WorldWideScience

Sample records for epidermal cytosolic proteins

  1. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    Science.gov (United States)

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Mechanistic logic underlying the axonal transport of cytosolic proteins

    Science.gov (United States)

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  3. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.

    Science.gov (United States)

    Schröder, Katrin; Weissmann, Norbert; Brandes, Ralf P

    2017-08-01

    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI...... approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...

  5. Expression and analysis of exogenous proteins in epidermal cells.

    Science.gov (United States)

    Dagnino, Lina; Ho, Ernest; Chang, Wing Y

    2010-01-01

    In this chapter we review protocols for transient transfection of primary keratinocytes. The ability to transfect primary epidermal cells regardless of their differentiation status allows the biochemical and molecular characterization of multiple proteins. We review methods to analyze exogenous protein abundance in transfected keratinocytes by immunoblot and immunoprecipitation. We also present protocols to determine the subcellular distribution of these proteins by indirect immunofluorescence microscopy approaches.

  6. Effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice

    International Nuclear Information System (INIS)

    Meng Qingyong; Chen Shali; Liu Shuzheng

    2003-01-01

    Objective: To the effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice. Methods: The expression of proteins was analyzed by gel filtration with Sephadex G-100 and HPLC based on separation of proteins on thymocyte cytosol and nuclei after whole-body irradiation with 75 mGy X-rays and sham-irradiation, and their biological activity was examined by mouse splenocyte proliferation and chromosome aberration of human peripheral blood lymphocytes. Results: HPLC analysis showed that there was a marked increase in expression of 61.4 kD protein in the extract of thymocyte cytosol and 30.4 kD protein in the extract of thymocyte nuclei in comparison with the corresponding fractions from the sham-irradiated control mice. These protein fractions from the thymocyte cytosol and nuclei of the irradiated mice showed both stimulating effect on normal T cell proliferation and protective effect on chromosome damage induced by high dose radiation. Conclusion: These findings might have implications in study of mechanism of immunoenhancement and cytogenetic adaptive response induced by low dose radiation

  7. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J

    2014-01-01

    The acyl-CoA binding protein (ACBP) is a 10kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different...... includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced...

  8. Measurement of binding of adenine nucleotides and phosphate to cytosolic proteins in permeabilized rat-liver cells

    NARCIS (Netherlands)

    Gankema, H. S.; Groen, A. K.; Wanders, R. J.; Tager, J. M.

    1983-01-01

    1. A method is described for measuring the binding of metabolites to cytosolic proteins in situ in isolated rat-liver cells treated with filipin to render the plasma membrane permeable to compounds of low molecular weight. 2. There is no binding of ATP or inorganic phosphate to cytosolic proteins,

  9. Copper, Zinc Superoxide Dismutase is Primarily a Cytosolic Protein in Human Cells

    Science.gov (United States)

    Crapo, James D.; Oury, Tim; Rabouille, Catherine; Slot, Jan W.; Chang, Ling-Yi

    1992-11-01

    The intracellular localization of human copper, zinc superoxide dismutase (Cu,Zn-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) was evaluated by using EM immunocytochemistry and both isolated human cell lines and human tissues. Eight monoclonal antibodies raised against either native or recombinant human Cu,Zn-SOD and two polyclonal antibodies raised against either native or recombinant human Cu,Zn-SOD were used. Fixation with 2% paraformaldehyde/0.2% glutaraldehyde was found necessary to preserve normal distribution of the protein. Monoclonal antibodies were less effective than polyclonal antibodies in recognizing the antigen after adequate fixation of tissue. Cu,Zn-SOD was found widely distributed in the cell cytosol and in the cell nucleus, consistent with it being a soluble cytosolic protein. Mitochondria and secretory compartments did not label for this protein. In human cells, peroxisomes showed a labeling density slightly less than that of cytoplasm.

  10. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  11. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction.

    Directory of Open Access Journals (Sweden)

    Wolfgang Giese

    2018-04-01

    Full Text Available The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus.

  12. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    Science.gov (United States)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  13. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  14. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    Science.gov (United States)

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  15. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility.

    Directory of Open Access Journals (Sweden)

    Sophie A Comyn

    2016-07-01

    Full Text Available Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.

  16. Nitrate Activation of Cytosolic Protein Kinases Diverts Photosynthetic Carbon from Sucrose to Amino Acid Biosynthesis

    Science.gov (United States)

    Champigny, Marie-Louise; Foyer, Christine

    1992-01-01

    The regulation of carbon partitioning between carbohydrates (principally sucrose) and amino acids has been only poorly characterized in higher plants. The hypothesis that the pathway of sucrose and amino acid biosynthesis compete for carbon skeletons and energy is widely accepted. In this review, we suggest a mechanism involving the regulation of cytosolic protein kinases whereby the flow of carbon is regulated at the level of partitioning between the pathways of carbohydrate and nitrogen metabolism via the covalent modulation of component enzymes. The addition of nitrate to wheat seedlings (Triticum aestivum) grown in the absence of exogenous nitrogen has a dramatic, if transient, impact on sucrose formation and on the activities of sucrose phosphate synthase (which is inactivated) and phosphoenolpyruvate carboxylase (which is activated). The activities of these two enzymes are modulated by protein phosphorylation in response to the addition of nitrate, but they respond in an inverse fashion. Sucrose phosphate synthase in inactivated and phosphoenolpyruvate carboxylase is activated. Nitrate functions as a signal metabolite activating the cytosolic protein kinase, thereby modulating the activities of at least two of the key enzymes in assimilate partitioning and redirecting the flow of carbon away from sucrose biosynthesis toward amino acid synthesis. PMID:16653003

  17. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sasnauskas Kęstutis

    2011-05-01

    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  18. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    Energy Technology Data Exchange (ETDEWEB)

    Binas, B. [Max Delbrueck Center for Molecular Medicine, Berlin-Buch (Germany)

    1998-12-31

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.) [Deutsch] Fettsaeurebindungsproteine (FABPs) sind wichtige Bindungsstellen fuer Fettsaeuren in vivo; sie bilden eine breit exprimierte Familie genetisch verwandter kleiner Zytosoleiweisse, die sehr wahrscheinlich den intrazellulaeren Transport unveresterter langkettiger Fettsaeuren vermitteln. Die genetische Hemmung der FABP-Expanssion in vivo bietet sich deshalb als Werkzeug zur Erforschung und gezielten Veraenderung des Fettsaeurestoffwechsels an. (orig.)

  19. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    International Nuclear Information System (INIS)

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-01-01

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10 -6 M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla

  20. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    Science.gov (United States)

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Pressurized liquid extraction-assisted mussel cytosol preparation for the determination of metals bound to metallothionein-like proteins

    International Nuclear Information System (INIS)

    Santiago-Rivas, Sandra; Moreda-Pineiro, Antonio; Bermejo-Barrera, Pilar; Moreda-Pineiro, Jorge; Alonso-Rodriguez, Elia; Muniategui-Lorenzo, Soledad; Lopez-Mahia, Purificacion; Prada-Rodriguez, Dario

    2007-01-01

    The possibilities of pressurized liquid extraction (PLE) have been novelty tested to assist the cytosol preparation from wet mussel soft tissue before the determination of metals bound to metallothionein-like proteins (MLPs). Results obtained after PLE were compared with those obtained after a classical blending procedure for mussel cytosolic preparation. Isoforms MLP-1 (retention time of 4.1 min) and MLP-2 (retention time of 7.4 min) were separated by anion exchange high-performance liquid chromatography (HPLC) and the concentrations of Ba, Cu, Mn, Sr and Zn bound to MLP isoforms were directly measured by inductively coupled plasma-atomic emission spectrometry (ICP-OES) as a multi-element detector. The optimized PLE-assisted mussel cytosol preparation has consisted of one extraction cycle at room temperature and 1500 psi for 2 min. Since separation between the solid mussel residue and the extract (cytosol) is performed by the PLE system, the cytosol preparation method is faster than conventional cytosol preparation methods by cutting/blending using Ultraturrax or Stomacher devices

  2. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids.

    Science.gov (United States)

    Hornung, Veit; Hartmann, Rune; Ablasser, Andrea; Hopfner, Karl-Peter

    2014-08-01

    Recent discoveries in the field of innate immunity have highlighted the existence of a family of nucleic acid-sensing proteins that have similar structural and functional properties. These include the well-known oligoadenylate synthase (OAS) family proteins and the recently identified OAS homologue cyclic GMP-AMP (cGAMP) synthase (cGAS). The OAS proteins and cGAS are template-independent nucleotidyltransferases that, once activated by double-stranded nucleic acids in the cytosol, produce unique classes of 2'-5'-linked second messenger molecules, which - through distinct mechanisms - have crucial antiviral functions. 2'-5'-linked oligoadenylates limit viral propagation through the activation of the enzyme RNase L, which degrades host and viral RNA, and 2'-5'-linked cGAMP activates downstream signalling pathways to induce de novo antiviral gene expression. In this Progress article, we describe the striking functional and structural similarities between OAS proteins and cGAS, and highlight their roles in antiviral immunity.

  3. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis.

    Directory of Open Access Journals (Sweden)

    Mark A Johnson

    Full Text Available Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.

  4. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Aguayo, María Francisca; Ampuero, Diego; Mandujano, Patricio; Parada, Roberto; Muñoz, Rodrigo; Gallart, Marta; Altabella, Teresa; Cabrera, Ricardo; Stange, Claudia; Handford, Michael

    2013-05-01

    Sorbitol is converted to fructose in Rosaceae species by SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14), especially in sink organs. SDH has also been found in non-Rosaceae species and here we show that the protein encoded by At5g51970 in Arabidopsis thaliana (L.) Heynh. possesses the molecular characteristics of an SDH. Using a green fluorescent protein-tagged version and anti-SDH antisera, we determined that SDH is cytosolically localized, consistent with bioinformatic predictions. We also show that SDH is widely expressed, and that SDH protein accumulates in both source and sink organs. In the presence of NAD+, recombinant SDH exhibited greatest oxidative activity with sorbitol, ribitol and xylitol as substrates; other sugar alcohols were oxidized to a lesser extent. Under standard growth conditions, three independent sdh- mutants developed as wild-type. Nevertheless, all three exhibited reduced dry weight and primary root length compared to wild-type when grown in the presence of sorbitol. Additionally, under short-day conditions, the mutants were more resistant to dehydration stress, as shown by a reduced loss of leaf water content when watering was withheld, and a greater survival rate on re-watering. This evidence suggests that limitations in the metabolism of sugar alcohols alter the growth of Arabidopsis and its response to drought. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Cytosolic protein quality control of the orphan protein Fas2, a novel physiological substrate of the E3 ligase Ubr1

    OpenAIRE

    Scazzari, Mario

    2013-01-01

    Cellular protein quality control (PQC) monitors the proper folding of polypeptides, assembly of protein subunits into protein complexes as well as the delivery of terminally misfolded proteins to degradation. The components of PQC known best at the moment are molecular chaperones and the ubiquitin proteasome system. In contrast to the well-described protein quality control system of the endoplasmic reticulum (ERAD), less is known about how misfolded proteins in the cytosol are recognized and ...

