WorldWideScience

Sample records for epigenetics definition mechanisms

  1. Epigenetic mechanisms in schizophrenia.

    Science.gov (United States)

    Akbarian, Schahram

    2014-09-01

    Schizophrenia is a major psychiatric disorder that lacks a unifying neuropathology, while currently available pharmacological treatments provide only limited benefits to many patients. This review will discuss how the field of neuroepigenetics could contribute to advancements of the existing knowledge on the neurobiology and treatment of psychosis. Genome-scale mapping of DMA methylation, histone modifications and variants, and chromosomal loopings for promoter-enhancer interactions and other epigenetic determinants of genome organization and function are likely to provide important clues about mechanisms contributing to dysregulated expression of synaptic and metabolic genes in schizophrenia brain, including the potential links to the underlying genetic risk architecture and environmental exposures. In addition, studies in animal models are providing a rapidly increasing list of chromatin-regulatory mechanisms with significant effects on cognition and complex behaviors, thereby pointing to the therapeutic potential of epigenetic drug targets in the nervous system.

  2. Epigenetic Mechanisms Underlie Genome Development

    Science.gov (United States)

    Lamm, Ehud

    2013-01-01

    Technological and methodological advances, in particular next-generation sequencing and chromatin profiling, has led to a deluge of data on epigenetic mechanisms and processes. Epigenetic regulation in the brain is no exception. In this commentary, Ehud Lamm writes that extending existing frameworks for thinking about psychological development to…

  3. Epigenetic mechanisms in neurological disease.

    Science.gov (United States)

    Jakovcevski, Mira; Akbarian, Schahram

    2012-08-01

    The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.

  4. Computational Micromodel for Epigenetic Mechanisms

    Science.gov (United States)

    Raghavan, Karthika; Ruskin, Heather J.; Perrin, Dimitri; Goasmat, Francois; Burns, John

    2010-01-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach. PMID:21152421

  5. Computational micromodel for epigenetic mechanisms.

    LENUS (Irish Health Repository)

    Raghavan, Karthika

    2010-11-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.

  6. Epigenetic Regulatory Mechanisms Induced by Resveratrol

    Directory of Open Access Journals (Sweden)

    Guilherme Felipe Santos Fernandes

    2017-11-01

    Full Text Available Resveratrol (RVT is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT, histone deacetylase (HDAC and lysine-specific demethylase-1 (LSD1.

  7. Epigenetic Mechanisms of Depression and Antidepressants Action

    Science.gov (United States)

    Vialou, Vincent; Feng, Jian; Robison, Alfred J.; Nestler, Eric J.

    2013-01-01

    Epigenetic mechanisms, which control chromatin structure and function, mediate changes in gene expression that occur in response to diverse stimuli. Recent research has established that environmental events and behavioral experience induce epigenetic changes at particular gene loci that help shape neuronal plasticity and function, and hence behavior, and that some of these changes can be very stable and even persist for a lifetime. Increasing evidence supports the hypothesis that aberrations in chromatin remodeling and subsequent effects on gene expression within limbic brain regions contribute to the pathogenesis of depression and other stress-related disorders such as post-traumatic stress disorder and other anxiety syndromes. Likewise, the gradually developing but persistent therapeutic effects of antidepressant medications may be achieved in part via epigenetic mechanisms. This review discusses recent advances in understanding epigenetic regulation of stress-related disorders and focuses on three distinct aspects of stress-induced epigenetic pathology: the effects of stress and antidepressant treatment during adulthood, the life-long effects of early life stress on subsequent stress vulnerability, and the possible trans-generational transmission of stress-induced abnormalities. PMID:23020296

  8. Epigenetic mechanism of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Niwa, Ohtsura

    1995-01-01

    Carcinogenic action of radiations has long been thought to be due to its mutagenic activity. Since DNA damage is induced and distributes in a stochastic fashion, radiation induction of cancers was also assumed to follow a stochastic kinetics. However, recent progress in radiation research has revealed that some features of radiation carcinogenesis are not explainable by the simple action of radiation as a DNA damaging and mutagenic agent. Firstly, frequencies of radiation-induced transformation in vitro and radiation-induced mammary cancers in rats are too high to be accounted for by the frequency of radiation-induced mutation. Secondly, trans-generation carcinogenesis among F1 mice born to irradiated parents occurs also much more frequently than to be predicted by the frequency of radiation induced germline mutation. Thirdly, multistage carcinogenesis theory predicts that carcinogens give hits to the target cells so as to shorten the latency of cancers. However, latencies of radiation induced solid cancers among atomic bomb survivors are similar to those of the control population. Fourthly, although radiation elevates the frequency of cancers, the induced cancers seem to share the same spectrum of cancer types as in the unirradiated control populations. This suggests that radiation induces cancer by enhancement of the spontaneous carcinogenesis process. These data suggest that the first step of radiation carcinogenesis may not be the direct induction of mutation. Radiation may induce genetic instability which increases the spontaneous mutation rate in the cells to produce carcinogenic mutations. Growth stimulatory effect of radiation may also contribute to the process. Thus, epigenetic, but not genetic effect of radiation might better contribute in the process of carcinogenesis. (author)

  9. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  10. Epigenetic Mechanisms and Therapeutic Perspectives for Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Kunio Miyake

    2012-04-01

    Full Text Available The number of children with mild neurodevelopmental disorders, such as autism, has been recently increasing in advanced countries. This increase is probably caused by environmental factors rather than genetic factors, because it is unlikely that genetic mutation rates suddenly increased within a short period. Epigenetics is a mechanism that regulates gene expression, depending not on the underlying DNA sequence but on the chemical modifications of DNA and histone proteins. Because mental stress can alter the epigenetic status in neuronal cells, environmental factors may alter brain function through epigenetic changes. However, one advantage of epigenetic changes is their reversibility. Therefore, diseases due to abnormal epigenetic regulation are theoretically treatable. In fact, several drugs for treating mental diseases are known to have restoring effects on aberrant epigenetic statuses, and a novel therapeutic strategy targeting gene has been developed. In this review, we discuss epigenetic mechanisms of congenital and acquired neurodevelopmental disorders, drugs with epigenetic effects, novel therapeutic strategies for epigenetic diseases, and future perspectives in epigenetic medicine.

  11. Nutrition, epigenetic mechanisms, and human disease

    National Research Council Canada - National Science Library

    Maulik, Nilanjana; Maulik, Gautam

    2011-01-01

    .... The text discusses the basics of nutrigenomics and epigenetic regulation, types of nutrition influencing genetic imprinting, and the role of nutrition in modulating an individual's predisposition to disease...

  12. Epigenetic mechanisms in the initiation of hematological malignancies

    Directory of Open Access Journals (Sweden)

    Ali Maleki

    2011-10-01

    Full Text Available Background: Cancer development is not restricted to the genetic changes, but also to epigenetic changes. Epigenetic processes are very important in the development of hematological malignancies. The main epigenetic alterations are aberrations in DNA methylation, post-translational modifications of histones, chromatin remodeling and microRNAs patterns, and these are associated with tumor genesis. All the various cellular pathways contributing to the neoplastic phenotype are affected by epigenetic genes in cancer. These pathways can be explored as biomarkers in clinical use for early detection of disease, malignancy classification and response to treatment with classical chemotherapy agents and epigenetic drugs. Materials and Method: A literature review was performed using PUBMED from 1985 to 2008. Cross referencing of discovered articles was also reviewed.Results: In chronic lymphocytic leukemia, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. In myelodysplastic syndrome (MDS, CDKN2B (alias, P15, a cyclin-dependent kinase inhibitor that negatively regulates the cell cycle, has been shown to be hypermethylated in marrow stem (CD34+ cells in patients with MDS. At present both Vidaza and Decitabine (DNA methyltransferase inhibitors are approved for the treatment of MDS.Conclusion: Unlike mutations or deletions, DNA hypermethylation and histone deacetylation are potentially reversible by pharmacological inhibition, therefore those epigenetic changes have been recognized as promising novel therapeutic targets in hematopoietic malignances. In this review, we discussed molecular mechanisms of epigenetics, epigenetic changes in hematological malignancies and epigenetic based treatments

  13. Chromatin resetting mechanisms preventing trangenerational inheritance of epigenetic states

    Directory of Open Access Journals (Sweden)

    Mayumi eIwasaki

    2015-05-01

    Full Text Available Epigenetic regulation can be altered by environmental cues including abiotic and biotic stresses. In most cases, environmentally-induced epigenetic changes are transient, but in some cases they are maintained for extensive periods of time and may even be transmitted to the next generation. However, the underlying mechanisms of transgenerational transmission of environmentally-induced epigenetic states remain largely unknown. Such traits can be adaptive, but also can have negative consequences if the parentally inherited epigenetic memory interferes with canonical environmental responses of the progeny. This review highlights recent insights into the mechanisms preventing transgenerational transmission of environmentally-induced epigenetic states in plants, which resemble those of germline reprogramming in mammals.

  14. Regulation of gene expression and pain states by epigenetic mechanisms.

    Science.gov (United States)

    Géranton, Sandrine M; Tochiki, Keri K

    2015-01-01

    The induction of inflammatory or neuropathic pain states is known to involve molecular activity in the spinal superficial dorsal horn and dorsal root ganglia, including intracellular signaling events which lead to changes in gene expression. These changes ultimately cause alterations in macromolecular synthesis, synaptic transmission, and structural architecture which support central sensitization, a process required for the establishment of long-term pain states. Epigenetic mechanisms are essential for long-term synaptic plasticity and modulation of gene expression. This is because epigenetic modifications are known to regulate gene transcription by aiding the physical relaxation or condensation of chromatin. These processes are therefore potential regulators of the molecular changes underlying permanent pain states. A handful of studies have emerged in the field of pain epigenetics; however, the field is still very much in its infancy. This chapter draws upon other specialities which have extensively investigated epigenetic mechanisms, such as learning and memory and oncology. After defining epigenetics as well as the recent field of "neuroepigenetics" and the main molecular mechanisms involved, this chapter describes the role of these mechanisms in the synaptic plasticity seen in learning and memory, and address those epigenetic mechanisms that have been linked with the development of acute and prolonged pain states. Finally, the idea that long-lasting epigenetic modifications could contribute to the transition from acute to chronic pain states by supporting maladaptive molecular changes is discussed. © 2015 Elsevier Inc. All rights reserved.

  15. Epigenetic mechanisms in experience-driven memory formation and behavior

    Science.gov (United States)

    Puckett, Rosemary E; Lubin, Farah D

    2011-01-01

    Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior. PMID:22126252

  16. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Thomas A. Milne

    2012-09-01

    Full Text Available Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  17. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ballabio, Erica; Milne, Thomas A., E-mail: thomas.milne@imm.ox.ac.uk [MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS (United Kingdom)

    2012-09-10

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  18. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    International Nuclear Information System (INIS)

    Ballabio, Erica; Milne, Thomas A.

    2012-01-01

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis

  19. Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases.

    Science.gov (United States)

    Low, Felicia M; Gluckman, Peter D; Hanson, Mark A

    2011-06-01

    The importance of developmental factors in influencing the risk of later-life disease has a strong evidence base derived from multiple epidemiological, clinical and experimental studies in animals and humans. During early life, an organism is able to adjust its phenotypic development in response to environmental cues. Such developmentally plastic responses evolved as a fitness-maximizing strategy to cope with variable environments. There are now increasing data that these responses are, at least partially, underpinned by epigenetic mechanisms. A mismatch between the early and later-life environments may lead to inappropriate early life-course epigenomic changes that manifest in later life as increased vulnerability to disease. There is also growing evidence for the transgenerational transmission of epigenetic marks. This article reviews the evidence that susceptibility to metabolic and cardiovascular disease in humans is linked to changes in epigenetic marks induced by early-life environmental cues, and discusses the clinical, public health and therapeutic implications that arise.

  20. Landscaping plant epigenetics.

    Science.gov (United States)

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  1. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran

    2017-01-01

    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  2. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Science.gov (United States)

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  3. Epigenetics and the Biological Definition of Gene X Environment Interactions

    Science.gov (United States)

    Meaney, Michael J.

    2010-01-01

    Variations in phenotype reflect the influence of environmental conditions during development on cellular functions, including that of the genome. The recent integration of epigenetics into developmental psychobiology illustrates the processes by which environmental conditions in early life structurally alter DNA, providing a physical basis for the…

  4. Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits

    Directory of Open Access Journals (Sweden)

    Balapal S. Basavarajappa

    2016-04-01

    Full Text Available Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS, which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD. Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD.

  5. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    NARCIS (Netherlands)

    Sambathkumar, Rangarajan; Kalo, Eric; Van Rossom, Rob; Faas, Marijke M.; de Vos, Paul; Verfaillie, Catherine M.

    2016-01-01

    Reprogramming can occur by the introduction of key transcription factors (TFs) as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) combined with a chromatin remodeling medium (CRM) induced expression of a number of definitive endoderm and

  6. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Science.gov (United States)

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  7. Epigenetic mechanisms of alcoholism and stress-related disorders.

    Science.gov (United States)

    Palmisano, Martina; Pandey, Subhash C

    2017-05-01

    Stress-related disorders, such as anxiety, early life stress, and posttraumatic stress disorder appear to be important factors in promoting alcoholism, as alcohol consumption can temporarily attenuate the negative affective symptoms of these disorders. Several molecules involved in signaling pathways may contribute to the neuroadaptation induced during alcohol dependence and stress disorders, and among these, brain-derived neurotrophic factor (BDNF), corticotropin releasing factor (CRF), neuropeptide Y (NPY) and opioid peptides (i.e., nociceptin and dynorphin) are involved in the interaction of stress and alcohol. In fact, alterations in the expression and function of these molecules have been associated with the pathophysiology of stress-related disorders and alcoholism. In recent years, various studies have focused on the epigenetic mechanisms that regulate chromatin architecture, thereby modifying gene expression. Interestingly, epigenetic modifications in specific brain regions have been shown to be associated with the neurobiology of psychiatric disorders, including alcoholism and stress. In particular, the enzymes responsible for chromatin remodeling (i.e., histone deacetylases and methyltransferases, DNA methyltransferases) have been identified as common molecular mechanisms for the interaction of stress and alcohol and have become promising therapeutic targets to treat or prevent alcoholism and associated emotional disorders. Published by Elsevier Inc.

  8. Epigenetic considerations in aquaculture

    Directory of Open Access Journals (Sweden)

    Mackenzie R. Gavery

    2017-12-01

    Full Text Available Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.

  9. What obesity research tells us about epigenetic mechanisms

    OpenAIRE

    Youngson, Neil A.; Morris, Margaret J.

    2013-01-01

    The pathophysiology of obesity is extremely complex and is associated with extensive gene expression changes in tissues throughout the body. This situation, combined with the fact that all gene expression changes are thought to have associated epigenetic changes, means that the links between obesity and epigenetics will undoubtedly be vast. Much progress in identifying epigenetic changes induced by (or inducing) obesity has already been made, with candidate and genome-wide approaches. These d...

  10. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  11. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers.

    Science.gov (United States)

    Di Domenico, Marina; Giovane, Giancarlo; Kouidhi, Soumaya; Iorio, Rosamaria; Romano, Maurizio; De Francesco, Francesco; Feola, Antonia; Siciliano, Camilla; Califano, Luigi; Giordano, Antonio

    2017-03-31

    Human Papilloma Virus infection is very frequent in humans and is mainly transmitted sexually. The majority of infections are transient and asymptomatic, however, if the infection persists, it can occur with a variety of injuries to skin and mucous membranes, depending on the type of HPV involved. Some types of HPV are classified as high oncogenic risk as associated with the onset of cancer. The tumors most commonly associated with HPV are cervical and oropharyngeal cancer, epigenetic mechanisms related to HPV infection include methylation changes to host and viral DNA and chromatin modification in host species. This review is focused about epigenethic mechanism, such as MiRNAs expression, related to cervix and oral cancer. Specifically it discuss about molecular markers associated to a more aggressive phenotype. In this way we will analyze genes involved in meiotic sinaptonemal complex, transcriptional factors, of orthokeratins, sinaptogirin, they are all expressed in cancer in a way not more dependent on cell differentiation but HPV-dependent.

  12. Genetic and epigenetic mechanisms of epilepsy: a review

    Directory of Open Access Journals (Sweden)

    Chen T

    2017-07-01

    Full Text Available Tian Chen,1,* Mohan Giri,2,* Zhenyi Xia,3 Yadu Nanda Subedi,2 Yan Li1 1Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People’s Republic of China; 2National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal; 3Department of Thoracic Surgery, Chongqing Three Gorges Central Hospital, Chongqing, People’s Republic of China *These authors contributed equally to this work Abstract: Epilepsy is a common episodic neurological disorder or condition characterized by recurrent epileptic seizures, and genetics seems to play a key role in its etiology. Early linkage studies have localized multiple loci that may harbor susceptibility genes to epilepsy, and mutational analyses have detected a number of mutations involved in both ion channel and nonion channel genes in patients with idiopathic epilepsy. Genome-wide studies of epilepsy have found copy number variants at 2q24.2-q24.3, 7q11.22, 15q11.2-q13.3, and 16p13.11-p13.2, some of which disrupt multiple genes, such as NRXN1, AUTS2, NLGN1, CNTNAP2, GRIN2A, PRRT2, NIPA2, and BMP5, implicated for neurodevelopmental disorders, including intellectual disability and autism. Unfortunately, only a few common genetic variants have been associated with epilepsy. Recent exome-sequencing studies have found some genetic mutations, most of which are located in nonion channel genes such as the LGI1, PRRT2, EFHC1, PRICKLE, RBFOX1, and DEPDC5 and in probands with rare forms of familial epilepsy, and some of these genes are involved with the neurodevelopment. Since epigenetics plays a role in neuronal function from embryogenesis and early brain development to tissue-specific gene expression, epigenetic regulation may contribute to the genetic mechanism of neurodevelopment through which a gene and the environment interacting with each other affect the development of epilepsy. This review focused on the analytic tools used to identify epilepsy and then provided a

  13. Epigenetic modifications: An important mechanism in diabetic disturbances.

    Science.gov (United States)

    Rorbach-Dolata, Anna; Kubis, Adriana; Piwowar, Agnieszka

    2017-11-29

    In the search for explanations of diabetes pathomechanisms, especially the development of its vascular complications (micro- and macrovascular ), although current, good metabolic control of diabetes, attention was drawn to the role of epigenetic inheritance associated with epigenetic modifications of histone proteins and DNA in hyperglycemia conditions. This study showed the significant role of DNA methylation and histone epigenetic modifications (a different nature and a different degree) in the transmission of information that is not connected with gene inheritance but concerns the persistent changes induced by hyperglycemia..Attention was paid to the role of DNA methylation of pancreatic cells in the pathogenesis of type 1 diabetes, but also type 2. The important role of DNA methylation changes in a so-called intrauterine growth restriction (IUGR) as reason of subsequent development of diabetes was particularly emphasized. In the pathogenesis of type 2 diabetes and its complications, especially microvascular complications, the greatest share and importance of epigenetic modifications on mitochondrial DNA metylation are the most important. The multidirectionality Complicaand complexity of epigenetic modifications of histone proteins indicate their importance in the development of diabetic disturbances. An especially important role is attributed to methylation and acetylation of histone proteins, in particular on arginine and lysine, whose changes occur most frequently. Moreover, epigenetic modifications of the enzymes, especially methylases, responsible for these processes are the underlying. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may be a useful prognostic biomarker of susceptibility to the disease development in the future. Moreover, they may become a potential target for future therapeutic interventions for clinical disorders in diabetes.

  14. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms

    Directory of Open Access Journals (Sweden)

    Achal Rastogi

    2015-07-01

    Full Text Available Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.

  15. Endocrine control of epigenetic mechanisms in male reproduction.

    Science.gov (United States)

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  16. Epigenetics and allergy: from basic mechanisms to clinical applications.

    Science.gov (United States)

    Potaczek, Daniel P; Harb, Hani; Michel, Sven; Alhamwe, Bilal Alashkar; Renz, Harald; Tost, Jörg

    2017-04-01

    Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.

  17. Involvement of epigenetic mechanisms in the development of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Tomaž Zupanc

    2012-03-01

    victims with no childhood abuse were found. It was suggested that changes in glucocorticoid system are mediated by tissue-specific changes in gene expression. Recent studies suggest that epigenetic mechanisms may play an important role in the interplay between stress exposure and genetic vulnerability. Conclusions: Integrating epigenetics into a model that permits prior experience to have a central role in determining individual differences is also consistent with a developmental perspective of PTSD vulnerability.

  18. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rangarajan Sambathkumar

    2016-01-01

    Full Text Available Reprogramming can occur by the introduction of key transcription factors (TFs as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi Trichostatin A (TSA combined with a chromatin remodeling medium (CRM induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi 5-azacytidine (5AZA CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions.

  19. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Science.gov (United States)

    Marini, Francesca; Cianferotti, Luisella; Brandi, Maria Luisa

    2016-08-12

    Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2), the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs). Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine's principles.

  20. Prebiotics: Definition and protective mechanisms.

    Science.gov (United States)

    Valcheva, Rosica; Dieleman, Levinus A

    2016-02-01

    The increase in chronic metabolic and immunologic disorders in the modern society is linked to major changes in the dietary patterns. These chronic conditions are associated with intestinal microbiota dysbiosis where important groups of carbohydrate fermenting, short-chain fatty acids-producing bacteria are reduced. Dietary prebiotics are defined as a selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Application of prebiotics may then restore the gut microbiota diversity and activity. Unlike the previously accepted prebiotics definition, where a limited number of bacterial species are involved in the prebiotic activity, new data from community-wide microbiome analysis demonstrated a broader affect of the prebiotics on the intestinal microbiota. These new findings require a revision of the current definition. In addition, prebiotics may exert immunomodulatory effects through microbiota-independent mechanisms that will require future investigations involving germ-free animal disease models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Mechanism and Function of Epigenetics in Uterine Leiomyoma Development

    Science.gov (United States)

    Yang, Qiwei; Mas, Aymara; Diamond, Michael P.; Al-Hendy, Ayman

    2015-01-01

    Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas. Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression. Several tumor suppressor genes, including Kruppel-like factor 11 (KLF11), deleted in lung and esophageal cancer 1 (DLEC1), keratin 19 (KRT19), and death-associated protein kinase 1 (DAPK1) also display higher hypermethylation levels in leiomyomas when compared to adjacent normal tissues. The important role of active DNA demethylation was recently identified with regard to the ten-eleven translocation protein 1 and ten-eleven translocation protein 3-mediated elevated levels of 5-hydroxymethylcytosine in leiomyoma. In addition, both histone deacetylase and histone methyltransferase are reported to be involved in the biology of leiomyomas. A number of deregulated microRNAs have been identified in leiomyomas, leading to an altered expression of their targets. More recently, the existence of side population (SP) cells with characteristics of tumor-initiating cells have been characterized in leiomyomas. These SP cells exhibit a tumorigenic capacity in immunodeficient mice when exposed to 17β-estradiol and progesterone, giving rise to fibroid-like tissue in vivo. These new findings will likely enhance our understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options. PMID:25922306

  2. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  3. Epigenetics as a mechanism linking developmental exposures to long-term toxicity

    DEFF Research Database (Denmark)

    Barouki, R; Melén, E; Herceg, Z

    2018-01-01

    A variety of experimental and epidemiological studies lend support to the Developmental Origin of Health and Disease (DOHaD) concept. Yet, the actual mechanisms accounting for mid- and long-term effects of early-life exposures remain unclear. Epigenetic alterations such as changes in DNA methylat......A variety of experimental and epidemiological studies lend support to the Developmental Origin of Health and Disease (DOHaD) concept. Yet, the actual mechanisms accounting for mid- and long-term effects of early-life exposures remain unclear. Epigenetic alterations such as changes in DNA...

  4. Epigenetics: What it is about?

    Directory of Open Access Journals (Sweden)

    Saade E.

    2014-01-01

    Full Text Available Epigenetics has captured the attention of scientists in the past decades, yet its scope has been continuously changing. In this paper, we give an overview on how and why its definition has evolved and suggest several clarification on the concepts used in this field. Waddington coined the term in 1942 to describe genes interaction with each other and with their environment and insisted on dissociating these events from development. Then, Holliday and others argued that epigenetic phenomena are characterized by their heritability. However, differentiated cells can maintain their phenotypes for decades without undergoing division, which points out the limitation of the «heritability» criterion for a particular phenomenon to qualify as epigenetic. «Epigenetic stability» encompasses traits preservation in both dividing and non dividing cells. Likewise, the use of the term «epigenetic regulation» has been misleading as it overlaps with «regulation of gene expression», whereas «epigenetic information» clearly distinguishes epigenetic from genetic phenomena. Consequently, how could epigenetic information be transmitted and perpetuated? The term «epigenetic templating» has been proposed to refer to a general mechanism of perpetuation of epigenetic information that is based on the preferential activity of enzymes that deposit a particular epigenetic mark on macromolecular complexes already containing the same mark. Another issue that we address is the role of epigenetic information. Not only it is important in allowing alternative interpretations of genetic information, but it appears to be important in protecting the genome, as can be illustrated by bacterial endonucleases that targets non methylated DNA – i. e. foreign DNA – and not the endogenous methylated DNA.

  5. Epigenetics as a mechanism linking developmental exposures to long-term toxicity.

    Science.gov (United States)

    Barouki, R; Melén, E; Herceg, Z; Beckers, J; Chen, J; Karagas, M; Puga, A; Xia, Y; Chadwick, L; Yan, W; Audouze, K; Slama, R; Heindel, J; Grandjean, P; Kawamoto, T; Nohara, K

    2018-05-01

    A variety of experimental and epidemiological studies lend support to the Developmental Origin of Health and Disease (DOHaD) concept. Yet, the actual mechanisms accounting for mid- and long-term effects of early-life exposures remain unclear. Epigenetic alterations such as changes in DNA methylation, histone modifications and the expression of certain RNAs have been suggested as possible mediators of long-term health effects of environmental stressors. This report captures discussions and conclusions debated during the last Prenatal Programming and Toxicity meeting held in Japan. Its first aim is to propose a number of criteria that are critical to support the primary contribution of epigenetics in DOHaD and intergenerational transmission of environmental stressors effects. The main criteria are the full characterization of the stressors, the actual window of exposure, the target tissue and function, the specificity of the epigenetic changes and the biological plausibility of the linkage between those changes and health outcomes. The second aim is to discuss long-term effects of a number of stressors such as smoking, air pollution and endocrine disruptors in order to identify the arguments supporting the involvement of an epigenetic mechanism. Based on the developed criteria, missing evidence and suggestions for future research will be identified. The third aim is to critically analyze the evidence supporting the involvement of epigenetic mechanisms in intergenerational and transgenerational effects of environmental exposure and to particularly discuss the role of placenta and sperm. While the article is not a systematic review and is not meant to be exhaustive, it critically assesses the contribution of epigenetics in the long-term effects of environmental exposures as well as provides insight for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Gene × Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms

    Science.gov (United States)

    Tordjman, Sylvie; Somogyi, Eszter; Coulon, Nathalie; Kermarrec, Solenn; Cohen, David; Bronsard, Guillaume; Bonnot, Olivier; Weismann-Arcache, Catherine; Botbol, Michel; Lauth, Bertrand; Ginchat, Vincent; Roubertoux, Pierre; Barburoth, Marianne; Kovess, Viviane; Geoffray, Marie-Maude; Xavier, Jean

    2014-01-01

    Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal, and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene × environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention, and early therapeutic intervention of ASD. PMID:25136320

  7. Gene X Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Sylvie eTordjman

    2014-08-01

    Full Text Available Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD. First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene X environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention and early therapeutic intervention of ASD.

  8. Early life exposure to famine and colorectal cancer risk: A role for epigenetic mechanisms

    NARCIS (Netherlands)

    Hughes, L.A.E.; Brandt, P.A. van den; Bruïne, A.P. de; Wouters, K.A.D.; Hulsmans, S.; Spiertz, A.; Goldbohm, R.A.; Goeij, A.F.P.M. de; Herman, J.G.; Weijenberg, M.P.; Engeland, M. van

    2009-01-01

    Background: Exposure to energy restriction during childhood and adolescence is associated with a lower risk of developing colorectal cancer (CRC). Epigenetic dysregulation during this critical period of growth and development may be a mechanism to explain such observations. Within the Netherlands

  9. Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2011-07-01

    Although long-lasting behavioral memories have long been thought to require equally persistent molecular changes, little is known about the biochemical underpinnings of memory storage and maintenance. Increasing evidence now suggests that long-term behavioral change may be associated with epigenetic regulation of transcription in the central nervous system. In this review, we present evidence that changes in DNA methylation contribute to memory formation and maintenance, consider how DNA methylation affects readout of memory-related genes, and discuss how these changes may be important in the large-scale context of memory circuits. Finally, we discuss potential challenges involved in examining epigenetic changes in the brain and highlight how epigenetic mechanisms may be relevant for other cognitive processes. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    Directory of Open Access Journals (Sweden)

    Francesca Marini

    2016-08-01

    Full Text Available Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2, the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs. Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine’s principles.

  11. Nutritional epigenetics

    Science.gov (United States)

    This chapter is intended to provide a timely overview of the current state of research at the intersection of nutrition and epigenetics. I begin by describing epigenetics and molecular mechanisms of eigenetic regulation, then highlight four classes of nutritional exposures currently being investiga...

  12. Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition

    Directory of Open Access Journals (Sweden)

    J. David Sterns

    2014-05-01

    Full Text Available Type II diabetes mellitus (T2DM is a widespread metabolic disorder characterized by insulin resistance resulting in abnormally high blood glucose levels. While the onset of T2DM is known to be influenced by a number of genetic factors, emerging research has demonstrated the additional role of a variety of epigenetic mechanisms in the development of this disorder. Epigenetics relates to the heritable changes in gene expression that cannot be explained by simple variations in the primary DNA sequence and includes DNA methylation and histone modification. These changes impact many processes, including stem cell differentiation into pancreatic endocrine cells as well as normal β-cell function. Recent studies focusing on the effects of maternal health, specifically as it is affected by famine and hyperglycemia, have found possible mechanisms to explain the increased likelihood of the fetus developing risk factors such as altered atherogenic lipid profiles, increased obesity and BMI, as well as impaired glucose tolerance (IGT for the development of T2DM later in life. It is suggested that these epigenetic influences happen early during gestation and are less susceptible to the effects of postnatal environmental modification as was previously thought. Regardless, emerging research into epigenetic-based treatment approaches for T2DM are promising and offer yet another means by which to limit the impact of this global epidemic.

  13. Epigenetic mechanisms in pulmonary arterial hypertension: the need for global perspectives

    Directory of Open Access Journals (Sweden)

    Prakash Chelladurai

    2016-06-01

    Full Text Available Pulmonary arterial hypertension (PAH is a severe and progressive disease, characterised by high pulmonary artery pressure that usually culminates in right heart failure. Recent findings of alterations in the DNA methylation state of superoxide dismutase 2 and granulysin gene loci; histone H1 levels; aberrant expression levels of histone deacetylases and bromodomain-containing protein 4; and dysregulated microRNA networks together suggest the involvement of epigenetics in PAH pathogenesis. Thus, PAH pathogenesis evidently involves the interplay of a predisposed genetic background, epigenetic state and injurious events. Profiling the genome-wide alterations in the epigenetic mechanisms, such as DNA methylation or histone modification pattern in PAH vascular cells, may explain the great variability in susceptibility and disease severity that is frequently associated with pronounced remodelling and worse clinical outcome. Moreover, the influence of genetic predisposition and the acquisition of epigenetic alterations in response to environmental cues in PAH progression and establishment has largely been unexplored on a genome-wide scale. In order to gain insights into the molecular mechanisms leading to the development of PAH and to design novel therapeutic strategies, high-throughput approaches have to be adopted to facilitate systematic identification of the disease-specific networks using next-generation sequencing technologies, the application of these technologies in PAH has been relatively trivial to date.

  14. Epigenetics and genetics in endometrial cancer: new carcinogenic mechanisms and relationship with clinical practice.

    Science.gov (United States)

    Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Masuda, Kenta; Ueki, Arisa; Kobayashi, Yusuke; Susumu, Nobuyuki; Aoki, Daisuke

    2012-04-01

    Endometrial cancer is the seventh most common cancer worldwide among females. An increased incidence and a younger age of patients are also predicted to occur, and therefore elucidation of the pathological mechanisms is important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, epigenetic mechanisms have been examined. Silencing of genes by DNA hypermethylation, hereditary epimutation of DNA mismatch repair genes and regulation of gene expression by miRNAs may underlie carcinogenesis in endometrial cancer. New therapies include targeting epigenetic changes using histone deacetylase inhibitors. Some cases of endometrial cancer may also be hereditary. Thus, patients with Lynch syndrome which is a hereditary disease, have a higher risk for developing endometrial cancer than the general population. Identification of such disease-related genes may contribute to early detection and prevention of endometrial cancer.

  15. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms.

    Science.gov (United States)

    Royston, Kendra J; Paul, Bidisha; Nozell, Susan; Rajbhandari, Rajani; Tollefsbol, Trygve O

    2018-07-01

    Little is known about the effects of combinatorial dietary compounds on the regulation of epigenetic mechanisms involved in breast cancer prevention. The human diet consists of a multitude of components, and there is a need to elucidate how certain compounds interact in collaboration. Withaferin A (WA), found in the Indian winter cherry and documented as a DNA methyltransferase (DNMT) inhibitor, and sulforaphane (SFN), a well-known histone deacetylase (HDAC) inhibitor found in cruciferous vegetables, are two epigenetic modifying compounds that have only recently been studied in conjunction. The use of DNMT and HDAC inhibitors to reverse the malignant expression of certain genes in breast cancer has shown considerable promise. Previously, we found that SFN + WA synergistically promote breast cancer cell death. Herein, we determined that these compounds inhibit cell cycle progression from S to G2 phase in MDA-MB-231 and MCF-7 breast cancer. Furthermore, we demonstrate that this unique combination of epigenetic modifying compounds down-regulates the levels of Cyclin D1 and CDK4, and pRB; conversely, the levels of E2F mRNA and tumor suppressor p21 are increased independently of p53. We find these events coincide with an increase in unrestricted histone methylation. We propose SFN + WA-induced breast cancer cell death is attributed, in part, to epigenetic modifications that result in the modulated expression of key genes responsible for the regulation of cancer cell senescence. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases.

    Science.gov (United States)

    Rosales-Reynoso, M A; Ochoa-Hernández, A B; Juárez-Vázquez, C I; Barros-Núñez, P

    Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases. Copyright © 2013 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Fetal alcohol programming of hypothalamic proopiomelanocortin system by epigenetic mechanisms and later life vulnerability to stress.

    Science.gov (United States)

    Bekdash, Rola; Zhang, Changqing; Sarkar, Dipak

    2014-09-01

    Hypothalamic proopiomelanocortin (POMC) neurons, one of the major regulators of the hypothalamic-pituitary-adrenal (HPA) axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure (FAE). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β-endorphin and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long-lasting and is linked to molecular, neurophysiological, and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of Pomc gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long-lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences, such as alcohol exposure, could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress-related diseases in patients with fetal alcohol spectrum disorders. Copyright © 2014 by the Research Society on Alcoholism.

  18. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    OpenAIRE

    Kosan, Christian; Godmann, Maren

    2015-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  19. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  20. Transcriptional and Epigenetic Regulatory Mechanisms Affecting HTLV-1 Provirus

    Directory of Open Access Journals (Sweden)

    Paola Miyazato

    2016-06-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is a retrovirus associated with human diseases, such as adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/Tropic spastic paraparesis (HAM/TSP. As a retrovirus, its life cycle includes a step where HTLV-1 is integrated into the host genomic DNA and forms proviral DNA. In the chronic phase of the infection, HTLV‑1 is known to proliferate as a provirus via the mitotic division of the infected host cells. There are generally tens of thousands of infected clones within an infected individual. They exist not only in peripheral blood, but also in various lymphoid organs. Viral proteins encoded in HTLV-1 genome play a role in the proliferation and survival of the infected cells. As is the case with other chronic viral infections, HTLV-1 gene expression induces the activation of the host immunity against the virus. Thus, the transcription from HTLV-1 provirus needs to be controlled in order to evade the host immune surveillance. There should be a dynamic and complex regulation in vivo, where an equilibrium between viral antigen expression and host immune surveillance is achieved. The mechanisms regulating viral gene expression from the provirus are a key to understanding the persistent/latent infection with HTLV-1 and its pathogenesis. In this article, we would like to review our current understanding on this topic.

  1. Epigenetic Mechanisms of Genomic Imprinting: Common Themes in the Regulation of Imprinted Regions in Mammals, Plants, and Insects

    Directory of Open Access Journals (Sweden)

    William A. MacDonald

    2012-01-01

    Full Text Available Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects.

  2. Variation in Definition of Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  3. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series)

    OpenAIRE

    Loscalzo, Joseph; Handy, Diane E.

    2014-01-01

    Abstract Epigenetics refers to heritable traits that are not a consequence of DNA sequence. Three classes of epigenetic regulation exist: DNA methylation, histone modification, and noncoding RNA action. In the cardiovascular system, epigenetic regulation affects development, differentiation, and disease propensity or expression. Defining the determinants of epigenetic regulation offers opportunities for novel strategies for disease prevention and treatment.

  4. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series).

    Science.gov (United States)

    Loscalzo, Joseph; Handy, Diane E

    2014-06-01

    Epigenetics refers to heritable traits that are not a consequence of DNA sequence. Three classes of epigenetic regulation exist: DNA methylation, histone modification, and noncoding RNA action. In the cardiovascular system, epigenetic regulation affects development, differentiation, and disease propensity or expression. Defining the determinants of epigenetic regulation offers opportunities for novel strategies for disease prevention and treatment.

  5. Epigenetic rejuvenation.

    Science.gov (United States)

    Manukyan, Maria; Singh, Prim B

    2012-05-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  6. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Science.gov (United States)

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  7. Epigenetics in adaptive evolution and development: the interplay between evolving species and epigenetic mechanisms: extract from Trygve Tollefsbol (ed.) (2011) Handbook of epigenetics--the new molecular and medical genetics. Chapter 26. Amsterdam, USA: Elsevier, pp. 423-446.

