs) and lead (Pb), focusing specifically on their effects on DNA methylation. We then describe how epigenetic alterations are being studied in newborns as potential biomarkers of in utero environmental toxicant exposure, and the benefits and challenges of this approach. In summary, the studies highlighted herein indicate how epigenetic mechanisms are impacted by early life exposure to iAs and Pb, and the research that is being done to move towards understanding the relationships between toxicant-induced epigenetic alterations and disease development. Although much remains unknown, several groups are working to understand the correlative and causal effects of early life toxic metal exposure on epigenetic changes and how these changes may result in later development of disease.

  6. dbEM: A database of epigenetic modifiers curated from cancerous and normal genomes

    Science.gov (United States)

    Singh Nanda, Jagpreet; Kumar, Rahul; Raghava, Gajendra P. S.

    2016-01-01

    We have developed a database called dbEM (database of Epigenetic Modifiers) to maintain the genomic information of about 167 epigenetic modifiers/proteins, which are considered as potential cancer targets. In dbEM, modifiers are classified on functional basis and comprise of 48 histone methyl transferases, 33 chromatin remodelers and 31 histone demethylases. dbEM maintains the genomic information like mutations, copy number variation and gene expression in thousands of tumor samples, cancer cell lines and healthy samples. This information is obtained from public resources viz. COSMIC, CCLE and 1000-genome project. Gene essentiality data retrieved from COLT database further highlights the importance of various epigenetic proteins for cancer survival. We have also reported the sequence profiles, tertiary structures and post-translational modifications of these epigenetic proteins in cancer. It also contains information of 54 drug molecules against different epigenetic proteins. A wide range of tools have been integrated in dbEM e.g. Search, BLAST, Alignment and Profile based prediction. In our analysis, we found that epigenetic proteins DNMT3A, HDAC2, KDM6A, and TET2 are highly mutated in variety of cancers. We are confident that dbEM will be very useful in cancer research particularly in the field of epigenetic proteins based cancer therapeutics. This database is available for public at URL: http://crdd.osdd.net/raghava/dbem.

  7. Twin methodology in epigenetic studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob

    2015-01-01

    of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method...

  8. Epigenetic Placental Programming of Preeclampsia

    Science.gov (United States)

    Preeclampsia (PE) affects 8-10% of women in the US and long-term consequences include subsequent development of maternal hypertension and hypertension in offspring. As methylation patterns are established during fetal life, we focused on epigenetic alterations in DNA methylation as a plausible expla...

  9. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  10. The epigenetic landscape of age-related diseases: the geroscience perspective.

    Science.gov (United States)

    Gensous, Noémie; Bacalini, Maria Giulia; Pirazzini, Chiara; Marasco, Elena; Giuliani, Cristina; Ravaioli, Francesco; Mengozzi, Giacomo; Bertarelli, Claudia; Palmas, Maria Giustina; Franceschi, Claudio; Garagnani, Paolo

    2017-08-01

    In this review, we summarize current knowledge regarding the epigenetics of age-related diseases, focusing on those studies that have described DNA methylation landscape in cardio-vascular diseases, musculoskeletal function and frailty. We stress the importance of adopting the conceptual framework of "geroscience", which starts from the observation that advanced age is the major risk factor for several of these pathologies and aims at identifying the mechanistic links between aging and age-related diseases. DNA methylation undergoes a profound remodeling during aging, which includes global hypomethylation of the genome, hypermethylation at specific loci and an increase in inter-individual variation and in stochastic changes of DNA methylation values. These epigenetic modifications can be an important contributor to the development of age-related diseases, but our understanding on the complex relationship between the epigenetic signatures of aging and age-related disease is still poor. The most relevant results in this field come from the use of the so called "epigenetics clocks" in cohorts of subjects affected by age-related diseases. We report these studies in final section of this review.

  11. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    Directory of Open Access Journals (Sweden)

    Craig L. Parfett

    2017-06-01

    Full Text Available An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2

  12. Robotic liquid handling and automation in epigenetics.

    Science.gov (United States)

    Gaisford, Wendy

    2012-10-01

    Automated liquid-handling robots and high-throughput screening (HTS) are widely used in the pharmaceutical industry for the screening of large compound libraries, small molecules for activity against disease-relevant target pathways, or proteins. HTS robots capable of low-volume dispensing reduce assay setup times and provide highly accurate and reproducible dispensing, minimizing variation between sample replicates and eliminating the potential for manual error. Low-volume automated nanoliter dispensers ensure accuracy of pipetting within volume ranges that are difficult to achieve manually. In addition, they have the ability to potentially expand the range of screening conditions from often limited amounts of valuable sample, as well as reduce the usage of expensive reagents. The ability to accurately dispense lower volumes provides the potential to achieve a greater amount of information than could be otherwise achieved using manual dispensing technology. With the emergence of the field of epigenetics, an increasing number of drug discovery companies are beginning to screen compound libraries against a range of epigenetic targets. This review discusses the potential for the use of low-volume liquid handling robots, for molecular biological applications such as quantitative PCR and epigenetics.

  13. Epigenetic regulation in Autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Sraboni Chaudhury

    2016-12-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by an impaired social communication skill and often results in repetitive, stereotyped behavior which is observed in children during the first few years of life. Other characteristic of this disorder includes language disabilities, difficulties in sensory integration, lack of reciprocal interactions and in some cases, cognitive delays. One percentage of the general population is affected by ASD and is four times more common in boys than girls. There are hundreds of genes, which has been identified to be associated with ASD etiology. However it remains difficult to comprehend our understanding in defining the genetic architecture necessary for complete exposition of its pathophysiology. Seeing the complexity of the disease, it is important to adopt a multidisciplinary approach which should not only focus on the “genetics” of autism but also on epigenetics, transcriptomics, immune system disruption and environmental factors that could all impact the pathogenesis of the disease. As environmental factors also play a key role in regulating the trigger of ASD, the role of chromatin remodeling and DNA methylation has started to emerge. Such epigenetic modifications directly link molecular regulatory pathways and environmental factors, which might be able to explain some aspects of complex disorders like ASD. The present review will focus on the role of epigenetic regulation in defining the underlying cause for ASD

  14. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma

    Science.gov (United States)

    Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.

    2014-01-01

    Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221

  15. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?

    Science.gov (United States)

    Kirkbride, James B; Susser, Ezra; Kundakovic, Marija; Kresovich, Jacob K; Davey Smith, George; Relton, Caroline L

    2012-06-01

    We posit that maternal prenatal nutrition can influence offspring schizophrenia risk via epigenetic effects. In this article, we consider evidence that prenatal nutrition is linked to epigenetic outcomes in offspring and schizophrenia in offspring, and that schizophrenia is associated with epigenetic changes. We focus upon one-carbon metabolism as a mediator of the pathway between perturbed prenatal nutrition and the subsequent risk of schizophrenia. Although post-mortem human studies demonstrate DNA methylation changes in brains of people with schizophrenia, such studies cannot establish causality. We suggest a testable hypothesis that utilizes a novel two-step Mendelian randomization approach, to test the component parts of the proposed causal pathway leading from prenatal nutritional exposure to schizophrenia. Applied here to a specific example, such an approach is applicable for wider use to strengthen causal inference of the mediating role of epigenetic factors linking exposures to health outcomes in population-based studies.

  16. Meeting Report of the Fifth International Cancer Epigenetics Conference in Beijing, China, October 2016.

    Science.gov (United States)

    Gao, Dan; Herman, James G; Cui, Hengmi; Jen, Jin; Fuks, Francois; Brock, Malcolm V; Ushijima, Toshikazu; Croce, Carlo; Akiyama, Yoshimitsu; Guo, Mingzhou

    2017-07-01

    Fifth International Cancer Epigenetics Conference, Beijing, China, 21-23 October 2016 This meeting reported many new findings in the field of cancer epigenetics, including basic science, translational and clinical studies. In this report, we summarize some of the main advancements and prospects in cancer epigenetics presented at this meeting.