  6. Identification and characterization of cytosolic Hansenula polymorpha proteins belonging to the Hsp70 protein family

    NARCIS (Netherlands)

    Titorenko, Vladimir I.; Evers, Melchior E.; Diesel, Andre; Samyn, Bart; Beeumen, Josef van; Roggenkamp, Rainer; Kiel, Jan A.K.W.; Klei, Ida J. van der; Veenhuis, Marten

    We have isolated two members of the Hsp70 protein family from the yeast Hansenula polymorpha using affinity chromatography. Both proteins were located in the cytoplasm. One of these, designated Hsp72, was inducible in nature (e.g. by heat shock). The second protein (designated Hsc74) was

  7. Identification of cytosolic peroxisome proliferator binding protein as a member of the heat shock protein HSP70 family.

    Science.gov (United States)

    Alvares, K; Carrillo, A; Yuan, P M; Kawano, H; Morimoto, R I; Reddy, J K

    1990-01-01

    Clofibrate and many of its structural analogues induce proliferation of peroxisomes in the hepatic parenchymal cells of rodents and certain nonrodent species including primates. This induction is tissue specific, occurring mainly in the liver parenchymal cells and to a lesser extent in the kidney cortical epithelium. The induction of peroxisomes is associated with a predictable pleiotropic response, characterized by hepatomegaly, and increased activities and mRNA levels of certain peroxisomal enzymes. Using affinity chromatography, we had previously isolated a protein that binds to clofibric acid. We now show that this protein is homologous with the heat shock protein HSP70 family by analysis of amino acid sequences of isolated peptides from trypsin-treated clofibric acid binding protein and by cross-reactivity with a monoclonal antibody raised against the conserved region of the 70-kDa heat shock proteins. The clofibric acid-Sepharose column could bind HSP70 proteins isolated from various species, which could then be eluted with either clofibric acid or ATP. Conversely, when a rat liver cytosol containing multiple members of the HSP70 family was passed through an ATP-agarose column, and eluted with clofibric acid, only P72 (HSC70) was eluted. These results suggest that clofibric acid, a peroxisome proliferator, preferentially interacts with P72 at or near the ATP binding site. Images PMID:2371272

  8. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    International Nuclear Information System (INIS)

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark; Dharmarajan, Arunasalam

    2008-01-01

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  9. Lack of upregulation of epidermal fatty acid binding protein in dithranol induced irritation.

    NARCIS (Netherlands)

    Kucharekova, M.; Vissers, W.H.P.M.; Schalkwijk, J.; Kerkhof, P.C.M. van de; Valk, P.G.M. van der

    2003-01-01

    The exact role of epidermal fatty acid binding protein (E-FABP) in skin is unknown. A restoration of the barrier function may be associated with an upregulation of E-FABP. Moreover, E-FABP is upregulated in a variety of cells in response to oxidative stress. A recent observation that dithranol

  10. Nanoparticles for cytosolic delivery of important biomolecular drugs such as DNA, RNA, peptides, and proteins

    Czech Academy of Sciences Publication Activity Database

    Sedlák, M.; Koňák, Čestmír; Dybal, Jiří

    2010-01-01

    Roč. 1, č. 2010 (2010), s. 87-90 ISSN 2210-2892 Institutional research plan: CEZ:AV0Z40500505 Keywords : cytosolic delivery * nanoparticle carriers * poly(ethylacrylic acid) Subject RIV: CD - Macromolecular Chemistry http://benthamopen.com/ABSTRACT/TOPROCJ-1-87

  11. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  12. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.

    Science.gov (United States)

    Yoshikawa, Tomoaki; Okada, Naoki; Oda, Atsushi; Matsuo, Kazuhiko; Matsuo, Keisuke; Mukai, Yohei; Yoshioka, Yasuo; Akagi, Takami; Akashi, Mitsuru; Nakagawa, Shinsaku

    2008-02-08

    Nanoscopic therapeutic systems that incorporate biomacromolecules, such as protein and peptides, are emerging as the next generation of nanomedicine aimed at improving the therapeutic efficacy of biomacromolecular drugs. In this study, we report that poly(gamma-glutamic acid)-based nanoparticles (gamma-PGA NPs) are excellent protein delivery carriers for tumor vaccines that delivered antigenic proteins to antigen-presenting cells and elicited potent immune responses. Importantly, gamma-PGA NPs efficiently delivered entrapped antigenic proteins through cytosolic translocation from the endosomes, which is a key process of gamma-PGA NP-mediated anti-tumor immune responses. Our findings suggest that the gamma-PGA NP system is suitable for the intracellular delivery of protein-based drugs as well as tumor vaccines.

  13. Autodegradation of 125I-labeled human epidermal cell surface proteins

    International Nuclear Information System (INIS)

    Hashimoto, K.; Singer, K.H.; Lazarus, G.S.

    1982-01-01

    Triton X-100 extracts of cultured human epidermal cells exhibited proteolytic activity as measured by the hydrolysis of [ 3 H]-casein at neutral pH. The majority of endogenous proteolytic activity was inhibited by parahydroxy mercuribenzoate and by mersalyl acid, indicating the enzyme(s) was a thiol class proteinase(s). Crude Triton X-100 extracts were prepared from epidermal cells following labeling of proteins with 125 I. Autodegradation of labeled proteins at 37 degrees C was detected as early as 1 hr and reached a plateau level by 4 hr. Degradation was inhibited by thiol class proteinase inhibitors. Among the detergent-solubilized radiolabeled proteins a polypeptide chain of Mr 155,000 was particularly sensitive to degradation by endogenous thiol proteinase(s)

  14. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    International Nuclear Information System (INIS)

    Price, E.M.; Ratnam, M.; Rodeman, K.M.; Freisheim, J.H.

    1988-01-01

    A radioiodinated photoaffinity analogue of methotrexate, N α -(4-amino-4-deoxy-10-methyl-pteroyl)-N ε -(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K band only in the parent cells. However, when whole cells were UV irradiated at various times at 37 degree C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37 degree C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets

  15. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  16. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier.

    Science.gov (United States)

    Crawford, Melissa; Dagnino, Lina

    2017-10-02

    The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.

  17. Hepatitis C virus non-structural protein 3 interacts with cytosolic 5'(3'-deoxyribonucleotidase and partially inhibits its activity.

    Directory of Open Access Journals (Sweden)

    Chiu-Ping Fang

    Full Text Available Infection with hepatitis C virus (HCV is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3 is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5'(3'-deoxyribonucleotidase (cdN, dNT-1 was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.

  18. "Cyt/Nuc," a Customizable and Documenting ImageJ Macro for Evaluation of Protein Distributions Between Cytosol and Nucleus.

    Science.gov (United States)

    Grune, Tilman; Kehm, Richard; Höhn, Annika; Jung, Tobias

    2018-05-01

    Large amounts of data from multi-channel, high resolution, fluorescence microscopic images require tools that provide easy, customizable, and reproducible high-throughput analysis. The freeware "ImageJ" has become one of the standard tools for scientific image analysis. Since ImageJ offers recording of "macros," even a complex multi-step process can be easily applied fully automated to large numbers of images, saving both time and reducing human subjective evaluation. In this work, we present "Cyt/Nuc," an ImageJ macro, able to recognize and to compare the nuclear and cytosolic areas of tissue samples, in order to investigate distributions of immunostained proteins between both compartments, while it documents in detail the whole process of evaluation and pattern recognition. As practical example, the redistribution of the 20S proteasome, the main intracellular protease in mammalian cells, is investigated in NZO-mouse liver after feeding the animals different diets. A significant shift in proteasomal distribution between cytosol and nucleus in response to metabolic stress was revealed using "Cyt/Nuc" via automatized quantification of thousands of nuclei within minutes. "Cyt/Nuc" is easy to use and highly customizable, matches the precision of careful manual evaluation and bears the potential for quick detection of any shift in intracellular protein distribution. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition

    Science.gov (United States)

    Rodriguez, Karl A.; Osmulski, Pawel A.; Pierce, Anson; Weintraub, Susan T.; Gaczynska, Maria; Buffenstein, Rochelle

    2015-01-01

    The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31y) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although HSP72 and HSP40 (Hdj1) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging. PMID:25018089

  20. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins.

    Science.gov (United States)

    Zenz, Rainer; Eferl, Robert; Kenner, Lukas; Florin, Lore; Hummerich, Lars; Mehic, Denis; Scheuch, Harald; Angel, Peter; Tschachler, Erwin; Wagner, Erwin F

    2005-09-15

    Psoriasis is a frequent, inflammatory disease of skin and joints with considerable morbidity. Here we report that in psoriatic lesions, epidermal keratinocytes have decreased expression of JunB, a gene localized in the psoriasis susceptibility region PSORS6. Likewise, inducible epidermal deletion of JunB and its functional companion c-Jun in adult mice leads (within two weeks) to a phenotype resembling the histological and molecular hallmarks of psoriasis, including arthritic lesions. In contrast to the skin phenotype, the development of arthritic lesions requires T and B cells and signalling through tumour necrosis factor receptor 1 (TNFR1). Prior to the disease onset, two chemotactic proteins (S100A8 and S100A9) previously mapped to the psoriasis susceptibility region PSORS4, are strongly induced in mutant keratinocytes in vivo and in vitro. We propose that the abrogation of JunB/activator protein 1 (AP-1) in keratinocytes triggers chemokine/cytokine expression, which recruits neutrophils and macrophages to the epidermis thereby contributing to the phenotypic changes observed in psoriasis. Thus, these data support the hypothesis that epidermal alterations are sufficient to initiate both skin lesions and arthritis in psoriasis.

  1. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  2. Specific binding of [alpha-32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C

    International Nuclear Information System (INIS)

    Lapetina, E.G.; Reep, B.R.

    1987-01-01

    We have assessed the binding of [alpha- 32 P]GTP to platelet proteins from cytosolic and membrane fractions. Proteins were separated by NaDodSO 4 /PAGE and electrophoretically transferred to nitrocellulose. Incubation of the nitrocellulose blots with [alpha- 32 P]GTP indicated the presence of specific and distinct GTP-binding proteins in cytosol and membranes. Binding was prevented by 10-100 nM GTP and by 100 nM guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]) or GDP; binding was unaffected by 1 nM-1 microM ATP. One main GTP-binding protein (29.5 kDa) was detected in the membrane fraction, while three others (29, 27, and 21 kDa) were detected in the soluble fraction. Two cytosolic GTP-binding proteins (29 and 27 kDa) were degraded by trypsin; another cytosolic protein (21 kDa) and the membrane-bound protein (29.5 kDa) were resistant to the action of trypsin. Treatment of intact platelets with trypsin or thrombin, followed by lysis and fractionation, did not affect the binding of [alpha- 32 P]GTP to the membrane-bound protein. GTP[gamma S] still stimulated phospholipase C in permeabilized platelets already preincubated with trypsin. This suggests that trypsin-resistant GTP-binding proteins might regulate phospholipase C stimulated by GTP[gamma S

  3. AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol.

    Science.gov (United States)

    Jagannathan, Radhika; Schimizzi, Gregory V; Zhang, Kun; Loza, Andrew J; Yabuta, Norikazu; Nojima, Hitoshi; Longmore, Gregory D

    2016-10-15

    The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. Copyright © 2016 Jagannathan et al.