    Science.gov (United States)

    House, Simon H

    2013-04-01

    By comparing epigenetics of current species with fossil records across evolutionary transitions, we can gauge the moment of emergence of some novel mechanisms in evolution, and recognize that epigenetic mechanisms have a bearing on mutation. Understanding the complexity and changeability of these mechanisms, as well as the changes they can effect, is both fascinating and of vital practical benefit. Our most serious pandemics of so-called 'non-communicable' diseases - mental and cardiovascular disorders, obesity and diabetes, rooted in the 'metabolic syndrome' - are evidently related to effects on our evolutionary mechanisms of agricultural and food industrialization, modern lifestyle and diet. Pollution affects us directly as well as indirectly by its destruction of ecologically essential biosystems. Evidently such powerful conditions of existence have epigenetic effects on both our health and our continuing evolution. Such effects are most profound during reproductive and developmental processes, when levels of hormones, as affected by stress particularly, may be due to modern cultures in childbearing such as excessive intervention, separation, maternal distress and disruption of bonding. Mechanisms of genomic imprinting seem likely to throw light on problems in assisted reproductive technology, among other transgenerational effects. © The Author(s) 2014.

  8. The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System.

    Science.gov (United States)

    Cholewa-Waclaw, Justyna; Bird, Adrian; von Schimmelmann, Melanie; Schaefer, Anne; Yu, Huimei; Song, Hongjun; Madabhushi, Ram; Tsai, Li-Huei

    2016-11-09

    Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies. In addition, we discuss a recent discovery on how double-strand breaks of genomic DNA mediate the rapid induction of activity-dependent gene expression in neurons. Copyright © 2016 the authors 0270-6474/16/3611427-08$15.00/0.

  9. Genes and Aggressive Behavior: Epigenetic Mechanisms Underlying Individual Susceptibility to Aversive Environments

    Directory of Open Access Journals (Sweden)

    Sara Palumbo

    2018-06-01

    Full Text Available Over the last two decades, the study of the relationship between nature and nurture in shaping human behavior has encountered a renewed interest. Behavioral genetics showed that distinct polymorphisms of genes that code for proteins that control neurotransmitter metabolic and synaptic function are associated with individual vulnerability to aversive experiences, such as stressful and traumatic life events, and may result in an increased risk of developing psychopathologies associated with violence. On the other hand, recent studies indicate that experiencing aversive events modulates gene expression by introducing stable changes to DNA without modifying its sequence, a mechanism known as “epigenetics”. For example, experiencing adversities during periods of maximal sensitivity to the environment, such as prenatal life, infancy and early adolescence, may introduce lasting epigenetic marks in genes that affect maturational processes in brain, thus favoring the emergence of dysfunctional behaviors, including exaggerate aggression in adulthood. The present review discusses data from recent research, both in humans and animals, concerning the epigenetic regulation of four genes belonging to the neuroendocrine, serotonergic and oxytocinergic pathways—Nuclear receptor subfamily 3-group C-member 1 (NR3C1, oxytocin receptor (OXTR, solute carrier-family 6 member 4 (SLC6A4 and monoamine oxidase A (MAOA—and their role in modulating vulnerability to proactive and reactive aggressive behavior. Behavioral genetics and epigenetics are shedding a new light on the fine interaction between genes and environment, by providing a novel tool to understand the molecular events that underlie aggression. Overall, the findings from these studies carry important implications not only for neuroscience, but also for social sciences, including ethics, philosophy and law.

  10. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory.

    Science.gov (United States)

    Rahn, Elizabeth J; Guzman-Karlsson, Mikael C; David Sweatt, J

    2013-10-01

    Sensitization is a form of non-associative conditioning in which amplification of behavioral responses can occur following presentation of an aversive or noxious stimulus. Understanding the cellular and molecular underpinnings of sensitization has been an overarching theme spanning the field of learning and memory as well as that of pain research. In this review we examine how sensitization, both in the context of learning as well as pain processing, shares evolutionarily conserved behavioral, cellular/synaptic, and epigenetic mechanisms across phyla. First, we characterize the behavioral phenomenon of sensitization both in invertebrates and vertebrates. Particular emphasis is placed on long-term sensitization (LTS) of withdrawal reflexes in Aplysia following aversive stimulation or injury, although additional invertebrate models are also covered. In the context of vertebrates, sensitization of mammalian hyperarousal in a model of post-traumatic stress disorder (PTSD), as well as mammalian models of inflammatory and neuropathic pain is characterized. Second, we investigate the cellular and synaptic mechanisms underlying these behaviors. We focus our discussion on serotonin-mediated long-term facilitation (LTF) and axotomy-mediated long-term hyperexcitability (LTH) in reduced Aplysia systems, as well as mammalian spinal plasticity mechanisms of central sensitization. Third, we explore recent evidence implicating epigenetic mechanisms in learning- and pain-related sensitization. This review illustrates the fundamental and functional overlay of the learning and memory field with the pain field which argues for homologous persistent plasticity mechanisms in response to sensitizing stimuli or injury across phyla. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Epigenetic mechanisms and associated brain circuits in the regulation of positive emotions: A role for transposable elements.

    Science.gov (United States)

    Gaudi, Simona; Guffanti, Guia; Fallon, James; Macciardi, Fabio

    2016-10-15

    Epigenetic programming and reprogramming are at the heart of cellular differentiation and represent developmental and evolutionary mechanisms in both germline and somatic cell lines. Only about 2% of our genome is composed of protein-coding genes, while the remaining 98%, once considered "junk" DNA, codes for regulatory/epigenetic elements that control how genes are expressed in different tissues and across time from conception to death. While we already know that epigenetic mechanisms are at play in cancer development and in regulating metabolism (cellular and whole body), the role of epigenetics in the developing prenatal and postnatal brain, and in maintaining a proper brain activity throughout the various stages of life, in addition to having played a critical role in human evolution, is a relatively new domain of knowledge. Here we present the current state-of-the-art techniques and results of these studies within the domain of emotions, and then speculate on how genomic and epigenetic mechanisms can modify and potentially alter our emotional (limbic) brain and affect our social interactions. J. Comp. Neurol. 524:2944-2954, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Ochratoxin A as possible factor trigging autism and its male prevalence via epigenetic mechanism.

    Science.gov (United States)

    Mezzelani, A; Raggi, M E; Marabotti, A; Milanesi, L

    2016-01-01

    The role of dysbiosis causing leaky gut with xenobiotic production and absorption is increasingly demonstrated in autism spectrum disorder (ASD) pathogenesis. Among xenobiotics, we focused on ochratoxin A (one of the major food contaminating mycotoxin), that in vitro and in vivo exerts a male-specific neurotoxicity probably via microRNA modulation of a specific target gene. Among possible targets, we focused on neuroligin4X. Interestingly, this gene carries some single nucleotide polymorphisms (SNPs) already correlated with the disease and with illegitimate microRNA binding sites and, being located on X-chromosome, could explain the male prevalence. In conclusion, we propose a possible gene-environment interaction triggering ASD explaining the epigenetic neurotoxic mechanism activated by ochratoxin A in genetically predisposed children. This mechanism offers a clue for male prevalence of the disease and may have an important impact on prevention and cure of ASD.

  13. The Epigenetic Cytocrin Pathway to the Nucleus. Epigenetic Factors, Epigenetic Mediators, and Epigenetic Traits. A Biochemist Perspective

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    2017-11-01

    Full Text Available A single word, Epigenetics, underlies one exciting subject in today's Science, with different sides and with interactions with philosophy. The apparent trivial description includes everything in between genotype and phenotype that occurs for a given unique DNA sequence/genome. This Perspective article first presents an historical overview and the reasons for the lack of consensus in the field, which derives from different interpretations of the diverse operative definitions of Epigenetics. In an attempt to reconcile the different views, we propose a novel concept, the “cytocrin system.” Secondly, the article questions the inheritability requirement and makes emphasis in the epigenetic mechanisms, known or to be discovered, that provide hope for combating human diseases. Hopes in cancer are at present in deep need of deciphering mechanisms to support ad hoc therapeutic approaches. Better perspectives are for diseases of the central nervous system, in particular to combat neurodegeneration and/or cognitive deficits in Alzheimer's disease. Neurons are post-mitotic cells and, therefore, epigenetic targets to prevent neurodegeneration should operate in non-dividing diseased cells. Accordingly, epigenetic-based human therapy may not need to count much on transmissible potential.

  14. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Suárez-Alvarez

    2010-04-01

    Full Text Available Human embryonic stem cells (hESCs are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored.We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM components and NKG2D ligands (NKG2D-L in hESCs, induced pluripotent stem cells (iPSCs and NTera2 (NT2 teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1 and tapasin (TPN components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs. Absence of HLA-DR and HLA-G expression was regulated by DNA methylation.Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance.

  15. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    Science.gov (United States)

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  16. Dysregulation of Cell Death and Its Epigenetic Mechanisms in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Haijing Wu

    2016-12-01

    Full Text Available Systemic lupus erythematosus (SLE is a systemic autoimmune disease involving multiple organs and tissues, which is characterized by the presence of excessive anti-nuclear autoantibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. Increasing evidence has shown that the genetic susceptibilities and environmental factors-induced abnormalities in immune cells, dysregulation of apoptosis, and defects in the clearance of apoptotic materials contribute to the development of SLE. As the main source of auto-antigens, aberrant cell death may play a critical role in the pathogenesis of SLE. In this review, we summarize up-to-date research progress on different levels of cell death—including increasing rate of apoptosis, necrosis, autophagy and defects in clearance of dying cells—and discuss the possible underlying mechanisms, especially epigenetic modifications, which may provide new insight in the potential development of therapeutic strategies for SLE.

  17. Probiotics: definition, scope and mechanisms of action.

    Science.gov (United States)

    Reid, Gregor

    2016-02-01

    For a subject area of science, medicine and commerce to be so recently defined and investigated, few can compare to probiotics for the controversy they have incited. Barely a paper is published without the use of a different definition, or challenging the most used one, or proposing a different nuance of it. The situation has become even more surreal with the European Food and Safety Authority banning the word probiotic for use on labels. The reiteration of the FAO/WHO definition by the world's leading group of probiotic experts, should provide relative consistency in the near future, but what are the causes of these aberrations? This review will discuss the rationale for the definition, and the scope of the subject area and why alternatives emerge. While mechanisms of action are not widely proven, in vitro and some in vivo experiments support several. Ultimately, the goal of any field or product is to be understood by lay people and experts alike. Probiotics have come a long way in 100 years since Metchnikoff and 10 years since their globalization, but their evolution is far from over. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Epigenetics of schizophrenia: a review].

    Science.gov (United States)

    Rivollier, F; Lotersztajn, L; Chaumette, B; Krebs, M-O; Kebir, O

    2014-10-01

    -translational histone modifications. First, in terms of epidemiology and transmission, the theoretical model of epigenetics applies to schizophrenia. Then, most environmental factors that have proved a link with this disease, may generate epigenetic mechanisms. Next, mutations have been found in regions implied in epigenetic mechanism among populations with schizophrenia. Some epigenetic alterations in DNA regions have been previously linked with neurodevelopmental abnormalities. In psychosis, some authors have found methylation differences in COMT gene, in reelin gene and in some genes implicated in dopaminergic, serotoninergic, GABAergic and glutamatergic pathways. Histone modifications have been described, in particular the H3L4 histone methylation. Finally, we tried to underline the difficulties in epigenetic research, notably in psychiatry, and the limits in this matter. The epigenetic field may explain a lot of questions around the physiopathology of the complex psychiatric disease that is schizophrenia. It may be a substratum to the prevailing hypothesis of gene x environment interaction. The research in the matter is definitely expanding. It justifies easily the need to improve the effort in the domain to overpass some limits inherent to the matter. Copyright © 2014 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  19. Transgenerational epigenetics and environmental justice.

    Science.gov (United States)

    Rothstein, Mark A; Harrell, Heather L; Marchant, Gary E

    2017-07-01

    Human transmission to offspring and future generations of acquired epigenetic modifications has not been definitively established, although there are several environmental exposures with suggestive evidence. This article uses three examples of hazardous substances with greater exposures in vulnerable populations: pesticides, lead, and diesel exhaust. It then considers whether, if there were scientific evidence of transgenerational epigenetic inheritance, there would be greater attention given to concerns about environmental justice in environmental laws, regulations, and policies at all levels of government. To provide a broader perspective on environmental justice the article discusses two of the most commonly cited approaches to environmental justice. John Rawls's theory of justice as fairness, a form of egalitarianism, is frequently invoked for the principle that differential treatment of individuals is justified only if actions are designed to benefit those with the greatest need. Another theory, the capabilities approach of Amartya Sen and Martha Nussbaum, focuses on whether essential capabilities of society, such as life and health, are made available to all individuals. In applying principles of environmental justice the article considers whether there is a heightened societal obligation to protect the most vulnerable individuals from hazardous exposures that could adversely affect their offspring through epigenetic mechanisms. It concludes that unless there were compelling evidence of transgenerational epigenetic harms, it is unlikely that there would be a significant impetus to adopt new policies to prevent epigenetic harms by invoking principles of environmental justice.

  20. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Mueller Nancy

    2005-10-01

    Full Text Available Abstract Background Human T-cell leukemia virus type I (HTLV-I causes adult T-cell leukemia (ATL after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.

  1. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation.

    Science.gov (United States)

    Gomez-Pinilla, F; Zhuang, Y; Feng, J; Ying, Z; Fan, G

    2011-02-01

    We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer.

    Science.gov (United States)

    Angus, Steven P; Zawistowski, Jon S; Johnson, Gary L

    2018-01-06

    Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.

  3. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders.

    Science.gov (United States)

    Varadinova, Miroslava; Boyadjieva, Nadka

    2015-12-01

    The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Multiple levels of epigenetic control for bone biology and pathology.

    Science.gov (United States)

    Montecino, Martin; Stein, Gary; Stein, Janet; Zaidi, Kaleem; Aguilar, Rodrigo

    2015-12-01

    Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Epigenetic Mechanisms Regulate Innate Immunity against Uropathogenic and Commensal-Like Escherichia coli in the Surrogate Insect Model Galleria mellonella.

    Science.gov (United States)

    Heitmueller, Miriam; Billion, André; Dobrindt, Ulrich; Vilcinskas, Andreas; Mukherjee, Krishnendu

    2017-10-01

    Innate-immunity-related genes in humans are activated during urinary tract infections (UTIs) caused by pathogenic strains of Escherichia coli but are suppressed by commensals. Epigenetic mechanisms play a pivotal role in the regulation of gene expression in response to environmental stimuli. To determine whether epigenetic mechanisms can explain the different behaviors of pathogenic and commensal bacteria, we infected larvae of the greater wax moth, Galleria mellonella , a widely used model insect host, with a uropathogenic E. coli (UPEC) strain that causes symptomatic UTIs in humans or a commensal-like strain that causes asymptomatic bacteriuria (ABU). Infection with the UPEC strain (CFT073) was more lethal to larvae than infection with the attenuated ABU strain (83972) due to the recognition of each strain by different Toll-like receptors, ultimately leading to differential DNA/RNA methylation and histone acetylation. We used next-generation sequencing and reverse transcription (RT)-PCR to correlate epigenetic changes with the induction of innate-immunity-related genes. Transcriptomic analysis of G. mellonella larvae infected with E. coli strains CFT073 and 83972 revealed strain-specific variations in the class and expression levels of genes encoding antimicrobial peptides, cytokines, and enzymes controlling DNA methylation and histone acetylation. Our results provide evidence for the differential epigenetic regulation of transcriptional reprogramming by UPEC and ABU strains of E. coli in G. mellonella larvae, which may be relevant to understanding the different behaviors of these bacterial strains in the human urinary tract. Copyright © 2017 American Society for Microbiology.

  6. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2015-08-01

    Full Text Available NADPH oxidases (Nox represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS. Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases.

  7. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution

    Directory of Open Access Journals (Sweden)

    Daniel Frías-Lasserre

    2017-12-01

    Full Text Available Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.

  8. Epigenetics: A way to bridge the gap between biological fields.

    Science.gov (United States)

    Nicoglou, Antonine; Merlin, Francesca

    2017-12-01

    The concept of epigenetics has evolved since Waddington defined it from the late 1930s as the study of the causal mechanisms at work in development. It has become a multi-faceted notion with different meanings, depending on the disciplinary context it is used. In this article, we first analyse the transformations of the concept of epigenetics, from Waddington to contemporary accounts, in order to identify its different meanings and traditions, and to come up with a typology of epigenetics throughout its history. Second, we show on this basis that epigenetics has progressively turned its main focus from biological problems regarding development, toward issues concerning evolution. Yet, both these different epistemological aspects of epigenetics still coexist. Third, we claim that the classical opposition between epigenesis and preformationism as ways of thinking about the developmental process is part of the history of epigenetics and has contributed to its current various meanings. With these objectives in mind, we first show how Waddington introduced the term "epigenetics" in a biological context in order to solve a developmental problem, and we then build on this by presenting Nanney's, Riggs' and Holliday's definitions, which form the basis for the current conception of "molecular epigenetics". Then, we show that the evo-devo research field is where some particular uses of epigenetics have started shifting from developmental issues to evolutionary problems. We also show that epigenetics has progressively focused on the issue of epigenetic inheritance within the Extended Evolutionary Synthesis' framework. Finally, we conclude by presenting a typology of the different conceptions of epigenetics throughout time, and analyse the connections between them. We argue that, since Waddington, epigenetics, as an integrative research area, has been used to bridge the gap between different biological fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Laura A E Hughes

    Full Text Available BACKGROUND: Exposure to energy restriction during childhood and adolescence is associated with a lower risk of developing colorectal cancer (CRC. Epigenetic dysregulation during this critical period of growth and development may be a mechanism to explain such observations. Within the Netherlands Cohort Study on diet and cancer, we investigated the association between early life energy restriction and risk of subsequent CRC characterized by the (promoter CpG island methylation phenotype (CIMP. METHODOLOGY/PRINCIPAL FINDINGS: Information on diet and risk factors was collected by baseline questionnaire (n = 120,856. Three indicators of exposure were assessed: place of residence during the Hunger Winter (1944-45 and World War II years (1940-44, and father's employment status during the Economic Depression (1932-40. Methylation specific PCR (MSP on DNA from paraffin embedded tumor tissue was performed to determine CIMP status according to the Weisenberger markers. After 7.3 years of follow-up, 603 cases and 4631 sub-cohort members were available for analysis. Cox regression was used to calculate hazard ratios (HR and 95% confidence intervals for CIMP+ (27.7% and CIMP- (72.3% tumors according to the three time periods of energy restriction, adjusted for age and gender. Individuals exposed to severe famine during the Hunger Winter had a decreased risk of developing a tumor characterized by CIMP compared to those not exposed (HR 0.65, 95%CI: 0.45-0.92. Further categorizing individuals by an index of '0-1' '2-3' or '4-7' genes methylated in the promoter region suggested that exposure to the Hunger Winter was associated with the degree of promoter hypermethylation ('0-1 genes methylated' HR = 1.01, 95%CI:0.74-1.37; '2-3 genes methylated' HR = 0.83, 95% CI:0.61-1.15; '4-7 genes methylated' HR = 0.72, 95% CI:0.49-1.04. No associations were observed with respect to the Economic Depression and WWII years. CONCLUSIONS: This is the first study indicating that

  10. Epigenetic Mechanisms Shape the Biological Response to Trauma and Risk for PTSD: A Critical Review

    Directory of Open Access Journals (Sweden)

    Morgan Heinzelmann

    2013-01-01

    Full Text Available Posttraumatic stress disorder (PTSD develops in approximately one-quarter of trauma-exposed individuals, leading us and others to question the mechanisms underlying this heterogeneous response to trauma. We suggest that the reasons for the heterogeneity relate to a complex interaction between genes and the environment, shaping each individual’s recovery trajectory based on both historical and trauma-specific variables. Epigenetic modifications provide a unique opportunity to elucidate how preexisting risk factors may contribute to PTSD risk through changes in the methylation of DNA. Preexisting risks for PTSD, including depression, stress, and trauma, result in differential DNA methylation of endocrine genes, which may then result in a different biological responses to trauma and subsequently a greater risk for PTSD onset. Although these relationships are complex and currently inadequately described, we provide a critical review of recent studies to examine how differences in genetic and proteomic biomarkers shape an individual’s vulnerability to PTSD development, thereby contributing to a heterogeneous response to trauma.

  11. Developmental programming of O2 sensing by neonatal intermittent hypoxia via epigenetic mechanisms

    Science.gov (United States)

    Nanduri, Jayasri; Prabhakar, Nanduri R.

    2014-01-01

    Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in infants born preterm. Carotid body chemo-reflex and catecholamine secretion from adrenal medullary chromaffin cells (AMC) are important for maintenance of cardio-respiratory homeostasis during hypoxia. This article highlights studies on the effects of IH on O2 sensing by the carotid body and AMC in neonatal rodents. Neonatal IH augments hypoxia-evoked carotid body sensory excitation and catecholamine secretion from AMC which are mediated by reactive oxygen species (ROS)-dependent recruitment of endothelin-1 and Ca2+ signaling, respectively. The effects of neonatal IH persist into adulthood. Evidence is emerging that neonatal IH initiates epigenetic mechanisms involving DNA hypermethylation contributing to long-lasting increase in ROS levels. Since adult human subjects born preterm exhibit higher incidence of sleep-disordered breathing and hypertension, DNA hypomethylating agents might offer a novel therapeutic intervention to decrease long-term cardio-respiratory morbidity caused by neonatal IH. PMID:22846496

  12. Developmental programming of O(2) sensing by neonatal intermittent hypoxia via epigenetic mechanisms.

    Science.gov (United States)

    Nanduri, Jayasri; Prabhakar, Nanduri R

    2013-01-01

    Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in infants born preterm. Carotid body chemo-reflex and catecholamine secretion from adrenal medullary chromaffin cells (AMC) are important for maintenance of cardio-respiratory homeostasis during hypoxia. This article highlights studies on the effects of IH on O(2) sensing by the carotid body and AMC in neonatal rodents. Neonatal IH augments hypoxia-evoked carotid body sensory excitation and catecholamine secretion from AMC which are mediated by reactive oxygen species (ROS)-dependent recruitment of endothelin-1 and Ca(2+) signaling, respectively. The effects of neonatal IH persist into adulthood. Evidence is emerging that neonatal IH initiates epigenetic mechanisms involving DNA hypermethylation contributing to long-lasting increase in ROS levels. Since adult human subjects born preterm exhibit higher incidence of sleep-disordered breathing and hypertension, DNA hypomethylating agents might offer a novel therapeutic intervention to decrease long-term cardio-respiratory morbidity caused by neonatal IH. Copyright © 2012. Published by Elsevier B.V.

  13. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior.

    Science.gov (United States)

    Tops, Sanne; Habel, Ute; Radke, Sina

    2018-03-12

    Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.

  14. Epigenetic Regulation of Adipokines

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2017-08-01

    Full Text Available Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.

  15. A general approach for controlling transcription and probing epigenetic mechanisms: application to the CD4 locus.

    Science.gov (United States)

    Wan, Mimi; Kaundal, Ravinder; Huang, Haichang; Zhao, Jiugang; Yang, Xiaojun; Chaiyachati, Barbara H; Li, Sicong; Chi, Tian

    2013-01-15

    Synthetic regulatory proteins such as tetracycline (tet)-controlled transcription factors are potentially useful for repression as well as ectopic activation of endogenous genes and also for probing their regulatory mechanisms, which would offer a versatile genetic tool advantageous over conventional gene targeting methods. In this study, we provide evidence supporting this concept using Cd4 as a model. CD4 is expressed in double-positive and CD4 cells but irreversibly silenced in CD8 cells. The silencing is mediated by heterochromatin established during CD8 lineage development via transient action of the Cd4 silencer; once established, the heterochromatin becomes self-perpetuating independently of the Cd4 silencer. Using a tet-sensitive Cd4 allele harboring a removable Cd4 silencer, we found that a tet-controlled repressor recapitulated the phenotype of Cd4-deficient mice, inhibited Cd4 expression in a reversible and dose-dependent manner, and could surprisingly replace the Cd4 silencer to induce irreversible Cd4 silencing in CD8 cells, thus suggesting the Cd4 silencer is not the (only) determinant of heterochromatin formation. In contrast, a tet-controlled activator reversibly disrupted Cd4 silencing in CD8 cells. The Cd4 silencer impeded this disruption but was not essential for its reversal, which revealed a continuous role of the silencer in mature CD8 cells while exposing a remarkable intrinsic self-regenerative ability of heterochromatin after forced disruption. These data demonstrate an effective approach for gene manipulation and provide insights into the epigenetic Cd4 regulatory mechanisms that are otherwise difficult to obtain.

  16. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field.

    Science.gov (United States)

    Gallego-Durán, Rocío; Romero-Gómez, Manuel

    2015-10-28

    Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD.

  17. Regulation of the ITGA2 gene by epigenetic mechanisms in prostate cancer.

    Science.gov (United States)

    Chin, Suyin Paulynn; Marthick, James R; West, Alison C; Short, Annabel K; Chuckowree, Jyoti; Polanowski, Andrea M; Thomson, Russell J; Holloway, Adele F; Dickinson, Joanne L

    2015-05-01

    Integrin alpha2 beta1 (α2 β1 ) plays an integral role in tumour cell invasion, metastasis and angiogenesis, and altered expression of the receptor has been linked to tumour prognosis in several solid tumours. However, the relationship is complex, with both increased and decreased expression associated with different stages of tumour metastases in several tumour types. The ITGA2 gene, which codes for the α2 subunit, was examined to investigate whether a large CpG island associated with its promoter region is involved in the differential expression of ITGA2 observed in prostate cancer. Bisulphite sequencing of the ITGA2 promoter was used to assess methylation in formalin-fixed paraffin-embedded (FFPE) prostate tumour specimens and prostate cancer cell lines, PC3, 22Rv1 and LNCaP. Changes in ITGA2 mRNA expression were measured using quantitative PCR. ITGA2 functionality was interrogated using cell migration scratch assays and siRNA knockdown experiments. Bisulphite sequencing revealed strikingly decreased methylation at key CpG sites within the promoter of tumour samples, when compared with normal prostate tissue. Altered methylation of this CpG island is also associated with differences in expression in the non-invasive LNCaP, and the highly metastatic PC3 and 22Rv1 prostate cancer cell lines. Further bisulphite sequencing confirmed that selected CpGs were highly methylated in LNCaP cells, whilst only low levels of methylation were observed in PC3 and 22Rv1 cells, correlating with ITGA2 transcript levels. Examination of the increased expression of ITGA2 was shown to influence migratory potential via scratch assay in PC3, 22Rv1 and LNCaP cells, and was confirmed by siRNA knockdown experiments. Taken together, our data supports the assertion that epigenetic modification of the ITGA2 promoter is a mechanism by which ITGA2 expression is regulated. © 2015 Wiley Periodicals, Inc.

  18. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  19. Epigenetic Mechanisms Underlying the Link between Non-Alcoholic Fatty Liver Diseases and Nutrition

    Directory of Open Access Journals (Sweden)

    Joo Ho Lee

    2014-08-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is defined as a pathologic accumulation of fat in the form of triglycerides (TG in the liver (steatosis that is not caused by alcohol. A subgroup of NAFLD patients shows liver cell injury and inflammation coupled with the excessive fat accumulation (steatohepatitis, which is referred to as non-alcoholic steatohepatitis (NASH. Patients with NASH may develop cirrhosis and hepatocellular carcinoma (HCC. NAFLD shares the key features of metabolic syndrome including obesity, hyperlipidemia, hypertension, and insulin resistance. The pathogenesis of NAFLD is multi-factorial, however the oxidative stress seems to plays a major role in the development and progression of the disease. The emerging field of epigenetics provides a new perspective on the pathogenesis of NAFLD. Epigenetics is an inheritable but reversible phenomenon that affects gene expression without altering the DNA sequence and refers to DNA methylation, histone modifications and microRNAs. Epigenetic manipulation through metabolic pathways such as one-carbon metabolism has been proposed as a promising approach to retard the progression of NAFLD. Investigating the epigenetic modifiers in NAFLD may also lead to the development of preventive or therapeutic strategies for NASH-associated complications.

  20. Annual Research Review: Epigenetic Mechanisms and Environmental Shaping of the Brain during Sensitive Periods of Development

    Science.gov (United States)

    Roth, Tania L.; Sweatt, J. David

    2011-01-01

    Experiences during early development profoundly affect development of the central nervous system (CNS) to impart either risk for or resilience to later psychopathology. Work in the developmental neuroscience field is providing compelling data that epigenetic marking of the genome may underlie aspects of this process. Experiments in rodents…

  1. Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system.

    Science.gov (United States)

    Hayase, Tamaki

    2017-10-01

    The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.

  2. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    Science.gov (United States)

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  3. Epigenetic Therapy in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Stephen V Liu

    2013-05-01

    Full Text Available Epigenetic dysregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  4. Epigenetics and cancer

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development. This is e......Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development....... This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic...

  5. Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: "Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition" by Qian Wang et al.

    Science.gov (United States)

    Zhang, Le; Zhang, Shaoxiang

    2017-03-01

    A body of research [1-7] has already shown that epigenetic reprogramming plays a critical role in maintaining the normal development of embryos. However, the mechanistic quantitation of the epigenetic interactions between sperms and oocytes and the related impact on embryo development are still not clear [6,7]. In this study, Wang et al., [8] develop a modeling framework that addresses this question by integrating game theory and the latest discoveries of the epigenetic control of embryo development. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury(TBI)

    Science.gov (United States)

    2016-10-01

    after incision and TBI, and the relationship of those changes to CXCR2 expression ST4.1 Establish spinal cord sites and cell types displaying...we plan to use oral preparations of these drugs and establish dose-response relationships as these will be pharmacologically useful and make the...Anesthesiology Annual Awards Dinner . Palo Alto, CA, June, 2016. 4. Epigenetic Regulation of Chronic Pain after Traumatic Brain Injury. De-Yong

  7. Obesity: epigenetic aspects.

    Science.gov (United States)

    Kaushik, Prashant; Anderson, James T

    2016-06-01

    Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.

  8. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders.

    Science.gov (United States)

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2014-05-01

    Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases.

    Science.gov (United States)

    Desplats, Paula; Spencer, Brian; Coffee, Elizabeth; Patel, Pruthul; Michael, Sarah; Patrick, Christina; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2011-03-18

    DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB.

  10. Epigenetic memory in mammals

    Directory of Open Access Journals (Sweden)

    Zoe eMigicovsky

    2011-06-01

    Full Text Available Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications and changes in small RNAs, a process called epigenetic memory. During a mammal’s lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ cells and the second occurs following fertilization. These processes may be both passive and active. In order for epigenetic inheritance to occur the epigenetic modifications must be able to escape reprogramming. There are several examples supporting this non-Mendelian mechanism of inheritance including the prepacking of early developmental genes in histones instead of protamines in sperm, genomic imprinting via methylation marks, the retention of CenH3 in mammalian sperm and the inheritance of piwi-associated interfering RNAs. The ability of mammals to pass on epigenetic information to their progeny provides clear evidence that inheritance is not restricted to DNA sequence and epigenetics plays a key role in producing viable offspring.

  11. Epigenetics in Prostate Cancer

    OpenAIRE

    Albany, Costantine; Alva, Ajjai S.; Aparicio, Ana M.; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M.

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequ...

  12. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Andrew Collins

    Full Text Available We have shown previously that exercise benefits stress resistance and stress coping capabilities. Furthermore, we reported recently that epigenetic changes related to gene transcription are involved in memory formation of stressful events. In view of the enhanced coping capabilities in exercised subjects we investigated epigenetic, gene expression and behavioral changes in 4-weeks voluntarily exercised rats.Exercised and control rats coped differently when exposed to a novel environment. Whereas the control rats explored the new cage for the complete 30-min period, exercised animals only did so during the first 15 min after which they returned to sleeping or resting behavior. Both groups of animals showed similar behavioral responses in the initial forced swim session. When re-tested 24 h later however the exercised rats showed significantly more immobility behavior and less struggling and swimming. If rats were killed at 2 h after novelty or the initial swim test, i.e. at the peak of histone H3 phospho-acetylation and c-Fos induction, then the exercised rats showed a significantly higher number of dentate granule neurons expressing the histone modifications and immediate-early gene induction.Thus, irrespective of the behavioral response in the novel cage or initial forced swim session, the impact of the event at the dentate gyrus level was greater in exercised rats than in control animals. Furthermore, in view of our concept that the neuronal response in the dentate gyrus after forced swimming is involved in memory formation of the stressful event, the observations in exercised rats of enhanced neuronal responses as well as higher immobility responses in the re-test are consistent with the reportedly improved cognitive performance in these animals. Thus, improved stress coping in exercised subjects seems to involve enhanced cognitive capabilities possibly resulting from distinct epigenetic mechanisms in dentate gyrus neurons.

  13. Epigenetic modifications in prostate cancer.

    Science.gov (United States)

    Ngollo, Marjolaine; Dagdemir, Aslihan; Karsli-Ceppioglu, Seher; Judes, Gaelle; Pajon, Amaury; Penault-Llorca, Frederique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique J

    2014-01-01

    Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.

  14. Epigenetics and obesity.

    Science.gov (United States)

    Campión, Javier; Milagro, Fermin; Martínez, J Alfredo

    2010-01-01

    The etiology of obesity is multifactorial, involving complex interactions among the genetic makeup, neuroendocrine status, fetal programming, and different unhealthy environmental factors, such as sedentarism or inadequate dietary habits. Among the different mechanisms causing obesity, epigenetics, defined as the study of heritable changes in gene expression that occur without a change in the DNA sequence, has emerged as a very important determinant. Experimental evidence concerning dietary factors influencing obesity development through epigenetic mechanisms has been described. Thus, identification of those individuals who present with changes in DNA methylation profiles, certain histone modifications, or other epigenetically related processes could help to predict their susceptibility to gain or lose weight. Indeed, research concerning epigenetic mechanisms affecting weight homeostasis may play a role in the prevention of excessive fat deposition, the prediction of the most appropriate weight reduction plan, and the implementation of newer therapeutic approaches. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47

    DEFF Research Database (Denmark)

    Kamstra, Jorke H; Hruba, Eva; Blumberg, Bruce

    2014-01-01

    Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model. The mech......Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model....... The mechanisms by which EDCs direct preadipocytes to form adipocytes are poorly understood. Here, we examined transcriptional and epigenetic mechanisms underlying the induction of in vitro adipocyte differentiation by BDE-47. Quantitative high content microscopy revealed concentration-dependent enhanced...

  16. Design definition of a mechanical capacitor

    Science.gov (United States)

    Michaelis, T. D.; Schlieban, E. W.; Scott, R. D.

    1977-01-01

    A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly.

  17. Transgenic Epigenetics: Using Transgenic Organisms to Examine Epigenetic Phenomena

    Directory of Open Access Journals (Sweden)

    Lori A. McEachern

    2012-01-01

    Full Text Available Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.

  18. Eating Disorders and Epigenetics.

    Science.gov (United States)

    Thaler, Lea; Steiger, Howard

    2017-01-01

    Eating disorders (EDs) are characterized by intense preoccupation with shape and weight and maladaptive eating practices. The complex of symptoms that characterize EDs often arise through the activation of latent genetic potentials by environmental exposures, and epigenetic mechanisms are believed to link environmental exposures to gene expression. This chapter provides an overview of genetic factors acting in the etiology of EDs. It then provides a background to the hypothesis that epigenetic mechanisms link stresses such as obstetric complications and childhood abuse as well as effects of malnutrition to eating disorders (EDs). The chapter then summarizes the emerging body of literature on epigenetics and EDs-mainly studies on DNA methylation in samples of anorexia and bulimia. The available evidence base suggests that an epigenetically informed perspective contributes in valuable ways to the understanding of why people develop EDs.

  19. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Hye Joo Kim

    2012-01-01

    Full Text Available Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria, and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-κB signaling pathway. In this study, we analyzed the effects of fisetin on proinflammatory cytokine secretion and epigenetic regulation, in human monocytes cultured under hyperglycemic conditions. Human monocytic (THP-1 cells were cultured under control (14.5 mmol/L mannitol, normoglycemic (NG, 5.5 mmol/L glucose, or hyperglycemic (HG, 20 mmol/L glucose conditions, in the absence or presence of fisetin. Fisetin was added (3–10 μM for 48 h. While the HG condition significantly induced histone acetylation, NF-κB activation, and proinflammatory cytokine (IL-6 and TNF-α release from THP-1 cells, fisetin suppressed NF-κB activity and cytokine release. Fisetin treatment also significantly reduced CBP/p300 gene expression, as well as the levels of acetylation and HAT activity of the CBP/p300 protein, which is a known NF-κB coactivator. These results suggest that fisetin inhibits HG-induced cytokine production in monocytes, through epigenetic changes involving NF-κB. We therefore propose that fisetin supplementation be considered for diabetes prevention.

  20. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Zhao, Yunli; Wu, Qiuli; Wang, Dayong

    2016-02-01

    Although many studies have suggested the adverse effects of engineered nanomaterials (ENMs), the self-protection mechanisms for organisms against ENMs toxicity are still largely unclear. Using Caenorhabditis elegans as an in vivo assay system, our results suggest the toxicity of graphene oxide in reducing reproductive capacity by inducing damage on gonad development. The observed reproductive toxicity of GO on gonad development was due to the combinational effect of germline apoptosis and cell cycle arrest, and DNA damage activation might act as an inducer for this combinational effect. For the underlying molecular mechanism of reproductive toxicity of GO, we raised a signaling cascade of HUS-1/CLK-2-CEP-1-EGL-1-CED-4-CED-3 to explain the roles of core apoptosis signaling pathway and DNA damage checkpoints. Moreover, we identified a miRNA regulation mechanism activated by GO to suppress its induced reproductive toxicity. A mir-360 regulation mechanism was activated by GO to suppress its induced DNA damage-apoptosis signaling cascade through affecting component of CEP-1. Our identified epigenetic signal encoded protection mechanism activated by GO suggests a novel self-protection mechanism for organisms against the ENMs toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Epigenetics and Cellular Metabolism

    OpenAIRE

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  2. On the definition of time operator in quantum mechanics

    International Nuclear Information System (INIS)

    Nowicki, A.A.

    1974-01-01

    Different approaches to the quantum-mechanical definition of time operator T are briefly discussed. In particular we define the analytic continuation of the time operator and show that one can construct its exact eigenstates. We consider also the case of a relativistic free scalar particle and discuss the notion of proper time operator S. (author)

  3. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    Directory of Open Access Journals (Sweden)

    Christopher Ian Cazzonelli

    2014-10-01

    Full Text Available Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3, which encodes a calmodulin-like protein (CML12. The gene neighbouring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  4. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation.