  17. Interpreting phenotypic antibiotic tolerance and persister cells as evolution via epigenetic inheritance.

    Science.gov (United States)

    Day, Troy

    2016-04-01

    Epigenetic inheritance is the transmission of nongenetic material such as gene expression levels, RNA and other biomolecules from parents to offspring. There is a growing realization that such forms of inheritance can play an important role in evolution. Bacteria represent a prime example of epigenetic inheritance because a large array of cellular components is transmitted to offspring, in addition to genetic material. Interestingly, there is an extensive and growing empirical literature showing that many bacteria can form 'persister' cells that are phenotypically resistant or tolerant to antibiotics, but most of these results are not interpreted within the context of epigenetic inheritance. Instead, persister cells are usually viewed as a genetically encoded bet-hedging strategy that has evolved in response to a fluctuating environment. Here I show, using a relatively simple model, that many of these empirical findings can be more simply understood as arising from a combination of epigenetic inheritance and cellular noise. I therefore suggest that phenotypic drug tolerance in bacteria might represent one of the best-studied examples of evolution under epigenetic inheritance. © 2016 John Wiley & Sons Ltd.

  18. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders.

    Science.gov (United States)

    Varadinova, Miroslava; Boyadjieva, Nadka

    2015-12-01

    The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Redistribution of Reproductive Responsibility: On the Epigenetics of "Environment" in Prenatal Interventions.

    Science.gov (United States)

    Valdez, Natali

    2018-02-01

    The rapidly shifting field of epigenetics has expanded scientific understanding of how environmental conditions affect gene expression and development. This article focuses on two ongoing clinical trials-one in the United States and one in the United Kingdom-that have used epigenetics as the conceptual basis for testing the relationship between nutrition and obesity during pregnancy. Drawing on ethnographic research, I highlight the different ways that clinical scientists interpret epigenetics to target particular domains of the environment for prenatal intervention. Here I examine three environmental domains: the pregnant body, the home, and everyday experiences. In so doing, I show how different scientific approaches to epigenetics multiply concepts of "the environment," while also individualizing responsibility onto pregnant bodies. Ultimately, I argue that how the environment is conceptualized in epigenetics is both a scientific and a political project that opens up questions of reproductive responsibility. © 2018 by the American Anthropological Association.

  20. Epigenetic regulation and chromatin remodeling in learning and memory.

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-13

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.

  1. Epigenetics and Autism

    Directory of Open Access Journals (Sweden)

    Tafari Mbadiwe

    2013-01-01

    Full Text Available This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs can phosphorylate histone H3 at T6. Aided by protein kinase Cβ1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR- dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies.

  2. At the Frontier of Epigenetics of Brain Sex Differences

    Directory of Open Access Journals (Sweden)

    Margaret M Mccarthy

    2015-08-01

    Full Text Available The notion that epigenetics may play an important role in the establishment and maintenance of sex differences in the brain has garnered great enthusiasm but the reality in terms of actual advances have been slow. Two general approaches include the comparison of a particular epigenetic mark in males versus females and the inhibition of key epigenetic enzymes or co-factors to determine if this eliminates a particular sex difference in brain or behavior. The majority of emphasis has been on candidate genes such as steroid receptors. Only recently have more generalized survey type approaches been achieved and these promise to open new vista’s and accelerate discovery of important roles for DNA methylation, histone modification and microRNAs. Technical challenges abound and while not unique to this field will require novel thinking and new approaches by behavioral neuroendocrinogists.

  3. Epigenetic Effects of Cannabis Exposure

    Science.gov (United States)

    Szutorisz, Henrietta; Hurd, Yasmin L.

    2015-01-01

    The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one’s lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions. PMID:26546076

  4. Epigenetic regulation of female puberty.

    Science.gov (United States)

    Lomniczi, Alejandro; Wright, Hollis; Ojeda, Sergio R

    2015-01-01

    Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Gathering by the Red Sea highlights links between environment and epigenetics

    KAUST Repository

    Li, Mo

    2017-06-06

    The number of conferences on epigenetics has been increasing in the past decade, underscoring the impact of the field on a variety of areas in biology and medicine. However, the mechanistic role of the epigenome in adaptation and inheritance, and how the environment may impinge on epigenetic control, are topics of growing debate. Those themes were the focus of the inaugural international King Abdullah University of Science and Technology (KAUST) Research Conference on Environmental Epigenetics in Saudi Arabia, where more than 100 participants from 19 countries enjoyed vibrant scientific discussions and a pleasant February breeze from the Red Sea.

  6. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates.

    Science.gov (United States)

    Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M

    2015-09-15

    Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Epigenetic signature of birth weight discordance in adult twins

    DEFF Research Database (Denmark)

    Tan, Qihua; Nielsen, Morten Frost Munk; Heijmans, Bastiaan T

    2014-01-01

    between birth weight and adult life health while controlling for not only genetics but also postnatal rearing environment. We performed an epigenome-wide profiling on blood samples from 150 pairs of adult monozygotic twins discordant for birth weight to look for molecular evidence of epigenetic signatures...... profiling did not reveal epigenetic signatures of birth weight discordance although some sites displayed age-dependent intra-pair differential methylation in the extremely discordant twin pairs....

  8. Epigenetic modification and inheritance in sexual reversal of fish

    OpenAIRE

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei

    2014-01-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model—a marine fish that has both ZW chromosomal GSD and temperature-dependen...

  9. Epigenetic regulation in the inner ear and its potential roles in development, protection, and regeneration

    Directory of Open Access Journals (Sweden)

    Jian eZuo

    2015-01-01

    Full Text Available The burgeoning field of epigenetics is beginning to make a significant impact on our understanding of tissue development, maintenance, and function. Epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues that direct cell-type specific gene networks. The inner ear is comprised of highly specialized cell types with identical genomes that originate from a single totipotent zygote. During inner ear development specific combinations of transcription factors and epigenetic modifiers must function in a coordinated manner to establish and maintain cellular identity. These epigenetic regulatory mechanisms contribute to the maintenance of distinct chromatin states and cell-type specific gene expression patterns. In this review, we highlight emerging paradigms for epigenetic modifications related to inner ear development, and how epigenetics may have a significant role in hearing loss, protection, and regeneration.

  10. The Social Brain Meets the Reactive Genome: Neuroscience, Epigenetics and the New Social Biology

    Directory of Open Access Journals (Sweden)

    Maurizio eMeloni

    2014-05-01

    Full Text Available The rise of molecular epigenetics over the last few years promises to bring the discourse about the sociality and susceptibility to environmental influences of the brain to an entirely new level. Epigenetics deals with molecular mechanisms such as gene expression, which may embed in the organism memories of social experiences and environmental exposures. These changes in gene expression may be transmitted across generations without changes in the DNA sequence. Epigenetics is the most advanced example of the new postgenomic and context-dependent view of the gene that is making its way into contemporary biology. In my article I will use the current emergence of epigenetics and its link with neuroscience research as an example of the new, and in a way unprecedented, sociality of contemporary biology. After a review of the most important developments of epigenetic research, and some of its links with neuroscience, in the second part I reflect on the novel challenges that epigenetics presents for the social sciences for a re-conceptualization of the link between the biological and the social in a postgenomic age. Although epigenetics remains a contested, hyped, and often uncritical terrain, I claim that especially when conceptualized in broader non-genecentric frameworks, it has a genuine potential to reformulate the ossified biology/society debate.