  4. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell.

    Science.gov (United States)

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-03-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Protein Delivery System Containing a Nickel-Immobilized Polymer for Multimerization of Affinity-Purified His-Tagged Proteins Enhances Cytosolic Transfer.

    Science.gov (United States)

    Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy

    2015-09-01

    Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cytosolic Phospholipase A2 Protein as a Novel Therapeutic Target for Spinal Cord Injury

    Science.gov (United States)

    Liu, Nai-Kui; Deng, Ling-Xiao; Zhang, Yi Ping; Lu, Qing-Bo; Wang, Xiao-Fei; Hu, Jian-Guo; Oakes, Eddie; Bonventre, Joseph V; Shields, Christopher B; Xu, Xiao-Ming

    2014-01-01

    Objective The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). Methods A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tissue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice. Results SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, blocking cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor deficits, and reduced cell loss and tissue damage after SCI. Interpretation cPLA2 may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such could be an attractive therapeutic target for ameliorating secondary tissue damage and promoting recovery of function after SCI. PMID:24623140

  7. Efficient in vitro import of a cytosolic heat shock protein into pea chloroplasts

    OpenAIRE

    Lubben, Thomas H.; Keegstra, Kenneth

    1986-01-01

    In order to further our understanding of the targeting of nuclear-encoded proteins into intracellular organelles, we have investigated the import of chimeric precursor proteins into pea chloroplasts. Two different chimeric precursor proteins were produced by in vitro expression of chimeric genes. One chimeric precursor contained the transit peptide of the small subunit of soybean ribulose 1,5-bisphosphate carboxylase and the mature peptide of the same protein from pea. The second contained th...

  8. Protein folding includes oligomerization – examples from the endoplasmic reticulum and cytosol

    NARCIS (Netherlands)

    Christis, C.; Lubsen, N.H.; Braakman, I.

    2008-01-01

    A correct three-dimensional structure is a prerequisite for protein functionality, and therefore for life. Thus, it is not surprising that our cells are packed with proteins that assist protein folding, the process in which the native three-dimensional structure is formed. In general, plasma

  9. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  10. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2012-09-01

    Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  12. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  13. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C.; Guzman E, L.J.; Garcia T, M.

    2004-01-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a 137 Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  14. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: emanz@cantera.reduaz.mx; Guzman E, L.J. [Unidad Academica de Biologia Experimental, Guadalupe, Zacatecas (Mexico); Garcia T, M. [LIBRA, Centro I and D, Campus Miguel Delibes, Valladolid 47011 (Spain)

    2004-07-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a {sup 137} Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  15. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  16. Species-Specific Monoclonal Antibodies to Escherichia coli-Expressed p36 Cytosolic Protein of Mycoplasma hyopneumoniae

    Science.gov (United States)

    Caron, J.; Sawyer, N.; Moumen, B. Ben Abdel; Bouh, K. Cheikh Saad; Dea, S.

    2000-01-01

    The p36 protein of Mycoplasma hyopneumoniae is a cytosolic protein carrying species-specific antigenic determinants. Based on the genomic sequence of the reference strain ATCC 25934, primers were designed for PCR amplification of the p36-encoding gene (948 bp). These primers were shown to be specific to M. hyopneumoniae since no DNA amplicons could be obtained with other mycoplasma species and pathogenic bacteria that commonly colonize the porcine respiratory tract. The amplified p36 gene was subcloned into the pGEX-4T-1 vector to be expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST). The GST-p36 recombinant fusion protein was purified by affinity chromatography and cut by thrombin, and the enriched p36 protein was used to immunize female BALB/c mice for the production of anti-p36 monoclonal antibodies (MAbs). The polypeptide specificity of the nine MAbs obtained was confirmed by Western immunoblotting with cell lysates prepared from the homologous strain. Cross-reactivity studies of the anti-p36 MAbs towards two other M. hyopneumoniae reference strains (ATCC 25095 and J strains) and Quebec field strains that had been isolated in culture suggested that these anti-p36 MAbs were directed against a highly conserved epitope, or closely located epitopes, of the p36 protein. No reactivity was demonstrated against other mycoplasma species tested. Clinical signs and lesions suggestive of enzootic pneumonia were reproduced in specific-pathogen-free pigs infected experimentally with a virulent Quebec field strain (IAF-DM9827) of M. hyopneumoniae. The bacteria could be recovered from lung homogenates of pigs that were killed after the 3-week observation period by both PCR and cultivation procedures. Furthermore, the anti-p36 MAbs permitted effective detection by indirect immunofluorescence of M. hyopneumoniae in frozen lung sections from experimentally infected pigs. However, attempts to use the recombinant p36 protein as an antigen in an

  17. Studies of the activity of cytosol on the mixed disulfide bond formed by proteins and radioprotector mercaptoethylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M [National Inst. of Oncology, Budapest (Hungary); Holland, J [Orszagos Onkologiai Intezet, Budapest (Hungary)

    1979-01-01

    The cytoplasm of normal and tumorous rat liver cells contains a heat-resistant compound with reducing ability to break the mixed disulfide bond of albumin-/sup 14/C-mercaptoethylguanidine. The reducing activity of cytosol is destoryed by 1000 krd /sup 60/Co-gamma-ray doses in diluted solution. In vivo supralethal of rats does not affect the activity of cytosol prepared from liver cells.

  18. Identification and characterization of novel ERC-55 interacting proteins: evidence for the existence of several ERC-55 splicing variants; including the cytosolic ERC-55-C.

    Science.gov (United States)

    Ludvigsen, Maja; Jacobsen, Christian; Maunsbach, Arvid B; Honoré, Bent

    2009-12-01

    ERC-55, encoded from RCN2, is localized in the ER and belongs to the CREC protein family. ERC-55 is involved in various diseases and abnormal cell behavior, however, the function is not well defined and it has controversially been reported to interact with a cytosolic protein, the vitamin D receptor. We have used a number of proteomic techniques to further our functional understanding of ERC-55. By affinity purification, we observed interaction with a large variety of proteins, including those secreted and localized outside of the secretory pathway, in the cytosol and also in various organelles. We confirm the existence of several ERC-55 splicing variants including ERC-55-C localized in the cytosol in association with the cytoskeleton. Localization was verified by immunoelectron microscopy and sub-cellular fractionation. Interaction of lactoferrin, S100P, calcyclin (S100A6), peroxiredoxin-6, kininogen and lysozyme with ERC-55 was further studied in vitro by SPR experiments. Interaction of S100P requires [Ca(2+)] of approximately 10(-7) M or greater, while calcyclin interaction requires [Ca(2+)] of >10(-5) M. Interaction with peroxiredoxin-6 is independent of Ca(2+). Co-localization of lactoferrin, S100P and calcyclin with ERC-55 in the perinuclear area was analyzed by fluorescence confocal microscopy. The functional variety of the interacting proteins indicates a broad spectrum of ERC-55 activities such as immunity, redox homeostasis, cell cycle regulation and coagulation.

  19. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein

    International Nuclear Information System (INIS)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-01-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5'-[α- 32 P]triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an α subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera

  20. Comparative characterization of thyroid hormone receptors and binding proteins in rat liver nucleus, plasma membrane, and cytosol by photoaffinity labeling with L-thyroxine

    International Nuclear Information System (INIS)

    Dozin, B.; Cahnmann, H.J.; Nikodem, V.M.

    1985-01-01

    Photoaffinity labeling with underivatized thyroxine (T4) was used to identify and compare the T4 binding proteins in rat liver cytosol, nuclear extract, and purified plasma membrane. When these subcellular fractions were incubated with a tracer concentration of [125I]T4, irradiated with light above 300 nm, and individually analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the radioactivity profiles revealed the presence of T4 binding proteins of molecular masses of 70, 52, 43, 37, 30, and 26 kilodaltons (kDa) in cytosol, of 96, 56, 45, and 35 kDa in nuclear extract, and of 70, 44, and 30 kDa in plasma membrane. Competition experiments performed in the presence of a 1000-fold excess of unlabeled T4 demonstrated that these binding proteins display different hormone binding activities. The similar electrophoretic mobilities of some binding proteins present in the different subcellular fractions, i.e., the 70-, 43-45-, and 30-kDa proteins, suggested that these proteins might be identical. However, double-labeling experiments in which plasma membrane, nuclear extract, and cytosol were photolabeled with either [125I] or [131I]T4 and mixed, two at a time, in all possible combinations showed that from one cellular fraction to another, the radioactivity peaks corresponding to the approximately 70-, 43-45-, and 30-kDa proteins were not superimposed. Their relative positions on the gel differed by one or two slices, which indicated differences in molecular mass of 1.9-3.6 kDa. Moreover, enzymatic digestion with Staphylococcus aureus V8 protease of these three proteins, prepared from each subcellular fraction, yielded dissimilar peptide patterns

  1. Correlation of human epidermal growth factor receptor protein expression and colorectal cancer.

    Science.gov (United States)

    Yang, Wen-Juan; Shen, Xing-Jie; Ma, Xiao-Xia; Tan, Zhi-Gang; Song, Yan; Guo, Yi-Tong; Yuan, Mei

    2015-07-28

    To investigate the correlation between human epidermal growth factor receptor (HER-2) protein expression and colorectal cancer (CRC) using a case-control study and meta-analysis. Tumor tissue specimens from 162 CRC patients were selected for the case group. Fifty cases were randomly selected, and normal CRC tissue at least 10 cm away from the tumor margins of these cases was used to generate the control group. The expression of the HER-2 protein in the 162 CRC tissue samples and the 50 adjacent normal mucosa tissue samples was detected via immunohistochemistry. The experimental data were analyzed using SPSS 18.0 software, and R software version 3.1.0 was utilized for further verification. The expression of HER-2 protein in the 162 CRC tissue samples was significantly higher than in the normal tissue specimens. The data showed that the expression of HER-2 in CRC was related to the Dukes' stage, the depth of invasion and lymph node metastasis. The HER-2-positive patients had lower 3- and 5-year OS rates than the HER-2-negative patients, but there was no significant difference. However, there was a statistically significant difference in the 3- and 5-year disease-free survival (DFS) rates of HER-2-positive and HER-2-negative patients. The results of the meta-analysis showed that the expression of HER-2 in CRC patients was statistically significantly increased over that of healthy people. The 3-year DFS rate in HER-2-positive patients was markedly lower than that in HER-2-negative patients. Down-regulation of HER-2 expression might be a dependable strategy for CRC therapy.