    Science.gov (United States)

    Cazzonelli, Christopher I; Nisar, Nazia; Roberts, Andrea C; Murray, Kevin D; Borevitz, Justin O; Pogson, Barry J

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  5. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine

    Science.gov (United States)

    Schmauss, C.

    2015-01-01

    Depression is a prevalent and debilitating psychiatric illnesses. However, currently prescribed antidepressant drugs are only efficacious in a limited group of patients. Studies on Balb/c mice suggested that histone deacetylase (HDAC) inhibition may enhance the efficacy of the widely-prescribed antidepressant drug fluoxetine. This study shows that reducing HDAC activity in fluoxetine-treated Balb/c mice leads to robust antidepressant and anxiolytic effects. While reducing the activity of class I HDACs 1 and 3 led to antidepressant effects, additional class II HDAC inhibition was necessary to exert anxiolytic effects. In fluoxetine-treated mice, HDAC inhibitors increased enrichment of acetylated histone H4 protein and RNA polymerase II at promotor 3 of the brain-derived neurotrophic factor (Bdnf) gene and increased Bdnf transcription from this promotor. Reducing Bdnf-stimulated tropomyosin kinase B receptor activation in fluoxetine-treated mice with low HDAC activity abolished the behavioral effects of fluoxetine, suggesting that the HDAC-triggered epigenetic stimulation of Bdnf expression is critical for therapeutic efficacy. PMID:25639887

  6. Epigenetics of reproductive infertility.

    Science.gov (United States)

    Das, Laxmidhar; Parbin, Sabnam; Pradhan, Nibedita; Kausar, Chahat; Patra, Samir K

    2017-06-01

    Infertility is a complex pathophysiological condition. It may caused by specific or multiple physical and physiological factors, including abnormalities in homeostasis, hormonal imbalances and genetic alterations. In recent times various studies implicated that, aberrant epigenetic mechanisms are associated with reproductive infertility. There might be transgenerational effects associated with epigenetic modifications of gametes and studies suggest the importance of alterations in epigenetic modification at early and late stages of gametogenesis. To determine the causes of infertility it is necessary to understand the altered epigenetic modifications of associated gene and mechanisms involved therein. This review is devoted to elucidate the recent mechanistic advances in regulation of genes by epigenetic modification and emphasizes their possible role related to reproductive infertility. It includes environmental, nutritional, hormonal and physiological factors and influence of internal structural architecture of chromatin nucleosomes affecting DNA and histone modifications in both male and female gametes, early embryogenesis and offspring. Finally, we would like to emphasize that research on human infertility by gene knock out of epigenetic modifiers genes must be relied upon animal models.

  7. Epigenetic mechanism of maternal post-traumatic stress disorder in delayed rat offspring development: dysregulation of methylation and gene expression.

    Science.gov (United States)

    Zhang, X G; Zhang, H; Liang, X L; Liu, Q; Wang, H Y; Cao, B; Cao, J; Liu, S; Long, Y J; Xie, W Y; Peng, D Z

    2016-08-19

    Maternal post-traumatic stress disorder (PTSD) increases the risk of adverse neurodevelopmental outcomes in the child. Epigenetic alternations may play an essential role in the negative effects of PTSD. This study was aimed to investigate the possible epigenetic alterations of maternal PTSD, which underpins the developmental and behavioral impact. 24 pregnant Sprague-Dawley (SD) rats were randomly grouped into PTSD and control groups. Open-field tests (OFTs), elevated pull maze (EPM) assays, gene expression profile chip tests, and methylated DNA immunoprecipitation sequencing (MeDIP-Seq) were performed on the offsprings 30 days after birth. The results showed that PTSD offsprings had lower body weights and OFT scores than control offsprings. Enzyme-linked immunosorbent assays showed that serotonin receptor (5-HT) and dopamine levels were significantly lower in PTSD offsprings than in control offsprings. In contrast, corticosterone levels were higher in the PTSD group than in the control group. In a comparison of the PTSD group versus the control group, 4,160 significantly differentially methylated loci containing 30,657 CpGs were identified; 2,487 genes, including 13 dysmethylated genes, were validated by gene expression profiling, showing a negative correlation between methylation and gene expression (R = -0.617, P = 0.043). In conclusion, maternal PTSD could delay the physical and behavioral development of offsprings, and the underlying mechanism could contribute to changes in neurotransmitters and gene expression, owing to dysregulation of whole-genome methylation. These findings could support further clinical research on appropriate interventions for maternal PTSD to prevent methylation dysregulation and developmental retardation.

  8. Epigenetics in natural animal populations.

    Science.gov (United States)

    Hu, J; Barrett, R D H

    2017-09-01

    Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally-mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  9. Epigenetic regulation in obesity.

    Science.gov (United States)

    Drummond, Elaine M; Gibney, Eileen R

    2013-07-01

    Research suggests that 65% of variation in obesity is genetic. However, much of the known genetic associations have little known function and their effect size small, thus the gene-environment interaction, including epigenetic influences on gene expression, is suggested to be an important factor in the susceptibilty to obesity. This review will explore the potential of epigenetic markers to influence expression of genes associated with obesity. Epigenetic changes in utero are known to have direct implications on the phenotype of the offspring. More recently work has focused on how such epigenetic changes continue to regulate risk of obesity from infancy through to adulthood. Work has shown that, for example, hypomethylation of the MC4 gene causes an increase in expression, and has a direct impact on appetite and intake, and thus influences risk of obesity. Similar influences are also seen in other aspects of obesity including inflammation and adiposity. Maternal diet during foetal development has many epigenetic implications, which affect the offspring's risk factors for obesity during childhood and adulthood, and even in subsequent generations. Genes associated with risk of obesity, are susceptible to epigenetic mutations, which have subsequent effects on disease mechanisms, such as appetite and impaired glucose and insulin tolerance.

  10. Epigenetics of autism spectrum disorders.

    Science.gov (United States)

    Schanen, N Carolyn

    2006-10-15

    The autism spectrum disorders (ASD) comprise a complex group of behaviorally related disorders that are primarily genetic in origin. Involvement of epigenetic regulatory mechanisms in the pathogenesis of ASD has been suggested by the occurrence of ASD in patients with disorders arising from epigenetic mutations (fragile X syndrome) or that involve key epigenetic regulatory factors (Rett syndrome). Moreover, the most common recurrent cytogenetic abnormalities in ASD involve maternally derived duplications of the imprinted domain on chromosome 15q11-13. Thus, parent of origin effects on sharing and linkage to imprinted regions on chromosomes 15q and 7q suggest that these regions warrant specific examination from an epigenetic perspective, particularly because epigenetic modifications do not change the primary genomic sequence, allowing risk epialleles to evade detection using standard screening strategies. This review examines the potential role of epigenetic factors in the etiology of ASD.

  11. Epigenetics of Autism Spectrum Disorder.

    Science.gov (United States)

    Siu, Michelle T; Weksberg, Rosanna

    2017-01-01

    Autism spectrum disorder (ASD), one of the most common childhood neurodevelopmental disorders (NDDs), is diagnosed in 1 of every 68 children. ASD is incredibly heterogeneous both clinically and aetiologically. The etiopathogenesis of ASD is known to be complex, including genetic, environmental and epigenetic factors. Normal epigenetic marks modifiable by both genetics and environmental exposures can result in epigenetic alterations that disrupt the regulation of gene expression, negatively impacting biological pathways important for brain development. In this chapter we aim to summarize some of the important literature that supports a role for epigenetics in the underlying molecular mechanism of ASD. We provide evidence from work in genetics, from environmental exposures and finally from more recent studies aimed at directly determining ASD-specific epigenetic patterns, focusing mainly on DNA methylation (DNAm). Finally, we briefly discuss some of the implications of current research on potential epigenetic targets for therapeutics and novel avenues for future work.

  12. Epigenetics primer: why the clinician should care about epigenetics.

    Science.gov (United States)

    Duarte, Julio D

    2013-12-01

    Epigenetics describes heritable alterations of gene expression that do not involve DNA sequence variation and are changeable throughout an organism's lifetime. Not only can epigenetic status influence drug response, but it can also be modulated by drugs. In this review, the three major epigenetic mechanisms are described: covalent DNA modification, histone protein modification, and regulation by noncoding RNA. Further, this review describes how drug therapy can influence, and be influenced by, these mechanisms. Drugs with epigenetic mechanisms are already in use, with many more likely to be approved within the next few years. As the understanding of epigenetic processes improves, so will the ability to use these data in the clinic to improve patient care. © 2013 Pharmacotherapy Publications, Inc.

  13. The destiny of the resistance/susceptibility against GCRV is controlled by epigenetic mechanisms in CIK cells.

    Science.gov (United States)

    Shang, Xueying; Yang, Chunrong; Wan, Quanyuan; Rao, Youliang; Su, Jianguo

    2017-07-03

    Hemorrhagic disease caused by grass carp reovirus (GCRV) has severely threatened the grass carp (Ctenopharyngodon idella) cultivation industry. It is noteworthy that the resistance against GCRV infection was reported to be inheritable, and identified at both individual and cellular levels. Therefore, this work was inspired and dedicated to unravel the molecular mechanisms of fate decision post GCRV infection in related immune cells. Foremost, the resistant and susceptible CIK (C. idella kidney) monoclonal cells were established by single cell sorting, subculturing and infection screening successively. RNA-Seq, MeDIP-Seq and small RNA-Seq were carried out with C1 (CIK cells), R2 (resistant cells) and S3 (susceptible cells) groups. It was demonstrated that genome-wide DNA methylation, mRNA and microRNA expression levels in S3 were the highest among three groups. Transcriptome analysis elucidated that pathways associated with antioxidant activity, cell proliferation regulation, apoptosis activity and energy consuming might contribute to the decision of cell fates post infection. And a series of immune-related genes were identified differentially expressed across resistant and susceptible groups, which were negatively modulated by DNA methylation or microRNAs. To conclude, this study systematically uncovered the regulatory mechanism on the resistance from epigenetic perspective and provided potential biomarkers for future studies on resistance breeding.

  14. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  15. Epigenetics in women's health care.

    Science.gov (United States)

    Pozharny, Yevgeniya; Lambertini, Luca; Clunie, Garfield; Ferrara, Lauren; Lee, Men-Jean

    2010-01-01

    Epigenetics refers to structural modifications to genes that do not change the nucleotide sequence itself but instead control and regulate gene expression. DNA methylation, histone modification, and RNA regulation are some of the mechanisms involved in epigenetic modification. Epigenetic changes are believed to be a result of changes in an organism's environment that result in fixed and permanent changes in most differentiated cells. Some environmental changes that have been linked to epigenetic changes include starvation, folic acid, and various chemical exposures. There are periods in an organism's life cycle in which the organism is particularly susceptible to epigenetic influences; these include fertilization, gametogenesis, and early embryo development. These are also windows of opportunity for interventions during the reproductive life cycle of women to improve maternal-child health. New data suggest that epigenetic influences might be involved in the regulation of fetal development and the pathophysiology of adult diseases such as cancer, diabetes, obesity, and neurodevelopmental disorders. Various epigenetic mechanisms may also be involved in the pathogenesis of preeclampsia and intrauterine growth restriction. Additionally, environmental exposures are being held responsible for causing epigenetic changes that lead to a disease process. Exposure to heavy metals, bioflavonoids, and endocrine disruptors, such as bisphenol A and phthalates, has been shown to affect the epigenetic memory of an organism. Their long-term effects are unclear at this point, but many ongoing studies are attempting to elucidate the pathophysiological effects of such gene-environment interactions. (c) 2010 Mount Sinai School of Medicine.

  16. Epigenetics and lifestyle.

    Science.gov (United States)

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2011-06-01

    The concept of 'lifestyle' includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and miRNA expression. It has been identified that several lifestyle factors such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress and working on night shifts might modify epigenetic patterns. Most of the studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. This article reviews current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms.

  17. Epigenetics in prostate cancer.

    Science.gov (United States)

    Albany, Costantine; Alva, Ajjai S; Aparicio, Ana M; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a "normal" epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  18. Epigenetics in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Costantine Albany

    2011-01-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  19. Epigenetics of Obesity.

    Science.gov (United States)

    Lopomo, A; Burgio, E; Migliore, L

    2016-01-01

    Obesity is a metabolic disease, which is becoming an epidemic health problem: it has been recently defined in terms of Global Pandemic. Over the years, the approaches through family, twins and adoption studies led to the identification of some causal genes in monogenic forms of obesity but the origins of the pandemic of obesity cannot be considered essentially due to genetic factors, because human genome is not likely to change in just a few years. Epigenetic studies have offered in recent years valuable tools for the understanding of the worldwide spread of the pandemic of obesity. The involvement of epigenetic modifications-DNA methylation, histone tails, and miRNAs modifications-in the development of obesity is more and more evident. In the epigenetic literature, there are evidences that the entire embryo-fetal and perinatal period of development plays a key role in the programming of all human organs and tissues. Therefore, the molecular mechanisms involved in the epigenetic programming require a new and general pathogenic paradigm, the Developmental Origins of Health and Disease theory, to explain the current epidemiological transition, that is, the worldwide increase of chronic, degenerative, and inflammatory diseases such as obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. Obesity and its related complications are more and more associated with environmental pollutants (obesogens), gut microbiota modifications and unbalanced food intake, which can induce, through epigenetic mechanisms, weight gain, and altered metabolic consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The physics of epigenetics

    Science.gov (United States)

    Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2016-04-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.

  1. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  2. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Sabita N., E-mail: sabivan@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Department of Biological Sciences, Alabama State University, Montgomery, AL 36104 (United States); Kala, Rishabh [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  3. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    International Nuclear Information System (INIS)

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-01-01

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  4. Long-term exposure to estrogen enhances chemotherapeutic efficacy potentially through epigenetic mechanism in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chang

    Full Text Available Chemotherapy is the most common clinical option for treatment of breast cancer. However, the efficacy of chemotherapy depends on the age of breast cancer patients. Breast tissues are estrogen responsive and the levels of ovarian estrogen vary among the breast cancer patients primarily between pre- and post-menopausal age. Whether this age-dependent variation in estrogen levels influences the chemotherapeutic efficacy in breast cancer patients is not known. Therefore, the objective of this study was to evaluate the effects of natural estrogen 17 beta-estradiol (E2 on the efficacy of chemotherapeutic drugs in breast cancer cells. Estrogen responsive MCF-7 and T47D breast cancer cells were long-term exposed to 100 pg/ml estrogen, and using these cells the efficacy of chemotherapeutic drugs doxorubicin and cisplatin were determined. The result of cell viability and cell cycle analysis revealed increased sensitivities of doxorubicin and cisplatin in estrogen-exposed MCF-7 and T47D cells as compared to their respective control cells. Gene expression analysis of cell cycle, anti-apoptosis, DNA repair, and drug transporter genes further confirmed the increased efficacy of chemotherapeutic drugs in estrogen-exposed cells at molecular level. To further understand the role of epigenetic mechanism in enhanced chemotherapeutic efficacy by estrogen, cells were pre-treated with epigenetic drugs, 5-aza-2-deoxycytidine and Trichostatin A prior to doxorubicin and cisplatin treatments. The 5-aza-2 deoxycytidine pre-treatment significantly decreased the estrogen-induced efficacy of doxorubicin and cisplatin, suggesting the role of estrogen-induced hypermethylation in enhanced sensitivity of these drugs in estrogen-exposed cells. In summary, the results of this study revealed that sensitivity to chemotherapy depends on the levels of estrogen in breast cancer cells. Findings of this study will have clinical implications in selecting the chemotherapy strategies for

  5. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  6. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  7. Epigenetic Alterations in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Johannes eGräff

    2015-12-01

    Full Text Available Alzheimer’s disease (AD is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  8. Epigenetic Alterations in Alzheimer's Disease.

    Science.gov (United States)

    Sanchez-Mut, Jose V; Gräff, Johannes

    2015-01-01

    Alzheimer's disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  9. Genetic-and-epigenetic Interspecies Networks for Cross-talk Mechanisms in Human Macrophages and Dendritic Cells During MTB Infection

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Li

    2016-10-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis (Mtb infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs and dendritic cells (DCs, are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection.First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb. Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA regulation networks (GRNs, intraspecies protein-protein interaction networks (PPINs, and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb.After identifying the real cross-talk GWGEINs, the principal network projection (PNP method was employed to construct host-pathogen core networks (HPCNs between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive

  10. The epigenetics of obesity

    Science.gov (United States)

    Maternal nutrition at the time of conception and during pregnancy is considered a factor for individual differences in having obesity. The mechanisms underlying this association are likely partially epigenetic in nature, but pinning down the exact nature, location, and timing of these changes remain...

  11. Epigenetics and cerebral organoids

    DEFF Research Database (Denmark)

    Forsberg, Sheena Louise; Ilieva, Mirolyuba; Maria Michel, Tanja

    2018-01-01

    also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome......-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state...... of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms....

  12. Epigenetics in Cancer: A Hematological Perspective.

    Directory of Open Access Journals (Sweden)

    Maximilian Stahl

    2016-10-01

    Full Text Available For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.

  13. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Directory of Open Access Journals (Sweden)

    Amber N Brown

    Full Text Available Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  14. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells.

    Science.gov (United States)

    Ashapkin, V V; Linkova, N S; Khavinson, V Kh; Vanyushin, B F

    2015-03-01

    Expression levels of genes encoding specific transcription factors and other functionally important proteins vary upon aging of pancreatic and bronchial epithelium cell cultures. The peptides KEDW and AEDL tissue-specifically affect gene expression in pancreatic and bronchial cell cultures, respectively. It is established in this work that the DNA methylation patterns of the PDX1, PAX6, NGN3, NKX2-1, and SCGB1A1 gene promoter regions change upon aging in pancreatic and bronchial cell cultures in correlation with variations in their expression levels. Thus, stable changes in gene expression upon aging of cell cultures could be caused by changes in their promoter methylation patterns. The methylation patterns of the PAX4 gene in pancreatic cells as well as those of the FOXA1, SCGB3A2, and SFTPA1 genes in bronchial cells do not change upon aging and are unaffected by peptides, whereas their expression levels change in both cases. The promoter region of the FOXA2 gene in pancreatic cells contains a small number of methylated CpG sites, their methylation levels being affected by cell culture aging and KEDW, though without any correlation with gene expression levels. The promoter region of the FOXA2 gene is completely unmethylated in bronchial cells irrespective of cell culture age and AEDL action. Changes in promoter methylation might be the cause of age- and peptide-induced variations in expression levels of the PDX1, PAX6, and NGN3 genes in pancreatic cells and NKX2-1 and SCGB1A1 genes in bronchial cells. Expression levels of the PAX4 and FOXA2 genes in pancreatic cells and FOXA1, FOXA2, SCGB3A2, and SFTPA1 genes in bronchial cells seem to be controlled by some other mechanisms.

  15. Is Glioblastoma an Epigenetic Malignancy?

    International Nuclear Information System (INIS)

    Maleszewska, Marta; Kaminska, Bozena

    2013-01-01

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens

  16. Behavioral epigenetics.

    Science.gov (United States)

    Moore, David S

    2017-01-01

    Why do we grow up to have the traits we do? Most 20th century scientists answered this question by referring only to our genes and our environments. But recent discoveries in the emerging field of behavioral epigenetics have revealed factors at the interface between genes and environments that also play crucial roles in development. These factors affect how genes work; scientists now know that what matters as much as which genes you have (and what environments you encounter) is how your genes are affected by their contexts. The discovery that what our genes do depends in part on our experiences has shed light on how Nature and Nurture interact at the molecular level inside of our bodies. Data emerging from the world's behavioral epigenetics laboratories support the idea that a person's genes alone cannot determine if, for example, he or she will end up shy, suffering from cardiovascular disease, or extremely smart. Among the environmental factors that can influence genetic activity are parenting styles, diets, and social statuses. In addition to influencing how doctors treat diseases, discoveries about behavioral epigenetics are likely to alter how biologists think about evolution, because some epigenetic effects of experience appear to be transmissible from generation to generation. This domain of research will likely change how we think about the origins of human nature. WIREs Syst Biol Med 2017, 9:e1333. doi: 10.1002/wsbm.1333 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  17. Epigenetics: a new frontier in dentistry.

    Science.gov (United States)

    Williams, S D; Hughes, T E; Adler, C J; Brook, A H; Townsend, G C

    2014-06-01

    In 2007, only four years after the completion of the Human Genome Project, the journal Science announced that epigenetics was the 'breakthrough of the year'. Time magazine placed it second in the top 10 discoveries of 2009. While our genetic code (i.e. our DNA) contains all of the information to produce the elements we require to function, our epigenetic code determines when and where genes in the genetic code are expressed. Without the epigenetic code, the genetic code is like an orchestra without a conductor. Although there is now a substantial amount of published research on epigenetics in medicine and biology, epigenetics in dental research is in its infancy. However, epigenetics promises to become increasingly relevant to dentistry because of the role it plays in gene expression during development and subsequently potentially influencing oral disease susceptibility. This paper provides a review of the field of epigenetics aimed specifically at oral health professionals. It defines epigenetics, addresses the underlying concepts and provides details about specific epigenetic molecular mechanisms. Further, we discuss some of the key areas where epigenetics is implicated, and review the literature on epigenetics research in dentistry, including its relevance to clinical disciplines. This review considers some implications of epigenetics for the future of dental practice, including a 'personalized medicine' approach to the management of common oral diseases. © 2014 Australian Dental Association.

  18. Three epigenetic information channels and their different roles in evolution

    NARCIS (Netherlands)

    Shea, N.; Pen, I.; Uller, T.

    There is increasing evidence for epigenetically mediated transgenerational inheritance across taxa. However, the evolutionary implications of such alternative mechanisms of inheritance remain unclear. Herein, we show that epigenetic mechanisms can serve two fundamentally different functions in

  19. Epigenetics and depression: return of the repressed.

    Science.gov (United States)

    Dalton, Victoria S; Kolshus, Erik; McLoughlin, Declan M

    2014-02-01

    Epigenetics has recently emerged as a potential mechanism by which adverse environmental stimuli can result in persistent changes in gene expression. Epigenetic mechanisms function alongside the DNA sequence to modulate gene expression and ultimately influence protein production. The current review provides an introduction and overview of epigenetics with a particular focus on preclinical and clinical studies relevant to major depressive disorder (MDD). PubMed and Web of Science databases were interrogated from January 1995 up to December 2012 using combinations of search terms, including "epigenetic", "microRNA" and "DNA methylation" cross referenced with "depression", "early life stress" and "antidepressant". There is an association between adverse environmental stimuli, such as early life stress, and epigenetic modification of gene expression. Epigenetic changes have been reported in humans with MDD and may serve as biomarkers to improve diagnosis. Antidepressant treatments appear to reverse or initiate compensatory epigenetic alterations that may be relevant to their mechanism of action. As a narrative review, the current report was interpretive and qualitative in nature. Epigenetic modification of gene expression provides a mechanism for understanding the link between long-term effects of adverse life events and the changes in gene expression that are associated with depression. Although still a developing field, in the future, epigenetic modifications of gene expression may provide novel biomarkers to predict future susceptibility and/or onset of MDD, improve diagnosis, and aid in the development of epigenetics-based therapies for depression. © 2013 Published by Elsevier B.V.

  20. Engrampigenetics: Epigenetics of engram memory cells.

    Science.gov (United States)

    Ripoli, Cristian

    2017-05-15

    For long time, the epidemiology of late-onset sporadic Alzheimer's disease (AD) risk factors has centered on adult life-style. Recent studies have, instead, focused on the role of early life experiences in progression of such disease especially in the context of prenatal and postnatal life. Although no single unfavorable environmental event has been shown to be neither necessary nor sufficient for AD development, it is possible that the sum of several environmentally induced effects, over time, contribute to its pathophysiology through epigenetic mechanisms. Indeed, epigenetic changes are influenced by environmental factors and have been proposed to play a role in multifactorial pathologies such as AD. At the same time, recent findings suggest that epigenetic mechanisms are one method that neurons use to translate transient stimuli into stable memories. Thus, the characteristics of epigenetics being a critical link between the environment and genes and playing a crucial role in memory formation make candidate epigenetic mechanisms a natural substrate for AD research. Indeed, independent groups have reported several epigenetically dysregulated genes in AD models; however, the role of epigenetic mechanisms in AD has remained elusive owing to contradictory results. Here, I propose that restricting the analysis of epigenetic changes specifically to subpopulations of neurons (namely, engram memory cells) might be helpful in understanding the role of the epigenetic process in the memory-related specific epigenetic code and might constitute a new template for therapeutic interventions against AD. Copyright © 2016. Published by Elsevier B.V.

  1. The epigenetic landscape of alcoholism.

    Science.gov (United States)

    Krishnan, Harish R; Sakharkar, Amul J; Teppen, Tara L; Berkel, Tiffani D M; Pandey, Subhash C

    2014-01-01

    Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism. © 2014 Elsevier Inc. All rights reserved.

  2. Epigenetic Determinism in Science and Society.

    Science.gov (United States)

    Waggoner, Miranda R; Uller, Tobias

    2015-04-03

    The epigenetic "revolution" in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism - or the belief that epigenetic mechanisms determine the expression of human traits and behaviors - matters for understandings of the influence of biology and society on population health.

  3. Epigenetics, autism spectrum, and neurodevelopmental disorders.

    Science.gov (United States)

    Rangasamy, Sampathkumar; D'Mello, Santosh R; Narayanan, Vinodh

    2013-10-01

    Epigenetic marks are modifications of DNA and histones. They are considered to be permanent within a single cell during development, and are heritable across cell division. Programming of neurons through epigenetic mechanisms is believed to be critical in neural development. Disruption or alteration in this process causes an array of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Recent studies have provided evidence for an altered epigenetic landscape in ASDs and demonstrated the central role of epigenetic mechanisms in their pathogenesis. Many of the genes linked to the ASDs encode proteins that are involved in transcriptional regulation and chromatin remodeling. In this review we highlight selected neurodevelopmental disorders in which epigenetic dysregulation plays an important role. These include Rett syndrome, fragile X syndrome, Prader-Willi syndrome, Angelman syndrome, and Kabuki syndrome. For each of these disorders, we discuss how advances in our understanding of epigenetic mechanisms may lead to novel therapeutic approaches.

  4. Is epigenetics an important link between early life events and adult disease?

    Science.gov (United States)

    Epigenetic mechanisms provide one potential explanation for how environmental influences in early life cause long-term changes in chronic disease susceptibility. Whereas epigenetic dysregulation is increasingly implicated in various rare developmental syndromes and cancer, the role of epigenetics in...

  5. Epigenetics and Autism

    OpenAIRE

    Mbadiwe, Tafari; Millis, Richard M.

    2013-01-01

    This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase C ? 1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overac...

  6. [Nutritional epigenetics and epigenetic effects of human breast milk].

    Science.gov (United States)

    Lukoyanova, O L; Borovik, T E

    The article provides an overview of the current literature on nutritional epigenetics. There are currently actively studied hypothesis that nutrition especially in early life or in critical periods of the development, may have a role in modulating gene expression, and, therefore, have later effects on health in adults. Nutritional epigenetics concerns knowledge about the possible effects of nutrients on gene expression. Human breast milk is well-known for its ability in preventing necrotizing enterocolitis, infectious diseases, and also non-communicable diseases, such as obesity and related disorders. This paper discusses about presumed epigenetic effects of human breast milk and some its components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are stillunclear.

  7. Epigenetics in autism and other neurodevelopmental diseases.

    Science.gov (United States)

    Miyake, Kunio; Hirasawa, Takae; Koide, Tsuyoshi; Kubota, Takeo

    2012-01-01

    Autism was previously thought to be caused by environmental factors. However, genetic factors are now considered to be more contributory to the pathogenesis of autism, based on the recent findings of mutations in the genes which encode synaptic molecules associated with the communication between neurons. Epigenetic is a mechanism that controls gene expression without changing DNA sequence but by changing chromosomal histone modifications and its abnormality is associated with several neurodevelopmental diseases. Since epigenetic modifications are known to be affected by environmental factors such as nutrition, drugs and mental stress, autistic diseases are not only caused by congenital genetic defects, but may also be caused by environmental factors via epigenetic mechanism. In this chapter, we introduce autistic diseases caused by epigenetic failures and discuss epigenetic changes by environmental factors and discuss new treatments for neurodevelopmental diseases based on the recent epigenetic findings.

  8. Epigenetic Modifications and Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru

    2013-01-01

    Full Text Available Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2 and matrix metalloproteinase-9 (MMP-9 are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1, and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.

  9. From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth.

    Science.gov (United States)

    Fumagalli, Monica; Provenzi, Livio; De Carli, Pietro; Dessimone, Francesca; Sirgiovanni, Ida; Giorda, Roberto; Cinnante, Claudia; Squarcina, Letizia; Pozzoli, Uberto; Triulzi, Fabio; Brambilla, Paolo; Borgatti, Renato; Mosca, Fabio; Montirosso, Rosario

    2018-01-01

    Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain.

  10. Epigenetic impact of curcumin on stroke prevention

    OpenAIRE

    Kalani, Anuradha; Kamat, Pradip K; Kalani, Komal; Tyagi, Neetu

    2014-01-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering ...

  11. [Epigenetics of prostate cancer].

    Science.gov (United States)

    Yi, Xiao-Ming; Zhou, Wen-Quan

    2010-07-01

    Prostate cancer is one of the most common malignant tumors in males, and its etiology and pathogenesis remain unclear. Epigenesis is involved in prostate cancer at all stages of the process, and closely related with its growth and metastasis. DNA methylation and histone modification are the most important manifestations of epigenetics in prostate cancer. The mechanisms of carcinogenesis of DNA methylation include whole-genome hypomethylation, aberrant local hypermethylation of promoters and genomic instability. DNA methylation is closely related to the process of prostate cancer, as in DNA damage repair, hormone response, tumor cell invasion/metastasis, cell cycle regulation, and so on. Histone modification causes corresponding changes in chromosome structure and the level of gene transcription, and it may affect the cycle, differentiation and apoptosis of cells, resulting in prostate cancer. Some therapies have been developed targeting the epigenetic changes in prostate cancer, including DNA methyltransferases and histone deacetylase inhibitors, and have achieved certain desirable results.

  12. 26 CFR 1.338-2 - Nomenclature and definitions; mechanics of the section 338 election.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Nomenclature and definitions; mechanics of the section 338 election. 1.338-2 Section 1.338-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... definitions; mechanics of the section 338 election. (a) Scope. This section prescribes rules relating to...

  13. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Science.gov (United States)

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  14. Epigenetic cell response to an influence of ionizing radiation

    International Nuclear Information System (INIS)

    Mikheev, A.N.; Gushcha, N.I.; Malinovskij, Yu.Yu.

    1999-01-01

    Importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. Inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify level of spontaneous genetic instability inherited in a number of cell generations on epigenetic mechanism [ru

  15. The Emerging Role of Epigenetics in Inflammation and Immunometabolism

    DEFF Research Database (Denmark)

    Raghuraman, Sukanya; Donkin, Ida; Versteyhe, Soetkin

    2016-01-01

    Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 ...... we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract...

  16. Epigenetic regulation in dental pulp inflammation

    Science.gov (United States)

    Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L

    2016-01-01

    Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577

  17. Epigenetics and Evolution: Transposons and the Stochastic Epigenetic Modification Model

    Directory of Open Access Journals (Sweden)

    Sergio Branciamore

    2015-04-01

    Full Text Available In addition to genetic variation, epigenetic variation and transposons can greatly affect the evolutionary fitnesses landscape and gene expression. Previously we proposed a mathematical treatment of a general epigenetic variation model that we called Stochastic Epigenetic Modification (SEM model. In this study we follow up with a special case, the Transposon Silencing Model (TSM, with, once again, emphasis on quantitative treatment. We have investigated the evolutionary effects of epigenetic changes due to transposon (T insertions; in particular, we have considered a typical gene locus A and postulated that (i the expression level of gene A depends on the epigenetic state (active or inactive of a cis- located transposon element T, (ii stochastic variability in the epigenetic silencing of T occurs only in a short window of opportunity during development, (iii the epigenetic state is then stable during further development, and (iv the epigenetic memory is fully reset at each generation. We develop the model using two complementary approaches: a standard analytical population genetics framework (di usion equations and Monte-Carlo simulations. Both approaches led to similar estimates for the probability of fixation and time of fixation of locus TA with initial frequency P in a randomly mating diploid population of effective size Ne. We have ascertained the e ect that ρ, the probability of transposon Modification during the developmental window, has on the population (species. One of our principal conclusions is that as ρ increases, the pattern of fixation of the combined TA locus goes from "neutral" to "dominant" to "over-dominant". We observe that, under realistic values of ρ, epigenetic Modifications can provide an e cient mechanism for more rapid fixation of transposons and cis-located gene alleles. The results obtained suggest that epigenetic silencing, even if strictly transient (being reset at each generation, can still have signi cant

  18. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: epigenetic regulation of the hypoxic response via hypoxia-inducible factor and histone modifying enzymes.

    Science.gov (United States)

    Mimura, Imari; Tanaka, Tetsuhiro; Wada, Youichiro; Kodama, Tatsuhiko; Nangaku, Masaomi

    2011-01-01

    The hypoxia response regulated primarily by hypoxia-inducible factor (HIF) influences metabolism, cell survival, and angiogenesis to maintain biological homeostasis. In addition to the traditional transcriptional regulation by HIF, recent studies have shown that epigenetic modulation such as histone methylation, acetylation, and DNA methylation could change the regulation of the response to hypoxia. Eukaryotic chromatin is known to be modified by multiple post-translational histone methylation and demethylation, which result in the chromatin conformation change to adapt to hypoxic stimuli. Interestingly, some of the histone demethylase enzymes, which have the Jumonji domain-containing family, require oxygen to function and are induced by hypoxia in an HIF-1-dependent manner. Recent studies have demonstrated that histone modifiers play important roles in the hypoxic environment such as that in cancer cells and that they may become new therapeutic targets for cancer patients. It may lead to finding a new therapy for cancer to clarify a new epigenetic mechanism by HIF and histone demethylase such as JMJD1A (KDM3A) under hypoxia.

  19. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    Science.gov (United States)

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961

  20. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2018-06-01

    Full Text Available Reactive oxygen species (ROS generated by up-regulated NADPH oxidase (Nox contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA, a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression. Keywords: NADPH oxidase, Epigenetics, HDAC, Histone acetylation, Diabetes

  1. Epigenetics in mammary gland biology and cancer

    Science.gov (United States)

    In the post genome era, the focus has shifted to understanding the mechanisms that regulate the interpretation of the genetic code. "Epigenetics" as a research field is taking center stage. Epigenetics is a term which is now being used throughout the scientific community in different contexts from p...

  2. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  3. Epigenetics and autism.

    Science.gov (United States)

    Mbadiwe, Tafari; Millis, Richard M

    2013-01-01

    This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase C β 1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs) associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies.

  4. Epigenetics and Autism

    Directory of Open Access Journals (Sweden)

    Tafari Mbadiwe

    2013-01-01

    Full Text Available This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs can phosphorylate histone H3 at T6. Aided by protein kinase Cβ1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR- dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies.

  5. Genetics and epigenetics of obesity.

    Science.gov (United States)

    Herrera, Blanca M; Keildson, Sarah; Lindgren, Cecilia M

    2011-05-01

    Obesity results from interactions between environmental and genetic factors. Despite a relatively high heritability of common, non-syndromic obesity (40-70%), the search for genetic variants contributing to susceptibility has been a challenging task. Genome wide association (GWA) studies have dramatically changed the pace of detection of common genetic susceptibility variants. To date, more than 40 genetic variants have been associated with obesity and fat distribution. However, since these variants do not fully explain the heritability of obesity, other forms of variation, such as epigenetics marks, must be considered. Epigenetic marks, or "imprinting", affect gene expression without actually changing the DNA sequence. Failures in imprinting are known to cause extreme forms of obesity (e.g. Prader-Willi syndrome), but have also been convincingly associated with susceptibility to obesity. Furthermore, environmental exposures during critical developmental periods can affect the profile of epigenetic marks and result in obesity. We review the most recent evidence for genetic and epigenetic mechanisms involved in the susceptibility and development of obesity. Only a comprehensive understanding of the underlying genetic and epigenetic mechanisms, and the metabolic processes they govern, will allow us to manage, and eventually prevent, obesity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata.

    Science.gov (United States)

    Valledor, Luis; Pascual, Jesús; Meijón, Mónica; Escandón, Mónica; Cañal, María Jesús

    2015-01-01

    Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA) and competence and stress response (PrCSDP2 and PrSHMT4) during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP). The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.

  7. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata.

    Directory of Open Access Journals (Sweden)

    Luis Valledor

    Full Text Available Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA and competence and stress response (PrCSDP2 and PrSHMT4 during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP. The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.

  8. Introduction to the Special Section on Epigenetics.

    Science.gov (United States)

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  9. Epigenetics: general characteristics and implications for oral health

    Directory of Open Access Journals (Sweden)

    Ji-Yun Seo

    2015-02-01

    Full Text Available Genetic information such as DNA sequences has been limited to fully explain mechanisms of gene regulation and disease process. Epigenetic mechanisms, which include DNA methylation, histone modification and non-coding RNAs, can regulate gene expression and affect progression of disease. Although studies focused on epigenetics are being actively investigated in the field of medicine and biology, epigenetics in dental research is at the early stages. However, studies on epigenetics in dentistry deserve attention because epigenetic mechanisms play important roles in gene expression during tooth development and may affect oral diseases. In addition, understanding of epigenetic alteration is important for developing new therapeutic methods. This review article aims to outline the general features of epigenetic mechanisms and describe its future implications in the field of dentistry.

  10. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Stress, Epigenetics, and Alcoholism

    Science.gov (United States)

    Moonat, Sachin; Pandey, Subhash C.

    2012-01-01

    Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker’s dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity—for example, by modifying the structure of the DNA–protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism. PMID:23584115

  12. Epigenetic Alterations in Alzheimer’s Disease

    Science.gov (United States)

    Sanchez-Mut, Jose V.; Gräff, Johannes

    2015-01-01

    Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD. PMID:26734709

  13. The multifaceted interplay between lipids and epigenetics.

    Science.gov (United States)

    Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T

    2016-06-01

    The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.

  14. Epigenetics of the Developing Brain

    Science.gov (United States)

    Champagne, Frances A.