  11. The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology.

    Science.gov (United States)

    Meloni, Maurizio

    2014-01-01

    The rise of molecular epigenetics over the last few years promises to bring the discourse about the sociality and susceptibility to environmental influences of the brain to an entirely new level. Epigenetics deals with molecular mechanisms such as gene expression, which may embed in the organism "memories" of social experiences and environmental exposures. These changes in gene expression may be transmitted across generations without changes in the DNA sequence. Epigenetics is the most advanced example of the new postgenomic and context-dependent view of the gene that is making its way into contemporary biology. In my article I will use the current emergence of epigenetics and its link with neuroscience research as an example of the new, and in a way unprecedented, sociality of contemporary biology. After a review of the most important developments of epigenetic research, and some of its links with neuroscience, in the second part I reflect on the novel challenges that epigenetics presents for the social sciences for a re-conceptualization of the link between the biological and the social in a postgenomic age. Although epigenetics remains a contested, hyped, and often uncritical terrain, I claim that especially when conceptualized in broader non-genecentric frameworks, it has a genuine potential to reformulate the ossified biology/society debate.

  12. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs

    Directory of Open Access Journals (Sweden)

    Eveline M Ibeagha-Awemu

    2015-09-01

    Full Text Available Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone however explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat and pig traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity.

  13. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells.

    Science.gov (United States)

    Yu, Vionnie W C; Yusuf, Rushdia Z; Oki, Toshihiko; Wu, Juwell; Saez, Borja; Wang, Xin; Cook, Colleen; Baryawno, Ninib; Ziller, Michael J; Lee, Eunjung; Gu, Hongcang; Meissner, Alexander; Lin, Charles P; Kharchenko, Peter V; Scadden, David T

    2016-11-17

    Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Autism Spectrum Disorders and Epigenetics

    Science.gov (United States)

    Grafodatskaya, Daria; Chung, Brian; Szatmari, Peter; Weksberg, Rosanna

    2010-01-01

    Objective: Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate…

  15. Homosexuality via canalized sexual development: a testing protocol for a new epigenetic model.

    Science.gov (United States)

    Rice, William R; Friberg, Urban; Gavrilets, Sergey

    2013-09-01

    We recently synthesized and reinterpreted published studies to advance an epigenetic model for the development of homosexuality (HS). The model is based on epigenetic marks laid down in response to the XX vs. XY karyotype in embryonic stem cells. These marks boost sensitivity to testosterone in XY fetuses and lower it in XX fetuses, thereby canalizing sexual development. Our model predicts that a subset of these canalizing epigenetic marks stochastically carry over across generations and lead to mosaicism for sexual development in opposite-sex offspring--the homosexual phenotype being one such outcome. Here, we begin by outlining why HS has been under-appreciated as a commonplace phenomenon in nature, and how this trend is currently being reversed in the field of neurobiology. We next briefly describe our epigenetic model of HS, develop a set of predictions, and describe how epigenetic profiles of human stem cells can provide for a strong test of the model. © 2013 The Authors. Bioessays published by WILEY Periodicals, Inc.

  16. Comparative epigenomics: an emerging field with breakthrough potential to understand evolution of epigenetic regulation

    Directory of Open Access Journals (Sweden)

    Janine E. Deakin

    2014-12-01

    Full Text Available Epigenetic mechanisms regulate gene expression, thereby mediating the interaction between environment, genotype and phenotype. Changes to epigenetic regulation of genes may be heritable, permitting rapid adaptation of a species to environmental cues. However, most of the current understanding of epigenetic gene regulation has been gained from studies of mice and humans, with only a limited understanding of the conservation of epigenetic mechanisms across divergent taxa. The relative ease at which genome sequence data is now obtained and the advancements made in epigenomics techniques for non-model species provides a basis for carrying out comparative epigenomic studies across a wider range of species, making it possible to start unraveling the evolution of epigenetic mechanisms. We review the current knowledge of epigenetic mechanisms obtained from studying model organisms, give an example of how comparative epigenomics using non-model species is helping to trace the evolutionary history of X chromosome inactivation in mammals and explore the opportunities to study comparative epigenomics in biological systems displaying adaptation between species, such as the immune system and sex determination.

  17. Epigenetics, Darwin, and Lamarck.

    Science.gov (United States)

    Penny, David

    2015-05-29

    It is not really helpful to consider modern environmental epigenetics as neo-Lamarckian; and there is no evidence that Lamarck considered the idea original to himself. We must all keep learning about inheritance, but attributing modern ideas to early researchers is not helpful, and can be misleading. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Recent Findings in Alzheimer Disease and Nutrition Focusing on Epigenetics12

    Science.gov (United States)

    2016-01-01

    Alzheimer disease (AD) is a chronic neurodegenerative disease with no effective cure so far. The current review focuses on the epigenetic mechanisms of AD and how nutrition can influence the course of this disease through regulation of gene expression, according to the latest scientific findings. The search strategy was the use of scientific databases such as PubMed and Scopus in order to find relative research or review articles published in the years 2012–2015. By showing the latest data of various nutritional compounds, this study aims to stimulate the scientific community to recognize the value of nutrition in this subject. Epigenetics is becoming a very attractive subject for researchers because it can shed light on unknown aspects of complex diseases like AD. DNA methylation, histone modifications, and microRNAs are the principal epigenetic mechanisms involved in AD pathophysiology. Nutrition is an environmental factor that is related to AD through epigenetic pathways. Vitamin B-12, for instance, can alter the one-carbon metabolism and thus interfere in the DNA methylation process. The research results might seem ambiguous about the clinical role of nutrition, but there is strengthening evidence that proper nutrition can not only change epigenetic biomarker levels but also prevent the development of late-onset AD and attenuate cognition deficit. Nutrition might grow to become a preventive and even therapeutic alternative against AD, especially if combined with other antidementia interventions, brain exercise, physical training, etc. Epigenetic biomarkers can be a very helpful tool to help researchers find the exact nutrients needed to create specific remedies, and perhaps the same biomarkers can be used even in patient screening in the future. PMID:27633107

  19. Developmental Origins of Common Disease: Epigenetic Contributions to Obesity.

    Science.gov (United States)

    Kappil, Maya; Wright, Robert O; Sanders, Alison P

    2016-08-31

    The perinatal period is a window of susceptibility for later life disease. Recent epigenetic findings are beginning to increase our understanding of the molecular mechanisms that may contribute to the programming of obesity. This review summarizes recent evidence that supports the role of epigenetically mediated early life programming in the later onset of obesity. Establishing such links between environmental exposures and modifiable molecular changes ultimately holds promise to inform interventional efforts toward alleviating the environmentally mediated onset of obesity.

  20. Dubbing SAGA unveils new epigenetic crosstalk.

    Science.gov (United States)

    Pijnappel, W W M Pim; Timmers, H Th Marc

    2008-02-01

    In a recent issue of Molecular Cell, two independent studies (Zhang et al., 2008; Zhao et al., 2008) provide compelling evidence that targeted deubiquitylation of histones is intimately linked to transcription activation, epigenetic regulation, and cancer progression.

  1. Shaping the learning curve: epigenetic dynamics in neural plasticity

    Directory of Open Access Journals (Sweden)

    Zohar Ziv Bronfman

    2014-07-01

    Full Text Available A key characteristic of learning and neural plasticity is state-dependent acquisition dynamics reflected by the non-linear learning curve that links increase in learning with practice. Here we propose that the manner by which epigenetic states of individual cells change during learning contributes to the shape of the neural and behavioral learning curve. We base our suggestion on recent studies showing that epigenetic mechanisms such as DNA methylation, histone acetylation and RNA-mediated gene regulation are intimately involved in the establishment and maintenance of long-term neural plasticity, reflecting specific learning-histories and influencing future learning. Our model, which is the first to suggest a dynamic molecular account of the shape of the learning curve, leads to several testable predictions regarding the link between epigenetic dynamics at the promoter, gene-network and neural-network levels. This perspective opens up new avenues for therapeutic interventions in neurological pathologies.