  2. Phosphorylation of the cytoplasmic tail of the 300-kDa mannose 6-phosphate receptor is required for the interaction with a cytosolic protein

    DEFF Research Database (Denmark)

    Rosorius, O; Issinger, O G; Braulke, T

    1993-01-01

    The cytoplasmic tail of the human 300-kDa mannose 6-phosphate receptor (MPR 300-CT) is an excellent substrate for casein kinase II in vitro. The phosphorylated MPR 300-CT was cross-linked by means of bis(sulfosuccinimidyl)suberate mainly to a cytosolic protein of 35 kDa (referred to as TIP 35...... with TIP 35 is phosphorylation-specific. Furthermore, TIP 35 was only cross-linked to the MPR 300-CT phosphorylated by casein kinase II whereas the MPR 300-CT phosphorylated by protein kinase A failed to cross-link to TIP 35. These results indicate that the cytoplasmic tail of the MPR 300 interacts...

  3. Interaction between Nbp35 and Cfd1 proteins of cytosolic Fe-S cluster assembly reveals a stable complex formation in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Shadab Anwar

    Full Text Available Iron-Sulfur (Fe-S proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1 protein and Nucleotide binding protein 35 (Nbp35. In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151 of Nbp35 and (G5-V6, M34-D39 and G46-A52 of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins

  4. Profiling of cytosolic and mitochondrial H2O2 production using the H2O2-sensitive protein HyPer in LPS-induced microglia cells.

    Science.gov (United States)

    Park, Junghyung; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Sang-Rae; Lee, Dong-Seok

    2017-07-27

    Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H 2 O 2 formation in LPS-activated BV-2 microglia using the H 2 O 2- sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H 2 O 2 started increasing constantly, whereas mitochondrial H 2 O 2 rapidly increased later. In addition, we found that MAPK affected cytosolic H 2 O 2 , but not mitochondrial H 2 O 2 . Consequently, our study provides the basic information about subcellular H 2 O 2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology.

    Science.gov (United States)

    Ebert, Berit; Melle, Christian; Lieckfeldt, Elke; Zöller, Daniela; von Eggeling, Ferdinand; Fisahn, Joachim

    2008-08-25

    Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.

  6. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    Science.gov (United States)

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  7. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  8. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  9. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    Science.gov (United States)

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Early events elicited by Bombesin and structurally related peptides in quiescent Swiss 3T3 cells. I. Activation of protein kinase C and inhibition of epidermal growth factor binding

    International Nuclear Information System (INIS)

    Zachary, I.; Sinnett-Smith, J.W.; Rozengurt, E.

    1986-01-01

    Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an M/sub r/ 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent. The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of 125 I-labeled epidermal growth factor ( 125 I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca 2+ concentration does not mediate the bombesin inhibition of 125 I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of 125 I-EGF to its cellular receptor

  11. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    Science.gov (United States)

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  12. Direct astatination of a tumour-binding protein, human epidermal growth factor, using nido-carborane as a prosthetic group

    International Nuclear Information System (INIS)

    Sjoestroem, A.; Carlsson, J.; Lundqvist, H.; Koziorowski, J.

    2003-01-01

    A method for direct astatine labeling of proteins has been investigated. Binding sites for astatine were created by coupling of a nido-carborane derivative to a protein, the human epidermal growth factor (hEGF), using two different conjugation methods - by glutaraldehyde cross-linking or by introduction of sulfohydryl groups by Traut's reagent with subsequent linking of ANC-1 with m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester. The conjugates were astatinated using the Chloramine-T method in high yield. The best labeling was obtained by the glutaraldehyde conjugate with an average yield of 68 ± 9%. In vitro stability tests indicated that the glutaraldehyde conjugated label was as stable as hEGF labeled with astatobenzoate. (author)

  13. Comparison of first dimension IPG and NEPHGE techniques in two-dimensional gel electrophoresis experiment with cytosolic unfolded protein response in Saccharomyces cerevisiae

    Science.gov (United States)

    2013-01-01

    Background Two-dimensional gel electrophoresis (2DE) is one of the most popular methods in proteomics. Currently, most 2DE experiments are performed using immobilized pH gradient (IPG) in the first dimension; however, some laboratories still use carrier ampholytes-based isoelectric focusing technique. The aim of this study was to directly compare IPG-based and non-equilibrium pH gradient electrophoresis (NEPHGE)-based 2DE techniques by using the same samples and identical second dimension procedures. We have used commercially available Invitrogen ZOOM IPGRunner and WITAvision systems for IPG and NEPHGE, respectively. The effectiveness of IPG-based and NEPHGE-based 2DE methods was compared by analysing differential protein expression during cytosolic unfolded protein response (UPR-Cyto) in Saccharomyces cerevisiae. Results Protein loss during 2DE procedure was higher in IPG-based method, especially for basic (pI > 7) proteins. Overall reproducibility of spots was slightly better in NEPHGE-based method; however, there was a marked difference when evaluating basic and acidic protein spots. Using Coomassie staining, about half of detected basic protein spots were not reproducible by IPG-based 2DE, whereas NEPHGE-based method showed excellent reproducibility in the basic gel zone. The reproducibility of acidic proteins was similar in both methods. Absolute and relative volume variability of separate protein spots was comparable in both 2DE techniques. Regarding proteomic analysis of UPR-Cyto, the results exemplified parameters of general comparison of the methods. New highly basic protein Sis1p, overexpressed during UPR-Cyto stress, was identified by NEPHGE-based 2DE method, whereas IPG-based method showed unreliable results in the basic pI range and did not provide any new information on basic UPR-Cyto proteins. In the acidic range, the main UPR-Cyto proteins were detected and quantified by both methods. The drawback of NEPHGE-based 2DE method is its failure to

  14. Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2.

    Directory of Open Access Journals (Sweden)

    Ambarish Nag

    Full Text Available The linker for activation of T cells (LAT, the linker for activation of B cells (LAB, and the linker for activation of X cells (LAX form a family of transmembrane adaptor proteins widely expressed in lymphocytes. These scaffolding proteins have multiple binding motifs that, when phosphorylated, bind the SH2 domain of the cytosolic adaptor Grb2. Thus, the valence of LAT, LAB and LAX for Grb2 is variable, depending on the strength of receptor activation that initiates phosphorylation. During signaling, the LAT population will exhibit a time-varying distribution of Grb2 valences from zero to three. In the cytosol, Grb2 forms 1:1 and 2:1 complexes with the guanine nucleotide exchange factor SOS1. The 2:1 complex can bridge two LAT molecules when each Grb2, through their SH2 domains, binds to a phosphorylated site on a separate LAT. In T cells and mast cells, after receptor engagement, receptor phosphoyrlation is rapidly followed by LAT phosphorylation and aggregation. In mast cells, aggregates containing more than one hundred LAT molecules have been detected. Previously we considered a homogeneous population of trivalent LAT molecules and showed that for a range of Grb2, SOS1 and LAT concentrations, an equilibrium theory for LAT aggregation predicts the formation of a gel-like phase comprising a very large aggregate (superaggregate. We now extend this theory to investigate the effects of a distribution of Grb2 valence in the LAT population on the formation of LAT aggregates and superaggregate and use stochastic simulations to calculate the fraction of the total LAT population in the superaggregate.

  15. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    V Chandana Epa

    Full Text Available Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2. HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  16. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    Science.gov (United States)

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Cytosolic phospholipase A2: a member of the signalling pathway of a new G protein α subunit in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2009-05-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus, the etiological agent of sporotrichosis, a lymphocutaneous disease that can remain localized or can disseminate, involving joints, lungs, and the central nervous system. Pathogenic fungi use signal transduction pathways to rapidly adapt to changing environmental conditions and S. schenckii is no exception. S. schenckii yeast cells, either proliferate (yeast cell cycle or engage in a developmental program that includes proliferation accompanied by morphogenesis (yeast to mycelium transition depending on the environmental conditions. The principal intracellular receptors of environmental signals are the heterotrimeric G proteins, suggesting their involvement in fungal dimorphism and pathogenicity. Identifying these G proteins in fungi and their involvement in protein-protein interactions will help determine their role in signal transduction pathways. Results In this work we describe a new G protein α subunit gene in S. schenckii, ssg-2. The cDNA sequence of ssg-2 revealed a predicted open reading frame of 1,065 nucleotides encoding a 355 amino acids protein with a molecular weight of 40.9 kDa. When used as bait in a yeast two-hybrid assay, a cytoplasmic phospholipase A2 catalytic subunit was identified as interacting with SSG-2. The sspla2 gene, revealed an open reading frame of 2538 bp and encoded an 846 amino acid protein with a calculated molecular weight of 92.62 kDa. The principal features that characterize cPLA2 were identified in this enzyme such as a phospholipase catalytic domain and the characteristic invariable arginine and serine residues. A role for SSPLA2 in the control of dimorphism in S. schenckii is suggested by observing the effects of inhibitors of the enzyme on the yeast cell cycle and the yeast to mycelium transition in this fungus. Phospholipase A2 inhibitors such as AACOCF3 (an analogue of archidonic acid and isotetrandrine (an inhibitor of G protein

  18. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    Science.gov (United States)

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  19. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  20. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  1. Cytosolic cholesterol ester hydrolase in adrenal cortex

    OpenAIRE

    Tocher, Douglas R.

    1983-01-01

    Cholesterol ester hydrolase (CEH) in adrenocortical cytosol was known to be phosphorylated and activated, in response to ACTH in a cAMPdependent protein kinase mediated process. The purification of CEH from bovine adrenocortical cytosol was attempted. The use of detergents to solubilise the enzyme from lipid-rich aggregates was investigated and sodium cholate was found to be effective. A purification procedure using cholate solubilised enzyme was developed. The detergent int...

  2. In Vivo Cosmetic Product Efficacy Testing by Analyzing Epidermal Proteins Extracted from Tape Strips

    Directory of Open Access Journals (Sweden)

    Marie Westman

    2014-02-01

    Full Text Available The objective of this in vivo pilot study was to investigate whether differential biomarker analysis from skin tape strips could be used, not only to evaluate the difference between treated and untreated skin, but also to evaluate the effect of different product treatments. Ten volunteers were included in the study, applying two different basic formulations on their forearms. After four weeks of product application, and also after one week of treatment remission, tape strips were collected from the different treatment sites, as well as from untreated skin. The biomarkers investigated were selected to cover different aspects of epidermal differentiation and in connection with moisturization and barrier function. Levels of Involucrin were increased in both treatments, compared to untreated skin, whereas the levels of Keratin-6 were decreased for both treatments. In addition, a pattern for increased levels of Hornerin and Claudin-1 was also detected. There were no significant differences between the two treatments, only for treatment compared to untreated, but there were tendencies for different effect on some of the biomarkers investigated, differences that may reach significance with increased sample size. The major differences between the two treatments in this study were seen after one week of product remission, although due to too small sample size these differences were not significant.