    2015-01-01

    Advances in understanding of the dynamic molecular interplay between DNA and its surrounding proteins suggest that epigenetic mechanisms are a critical link between early life experiences (e.g., prenatal stress, parent-offspring interactions) and long-term changes in brain and behavior. Although much of this evidence comes from animal studies,…

  15. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  16. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Takeo Kubota

    2016-05-01

    Full Text Available Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs. Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  17. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders.

    Science.gov (United States)

    Kubota, Takeo; Mochizuki, Kazuki

    2016-05-14

    Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs). Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  18. Environment, epigenetics and reproduction.

    Science.gov (United States)

    Skinner, Michael K

    2017-07-01

    A conference summary of the third biannual Kenya Africa Conference "Environment, Epigenetics and Reproduction" is provided. A partial special Environmental Epigenetics issue containing a number of papers in Volume 3, Issue 3 and 4 are discussed.

  19. Epigenetic changes in solid and hematopoietic tumors.

    Science.gov (United States)

    Toyota, Minoru; Issa, Jean-Pierre J

    2005-10-01

    There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.

  20. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M

    2015-05-01

    The mechanical properties of skin tissue may vary according to the anatomical locations of a body. There are different stress-strain definitions to measure the mechanical properties of skin tissue. However, there is no agreement as to which stress-strain definition should be implemented to measure the mechanical properties of skin at different anatomical locations. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are employed to determine the mechanical properties of skin tissue at back and abdomen locations of a rat body. The back and abdomen skins of eight rats are excised and subjected to a series of tensile tests. The elastic modulus, maximum stress, and strain of skin tissues are measured using three stress definitions and four strain definitions. The results show that the effect of varying the stress definition on the maximum stress measurements of the back skin is significant but not when calculating the elastic modulus and maximum strain. No significant effects are observed on the elastic modulus, maximum stress, and strain measurements of abdomen skin by varying the stress definition. In the true stress-strain diagram, the maximum stress (20%), and elastic modulus (35%) of back skin are significantly higher than that of abdomen skin. The true stress-strain definition is favored to measure the mechanical properties of skin tissue since it gives more accurate measurements of the skin's response using the instantaneous values. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Erwin Schroedinger, Francis Crick and epigenetic stability

    Directory of Open Access Journals (Sweden)

    Ogryzko Vasily V

    2008-04-01

    Full Text Available Abstract Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  2. Erwin Schroedinger, Francis Crick and epigenetic stability.

    Science.gov (United States)

    Ogryzko, Vasily V

    2008-04-17

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  3. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  4. Epigenetics in breast and prostate cancer.

    Science.gov (United States)

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.

  5. Dynamic epigenetic responses to muscle contraction

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Zierath, Juleen R; Barrès, Romain

    2014-01-01

    Skeletal muscle is a malleable organ that responds to a single acute exercise bout by inducing the expression of genes involved in structural, metabolic and functional adaptations. Several epigenetic mechanisms including histone H4 deacetylation and loss of promoter methylation have been implicated...... in modifying exercise-responsive gene expression. These transient changes suggest that epigenetic mechanisms are not restricted to early stages of human development but are broad dynamic controllers of genomic plasticity in response to environmental factors....

  6. Epigenetic modifications and diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Marpadga A. Reddy

    2012-09-01

    Full Text Available Diabetic nephropathy (DN is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a “metabolic memory” of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.

  7. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    OpenAIRE

    Christopher Ian Cazzonelli; Nazia eNisar; Andrea C Roberts; Kevin eMurray; Justin O Borevitz; Barry James Pogson

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzy...

  8. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    OpenAIRE

    Cazzonelli, Christopher I.; Nisar, Nazia; Roberts, Andrea C.; Murray, Kevin D.; Borevitz, Justin O.; Pogson, Barry J.

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzym...

  9. Epigenetics: ambiguities and implications.

    Science.gov (United States)

    Stotz, Karola; Griffiths, Paul

    2016-12-01

    Everyone has heard of 'epigenetics', but the term means different things to different researchers. Four important contemporary meanings are outlined in this paper. Epigenetics in its various senses has implications for development, heredity, and evolution, and also for medicine. Concerning development, it cements the vision of a reactive genome strongly coupled to its environment. Concerning heredity, both narrowly epigenetic and broader 'exogenetic' systems of inheritance play important roles in the construction of phenotypes. A thoroughly epigenetic model of development and evolution was Waddington's aim when he introduced the term 'epigenetics' in the 1940s, but it has taken the modern development of molecular epigenetics to realize this aim. In the final sections of the paper we briefly outline some further implications of epigenetics for medicine and for the nature/nurture debate.

  10. Re: Epigenetics of Cellular Reprogramming

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-12-01

    Full Text Available EDITORIAL COMMENT Cells have some specific molecular and physiological properties that act their functional process. However, many cells have an ability of efficient transition from one type to another. This ability is named plasticity. This process occurs due to epigenetic reprogramming that involves changes in transcription and chromatin structure. Some changes during reprogramming that have been identified in recent years as genomic demethylation (both histone and DNA, histone acetylation and loss of heterochromatin during the development of many diseases such as infertility and cancer progression. In this review, the authors focused on the latest work addressing the mechanisms surrounding the epigenetic regulation of various types of reprogramming, including somatic cell nuclear transfer, cell fusion and transcription factor- and microRNA-induced pluripotency. There are many responsible factors such as genes, cytokines, proteins, co-factors (i.e. vitamin C in this local area network. The exact mechanisms by which these changes are achieved and the detailed interplay between the players responsible, however, remain relatively unclear. In the treatment of diseases, such as infertility, urooncology, reconstructive urology, etc., epigenetic changes and cellular reprogramming will be crucial in the near future. Central to achieving that goal is a more thorough understanding of the epigenetic state of fully reprogrammed cells. By the progress of researches on this topic, new treatment modalities will be identified for these diseases.

  11. Epigenetic Regulation in Prostate Cancer Progression.

    Science.gov (United States)

    Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro

    2018-01-01

    An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

  12. Environmental chemical exposures and human epigenetics

    Science.gov (United States)

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  13. Epigenetic mechanisms involved in differential MDR1 mRNA expression between gastric and colon cancer cell lines and rationales for clinical chemotherapy

    Directory of Open Access Journals (Sweden)

    Kim Kyung-Jong

    2008-08-01

    Full Text Available Abstract Background The membrane transporters such as P-glycoprotein (Pgp, the MDR1 gene product, are one of causes of treatment failure in cancer patients. In this study, the epigenetic mechanisms involved in differential MDR1 mRNA expression were compared between 10 gastric and 9 colon cancer cell lines. Methods The MDR1 mRNA levels were determined using PCR and real-time PCR assays after reverse transcription. Cytotoxicity was performed using the MTT assay. Methylation status was explored by quantification PCR-based methylation and bisulfite DNA sequencing analyses. Results The MDR1 mRNA levels obtained by 35 cycles of RT-PCR in gastric cancer cells were just comparable to those obtained by 22 cycles of RT-PCR in colon cancer cells. Real-time RT-PCR analysis revealed that MDR1 mRNA was not detected in the 10 gastric cancer cell lines but variable MDR1 mRNA levels in 7 of 9 colon cancer cell lines except the SNU-C5 and HT-29 cells. MTT assay showed that Pgp inhibitors such as cyclosporine A, verapamil and PSC833 sensitized Colo320HSR (colon, highest MDR1 expression but not SNU-668 (gastric, highest and SNU-C5 (gastric, no expression to paclitaxel. Quantification PCR-based methylation analysis revealed that 90% of gastric cancer cells, and 33% of colon cancer cells were methylated, which were completely matched with the results obtained by bisulfite DNA sequencing analysis. 5-aza-2'-deoxcytidine (5AC, a DNA methyltransferase inhibitor increased the MDR1 mRNA levels in 60% of gastric cells, and in 11% of colon cancer cells. Trichostatin A (TSA, histone deacetylase inhibitor increased the MDR1 mRNA levels in 70% of gastric cancer cells and 55% of colon cancer cells. The combined treatment of 5AC with TSA increased the MDR1 mRNA levels additively in 20% of gastric cancer cells, but synergistically in 40% of gastric and 11% of colon cancer cells. Conclusion These results indicate that the MDR1 mRNA levels in gastric cancer cells are significantly

  14. Early-Life Nutritional Programming of Cognition-The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process.

    Science.gov (United States)

    Moody, Laura; Chen, Hong; Pan, Yuan-Xiang

    2017-03-01

    The perinatal period is a window of heightened plasticity that lays the groundwork for future anatomic, physiologic, and behavioral outcomes. During this time, maternal diet plays a pivotal role in the maturation of vital organs and the establishment of neuronal connections. However, when perinatal nutrition is either lacking in specific micro- and macronutrients or overloaded with excess calories, the consequences can be devastating and long lasting. The brain is particularly sensitive to perinatal insults, with several neurologic and psychiatric disorders having been linked to a poor in utero environment. Diseases characterized by learning and memory impairments, such as autism, schizophrenia, and Alzheimer disease, are hypothesized to be attributed in part to environmental factors, and evidence suggests that the etiology of these conditions may date back to very early life. In this review, we discuss the role of the early-life diet in shaping cognitive outcomes in offspring. We explore the endocrine and immune mechanisms responsible for these phenotypes and discuss how these systemic factors converge to change the brain's epigenetic landscape and regulate learning and memory across the lifespan. Through understanding the maternal programming of cognition, critical steps may be taken toward preventing and treating diseases that compromise learning and memory. © 2017 American Society for Nutrition.

  15. Individuality and epigenetics in obesity.

    Science.gov (United States)

    Campión, J; Milagro, F I; Martínez, J A

    2009-07-01

    Excessive weight gain arises from the interactions among environmental factors, genetic predisposition and the individual behavior. However, it is becoming evident that interindividual differences in obesity susceptibility depend also on epigenetic factors. Epigenetics studies the heritable changes in gene expression that do not involve changes to the underlying DNA sequence. These processes include DNA methylation, covalent histone modifications, chromatin folding and, more recently described, the regulatory action of miRNAs and polycomb group complexes. In this review, we focus on experimental evidences concerning dietary factors influencing obesity development by epigenetic mechanisms, reporting treatment doses and durations. Moreover, we present a bioinformatic analysis of promoter regions for the search of future epigenetic biomarkers of obesity, including methylation pattern analyses of several obesity-related genes (epiobesigenes), such as FGF2, PTEN, CDKN1A and ESR1, implicated in adipogenesis, SOCS1/SOCS3, in inflammation, and COX7A1 LPL, CAV1, and IGFBP3, in intermediate metabolism and insulin signalling. The identification of those individuals that at an early age could present changes in the methylation profiles of specific genes could help to predict their susceptibility to later develop obesity, which may allow to prevent and follow-up its progress, as well as to research and develop newer therapeutic approaches.

  16. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma; Kinouchi, Kenichiro; Sassone-Corsi, Paolo

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  17. [Schizophrenia, environment and epigenetics].

    Science.gov (United States)

    Must, Anita; Janka, Zoltan; Horvath, Szatmar

    2011-12-01

    Psychotic, cognitive and affective symptoms defining schizophrenia may, though much less severe, manifest themselves in up to 10 to 20% of the general population. What explains the fact that in certain cases the symptoms require even constant medical supervision, while others are capable of living a normal life within social conventions? Which factors lead to the transition of mild, subclinical manifestations and vulnerability indicators towards the outburst of one of the most severe and depriving mental disorders? Genetic susceptibility is undoubtedly crucial. More recent research findings emphasize the modifying effect of specific environmental factors on gene expression. The gene-environment interplay may induce so-called epigenetic alterations which may manifest themselves over several generations. Future integrative, multi-dimensional and flexible schizophrenia research approaches focusing on the identification of neurobiological and cognitive outcomes are much needed to understand disease vulnerability, susceptibility mechanisms, periods and interactions. Research methods may differ, but our aim is common - establishing more effective diagnostic and therapeutic interventions.

  18. Early-life adversity programs emotional functions and the neuroendocrine stress system: the contribution of nutrition, metabolic hormones and epigenetic mechanisms.

    Science.gov (United States)

    Yam, Kit-Yi; Naninck, Eva F G; Schmidt, Mathias V; Lucassen, Paul J; Korosi, Aniko

    2015-01-01

    Clinical and pre-clinical studies have shown that early-life adversities, such as abuse or neglect, can increase the vulnerability to develop psychopathologies and cognitive decline later in life. Remarkably, the lasting consequences of stress during this sensitive period on the hypothalamic-pituitary-adrenal axis and emotional function closely resemble the long-term effects of early malnutrition and suggest a possible common pathway mediating these effects. During early-life, brain development is affected by both exogenous factors, like nutrition and maternal care as well as by endogenous modulators including stress hormones. These elements, while mostly considered for their independent actions, clearly do not act alone but rather in a synergistic manner. In order to better understand how the programming by early-life stress takes place, it is important to gain further insight into the exact interplay of these key elements, the possible common pathways as well as the underlying molecular mechanisms that mediate their effects. We here review evidence that exposure to both early-life stress and early-life under-/malnutrition similarly lead to life-long alterations on the neuroendocrine stress system and modify emotional functions. We further discuss how the different key elements of the early-life environment interact and affect one another and next suggest a possible role for the early-life adversity induced alterations in metabolic hormones and nutrient availability in shaping later stress responses and emotional function throughout life, possibly via epigenetic mechanisms. Such knowledge will help to develop intervention strategies, which gives the advantage of viewing the synergistic action of a more complete set of changes induced by early-life adversity.

  19. p16(INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2011-02-01

    Full Text Available Although caloric restriction (CR has been shown to increase lifespan in various animal models, the mechanisms underlying this phenomenon have not yet been revealed. We developed an in vitro system to mimic CR by reducing glucose concentration in cell growth medium which excludes metabolic factors and allows assessment of the effects of CR at the cellular and molecular level. We monitored cellular proliferation of normal WI-38, IMR-90 and MRC-5 human lung fibroblasts and found that glucose restriction (GR can inhibit cellular senescence and significantly extend cellular lifespan compared with cells receiving normal glucose (NG in the culture medium. Moreover, GR decreased expression of p16(INK4a (p16, a well-known senescence-related gene, in all of the tested cell lines. Over-expressed p16 resulted in early replicative senescence in glucose-restricted cells suggesting a crucial role of p16 regulation in GR-induced cellular lifespan extension. The decreased expression of p16 was partly due to GR-induced chromatin remodeling through effects on histone acetylation and methylation of the p16 promoter. GR resulted in an increased expression of SIRT1, a NAD-dependent histone deacetylase, which has positive correlation with CR-induced longevity. The elevated SIRT1 was accompanied by enhanced activation of the Akt/p70S6K1 signaling pathway in response to GR. Furthermore, knockdown of SIRT1 abolished GR-induced p16 repression as well as Akt/p70S6K1 activation implying that SIRT1 may affect p16 repression through direct deacetylation effects and indirect regulation of Akt/p70S6K1 signaling. Collectively, these results provide new insights into interactions between epigenetic and genetic mechanisms on CR-induced longevity that may contribute to anti-aging approaches and also provide a general molecular model for studying CR in vitro in mammalian systems.

  20. Epigenetics and obesity

    OpenAIRE

    Stöger, Reinhard

    2008-01-01

    Common DNA sequence variants inadequately explain variability in fat mass among individuals. Abnormal body weights are characteristic of specific imprinted-gene disorders. However, the relevance of imprinted genes to our understanding of obesity among the general population is uncertain. Hitherto unidentified imprinted genes and epigenetic mosaicism are two of the challenges for this emerging field of epigenetics. Subtle epigenetic differences in imprinted genes and gene networks are likely t...

  1. Epigenetics: beyond genes

    CSIR Research Space (South Africa)

    Fossey, A

    2009-06-01

    Full Text Available in forestry breeding. Keywords Gene regulation; chromatin; histone code hyporthesis; RNA silencing; post transcriptional gene silencing; forestry. Introduction to epigenetic phenomena Most living organisms share a vast amount of genetic information... (Rapp and Wendel, 2005). Epigenetic phenomena pervade all aspects of cell proliferation and plant development and are often in conflict with Mendelian models of genetics (Grant-Downton and Dickinson, 2005). A key element in many epigenetic effects...

  2. Epigenetic regulation of female puberty.

    Science.gov (United States)

    Lomniczi, Alejandro; Wright, Hollis; Ojeda, Sergio R

    2015-01-01

    Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Muscle Co-activation: Definitions, Mechanisms, and Functions.

    Science.gov (United States)

    Latash, Mark L

    2018-03-28

    The phenomenon of agonist-antagonist muscle co-activation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of co-activation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Further, co-activation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle co-activation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist co-activation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by co-varied adjustments in spaces of control variables. This hypothesis is able to account for higher levels of co-activation in young healthy persons performing challenging tasks and across various populations with movement impairments.

  4. Epigenetics and Epigenomics of Plants.

    Science.gov (United States)

    Yadav, Chandra Bhan; Pandey, Garima; Muthamilarasan, Mehanathan; Prasad, Manoj

    2018-01-23

    The genetic material DNA in association with histone proteins forms the complex structure called chromatin, which is prone to undergo modification through certain epigenetic mechanisms including cytosine DNA methylation, histone modifications, and small RNA-mediated methylation. Alterations in chromatin structure lead to inaccessibility of genomic DNA to various regulatory proteins such as transcription factors, which eventually modulates gene expression. Advancements in high-throughput sequencing technologies have provided the opportunity to study the epigenetic mechanisms at genome-wide levels. Epigenomic studies using high-throughput technologies will widen the understanding of mechanisms as well as functions of regulatory pathways in plant genomes, which will further help in manipulating these pathways using genetic and biochemical approaches. This technology could be a potential research tool for displaying the systematic associations of genetic and epigenetic variations, especially in terms of cytosine methylation onto the genomic region in a specific cell or tissue. A comprehensive study of plant populations to correlate genotype to epigenotype and to phenotype, and also the study of methyl quantitative trait loci (QTL) or epiGWAS, is possible by using high-throughput sequencing methods, which will further accelerate molecular breeding programs for crop improvement. Graphical Abstract.

  5. 45 CFR 205.35 - Mechanized claims processing and information retrieval systems; definitions.

    Science.gov (United States)

    2010-10-01

    ... claims processing and information retrieval systems; definitions. Section 205.35 through 205.38 contain...: (a) A mechanized claims processing and information retrieval system, hereafter referred to as an automated application processing and information retrieval system (APIRS), or the system, means a system of...

  6. 2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanie Lee

    2009-08-14

    Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditional and new model organisms are selected from plants, fungi, and metazoans.

  7. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys.

    Science.gov (United States)

    Xu, Ning; Kwon, Soonil; Abbott, David H; Geller, David H; Dumesic, Daniel A; Azziz, Ricardo; Guo, Xiuqing; Goodarzi, Mark O

    2011-01-01

    The pathogenesis of polycystic ovary syndrome (PCOS) is poorly understood. PCOS-like phenotypes are produced by prenatal androgenization (PA) of female rhesus monkeys. We hypothesize that perturbation of the epigenome, through altered DNA methylation, is one of the mechanisms whereby PA reprograms monkeys to develop PCOS. Infant and adult visceral adipose tissues (VAT) harvested from 15 PA and 10 control monkeys were studied. Bisulfite treated samples were subjected to genome-wide CpG methylation analysis, designed to simultaneously measure methylation levels at 27,578 CpG sites. Analysis was carried out using Bayesian Classification with Singular Value Decomposition (BCSVD), testing all probes simultaneously in a single test. Stringent criteria were then applied to filter out invalid probes due to sequence dissimilarities between human probes and monkey DNA, and then mapped to the rhesus genome. This yielded differentially methylated loci between PA and control monkeys, 163 in infant VAT, and 325 in adult VAT (BCSVD Pexcess fetal androgen exposure in female nonhuman primates may predispose to PCOS via alteration of the epigenome, providing a novel avenue to understand PCOS in humans.

  8. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS-like phenotypes in prenatally androgenized rhesus monkeys.

    Directory of Open Access Journals (Sweden)

    Ning Xu

    Full Text Available The pathogenesis of polycystic ovary syndrome (PCOS is poorly understood. PCOS-like phenotypes are produced by prenatal androgenization (PA of female rhesus monkeys. We hypothesize that perturbation of the epigenome, through altered DNA methylation, is one of the mechanisms whereby PA reprograms monkeys to develop PCOS. Infant and adult visceral adipose tissues (VAT harvested from 15 PA and 10 control monkeys were studied. Bisulfite treated samples were subjected to genome-wide CpG methylation analysis, designed to simultaneously measure methylation levels at 27,578 CpG sites. Analysis was carried out using Bayesian Classification with Singular Value Decomposition (BCSVD, testing all probes simultaneously in a single test. Stringent criteria were then applied to filter out invalid probes due to sequence dissimilarities between human probes and monkey DNA, and then mapped to the rhesus genome. This yielded differentially methylated loci between PA and control monkeys, 163 in infant VAT, and 325 in adult VAT (BCSVD P<0.05. Among these two sets of genes, we identified several significant pathways, including the antiproliferative role of TOB in T cell signaling and transforming growth factor-β (TGF-β signaling. Our results suggest PA may modify DNA methylation patterns in both infant and adult VAT. This pilot study suggests that excess fetal androgen exposure in female nonhuman primates may predispose to PCOS via alteration of the epigenome, providing a novel avenue to understand PCOS in humans.

  9. Ontogeny and Phylogeny from an Epigenetic Point of View.

    Science.gov (United States)

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  10. Bioinformatics Tools for Genome-Wide Epigenetic Research.

    Science.gov (United States)

    Angarica, Vladimir Espinosa; Del Sol, Antonio

    2017-01-01

    Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of "computational epigenetics," including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how "computational epigenetics" has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.

  11. Long range epigenetic silencing is a trans-species mechanism that results in cancer specific deregulation by overriding the chromatin domains of normal cells.

    Science.gov (United States)

    Forn, Marta; Muñoz, Mar; Tauriello, Daniele V F; Merlos-Suárez, Anna; Rodilla, Verónica; Bigas, Anna; Batlle, Eduard; Jordà, Mireia; Peinado, Miguel A

    2013-12-01

    DNA methylation and chromatin remodeling are frequently implicated in the silencing of genes involved in carcinogenesis. Long Range Epigenetic Silencing (LRES) is a mechanism of gene inactivation that affects multiple contiguous CpG islands and has been described in different human cancer types. However, it is unknown whether there is a coordinated regulation of the genes embedded in these regions in normal cells and in early stages of tumor progression. To better characterize the molecular events associated with the regulation and remodeling of these regions we analyzed two regions undergoing LRES in human colon cancer in the mouse model. We demonstrate that LRES also occurs in murine cancer in vivo and mimics the molecular features of the human phenomenon, namely, downregulation of gene expression, acquisition of inactive histone marks, and DNA hypermethylation of specific CpG islands. The genes embedded in these regions showed a dynamic and autonomous regulation during mouse intestinal cell differentiation, indicating that, in the framework considered here, the coordinated regulation in LRES is restricted to cancer. Unexpectedly, benign adenomas in Apc(Min/+) mice showed overexpression of most of the genes affected by LRES in cancer, which suggests that the repressive remodeling of the region is a late event. Chromatin immunoprecipitation analysis of the transcriptional insulator CTCF in mouse colon cancer cells revealed disrupted chromatin domain boundaries as compared with normal cells. Malignant regression of cancer cells by in vitro differentiation resulted in partial reversion of LRES and gain of CTCF binding. We conclude that genes in LRES regions are plastically regulated in cell differentiation and hyperproliferation, but are constrained to a coordinated repression by abolishing boundaries and the autonomous regulation of chromatin domains in cancer cells. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All

  12. Epigenetics: relevance and implications for public health.

    Science.gov (United States)

    Rozek, Laura S; Dolinoy, Dana C; Sartor, Maureen A; Omenn, Gilbert S

    2014-01-01

    Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.

  13. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  14. The Emerging Role of Epigenetics in Inflammation and Immunometabolism.

    Science.gov (United States)

    Raghuraman, Sukanya; Donkin, Ida; Versteyhe, Soetkin; Barrès, Romain; Simar, David

    2016-11-01

    Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 diabetes mellitus, and these are associated with alterations in the phenotype, function, and trafficking patterns of these cells. The first step in the development of effective therapeutic strategies is the identification of distinct epigenetic signatures associated with metabolic disorders. In this review we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract epigenetically driven metabolic complications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Imaging epigenetics in Alzheimer's disease.

    Science.gov (United States)

    Lista, Simone; Garaci, Francesco G; Toschi, Nicola; Hampel, Harald

    2013-01-01

    Sporadic Alzheimer's disease (AD) is a prevalent, complex and chronically progressive brain disease. Its course is non-linear, dynamic, adaptive to maladaptive, and compensatory to decompensatory, affecting large-scale neural networks through a plethora of mechanistic and signaling pathway alterations that converge into regional and cell type-specific neurodegeneration and, finally, into clinically overt cognitive and behavioral decline. This decline includes reductions in the activities of daily living, quality of life, independence, and life expectancy. Evolving lines of research suggest that epigenetic mechanisms may play a crucial role during AD development and progression. Epigenetics designates molecular mechanisms that alter gene expression without modifications of the genetic code. This topic includes modifications on DNA and histone proteins, the primary elements of chromatin structure. Accumulating evidence has revealed the relevant processes that mediate epigenetic modifications and has begun to elucidate how these processes are apparently dysregulated in AD. This evidence has led to the clarification of the roles of specific classes of therapeutic compounds that affect epigenetic pathways and characteristics of the epigenome. This insight is accompanied by the development of new methods for studying the global patterns of DNA methylation and chromatin alterations. In particular, high-throughput sequencing approaches, such as next-generation DNA sequencing techniques, are beginning to drive the field into the next stage of development. In parallel, genetic imaging is beginning to answer additional questions through its ability to uncover genetic variants, with or without genome-wide significance, that are related to brain structure, function and metabolism, which impact disease risk and fundamental network-based cognitive processes. Neuroimaging measures can further be used to define AD systems and endophenotypes. The integration of genetic neuroimaging

  16. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    Science.gov (United States)

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  17. Epigenetics: An Emerging Framework for Advanced Practice Psychiatric Nursing.

    Science.gov (United States)

    DeSocio, Janiece E

    2016-07-01

    The aims of this paper are to synthesize and report research findings from neuroscience and epigenetics that contribute to an emerging explanatory framework for advanced practice psychiatric nursing. Discoveries in neuroscience and epigenetics reveal synergistic mechanisms that support the integration of psychotherapy, psychopharmacology, and psychoeducation in practice. Advanced practice psychiatric nurses will benefit from an expanded knowledge base in neuroscience and epigenetics that informs and explains the scientific rationale for our integrated practice. © 2015 Wiley Periodicals, Inc.

  18. Epigenetic control of plant immunity.

    Science.gov (United States)

    Alvarez, María E; Nota, Florencia; Cambiagno, Damián A

    2010-07-01

    In eukaryotic genomes, gene expression and DNA recombination are affected by structural chromatin traits. Chromatin structure is shaped by the activity of enzymes that either introduce covalent modifications in DNA and histone proteins or use energy from ATP to disrupt histone-DNA interactions. The genomic 'marks' that are generated by covalent modifications of histones and DNA, or by the deposition of histone variants, are susceptible to being altered in response to stress. Recent evidence has suggested that proteins generating these epigenetic marks play crucial roles in the defence against pathogens. Histone deacetylases are involved in the activation of jasmonic acid- and ethylene-sensitive defence mechanisms. ATP-dependent chromatin remodellers mediate the constitutive repression of the salicylic acid-dependent pathway, whereas histone methylation at the WRKY70 gene promoter affects the activation of this pathway. Interestingly, bacterial-infected tissues show a net reduction in DNA methylation, which may affect the disease resistance genes responsible for the surveillance against pathogens. As some epigenetic marks can be erased or maintained and transmitted to offspring, epigenetic mechanisms may provide plasticity for the dynamic control of emerging pathogens without the generation of genomic lesions.

  19. Clinical manifestations and epigenetic mechanisms of gastric mucosa associated lymphoid tissue lymphoma and long-term follow-up following Helicobacter pylori eradication.

    Science.gov (United States)

    Song, Yan; Jiang, Kui; Su, Shuai; Wang, Bangmao; Chen, Guangxia

    2018-01-01

    The current study aimed to summarize the clinical manifestations and identify the epigenetic mechanisms of gastric mucosa associated lymphoid tissue (MALT) lymphoma, as well as evaluate the long-term effects of Helicobacter pylori ( H. pylori ) eradication. A total of 122 patients with marginal zone B-cell lymphoma of primary gastric MALT lymphoma were enrolled in the present study. The clinical manifestations of gastric MALT lymphoma, including symptoms, H. pylori state and endoscopic type, were summarized. The response to therapy was evaluated in patients that underwent H. pylori eradication. Survival analysis was estimated using the Kaplan-Meier method. The expression of microRNA-383 (miR-383) in tumor tissues and cell lines was determined using reverse transcription quantitative polymerase chain reaction. Furthermore, bioinformatic analyses, luciferase reporter assays. and western blot analysis identified zinc finger E-box binding homeobox 2 (ZEB2) as a direct target gene of miR-383. An MTT assay was used to examine the function of miR-383 and ZEB2 in MALT lymphoma. The clinical symptoms of patients with gastric MALT lymphoma were non-specific and included epigastric pain, abdominal discomfort and bleeding. The majority of endoscopic types were classified as ulcer, erosion and mucosa edema. The H. pylori infection rate was 79.5% (97/122) and a total of 47 patients underwent eradication therapy. Lymphoma remission was achieved in 93.6% (44/47) of patients and complete remission (CR) was achieved in 74.4% (35/47). The median follow-up time was 38 months (range, 10-132 months) and the median time taken to achieve CR was 4 months (range, 3-7 months). The estimated 3-year survival rate was 90.3% and the 5-year survival rate was 76.2%. Therefore, it was determined that patients with stage I or II gastric MALT lymphoma are able to undergo H. pylori eradication as a first-line treatment and that the survival rate of patients undergoing this treatment is high

  20. Cell cycle arrest induced by inhibitors of epigenetic modifications in maize (Zea mays) seedling leaves: characterization of the process and possible mechanisms involved.

    Science.gov (United States)

    Wang, Pu; Zhang, Hao; Hou, Haoli; Wang, Qing; Li, Yingnan; Huang, Yan; Xie, Liangfu; Gao, Fei; He, Shibin; Li, Lijia

    2016-07-01

    Epigenetic modifications play crucial roles in the regulation of chromatin architecture and are involved in cell cycle progression, including mitosis and meiosis. To explore the relationship between epigenetic modifications and the cell cycle, we treated maize (Zea mays) seedlings with six different epigenetic modification-related inhibitors and identified the postsynthetic phase (G2 ) arrest via flow cytometry analysis. Total H4K5ac levels were significantly increased and the distribution of H3S10ph signalling was obviously changed in mitosis under various treatments. Further statistics of the cells in different periods of mitosis confirmed that the cell cycle was arrested at preprophase. Concentrations of hydrogen peroxide were relatively higher in the treated plants and the antioxidant thiourea could negate the influence of the inhibitors. Moreover, all of the treated plants displayed negative results in the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and γ-H2AX immunostaining assays after exposure for 3 d. Additionally, the expression level of topoisomerase genes in the treated plants was relatively lower than that in the untreated plants. These results suggest that these inhibitors of epigenetic modifications could cause preprophase arrest via reactive oxygen species formation inhibiting the expression of DNA topoisomerase genes, accompanied by changes in the H4K5ac and H3S10ph histone modifications. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. New insights into the epigenetics of inflammatory rheumatic diseases.

    Science.gov (United States)

    Ballestar, Esteban; Li, Tianlu

    2017-10-01

    Over the past decade, awareness of the importance of epigenetic alterations in the pathogenesis of rheumatic diseases has grown in parallel with a general recognition of the fundamental role of epigenetics in the regulation of gene expression. Large-scale efforts to generate genome-wide maps of epigenetic modifications in different cell types, as well as in physiological and pathological contexts, illustrate the increasing recognition of the relevance of epigenetics. To date, although several reports have demonstrated the occurrence of epigenetic alterations in a wide range of inflammatory rheumatic conditions, epigenomic information is rarely used in a clinical setting. By contrast, several epigenetic biomarkers and treatments are currently in use for personalized therapies in patients with cancer. This Review highlights advances from the past 5 years in the field of epigenetics and their application to inflammatory rheumatic diseases, delineating the future lines of development for a rational use of epigenetic information in clinical settings and in personalized medicine. These advances include the identification of epipolymorphisms associated with clinical outcomes, DNA methylation as a contributor to disease susceptibility in rheumatic conditions, the discovery of novel epigenetic mechanisms that modulate disease susceptibility and the development of new epigenetic therapies.

  2. The danger of epigenetics misconceptions (epigenetics and stuff…).

    Science.gov (United States)

    Georgel, Philippe T

    2015-12-01

    Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the "Epigenetics" building). The fusion and convergence of these complementary fields is now often simply referred to as "Epigenetics". During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short "opinion" piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned.

  3. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Beerman, Isabel; Rossi, Derrick J.

    2014-01-01

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  4. Transgenerational epigenetic effects on animal behaviour.

    Science.gov (United States)

    Jensen, Per

    2013-12-01

    Over the last decade a shift in paradigm has occurred with respect to the interaction between environment and genes. It is now clear that animal genomes are regulated to a large extent as a result of input from environmental events and experiences, which cause short- and long-term modifications in epigenetic markings of DNA and histones. In this review, the evidence that such epigenetic modifications can affect the behaviour of animals is explored, and whether such acquired behaviour alterations can transfer across generation borders. First, the mechanisms by which experiences cause epigenetic modifications are examined. This includes, for example, methylation of cytosine in CpG positions and acetylation of histones, and studies showing that this can be modified by early experiences. Secondly, the evidence that specific modifications in the epigenome can be the cause of behaviour variation is reviewed. Thirdly, the extent to which this phenotypically active epigenetic variants can be inherited either through the germline or through reoccurring environmental conditions is examined. A particularly interesting observation is that epigenetic modifications are often linked to stress, and may possibly be mediated by steroid effects. Finally, the idea that transgenerationally stable epigenetic variants may serve as substrates for natural selection is explored, and it is speculated that they may even predispose for directed, non-random mutations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  6. Scrutinizing the epigenetics revolution

    Science.gov (United States)

    Meloni, Maurizio; Testa, Giuseppe

    2014-01-01

    Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as ‘epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID

  7. Nature, Nurture and Epigenetics

    Science.gov (United States)

    Crews, David; Gillette, Ross; Miller-Crews, Isaac; Gore, Andrea C.; Skinner, Michael K.

    2015-01-01

    Real life by definition combines heritability (e.g., the legacy of exposures) and experience (e.g. stress during sensitive or ‘critical’ periods), but how to study or even model this interaction has proven difficult. The hoary concept of evaluating traits according to nature vs. nurture continues to persist despite repeated demonstrations that it retards, rather than advances, our understanding of biological processes. Behavioral genetics has proven the obvious, that genes influences behavior and, vice versa, that behavior influences genes. The concept of Genes X Environment (G X E) and its modern variants was viewed as an improvement on nature-nurture but has proven that, except in rare instances, it is not possible to fractionate phenotypes into these constituent elements. The entanglement inherent in terms such as nature-nurture or GXE is a Gordian knot that cannot be dissected or even split. Given that the world today is not what it was less than a century ago, yet the arbitrator (differential survival and reproduction) has stayed constant, de novo principles and practices are needed to better predict what the future holds. Put simply, the transformation that is now occurring within and between individuals as a product of global endocrine disruption is quite independent of what has been regarded as evolution by selection. This new perspective should focus on how epigenetic modifications might revise approaches to understand how the phenotype and, in particular its components, is shaped. In this review we summarize the literature in this developing area, focusing on our research on the fungicide vinclozolin. PMID:25102229

  8. Nature, nurture and epigenetics.

    Science.gov (United States)

    Crews, David; Gillette, Ross; Miller-Crews, Isaac; Gore, Andrea C; Skinner, Michael K

    2014-12-01

    Real life by definition combines heritability (e.g., the legacy of exposures) and experience (e.g. stress during sensitive or 'critical' periods), but how to study or even model this interaction has proven difficult. The hoary concept of evaluating traits according to nature versus nurture continues to persist despite repeated demonstrations that it retards, rather than advances, our understanding of biological processes. Behavioral genetics has proven the obvious, that genes influence behavior and, vice versa, that behavior influences genes. The concept of Genes X Environment (G X E) and its modern variants was viewed as an improvement on nature-nurture but has proven that, except in rare instances, it is not possible to fractionate phenotypes into these constituent elements. The entanglement inherent in terms such as nature-nurture or G X E is a Gordian knot that cannot be dissected or even split. Given that the world today is not what it was less than a century ago, yet the arbitrator (differential survival and reproduction) has stayed constant, de novo principles and practices are needed to better predict what the future holds. Put simply, the transformation that is now occurring within and between individuals as a product of global endocrine disruption is quite independent of what has been regarded as evolution by selection. This new perspective should focus on how epigenetic modifications might revise approaches to understand how the phenotype and, in particular its components, is shaped. In this review we summarize the literature in this developing area, focusing on our research on the fungicide vinclozolin. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies

    Directory of Open Access Journals (Sweden)

    Silvia Consalvi

    2016-01-01

    Full Text Available In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD.

  10. Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention

    Science.gov (United States)

    Romani, Massimo; Pistillo, Maria Pia; Banelli, Barbara

    2015-01-01

    Epigenetics provides the key to transform the genetic information into phenotype and because of its reversibility it is considered an ideal target for therapeutic interventions. This paper reviews the basic mechanisms of epigenetic control: DNA methylation, histone modifications, chromatin remodeling, and ncRNA expression and their role in disease development. We describe also the influence of the environment, lifestyle, nutritional habits, and the psychological influence on epigenetic marks and how these factors are related to cancer and other diseases development. Finally we discuss the potential use of natural epigenetic modifiers in the chemoprevention of cancer to link together public health, environment, and lifestyle. PMID:26339624

  11. Epigenetics Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  12. Learning epigenetic regulation from mycobacteria

    Directory of Open Access Journals (Sweden)

    Sanjeev Khosla

    2016-01-01

    Full Text Available In a eukaryotic cell, the transcriptional fate of a gene is determined by the profile of the epigenetic modifications it is associated with and the conformation it adopts within the chromatin. Therefore, the function that a cell performs is dictated by the sum total of the chromatin organization and the associated epigenetic modifications of each individual gene in the genome (epigenome. As the function of a cell during development and differentiation is determined by its microenvironment, any factor that can alter this microenvironment should be able to alter the epigenome of a cell. In the study published in Nature Communications (Yaseen [2015] Nature Communications 6:8922 doi: 10.1038/ncomms9922, we show that pathogenic Mycobacterium tuberculosis has evolved strategies to exploit this pliability of the host epigenome for its own survival. We describe the identification of a methyltransferase from M. tuberculosis that functions to modulate the host epigenome by methylating a novel, non-canonical arginine, H3R42 in histone H3. In another study, we showed that the mycobacterial protein Rv2966c methylates cytosines present in non-CpG context within host genomic DNA upon infection. Proteins with ability to directly methylate host histones H3 at a novel lysine residue (H3K14 has also been identified from Legionella pnemophilia (RomA. All these studies indicate the use of non-canonical epigenetic mechanisms by pathogenic bacteria to hijack the host transcriptional machinery.