  2. Epigenetics of the Developing Brain

    Science.gov (United States)

    Champagne, Frances A.

    2015-01-01

    Advances in understanding of the dynamic molecular interplay between DNA and its surrounding proteins suggest that epigenetic mechanisms are a critical link between early life experiences (e.g., prenatal stress, parent-offspring interactions) and long-term changes in brain and behavior. Although much of this evidence comes from animal studies,…

  3. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.

    Science.gov (United States)

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William

    2016-07-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.

  4. [Application of Epigenetics in Perinatal Nursing Care].

    Science.gov (United States)

    Chou, Hsueh-Fen; Kao, Chien-Huei; Gau, Meei-Ling

    2017-04-01

    Epigenetics is a field of biomedicine that expanded tremendously during the 1980s. Epigenetics is the study of heritable changes in gene expression independent of underlying DNA (DeoxyriboNucleic Acid) sequence, which not only affect this generation but will be passed to subsequent generations. Although conception is the critical moment for making decisions regarding gene mapping and fetal health, studies have shown that perinatal nursing care practices also affect the genetic remodeling processes and the subsequent health of the mother and her offspring. To optimize maternal-infant and the offspring health, it is important to ensure that the new mother get adequate nutrition, reduce stress levels, adopt gentle birth practices, facilitate exclusive breastfeeding, and avoid contacting toxic substances.

  5. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Science.gov (United States)

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  6. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran

    2017-01-01

    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  7. LOSS OF 5-HYDROXYMETHYLCYTOSINE IS AN EPIGENETIC HALLMARK OF MELANOMA

    Science.gov (United States)

    Lian, Christine Guo; Xu, Yufei; Ceol, Craig; Wu, Feizhen; Larson, Allison; Dresser, Karen; Xu, Wenji; Tan, Li; Hu, Yeguang; Zhan, Qian; Lee, Chung-wei; Hu, Di; Lian, Bill Q.; Kleffel, Sonja; Yang, Yijun; Neiswender, James; Khorasani, Abraham J.; Fang, Rui; Lezcano, Cecilia; Duncan, Lyn M.; Scolyer, Richard A.; Thompson, John F.; Kakavand, Hojabr; Houvras, Yariv; Zon, Leonard; Mihm, Martin C.; Kaiser, Ursula B.; Schatton, Tobias; Woda, Bruce A.; Murphy, George F.; Shi, Yujiang G.

    2013-01-01

    SUMMARY DNA methylation at the 5-position of cytosine (5-mC) is a key epigenetic mark critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the Ten-Eleven Translocation (TET) family of DNA hydroxylases. Here we report that “loss of 5-hmC” is an epigenetic hallmark of melanoma with diagnostic and prognostic implications. Genome-wide mapping of 5-hmC reveals loss of 5-hmC landscape in the melanoma epigenome. We show that down-regulation of Isocitrate Dehydrogenase 2 (IDH2) and TET family enzymes is likely one of the mechanisms underlying 5-hmC loss in melanoma. Rebuilding the 5-hmC landscape in melanoma cells by reintroducing active TET2 or IDH2 suppresses melanoma growth and increases tumor-free survival in animal models. Thus, our study reveals a critical function of 5-hmC in melanoma development and directly links the IDH and TET activity-dependent epigenetic pathway to 5-hmC-mediated suppression of melanoma progression, suggesting a new strategy for epigenetic cancer therapy. PMID:22980977

  8. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.

    Science.gov (United States)

    Grzybek, Maciej; Golonko, Aleksandra; Walczak, Marta; Lisowski, Pawel

    2017-03-01

    The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Induced pluripotent stem cells reprogramming: Epigenetics and applications in the regenerative medicine

    Directory of Open Access Journals (Sweden)

    Kátia Maria Sampaio Gomes

    Full Text Available Summary Induced pluripotent stem cells (iPSCs are somatic cells reprogrammed into an embryonic-like pluripotent state by the expression of specific transcription factors. iPSC technology is expected to revolutionize regenerative medicine in the near future. Despite the fact that these cells have the capacity to self-renew, they present low efficiency of reprogramming. Recent studies have demonstrated that the previous somatic epigenetic signature is a limiting factor in iPSC performance. Indeed, the process of effective reprogramming involves a complete remodeling of the existing somatic epigenetic memory, followed by the establishment of a "new epigenetic signature" that complies with the new type of cell to be differentiated. Therefore, further investigations of epigenetic modifications associated with iPSC reprogramming are required in an attempt to improve their self-renew capacity and potency, as well as their application in regenerative medicine, with a new strategy to reduce the damage in degenerative diseases. Our review aimed to summarize the most recent findings on epigenetics and iPSC, focusing on DNA methylation, histone modifications and microRNAs, highlighting their potential in translating cell therapy into clinics.

  10. With Gottlieb beyond Gottlieb: The Role of Epigenetics in Psychobiological Development

    Science.gov (United States)

    Lux, Vanessa

    2013-01-01

    The emerging field of molecular epigenetics studies relatively stable changes in genetic activity that are not due to changes in the DNA sequence. Initial research results indicate a functional role for epigenetic mechanisms in neuron development and neuronal cell function. However, concepts that integrate these findings in an overall theory of…

  11. Titration and hysteresis in epigenetic chromatin silencing

    International Nuclear Information System (INIS)

    Dayarian, Adel; Sengupta, Anirvan M

    2013-01-01

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)

  12. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  13. Epigenetic analysis of childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Dunwell, Thomas L; Hesson, Luke B; Pavlova, Tatiana; Zabarovska, Veronika; Kashuba, Vladimir; Catchpoole, Daniel; Chiaramonte, Raffaella; Brini, Anna T; Griffiths, Mike; Maher, Eamonn R; Zabarovsky, Eugene; Latif, Farida

    2009-04-01

    We used a chromosome 3 wide NotI microarray for identification of epigenetically inactivated genes in childhood acute lymphoblastic leukemia (ALL). Three novel genes demonstrated frequent methylation in childhood ALL. PPP2R3A (protein phosphatase 2, regulatory subunit B", alpha) was frequently methylated in T (69%) and B (82%)-ALL. Whilst FBLN2 (fibulin 2) and THRB (thyroid hormone receptor, beta) showed frequent methylation in B-ALL (58%; 56% respectively), but were less frequently methylated in T-ALL (17% for both genes). Recently it was demonstrated that BNC1 (Basonuclin 1) and MSX1 (msh homeobox 1) were frequently methylated across common epithelial cancers. In our series of childhood ALL BNC1 was frequently methylated in both T (77%) and B-ALL (79%), whilst MSX1 showed T-ALL (25%) specific methylation. The methylation of the above five genes was cancer specific and expression of the genes could be restored in methylated leukemia cell lines treated with 5-aza-2'-deoxycytidine. This is the first report demonstrating frequent epigenetic inactivation of PPP2R3A, FBLN2, THRB, BNC1 and MSX1 in leukemia. The identification of frequently methylated genes showing cancer specific methylation will be useful in developing early cancer detection screens and for targeted epigenetic therapies.

  14. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors.