  3. Cytosolic iron-sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Basu, Somsuvro; Netz, D. J.; Haindrich, A. C.; Herlerth, N.; Lagny, T. J.; Pierik, A. J.; Lill, R.; Lukeš, Julius

    2014-01-01

    Roč. 93, č. 5 (2014), s. 897-910 ISSN 0950-382X R&D Projects: GA ČR(CZ) GAP305/11/2179; GA MŠk LH12104; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : inducible expression system * Cfd1- Nbp35 complex * DNA metabolism * Fe/S proteins * transfer-RNA * cluster * mitochondrial * maturation * biogenesis * yeast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.419, year: 2014

  4. Cytosolic delivery of materials with endosome-disrupting colloids

    Science.gov (United States)

    Helms, Brett A.; Bayles, Andrea R.

    2016-03-15

    A facile procedure to deliver nanocrystals to the cytosol of live cells that is both rapid and general. The technique employs a unique cationic core-shell polymer colloid that directs nanocrystals to the cytosol of living cells within a few hours of incubation. The present methods and compositions enable a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

  5. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification

    International Nuclear Information System (INIS)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-01-01

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  6. Cytosolic Calcium, hydrogen peroxide, and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: Parabolic flight data

    Science.gov (United States)

    Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Fengler, Svenja

    Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide and cytosolic Ca2+ were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion, for RNA; acid/base for NADPH, NADP) at typical stages of a parabola (1g before pull up; end of pull up (1.8 g), end of microgravity (µg, 20 sec), and end of pull out (1.8 g)). Cells exhibited an increase of both Ca2+ and hydrogen peroxide with the onset of µg, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating a Ca2+-dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca2+- and ROS(reactive oxygen species)-related gene products. The same material was also used for the analysis of phosphopeptides by 2D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of reactive oxygen species. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS.

  7. The Arabidopsis cytosolic proteome

    DEFF Research Database (Denmark)

    Ito, Jun; Parsons, Harriet Tempé; Heazlewood, Joshua L.

    2014-01-01

    compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted...

  8. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 expression and regulation in uterine leiomyoma.

    Science.gov (United States)

    Marsh, Erica E; Chibber, Shani; Wu, Ju; Siegersma, Kendra; Kim, Julie; Bulun, Serdar

    2016-04-01

    To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. Academic medical center. Leiomyoma and myometrial tissue samples and cultured cells. 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt

    2012-01-01

    (+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC......The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...... with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP...

  10. Effect of cytosolic pH on inward currents reveals structural characteristics of the proton transport cycle in the influenza A protein M2 in cell-free membrane patches of Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Mattia L DiFrancesco

    Full Text Available Transport activity through the mutant D44A of the M2 proton channel from influenza virus A was measured in excised inside-out macro-patches of Xenopus laevis oocytes at cytosolic pH values of 5.5, 7.5 and 8.2. The current-voltage relationships reveal some peculiarities: 1. "Transinhibition", i.e., instead of an increase of unidirectional outward current with increasing cytosolic H(+ concentration, a decrease of unidirectional inward current was found. 2. Strong inward rectification. 3. Exponential rise of current with negative potentials. In order to interpret these findings in molecular terms, different kinetic models have been tested. The transinhibition basically results from a strong binding of H(+ to a site in the pore, presumably His37. This assumption alone already provides inward rectification and exponential rise of the IV curves. However, it results in poor global fits of the IV curves, i.e., good fits were only obtained for cytosolic pH of 8.2, but not for 7.5. Assuming an additional transport step as e.g. caused by a constriction zone at Val27 resulted in a negligible improvement. In contrast, good global fits for cytosolic pH of 7.5 and 8.2 were immediately obtained with a cyclic model. A "recycling step" implies that the protein undergoes conformational changes (assigned to Trp41 and Val27 during transport which have to be reset before the next proton can be transported. The global fit failed at the low currents at pHcyt = 5.5, as expected from the interference of putative transport of other ions besides H(+. Alternatively, a regulatory effect of acidic cytosolic pH may be assumed which strongly modifies the rate constants of the transport cycle.

  11. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species...... (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...... organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  12. Dermal matrix proteins initiate re-epithelialization but are not sufficient for coordinated epidermal outgrowth in a new fish skin culture model.

    Science.gov (United States)

    Matsumoto, Reiko; Sugimoto, Masazumi

    2007-02-01

    We have established a new culture system to study re-epithelialization during fish epidermal wound healing. In this culture system, fetal bovine serum (FBS) stimulates the epidermal outgrowth of multi-cellular layers from scale skin mounted on a coverslip, even when cell proliferation is blocked. The rate of outgrowth is about 0.4 mm/h, and at 3 h after incubation, the area occupied by the epidermal sheet is nine times larger than the area of the original scale skin. Cells at the bottom of the outgrowth show a migratory phenotype with lamellipodia, and "purse string"-like actin bundles have been found over the leading-edge cells with polarized lamellipodia. In the superficial cells, re-development of adherens junctions and microridges has been detected, together with the appearance and translocation of phosphorylated p38 MAPK into nuclear areas. Thus, this culture system provides an excellent model to study the mechanisms of epidermal outgrowth accompanied by migration and re-differentiation. We have also examined the role of extracellular matrix proteins in the outgrowth. Type I collagen or fibronectin stimulates moderate outgrowth in the absence of FBS, but development of microridges and the distribution of phosphorylated p38 MAPK are attenuated in the superficial cells. In addition, the leading-edge cells do not have apparent "purse string"-like actin bundles. The outgrowth stimulated by FBS is inhibited by laminin. These results suggest that dermal substrates such as type I collagen and fibronectin are able to initiate epidermal outgrowth but require other factors to enhance such outgrowth, together with coordinated alterations in cellular phenotype.

  13. Frank-ter Haar syndrome protein Tks4 regulates epidermal growth factor-dependent cell migration.

    Science.gov (United States)

    Bögel, Gábor; Gujdár, Annamária; Geiszt, Miklós; Lányi, Árpád; Fekete, Anna; Sipeki, Szabolcs; Downward, Julian; Buday, László

    2012-09-07

    Mutations in the SH3PXD2B gene coding for the Tks4 protein are responsible for the autosomal recessive Frank-ter Haar syndrome. Tks4, a substrate of Src tyrosine kinase, is implicated in the regulation of podosome formation. Here, we report a novel role for Tks4 in the EGF signaling pathway. In EGF-treated cells, Tks4 is tyrosine-phosphorylated and associated with the activated EGF receptor. This association is not direct but requires the presence of Src tyrosine kinase. In addition, treatment of cells with LY294002, an inhibitor of PI 3-kinase, or mutations of the PX domain reduces tyrosine phosphorylation and membrane translocation of Tks4. Furthermore, a PX domain mutant (R43W) Tks4 carrying a reported point mutation in a Frank-ter Haar syndrome patient showed aberrant intracellular expression and reduced phosphoinositide binding. Finally, silencing of Tks4 was shown to markedly inhibit HeLa cell migration in a Boyden chamber assay in response to EGF or serum. Our results therefore reveal a new function for Tks4 in the regulation of growth factor-dependent cell migration.

  14. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Dajani Olav

    2011-10-01

    Full Text Available Abstract Background Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Methods Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Results Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC, whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K, TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. Conclusions While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116

  15. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    International Nuclear Information System (INIS)

    Müller, Kristin M; Tveteraas, Ingun H; Aasrum, Monica; Ødegård, John; Dawood, Mona; Dajani, Olav; Christoffersen, Thoralf; Sandnes, Dagny L

    2011-01-01

    Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK

  16. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6.

    Science.gov (United States)

    Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A; Hanson, Johannes; Meyer, Christian

    2016-01-01

    Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.

  17. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  18. Triphenyltin impairs a protein kinase A (PKA)-dependent increase of cytosolic Na+ and Ca2+ and PKA-independent increase of cytosolic Ca2+ associated with insulin secretion in hamster pancreatic β-cells

    International Nuclear Information System (INIS)

    Miura, Yoshikazu; Matsui, Hisao

    2006-01-01

    Oral administration of triphenyltin chloride (TPT) (60 mg/kg body weight) inhibits the insulin secretion by decreasing the cytoplasmic Ca 2+ concentration ([Ca 2+ ] i ) induced by glucose-dependent insulinotropic polypeptide (GIP) in pancreatic β-cells of the hamster. To test the possibility that the abnormal level of [Ca 2+ ] i induced by TPT administration could be due to a defect in the cAMP-dependent cytoplasmic Na + concentration ([Na + ] i ) in the β-cells, we investigated the effects of TPT administration on the changes of [Na + ] i induced by GIP, glucagon-like peptide-1 (GLP-1), or forskolin, an activator of adenylyl cyclase, and on the changes of [Na + ] i or [Ca 2+ ] i induced by 6-Bnz-cAMP, an activator of protein kinase A (PKA), and 8-pCPT-2'-O-Me-cAMP, an activator of Epac. The [Na + ] i and [Ca 2+ ] i were measured in islet cells loaded with sodium-binding benzofuran isophthalate (SBFI) and fura-2, respectively. In the presence of 135 mM Na + , TPT administration significantly reduced the rise in [Na + ] i by 10 nM GLP-1, 10 μM forskolin, and 50 μM 6-Bnz-cAMP, but had not effect in a Na + -free medium. In the presence of 135 mM Na + , TPT administration also reduced the rise in [Ca 2+ ] i by 8-pCPT-2'-O-Me-cAMP plus10 μM H-89, a inhibitor of PKA, and 6-Bnz-cAMP. Moreover, TPT administration significantly reduced the insulin secretion by 2 mM db-cAMP, GLP-1, GIP, and 8-pCPT-2'-O-Me-cAMP with and without H-89, and that by 6-Bnz-cAMP and forskolin. Our study suggested that TPT has inhibitory effects on the cellular Ca 2+ response due to a reduced Na + permeability through PKA-dependent mechanisms in hamster islet cells. Also TPT has the reduction of [Ca 2+ ] i related to Na + -dependent insulin secretion after an activation of Epac

  19. Detection on immunoblot of new proteins from the soluble fraction of the cell recognized either by anti-liver-kidney microsome antibodies type 1 or by anti-liver cytosol antibodies type 1--relationship with hepatitis C virus infection.