  13. Epigenetics and Bruxism: Possible Role of Epigenetics in the Etiology of Bruxism.

    Science.gov (United States)

    Čalić, Aleksandra; Peterlin, Borut

    2015-01-01

    Bruxism is defined as a repetitive jaw muscle activity characterized by clenching or grinding of the teeth and/or bracing or thrusting of the mandible. There are two distinct circadian phenotypes for bruxism: sleep bruxism (SB) and awake bruxism, which are considered separate entities due to the putative difference in their etiology and phenotypic variance. The detailed etiology of bruxism so far remains unknown. Recent theories suggest the central regulation of certain pathophysiological or psychological pathways. Current proposed causes of bruxism appear to be a combination of genetic and environmental (G×E) factors, with epigenetics providing a robust framework for investigating G×E interactions, and their involvement in bruxism makes it a suitable candidate for epigenetic research. Both types of bruxism are associated with certain epigenetically determined disorders, such as Rett syndrome (RTT), Prader-Willi syndrome (PWS), and Angelman syndrome (AS), and these associations suggest a mechanistic link between epigenetic deregulation and bruxism. The present article reviews the possible role of epigenetic mechanisms in the etiology of both types of bruxism based on the epigenetic pathways involved in the pathophysiology of RTT, PWS, and AS, and on other epigenetic disruptions associated with risk factors for bruxism, including sleep disorders, altered stress response, and psychopathology.

  14. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala.

    Science.gov (United States)

    Hari Dass, Shantala Arundhati; Vyas, Ajai

    2014-12-01

    Male rats (Rattus novergicus) infected with protozoan Toxoplasma gondii relinquish their innate aversion to the cat odours. This behavioural change is postulated to increase transmission of the parasite to its definitive felid hosts. Here, we show that the Toxoplasma gondii infection institutes an epigenetic change in the DNA methylation of the arginine vasopressin promoter in the medial amygdala of male rats. Infected animals exhibit hypomethylation of arginine vasopressin promoter, leading to greater expression of this nonapeptide. The infection also results in the greater activation of the vasopressinergic neurons after exposure to the cat odour. Furthermore, we show that loss of fear in the infected animals can be rescued by the systemic hypermethylation and recapitulated by directed hypomethylation in the medial amygdala. These results demonstrate an epigenetic proximate mechanism underlying the extended phenotype in the Rattus novergicus-Toxoplasma gondii association. © 2014 John Wiley & Sons Ltd.

  15. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2005-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosophila, plants, and the fission yeast S. pombe...

  16. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2004-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosophila, plants, and the fission yeast S. pombe...

  17. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle

    2003-01-01

    .... Recently, several labs have published manuscripts identifying RNA interference as being crucial for the establishment of such epigenetic changes in species as diverse as Drosphilia, plants, and the fission yeast S. pombe...

  18. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2004-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulating cellular gene expression...

  19. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle A; Hannon, Gregory J

    2005-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulating cellular gene expression...

  20. Whole Genome Epigenetics

    National Research Council Canada - National Science Library

    Carmell, Michelle

    2003-01-01

    .... However, this is only part of the picture. Increasingly, we are learning that epigenetic changes, that is, changes in chromatin structure, are critically important in regulation cellular gene expression...

  1. Nutritional influences on epigenetics and age-related disease

    Science.gov (United States)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  2. Design of governance in virtual communities: definition, mechanisms, and variation patterns

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Salomo, Søren

    2013-01-01

    A fast-growing stream of literature has shown tremendous interests in the ‘wisdom of crowds’, embedded in various forms of Virtual Communities (VCs). However, it difficult to design an appropriate governance structure for VCs because: (1) it is not clear what governance exactly is in VCs; (2) our...... to underpin the theoretical and practical implications of our research endeavour....... knowledge on how key governance mechanisms differ among various types of VCs is limited to date; (3) the variation patterns of governance mechanisms are far from fully explored to guide the design of governance in VCs. Therefore, this paper seeks to propose a working definition for governance in VCs...

  3. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation...... diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer....

  4. Epigenetics and maternal nutrition: nature v. nurture.

    Science.gov (United States)

    Simmons, Rebecca

    2011-02-01

    Under- and over-nutrition during pregnancy has been linked to the later development of diseases such as diabetes and obesity. Epigenetic modifications may be one mechanism by which exposure to an altered intrauterine milieu or metabolic perturbation may influence the phenotype of the organism much later in life. Epigenetic modifications of the genome provide a mechanism that allows the stable propagation of gene expression from one generation of cells to the next. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodelling and histone modifications play key roles in adipogenesis and the development of obesity. Epigenetic modifications affecting processes important to glucose regulation and insulin secretion have been described in the pancreatic β-cells and muscle of the intrauterine growth-retarded offspring, characteristics essential to the pathophysiology of type-2 diabetes. Epigenetic regulation of gene expression contributes to both adipocyte determination and differentiation in in vitro models. The contributions of histone acetylation, histone methylation and DNA methylation to the process of adipogenesis in vivo remain to be evaluated.

  5. CROSSOVERS BETWEEN EPIGENESIS AND EPIGENETICS. A MULTICENTER APPROACH TO THE HISTORY OF EPIGENETICS (1901-1975).

    Science.gov (United States)

    Costa, Rossella; Frezza, Giulia

    2014-01-01

    The origin of epigenetics has been traditionally traced back to Conrad Hal Waddington's foundational work in 1940s. The aim of the present paper is to reveal a hidden history of epigenetics, by means of a multicenter approach. Our analysis shows that genetics and embryology in early XX century--far from being non-communicating vessels--shared similar questions, as epitomized by Thomas Hunt Morgan's works. Such questions were rooted in the theory of epigenesis and set the scene for the development of epigenetics. Since the 1950s, the contribution of key scientists (Mary Lyon and Eduardo Scarano), as well as the discussions at the international conference of Gif-sur-Yvette (1957) paved the way for three fundamental shifts of focus: 1. From the whole embryo to the gene; 2. From the gene to the complex extranuclear processes of development; 3. From cytoplasmic inheritance to the epigenetics mechanisms.

  6. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  7. Epigenetics of human asthma and allergy: promises to keep.

    Science.gov (United States)

    Devries, Avery; Vercelli, Donata

    2013-09-01

    The interest in asthma epigenetics is high because epigenetic mechanisms likely contribute to the environmental origins of the disease and its phenotypic variability. This review presents the main findings of asthma epigenetics and the challenges that still delay progress. We examined the current literature on asthma epigenetics (31 reviews and 25 original data publications). We focused on DNA methylation studies in populations. Both genome-wide and candidate gene studies have explored DNA methylation in allergic disease. Genome-wide studies ask whether and which regions of the genome are differentially methylated in relation to the phenotype of interest. Identification of such regions provides clues about the identity of the genes, pathways and networks underpinning a phenotype and connects these networks to the phenotype through epigenetic mechanisms. Candidate gene studies examine DNA methylation in genes chosen because of their known or hypothesized role in immunity, responses to environmental stimuli or disease pathogenesis. Most existing studies in asthma and allergy focused on candidate genes involved in the response to environmental pollutants. Asthma epigenetics is still in its infancy. The paucity of primary literature originates from methodological and analytical challenges of genome-wide studies, the difficulties in interpreting small differences in DNA methylation, and the need to develop robust bioinformatic tools for pathway, network and system analyses of epigenetic data. Once these challenges have been overcome, epigenetic studies will likely provide important insights about the inception and pathogenesis of allergic disease and will help define disease endotypes.

  8. Nutrients and the Pancreas: An Epigenetic Perspective

    Directory of Open Access Journals (Sweden)

    Andee Weisbeck

    2017-03-01

    Full Text Available Pancreatic cancer is the fourth most common cause of cancer-related deaths with a dismal average five-year survival rate of six percent. Substitutional progress has been made in understanding how pancreatic cancer develops and progresses. Evidence is mounting which demonstrates that diet and nutrition are key factors in carcinogenesis. In particular, diets low in folate and high in fruits, vegetables, red/processed meat, and saturated fat have been identified as pancreatic cancer risk factors with a proposed mechanism involving epigenetic modifications or gene regulation. We review the current literature assessing the correlation between diet, epigenetics, and pancreatic cancer.

  9. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  10. An introduction to the science of epigenetics

    Directory of Open Access Journals (Sweden)

    JB Thapa

    2013-03-01

    Full Text Available Epigenetics has emerged as an important new discipline. This review provides deeper insights into understanding basic defects in methylation, histone modification, and RNA induced silencing of tumours. These mechanisms have important diagnostic and therapeutic implications for many tumours and diseases. New anti-epigenetic based drug therapies have been developed and drug trials are underway. The future will see further developments in this field. Journal of Pathology of Nepal (2013 Vol. 3, No.1, Issue 5, 408-410 DOI: http://dx.doi.org/10.3126/jpn.v3i5.7870

  11. Rice epigenomics and epigenetics: challenges and opportunities.

    Science.gov (United States)

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Interactions between epigenetics and metabolism in cancers

    International Nuclear Information System (INIS)

    Yun, Jihye; Johnson, Jared L.; Hanigan, Christin L.; Locasale, Jason W.

    2012-01-01

    Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. While it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, most of the enzymatic machinery of epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  13. Interactions between epigenetics and metabolism in cancers

    Directory of Open Access Journals (Sweden)

    Jihye eYun

    2012-11-01

    Full Text Available Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. Although it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA, are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, many enzymes that carry out post-translational modifications that alter epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  14. Epigenetics and assisted reproductive technologies

    DEFF Research Database (Denmark)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv Bente

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been...

  15. Anxiety and Epigenetics.

    Science.gov (United States)

    Bartlett, Andrew A; Singh, Rumani; Hunter, Richard G

    2017-01-01

    Anxiety disorders are highly prevalent psychiatric disorders often comorbid with depression and substance abuse. Twin studies have shown that anxiety disorders are moderately heritable. Yet, genome-wide association studies (GWASs) have failed to identify gene(s) significantly associated with diagnosis suggesting a strong role for environmental factors and the epigenome. A number of anxiety disorder subtypes are considered "stress related." A large focus of research has been on the epigenetic and anxiety-like behavioral consequences of stress. Animal models of anxiety-related disorders have provided strong evidence for the role of stress on the epigenetic control of the hypothalamic-pituitary-adrenal (HPA) axis and of stress-responsive brain regions. Neuroepigenetics may continue to explain individual variation in susceptibility to environmental perturbations and consequently anxious behavior. Behavioral and pharmacological interventions aimed at targeting epigenetic marks associated with anxiety may prove fruitful in developing treatments.

  16. Simple example of definitions of truth, validity, consistency, and completeness in quantum mechanics

    International Nuclear Information System (INIS)

    Benioff, P.

    1999-01-01

    Besides their use for efficient computation, quantum computers and quantum robots form a base for studying quantum systems that create valid physical theories using mathematics and physics. If quantum mechanics is universally applicable, then quantum mechanics must describe its own validation by these quantum systems. An essential part of this process is the development of a coherent theory of mathematics and quantum-mechanics together. It is expected that such a theory will include a coherent combination of mathematical logical concepts with quantum mechanics. That this might be possible is shown here by defining truth, validity, consistency, and completeness for a quantum-mechanical version of a simple (classical) expression enumeration machine described by Smullyan. Some of the expressions are chosen as sentences denoting the presence or absence of other expressions in the enumeration. Two of the sentences are self-referential. It is seen that, for an interpretation based on a Feynman path sum over expression paths, truth, consistency, and completeness for the quantum system have different properties than for the classical system. For instance, the truth of a sentence S is defined only on those paths containing S. It is undefined elsewhere. Also S and its negation can both be true provided they appear on separate paths. This satisfies the definition of consistency. The definitions of validity and completeness connect the dynamics of the system to the truth of the sentences. It is proved that validity implies consistency. It is seen that the requirements of validity and maximal completeness strongly restrict the allowable dynamics for the quantum system. Aspects of the existence of a valid, maximally complete dynamics are discussed. An exponentially efficient quantum computer is described that is also valid and complete for the set of sentences considered here. copyright 1999 The American Physical Society

  17. Epigenetics and Vasculitis: a Comprehensive Review.

    Science.gov (United States)

    Renauer, Paul; Coit, Patrick; Sawalha, Amr H

    2016-06-01

    Vasculitides represent a group of relatively rare systemic inflammatory diseases of the blood vessels. Despite recent progress in understanding the genetic basis and the underlying pathogenic mechanisms in vasculitis, the etiology and pathogenesis of vasculitis remain incompletely understood. Epigenetic dysregulation plays an important role in immune-mediated diseases, and the contribution of epigenetic aberrancies in vasculitis is increasingly being recognized. Histone modifications in the PR3 and MPO gene loci might be mechanistically involved in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Similarly, other studies revealed important epigenetic contribution to other vasculitides, including Kawasaki disease and IgA vasculitis. More recently, genome-wide epigenomic studies have been performed in several vasculitides. A recent genome-wide DNA methylation study uncovered an important role for epigenetic remodeling of cytoskeleton-related genes in the pathogenesis of Behçet's disease and suggested that reversal of some of these DNA methylation changes associates with disease remission. Genome-wide DNA methylation profiling characterized the inflammatory response in temporal artery tissue from patients with giant cell arteritis and showed increased activation of calcineurin/nuclear factor of activated T cells (NFAT) signaling, prompting the suggestion that a specific calcineurin/NFAT inhibitor that is well tolerated and with the added beneficial anti-platelet activity, such as dipyridamole, might be of therapeutic potential in giant cell arteritis. While epigenetic studies in systemic vasculitis are still in their infancy, currently available data clearly indicate that investigating the epigenetic mechanisms underlying these diseases will help to better understand the pathogenesis of vasculitis and provide novel targets for the development of disease biomarkers and new therapies.

  18. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  19. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  20. Prostate Cancer: Epigenetic Alterations, Risk Factors, and Therapy

    Directory of Open Access Journals (Sweden)

    Mankgopo M. Kgatle

    2016-01-01

    Full Text Available Prostate cancer (PCa is the most prevalent urological cancer that affects aging men in South Africa, and mechanisms underlying prostate tumorigenesis remain elusive. Research advancements in the field of PCa and epigenetics have allowed for the identification of specific alterations that occur beyond genetics but are still critically important in the pathogenesis of tumorigenesis. Anomalous epigenetic changes associated with PCa include histone modifications, DNA methylation, and noncoding miRNA. These mechanisms regulate and silence hundreds of target genes including some which are key components of cellular signalling pathways that, when perturbed, promote tumorigenesis. Elucidation of mechanisms underlying epigenetic alterations and the manner in which these mechanisms interact in regulating gene transcription in PCa are an unmet necessity that may lead to novel chemotherapeutic approaches. This will, therefore, aid in developing combination therapies that will target multiple epigenetic pathways, which can be used in conjunction with the current conventional PCa treatment.

  1. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  2. Imagining roles for epigenetics in health promotion research.

    Science.gov (United States)

    McBride, Colleen M; Koehly, Laura M

    2017-04-01

    Discoveries from the Human Genome Project have invigorated discussions of epigenetic effects-modifiable chemical processes that influence DNA's ability to give instructions to turn gene expression on or off-on health outcomes. We suggest three domains in which new understandings of epigenetics could inform innovations in health promotion research: (1) increase the motivational potency of health communications (e.g., explaining individual differences in health outcomes to interrupt optimistic biases about health exposures); (2) illuminate new approaches to targeted and tailored health promotion interventions (e.g., relapse prevention targeted to epigenetic responses to intervention participation); and (3) inform more sensitive measures of intervention impact, (e.g., replace or augment self-reported adherence). We suggest a three-step process for using epigenetics in health promotion research that emphasizes integrating epigenetic mechanisms into conceptual model development that then informs selection of intervention approaches and outcomes. Lastly, we pose examples of relevant scientific questions worth exploring.

  3. The Real Culprit in Systemic Lupus Erythematosus: Abnormal Epigenetic Regulation

    Science.gov (United States)

    Wu, Haijing; Zhao, Ming; Chang, Christopher; Lu, Qianjin

    2015-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE. PMID:25988383

  4. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Science.gov (United States)

    Sarkar, Sibaji; Horn, Garrick; Moulton, Kimberly; Oza, Anuja; Byler, Shannon; Kokolus, Shannon; Longacre, McKenna

    2013-01-01

    Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics. PMID:24152442

  5. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Directory of Open Access Journals (Sweden)

    McKenna Longacre

    2013-10-01

    Full Text Available Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  6. Epigenetics in comparative biology: why we should pay attention.

    Science.gov (United States)

    Burggren, Warren W; Crews, David

    2014-07-01

    The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat "old wine in new bottles" and represents a reformulation of the old debate of preformationism versus epigenesis-one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which "true" epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., "the epigenetics of cancer"). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret "sunsetting" of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic

  7. Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

    NARCIS (Netherlands)

    Preite, Veronica; Oplaat, Carla; Biere, Arjen; Kirschner, Jan; van der Putten, Wim H; Verhoeven, Koen J F

    DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced

  8. Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

    NARCIS (Netherlands)

    Preite, Veronica; Oplaat, Carla; Biere, Arjen; Kirschner, Jan; Putten, van der Wim H.; Verhoeven, Koen J.F.

    2018-01-01

    DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced

  9. Recent developments in epigenetics of acute and chronic kidney diseases.

    Science.gov (United States)

    Reddy, Marpadga A; Natarajan, Rama

    2015-08-01

    The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post-translational modifications of histones in chromatin, are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNAme and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.

  10. Epigenetics and Colorectal Cancer

    Science.gov (United States)

    Lao, Victoria Valinluck; Grady, William M.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in the world. It results from an accumulation of genetic and epigenetic changes in colon epithelial cells that transforms them into adenocarcinomas. There have been major advances in our understanding of cancer epigenetics over the last decade, particularly regarding aberrant DNA methylation. Assessment of the colon cancer epigenome has revealed that virtually all colorectal cancers have aberrantly methylated genes and the average colorectal cancer methylome has hundreds to thousands of abnormally methylated genes. As with gene mutations in the cancer genome, a subset of these methylated genes, called driver genes, is presumed to play a functional role in colorectal cancer. The assessment of methylated genes in colorectal cancers has also revealed a unique molecular subgroup of colorectal cancers called CpG Island Methylator Phenotype (CIMP) cancers; these tumors have a particularly high frequency of methylated genes. The advances in our understanding of aberrant methylation in colorectal cancer has led to epigenetic alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in the assessment of epigenetic alterations in colorectal cancer and their clinical applications has shown that these alterations will be commonly used in the near future as molecular markers to direct the prevention and treatment of colorectal cancer. PMID:22009203

  11. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the ...

  12. Epigenetic changes in myelofibrosis

    DEFF Research Database (Denmark)

    Nielsen, Helene Myrtue; Andersen, Christen Lykkegaard; Westman, Maj

    2017-01-01

    , in 'inflammatory disease' in MF mononuclear cells, and in 'immunological diseases' in MF granulocytes. Only few differentially methylated CpG sites were common among the three cell populations. Mutations in the epigenetic regulators ASXL1 (47%) and TET2 (20%) were not associated with a specific DNA methylation...

  13. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease.

    Science.gov (United States)

    Martos, Suzanne N; Tang, Wan-Yee; Wang, Zhibin

    2015-07-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 'Biologizing' Psychopathy: Ethical, Legal, and Research Implications at the Interface of Epigenetics and Chronic Antisocial Conduct.

    Science.gov (United States)

    Tamatea, Armon J

    2015-10-01

    Epigenetics, a field that links genetics and environmental influences on the expression of phenotypic traits, offers to increase our understanding of the development and trajectory of disease and psychological disorders beyond that thought of traditional genetic research and behavioural measures. By extension, this new perspective has implications for risk and risk management of antisocial behaviour where there is a biological component, such as psychopathy. Psychopathy is a personality disorder associated with repeat displays of antisocial behaviour, and is associated with the disproportionate imposition of harm on communities. Despite advances in our knowledge of psychopathic individuals, the construct remains complex and is hampered by a lack of integration across a range of fundamental domains. The clinical and forensic research on psychopathy is brought into conversation with the emerging field of epigenetics to highlight critical issues of (1) clinical definition and diagnosis, (2) assessment, (3) aetiology of psychopathic phenotypes, and (4) treatment and rehabilitation approaches. Broader ethical and legal questions of the role of epigenetic mechanisms in the management of psychopathy beyond the criminal justice arena are also outlined. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Bifurcation in epigenetics: Implications in development, proliferation, and diseases

    Science.gov (United States)

    Jost, Daniel

    2014-01-01

    Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.

  16. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  17. Mapping the Technological Knowledge Landscape: The Case of Epigenetics.

    Science.gov (United States)

    Song, Chie Hoon; Yoon, Janghyeok; Ko, Namuk; Han, Jeung-Whan

    2016-01-01

    Epigenetics is a biomedical novelty in drug design and disease control whose mechanisms play a significant role in transferring environmental signals to determine patterns of gene expression. Systematic identification of the main trends in epigenetics patenting activity provides insights into fundamental building blocks of this research field and policy guidance to funding agencies. The review aims at providing a comprehensive overview of the research and development trend in epigenetics by mapping the knowledge structure in patent landscape. Citation-based patent network analysis was performed to visualize the technological landscape. We focus on identifying the structure of the knowledge networks to study the technological trajectories. Patents that play an integral part in the dissemination and bridging of the technical knowledge are located and ranked. The latent topics in patent documents are highlighted by means of a topic modeling technique. Visualization of the patent network results in four main clusters. The first two clusters deal with the inhibition of histone deacetylase (HDAC). The third cluster covers inventions related to DNA methylation, which represents an epigenetic signaling tool that cells use to control gene expression. The fourth cluster encompasses computing systems and data mining techniques for identifying combinations of genetic and epigenetic attributes related to health and lifestyle improvements. We are in the growth period of gathering knowledge on various mechanisms of epigenetic regulation. There is enormous potential for improving healthcare through better understanding of the interrelationships between epigenetic control of gene expression and compounds that trigger these modifications.

  18. Investigating core genetic-and-epigenetic cell cycle networks for stemness and carcinogenic mechanisms, and cancer drug design using big database mining and genome-wide next-generation sequencing data.

    Science.gov (United States)

    Li, Cheng-Wei; Chen, Bor-Sen

    2016-10-01

    Recent studies have demonstrated that cell cycle plays a central role in development and carcinogenesis. Thus, the use of big databases and genome-wide high-throughput data to unravel the genetic and epigenetic mechanisms underlying cell cycle progression in stem cells and cancer cells is a matter of considerable interest. Real genetic-and-epigenetic cell cycle networks (GECNs) of embryonic stem cells (ESCs) and HeLa cancer cells were constructed by applying system modeling, system identification, and big database mining to genome-wide next-generation sequencing data. Real GECNs were then reduced to core GECNs of HeLa cells and ESCs by applying principal genome-wide network projection. In this study, we investigated potential carcinogenic and stemness mechanisms for systems cancer drug design by identifying common core and specific GECNs between HeLa cells and ESCs. Integrating drug database information with the specific GECNs of HeLa cells could lead to identification of multiple drugs for cervical cancer treatment with minimal side-effects on the genes in the common core. We found that dysregulation of miR-29C, miR-34A, miR-98, and miR-215; and methylation of ANKRD1, ARID5B, CDCA2, PIF1, STAMBPL1, TROAP, ZNF165, and HIST1H2AJ in HeLa cells could result in cell proliferation and anti-apoptosis through NFκB, TGF-β, and PI3K pathways. We also identified 3 drugs, methotrexate, quercetin, and mimosine, which repressed the activated cell cycle genes, ARID5B, STK17B, and CCL2, in HeLa cells with minimal side-effects.

  19. Linking definitions, mechanisms, and modeling of drought-induced tree death.

    Science.gov (United States)

    Anderegg, William R L; Berry, Joseph A; Field, Christopher B

    2012-12-01

    Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer

    Directory of Open Access Journals (Sweden)

    Mariangela Morlando

    2018-02-01

    Full Text Available Long noncoding RNAs (lncRNAs are important regulators of the epigenetic status of the human genome. Besides their participation to normal physiology, lncRNA expression and function have been already associated to many diseases, including cancer. By interacting with epigenetic regulators and by controlling chromatin topology, their misregulation may result in an aberrant regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has characterized cancer development and progression.

  1. Prostate Cancer Epigenetics: A Review on Gene Regulation

    Directory of Open Access Journals (Sweden)

    Lena Diaw

    2007-01-01

    Full Text Available Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect gene regulation and play important roles either independently or by interaction in tumor initiation and progression. This review will discuss the genes associated with epigenetic alterations in prostate cancer progression: their regulation and importance as possible markers for the disease.

  2. Epigenetics of host-pathogen interactions: the road ahead and the road behind.

    Directory of Open Access Journals (Sweden)

    Elena Gómez-Díaz

    Full Text Available A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer. With the (partial elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host-pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host-pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host-pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host-pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host-pathogen interactions.

  3. Theory of epigenetic coding.

    Science.gov (United States)

    Elder, D

    1984-06-07

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.

  4. Epigenetics and brain evolution.

    Science.gov (United States)

    Keverne, Eric B

    2011-04-01

    Fundamental aspects of mammalian brain evolution occurred in the context of viviparity and placentation brought about by the epigenetic regulation of imprinted genes. Since the fetal placenta hormonally primes the maternal brain, two genomes in one individual are transgenerationally co-adapted to ensure maternal care and nurturing. Advanced aspects of neocortical brain evolution has shown very few genetic changes between monkeys and humans. Although these lineages diverged at approximately the same time as the rat and mouse (20 million years ago), synonymous sequence divergence between the rat and mouse is double that when comparing monkey with human sequences. Paradoxically, encephalization of rat and mouse are remarkably similar, while comparison of the human and monkey shows the human cortex to be three times the size of the monkey. This suggests an element of genetic stability between the brains of monkey and man with a greater emphasis on epigenetics providing adaptable variability.

  5. [Epigenetics and obesity].

    Science.gov (United States)

    Casanello, Paola; Krause, Bernardo J; Castro-Rodríguez, José A; Uauy, Ricardo

    Current evidence supports the notion that exposure to various environmental conditions in early life may induce permanent changes in the epigenome that persist throughout the life-course. This article focuses on early changes associated with obesity in adult life. A review is presented on the factors that induce changes in whole genome (DNA) methylation in early life that are associated with adult onset obesity and related disorders. In contrast, reversal of epigenetic changes associated with weight loss in obese subjects has not been demonstrated. This contrasts with well-established associations found between obesity related DNA methylation patterns at birth and adult onset obesity and diabetes. Epigenetic markers may serve to screen indivuals at risk for obesity and assess the effects of interventions in early life that may delay or prevent obesity in early life. This might contribute to lower the obesity-related burden of death and disability at the population level. The available evidence indicates that epigenetic marks are in fact modifiable, based on modifications in the intrauterine environment and changes in food intake, physical activity and dietary patterns patterns during pregnancy and early years of adult life. This offers the opportunity to intervene before conception, during pregnancy, infancy, childhood, and also in later life. There must be documentation on the best preventive actions in terms of diet and physical activity that will modify or revert the adverse epigenetic markers, thus preventing obesity and diabetes in suceptible individuals and populations. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Epigenetics and human obesity.

    Science.gov (United States)

    van Dijk, S J; Molloy, P L; Varinli, H; Morrison, J L; Muhlhausler, B S

    2015-01-01

    Recent technological advances in epigenome profiling have led to an increasing number of studies investigating the role of the epigenome in obesity. There is also evidence that environmental exposures during early life can induce persistent alterations in the epigenome, which may lead to an increased risk of obesity later in life. This paper provides a systematic review of studies investigating the association between obesity and either global, site-specific or genome-wide methylation of DNA. Studies on the impact of pre- and postnatal interventions on methylation and obesity are also reviewed. We discuss outstanding questions, and introduce EpiSCOPE, a multidisciplinary research program aimed at increasing the understanding of epigenetic changes in emergence of obesity. An electronic search for relevant articles, published between September 2008 and September 2013 was performed. From the 319 articles identified, 46 studies were included and reviewed. The studies provided no consistent evidence for a relationship between global methylation and obesity. The studies did identify multiple obesity-associated differentially methylated sites, mainly in blood cells. Extensive, but small, alterations in methylation at specific sites were observed in weight loss intervention studies, and several associations between methylation marks at birth and later life obesity were found. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Eventually this may help in predicting an individual's obesity risk at a young age and opens possibilities for introducing targeted prevention strategies. It has also become clear that several epigenetic marks are modifiable, by changing the exposure in utero, but also by lifestyle changes in adult life, which implies that there is the potential for interventions to be introduced in postnatal life to modify

  7. Epigenetics, Darwin, and Lamarck.

    Science.gov (United States)

    Penny, David

    2015-05-29

    It is not really helpful to consider modern environmental epigenetics as neo-Lamarckian; and there is no evidence that Lamarck considered the idea original to himself. We must all keep learning about inheritance, but attributing modern ideas to early researchers is not helpful, and can be misleading. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Epigenetic effects of human breast milk.

    Science.gov (United States)

    Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello

    2014-04-24

    A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant's health and his later life.

  9. Epigenetic Effects of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2014-04-01

    Full Text Available A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life.

  10. Epigenetic Risk Factors in PTSD and Depression

    Directory of Open Access Journals (Sweden)

    Florian Joachim Raabe

    2013-08-01

    Full Text Available Epidemiological and clinical studies have shown that children exposed to adverse experiences are at increased risk for the development of depression, anxiety disorders and PTSD. A history of child abuse and maltreatment increases the likelihood of being subsequently exposed to traumatic events or of developing PTSD as an adult. The brain is highly plastic during early life and encodes acquired information into lasting memories that normally subserve adaptation. Translational studies in rodents showed that enduring sensitization of neuronal and neuroendocrine circuits in response to early life adversity are likely risk factors of life time vulnerability to stress. Hereby, the hypothalamic-pituitary-adrenal (HPA axis integrates cognitive, behavioural and emotional responses to early-life stress and can be epigenetically programmed during sensitive windows of development. Epigenetic mechanisms, comprising reciprocal regulation of chromatin structure and DNA methylation, are important to establish and maintain sustained, yet potentially reversible, changes in gene transcription. The relevance of these findings for the development of PTSD requires further studies in humans where experience-dependent epigenetic programming can additionally depend on genetic variation in the underlying substrates which may protect from or advance disease development. Overall, identification of early-life stress associated epigenetic risk markers informing on previous stress history can help to advance early diagnosis, personalized prevention and timely therapeutic interventions, thus reducing long-term social and health costs.

  11. Twins for epigenetic studies of human aging and development

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; Thomassen, Mads

    2013-01-01

    Most of the complex traits including aging phenotypes are caused by the interaction between genome and environmental conditions and the interface of epigenetics may be a central mechanism. Although modern technologies allow us high-throughput profiling of epigenetic patterns already at genome level...... and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable sample of twins is helping to bridge the gap between gene activity and the environments through epigenetic mechanisms unlimited by DNA sequence variations. We propose to extend the classical twin...... design to study the aging-related molecular epigenetic phenotypes and link them with environmental exposures especially early life events. Different study designs and application issues will be highlighted and novel approaches introduced with aim at making uses of twins in assessing the environmental...

  12. Developmental Origins of Common Disease: Epigenetic Contributions to Obesity.

    Science.gov (United States)

    Kappil, Maya; Wright, Robert O; Sanders, Alison P

    2016-08-31

    The perinatal period is a window of susceptibility for later life disease. Recent epigenetic findings are beginning to increase our understanding of the molecular mechanisms that may contribute to the programming of obesity. This review summarizes recent evidence that supports the role of epigenetically mediated early life programming in the later onset of obesity. Establishing such links between environmental exposures and modifiable molecular changes ultimately holds promise to inform interventional efforts toward alleviating the environmentally mediated onset of obesity.

  13. Prostate Cancer Epigenetics: A Review on Gene Regulation

    OpenAIRE

    Diaw, Lena; Woodson, Karen; Gillespie, John W.

    2007-01-01

    Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect gene regulation and play ...

  14. Epigenetic modification and inheritance in sexual reversal of fish

    OpenAIRE

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei

    2014-01-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model—a marine fish that has both ZW chromosomal GSD and temperature-dependen...

  15. Environmentally induced epigenetic toxicity: potential public health concerns.

    Science.gov (United States)

    Marczylo, Emma L; Jacobs, Miriam N; Gant, Timothy W

    2016-09-01

    Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.

  16. The epigenetic switches for neural development and psychiatric disorders.

    Science.gov (United States)

    Lv, Jingwen; Xin, Yongjuan; Zhou, Wenhao; Qiu, Zilong

    2013-07-20

    The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted. Copyright © 2013. Published by Elsevier Ltd.

  17. Methods for automated semantic definition of manufacturing structures (mBOM) in mechanical engineering companies

    Science.gov (United States)

    Stekolschik, Alexander, Prof.

    2017-10-01

    The bill of materials (BOM), which involves all parts and assemblies of the product, is the core of any mechanical or electronic product. The flexible and integrated management of engineering (Engineering Bill of Materials [eBOM]) and manufacturing (Manufacturing Bill of Materials [mBOM]) structures is the key to the creation of modern products in mechanical engineering companies. This paper presents a method framework for the creation and control of e- and, especially, mBOM. The requirements, resulting from the process of differentiation between companies that produce serialized or engineered-to-order products, are considered in the analysis phase. The main part of the paper describes different approaches to fully or partly automated creation of mBOM. The first approach is the definition of part selection rules in the generic mBOM templates. The mBOM can be derived from the eBOM for partly standardized products by using this method. Another approach is the simultaneous use of semantic rules, options, and parameters in both structures. The implementation of the method framework (selection of use cases) in a standard product lifecycle management (PLM) system is part of the research.

  18. Epigenetic Modifications of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kathleen Saavedra

    2016-08-01

    Full Text Available Major depressive disorder (MDD is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.

  19. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  20. Maintaining epigenetic inheritance during DNA replication in plants

    Directory of Open Access Journals (Sweden)

    Francisco eIglesias

    2016-02-01

    Full Text Available Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are remembered temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance. This memory effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants.

  1. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  2. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research

    Science.gov (United States)

    Pagliaroli, Luca; Vető, Borbála; Arányi, Tamás; Barta, Csaba

    2016-01-01

    Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder marked by the appearance of multiple involuntary motor and vocal tics. TS presents high comorbidity rates with other disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). TS is highly heritable and has a complex polygenic background. However, environmental factors also play a role in the manifestation of symptoms. Different epigenetic mechanisms may represent the link between these two causalities. Epigenetic regulation has been shown to have an impact in the development of many neuropsychiatric disorders, however very little is known about its effects on Tourette Syndrome. This review provides a summary of the recent findings in genetic background of TS, followed by an overview on different epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression. Epigenetic studies in other neurological and psychiatric disorders are discussed along with the TS-related epigenetic findings available in the literature to date. Moreover, we are proposing that some general epigenetic mechanisms seen in other neuropsychiatric disorders may also play a role in the pathogenesis of TS. PMID:27462201

  3. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  4. EpiGeNet: A Graph Database of Interdependencies Between Genetic and Epigenetic Events in Colorectal Cancer.

    Science.gov (United States)

    Balaur, Irina; Saqi, Mansoor; Barat, Ana; Lysenko, Artem; Mazein, Alexander; Rawlings, Christopher J; Ruskin, Heather J; Auffray, Charles

    2017-10-01

    The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.

  5. On the definition of the time evolution operator for time-independent Hamiltonians in non-relativistic quantum mechanics

    Science.gov (United States)

    Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.

    2017-09-01

    The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.

  6. Towards a quantitative definition of mechanical units: New techniques and results from an outcropping deep water succession.

    NARCIS (Netherlands)

    Bertotti, G.V.; Hardebol, N.; Taal-Van Koppen, J.; Luthi, S.

    2007-01-01

    The physical properties of reservoirs are strongly influenced by distributed fracture fields. Outcrop studies are commonly used to determine them but have provided unsatisfactory results because the definition of mechanical units, i.e., (groups of) layers displaying homogeneous fracture patterns, is

  7. The difference between the classical and quantum mechanical definitions of scattering cross sections and the problem of the classical limit

    International Nuclear Information System (INIS)

    Sen, D.; Basu, A.N.; Sengupta, S.

    1994-01-01

    A critical analysis of the difference between the classical and quantum mechanical definitions of scattering cross sections for particles is presented. This leads to a clarification of the classical limit problem and suggests precise criteria for its validity. In particular these criteria are derived for both finite and infinite range potentials. (orig.)

  8. Nucleosome Positioning and Epigenetics

    Science.gov (United States)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  9. Epigenetics of kidney disease.

    Science.gov (United States)

    Wanner, Nicola; Bechtel-Walz, Wibke

    2017-07-01

    DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.

  10. Molecular targets of epigenetic regulation and effectors of environmental influences

    International Nuclear Information System (INIS)

    Choudhuri, Supratim; Cui Yue; Klaassen, Curtis D.

    2010-01-01

    The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.

  11. Mitochondrial regulation of epigenetics and its role in human diseases

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Tollefsbol, Trygve O; Singh, Keshav K

    2012-01-01

    as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction....... In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead...... to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role....

  12. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation.

    Science.gov (United States)

    Chisolm, Danielle A; Weinmann, Amy S

    2018-04-26

    Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4 + T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.