    Science.gov (United States)

    Quach, Austin; Levine, Morgan E; Tanaka, Toshiko; Lu, Ake T; Chen, Brian H; Ferrucci, Luigi; Ritz, Beate; Bandinelli, Stefania; Neuhouser, Marian L; Beasley, Jeannette M; Snetselaar, Linda; Wallace, Robert B; Tsao, Philip S; Absher, Devin; Assimes, Themistocles L; Stewart, James D; Li, Yun; Hou, Lifang; Baccarelli, Andrea A; Whitsel, Eric A; Horvath, Steve

    2017-02-14

    Behavioral and lifestyle factors have been shown to relate to a number of health-related outcomes, yet there is a need for studies that examine their relationship to molecular aging rates. Toward this end, we use recent epigenetic biomarkers of age that have previously been shown to predict all-cause mortality, chronic conditions, and age-related functional decline. We analyze cross-sectional data from 4,173 postmenopausal female participants from the Women's Health Initiative, as well as 402 male and female participants from the Italian cohort study, Invecchiare nel Chianti.Extrinsic epigenetic age acceleration (EEAA) exhibits significant associations with fish intake (p=0.02), moderate alcohol consumption (p=0.01), education (p=3x10 -5 ), BMI (p=0.01), and blood carotenoid levels (p=1x10 -5 )-an indicator of fruit and vegetable consumption, whereas intrinsic epigenetic age acceleration (IEAA) is associated with poultry intake (p=0.03) and BMI (p=0.05). Both EEAA and IEAA were also found to relate to indicators of metabolic syndrome, which appear to mediate their associations with BMI. Metformin-the first-line medication for the treatment of type 2 diabetes-does not delay epigenetic aging in this observational study. Finally, longitudinal data suggests that an increase in BMI is associated with increase in both EEAA and IEAA.Overall, the epigenetic age analysis of blood confirms the conventional wisdom regarding the benefits of eating a high plant diet with lean meats, moderate alcohol consumption, physical activity, and education, as well as the health risks of obesity and metabolic syndrome.

  15. Epigenetic silencing of serine protease HTRA1 drives polyploidy

    International Nuclear Information System (INIS)

    Schmidt, Nina; Irle, Inga; Ripkens, Kamilla; Lux, Vanda; Nelles, Jasmin; Johannes, Christian; Parry, Lee; Greenow, Kirsty; Amir, Sarah; Campioni, Mara; Baldi, Alfonso; Oka, Chio; Kawaichi, Masashi; Clarke, Alan R.; Ehrmann, Michael

    2016-01-01

    Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation. The online version of this article (doi:10.1186/s12885-016-2425-8) contains supplementary material, which is available to authorized users

  16. Epigenetic regulation of open chromatin in pluripotent stem cells

    Science.gov (United States)

    Kobayashi, Hiroshi; Kikyo, Nobuaki

    2014-01-01

    The recent progress in pluripotent stem cell research has opened new avenues of disease modeling, drug screening, and transplantation of patient-specific tissues that had been unimaginable until a decade ago. The central mechanism underlying pluripotency is epigenetic gene regulation; the majority of cell signaling pathways, both extracellular and cytoplasmic, eventually alter the epigenetic status of their target genes during the process of activating or suppressing the genes to acquire or maintain pluripotency. It has long been thought that the chromatin of pluripotent stem cells is globally open to enable the timely activation of essentially all genes in the genome during differentiation into multiple lineages. The current article reviews descriptive observations and the epigenetic machinery relevant to what is supposed to be globally open chromatin in pluripotent stem cells. This includes microscopic appearance, permissive gene transcription, chromatin remodeling complexes, histone modifications, DNA methylation, noncoding RNAs, dynamic movement of chromatin proteins, nucleosome accessibility and positioning, and long-range chromosomal interactions. Detailed analyses of each element, however, have revealed that the globally open chromatin hypothesis is not necessarily supported by some of the critical experimental evidence, such as genome-wide nucleosome accessibility and nucleosome positioning. Further understanding of the epigenetic gene regulation is expected to determine the true nature of the so-called globally open chromatin in pluripotent stem. PMID:24695097

  17. Small RNA-Mediated Epigenetic Myostatin Silencing

    Directory of Open Access Journals (Sweden)

    Thomas C Roberts

    2012-01-01

    Full Text Available Myostatin (Mstn is a secreted growth factor that negatively regulates muscle mass and is therefore a potential pharmacological target for the treatment of muscle wasting disorders such as Duchenne muscular dystrophy. Here we describe a novel Mstn blockade approach in which small interfering RNAs (siRNAs complementary to a promoter-associated transcript induce transcriptional gene silencing (TGS in two differentiated mouse muscle cell lines. Silencing is sensitive to treatment with the histone deacetylase inhibitor trichostatin A, and the silent state chromatin mark H3K9me2 is enriched at the Mstn promoter following siRNA transfection, suggesting epigenetic remodeling underlies the silencing effect. These observations suggest that long-term epigenetic silencing may be feasible for Mstn and that TGS is a promising novel therapeutic strategy for the treatment of muscle wasting disorders.

  18. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field.

    Science.gov (United States)

    Gallego-Durán, Rocío; Romero-Gómez, Manuel

    2015-10-28

    Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD.

  19. Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

    NARCIS (Netherlands)

    Preite, Veronica; Oplaat, Carla; Biere, Arjen; Kirschner, Jan; van der Putten, Wim H; Verhoeven, Koen J F

    DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced

  20. Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

    NARCIS (Netherlands)

    Preite, Veronica; Oplaat, Carla; Biere, Arjen; Kirschner, Jan; Putten, van der Wim H.; Verhoeven, Koen J.F.

    2018-01-01

    DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced

  1. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    Directory of Open Access Journals (Sweden)

    Michael K Skinner

    Full Text Available A number of environmental factors (e.g. toxicants have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation progeny in regards to the primordial germ cell (PGC epigenetic reprogramming of the F3 generation (i.e. great-grandchildren. The F3 generation germline transcriptome and epigenome (DNA methylation were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13 and after cord formation in the testis at embryonic day 16 (E16. A larger number of DNA methylation abnormalities (epimutations and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  2. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-01-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  3. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  4. Epigenetics of peripheral B cell differentiation and the antibody response

    Directory of Open Access Journals (Sweden)

    Hong eZan

    2015-12-01

    Full Text Available Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs and long non-coding RNAs (lncRNAs, are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin class switch DNA recombination (CSR and somatic hypermutation (SHM, as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase (AID, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens

  5. Epigenetic variation, phenotypic heritability, and evolution

    DEFF Research Database (Denmark)

    Furrow, Robert E.; Christiansen, Freddy Bugge; Feldman, Marcus W.

    2014-01-01

    families. The potential importance of this interaction, recognized in classical studies of the genetic epidemiology of complex diseases and other quantitative characters, has reemerged in studies of the effects of epigenetic modifications, their variation, and their transmission between generations....

  6. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  7. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  8. An update on the epigenetics of psychotic diseases and autism.

    Science.gov (United States)

    Abdolmaleky, Hamid Mostafavi; Zhou, Jin-Rong; Thiagalingam, Sam

    2015-01-01

    The examination of potential roles of epigenetic alterations in the pathogenesis of psychotic diseases have become an essential alternative in recent years as genetic studies alone are yet to uncover major gene(s) for psychosis. Here, we describe the current state of knowledge from the gene-specific and genome-wide studies of postmortem brain and blood cells indicating that aberrant DNA methylation, histone modifications and dysregulation of micro-RNAs are linked to the pathogenesis of mental diseases. There is also strong evidence supporting that all classes of psychiatric drugs modulate diverse features of the epigenome. While comprehensive environmental and genetic/epigenetic studies are uncovering the origins, and the key genes/pathways affected in psychotic diseases, characterizing the epigenetic effects of psychiatric drugs may help to design novel therapies in psychiatry.

  9. On-chip cellomics assay enabling algebraic and geometric understanding of epigenetic information in cellular networks of living systems. 1. Temporal aspects of epigenetic information in bacteria.