    Science.gov (United States)

    Ballot, E; Desbos, A; Monier, J C

    1996-09-01

    Antibodies directed against liver cytosol protein, called anti-liver cytosol type 1 (LC1 Ab), have been described by both immunofluorescence (IF) and immunodiffusion techniques in sera from patients with autoimmune hepatitis (AIH). They have never been found in association with antibodies directed against the hepatitis C virus (HCV), unlike the anti-liver-kidney microsome antibodies type 1 (LKM1 Ab), the serological marker of AIH type 2. This suggests that there are two subgroups of AIH type 2, i.e., HCV-related and non-HCV-related. In this study, immunoblotting experiments were performed using proteins from the soluble phase of the rat liver cell; 141 sera which tested positive for LKM1 Ab by IF, 24 identified as having LC1 Ab by IF, and 50 from blood donors as controls were analyzed. Three bands were stained by LC1 Ab sera more often than by the control sera, and with a statistically significant frequency. These 3 proteins were located at apparent Mr 50,000, 55,000, and 60,000. The LKM1 Ab-positive sera as defined by IF stained six bands with a statistically significant frequency compared to the controls. Their apparent Mr were 35,000, 39,000, 47,000, 50,000, 55,000, and 60,000. LKM1 Ab-positive sera which were anti-HCV negative recognized a 60,000 protein belonging to the soluble phase of the cell, with a statistically significant frequency compared to LKM1 Ab-positive sera which were anti-HCV positive. This 60,000 protein was also recognized by LC1 Ab-positive sera, which were almost always anti-HCV negative. The presence of antibodies against a 60,000 protein from the soluble phase of the cell is discussed in terms of the anti-HCV serological markers found in the sera from patients with AIH.

  20. A comprehensive two-dimensional gel protein database of noncultured unfractionated normal human epidermal keratinocytes: towards an integrated approach to the study of cell proliferation, differentiation and skin diseases

    DEFF Research Database (Denmark)

    Celis, J E; Madsen, Peder; Rasmussen, H H

    1991-01-01

    A two-dimensional (2-D) gel database of cellular proteins from noncultured, unfractionated normal human epidermal keratinocytes has been established. A total of 2651 [35S]methionine-labeled cellular proteins (1868 isoelectric focusing, 783 nonequilibrium pH gradient electrophoresis) were resolved...

  1. Immunoautoradiographic analysis of epidermal growth factor receptors: a sensitive method for the in situ identification of receptor proteins and for studying receptor specificity

    International Nuclear Information System (INIS)

    Fernandez-Pol, J.A.

    1982-01-01

    The use of an immunoautoradiographic system for the detection and analysis of epidermal growth factor (EGF) receptors in human epidermoid carcinoma A-431 cells is reported. By utilizing this technique, the interaction between EGF and its membrane receptor in A-431 cells can be rapidly visualized. The procedure is simple, rapid, and very sensitive, and it provides conclusive evidence that the 150K dalton protein is the receptor fo EGF in A-431 cells. In summary, the immunoautoradiographic procedure brings to the analysis of hormone rceptor proteins the power that the radioimmunoassay technique has brought to the analysis of hormones. Thus, this assay system is potentially applicable in a wide spectrum in many fields of nuclear medicine and biology

  2. Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis.

    Science.gov (United States)

    Taniguchi, M; Ogiso, H; Takeuchi, T; Kitatani, K; Umehara, H; Okazaki, T

    2015-04-09

    We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM-ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM-ceramide-CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells.

  3. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  4. Characterization of pH titration shifts for all the nonlabile proton resonances in a protein by two-dimensional NMR: The case of mouse epidermal growth factor

    International Nuclear Information System (INIS)

    Kohda, Daisuke; Sawada, Toshie; Inagaki, Fuyuhiko

    1991-01-01

    The pH titration shifts for all the nonlabile proton resonances in a 53-residue protein (mouse epidermal growth factor) were measured in the p 2 H range 1.5-9 with two-dimensional (2D) 1 H NMR. The 2D NMR pH titration experiment made it possible to determine the pK values for all the ionizable group which were titrated in the pH range 1.5-9 in the protein. The pK values of the nine ionizable groups (α-amino group, four Asp, two Glu, one His, and α-carboxyl group) were found to be near their normal values. The 2D titration experiment also provided a detailed description of the pH-dependent behavior of the proton chemical shifts and enabled us to characterize the pH-dependent changes of protein conformation. Analysis of the pH-dependent shifts of ca. 200 proton resonances offered evidence of conformational changes in slightly basic pH solution: The deprotonation of the N-terminal α-amino group induced a widespread conformational change over the β-sheet structure in the protein, while the effects of deprotonation of the His22 imidazole group were relatively localized. The authors found that the 2D NMR pH titration experiment is a powerful tool for investigating the structural and dynamic properties of proteins

  5. Ammodytoxin, a neurotoxic secreted phospholipase A2, can act in the cytosol of the nerve cell

    International Nuclear Information System (INIS)

    Petrovic, Uros; Sribar, Jernej; Paris, Alenka; Rupnik, Marjan; Krzan, Mojca; Vardjan, Nina; Gubensek, Franc; Zorec, Robert; Krizaj, Igor

    2004-01-01

    Recent identification of intracellular proteins that bind ammodytoxin (calmodulin, 14-3-3 proteins, and R25) suggests that this snake venom presynaptically active phospholipase A 2 acts intracellularly. As these ammodytoxin acceptors are cytosolic and mitochondrial proteins, the toxin should be able to enter the cytosol of a target cell and remain stable there to interact with them. Using laser scanning confocal microscopy we show here that Alexa-labelled ammodytoxin entered the cytoplasm of the rat hippocampal neuron and subsequently also its nucleus. The transport of proteins into the nucleus proceeds via the cytosol of a cell, therefore, ammodytoxin passed the cytosol of the neuron on its way to the nucleus. Although it is not yet clear how ammodytoxin is translocated into the cytosol of the neuron, our results demonstrate that its stability in the cytosol is not in question, providing the evidence that the toxin can act in this cellular compartment

  6. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1

    International Nuclear Information System (INIS)

    Tao Yongguang; Song Xing; Deng Xiyun; Xie Daxin; Lee, Leo M.; Liu Yiping; Li Wei; Li Lili; Deng Lin; Wu Qiao; Gong Jianping; Cao Ya

    2005-01-01

    Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV-encoded proteins and has always been the core of the oncogenic mechanism of EBV. Advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly improved our knowledge of the biological function of cell surface receptors. In this study, we used the Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1-integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 which could be regulated by the Tet system. We found that LMP1 could regulate the nuclear accumulation of EGFR in a dose-dependent manner quantitatively and qualitatively. We also demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation and EGFR in the nucleus could bind to the promoters of cyclinD1 and cyclinE, respectively. We further demonstrated that EGFR is involved in the acceleration of the G1/S phase transition by LMP1 through binding to cyclinD1 and cyclinE directly. These findings provided a novel view that the acceleration of LMP1 on the G1/S transition via the nuclear accumulation of EGFR was critical in the process of nasopharyngeal carcinoma

  7. Gene protein detection platform--a comparison of a new human epidermal growth factor receptor 2 assay with conventional immunohistochemistry and fluorescence in situ hybridization platforms.

    Science.gov (United States)

    Stålhammar, Gustav; Farrajota, Pedro; Olsson, Ann; Silva, Cristina; Hartman, Johan; Elmberger, Göran

    2015-08-01

    Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are widely used semiquantitative assays for selecting breast cancer patients for HER2 antibody therapy. However, both techniques have been shown to have disadvantages. Our aim was to test a recent automated technique of combined IHC and brightfield dual in situ hybridization-gene protein detection platform (GPDP)-in breast cancer HER2 protein, gene, and chromosome 17 centromere status evaluations, comparing the results in accordance to the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from both 2007 and 2013. The GPDP technique performance was evaluated on 52 consecutive whole slide invasive breast cancer cases with HER2 IHC 2/3+ scoring results. Applying in turns the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from 2007 and 2013 to both FISH and GPDP DISH assays, the HER2 gene amplification results showed 100% concordance among amplified/nonamplified cases, but there was a shift in 4 cases toward positive from equivocal results and toward equivocal from negative results. This might be related to the emphasis on the average HER2 copy number in the 2013 criteria. HER2 expression by IVD market IHC kit (Pathway®) has a strong correlation with GPDP HER2 protein, including a full concordance for all cases scored as 3+ and a reduction from 2+ to 1+ in 7 cases corresponding to nonamplified cases. Gene protein detection platform HER2 protein "solo" could have spared the need for 7 FISH studies. In addition, the platform offered advantages on interpretation reassurance including selecting areas for counting gene signals paralleled with protein IHC expression, on heterogeneity detection, interpretation time, technical time, and tissue expense. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    Science.gov (United States)

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (PSMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  9. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions.

    Science.gov (United States)

    Moche, Martin; Schlüter, Rabea; Bernhardt, Jörg; Plate, Kristina; Riedel, Katharina; Hecker, Michael; Becher, Dörte

    2015-09-04

    Staphylococcal biofilms are associated with persistent infections due to their capacity to protect bacteria against the host's immune system and antibiotics. Cell-surface-associated proteins are of great importance during biofilm formation. In the present study, an optimized biotinylation approach for quantitative GeLC-MS-based analysis of the staphylococcal cell-surface proteome was applied and the cytoplasmic protein fraction was analyzed to elucidate proteomic differences between colony biofilms and planktonic cells. The experimental setup enabled a time-resolved monitoring of the proteome under both culture conditions and the comparison of biofilm cells to planktonic cells at several time points. This allowed discrimination of differences attributed to delayed growth phases from responses provoked by biofilm conditions. Biofilm cells expressed CcpA-dependent catabolic proteins earlier than planktonic cells and strongly accumulated proteins that belong to the SigB stress regulon. The amount of the cell-surface protein and virulence gene regulator Rot decreased within biofilms and MgrA-dependent regulations appeared more pronounced. Biofilm cells simultaneously up-regulated activators (e.g., SarZ) as well as repressors (e.g., SarX) of RNAIII. A decreased amount of high-affinity iron uptake systems and an increased amount of the iron-storage protein FtnA possibly indicated a lower demand of iron in biofilms.

  10. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    Science.gov (United States)

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  11. A cytosolic cytochrome b 5-like protein in yeast cell accelerating the electron transfer from NADPH to cytochrome c catalyzed by Old Yellow Enzyme

    International Nuclear Information System (INIS)

    Nakagawa, Manabu; Yamano, Toshio; Kuroda, Kiyo; Nonaka, Yasuki; Tojo, Hiromasa; Fujii, Shigeru

    2005-01-01

    A 410-nm absorbing species which enhanced the reduction rate of cytochrome c by Old Yellow Enzyme (OYE) with NADPH was found in Saccharomyces cerevisiae. It was solubilized together with OYE by the treatment of yeast cells with 10% ethyl acetate. The purified species showed visible absorption spectra in both oxidized and reduced forms, which were the same as those of the yeast microsomal cytochrome b 5 . At least 14 amino acid residues of the N-terminal region coincided with those of yeast microsomal b 5 , but the protein had a lower molecular weight determined to be 12,600 by SDS-PAGE and 9775 by mass spectrometry. The cytochrome b 5 -like protein enhanced the reduction rate of cytochrome c by OYE, and a plot of the reduction rates against its concentration showed a sigmoidal curve with an inflexion point at 6 x 10 -8 M of the protein

  12. Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: epidermal growth factor receptor as a model system.