  13. Epigenetic regulation in the inner ear and its potential roles in development, protection, and regeneration

    Directory of Open Access Journals (Sweden)

    Jian eZuo

    2015-01-01

    Full Text Available The burgeoning field of epigenetics is beginning to make a significant impact on our understanding of tissue development, maintenance, and function. Epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues that direct cell-type specific gene networks. The inner ear is comprised of highly specialized cell types with identical genomes that originate from a single totipotent zygote. During inner ear development specific combinations of transcription factors and epigenetic modifiers must function in a coordinated manner to establish and maintain cellular identity. These epigenetic regulatory mechanisms contribute to the maintenance of distinct chromatin states and cell-type specific gene expression patterns. In this review, we highlight emerging paradigms for epigenetic modifications related to inner ear development, and how epigenetics may have a significant role in hearing loss, protection, and regeneration.

  14. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.

    Science.gov (United States)

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong

    2018-02-01

    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  15. Dietary factors and epigenetic regulation for prostate cancer prevention.

    Science.gov (United States)

    Ho, Emily; Beaver, Laura M; Williams, David E; Dashwood, Roderick H

    2011-11-01

    The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.

  16. Epigenetic inheritance in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.

    2016-01-01

    Epigenetic variation, such as changes in DNA methylations, regulatory small RNAs (sRNAs) and chromatin modifications can be induced by environmental stress. There is increasing information that such induced epigenetic modifications can be transmitted to offspring, potentially mediating adaptive

  17. Epigenetic inheritance, prions and evolution

    Indian Academy of Sciences (India)

    The field of epigenetics has grown explosively in the past two decades or so. As currently defined, epigenetics deals with heritable, metastable and usually reversible changes that do not involve alterations in DNA sequence, but alter the way that information encoded inDNAis utilized.The bulk of current research in ...

  18. Evolutionary significance of epigenetic variation

    NARCIS (Netherlands)

    Richards, C.L.; Verhoeven, K.J.F.; Bossdorf, O.; Wendel, J.F.; Greilhuber, J.; Dolezel, J.; Leitch, I.J.

    2012-01-01

    Several chapters in this volume demonstrate how epigenetic work at the molecular level over the last few decades has revolutionized our understanding of genome function and developmental biology. However, epigenetic processes not only further our understanding of variation and regulation at the

  19. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  20. Epigenetics of psoriatic disease: A systematic review and critical appraisal.

    Science.gov (United States)

    Pollock, Remy A; Abji, Fatima; Gladman, Dafna D

    2017-03-01

    Psoriasis is an inflammatory disease of the skin that is sometimes accompanied by an auto-inflammatory arthritis called psoriatic arthritis (PsA). Psoriasis and PsA are multifactorial diseases that result from complex interactions of environmental and genetic risk factors. Epigenetic marks, which are labile chemical marks with diverse functions, form a layer of biological information that sits at the interface of genetics and the environment. Aberrant epigenetic regulation has been previously implicated in other rheumatological disorders. The purpose of this review is to summarize and critically evaluate the nascent literature on epigenetics in psoriasis and PsA. A systematic review yielded 52 primary articles after applying inclusion and exclusion criteria. Data were extracted using a standardized template and study quality assessed using a methodological quality checklist. Studies reflect a broad range of epigenetic sub-disciplines, the most common being DNA methylation, followed by the parent of origin effect or genomic imprinting, expression or activity of epigenetic modifying enzymes, and histone modifications. Epidemiological studies demonstrating excessive paternal transmission provided the earliest evidence of epigenetic deregulation in psoriatic disease, however few studies have examined its molecular mechanisms. Methylation studies evolved rapidly from low resolution global to targeted analyses of known psoriatic disease susceptibility loci such as HLA-C*0602. The recent explosion of epigenome-wide association studies has provided us with novel insights into psoriasis pathogenesis, and the mechanism of action of UVB, methotrexate, and anti-TNF therapies, as well as molecular signatures of psoriasis that may have clinical relevance. Finally, recent studies of pharmacological inhibitors of epigenetic modifier enzymes demonstrate their potential applicability as novel treatment modalities for psoriasis. Challenges of epigenetics research in psoriasis and Ps

  1. Investigating Epigenetic Effects of Prenatal Exposure to Toxic Metals in Newborns: Challenges and Benefits

    OpenAIRE

    Nye, Monica D.; Fry, Rebecca C.; Hoyo, Cathrine; Murphy, Susan K.

    2014-01-01

    Increasing evidence suggest that epigenetic alterations can greatly impact human health, and that epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) may be particularly relevant in responding to environmental toxicant exposure early in life. The epigenome plays a vital role in embryonic development, tissue differentiation and disease development by controlling gene expression. In this review we discuss what is currently known about epigenetic alterations in response...

  2. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  3. Epigenetic regulation and fetal programming.

    Science.gov (United States)

    Gicquel, Christine; El-Osta, Assam; Le Bouc, Yves

    2008-02-01

    Fetal programming encompasses the role of developmental plasticity in response to environmental and nutritional signals during early life and its potential adverse consequences (risk of cardiovascular, metabolic and behavioural diseases) in later life. The first studies in this field highlighted an association between poor fetal growth and chronic adult diseases. However, environmental signals during early life may lead to adverse long-term effects independently of obvious effects on fetal growth. Adverse long-term effects reflect a mismatch between early (fetal and neonatal) environmental conditions and the conditions that the individual will confront later in life. The mechanisms underlying this risk remain unclear. However, experimental data in rodents and recent observations in humans suggest that epigenetic changes in regulatory genes and growth-related genes play a significant role in fetal programming. Improvements in our understanding of the biochemical and molecular mechanisms at play in fetal programming would make it possible to identify biomarkers for detecting infants at high risk of adult-onset diseases. Such improvements should also lead to the development of preventive and therapeutic strategies.

  4. The political implications of epigenetics.

    Science.gov (United States)

    Robison, Shea K

    2016-01-01

    Epigenetics, which is just beginning to attract public attention and policy discussion, challenges conventional understanding of gene-environment interaction and intergenerational inheritance and perhaps much more besides. Does epigenetics challenge modern political ideologies? I analyzed the narratives of obesity and epigenetics recently published in the more liberal New York Times and the more conservative Wall Street Journal. For the years 2010 through 2014, 50 articles on obesity and 29 articles on epigenetics were identified, and elements in their causal narratives were quantitatively analyzed using a well described narrative policy framework. The narratives on obesity aligned with the two newspapers' reputed ideologies. However, the narratives on epigenetics aligned with neither ideology but freely mixed liberal and conservative elements. This small study may serve as a starting point for broader studies of epigenetics as it comes to affect political ideologies and, in turn, public policies. The narrative mix reported here could yet prove vulnerable to ideological capture, or, more optimistically, could portend the emergence of a "third-way" narrative using epigenetics to question atomistic individualism and allowing for less divisiveness in public-health domains such as obesity.

  5. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition

    Science.gov (United States)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M.; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention.

  6. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition.

    Science.gov (United States)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Epigenetics and obesity: a relationship waiting to be explained.

    Science.gov (United States)

    Symonds, Michael E; Budge, Helen; Frazier-Wood, Alexis C

    2013-01-01

    Obesity can have multifactorial causes that may change with development and are not simply attributable to one's genetic constitution. To date, expensive and laborious genome-wide association studies have only ascribed a small contribution of genetic variants to obesity. The emergence of the field of epigenetics now offers a new paradigm with which to study excess fat mass. Currently, however, there are no compelling epigenetic studies to explain the role of epigenetics in obesity, especially from a developmental perspective. It is clear that until there are advances in the understanding of the main mechanisms by which different fat types, i.e. brown, beige, and white, are established and how these differ between depots and species, population-based studies designed to determine specific aspects of epigenetics will be potentially limited. Obesity is a slowly evolving condition that is not simply explained by changes in the intake of one macronutrient. The latest advances in epigenetics, coupled with the establishment of relevant longitudinal models of obesity, which incorporate functionally relevant end points, may now permit the precise contribution of epigenetic modifications to excess fat mass to be effectively studied. © 2013 S. Karger AG, Basel.

  8. Epigenetics and the Developmental Origins of Health and ...

    Science.gov (United States)

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modifications, noncoding RNAs and recruited protein complexes are elements of the epigenetic regulation of gene transcription. These heritable but reversible changes in gene function are dynamic and labile during specific stages of the reproductive cycle and development. Epigenetic marks may be maintained throughout an individual's lifespan and can alter the life-long risk of disease; the nature of these epigenetic marks and their potential alteration by environmental factors is an area of active research. This chapter provides an overview of epigenetic regulation, particularly as it occurs as an essential component of embryo-fetal development. In this chapter we will present key features of DNA methylation and histone protein modifications, including the enzymes involved and the effects of these modifications on gene transcription. We will discuss the interplay of these dynamic modifications and the emerging role of noncoding RNAs in epigenetic gene regulation.

  9. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics

    Directory of Open Access Journals (Sweden)

    Dipanjan Bhattacharjee

    2016-01-01

    Full Text Available Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person’s individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind’s fight against cancer.

  10. [Epigenetics 2.0: The multiple faces of the genome].

    Science.gov (United States)

    Rubinstein, Marcelo

    2016-09-01

    Epigenetics is the branch of genetics that studies the dynamic relationship between stable genotypes and varying phenotypes. To this end, epigenetics aims to discover the molecular mechanisms that explain how different nutrients and hormones, environmental changes, and emotional, social and cognitive experiences modify gene expression and behaviors, even permanently so. Psychiatry has learned that diseases with strong genetic predisposition, such as schizophrenia, show a concordance of around 50% between monozygotic twins, thus evidencing the importance of the genetic background and the presence of environmental variables that stimulate or block phenotypic development. The interest in epigenetics has increased during the last few years due to fundamental discoveries made in molecular and behavioral genetics, although within this framework factual knowledge coexists with fictional expectations and wrong concepts. Is it possible that epigenetic variants modify temperament and human behavior? May abused or neglected children develop long-lasting epigenetic marks in their DNA? May bipolar states correlate with different epigenetic signatures? Studying these subjects in not an easy task, but experiments performed in lab animals suggest that these conjectures are reasonable, although there is still a long distance between hypotheses and scientifically proven facts.

  11. Evolution, epigenetics and cooperation.

    Science.gov (United States)

    Bateson, Patrick

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  12. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase.

    Directory of Open Access Journals (Sweden)

    Amnon Koren

    2010-08-01

    Full Text Available Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position.

  13. Preliminary design and definition of field experiments for welded tuff rock mechanics program

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-06-01

    The preliminary design contains objectives, typical experiment layouts, definitions of equipment and instrumentation, test matrices, preliminary design predictive modeling results for five experiments, and a definition of the G-Tunnel Underground Facility (GTUF) at the Nevada Test Site where the experiments are to be located. Experiments described for investigations in welded tuff are the Small Diameter Heater, Unit Cell-Canister Scale, Heated Block, Rocha Slot, and Miniature Heater

  14. Parental tobacco smoke exposure: Epigenetics and the ...

    Science.gov (United States)

    Epigenetic programming is an important mechanism underlying the Developmental Origins of Health and Disease (DOHaD). Much of the research in this area has focused on maternal nutrition. Parental smoking has emerged as a prime example of how exposure to environmental toxicants during the preconceptional and in utero periods can have long-term effects on offspring health, and the role of the epigenome in these effects. Maternal smoking and exposure to second-hand smoke during pregnancy result in lower birth weight of offspring, and there is now clear evidence that these offspring are at elevated risk for overweight/obesity, type-2 diabetes, respiratory effects during adolescence and adulthood, and may be programmed for increased risk of nicotine addiction. Epigenetic analyses of placenta, cord blood and offspring buccal cells have consistently revealed altered DNA methylation of genes involved in developmental processes and xenobiotic metabolism, and these epigenetic changes are persistent. Animal studies with cigarette smoke and nicotine support these findings. Paternal preconceptional smoking has been positively related to childhood cancers, potentially linked to changes in the sperm epigenome. Germ cell specification and preimplantation development are periods of widespread erasure and reprogramming of DNA methylation, and as such are likely to be sensitive periods for environmental effects on the epigenome. Exposure to tobacco smoke during gametogenesis and in

  15. Genetics and epigenetics of rheumatoid arthritis

    Science.gov (United States)

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  16. Titration and hysteresis in epigenetic chromatin silencing

    International Nuclear Information System (INIS)

    Dayarian, Adel; Sengupta, Anirvan M

    2013-01-01

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)

  17. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials

    NARCIS (Netherlands)

    Foust, C.M.; Preite, V.; Schrey, A.W.; Alvarez, M.; Robertson, M.H.; Verhoeven, K.J.F.; Richards, Christina L.

    2016-01-01

    While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using AFLP and methylation-sensitive AFLP, we tested the hypothesis that differentiation to habitats along

  18. The path to epigenetic treatment of memory disorders.

    Science.gov (United States)

    Mikaelsson, Mikael A; Miller, Courtney A

    2011-07-01

    A new line of neuroscience research suggests that epigenetics may be the site of nature and nurture integration by providing the environment with a mechanism to directly influence the read-out of our genome. Epigenetic mechanisms in the brain are a series of post-translational chromatin and DNA modifications driven by external input. Given the critical hub that epigenetics appears to be, neuroscientists have come to suspect its fundamental influence on how our minds change in response to our unique environment and, in turn, how these changes can then impact our future interactions with the environment. The field of learning and memory is becoming particularly interested in understanding the cognitive influence of epigenetics. With the majority of us working with an eye toward therapeutics, the question naturally arises: "Has neuroepigenetics gotten us closer to treating memory disorders and if so, where do we go from here?" This review will begin with a brief exploration of recent advances in our understanding of how epigenetic mechanisms contribute to learning and memory processes that are susceptible to failure. Next the implications for disorders of cognition, such as Alzheimer's disease, will be discussed. Finally, we will use parallels from the field of cancer to speculate on where we should consider heading from here in the pursuit of therapeutics. Published by Elsevier Inc.

  19. Epigenetic Targets for Reversing Immune Defects Caused by Alcohol Exposure

    Science.gov (United States)

    Curtis, Brenda J.; Zahs, Anita; Kovacs, Elizabeth J.

    2013-01-01

    Alcohol consumption alters factors that modify gene expression without changing the DNA code (i.e., epigenetic modulators) in many organ systems, including the immune system. Alcohol enhances the risk for developing several serious medical conditions related to immune system dysfunction, including acute respiratory distress syndrome (ARDS), liver cancer, and alcoholic liver disease (ALD). Binge and chronic drinking also render patients more susceptible to many infectious pathogens and advance the progression of HIV infection by weakening both innate and adaptive immunity. Epigenetic mechanisms play a pivotal role in these processes. For example, alcohol-induced epigenetic variations alter the developmental pathways of several types of immune cells (e.g., granulocytes, macrophages, and T-lymphocytes) and through these and other mechanisms promote exaggerated inflammatory responses. In addition, epigenetic mechanisms may underlie alcohol’s ability to interfere with the barrier functions of the gut and respiratory systems, which also contribute to the heightened risk of infections. Better understanding of alcohol’s effects on these epigenetic processes may help researchers identify new targets for the development of novel medications to prevent or ameliorate alcohol’s detrimental effects on the immune system. PMID:24313169

  20. Epigenetic remodeling and modification to preserve skeletogenesis in vivo.

    Science.gov (United States)

    Godfrey, Tanner C; Wildman, Benjamin J; Javed, Amjad; Lengner, Christopher J; Hassan, Mohammad Quamarul

    2018-12-01

    Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a Cl ZIP ) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.

  1. Microbiome, inflammation, epigenetic alterations, and mental diseases.

    Science.gov (United States)

    Alam, Reza; Abdolmaleky, Hamid M; Zhou, Jin-Rong

    2017-09-01

    Major mental diseases such as autism, bipolar disorder, schizophrenia, and major depressive disorder are debilitating illnesses with complex etiologies. Recent findings show that the onset and development of these illnesses cannot be well described by the one-gene; one-disease approach. Instead, their clinical presentation is thought to result from the regulative interplay of a large number of genes. Even though the involvement of many genes are likely, up regulating and activation or down regulation and silencing of these genes by the environmental factors play a crucial role in contributing to their pathogenesis. Much of this interplay may be moderated by epigenetic changes. Similar to genetic mutations, epigenetic modifications such as DNA methylation, histone modifications, and RNA interference can influence gene expression and therefore may cause behavioral and neuronal changes observed in mental disorders. Environmental factors such as diet, gut microbiota, and infections have significant role in these epigenetic modifications. Studies show that bioactive nutrients and gut microbiota can alter either DNA methylation and histone signatures through a variety of mechanisms. Indeed, microbes within the human gut may play a significant role in the regulation of various elements of "gut-brain axis," via their influence on inflammatory cytokines and production of antimicrobial peptides that affect the epigenome through their involvement in generating short chain fatty acids, vitamin synthesis, and nutrient absorption. In addition, they may participate in-gut production of many common neurotransmitters. In this review we will consider the potential interactions of diet, gastrointestinal microbiome, inflammation, and epigenetic alterations in psychiatric disorders. © 2017 Wiley Periodicals, Inc.

  2. Bisphenol A in Reproduction: Epigenetic Effects.

    Science.gov (United States)

    Chianese, Rosanna; Troisi, Jacopo; Richards, Sean; Scafuro, Marika; Fasano, Silvia; Guida, Maurizio; Pierantoni, Riccardo; Meccariello, Rosaria

    2018-02-21

    Bisphenol A (BPA) is an endocrine disrupting chemical widely used in the manufacture of polycarbonate plastic and epoxy resin to produce a multitude of consumer products, food and drink containers, and medical devices. BPA is similar to estradiol in structure and thus interferes in steroid signalling with different outcomes on reproductive health depending on doses, life stage, mode, and timing of exposure. In this respect, it has an emerging and controversial role as a "reproductive toxicant" capable of inducing short and long-term effects including the modulation of gene expression through epigenetic modification (i.e. methylation of CpG islands, histone modifications and production of non-coding RNA) with direct and trans-generational effects on exposed organisms and their offspring, respectively. This review provides an overview about BPA effects on reproductive health and aims to summarize the epigenetic effects of BPA in male and female reproduction. BPA exerts epigenetic effects in both male and female reproduction. In males, BPA affects spermatogenesis and sperm quality and possible trans-generational effects on the reproductive ability of the offspring. In females, BPA affects ovary, embryo development, and gamete quality for successful in vivo and in vitro fertilization (IVF). The exact mechanisms of BPA-mediated effects in reproduction are not fully understood; however, the environmental exposure to BPA - especially in fetal and neonatal period - deserves attention to preserve the reproductive ability in both sexes and to reduce the epigenetic risk for the offspring. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  4. Epigenetic Regulation of Telomere Maintenance

    Czech Academy of Sciences Publication Activity Database

    Fojtová, M.; Fajkus, Jiří

    2014-01-01

    Roč. 143, 1-3 (2014), s. 125-135 ISSN 1424-8581 Institutional support: RVO:68081707 Keywords : Chromatin * DNA methylation * Epigenetic s Subject RIV: BO - Biophysics Impact factor: 1.561, year: 2014

  5. With Gottlieb beyond Gottlieb: The Role of Epigenetics in Psychobiological Development

    Science.gov (United States)

    Lux, Vanessa

    2013-01-01

    The emerging field of molecular epigenetics studies relatively stable changes in genetic activity that are not due to changes in the DNA sequence. Initial research results indicate a functional role for epigenetic mechanisms in neuron development and neuronal cell function. However, concepts that integrate these findings in an overall theory of…

  6. Rib stress fractures among rowers: definition, epidemiology, mechanisms, risk factors and effectiveness of injury prevention strategies.

    Science.gov (United States)

    McDonnell, Lisa K; Hume, Patria A; Nolte, Volker

    2011-11-01

    Rib stress fractures (RSFs) can have serious effects on rowing training and performance and accordingly represent an important topic for sports medicine practitioners. Therefore, the aim of this review is to outline the definition, epidemiology, mechanisms, intrinsic and extrinsic risk factors, injury management and injury prevention strategies for RSF in rowers. To this end, nine relevant books, 140 journal articles, the proceedings of five conferences and two unpublished presentations were reviewed after searches of electronic databases using the keywords 'rowing', 'rib', 'stress fracture', 'injury', 'mechanics' and 'kinetics'. The review showed that RSF is an incomplete fracture occurring from an imbalance between the rate of bone resorption and the rate of bone formation. RSF occurs in 8.1-16.4% of elite rowers, 2% of university rowers and 1% of junior elite rowers. Approximately 86% of rowing RSF cases with known locations occur in ribs four to eight, mostly along the anterolateral/lateral rib cage. Elite rowers are more likely to experience RSF than nonelite rowers. Injury occurrence is equal among sweep rowers and scullers, but the regional location of the injury differs. The mechanism of injury is multifactorial with numerous intrinsic and extrinsic risk factors contributing. Posterior-directed resultant forces arising from the forward directed force vector through the arms to the oar handle in combination with the force vector induced by the scapula retractors during mid-drive, or repetitive stress from the external obliques and rectus abdominis in the 'finish' position, may be responsible for RSF. Joint hypomobility, vertebral malalignment or low bone mineral density may be associated with RSF. Case studies have shown increased risk associated with amenorrhoea, low bone density or poor technique, in combination with increases in training volume. Training volume alone may have less effect on injury than other factors. Large differences in seat and handle

  7. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  8. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  9. Epigenetic approaches towards radiation countermeasure

    International Nuclear Information System (INIS)

    Agrawala, Paban K.

    2012-01-01

    In the recent years, histone deacetylase inhibitors (HDACi) have gained tremendous attention for their anticancer, tumor radiosensitising and chemosensitising properties. HDACi enhance the acetylation status of histone proteins of the chromatin besides other non-histone target proteins, an effect that is regulated by the HDACs (histone deacetylases) and HATs (histone acetyltransferases) in the cells. HDACi affect the cell cycle progression, differentiation, DNA damage and repair processes and cell death which contributes to their anticancer properties. One of the main reasons for HDACi gaining attention as potential anticancer therapeutics is their profound action on cancer cells with minimal or no effect on normal cells. However, in recent years, the possible non-oncological applications of HDACi are being explored extensively viz, in neurodegenerative diseases. Ionizing radiation exposure leads to significant alterations in signal transduction processes, changes gene expression patterns, affects DNA damage and repair processes, cell cycle progression and the underlying epigenetic changes (acetylation of histones and methylation of DNA and histones in particular) are now emerging. Some recent literatures suggest that HDACi can render cytoprotective properties in normal tissues. We at INMAS evaluated certain weak HDACi molecules of dietary origin for their ability to modulate cellular radiation in normal cells and animals. As per our expectations, post irradiation treatment with selected HDACi molecules rendered significant reduction in radiation induced damages. The possible mechanisms of action of HDACi in reducing radiation injuries with be discussed based on our won results and recent reports. (author)

  10. Role of epigenetics in developmental biology and transgenerational inheritance.

    Science.gov (United States)

    Skinner, Michael K

    2011-03-01

    The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution. Copyright © 2011 Wiley-Liss, Inc.

  11. Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition

    International Nuclear Information System (INIS)

    Wagner, Philipp; Ivanovskaya, Viktoria V; Ewels, Christopher P; Rayson, Mark J; Briddon, Patrick R

    2013-01-01

    Cross-sectional area and volume become difficult to define as material dimensions approach the atomic scale. This limits the transferability of macroscopic concepts such as Young’s modulus. We propose a new volume definition where the enclosed nanosheet or nanotube average electron density matches that of the parent layered bulk material. We calculate the Young’s moduli for various nanosheets (including graphene, BN and MoS 2 ) and nanotubes. Further implications of this new volume definition such as a Fermi level dependent Young’s modulus and out-of-plane Poisson’s ratio are shown. (paper)

  12. Epigenetic predictor of age.

    Directory of Open Access Journals (Sweden)

    Sven Bocklandt

    Full Text Available From the moment of conception, we begin to age. A decay of cellular structures, gene regulation, and DNA sequence ages cells and organisms. DNA methylation patterns change with increasing age and contribute to age related disease. Here we identify 88 sites in or near 80 genes for which the degree of cytosine methylation is significantly correlated with age in saliva of 34 male identical twin pairs between 21 and 55 years of age. Furthermore, we validated sites in the promoters of three genes and replicated our results in a general population sample of 31 males and 29 females between 18 and 70 years of age. The methylation of three sites--in the promoters of the EDARADD, TOM1L1, and NPTX2 genes--is linear with age over a range of five decades. Using just two cytosines from these loci, we built a regression model that explained 73% of the variance in age, and is able to predict the age of an individual with an average accuracy of 5.2 years. In forensic science, such a model could estimate the age of a person, based on a biological sample alone. Furthermore, a measurement of relevant sites in the genome could be a tool in routine medical screening to predict the risk of age-related diseases and to tailor interventions based on the epigenetic bio-age instead of the chronological age.

  13. [Epigenetics' implication in autism spectrum disorders: A review].

    Science.gov (United States)

    Hamza, M; Halayem, S; Mrad, R; Bourgou, S; Charfi, F; Belhadj, A

    2017-08-01

    The etiology of autism spectrum disorders (ASD) is complex and multifactorial, and the roles of genetic and environmental factors in its emergence have been well documented. Current research tends to indicate that these two factors act in a synergistic manner. The processes underlying this interaction are still poorly known, but epigenetic modifications could be the mediator in the gene/environment interface. The epigenetic mechanisms have been implicated in susceptibility to stress and also in the pathogenesis of psychiatric disorders including depression and schizophrenia. Currently, several studies focus on the consideration of the etiological role of epigenetic regulation in ASD. The object of this review is to present a summary of current knowledge of an epigenetic hypothesis in ASD, outlining the recent findings in this field. Using Pubmed, we did a systematic review of the literature researching words such as: autism spectrum disorders, epigenetics, DNA methylation and histone modification. Epigenetic refers to the molecular process modulating gene expression without changes in the DNA sequence. The most studied epigenetic mechanisms are those that alter the chromatin structure including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. In ASD several arguments support the epigenetic hypothesis. In fact, there is a frequent association between ASD and genetic diseases whose epigenetic etiologies are recognized. A disturbance in the expression of genes involved in the epigenetic regulation has also been described in this disorder. Some studies have demonstrated changes in the DNA methylation of several autism candidate genes including the gene encoding the oxytocin receptor (OXTR), the RELN and the SHANK3 genes. Beyond the analysis of candidate genes, recent epigenome-wide association studies have investigated the methylation level of several other genes and showed hypomethylation of the whole DNA in brain

  14. Quantifying intervertebral disc mechanics: a new definition of the neutral zone

    NARCIS (Netherlands)

    Smit, Theodoor H.; van Tunen, Manon Slm; van der Veen, Albert J.; Kingma, Idsart; van Dieën, Jaap H.

    2011-01-01

    The neutral zone (NZ) is the range over which a spinal motion segment (SMS) moves with minimal resistance. Clear as this may seem, the various methods to quantify NZ described in the literature depend on rather arbitrary criteria. Here we present a stricter, more objective definition. To

  15. Revisiting essential hypertension--a "mechanism-based" approach may argue for a better definition of hypertension.

    Science.gov (United States)

    Calò, L A

    2009-08-01

    Several major overarching themes have recently emerged in our understanding of the pathophysiology of hypertension which may allow to revisit essential hypertension with an eye towards the possibility of adopting a more rational "mechanistic-based" definition of hypertension and moving away from the unsatisfactory "essential" label for hypertension from unknown cause. As our understanding of the biochemical and physiological mechanisms that control blood pressure rapidly evolves, the "essential" label of hypertension is losing both value as well as utility as it will describe an increasingly small number of hypertensive patients. This paper uses some recently identified pathways central to hypertension and uses this understanding of pathophysiology to argue for a better definition of hypertension.

  16. Epigenetic priming of the metabolic syndrome.

    Science.gov (United States)

    Bruce, Kimberley D; Cagampang, Felino R

    2011-05-01

    The metabolic syndrome (MetS) represents a cluster of cardiometabolic risk factors, including central obesity, insulin resistance, glucose intolerance, dyslipidemia, hypertension, hyperinsulinemia and microalbuminuria, and more recently, nonalcoholic fatty liver disease (NAFLD), polycystic ovarian syndrome (PCOS) and atherosclerosis. Although the concept of the MetS is subject to debate due to lack of a unifying underlying mechanism, the prevalence of a metabolic syndrome phenotype is rapidly increasing worldwide. Moreover, it is increasingly prevalent in children and adolescents of obese mothers. Evidence from both epidemiological and experimental animal studies now demonstrates that MetS onset is increasingly likely following exposure to suboptimal nutrition during critical periods of development, as observed in maternal obesity. Thus, the developmental priming of the MetS provides a common origin for this multifactorial disorder. Consequently, the mechanisms leading to this developmental priming have recently been the subject of intensive investigation. This review discusses recent data regarding the epigenetic modifications resulting from nutrition during early development that mediate persistent changes in the expression of key metabolic genes and contribute toward an adult metabolic syndrome phenotype. In addition, this review considers the role of the endogenous molecular circadian clock system, which has the potential to act at the interface between nutrient sensing and epigenetic processing. A continued and greater understanding of these mechanisms will eventually aid in the identification of individuals at high risk of cardiovascular disease (CVD) and type 2 diabetes, and help develop therapeutic interventions, in accordance with current global government strategy.

  17. Sex, stress, and epigenetics: regulation of behavior in animal models of mood disorders

    Directory of Open Access Journals (Sweden)

    Hodes Georgia E

    2013-01-01

    Full Text Available Abstract Women have a higher incidence of stress related disorders including depression and generalized anxiety disorder, and epigenetic mechanisms likely contribute to this sex difference. Evidence from preclinical research suggests that epigenetic mechanisms are responsible for both sexual dimorphism of brain regions and sensitivity of the stress response. Epigenetic modifications such as DNA methylation and histone modifications can occur transgenerationally, developmentally, or in response to environmental stimuli such as stress exposure. This review will provide an overview of the various forms of epigenetic modifications observed in the central nervous system and will explain how these mechanisms contribute to a sexually dimorphic brain. It will also discuss the ways in which epigenetic alterations coincide with, and functionally contribute to, the behavioral response to stress across the lifespan. Ultimately, this review will focus on novel research utilizing animal models to investigate sex differences in epigenetic mechanisms that influence susceptibility to stress. Exploration of this relationship reveals epigenetic mechanisms with the potential to explain sexual dimorphism in the occurrence of stress related disorders.

  18. PET Imaging of Epigenetic Influences on Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Paul J. Couto

    2015-01-01

    Full Text Available The precise role of environment-gene interactions (epigenetics in the development and progression of Alzheimer’s disease (AD is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD.

  19. Epigenetics and Colorectal Cancer Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Kankana; Liu, Kebin, E-mail: Kliu@gru.edu [Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912 (United States)

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  20. Epigenetics and colorectal cancer pathogenesis.

    Science.gov (United States)

    Bardhan, Kankana; Liu, Kebin

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  1. Epigenetics and Colorectal Cancer Pathogenesis

    International Nuclear Information System (INIS)

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy

  2. Epigenetics and Colorectal Cancer Pathogenesis

    Directory of Open Access Journals (Sweden)

    Kebin Liu

    2013-06-01

    Full Text Available Colorectal cancer (CRC develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  3. Theory for the stability and regulation of epigenetic landscapes

    International Nuclear Information System (INIS)

    Micheelsen, Mille A; Mitarai, Namiko; Sneppen, Kim; Dodd, Ian B

    2010-01-01

    Cells can often choose among several stably heritable phenotypes. Examples are the expressions of genes in eukaryotic cells where long chromosomal regions can adopt persistent and heritable silenced or active states that may be associated with positive feedback in dynamic modification of nucleosomes. We generalize this mechanism in terms of bistability associated with valleys in an epigenetic landscape. A transfer matrix method was used to rigorously follow the system through the disruptive process of cell division. This combined treatment of noisy dynamics both between and during cell division provides an efficient way to calculate the stability of alternative states in a broad range of epigenetic systems

  4. Epigenetics: beyond genes | Fossey | Southern Forests: a Journal of ...

    African Journals Online (AJOL)

    Gene regulatory processes lead to differential gene expression and are referred to as epigenetic phenomena; these are ubiquitous processes in the biological world. These reversible heritable changes concern DNA and RNA, their interactions, and chromatin-mediated and RNA-mediated mechanisms. DNA compaction is ...

  5. Inter- and transgenerational epigenetic inheritance : Evidence in asthma and COPD?

    NARCIS (Netherlands)

    Krauss-Etschmann, Susanne; Meyer, Karolin F.; Dehmel, Stefan; Hylkema, Machteld N.

    2015-01-01

    Evidence is now emerging that early life environment can have lifelong effects on metabolic, cardiovascular, and pulmonary function in offspring, a concept also known as fetal or developmental programming. In mammals, developmental programming is thought to occur mainly via epigenetic mechanisms,

  6. Epigenetics and the Developmental Origins of Health and Disease#

    Science.gov (United States)

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modi...

  7. Epigenetic Modifications and Potential New Treatment Targets in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Lorena Perrone

    2014-01-01

    Full Text Available Retinopathy is a debilitating vascular complication of diabetes. As with other diabetic complications, diabetic retinopathy (DR is characterized by the metabolic memory, which has been observed both in DR patients and in DR animal models. Evidences have provided that after a period of poor glucose control insulin or diabetes drug treatment fails to prevent the development and progression of DR even when good glycemic control is reinstituted (glucose normalization, suggesting a metabolic memory phenomenon. Recent studies also underline the role of epigenetic chromatin modifications as mediators of the metabolic memory. Indeed, epigenetic changes may lead to stable modification of gene expression, participating in DR pathogenesis. Moreover, increasing evidences suggest that environmental factors such as chronic hyperglycemia are implicated DR progression and may also affect the epigenetic state. Here we review recent findings demonstrating the key role of epigenetics in the progression of DR. Further elucidation of epigenetic mechanisms, acting both at the cis- and trans-chromatin structural elements, will yield new insights into the pathogenesis of DR and will open the way for the discovery of novel therapeutic targets to prevent DR progression.

  8. The epigenetic effects of assisted reproductive technologies: ethical considerations.

    Science.gov (United States)

    Roy, M-C; Dupras, C; Ravitsky, V

    2017-08-01

    The use of assisted reproductive technologies (ART) has increased significantly, allowing many coping with infertility to conceive. However, an emerging body of evidence suggests that ART could carry epigenetic risks for those conceived through the use of these technologies. In accordance with the Developmental Origins of Health and Disease hypothesis, ART could increase the risk of developing late-onset diseases through epigenetic mechanisms, as superovulation, fertilization methods and embryo culture could impair the embryo's epigenetic reprogramming. Such epigenetic risks raise ethical issues for all stakeholders: prospective parents and children, health professionals and society. This paper focuses on ethical issues raised by the consideration of these risks when using ART. We apply two key ethical principles of North American bioethics (respect for autonomy and non-maleficence) and suggest that an ethical tension may emerge from conflicting duties to promote the reproductive autonomy of prospective parents on one hand, and to minimize risks to prospective children on the other. We argue that this tension is inherent to the entire enterprise of ART and thus cannot be addressed by individual clinicians in individual cases. We also consider the implications of the 'non-identity problem' in this context. We call for additional research that would allow a more robust evidence base for policy. We also call upon professional societies to provide clinicians with guidelines and educational resources to facilitate the communication of epigenetic risks associated with ART to patients, taking into consideration the challenges of communicating risk information whose validity is still uncertain.

  9. The epigenetic bottleneck of neurodegenerative and psychiatric diseases.

    Science.gov (United States)

    Sananbenesi, Farahnaz; Fischer, Andre

    2009-11-01

    The orchestrated expression of genes is essential for the development and survival of every organism. In addition to the role of transcription factors, the availability of genes for transcription is controlled by a series of proteins that regulate epigenetic chromatin remodeling. The two most studied epigenetic phenomena are DNA methylation and histone-tail modifications. Although a large body of literature implicates the deregulation of histone acetylation and DNA methylation with the pathogenesis of cancer, recently epigenetic mechanisms have also gained much attention in the neuroscientific community. In fact, a new field of research is rapidly emerging and there is now accumulating evidence that the molecular machinery that regulates histone acetylation and DNA methylation is intimately involved in synaptic plasticity and is essential for learning and memory. Importantly, dysfunction of epigenetic gene expression in the brain might be involved in neurodegenerative and psychiatric diseases. In particular, it was found that inhibition of histone deacetylases attenuates synaptic and neuronal loss in animal models for various neurodegenerative diseases and improves cognitive function. In this article, we will summarize recent data in the novel field of neuroepigenetics and discuss the question why epigenetic strategies are suitable therapeutic approaches for the treatment of brain diseases.

  10. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    Science.gov (United States)

    Hopp, Lydia; Nersisyan, Lilit; Löffler-Wirth, Henry; Arakelyan, Arsen; Binder, Hans

    2015-01-01

    We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation. PMID:26506391

  11. Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers

    Directory of Open Access Journals (Sweden)

    Lydia Hopp

    2015-10-01

    Full Text Available We systematically studied the expression of more than fifty histone and DNA (demethylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.

  12. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming.

    Science.gov (United States)

    Nugent, Bridget M; Bale, Tracy L

    2015-10-01

    Fetal development could be considered a sensitive period wherein exogenous insults and changes to the maternal milieu can have long-term impacts on developmental programming. The placenta provides the fetus with protection and necessary nutrients for growth, and responds to maternal cues and changes in nutrient signaling through multiple epigenetic mechanisms. The X-linked enzyme O-linked-N-acetylglucosamine transferase (OGT) acts as a nutrient sensor that modifies numerous proteins to alter various cellular signals, including major epigenetic processes. This review describes epigenetic alterations in the placenta in response to insults during pregnancy, the potential links of OGT as a nutrient sensor to placental epigenetics, and the implications of placental epigenetics in long-term neurodevelopmental programming. We describe the role of placental OGT in the sex-specific programming of hypothalamic-pituitary-adrenal (HPA) axis programming deficits by early prenatal stress as an example of how placental signaling can have long-term effects on neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Epigenetics, obesity and early-life cadmium or lead exposure.

    Science.gov (United States)

    Park, Sarah S; Skaar, David A; Jirtle, Randy L; Hoyo, Cathrine

    2017-01-01

    Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.

  14. Shaping the learning curve: epigenetic dynamics in neural plasticity

    Directory of Open Access Journals (Sweden)

    Zohar Ziv Bronfman

    2014-07-01

    Full Text Available A key characteristic of learning and neural plasticity is state-dependent acquisition dynamics reflected by the non-linear learning curve that links increase in learning with practice. Here we propose that the manner by which epigenetic states of individual cells change during learning contributes to the shape of the neural and behavioral learning curve. We base our suggestion on recent studies showing that epigenetic mechanisms such as DNA methylation, histone acetylation and RNA-mediated gene regulation are intimately involved in the establishment and maintenance of long-term neural plasticity, reflecting specific learning-histories and influencing future learning. Our model, which is the first to suggest a dynamic molecular account of the shape of the learning curve, leads to several testable predictions regarding the link between epigenetic dynamics at the promoter, gene-network and neural-network levels. This perspective opens up new avenues for therapeutic interventions in neurological pathologies.