    Science.gov (United States)

    Yasuda, Kenji

    2012-01-01

    A series of studies aimed at developing methods and systems of analyzing epigenetic information in cells and in cell networks, as well as that of genetic information, was examined to expand our understanding of how living systems are determined. Because cells are minimum units reflecting epigenetic information, which is considered to map the history of a parallel-processing recurrent network of biochemical reactions, their behaviors cannot be explained by considering only conventional DNA information-processing events. The role of epigenetic information on cells, which complements their genetic information, was inferred by comparing predictions from genetic information with cell behaviour observed under conditions chosen to reveal adaptation processes, population effects and community effects. A system of analyzing epigenetic information was developed starting from the twin complementary viewpoints of cell regulation as an "algebraic" system (emphasis on temporal aspects) and as a "geometric" system (emphasis on spatial aspects). Exploiting the combination of latest microfabrication technology and measurement technologies, which we call on-chip cellomics assay, we can control and re-construct the environments and interaction of cells from "algebraic" and "geometric" viewpoints. In this review, temporal viewpoint of epigenetic information, a part of the series of single-cell-based "algebraic" and "geometric" studies of celluler systems in our research groups, are summerized and reported. The knowlege acquired from this study may lead to the use of cells that fully control practical applications like cell-based drug screening and the regeneration of organs.

  10. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    Science.gov (United States)

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  11. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes.

    Science.gov (United States)

    Mirouze, Marie; Vitte, Clémentine

    2014-06-01

    In the past decade, plant biologists and breeders have developed a growing interest in the field of epigenetics, which is defined as the study of heritable changes in gene expression that cannot be explained by changes in the DNA sequence. Epigenetic marks can be responsive to the environment, and evolve faster than genetic changes. Therefore, epigenetic diversity may represent an unexplored resource of natural variation that could be used in plant breeding programmes. On the other hand, crop genomes are largely populated with transposable elements (TEs) that are efficiently targeted by epigenetic marks, and part of the epigenetic diversity observed might be explained by TE polymorphisms. Characterizing the degree to which TEs influence epigenetic variation in crops is therefore a major goal to better use epigenetic variation. To date, epigenetic analyses have been mainly focused on the model plant Arabidopsis thaliana, and have provided clues on epigenome features, components that silence pathways, and effects of silencing impairment. But to what extent can Arabidopsis be used as a model for the epigenomics of crops? In this review, we discuss the similarities and differences between the epigenomes of Arabidopsis and crops. We explore the relationship between TEs and epigenomes, focusing on TE silencing control and escape, and the impact of TE mobility on epigenomic variation. Finally, we provide insights into challenges to tackle, and future directions to take in the route towards using epigenetic diversity in plant breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Metabolic-epigenetic crosstalk in macrophage activation

    NARCIS (Netherlands)

    Baardman, Jeroen; Licht, Iris; de Winther, Menno P. J.; van den Bossche, Jan

    2015-01-01

    Epigenetic enzymes are emerging as crucial controllers of macrophages, innate immune cells that determine the outcome of many inflammatory diseases. Recent studies demonstrate that the activity of particular chromatin-modifying enzymes is regulated by the availability of specific metabolites like

  13. DNA Methylation: An Epigenetic Risk Factor in Preterm Birth

    Science.gov (United States)

    Menon, Ramkumar; Conneely, Karen N.; Smith, Alicia K.

    2012-01-01

    Spontaneous preterm birth (PTB; birth prior to 37 weeks of gestation) is a complex phenotype with multiple risk factors that complicate our understanding of its etiology. A number of recent studies have supported the hypothesis that epigenetic modifications such as DNA methylation induced by pregnancy-related risk factors may influence the risk of PTB or result in changes that predispose a neonate to adult-onset diseases. The critical role of timing of gene expression in the etiology of PTB makes it a highly relevant disorder in which to examine the potential role of epigenetic changes. Because changes in DNA methylation patterns can result in long-term consequences, it is of critical interest to identify the epigenetic patterns associated with adverse pregnancy outcomes. This review examines the potential role of DNA methylation as a risk factor for PTB and discusses several issues and limitations that should be considered when planning DNA methylation studies. PMID:22228737

  14. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease.

    Science.gov (United States)

    Tharmalingam, Sujeenthar; Sreetharan, Shayenthiran; Kulesza, Adomas V; Boreham, Douglas R; Tai, T C

    2017-10-01

    Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.

  15. Ancient evolutionary origins of epigenetic regulation associated with posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Levent eSipahi

    2014-05-01

    Full Text Available Epigenetic marks, including DNA methylation, are modifiable molecular factors that may underlie mental disorders, especially responses to trauma, including the development of and resilience to posttraumatic stress disorder (PTSD. Previous work has identified differential DNA methylation at CpG dinucleotide sites genomewide between trauma exposed individuals with and without PTSD, suggesting a role for epigenetic potential – the capacity to epigenetically regulate behavior and physiology in response to lived experiences. The human species is characterized by an increased period of adaptive plasticity during brain development. The evolutionary history of epigenetic potential in relation to adaptive plasticity is currently unknown. Using phylogenetic methods and functional annotation analyses, we trace the evolution of over 7,000 CpG dinucleotides, including 203 associated with PTSD, during the descent of humans in during mammalian evolution and characterize the biological significance of this evolution. We demonstrate that few (7% PTSD-associated CpG sites are unique to humans, while the vast majority of sites have deep evolutionary origins: 73% and 93% were unambiguously present in the last common ancestor of humans/orangutans and humans/chimpanzees, respectively. Genes proximal to evolved PTSD-associated CpG sites revealed significant enrichment for immune function during recent human evolution and regulation of gene expression during more ancient periods of human evolution. Additionally, 765 putative transcription factor binding sites (TFBS were identified that overlap with PTSD-associated CpG sites. Elucidation of the evolutionary history of PTSD-associated CpG sites may provide insights into the function and origin of epigenetic potential in trauma responses, generally, and PTSD, specifically. The human capacity to respond to trauma with stable physiologic and behavioral changes may be due to epigenetic potentials that are shared among many

  16. Epigenetics as a mechanism linking developmental exposures to long-term toxicity.

    Science.gov (United States)

    Barouki, R; Melén, E; Herceg, Z; Beckers, J; Chen, J; Karagas, M; Puga, A; Xia, Y; Chadwick, L; Yan, W; Audouze, K; Slama, R; Heindel, J; Grandjean, P; Kawamoto, T; Nohara, K

    2018-05-01

    A variety of experimental and epidemiological studies lend support to the Developmental Origin of Health and Disease (DOHaD) concept. Yet, the actual mechanisms accounting for mid- and long-term effects of early-life exposures remain unclear. Epigenetic alterations such as changes in DNA methylation, histone modifications and the expression of certain RNAs have been suggested as possible mediators of long-term health effects of environmental stressors. This report captures discussions and conclusions debated during the last Prenatal Programming and Toxicity meeting held in Japan. Its first aim is to propose a number of criteria that are critical to support the primary contribution of epigenetics in DOHaD and intergenerational transmission of environmental stressors effects. The main criteria are the full characterization of the stressors, the actual window of exposure, the target tissue and function, the specificity of the epigenetic changes and the biological plausibility of the linkage between those changes and health outcomes. The second aim is to discuss long-term effects of a number of stressors such as smoking, air pollution and endocrine disruptors in order to identify the arguments supporting the involvement of an epigenetic mechanism. Based on the developed criteria, missing evidence and suggestions for future research will be identified. The third aim is to critically analyze the evidence supporting the involvement of epigenetic mechanisms in intergenerational and transgenerational effects of environmental exposure and to particularly discuss the role of placenta and sperm. While the article is not a systematic review and is not meant to be exhaustive, it critically assesses the contribution of epigenetics in the long-term effects of environmental exposures as well as provides insight for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Ore controlling oxidized zonation epigenetic uranium-coal deposits and regularities in lignite transformations

    International Nuclear Information System (INIS)

    Uspenskij, V.A.; Kulakova, Ya.M.