    Science.gov (United States)

    Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L

    2008-08-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the

  13. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  14. Membrane-bound and cytosolic forms of heterotrimeric G proteins in young and adult rat myocardium: influence of neonatal hypo- and hyperthyroidism

    Czech Academy of Sciences Publication Activity Database

    Novotný, Jiří; Bouřová, Lenka; Kolář, František; Svoboda, Petr

    2001-01-01

    Roč. 82, č. 2 (2001), s. 215-224 ISSN 0730-2312 R&D Projects: GA ČR GA305/00/1660; GA MŠk VS97099 Institutional research plan: CEZ:AV0Z5011922 Keywords : development * G proteins * young and adult rat myocardium Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.536, year: 2001

  15. Gene and protein expression of epidermal growth factor measured on the kidney 24 hours after irradiation correlates to late radiation damage

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Hatakenaka, Masamitsu

    2001-01-01

    This study was designed to evaluate the proliferative response of epidermal growth factor (EGF) gene expression as an early indicator of late renal radiation damage. EGF gene expression was measured in the irradiated left kidney of C3H/HeSlc mice using RT-PCR 24 hours after radiation doses of 9, 12, or 15 Gy. In a second experiment, the same radiation doses were administered to the right kidney plus the lower half of the left kidney. The partly irradiated left kidneys were harvested and EGF gene expression was measured. The irradiated whole right kidneys were subjected to immunohistochemical staining for EGF protein. In a third experiment, 12 Gy was administered to the right kidney plus the lower half of the left kidney. The mice underwent left nephrectomy 24 hours after radiation, and the EGF gene expression in the kidney was correlated with the blood urea nitrogen (BUN) level representing late renal functional damage. EGF expression increased in 1 of 10 control mice and in 9 of 10 mice that received 15 Gy. The extent of increase of EGF was dependent on radiation dose. In mice having an increased BUN level after irradiation, 7 of 10 had EGF positive irradiated kidneys. All six mice whose BUN levels were unchanged had EGF-negative irradiated kidneys. EGF protein staining was observed in tubule cells only, not in glomerular cells. The amount of EGF protein staining correlated with radiation dose to some extent. EGF gene expression seems to be a very early indicator of late radiation damage to the kidney. (author)

  16. Imaging characteristics of stage I non-small cell lung cancer on CT and FDG-PER; Relationship with epidermal growth factor receptor protein expression status and survival

    International Nuclear Information System (INIS)

    Lee, Youkyung; Lee, Hyun Ju; Kim, Young Tae; Kang, Chang Hyun; Goo, Jin Mo; Park, Chang Min; Paeng, Jin Chul; Chung, Doo Hyun; Jeon, Yoon Kyung

    2013-01-01

    To identify CT and FDG-PET features associated with epidermal growth factor receptor (EGFR) protein overexpression, and to evaluate whether imaging features and EGFR-overexpression can help predict clinical outcome. In 214 patients (M : F = 129 : 85; mean age, 63.2) who underwent curative resection of stage I non-small cell lung cancer, EGFR protein expression status was determined through immunohistochemical analysis. Imaging characteristics on CT and FDG-PET was assessed in relation to EGFR-overexpression. Imaging features and EGFR-overexpression were also evaluated for clinical outcome by using the Cox proportional hazards model. EGFR-overexpression was found in 51 patients (23.8%). It was significantly more frequent in tumors with an SUVmax > 5.0 (p 2.43 cm (p 5.0 (OR, 3.113; 95% CI, 1.375-7.049; p = 0.006) and diameter > 2.43 cm (OR, 2.799; 95% CI, 1.285-6.095; p = 0.010) were independent predictors of EGFR overexpression. Multivariate analysis showed that SUVmax > 4.0 (hazard ratio, 10.660; 95% CI, 1.370-82.966; p = 0.024), and the presence of cavitation within a tumor (hazard ratio, 3.122; 95% CI, 1.143-8.532; p = 0.026) were factors associated with poor prognosis. EGFR-overexpression is associated with high SUVmax, large tumor diameter, and small GGO proportion. CT and FDG-PET findings, which are closely related to EGFR overexpression, can be valuable in the prediction of clinical outcome.

  17. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis

    DEFF Research Database (Denmark)

    Palmer, Colin N A; Irvine, Alan D; Terron-Kwiatkowski, Ana

    2006-01-01

    most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic...... variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis. These variants are carried by approximately 9% of people of European origin. These variants also show highly significant association with asthma occurring in the context of atopic...

  18. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  19. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

    Science.gov (United States)

    Akishiba, Misao; Takeuchi, Toshihide; Kawaguchi, Yoshimasa; Sakamoto, Kentarou; Yu, Hao-Hsin; Nakase, Ikuhiko; Takatani-Nakase, Tomoka; Madani, Fatemeh; Gräslund, Astrid; Futaki, Shiroh

    2017-08-01

    One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

  20. The effect of cytosolic extract of Alternaria aternata fungus on Monocyte-derived dendritic cell maturation and T-lymphocyte polarization in the presence of myelin basic protein

    Directory of Open Access Journals (Sweden)

    Loghmanni A

    2013-03-01

    Full Text Available Background: Multiple Sclerosis (MS is an autoimmune disease with impairment in function of central nervous system. Macrophages and dendritic cells play important roles in alleviating or progression of the disease. These cells can cause inflammation and damage to the myelin of nerve cells by realizing of harmful substances when these cells get matured. We studied the effect of Alternaria alternata extract on maturation of monocyte- derived dendritic cell (modc and T-cell responses in the presence of Myelin Basic Protein (MBP as a laboratory model of multiple sclerosis (MS. The purpose of this study is suitable dendritic cells production for usage in MS immunotherapy.Methods: For this study plastic adherent monocytes were cultured with granulocyte/ macrophage- colony stimulating factor (GM-CSF and interleukin -4 for converting these cells to modc and pulsed with MBP and matured in the presence of monocyte-conditioned medium (MCM in control group and MCM + Alternaria alternata extract in treatment groups. Anti-CD14, anti-CD83, anti-human leukocyte antigen-DR (anti HLA-DR monoclonal antibody were carried out for phenotyping. Autologos T cell responses and cytokine production were evaluated.Results: The results showed that the expression of CD14 decreased and CD83, HLA-DR increased in treatment groups in comparison with control groups. The production amount of IL-10 overcame IL-12 and in T cell the production of cytokines, IL-17 and Interferon-γ (IFN-γ decreased and IL-4 was increased (P<0.05. These effects escalated with increasing of dosage from 50 to 100 (mg/ml (P<0.001.Conclusion: Alternaria alternata extract can cause maturation of MBP-pulsed modc and skewing of T- lymphocyte toward Th2 and thereby can evolve into a new strategy in immunotherapy of MS.

  1. Immunolocalization of a Histidine-Rich Epidermal Differentiation Protein in the Chicken Supports the Hypothesis of an Evolutionary Developmental Link between the Embryonic Subperiderm and Feather Barbs and Barbules.

    Science.gov (United States)

    Alibardi, Lorenzo; Holthaus, Karin Brigit; Sukseree, Supawadee; Hermann, Marcela; Tschachler, Erwin; Eckhart, Leopold

    2016-01-01

    The morphogenesis of feathers is a complex process that depends on a tight spatiotemporal regulation of gene expression and assembly of the protein components of mature feathers. Recent comparative genomics and gene transcription studies have indicated that genes within the epidermal differentiation complex (EDC) encode numerous structural proteins of cornifying skin cells in amniotes including birds. Here, we determined the localization of one of these proteins, termed EDMTFH (Epidermal Differentiation Protein starting with a MTF motif and rich in Histidine), which belongs to a group of EDC-encoded proteins rich in aromatic amino acid residues. We raised an antibody against an EDMTFH-specific epitope and performed immunohistochemical investigations by light microscopy and immunogold labeling by electron microscopy of chicken embryos at days 14-18 of development. EDMTFH was specifically present in the subperiderm, a transient layer of the embryonic epidermis, and in barbs and barbules of feathers. In the latter, it partially localized to bundles of so-called feather beta-keratins (corneous beta-proteins, CBPs). Cells of the embryonic periderm, the epidermis proper, and the feather sheath were immunonegative for EDMTFH. The results of this study indicate that EDMTFH may contribute to the unique mechanical properties of feathers and define EDMTFH as a common marker of the subperiderm and the feather barbules. This expression pattern of EDMTFH resembles that of epidermal differentiation cysteine-rich protein (EDCRP) and feather CBPs and is in accordance with the hypothesis that a major part of the cyclically regenerating feather follicle is topologically, developmentally and evolutionarily related to the embryonic subperiderm.

  2. Immunolocalization of a Histidine-Rich Epidermal Differentiation Protein in the Chicken Supports the Hypothesis of an Evolutionary Developmental Link between the Embryonic Subperiderm and Feather Barbs and Barbules.

    Directory of Open Access Journals (Sweden)

    Lorenzo Alibardi

    Full Text Available The morphogenesis of feathers is a complex process that depends on a tight spatiotemporal regulation of gene expression and assembly of the protein components of mature feathers. Recent comparative genomics and gene transcription studies have indicated that genes within the epidermal differentiation complex (EDC encode numerous structural proteins of cornifying skin cells in amniotes including birds. Here, we determined the localization of one of these proteins, termed EDMTFH (Epidermal Differentiation Protein starting with a MTF motif and rich in Histidine, which belongs to a group of EDC-encoded proteins rich in aromatic amino acid residues. We raised an antibody against an EDMTFH-specific epitope and performed immunohistochemical investigations by light microscopy and immunogold labeling by electron microscopy of chicken embryos at days 14-18 of development. EDMTFH was specifically present in the subperiderm, a transient layer of the embryonic epidermis, and in barbs and barbules of feathers. In the latter, it partially localized to bundles of so-called feather beta-keratins (corneous beta-proteins, CBPs. Cells of the embryonic periderm, the epidermis proper, and the feather sheath were immunonegative for EDMTFH. The results of this study indicate that EDMTFH may contribute to the unique mechanical properties of feathers and define EDMTFH as a common marker of the subperiderm and the feather barbules. This expression pattern of EDMTFH resembles that of epidermal differentiation cysteine-rich protein (EDCRP and feather CBPs and is in accordance with the hypothesis that a major part of the cyclically regenerating feather follicle is topologically, developmentally and evolutionarily related to the embryonic subperiderm.

  3. Protein structure of fetal antigen 1 (FA1). A novel circulating human epidermal-growth-factor-like protein expressed in neuroendocrine tumors and its relation to the gene products of dlk and pG2

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Krogh, Thomas N; Højrup, Peter

    1994-01-01

    The present paper describes the primary structure, glycosylation and tissue localization of fetal antigen 1 (FA1) isolated from second-trimester human amniotic fluid. FA1 is a single-chained, heterogeneous glycoprotein of 225-262 amino acid residues. FA1 has six well conserved epidermal...... extends with minor corrections to the human adrenal-specific mRNA, pG2 as well. Immunohistochemical analysis demonstrated the presence of FA1 in 10 out of 14 lung tumors containing neuroendocrine elements, and in the placental villi where FA1 was exclusively seen in stromal cells in close contact...... to the vascular structure. In the pancreas, FA1 co-localized with insulin in the insulin secretory granules of the beta cells within the islets of Langerhans. Our findings suggest that FA1 is synthesized as a membrane anchored protein and released into the circulation after enzymic cleavage, and that circulating...