  15. THE EPIGENETICS OF RENAL CELL TUMORS: FROM BIOLOGY TO BIOMARKERS

    Directory of Open Access Journals (Sweden)

    Rui eHenrique

    2012-05-01

    Full Text Available Renal cell tumors (RCT collectively constitute the third most common type of genitourinary neoplasms, only surpassed by prostate and bladder cancer. They comprise a heterogeneous group of neoplasms with distinctive clinical, morphological and genetic features. Epigenetic alterations are a hallmark of cancer cells and their role in renal tumorigenesis is starting to emerge. Aberrant DNA methylation, altered chromatin remodeling / histone onco-modifications and deregulated microRNA expression not only contribute to the emergence and progression of RCTs, but owing to their ubiquity, they also constitute a promising class of biomarkers tailored for disease detection, diagnosis, assessment of prognosis and prediction of response to therapy. Moreover, due to their dynamic and reversible properties, those alterations represent a target for epigenetic-directed therapies. In this review, the current knowledge about epigenetic mechanisms and their altered status in RCT is summarized and their envisaged use in a clinical setting is also provided.

  16. Discussing epigenetics in Southern California

    Science.gov (United States)

    2012-01-01

    With the goal of discussing how epigenetic control and chromatin remodeling contribute to the various processes that lead to cellular plasticity and disease, this symposium marks the collaboration between the Institut National de la Santé et de la Recherche Médicale (INSERM) in France and the University of California, Irvine (UCI). Organized by Paolo Sassone-Corsi (UCI) and held at the Beckman Center of the National Academy of Sciences at the UCI campus December 15–16, 2011, this was the first of a series of international conferences on epigenetics dedicated to the scientific community in Southern California. The meeting also served as the official kick off for the newly formed Center for Epigenetics and Metabolism at the School of Medicine, UCI (http://cem.igb.uci.edu). PMID:22414797

  17. Epigenetic Inheritance Across the Landscape

    Directory of Open Access Journals (Sweden)

    Amy Vaughn Whipple

    2016-10-01

    Full Text Available The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome-environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.

  18. Epigenetic Inheritance across the Landscape.

    Science.gov (United States)

    Whipple, Amy V; Holeski, Liza M

    2016-01-01

    The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here, we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome-environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.

  19. Recent Findings in Alzheimer Disease and Nutrition Focusing on Epigenetics.

    Science.gov (United States)

    Athanasopoulos, Dimitrios; Karagiannis, George; Tsolaki, Magda

    2016-09-01

    Alzheimer disease (AD) is a chronic neurodegenerative disease with no effective cure so far. The current review focuses on the epigenetic mechanisms of AD and how nutrition can influence the course of this disease through regulation of gene expression, according to the latest scientific findings. The search strategy was the use of scientific databases such as PubMed and Scopus in order to find relative research or review articles published in the years 2012-2015. By showing the latest data of various nutritional compounds, this study aims to stimulate the scientific community to recognize the value of nutrition in this subject. Epigenetics is becoming a very attractive subject for researchers because it can shed light on unknown aspects of complex diseases like AD. DNA methylation, histone modifications, and microRNAs are the principal epigenetic mechanisms involved in AD pathophysiology. Nutrition is an environmental factor that is related to AD through epigenetic pathways. Vitamin B-12, for instance, can alter the one-carbon metabolism and thus interfere in the DNA methylation process. The research results might seem ambiguous about the clinical role of nutrition, but there is strengthening evidence that proper nutrition can not only change epigenetic biomarker levels but also prevent the development of late-onset AD and attenuate cognition deficit. Nutrition might grow to become a preventive and even therapeutic alternative against AD, especially if combined with other antidementia interventions, brain exercise, physical training, etc. Epigenetic biomarkers can be a very helpful tool to help researchers find the exact nutrients needed to create specific remedies, and perhaps the same biomarkers can be used even in patient screening in the future. © 2016 American Society for Nutrition.

  20. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    the otherwise unfavorable U conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and therefore the variety of options for strain propagation.

  1. A model for transmission of the H3K27me3 epigenetic mark

    DEFF Research Database (Denmark)

    Hansen, Klaus H; Bracken, Adrian P; Pasini, Diego

    2008-01-01

    Organization of chromatin by epigenetic mechanisms is essential for establishing and maintaining cellular identity in developing and adult organisms. A key question that remains unresolved about this process is how epigenetic marks are transmitted to the next cell generation during cell division...... during incorporation of newly synthesized histones. This mechanism ensures maintenance of the H3K27me3 epigenetic mark in proliferating cells, not only during DNA replication when histones synthesized de novo are incorporated, but also outside S phase, thereby preserving chromatin structure...

  2. Epigenetic regulation and chromatin remodeling in learning and memory.

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-13

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.

  3. Epigenetic regulatory mechanisms associated with infertility

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Madon, Prochi F; Parikh, Firuza R

    2010-01-01

    with higher order organisation of chromatin in genes associated with infertility and pericentromeric regions of chromosomes, particularly 9 and Y, could further identify causes of idiopathic infertility. Determining the association between DNA methylation, chromatin state, and noncoding RNAs...

  4. Rubinstein-Taybi Syndrome and Epigenetic Alterations.

    Science.gov (United States)

    Korzus, Edward

    2017-01-01

    Rubinstein-Taybi syndrome (RSTS) is a rare genetic disorder in humans characterized by growth and psychomotor delay, abnormal gross anatomy, and mild to severe mental retardation (Rubinstein and Taybi, Am J Dis Child 105:588-608, 1963, Hennekam et al., Am J Med Genet Suppl 6:56-64, 1990). RSTS is caused by de novo mutations in epigenetics-associated genes, including the cAMP response element-binding protein (CREBBP), the gene-encoding protein referred to as CBP, and the EP300 gene, which encodes the p300 protein, a CBP homologue. Recent studies of the epigenetic mechanisms underlying cognitive functions in mice provide direct evidence for the involvement of nuclear factors (e.g., CBP) in the control of higher cognitive functions. In fact, a role for CBP in higher cognitive function is suggested by the finding that RSTS is caused by heterozygous mutations at the CBP locus (Petrij et al., Nature 376:348-351, 1995). CBP was demonstrated to possess an intrinsic histone acetyltransferase activity (Ogryzko et al., Cell 87:953-959, 1996) that is required for CREB-mediated gene expression (Korzus et al., Science 279:703-707, 1998). The intrinsic protein acetyltransferase activity in CBP might directly destabilize promoter-bound nucleosomes, facilitating the activation of transcription. Due to the complexity of developmental abnormalities and the possible genetic compensation associated with this congenital disorder, however, it is difficult to establish a direct role for CBP in cognitive function in the adult brain. Although aspects of the clinical presentation in RSTS cases have been extensively studied, a spectrum of symptoms found in RSTS patients can be accessed only after birth, and, thus, prenatal genetic tests for this extremely rare genetic disorder are seldom considered. Even though there has been intensive research on the genetic and epigenetic function of the CREBBP gene in rodents, the etiology of this devastating congenital human disorder is largely unknown.

  5. General-Purpose Genotype or How Epigenetics Extend the Flexibility of a Genotype

    Directory of Open Access Journals (Sweden)

    Rachel Massicotte

    2012-01-01

    Full Text Available This project aims at investigating the link between individual epigenetic variability (not related to genetic variability and the variation of natural environmental conditions. We studied DNA methylation polymorphisms of individuals belonging to a single genetic lineage of the clonal diploid fish Chrosomus eos-neogaeus sampled in seven geographically distant lakes. In spite of a low number of informative fragments obtained from an MSAP analysis, individuals of a given lake are epigenetically similar, and methylation profiles allow the clustering of individuals in two distinct groups of populations among lakes. More importantly, we observed a significant pH variation that is consistent with the two epigenetic groups. It thus seems that the genotype studied has the potential to respond differentially via epigenetic modifications under variable environmental conditions, making epigenetic processes a relevant molecular mechanism contributing to phenotypic plasticity over variable environments in accordance with the GPG model.

  6. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    International Nuclear Information System (INIS)

    Mann, Monica; Cortez, Valerie; Vadlamudi, Ratna K.

    2011-01-01

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications

  7. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  8. Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential.

    Directory of Open Access Journals (Sweden)

    Hélio Belo

    Full Text Available Fanconi anaemia (FA is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average. Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.

  9. Twin methodology in epigenetic studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob

    2015-01-01

    of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method...

  10. Epigenetic differences between sister chromatids?

    NARCIS (Netherlands)

    Lansdorp, Peter M.; Falconer, Ester; Tao, Jiang; Brind'Amour, Julie; Naumann, Ulrike; Kanz, L; Fibbe, WE; Lengerke, C; Dick, JE

    2012-01-01

    Semi-conservative replication ensures that the DNA sequence of sister chromatids is identical except for replication errors and variation in the length of telomere repeats resulting from replicative losses and variable end processing. What happens with the various epigenetic marks during DNA

  11. Epigenetic Placental Programming of Preeclampsia

    Science.gov (United States)

    Preeclampsia (PE) affects 8-10% of women in the US and long-term consequences include subsequent development of maternal hypertension and hypertension in offspring. As methylation patterns are established during fetal life, we focused on epigenetic alterations in DNA methylation as a plausible expla...

  12. Autism Spectrum Disorders and Epigenetics

    Science.gov (United States)

    Grafodatskaya, Daria; Chung, Brian; Szatmari, Peter; Weksberg, Rosanna

    2010-01-01

    Objective: Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate…

  13. Epigenetic Modifications: Therapeutic Potential in Cancer

    Directory of Open Access Journals (Sweden)

    Manisha Sachan

    2015-08-01

    Full Text Available Epigenetic modifications and alterations in chromatin structure and function contribute to the cumulative changes observed as normal cells undergo malignant transformation. These modifications and enzymes (DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases related to them have been deeply studied to develop new drugs, epigenome-targeted therapies and new diagnostic tools. Epigenetic modifiers aim to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. Four of them (azacitidine, decitabine, vorinostat and romidepsin are approved by the U.S. Food and Drug Administration. This article provides an overview about the known functional roles of epigenetic enzymes in cancer development.

  14. Lunar surface engineering properties experiment definition. Volume 2: Mechanics of rolling sphere-soil slope interaction

    Science.gov (United States)

    Hovland, H. J.; Mitchell, J. K.

    1971-01-01

    The soil deformation mode under the action of a rolling sphere (boulder) was determined, and a theory based on actual soil failure mechanism was developed which provides a remote reconnaissance technique for study of soil conditions using boulder track observations. The failure mechanism was investigated by using models and by testing an instrumented spherical wheel. The wheel was specifically designed to measure contact pressure, but it also provided information on the failure mechanism. Further tests included rolling some 200 spheres down sand slopes. Films were taken of the rolling spheres, and the tracks were measured. Implications of the results and reevaluation of the lunar boulder tracks are discussed.

  15. Neuroepigenetic mechanisms in disease.

    Science.gov (United States)

    Christopher, Michael A; Kyle, Stephanie M; Katz, David J

    2017-10-16

    Epigenetics allows for the inheritance of information in cellular lineages during differentiation, independent of changes to the underlying genetic sequence. This raises the question of whether epigenetic mechanisms also function in post-mitotic neurons. During the long life of the neuron, fluctuations in gene expression allow the cell to pass through stages of differentiation, modulate synaptic activity in response to environmental cues, and fortify the cell through age-related neuroprotective pathways. Emerging evidence suggests that epigenetic mechanisms such as DNA methylation and histone modification permit these dynamic changes in gene expression throughout the life of a neuron. Accordingly, recent studies have revealed the vital importance of epigenetic players in the central nervous system and during neurodegeneration. Here, we provide a review of several of these recent findings, highlighting novel functions for epigenetics in the fields of Rett syndrome, Fragile X syndrome, and Alzheimer's disease research. Together, these discoveries underscore the vital importance of epigenetics in human neurological disorders.

  16. Epigenetic polypharmacology: from combination therapy to multitargeted drugs.

    Science.gov (United States)

    de Lera, Angel R; Ganesan, A

    The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed.

  17. Epigenetics and obesity: the devil is in the details

    OpenAIRE

    Franks, Paul W; Ling, Charlotte

    2010-01-01

    Abstract Obesity is a complex disease with multiple well-defined risk factors. Nevertheless, susceptibility to obesity and its sequelae within obesogenic environments varies greatly from one person to the next, suggesting a role for gene × environment interactions in the etiology of the disorder. Epigenetic regulation of the human genome provides a putative mechanism by which specific environmental exposures convey risk for obesity and other human diseases and is one possible mechanism that u...

  18. Autism, fever, epigenetics and the locus coeruleus.

    Science.gov (United States)

    Mehler, Mark F; Purpura, Dominick P

    2009-03-01

    Some children with autism spectrum disorders (ASD) exhibit improved behaviors and enhanced communication during febrile episodes. We hypothesize that febrigenesis and the behavioral-state changes associated with fever in autism depend upon selective normalization of key components of a functionally impaired locus coeruleus-noradrenergic (LC-NA) system. We posit that autistic behaviors result from developmental dysregulation of LC-NA system specification and neural network deployment and modulation linked to the core behavioral features of autism. Fever transiently restores the modulatory functions of the LC-NA system and ameliorates autistic behaviors. Fever-induced reversibility of autism suggests preserved functional integrity of widespread neural networks subserving the LC-NA system and specifically the subsystems involved in mediating the cognitive and behavioral repertoires compromised in ASD. Alterations of complex gene-environmental interactions and associated epigenetic mechanisms during seminal developmental critical periods are viewed as instrumental in LC-NA dysregulation as emphasized by the timing and severity of prenatal maternal stressors on autism prevalence. Our hypothesis has implications for a rational approach to further interrogate the interdisciplinary etiology of ASD and for designing novel biological detection systems and therapeutic agents that target the LC-NA system's diverse network of pre- and postsynaptic receptors, intracellular signaling pathways and dynamic epigenetic remodeling processes involved in their regulation and functional plasticity.

  19. Obesity and diabetes: from genetics to epigenetics.

    Science.gov (United States)

    Burgio, Ernesto; Lopomo, Angela; Migliore, Lucia

    2015-04-01

    Obesity is becoming an epidemic health problem. During the last years not only genetic but also, and primarily, environmental factors have been supposed to contribute to the susceptibility to weight gain or to develop complications such as type 2 diabetes. In spite of the intense efforts to identify genetic predisposing variants, progress has been slow and success limited, and the common obesity susceptibility variants identified only explains a small part of the individual variation in risk. Moreover, there is evidence that the current epidemic of obesity and diabetes is environment-driven. Recent studies indicate that normal metabolic regulation during adulthood besides requiring a good balance between energy intake and energy expenditure, can be also affected by pre- and post-natal environments. In fact, maternal nutritional constraint during pregnancy can alter the metabolic phenotype of the offspring by means of epigenetic regulation of specific genes, and this can be passed to the next generations. Studies focused on epigenetic marks in obesity found altered methylation and/or histone acetylation levels in genes involved in specific but also in more general metabolic processes. Recent researches point out the continuous increase of "obesogens", in the environment and food chains, above all endocrine disruptors, chemicals that interfere with many homeostatic mechanisms. Taken into account the already existing data on the effects of obesogens, and the multiple potential targets with which they might interfere daily, it seems likely that the exposure to obesogens can have an important role in the obesity and diabesity pandemic.

  20. Epigenetic Silencing of DKK3 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    André Oberthuer

    2013-04-01

    Full Text Available Medulloblastoma (MB is a malignant pediatric brain tumor arising in the cerebellum consisting of four distinct subgroups: WNT, SHH, Group 3 and Group 4, which exhibit different molecular phenotypes. We studied the expression of Dickkopf (DKK 1–4 family genes, inhibitors of the Wnt signaling cascade, in MB by screening 355 expression profiles derived from four independent datasets. Upregulation of DKK1, DKK2 and DKK4 mRNA was observed in the WNT subgroup, whereas DKK3 was downregulated in 80% MBs across subgroups with respect to the normal cerebellum (p < 0.001. Since copy number aberrations targeting the DKK3 locus (11p15.3 are rare events, we hypothesized that epigenetic factors could play a role in DKK3 regulation. Accordingly, we studied 77 miRNAs predicting to repress DKK3; however, no significant inverse correlation between miRNA/mRNA expression was observed. Moreover, the low methylation levels in the DKK3 promoters (median: 3%, 5% and 5% for promoter 1, 2 and 3, respectively excluded the downregulation of gene expression by methylation. On the other hand, the treatment of MB cells with Trichostatin A (TSA, a potent inhibitor of histone deacetylases (HDAC, was able to restore both DKK3 mRNA and protein. In conclusion, DKK3 downregulation across all MB subgroups may be due to epigenetic mechanisms, in particular, through chromatin condensation.

  1. The Epigenetic Landscape of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Emma Conway O’Brien

    2014-01-01

    Full Text Available Acute myeloid leukemia (AML is a genetically heterogeneous disease. Certain cytogenetic and molecular genetic mutations are recognized to have an impact on prognosis, leading to their inclusion in some prognostic stratification systems. Recently, the advent of high-throughput whole genome or exome sequencing has led to the identification of several novel recurrent mutations in AML, a number of which have been found to involve genes concerned with epigenetic regulation. These genes include in particular DNMT3A, TET2, and IDH1/2, involved with regulation of DNA methylation, and EZH2 and ASXL-1, which are implicated in regulation of histones. However, the precise mechanisms linking these genes to AML pathogenesis have yet to be fully elucidated as has their respective prognostic relevance. As massively parallel DNA sequencing becomes increasingly accessible for patients, there is a need for clarification of the clinical implications of these mutations. This review examines the literature surrounding the biology of these epigenetic modifying genes with regard to leukemogenesis and their clinical and prognostic relevance in AML when mutated.

  2. Epigenetic modification and inheritance in sexual reversal of fish.

    Science.gov (United States)

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei; Zhang, Yong; Wang, Jun; Zhang, Guojie

    2014-04-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model-a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD-we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.

  3. Epigenetic silencing of serine protease HTRA1 drives polyploidy

    International Nuclear Information System (INIS)

    Schmidt, Nina; Irle, Inga; Ripkens, Kamilla; Lux, Vanda; Nelles, Jasmin; Johannes, Christian; Parry, Lee; Greenow, Kirsty; Amir, Sarah; Campioni, Mara; Baldi, Alfonso; Oka, Chio; Kawaichi, Masashi; Clarke, Alan R.; Ehrmann, Michael

    2016-01-01

    Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation. The online version of this article (doi:10.1186/s12885-016-2425-8) contains supplementary material, which is available to authorized users

  4. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management.

    Science.gov (United States)

    Zhang, Yingmei; Ren, Jun

    2016-05-01

    Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Epigenetic Effects of Environmental Chemicals Bisphenol A and Phthalates

    Directory of Open Access Journals (Sweden)

    Steven Shoei-Lung Li

    2012-08-01

    Full Text Available The epigenetic effects on DNA methylation, histone modification, and expression of non-coding RNAs (including microRNAs of environmental chemicals such as bisphenol A (BPA and phthalates have expanded our understanding of the etiology of human complex diseases such as cancers and diabetes. Multiple lines of evidence from in vitro and in vivo models have established that epigenetic modifications caused by in utero exposure to environmental toxicants can induce alterations in gene expression that may persist throughout life. Epigenetics is an important mechanism in the ability of environmental chemicals to influence health and disease, and BPA and phthalates are epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the hypomethylating effect of BPA was prevented by maternal dietary supplementation with a methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and mice. BPA exposure of human placental cell lines has been shown to alter microRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of estrogen receptor (ESR1 promoter-associated CpG islands, indicating that altered ESR1 mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to phthalate DEHP was also shown to increase DNA methylation and expression levels of DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and phthalates in female rats were found to be transgenerational. Finally, the available new technologies for global analysis of epigenetic alterations will provide insight into the extent and patterns of alterations between human normal and diseased tissues.

  6. Distinguishing epigenetic marks of developmental and imprinting regulation

    Directory of Open Access Journals (Sweden)

    McEwen Kirsten R

    2010-01-01

    Full Text Available Abstract Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two

  7. Investigating Epigenetic Effects of Prenatal Exposure to Toxic Metals in Newborns: Challenges and Benefits.

    Science.gov (United States)

    Nye, Monica D; Fry, Rebecca C; Hoyo, Cathrine; Murphy, Susan K

    2014-01-01

    Increasing evidence suggest that epigenetic alterations can greatly impact human health, and that epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) may be particularly relevant in responding to environmental toxicant exposure early in life. The epigenome plays a vital role in embryonic development, tissue differentiation and disease development by controlling gene expression. In this review we discuss what is currently known about epigenetic alterations in response to prenatal exposure to inorganic arsenic (iAs) and lead (Pb), focusing specifically on their effects on DNA methylation. We then describe how epigenetic alterations are being studied in newborns as potential biomarkers of in utero environmental toxicant exposure, and the benefits and challenges of this approach. In summary, the studies highlighted herein indicate how epigenetic mechanisms are impacted by early life exposure to iAs and Pb, and the research that is being done to move towards understanding the relationships between toxicant-induced epigenetic alterations and disease development. Although much remains unknown, several groups are working to understand the correlative and causal effects of early life toxic metal exposure on epigenetic changes and how these changes may result in later development of disease.

  8. Lost in translation. New unexplored avenues for neuropsychopharmacology: epigenetics and microRNAs.

    Science.gov (United States)

    Tardito, Daniela; Mallei, Alessandra; Popoli, Maurizio

    2013-02-01

    Mood and anxiety disorders are among the major causes of disability worldwide. Despite clear need for better therapies, efforts to develop novel drugs have been relatively unsuccessful. One major reason is lack of translation into neuropsychopharmacology of the impressive recent array of knowledge accrued by clinical and preclinical researches on the brain. Here focus is on epigenetics mechanisms, including microRNAs, which seem particularly promising for the identification of new targets for alternative pharmacological approaches. First, the current knowledge about epigenetic mechanisms, including DNA methylation, posttranslational modification of histone proteins, focusing on histone methylation and acetylation, and posttranscriptional modulation of gene expression by microRNAs is described. Then evidence showing involvement of epigenetics and microRNAs in the pathophysiology of mood and anxiety disorders as well as evidence showing that some of the currently employed antidepressants and mood stabilizers also affect epigenetic and microRNA mechanisms are reviewed. Finally current evidence and novel approaches in favor of drugs regulating epigenetic and microRNA mechanisms as potential therapeutics for these disorders are discussed. Although still in its infancy, research investigating the effects of pharmacological modulation of epigenetic and microRNA mechanisms in neuropsychiatric disorders continues to provide encouraging findings, suggesting new avenues for treatment of mood and anxiety disorders.

  9. From linkage studies to epigenetics: what we know and what we need to know in the neurobiology of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Ariel eCariaga-Martinez

    2016-05-01

    Full Text Available Schizophrenia is a complex psychiatric disorder characterized by the presence of positive, negative and cognitive symptoms that lacks a unifying neuropathology. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including genetic and epigenetic studies. In relation to the latter, basic research suggests that normal cognition is regulated by epigenetic mechanisms and its dysfunction occurs upon epigenetic misregulation, providing new insights into missing heritability of complex psychiatric diseases, referring to the discrepancy between epidemiological heritability and the proportion of phenotypic variation explained by DNA sequence difference. In schizophrenia the absence of consistently replicated genetic effects together with evidence for lasting changes in gene expression after environmental exposures suggest a role of epigenetic mechanisms. In this review we will focus on epigenetic modifications as a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychotic conditions throughout life.

  10. EPA Workshop on Epigenetics and Cumulative Risk ...

    Science.gov (United States)

    Agenda Download the Workshop Agenda (PDF) The workshop included presentations and discussions by scientific experts pertaining to three topics (i.e., epigenetic changes associated with diverse stressors, key science considerations in understanding epigenetic changes, and practical application of epigenetic tools to address cumulative risks from environmental stressors), to address several questions under each topic, and included an opportunity for attendees to participate in break-out groups, provide comments and ask questions. Workshop Goals The workshop seeks to examine the opportunity for use of aggregate epigenetic change as an indicator in cumulative risk assessment for populations exposed to multiple stressors that affect epigenetic status. Epigenetic changes are specific molecular changes around DNA that alter expression of genes. Epigenetic changes include DNA methylation, formation of histone adducts, and changes in micro RNAs. Research today indicates that epigenetic changes are involved in many chronic diseases (cancer, cardiovascular disease, obesity, diabetes, mental health disorders, and asthma). Research has also linked a wide range of stressors including pollution and social factors with occurrence of epigenetic alterations. Epigenetic changes have the potential to reflect impacts of risk factors across multiple stages of life. Only recently receiving attention is the nexus between the factors of cumulative exposure to environmental

  11. Modelling of crustal rock mechanics for radioactive waste storage in Fennoscandia - problem definition

    International Nuclear Information System (INIS)

    Stephansson, O.

    1987-05-01

    Existing knowledge of crustal stresses for Fennoscandia is presented. Generic, two-dimensional models are proposed for vertical and planar sections of a traverse having a direction NW-SE in Northern Fennoscandia. The proposed traverse will include the major neotectonic structures at Lansjaerv and Paervie, respectively, and also the study site for storage of spent nuclear fuel at Kamlunge. The influence of glaciation, deglaciation, glacial rebound on crustal rock mechanics and stability is studied for the modelling work. Global models, with a length of roughly 100 km, will increase our over all understanding of the change in stresses and deformations. These can provide boundary conditions for regional and near-field models. Properties of strength and stiffness of intact granitic rock masses, faults and joints are considered in the modelling of the crustal rock mechanics for any of the three models described. (orig./HP)

  12. Definition of design criteria of mechanical transfer: an interaction between engineering and health areas.

    Science.gov (United States)

    Luz, Taciana Ramos; Echternacht, Eliza Helena de Oliveira

    2012-01-01

    This study aims to analyze the factors that justify the low use of a mechanical transfer in the context of a long-term institution. It is a device intended for internal transportation of individuals who have mobility problems. The analysis involves researchers from the fields of health and engineering in order to generate design criteria that consider the needs of caregivers and patients of this institution. To understand the reality of this site and their specificities, was used Ergonomic Work Analysis.

  13. Definitive Insight into the Graphite Oxide Reduction Mechanism by Deuterium Labeling

    Czech Academy of Sciences Publication Activity Database

    Jankovský, O.; Šimek, P.; Luxa, J.; Sedmidubský, D.; Tomandl, Ivo; Macková, Anna; Mikšová, Romana; Malinský, Petr; Pumera, M.; Sofer, Z.

    2015-01-01

    Roč. 80, č. 9 (2015), s. 1399-1407 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA15-09001S; GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : deuterium * graphene * isotopic labeling * reaction mechanisms * reduction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.836, year: 2015

  14. Epigenetic Effects of Cannabis Exposure

    Science.gov (United States)

    Szutorisz, Henrietta; Hurd, Yasmin L.

    2015-01-01

    The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one’s lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions. PMID:26546076

  15. Early life nutrition, epigenetics and programming of later life disease.

    Science.gov (United States)

    Vickers, Mark H

    2014-06-02

    The global pandemic of obesity and type 2 diabetes is often causally linked to marked changes in diet and lifestyle; namely marked increases in dietary intakes of high energy diets and concomitant reductions in physical activity levels. However, less attention has been paid to the role of developmental plasticity and alterations in phenotypic outcomes resulting from altered environmental conditions during the early life period. Human and experimental animal studies have highlighted the link between alterations in the early life environment and increased risk of obesity and metabolic disorders in later life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. In particular, the nutritional environment in which the fetus or infant develops influences the risk of metabolic disorders in offspring. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, as epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. Moreover, evidence exists, at least from animal models, that such epigenetic programming should be viewed as a transgenerational phenomenon. However, the mechanisms by which early environmental insults can have long-term effects on offspring are relatively unclear. Thus far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification, and microRNA) and permanent changes in cellular ageing. A better understanding of the epigenetic basis of developmental programming and how these effects may be

  16. Early Life Nutrition, Epigenetics and Programming of Later Life Disease

    Directory of Open Access Journals (Sweden)

    Mark H. Vickers

    2014-06-01

    Full Text Available The global pandemic of obesity and type 2 diabetes is often causally linked to marked changes in diet and lifestyle; namely marked increases in dietary intakes of high energy diets and concomitant reductions in physical activity levels. However, less attention has been paid to the role of developmental plasticity and alterations in phenotypic outcomes resulting from altered environmental conditions during the early life period. Human and experimental animal studies have highlighted the link between alterations in the early life environment and increased risk of obesity and metabolic disorders in later life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. In particular, the nutritional environment in which the fetus or infant develops influences the risk of metabolic disorders in offspring. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, as epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. Moreover, evidence exists, at least from animal models, that such epigenetic programming should be viewed as a transgenerational phenomenon. However, the mechanisms by which early environmental insults can have long-term effects on offspring are relatively unclear. Thus far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification, and microRNA and permanent changes in cellular ageing. A better understanding of the epigenetic basis of developmental programming and how

  17. Epigenetic regulation of photoperiodic flowering

    OpenAIRE

    Takeno, Kiyotoshi

    2010-01-01

    The cytidine analogue 5-azacytidine, which causes DNA demethylation, induced flowering in the non-vernalization-requiring plants Perilla frutescens var. crispa, Silene armeria and Pharbitis nil (synonym Ipomoea nil) under non-inductive photoperiodic conditions, suggesting that the expression of photoperiodic flowering-related genes is regulated epigenetically by DNA methylation. The flowering state induced by DNA demethylation was not heritable. Changes in the genome-wide methylation state we...

  18. Chromocentre integrity and epigenetic marks

    Czech Academy of Sciences Publication Activity Database

    Harničarová, Andrea; Galiová-Šustáčková, Gabriela; Legartová, Soňa; Kozubek, Stanislav; Matula, P.; Bártová, Eva

    2010-01-01

    Roč. 169, č. 1 (2010), s. 124-133 ISSN 1047-8477 R&D Projects: GA MŠk ME 919; GA MŠk(CZ) LC06027; GA MŠk(CZ) LC535 Grant - others:GA MŠk(CZ) ME919 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : SUV39h * histone methylation * epigenetics Subject RIV: BO - Biophysics Impact factor: 3.497, year: 2010

  19. Comparative epigenomics: an emerging field with breakthrough potential to understand evolution of epigenetic regulation

    Directory of Open Access Journals (Sweden)

    Janine E. Deakin

    2014-12-01

    Full Text Available Epigenetic mechanisms regulate gene expression, thereby mediating the interaction between environment, genotype and phenotype. Changes to epigenetic regulation of genes may be heritable, permitting rapid adaptation of a species to environmental cues. However, most of the current understanding of epigenetic gene regulation has been gained from studies of mice and humans, with only a limited understanding of the conservation of epigenetic mechanisms across divergent taxa. The relative ease at which genome sequence data is now obtained and the advancements made in epigenomics techniques for non-model species provides a basis for carrying out comparative epigenomic studies across a wider range of species, making it possible to start unraveling the evolution of epigenetic mechanisms. We review the current knowledge of epigenetic mechanisms obtained from studying model organisms, give an example of how comparative epigenomics using non-model species is helping to trace the evolutionary history of X chromosome inactivation in mammals and explore the opportunities to study comparative epigenomics in biological systems displaying adaptation between species, such as the immune system and sex determination.

  20. Epigenetic therapy in myeloproliferative neoplasms: evidence and perspectives

    Science.gov (United States)

    Vannucchi, Alessandro M; Guglielmelli, Paola; Rambaldi, Alessandro; Bogani, Costanza; Barbui, Tiziano

    2009-01-01

    The classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), which include polycythaemia vera, essential thrombocythaemia and primary myelofibrosis, originate from a stem cell-derived clonal myeloproliferation that manifests itself with variable haematopoietic cell lineage involvement; they are characterized by a high degree of similarities and the chance to transform each to the other and to evolve into acute leukaemia. Their molecular pathogenesis has been associated with recurrent acquired mutations in janus kinase 2 (JAK2) and myeloproliferative leukemia virus oncogene (MPL). These discoveries have simplified the diagnostic approach and provided a number of clues to understanding the phenotypic expression of MPNs; furthermore, they represented a framework for developing and/or testing in clinical trials small molecules acting as tyrosine kinase inhibitors. On the other hand, evidence of abnormal epigenetic gene regulation as a mechanism potentially contributing to the pathogenesis and the phenotypic diversity of MPNs is still scanty; however, study of epigenetics in MPNs represents an active field of research. The first clinical trials with epigenetic drugs have been completed recently, whereas others are still ongoing; results have been variable and at present do not allow any firm conclusion. Novel basic and translational information concerning epigenetic gene regulation in MPNs and the perspectives for therapy will be critically addressed in this review. PMID:19522842

  1. Epigenetic regulation of open chromatin in pluripotent stem cells

    Science.gov (United States)

    Kobayashi, Hiroshi; Kikyo, Nobuaki

    2014-01-01

    The recent progress in pluripotent stem cell research has opened new avenues of disease modeling, drug screening, and transplantation of patient-specific tissues that had been unimaginable until a decade ago. The central mechanism underlying pluripotency is epigenetic gene regulation; the majority of cell signaling pathways, both extracellular and cytoplasmic, eventually alter the epigenetic status of their target genes during the process of activating or suppressing the genes to acquire or maintain pluripotency. It has long been thought that the chromatin of pluripotent stem cells is globally open to enable the timely activation of essentially all genes in the genome during differentiation into multiple lineages. The current article reviews descriptive observations and the epigenetic machinery relevant to what is supposed to be globally open chromatin in pluripotent stem cells. This includes microscopic appearance, permissive gene transcription, chromatin remodeling complexes, histone modifications, DNA methylation, noncoding RNAs, dynamic movement of chromatin proteins, nucleosome accessibility and positioning, and long-range chromosomal interactions. Detailed analyses of each element, however, have revealed that the globally open chromatin hypothesis is not necessarily supported by some of the critical experimental evidence, such as genome-wide nucleosome accessibility and nucleosome positioning. Further understanding of the epigenetic gene regulation is expected to determine the true nature of the so-called globally open chromatin in pluripotent stem. PMID:24695097

  2. LOSS OF 5-HYDROXYMETHYLCYTOSINE IS AN EPIGENETIC HALLMARK OF MELANOMA

    Science.gov (United States)

    Lian, Christine Guo; Xu, Yufei; Ceol, Craig; Wu, Feizhen; Larson, Allison; Dresser, Karen; Xu, Wenji; Tan, Li; Hu, Yeguang; Zhan, Qian; Lee, Chung-wei; Hu, Di; Lian, Bill Q.; Kleffel, Sonja; Yang, Yijun; Neiswender, James; Khorasani, Abraham J.; Fang, Rui; Lezcano, Cecilia; Duncan, Lyn M.; Scolyer, Richard A.; Thompson, John F.; Kakavand, Hojabr; Houvras, Yariv; Zon, Leonard; Mihm, Martin C.; Kaiser, Ursula B.; Schatton, Tobias; Woda, Bruce A.; Murphy, George F.; Shi, Yujiang G.

    2013-01-01

    SUMMARY DNA methylation at the 5-position of cytosine (5-mC) is a key epigenetic mark critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the Ten-Eleven Translocation (TET) family of DNA hydroxylases. Here we report that “loss of 5-hmC” is an epigenetic hallmark of melanoma with diagnostic and prognostic implications. Genome-wide mapping of 5-hmC reveals loss of 5-hmC landscape in the melanoma epigenome. We show that down-regulation of Isocitrate Dehydrogenase 2 (IDH2) and TET family enzymes is likely one of the mechanisms underlying 5-hmC loss in melanoma. Rebuilding the 5-hmC landscape in melanoma cells by reintroducing active TET2 or IDH2 suppresses melanoma growth and increases tumor-free survival in animal models. Thus, our study reveals a critical function of 5-hmC in melanoma development and directly links the IDH and TET activity-dependent epigenetic pathway to 5-hmC-mediated suppression of melanoma progression, suggesting a new strategy for epigenetic cancer therapy. PMID:22980977

  3. Imbalanced class learning in epigenetics.

    Science.gov (United States)

    Haque, M Muksitul; Skinner, Michael K; Holder, Lawrence B

    2014-07-01

    In machine learning, one of the important criteria for higher classification accuracy is a balanced dataset. Datasets with a large ratio between minority and majority classes face hindrance in learning using any classifier. Datasets having a magnitude difference in number of instances between the target concept result in an imbalanced class distribution. Such datasets can range from biological data, sensor data, medical diagnostics, or any other domain where labeling any instances of the minority class can be time-consuming or costly or the data may not be easily available. The current study investigates a number of imbalanced class algorithms for solving the imbalanced class distribution present in epigenetic datasets. Epigenetic (DNA methylation) datasets inherently come with few differentially DNA methylated regions (DMR) and with a higher number of non-DMR sites. For this class imbalance problem, a number of algorithms are compared, including the TAN+AdaBoost algorithm. Experiments performed on four epigenetic datasets and several known datasets show that an imbalanced dataset can have similar accuracy as a regular learner on a balanced dataset.

  4. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM

    DEFF Research Database (Denmark)

    Barrès, Romain; Zierath, Juleen R

    2016-01-01

    Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins. Tra...... of mechanisms by which lifestyle factors affect the epigenetic landscape in type 2 diabetes mellitus and obesity. Evidence from the past few years about the potential mechanisms by which diet and exercise affect the epigenome over several generations is discussed....... to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding...

  5. Epigenetics of early-life lead exposure and effects on brain development.

    Science.gov (United States)

    Senut, Marie-Claude; Cingolani, Pablo; Sen, Arko; Kruger, Adele; Shaik, Asra; Hirsch, Helmut; Suhr, Steven T; Ruden, Douglas

    2012-12-01

    The epigenetic machinery plays a pivotal role in the control of many of the body's key cellular functions. It modulates an array of pliable mechanisms that are readily and durably modified by intracellular or extracellular factors. In the fast-moving field of neuroepigenetics, it is emerging that faulty epigenetic gene regulation can have dramatic consequences on the developing CNS that can last a lifetime and perhaps even affect future generations. Mounting evidence suggests that environmental factors can impact the developing brain through these epigenetic mechanisms and this report reviews and examines the epigenetic effects of one of the most common neurotoxic pollutants of our environment, which is believed to have no safe level of exposure during human development: lead.