    1982-01-01

    Complex of analytical methods was used to study epigenetic transformations in uranium-coal ore manifestation. To clarify the principle scheme of oxidized zonation in coals the materials, related to three similar objects were used. When comparing obtained epigenetic column with columns of similar ore objects the principle scheme of oxidized epigenetic zonation for ancient infiltration uranium-coal deposits was specified; general regularities of eignite transformations and characteristics of profile distribution of uranium and accessory metal zonations were revealed. Infiltration processes, proceeded in coal measureses, formed the steady epigenetic oxidized zonation: O - zone of barren unoxidized coals, 1 - zone of ore-bearing unoxidized coals, 2 - zone of weakly ore-bearing oxidized coals, 3 - zone of oxidized terrigenous rocks with zonules of development of yellow and red iron hydroxides. Capacities of some zones and zonules reflect the intensity and duration of ore-forming processes. Distribution of U and accessory elements obeys completely epigenetic zonation. It is assumed, that ancient infiltration uranium-coal deposits formed due to weakly uranium-bearing oxygen-containing waters

  18. Molecular epigenetics in the management of ovarian cancer: Are we investigating a rational clinical promise?

    Directory of Open Access Journals (Sweden)

    Ha eNguyen

    2014-04-01

    Full Text Available Epigenetics is essentially a phenotypical change in gene expression without any alteration of the DNA sequence; the emergence of epigenetics in cancer research and mainstream oncology is fueling new hope. However, it is not yet known whether this knowledge will translate to improved clinical management of ovarian cancer. In this malignancy, women are still undergoing chemotherapy similar to what was approved in 1978, which to this day represents one of the biggest breakthroughs for treating ovarian cancer. While liquid tumors are benefitting from epigenetically-related therapies, solid tumors like ovarian cancer are not (yet?. Herein we will review the science of molecular epigenetics, especially DNA methylation, histone modifications and microRNA, but also include transcription factors since they, too, are important in ovarian cancer. Preclinical and clinical research on the role of epigenetic modifications is summarized as well. Sadly, ovarian cancer remains an idiopathic disease, for the most part, and there are many areas of patient management which could benefit from improved technology. This review will also highlight the evidence suggesting that epigenetics may have preclinical utility in pharmacology and clinical applications for prognosis and diagnosis. Lastly, drugs currently in clinical trials (i.e. histone deacetylase inhibitors are discussed along with the promise for epigenetics in the exploitation of chemoresistance. Whether epigenetics will ultimately be the answer to better management in ovarian cancer is currently unknown; what we have now is hope.

  19. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans.

    Science.gov (United States)

    Wang, Yan; Liu, Huijie; Sun, Zhongsheng

    2017-11-01

    Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non-genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non-DNA sequence-based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment-induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non-coding RNAs, are also summarized. We particularly focus on evidence that parental environment-induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex-specific effects. The thought-provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome-wide level and single-cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental

  20. Investigating Epigenetic Effects of Prenatal Exposure to Toxic Metals in Newborns: Challenges and Benefits

    OpenAIRE

    Nye, Monica D.; Fry, Rebecca C.; Hoyo, Cathrine; Murphy, Susan K.

    2014-01-01

    Increasing evidence suggest that epigenetic alterations can greatly impact human health, and that epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) may be particularly relevant in responding to environmental toxicant exposure early in life. The epigenome plays a vital role in embryonic development, tissue differentiation and disease development by controlling gene expression. In this review we discuss what is currently known about epigenetic alterations in response...

  1. Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum

    Science.gov (United States)

    Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W

    2013-01-01

    Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938

  2. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective.

    Science.gov (United States)

    Wang, Ting; Garcia, Joe Gn; Zhang, Wei

    2012-12-01

    Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.

  3. Stress, Epigenetics, and Alcoholism

    Science.gov (United States)

    Moonat, Sachin; Pandey, Subhash C.

    2012-01-01

    Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker’s dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity—for example, by modifying the structure of the DNA–protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism. PMID:23584115

  4. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb.

    Science.gov (United States)

    Medrano, Mónica; Herrera, Carlos M; Bazaga, Pilar

    2014-10-01

    The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation-sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker-trait association analyses for 20 whole-plant, leaf and regenerative functional traits in a large sample of wild-growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south-eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between-site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity. © 2014 John Wiley & Sons Ltd.

  5. Epigenetics: A novel therapeutic approach for the treatment of Alzheimer’s disease

    Science.gov (United States)

    Adwan, Lina; Zawia, Nasser H.

    2013-01-01

    Alzheimer’s disease (AD) is the most common type of dementia in the elderly. It is characterized by the deposition of two forms of aggregates within the brain, the amyloid β plaques and tau neurofibrillary tangles. Currently, no disease-modifying agent is approved for the treatment of AD. Approved pharmacotherapies target the peripheral symptoms but they do not prevent or slow down the progression of the disease. Although several disease-modifying immunotherapeutic agents are in clinical development, many have failed due to lack of efficacy or serious adverse events. Epigenetic changes including DNA methylation and histone modifications are involved in learning and memory and have been recently highlighted for holding promise as potential targets for AD therapeutics. Dynamic and latent epigenetic alterations are incorporated in AD pathological pathways and present valuable reversible targets for AD and other neurological disorders. The approval of epigenetic drugs for cancer treatment has opened the door for the development of epigenetic drugs for other disorders including neurodegenerative diseases. In particular, methyl donors and histone deacetylase inhibitors are being investigated for possible therapeutic effects to rescue memory and cognitive decline found in such disorders. This review explores the area of epigenetics for potential AD interventions and presents the most recent findings in this field. PMID:23562602

  6. Dynamic epigenetic states of maize centromeres

    Directory of Open Access Journals (Sweden)

    Yalin eLiu

    2015-10-01

    Full Text Available The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence is not sufficient for centromere formation. Various dicentric chromosomes with one inactive centromere have been recognized. It has also been found that de novo centromere formation is common on fragments in which centromeric DNA sequences are lost. Epigenetic factors play important roles in centromeric chromatin assembly and maintenance. Nondisjunction of the supernumerary B chromosome early prophase of meiosis I requires an active centromere. This review discusses recent studies in maize about genetic and epigenetic elements regulating formation and maintenance of centromere chromatin, as well as centromere behavior in meiosis.

  7. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management.

    Science.gov (United States)

    Zhang, Yingmei; Ren, Jun

    2016-05-01

    Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Stem Cell Technology for (Epi)genetic Brain Disorders.

    Science.gov (United States)

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  9. The epigenetic alterations of endogenous retroelements in aging.