  6. The Key Role of Epigenetics in the Persistence of Asexual Lineages

    Directory of Open Access Journals (Sweden)

    Emilie Castonguay

    2012-01-01

    Full Text Available Asexual organisms, often perceived as evolutionary dead ends, can be long-lived and geographically widespread. We propose that epigenetic mechanisms could play a crucial role in the evolutionary persistence of these lineages. Genetically identical organisms could rely on phenotypic plasticity to face environmental variation. Epigenetic modifications could be the molecular mechanism enabling such phenotypic plasticity; they can be influenced by the environment and act at shorter timescales than mutation. Recent work on the asexual vertebrate Chrosomus eos-neogaeus (Pisces: Cyprinidae provides broad insights into the contribution of epigenetics in genetically identical individuals. We discuss the extension of these results to other asexual organisms, in particular those resulting from interspecific hybridizations. We finally develop on the evolutionary relevance of epigenetic variation in the context of heritability.

  7. Ayurveda: Science of life, genetics, and epigenetics.

    Science.gov (United States)

    Sharma, Hari

    2016-01-01

    Ayurveda is a traditional system of medicine originated in the ancient Vedic times of India. This body of knowledge is found in well-documented texts such as the Charaka Samhita and Sushruta Samhita , and describes physiology and interrelated systems of the body, variations in human constitution, surgery, herbal use, and health-promoting recommendations. Ayurveda is translated as the "Science of Life;" Ayus = Life, and Veda = knowledge/science. The principles and treatment modalities have endured over time. For Ayurveda to be appreciated by Western medical researchers, this traditional system of medicine needs to be understood in terms of modern science. The current theories of physiology that support Ayurvedic approaches need to be explored. Herein, one approach of how the realm of epigenetics can help elucidate the mechanisms of Ayurveda has been described.

  8. Epigenetics, eh! A meeting summary of the Canadian Conference on Epigenetics.

    Science.gov (United States)

    Rodenhiser, David I; Bérubé, Nathalie G; Mann, Mellissa R W

    2011-10-01

    In May 2011, the Canadian Conference on Epigenetics: Epigenetics Eh! was held in London, Canada. The objectives of this conference were to showcase the breadth of epigenetic research on environment and health across Canada and to provide the catalyst to develop collaborative Canadian epigenetic research opportunities, similar to existing international epigenetic initiatives in the US and Europe. With ten platform sessions and two sessions with over 100 poster presentations, this conference featured cutting-edge epigenetic research, presented by Canadian and international principal investigators and their trainees in the field of epigenetics and chromatin dynamics. An EpigenART competition included ten artists, creating a unique opportunity for artists and scientists to interact and explore their individual interpretations of this scientific discipline. The conference provided a unique venue for a significant cross-section of Canadian epigenetic researchers from diverse disciplines to meet, interact, collaborate and strategize at the national level.

  9. Using Epigenetic Therapy to Overcome Chemotherapy Resistance.

    Science.gov (United States)

    Strauss, Julius; Figg, William D

    2016-01-01

    It has been known for decades that as cancer progresses, tumors develop genetic alterations, making them highly prone to developing resistance to therapies. Classically, it has been thought that these acquired genetic changes are fixed. This has led to the paradigm of moving from one cancer therapy to the next while avoiding past therapies. However, emerging data on epigenetic changes during tumor progression and use of epigenetic therapies have shown that epigenetic modifications leading to chemotherapy resistance have the potential to be reversible with epigenetic therapy. In fact, promising clinical data exist that treatment with epigenetic agents can diminish chemotherapy resistance in a number of tumor types including chronic myelogenous leukemia, colorectal, ovarian, lung and breast cancer. The potential for epigenetic-modifying drugs to allow for treatment of resistant disease is exciting and clinical trials have just begun to evaluate this area. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  11. Genetic alterations and epigenetic changes in hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Luz Stella Hoyos Giraldo

    2007-02-01

    Full Text Available

    Hepatocarcinogenesis as hepatocellular carcinoma (HCC is associated with background of chronic liver disease usually in association with cirrhosis, marked hepatic fibrosis, hepatitis B virus (HBV and/or hepatitis virus (HCV infection, chronic inflammation, Aflatoxin B1(AFB1 exposure, chronic alcoholism, metabolic disorder of the liver and necroinflamatory liver disease. Hepatocarcinogenesis involve two mechanisms, genetic alterations (with changes in the cell's DNA sequence and epigenetic changes (without changes in the cell's DNA sequence, but changes in the pattern of gene expression that can persist through one or more generations (somatic sense. Hepatocarcinogenesis is associated with activation of oncogenes and decreased expression of tumor suppressor genes (TSG; include those involved in cell cycle control, apoptosis, DNA repair, immortalization and angiogenesis. AFB1 is metabolized in the liver into a potent carcinogen, aflatoxin 8, 9-epoxide, which is detoxified by epoxide hydrolase (EPHX and glutathione S-transferase M1 (GSTM1.

    A failure of detoxification processes can allow to mutagenic metabolite to bind to DNA and inducing P53 mutation. Genetic polymorphism of EPHX and GSTM1 can make individuals more susceptible to AFB1. Epigenetic inactivation of GSTP1 by promoter hypermethylation plays a role in the development of HCC because, it leads that electrophilic metabolite increase DNA damage and mutations. HBV DNA integration into the host chromosomal DNA of hepatocytes has been detected in HBV-related HCC.

    DNA tumor viruses cause cancer mainly by interfering with cell cycle controls, and activating the cell's replication machinery by blocking the action of key TSG. HBx protein is a

  12. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart

    OpenAIRE

    F. De Majo; M. Calore

    2018-01-01

    Epigenetics refers to all the changes in phenotype and gene expression which are not due to alterations in the DNA sequence. These mechanisms have a pivotal role not only in the development but also in the maintenance during adulthood of a physiological phenotype of the heart. Because of the crucial role of epigenetic modifications, their alteration can lead to the arise of pathological conditions.Heart failure affects an estimated 23 million people worldwide and leads to substantial numbers ...

  13. Epigenetics in Breast and Prostate Cancer

    OpenAIRE

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V.

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methy...

  14. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.

    Science.gov (United States)

    Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos

    2014-09-04

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.

  15. The Social Brain Meets the Reactive Genome: Neuroscience, Epigenetics and the New Social Biology

    Directory of Open Access Journals (Sweden)

    Maurizio eMeloni

    2014-05-01

    Full Text Available The rise of molecular epigenetics over the last few years promises to bring the discourse about the sociality and susceptibility to environmental influences of the brain to an entirely new level. Epigenetics deals with molecular mechanisms such as gene expression, which may embed in the organism memories of social experiences and environmental exposures. These changes in gene expression may be transmitted across generations without changes in the DNA sequence. Epigenetics is the most advanced example of the new postgenomic and context-dependent view of the gene that is making its way into contemporary biology. In my article I will use the current emergence of epigenetics and its link with neuroscience research as an example of the new, and in a way unprecedented, sociality of contemporary biology. After a review of the most important developments of epigenetic research, and some of its links with neuroscience, in the second part I reflect on the novel challenges that epigenetics presents for the social sciences for a re-conceptualization of the link between the biological and the social in a postgenomic age. Although epigenetics remains a contested, hyped, and often uncritical terrain, I claim that especially when conceptualized in broader non-genecentric frameworks, it has a genuine potential to reformulate the ossified biology/society debate.

  16. The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology.

    Science.gov (United States)

    Meloni, Maurizio

    2014-01-01

    The rise of molecular epigenetics over the last few years promises to bring the discourse about the sociality and susceptibility to environmental influences of the brain to an entirely new level. Epigenetics deals with molecular mechanisms such as gene expression, which may embed in the organism "memories" of social experiences and environmental exposures. These changes in gene expression may be transmitted across generations without changes in the DNA sequence. Epigenetics is the most advanced example of the new postgenomic and context-dependent view of the gene that is making its way into contemporary biology. In my article I will use the current emergence of epigenetics and its link with neuroscience research as an example of the new, and in a way unprecedented, sociality of contemporary biology. After a review of the most important developments of epigenetic research, and some of its links with neuroscience, in the second part I reflect on the novel challenges that epigenetics presents for the social sciences for a re-conceptualization of the link between the biological and the social in a postgenomic age. Although epigenetics remains a contested, hyped, and often uncritical terrain, I claim that especially when conceptualized in broader non-genecentric frameworks, it has a genuine potential to reformulate the ossified biology/society debate.

  17. How does the social environment 'get into the mind'? Epigenetics at the intersection of social and psychiatric epidemiology.

    Science.gov (United States)

    Toyokawa, Satoshi; Uddin, Monica; Koenen, Karestan C; Galea, Sandro

    2012-01-01

    The social environment plays a considerable role in determining major psychiatric disorders. Emerging evidence suggests that features of the social environment modify gene expression independently of the primary DNA sequence through epigenetic processes. Accordingly, dysfunction of epigenetic mechanisms offers a plausible mechanism by which an adverse social environment gets "into the mind" and results in poor mental health. The purpose of this review is to provide an overview of the studies suggesting that epigenetic changes introduced by the social environment then manifest as psychological consequences. Our goal is to build a platform to discuss the ways in which future epidemiologic studies may benefit from including epigenetic measures. We focus on schizophrenia, major depressive disorder, post-traumatic stress disorder, anorexia nervosa, and substance dependence as examples that highlight the ways in which social environmental exposures, mediated through epigenetic processes, affect mental health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia.

    Science.gov (United States)

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin

    2015-08-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. Epigenetics of prostate cancer.

    Science.gov (United States)

    McKee, Tawnya C; Tricoli, James V

    2015-01-01

    The introduction of novel technologies that can be applied to the investigation of the molecular underpinnings of human cancer has allowed for new insights into the mechanisms associated with tumor development and progression. They have also advanced the diagnosis, prognosis and treatment of cancer. These technologies include microarray and other analysis methods for the generation of large-scale gene expression data on both mRNA and miRNA, next-generation DNA sequencing technologies utilizing a number of platforms to perform whole genome, whole exome, or targeted DNA sequencing to determine somatic mutational differences and gene rearrangements, and a variety of proteomic analysis platforms including liquid chromatography/mass spectrometry (LC/MS) analysis to survey alterations in protein profiles in tumors. One other important advancement has been our current ability to survey the methylome of human tumors in a comprehensive fashion through the use of sequence-based and array-based methylation analysis (Bock et al., Nat Biotechnol 28:1106-1114, 2010; Harris et al., Nat Biotechnol 28:1097-1105, 2010). The focus of this chapter is to present and discuss the evidence for key genes involved in prostate tumor development, progression, or resistance to therapy that are regulated by methylation-induced silencing.

  20. Epigenetics in the Neoliberal "Regime of Truth": A Biopolitical Perspective on Knowledge Translation.

    Science.gov (United States)

    Dupras, Charles; Ravitsky, Vardit

    2016-01-01

    Recent findings in epigenetics have been attracting much attention from social scientists and bioethicists because they reveal the molecular mechanisms by which exposure to socioenvironmental factors, such as pollutants and social adversity, can influence the expression of genes throughout life. Most surprisingly, some epigenetic modifications may also be heritable via germ cells across generations. Epigenetics may be the missing molecular evidence of the importance of using preventive strategies at the policy level to reduce the incidence and prevalence of common diseases. But while this "policy translation" of epigenetics introduces new arguments in favor of public health strategies and policy-making, a more "clinical translation" of epigenetics is also emerging. It focuses on the biochemical mechanisms and epigenetic variants at the origin of disease, leading to novel biomedical means of assessing epigenetic susceptibility and reversing detrimental epigenetic variants. In this paper, we argue that the impetus to create new biomedical interventions to manipulate and reverse epigenetic variants is likely to garner more attention than effective social and public health interventions and therefore also to garner a greater share of limited public resources. This is likely to happen because of the current biopolitical context in which scientific findings are translated. This contemporary neoliberal "regime of truth," to use a term from Michel Foucault, greatly influences the ways in which knowledge is being interpreted and implemented. Building on sociologist Thomas Lemke's Foucauldian "analytics of biopolitics" and on literature from the field of science and technology studies, we present two sociological trends that may impede the policy translation of epigenetics: molecularization and biomedicalization. These trends, we argue, are likely to favor the clinical translation of epigenetics-in other words, the development of new clinical tools fostering what has been

  1. Epigenetic susceptibility factors for prostate cancer with aging.

    Science.gov (United States)

    Damaschke, N A; Yang, B; Bhusari, S; Svaren, J P; Jarrard, D F

    2013-12-01

    Increasing age is a significant risk factor for prostate cancer. The prostate is exposed to environmental and endogenous stress that may underlie this remarkable incidence. DNA methylation, genomic imprinting, and histone modifications are examples of epigenetic factors known to undergo change in the aging and cancerous prostate. In this review we examine the data linking epigenetic alterations in the prostate with aging to cancer development. An online search of current and past peer reviewed literature on epigenetic changes with cancer and aging was performed. Relevant articles were analyzed. Epigenetic changes are responsible for modifying expression of oncogenes and tumor suppressors. Several of these changes may represent a field defect that predisposes to cancer development. Focal hypermethylation occurs at CpG islands in the promoters of certain genes including GSTP1, RARβ2, and RASSF1A with both age and cancer, while global hypomethylation is seen in prostate cancer and known to occur in the colon and other organs. A loss of genomic imprinting is responsible for biallelic expression of the well-known Insulin-like Growth Factor 2 (IGF2) gene. Loss of imprinting (LOI) at IGF2 has been documented in cancer and is also known to occur in benign aging prostate tissue marking the presence of cancer. Histone modifications have the ability to dictate chromatin structure and direct gene expression. Epigenetic changes with aging represent molecular mechanisms to explain the increased susceptibly of the prostate to develop cancer in older men. These changes may provide an opportunity for diagnostic and chemopreventive strategies given the epigenome can be modified. © 2013 Wiley Periodicals, Inc.

  2. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  3. Mechanical behavior of an instrumented shotcrete drifts definitive lining in a 500 m deep clay formation

    International Nuclear Information System (INIS)

    Zghondi, Jad; Armand, Gilles; Noiret, Aurelien

    2012-01-01

    Document available in extended abstract form only. At the Meuse/Haute Marne Underground Research Laboratory (URL), Andra has developed a technical and scientific program to test excavation methods in a 500 m deep Callovo Oxfordian clay-stone to demonstrate feasibility of nuclear waste disposal Different types of drift excavations and reinforcements methods has been and will be tested at the URL,in order to evaluate the impact on the surrounding rock behavior, especially the EDZ, and to optimize the design of the reinforcement. At the beginning soft support has been used to let drifts converge, and from time to time the stiffness of support has been increase up to emplace gasketed pre-cast concrete segmental rings just after an open face tunneling excavation end of 2013. In this previous experiment, the target was to apply and on a short time a stiff reinforcement that can have a similar behavior as a pre-cast concrete ring. This paper will present the experimental layout, the measurement tools as well as the first results. The instrumented drift section 'BPE' is 15 m long and 6,3 m diameter; it was excavated by a BRH machine. The excavation sequence was realized with a one meter excavation pass. After each pass, a 10 cm layer of wet mixed fiber reinforced shotcrete was applied on the vault, and 45 cm on the counter vault. The vault 45 cm thickness was reached after three other layers added respectively while proceeding with the three following pass of excavation. Different kinds of measurements were carried out before, during and after excavation, in a way to evaluate the loading of the shotcrete reinforcement as well as the hydro-mechanical behavior of the host rock. Before the excavation of the drift, three standard diameter boreholes have been drilled around the planned drift. They have been equipped with pressure and deformation measurements in a way to monitor the hydro-mechanical impact of the excavation on the surrounding rock. While excavating, the

  4. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    Science.gov (United States)

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  5. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    Science.gov (United States)

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  6. RNA-directed DNA methylation: Mechanisms and functions

    KAUST Repository

    Mahfouz, Magdy M.

    2010-01-01

    Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response

  7. [Genetics and epigenetics in autism].

    Science.gov (United States)

    Nakayama, Atsuo; Masaki, Shiego; Aoki, Eiko

    2006-11-01

    Autism is a behaviorally defined syndrome characterized by impaired social interaction and communication, and restricted, stereotyped interests and behaviors. Several lines of evidence support the contention that genetic factors are a large component to autism etiology. However, in spite of vigorous genetic studies, no single causative or susceptibility gene common in autism has been identified. Thus multiple susceptibility genes in interaction are considered to account for the disorder. Furthermore, environmental risk factors can accelerate the autism development of. Recent advances in understanding the epigenetic regulation may shed light on the interaction among multiple genetic factors and environmental factors.

  8. Epigenetic modulators of thyroid cancer.

    Science.gov (United States)

    Rodríguez-Rodero, Sandra; Delgado-Álvarez, Elías; Díaz-Naya, Lucía; Martín Nieto, Alicia; Menéndez Torre, Edelmiro

    2017-01-01

    There are some well known factors involved in the etiology of thyroid cancer, including iodine deficiency, radiation exposure at early ages, or some genetic changes. However, epigenetic modulators that may contribute to development of these tumors and be helpful to for both their diagnosis and treatment have recently been discovered. The currently known changes in DNA methylation, histone modifications, and non-coding RNAs in each type of thyroid carcinoma are reviewed here. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Epigenetic Therapy in Human Choriocarcinoma

    Directory of Open Access Journals (Sweden)

    Hisashi Narahara

    2010-09-01

    Full Text Available Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in choriocarcinomas, novel compounds endowed with a histone deacetylase (HDAC inhibitory activity are an attractive therapeutic approach. HDAC inhibitors (HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in choriocarcinoma cell lines. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating choriocarcinoma, with a special focus on preclinical studies.

  10. Investigation of epigenetic gene regulation in Arabidopsis modulated by gamma radiation

    International Nuclear Information System (INIS)

    Woo, Hye Ryun; Kim, Jae Sung; Lee, Myung Jin; Lee, Dong Joon; Kim, Young Min; Jung, Joon Yong; Han, Wan Keun; Kang, Soo Jin

    2011-12-01

    To investigate epigenetic gene regulation in Arabidopsis modulated by gamma radiation, we examined the changes in DNA methylation and histone modification after gamma radiation and investigated the effects of gamma radiation on epigenetic information and gene expression. We have selected 14 genes with changes in DNA methylation by gamma radiation, analyzed the changes of histone modification in the selected genes to reveal the relationship between DNA methylation and histone modification by gamma radiation. We have also analyzed the effects of gamma radiation on gene expression to investigate the relationship between epigenetic information and gene expression by gamma radiation. The results will be useful to reveal the effects of gamma radiation on DNA methylation, histone modification and gene expression. We anticipate that the information generated in this proposal will help to find out the mechanism underlying the changes in epigenetic information by gamma radiation

  11. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans.

    Science.gov (United States)

    Wang, Yan; Liu, Huijie; Sun, Zhongsheng

    2017-11-01

    Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non-genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non-DNA sequence-based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment-induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non-coding RNAs, are also summarized. We particularly focus on evidence that parental environment-induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex-specific effects. The thought-provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome-wide level and single-cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental

  12. Sexually selected traits: a fundamental framework for studies on behavioral epigenetics.

    Science.gov (United States)

    Jašarević, Eldin; Geary, David C; Rosenfeld, Cheryl S

    2012-01-01

    Emerging evidence suggests that epigenetic-based mechanisms contribute to various aspects of sex differences in brain and behavior. The major obstacle in establishing and fully understanding this linkage is identifying the traits that are most susceptible to epigenetic modification. We have proposed that sexual selection provides a conceptual framework for identifying such traits. These are traits involved in intrasexual competition for mates and intersexual choice of mating partners and generally entail a combination of male-male competition and female choice. These behaviors are programmed during early embryonic and postnatal development, particularly during the transition from the juvenile to adult periods, by exposure of the brain to steroid hormones, including estradiol and testosterone. We evaluate the evidence that endocrine-disrupting compounds, including bisphenol A, can interfere with the vital epigenetic and gene expression pathways and with the elaboration of sexually selected traits with epigenetic mechanisms presumably governing the expression of these traits. Finally, we review the evidence to suggest that these steroid hormones can induce a variety of epigenetic changes in the brain, including the extent of DNA methylation, histone protein alterations, and even alterations of noncoding RNA, and that many of the changes differ between males and females. Although much previous attention has focused on primary sex differences in reproductive behaviors, such as male mounting and female lordosis, we outline why secondary sex differences related to competition and mate choice might also trace their origins back to steroid-induced epigenetic programming in disparate regions of the brain.

  13. Epigenetics of obesity: beyond the genome sequence.

    Science.gov (United States)

    Cordero, Paul; Li, Jiawei; Oben, Jude A

    2015-07-01

    After the study of the gene code as a trigger for obesity, epigenetic code has appeared as a novel tool in the diagnosis, prognosis and treatment of obesity, and its related comorbidities. This review summarizes the status of the epigenetic field associated with obesity, and the current epigenetic-based approaches for obesity treatment. Thanks to technical advances, novel and key obesity-associated polymorphisms have been described by genome-wide association studies, but there are limitations with their predictive power. Epigenetics is also studied for disease association, which involves decoding of the genome information, transcriptional status and later phenotypes. Obesity could be induced during adult life by feeding and other environmental factors, and there is a strong association between obesity features and specific epigenetic patterns. These patterns could be established during early life stages, and programme the risk of obesity and its comorbidities during adult life. Furthermore, recent studies have shown that DNA methylation profile could be applied as biomarkers of diet-induced weight loss treatment. High-throughput technologies, recently implemented for commercial genetic test panels, could soon lead to the creation of epigenetic test panels for obesity. Nonetheless, epigenetics is a modifiable risk factor, and different dietary patterns or environmental insights during distinct stages of life could lead to rewriting of the epigenetic profile.

  14. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for ...

  15. Epigenetic variation in asexually reproducing organisms

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Preite, V.

    2014-01-01

    The role that epigenetic inheritance can play in adaptation may differ between sexuals and asexuals because (1) the dynamics of adaptation differ under sexual and asexual reproduction and the opportunities offered by epigenetic inheritance may affect these dynamics differently; and (2) in asexual

  16. Epigenetics and environmental impacts in cattle

    Science.gov (United States)

    This chapter reviews the major advances in the field of epigenetics as well as the environmental impacts of cattle. Many findings from our own research endeavors related to the topic of this chapter are also introduced. The phenotypic characterization of an animal can be changed through epigenetic ...

  17. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  18. Peromyscus as a Mammalian Epigenetic Model

    Directory of Open Access Journals (Sweden)

    Kimberly R. Shorter

    2012-01-01

    Full Text Available Deer mice (Peromyscus offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.

  19. Epigenetics: the language of the cell?

    Science.gov (United States)

    Huang, Biao; Jiang, Cizhong; Zhang, Rongxin

    2014-02-01

    Epigenetics is one of the most rapidly developing fields of biological research. Breakthroughs in several technologies have enabled the possibility of genome-wide epigenetic research, for example the mapping of human genome-wide DNA methylation. In addition, with the development of various high-throughput and high-resolution sequencing technologies, a large number of functional noncoding RNAs have been identified. Massive studies indicated that these functional ncRNA also play an important role in epigenetics. In this review, we gain inspiration from the recent proposal of the ceRNAs hypothesis. This hypothesis proposes that miRNAs act as a language of communication. Accordingly, we further deduce that all of epigenetics may functionally acquire such a unique language characteristic. In summary, various epigenetic markers may not only participate in regulating cellular processes, but they may also act as the intracellular 'language' of communication and are involved in extensive information exchanges within cell.

  20. Epigenetics and cancer: implications for drug discovery and safety assessment

    International Nuclear Information System (INIS)

    Moggs, Jonathan G.; Goodman, Jay I.; Trosko, James E.; Roberts, Ruth A.

    2004-01-01

    It is necessary to determine whether chemicals or drugs have the potential to pose a threat to human health. Research conducted over the last two decades has led to the paradigm that chemicals can cause cancer either by damaging DNA or by altering cellular growth, probably via receptor-mediated changes in gene expression. However, recent evidence suggests that gene expression can be altered markedly via several diverse epigenetic mechanisms that can lead to permanent or reversible changes in cellular behavior. Key molecular events underlying these mechanisms include the alteration of DNA methylation and chromatin, and changes in the function of cell surface molecules. Thus, for example, DNA methyltransferase enzymes together with chromatin-associated proteins such as histone modifying enzymes and remodelling factors can modify the genetic code and contribute to the establishment and maintenance of altered epigenetic states. This is relevant to many types of toxicity including but not limited to cancer. In this paper, we describe the potential for interplay between genetic alteration and epigenetic changes in cell growth regulation and discuss the implications for drug discovery and safety assessment

  1. Epigenetics and obesity: the devil is in the details.

    Science.gov (United States)

    Franks, Paul W; Ling, Charlotte

    2010-12-21

    Obesity is a complex disease with multiple well-defined risk factors. Nevertheless, susceptibility to obesity and its sequelae within obesogenic environments varies greatly from one person to the next, suggesting a role for gene × environment interactions in the etiology of the disorder. Epigenetic regulation of the human genome provides a putative mechanism by which specific environmental exposures convey risk for obesity and other human diseases and is one possible mechanism that underlies the gene × environment/treatment interactions observed in epidemiological studies and clinical trials. A study published in BMC Medicine this month by Wang et al. reports on an examination of DNA methylation in peripheral blood leukocytes of lean and obese adolescents, comparing methylation patterns between the two groups. The authors identified two genes that were differentially methylated, both of which have roles in immune function. Here we overview the findings from this study in the context of those emerging from other recent genetic and epigenetic studies, discuss the strengths and weaknesses of the study and speculate on the future of epigenetics in chronic disease research.

  2. Impact of physical activity and doping on epigenetic gene regulation.

    Science.gov (United States)

    Schwarzenbach, Heidi

    2011-10-01

    To achieve success in sports, many athletes consume doping substances, such as anabolic androgenic steroids and growth hormones, and ignore the negative influence of these drugs on their health. Apart from the unethical aspect of doping in sports, it is essential to consider the tremendous risk it represents to their physical condition. The abuse of pharmaceuticals which improve athletic performance may alter the expression of specific genes involved in muscle and bone metabolism by epigenetic mechanisms, such as DNA methylation and histone modifications. Moreover, excessive and relentless training to increase the muscle mass, may also have an influence on the health of the athletes. This stress releases neurotransmitters and growth factors, and may affect the expression of endogenous genes by DNA methylation, too. This paper focuses on the relationship between epigenetic mechanisms and sports, highlights the potential consequences of abuse of doping drugs on gene expression, and describes methods to molecularly detect epigenetic changes of gene markers reflecting the physiological or metabolic effects of doping agents. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Epigenetic changes in neurology: DNA methylation in multiple sclerosis.

    Science.gov (United States)

    Iridoy Zulet, M; Pulido Fontes, L; Ayuso Blanco, T; Lacruz Bescos, F; Mendioroz Iriarte, M

    2017-09-01

    Epigenetics is defined as the study of the mechanisms that regulate gene expression without altering the underlying DNA sequence. The best known is DNA methylation. Multiple Sclerosis (MS) is a disease with no entirely known etiology, in which it is stated that the involvement of environmental factors on people with a genetic predisposition, may be key to the development of the disease. It is at this intersection between genetic predisposition and environmental factors where DNA methylation may play a pathogenic role. A literature review of the effects of environmental risk factors for the development of MS can have on the different epigenetic mechanisms as well as the implication that such changes have on the development of the disease. Knowledge of epigenetic modifications involved in the pathogenesis of MS, opens a new avenue of research for identification of potential biomarkers, as well as finding new therapeutic targets. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  5. Epigenetics and obesity: the devil is in the details

    Directory of Open Access Journals (Sweden)

    Franks Paul W

    2010-12-01

    Full Text Available Abstract Obesity is a complex disease with multiple well-defined risk factors. Nevertheless, susceptibility to obesity and its sequelae within obesogenic environments varies greatly from one person to the next, suggesting a role for gene × environment interactions in the etiology of the disorder. Epigenetic regulation of the human genome provides a putative mechanism by which specific environmental exposures convey risk for obesity and other human diseases and is one possible mechanism that underlies the gene × environment/treatment interactions observed in epidemiological studies and clinical trials. A study published in BMC Medicine this month by Wang et al. reports on an examination of DNA methylation in peripheral blood leukocytes of lean and obese adolescents, comparing methylation patterns between the two groups. The authors identified two genes that were differentially methylated, both of which have roles in immune function. Here we overview the findings from this study in the context of those emerging from other recent genetic and epigenetic studies, discuss the strengths and weaknesses of the study and speculate on the future of epigenetics in chronic disease research. See research article: http://www.biomedcentral.com/1741-7015/8/87/abstract

  6. The developmental environment, epigenetic biomarkers and long-term health.

    Science.gov (United States)

    Godfrey, K M; Costello, P M; Lillycrop, K A

    2015-10-01

    Evidence from both human and animal studies has shown that the prenatal and early postnatal environments influence susceptibility to chronic disease in later life and suggests that epigenetic processes are an important mechanism by which the environment alters long-term disease risk. Epigenetic processes, including DNA methylation, histone modification and non-coding RNAs, play a central role in regulating gene expression. The epigenome is highly sensitive to environmental factors in early life, such as nutrition, stress, endocrine disruption and pollution, and changes in the epigenome can induce long-term changes in gene expression and phenotype. In this review we focus on how the early life nutritional environment can alter the epigenome leading to an altered susceptibility to disease in later life.

  7. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-12-01

    The umbilical cord is part of the fetus and generally includes one umbilical vein (UV) and two umbilical arteries (UAs). As the saphenous vein and UV are the most commonly used veins for the coronary artery disease treatment as a coronary artery bypass graft (CABG), understating the mechanical properties of UV has a key asset in its performance for CABG. However, there is not only a lack of knowledge on the mechanical properties of UV and UA but there is no agreement as to which stress-strain definition should be implemented to measure their mechanical properties. In this study, the UV and UA samples were removed after caesarean from eight individuals and subjected to a series of tensile testing. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were employed to determine the linear mechanical properties of UVs and UAs. The nonlinear mechanical behavior of UV/UA was computationally investigated using hyperelastic material models, such as Ogden and Mooney-Rivlin. The results showed that the effect of varying the stress definition on the maximum stress measurements of the UV/UA is significant but not when calculating the elastic modulus. In the true stress-strain diagram, the maximum strain of UV was 92 % higher, while the elastic modulus and maximum stress were 162 and 42 % lower than that of UA. The Mooney-Rivlin material model was designated to represent the nonlinear mechanical behavior of the UV and UA under uniaxial loading.

  8. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Esther R Berko

    Full Text Available DNA mutational events are increasingly being identified in autism spectrum disorder (ASD, but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement

  9. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives.

    Science.gov (United States)

    Vogt, Gunter

    2018-03-01

    In the last 15 years, considerable attempts have been undertaken to develop the obligately parthenogenetic marbled crayfish Procambarus virginalis as a new model in biology. Its main advantage is the production of large numbers of offspring that are genetically identical to the mother, making this crustacean particularly suitable for research in epigenetics. Now, a draft genome, transcriptome and genome-wide methylome are available opening new windows for research. In this article, I summarize the biological advantages and genomic and epigenetic features of marbled crayfish and, based on first promising data, discuss what this new model could contribute to answering of ''big'' biological questions. Genome mining is expected to reveal new insights into the genetic specificities of decapod crustaceans, the genetic basis of arthropod reproduction, moulting and immunity, and more general topics such as the genetic underpinning of adaptation to fresh water, omnivory, biomineralization, sexual system change, behavioural variation, clonal genome evolution, and resistance to cancer. Epigenetic investigations with the marbled crayfish can help clarifying the role of epigenetic mechanisms in gene regulation, tissue specification, adult stem cell regulation, cell ageing, organ regeneration and disease susceptibility. Marbled crayfish is further suitable to elucidate the relationship between genetic and epigenetic variation, the transgenerational inheritance of epigenetic signatures and the contribution of epigenetic phenotype variation to the establishment of social hierarchies, environmental adaptation and speciation. These issues can be tackled by experiments with highly standardized laboratory lineages, comparison of differently adapted wild populations and the generation of genetically and epigenetically edited strains.

  10. Epigenetics in Paediatric Gastroenterology, Hepatology, and Nutrition: Present Trends and Future Perspectives.

    Science.gov (United States)

    Zilbauer, Matthias; Zellos, Aglaia; Heuschkel, Robert; Gasparetto, Marco; Kraiczy, Judith; Postberg, Jan; Greco, Luigi; Auricchio, Renata; Galatola, Martina; Embleton, Nicholas; Wirth, Stefan; Jenke, Andreas

    2016-04-01

    Epigenetics can be defined as stable, potentially heritable changes in the cellular phenotype caused by mechanisms other than alterations to the underlying DNA sequence. As such, any observed phenotypic changes including organ development, aging, and the occurrence of disease could be driven by epigenetic mechanisms in the presence of stable cellular DNA sequences. Indeed, with the exception of rare mutations, the human genome-sequence has remained remarkably stable over the past centuries. In contrast, substantial changes to our environment as part of our modern life style have not only led to a significant reduction of certain infectious diseases but also seen the exponential increase in complex traits including obesity and multifactorial diseases such as autoimmune disorders. It is becoming increasingly clear that epigenetic mechanisms operate at the interface between the genetic code and our environment, and a large body of existing evidence supports the importance of environmental factors such as diet and nutrition, infections, and exposure to toxins on human health. This seems to be particularly the case during vulnerable periods of human development such as pregnancy and early life. Importantly, as the first point of contact for many of such environmental factors including nutrition, the digestive system is being increasingly linked to a number of "modern" pathologies. In this review article, we aim to give a brief introduction to the basic molecular principals of epigenetics and provide a concise summary of the existing evidence for the role of epigenetic mechanisms in gastrointestinal health and disease, hepatology, and nutrition.

  11. [Epigenetics of childhood obesity and diabetes].

    Science.gov (United States)

    Valladares-Salgado, Adán; Suárez-Sánchez, Fernando; Burguete-García, Ana I; Cruz, Miguel

    2014-01-01

    Obesity and type 2 diabetes mellitus (T2DM) result from sedentary lifestyle, high-carbohydrate diets and genetic predisposition. Epigenetics is a form of genetic regulation in specialized cells that does not involve changes in the deoxyribonucleic acid (DNA) sequence, but it can be inherited to one or more generations through mitosis or meiosis. Children whose mothers develop gestational diabetes are more likely to become obese and diabetic in adult life. DNA methylation is a major mechanism in the regulation of transcription and gene expression of several genes. High levels of glucose and insulin during pregnancy modify the risk of developing T2DM, suggesting that the expression pattern is modified due to cell memory in a specific tissue. If T2DM is linked to adaptation in utero, the obvious primary prevention is to protect the fetal development. Future epidemiological studies need to employ more accurate indicators or markers of development to show the relationship between a specific disease and the exposure to environmental factors. The mechanisms by which malnutrition, and intrauterine growth retardation produce changes in the metabolism of glucose and insuline are worth to explore in order to control obesity and T2DM.

  12. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  13. Epigenetic Dysregulation in Laryngeal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Thian-Sze Wong

    2012-01-01

    Full Text Available Laryngeal carcinoma is a common head and neck cancer with poor prognosis. Patients with laryngeal carcinoma usually present late leading to the reduced treatment efficacy and high rate of recurrence. Despite the advance in the use of molecular markers for monitoring human cancers in the past decades, there are still no reliable markers for use to screen laryngeal carcinoma and follow the patients after treatment. Epigenetics emerged as an important field in understanding the biology of the human malignancies. Epigenetic alterations refer to the dysregulation of gene, which do not involve the alterations of the DNA sequence. Major epigenetic changes including methylation imbalance, histone modification, and small RNA dysregulation could play a role in the development of human malignancies. Global epigenetic change is now regarded as a molecular signature of cancer. The characteristics and behavior of a cancer could be predicted based on the specific epigenetic pattern. We here provide a review on the understanding of epigenetic dysregulation in laryngeal carcinoma. Further knowledge on the initiation and progression of laryngeal carcinoma at epigenetic level could promote the translation of the knowledge to clinical use.

  14. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Prostate cancer epigenetics and its clinical implications.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan

    2016-01-01

    Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  16. Prostate cancer epigenetics and its clinical implications

    Directory of Open Access Journals (Sweden)

    Srinivasan Yegnasubramanian

    2016-01-01

    Full Text Available Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  17. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders.

    Science.gov (United States)

    Nardone, Stefano; Elliott, Evan

    2016-01-01

    Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as a process susceptible to environmental influences and potentially causative of autism spectrum disorders (ASD). In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism.

  18. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Stefano Nardone

    2016-07-01

    Full Text Available Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as process susceptible to environmental influences and potentially causative of ASD. In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism.

  19. [Nutritionnal epigenomics: consequences of unbalanced diets on epigenetics processes of programming during lifespan and between generations].

    Science.gov (United States)

    Junien, C; Gallou-Kabani, C; Vigé, A; Gross, M-S

    2005-04-01

    Epigenetic changes associated with DNA methylation and histone modifications leading to chromatin remodeling and regulation of gene expression underlie the developmental programming of obesity, type 2 diabetes, cardiovascular diseases and metabolic syndrome. This review focuses on converging data supporting the hypothesis that, in addition to "thrifty genotype" inheritance, individuals with obesity, type 2 diabetes, and metabolic syndrome (MetS) with an increased risk of cardiovascular diseases have suffered improper "epigenetic programming" during their fetal/postnatal development due to maternal inadequate nutrition and metabolic disturbances and also during their lifetime, that could even be transmitted to the next generation(s). We highlight the susceptibility of epigenetic mechanisms controlling gene expression to environmental influences due to their inherent malleability, emphasizing the participation of transposable elements and the potential role of imprinted genes during critical time windows in epigenetic programming, from the very beginning of development, throughout life. Increasing our understanding on epigenetic patterns significance and their role in development, evolution and adaptation and on small molecules (nutrients, drugs) that reverse epigenetic (in)activation should provide us with the means to "unlock" silenced (enhanced) genes, and to "convert" the obsolete human thrifty genotype into a "squandering" phenotype.

  20. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease.

    Science.gov (United States)

    Tharmalingam, Sujeenthar; Sreetharan, Shayenthiran; Kulesza, Adomas V; Boreham, Douglas R; Tai, T C

    2017-10-01

    Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.