    Science.gov (United States)

    Cardelli, Maurizio

    2018-02-16

    Endogenous retroelements, transposons that mobilize through RNA intermediates, include some of the most abundant repetitive sequences of the human genome, such as Alu and LINE-1 sequences, and human endogenous retroviruses. Recent discoveries demonstrate that these mobile genetic elements not only act as intragenomic parasites, but also exert regulatory roles in living cells. The risk of genomic instability represented by endogenous retroelements is normally counteracted by a series of epigenetic control mechanisms which include, among the most important, CpG DNA methylation. Indeed, most of the genomic CpG sites subjected to DNA methylation in the nuclear DNA are carried by these repetitive elements. As other parts of the genome, endogenous retroelements and other transposable elements are subjected to deep epigenetic alterations during aging, repeatedly observed in the context of organismal and cellular senescence, in human and other species. This review summarizes the current status of knowledge about the epigenetic alterations occurring in this large, non-genic portion of the genome in aging and age-related conditions, with a focus on the causes and the possible functional consequences of these alterations. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The role of epigenetics in the biology of multiple myeloma

    DEFF Research Database (Denmark)

    Dimopoulos, K; Gimsing, P; Grønbæk, K

    2014-01-01

    Several recent studies have highlighted the biological complexity of multiple myeloma (MM) that arises as a result of several disrupted cancer pathways. Apart from the central role of genetic abnormalities, epigenetic aberrations have also been shown to be important players in the development of MM......, and a lot of research during the past decades has focused on the ways DNA methylation, histone modifications and noncoding RNAs contribute to the pathobiology of MM. This has led to, apart from better understanding of the disease biology, the development of epigenetic drugs, such as histone deacetylase...... inhibitors that are already used in clinical trials in MM with promising results. This review will present the role of epigenetic abnormalities in MM and how these can affect specific pathways, and focus on the potential of novel 'epidrugs' as future treatment modalities for MM....

  11. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms

    Directory of Open Access Journals (Sweden)

    Achal Rastogi

    2015-07-01

    Full Text Available Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.

  12. Epigenetic modification and inheritance in sexual reversal of fish.

    Science.gov (United States)

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei; Zhang, Yong; Wang, Jun; Zhang, Guojie

    2014-04-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model-a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD-we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.

  13. Epigenetic Effects of Diet on Fruit Fly Lifespan: An Investigation to Teach Epigenetics to Biology Students

    Science.gov (United States)

    Billingsley, James; Carlson, Kimberly A.

    2010-01-01

    Do our genes exclusively control us, or are other factors at play? Epigenetics can provide a means for students to use inquiry-based methods to understand a complex biological concept. Students research and design an experiment testing whether dietary supplements affect the lifespan of Drosophila melanogaster over multiple generations.

  14. MSAP In Tiger Snakes: Island Populations Are Epigenetically More Divergent

    OpenAIRE

    Konate, Moumouni; Lopez, Carlos; Thomson, Vicki

    2017-01-01

    Research on changes in phenotypic plasticity within wild animal populations is centuries old, however far fewer studies have investigated the role that epigenetics play in the development or persistence of natural variation in response to environmental change. Tiger snakes (Notechis scutatus) are an ideal study organism to investigate the link between epigenetics and phenotypic responses to environmental change, as they live on a range of offshore islands with different environments and prey ...

  15. Parental tobacco smoke exposure: Epigenetics and the ...

    Science.gov (United States)

    Epigenetic programming is an important mechanism underlying the Developmental Origins of Health and Disease (DOHaD). Much of the research in this area has focused on maternal nutrition. Parental smoking has emerged as a prime example of how exposure to environmental toxicants during the preconceptional and in utero periods can have long-term effects on offspring health, and the role of the epigenome in these effects. Maternal smoking and exposure to second-hand smoke during pregnancy result in lower birth weight of offspring, and there is now clear evidence that these offspring are at elevated risk for overweight/obesity, type-2 diabetes, respiratory effects during adolescence and adulthood, and may be programmed for increased risk of nicotine addiction. Epigenetic analyses of placenta, cord blood and offspring buccal cells have consistently revealed altered DNA methylation of genes involved in developmental processes and xenobiotic metabolism, and these epigenetic changes are persistent. Animal studies with cigarette smoke and nicotine support these findings. Paternal preconceptional smoking has been positively related to childhood cancers, potentially linked to changes in the sperm epigenome. Germ cell specification and preimplantation development are periods of widespread erasure and reprogramming of DNA methylation, and as such are likely to be sensitive periods for environmental effects on the epigenome. Exposure to tobacco smoke during gametogenesis and in

  16. Epigenetic Basis of Neuronal and Synaptic Plasticity.

    Science.gov (United States)

    Karpova, Nina N; Sales, Amanda J; Joca, Samia R

    2017-01-01

    Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.

  17. Testicular cancer from diagnosis to epigenetic factors

    Science.gov (United States)

    Boccellino, Mariarosaria; Vanacore, Daniela; Zappavigna, Silvia; Cavaliere, Carla; Rossetti, Sabrina; D’Aniello, Carmine; Chieffi, Paolo; Amler, Evzen; Buonerba, Carlo; Di Lorenzo, Giuseppe; Di Franco, Rossella; Izzo, Alessandro; Piscitelli, Raffaele; Iovane, Gelsomina; Muto, Paolo; Botti, Gerardo; Perdonà, Sisto; Caraglia, Michele; Facchini, Gaetano

    2017-01-01

    Testicular cancer (TC) is one of the most common neoplasms that occurs in male and includes germ cell tumors (GCT), sex cord-gonadal stromal tumors and secondary testicular tumors. Diagnosis of TC involves the evaluation of serum tumor markers alpha-fetoprotein, human chorionic gonadotropin and lactate dehydrogenase, but clinically several types of immunohistochemical markers are more useful and more sensitive in GCT, but not in teratoma. These new biomarkers are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related cells but not in normal adult germ cells and they include PLAP, OCT3/4 (POU5F1), NANOG, SOX2, REX1, AP-2γ (TFAP2C) and LIN28. Gene expression in GCT is regulated, at least in part, by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation. There are different epigenetic modifications in TG-subtypes that reflect the normal developmental switch in primordial germ cells from an under- to normally methylated genome. The main purpose of this review is to illustrate the findings of recent investigations in the classification of male genital organs, the discoveries in the use of prognostic and diagnostic markers and the epigenetic aberrations mainly affecting the patterns of DNA methylation/histone modifications of genes (especially tumor suppressors) and microRNAs (miRNAs). PMID:29262668

  18. Epigenetics as a First Exit Problem

    Science.gov (United States)

    Aurell, E.; Sneppen, K.

    2002-01-01

    We develop a framework to discuss the stability of epigenetic states as first exit problems in dynamical systems with noise. We consider in particular the stability of the lysogenic state of the λ prophage. The formalism defines a quantitative measure of robustness of inherited states.

  19. Identification, replication and characterization of epigenetic remodelling in the aging genome

    DEFF Research Database (Denmark)

    Li, Shuxia; Christiansen, Lene; Christensen, Kaare

    Background: Aging is a complex biological process that involves numerous changes at various levels through remodelling of multiple biological processes and regulatory mechanisms including epigenetics. Recent analysis of the DNA methylome has reported large numbers of epigenetic markers associated......, and by overwhelming age-related methylation in CpG island and demethylation at shore/shelf and open sea. Biological pathway analysis showed that age-dependent methylations were especially involved in cellular signalling activities while demethylations were particularly related to functions of the extracellular matrix....... Conclusion: Extensive epigenetic remodelling in the DNA methylome could be involved in the aging process. The identified age-methylated and demethylated sites displayed differential distribution patterns over genomic regions and were involved in biological pathways closely related to aging phenotypes and age...

  20. Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2011-07-01

    Although long-lasting behavioral memories have long been thought to require equally persistent molecular changes, little is known about the biochemical underpinnings of memory storage and maintenance. Increasing evidence now suggests that long-term behavioral change may be associated with epigenetic regulation of transcription in the central nervous system. In this review, we present evidence that changes in DNA methylation contribute to memory formation and maintenance, consider how DNA methylation affects readout of memory-related genes, and discuss how these changes may be important in the large-scale context of memory circuits. Finally, we discuss potential challenges involved in examining epigenetic changes in the brain and highlight how epigenetic mechanisms may be relevant for other cognitive processes. Copyright © 2010 Elsevier Inc. All rights reserved.