  4. Urine Epidermal Growth Factor, Monocyte Chemoattractant Protein-1 or Their Ratio as Biomarkers for Interstitial Fibrosis and Tubular Atrophy in Primary Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Supanat Worawichawong

    2016-12-01

    Full Text Available Background/Aims: The degree of tubular atrophy and interstitial fibrosis (IFTA is an important prognostic factor in glomerulonephritis. Imbalance between pro-inflammatory cytokines such as monocyte chemoattractant protein- 1 (MCP-1 and protective cytokines such as epidermal growth factor (EGF likely determine IFTA severity. In separate studies, elevated MCP-1 and decreased EGF have been shown to be associated with IFTA severity. In this study, we aim to evaluate the predictive value of urinary EGF/MCP-1 ratio compared to each biomarker individually for moderate to severe IFTA in primary glomerulonephritis (GN. Methods: Urine samples were collected at biopsy from primary GN (IgA nephropathy, focal and segmental glomerulosclerosis, minimal change disease, membranous nephropathy. MCP-1 and EGF were analyzed by enzyme-linked immunosorbent assay. Results: EGF, MCP-1 and EGF/MCP-1 ratio from primary GN, all correlated with IFTA (n=58. By univariate analysis, glomerular filtration rate, EGF, and EGF/MCP-1 ratio were associated with IFTA. By multivariate analysis, only EGF/MCP-1 ratio was independently associated with IFTA. EGF/MCP-1 ratio had a sensitivity of 88% and specificity of 74 % for IFTA. EGF/MCP-1 had good discrimination for IFTA (AUC=0.85, but the improvement over EGF alone was not significant. Conclusion: EGF/MCP-1 ratio is independently associated IFTA severity in primary glomerulonephritis, but the ability of EGF/MCP-1 ratio to discriminate moderate to severe IFTA may not be much better than EGF alone.

  5. The chaperone BAG6 captures dislocated glycoproteins in the cytosol.

    Directory of Open Access Journals (Sweden)

    Jasper H L Claessen

    Full Text Available Secretory and membrane (glycoproteins are subject to quality control in the endoplasmic reticulum (ER to ensure that only functional proteins reach their destination. Proteins deemed terminally misfolded and hence functionally defective may be dislocated to the cytosol, where the proteasome degrades them. What we know about this process stems mostly from overexpression of tagged misfolded proteins, or from situations where viruses have hijacked the quality control machinery to their advantage. We know of only very few endogenous substrates of ER quality control, most of which are degraded as part of a signaling pathway, such as Insig-1, but such examples do not necessarily represent terminally misfolded proteins. Here we show that endogenous dislocation clients are captured specifically in association with the cytosolic chaperone BAG6, or retrieved en masse via their glycan handle.

  6. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  7. Biochemistry of epidermal stem cells.

    Science.gov (United States)

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Biochemistry of epidermal stem cells☆

    Science.gov (United States)

    Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace

    2014-01-01

    Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019

  9. A new view of the bacterial cytosol environment.

    Directory of Open Access Journals (Sweden)

    Benjamin P Cossins

    2011-06-01

    Full Text Available The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg(2+ ions were prominent in NIMS and almost absent free in solution. Κ(+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution.

  10. Vitamin A effects on UMR 106 osteosarcoma cells are not mediated by specific cytosolic receptors.

    OpenAIRE

    Oreffo, R O; Francis, J A; Triffitt, J T

    1985-01-01

    Retinol and retinoic acid at 20 microM altered cell morphology and inhibited cell proliferation of UMR 106 osteosarcoma cells in culture. No specific cytosolic binding proteins for retinol could be detected.

  11. Vitamin B(12) dependent changes in mouse spinal cord expression of vitamin B(12) related proteins and the epidermal growth factor system

    DEFF Research Database (Denmark)

    Mutti, Elena; Lildballe, Dorte L; Kristensen, Lise

    2013-01-01

    Chronic vitamin B(12) (cobalamin) deficiency in the mammalian central nervous system causes degenerative damage, especially in the spinal cord. Previous studies have shown that cobalamin status alters spinal cord expression of epidermal growth factor (EGF) and its receptor in rats. Employing...

  12. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  13. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer.

    Science.gov (United States)

    Cheng, Qing; Chang, Jeffrey T; Geradts, Joseph; Neckers, Leonard M; Haystead, Timothy; Spector, Neil L; Lyerly, H Kim

    2012-04-17

    Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF

  14. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    remobilisation from ageing plant parts. Thus, GS is highly involved in determining crop yield and NUE. The major objective of this PhD project was to investigate the NUE properties of transgenic barley designed to constitutively overexpress a GS1 isogene (HvGS1.1). These transgenic lines exhibited an increased...... for N demand. Of the GS isogenes, only the transcript levels of root HvGS1.1 increased when plants were transferred from high to low N. This change coincided with an increase in total GS activity. Pronounced diurnal variation was observed for root nitrate transporter genes and GS isogenes in both root...... fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...

  15. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  16. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-01-01

    Background Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. Results In...

  17. Eradication of damaged keratinocytes in cutaneous lichen planus forms demonstrated by evaluation of epidermal and follicular expression of CK15, indices of apoptosis and regulatory protein S100.

    Science.gov (United States)

    Upeniece, Ilze; Groma, Valerie; Skuja, Sandra; Cauce, Vinita

    The study of cytoskeleton arrangement and its contribution to survival of cell-to-cell contacts appears to be essential for understanding of numerous cellular and tissue processes. Applying CK15, S100 labeling and TUNEL reaction to cutaneous lichen planus subtypes, we found CK15 expression in the outer and inner root sheath of hair follicles, the basal epidermal layer, and eccrine glands. Its follicular expression was decreased in nearby inflammatory infiltrates. The CK15 immunopositivity was mostly described as weak (92.3%) for lichen planus but equally subdivided into weak, moderate and strong in lichen planopilaris (2 = 32.514; df = 4; p lichen planopilaris involving the scalp: 81.2 ±10.7; 87.8 ±10.7 and 88.0 ±10.5 for the basal, spinous and upper epidermal layers, respectively. S100 positive epidermal and follicular cells did not differ in the lesions demonstrated in the study groups; still immunoreactivity was more pronounced in the scalp region of lichen planopilaris. Damage of cell-to-cell contacts was confirmed by electron microscopy. Apart from immunocyte-mediated keratinocyte death, cytoskeleton-based injury and loss of cell-to-cell and matrix contacts may be of great importance, leading to eradication of degrading cells and thus contributing to the pathogenesis of lichen planus.

  18. Cytosolic PrP Can Participate in Prion-Mediated Toxicity

    Science.gov (United States)

    Thackray, Alana M.; Zhang, Chang; Arndt, Tina

    2014-01-01

    ABSTRACT Prion diseases are characterized by a conformational change in the normal host protein PrPC. While the majority of mature PrPC is tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, topological variants of this protein can arise during its biosynthesis. Here we have generated Drosophila transgenic for cytosolic ovine PrP in order to investigate its toxic potential in flies in the absence or presence of exogenous ovine prions. While cytosolic ovine PrP expressed in Drosophila was predominantly detergent insoluble and showed resistance to low concentrations of proteinase K, it was not overtly detrimental to the flies. However, Drosophila transgenic for cytosolic PrP expression exposed to classical or atypical scrapie prion inocula showed a faster decrease in locomotor activity than similar flies exposed to scrapie-free material. The susceptibility to classical scrapie inocula could be assessed in Drosophila transgenic for panneuronal expression of cytosolic PrP, whereas susceptibility to atypical scrapie required ubiquitous PrP expression. Significantly, the toxic phenotype induced by ovine scrapie in cytosolic PrP transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that while cytosolic PrP expression does not adversely affect Drosophila, this topological PrP variant can participate in the generation of transmissible scrapie-induced toxicity. These observations also show that PrP transgenic Drosophila are susceptible to classical and atypical scrapie prion strains and highlight the utility of this invertebrate host as a model of mammalian prion disease. IMPORTANCE During prion diseases, the host protein PrPC converts into an abnormal conformer, PrPSc, a process coupled to the generation of transmissible prions and neurotoxicity. While PrPC is principally a glycosylphosphatidylinositol-anchored membrane protein, the role of topological variants, such as cytosolic PrP, in prion-mediated toxicity and

  19. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  20. The structure of an LIM-only protein 4 (LMO4 and Deformed epidermal autoregulatory factor-1 (DEAF1 complex reveals a common mode of binding to LMO4.

    Directory of Open Access Journals (Sweden)

    Soumya Joseph

    Full Text Available LIM-domain only protein 4 (LMO4 is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1, with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1 and C-terminal binding protein interacting protein (CtIP/RBBP8. Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.

  1. A possible role of rabbit heart cytosol tocopherol binding in the transfer of tocopherol into nuclei.

    OpenAIRE

    Guarnieri, C; Flamigni, F; Caldarera, C M

    1980-01-01

    An alpha-tocopherol-binding macromolecule was isolated from the heart cytosol of rabbits fed for 1 month with an alpha-tocopherol-deficient diet. The amount of [3H]-tocopherol bound to nuclear chromatin was increased when the alpha-tocopherol-deficient heart nuclei were incubated in the presence of [3H]tocopherol-cytosol complex. In this condition, large amounts of [3H]tocopherol were associated with a subnuclear fraction that contained non-histone acidic proteins.

  2. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  3. Molecular dynamics simulation analysis of the effect of T790M mutation on epidermal growth factor receptor protein architecture in non-small cell lung carcinoma.

    Science.gov (United States)

    Peng, Xiao-Nu; Wang, Jing; Zhang, Wei

    2017-08-01

    Non-small cell lung cancer etiology and its treatment failure are due to epidermal growth factor receptor (EGFR) kinase domain mutations at amino acid position 790. The mutational change from threonine to methionine at position 790 (T790M) is responsible for tyrosine kinase inhibition failure. Using molecular dynamic simulation, the present study investigated the architectural changes occurring at the atomic scale. The 50-nsec runs using a GROMOS force field for wild-type and mutant EGFR's kinase domains were investigated for contrasting variations using Gromacs inbuilt tools. The adenosine triphosphate binding domain and the active site of EGFR were studied extensively in order to understand the structural changes. All the parameters investigated in the present study revealed considerable changes in the studied structures, and the knowledge gained from this may be used to develop novel kinase inhibitors that will be effective irrespective of the structural alterations in kinase domain.

  4. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    Science.gov (United States)

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways

  5. [Progress in epidermal stem cells].

    Science.gov (United States)

    Wang, Li-Juan; Wang, You-Liang; Yang, Xiao

    2010-03-01

    Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.

  6. A lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor

    Science.gov (United States)

    Protein p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis and preserves barrier function by activation of EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study was to determine the mechanisms by which p40...

  7. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    Science.gov (United States)

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  8. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling.

    Science.gov (United States)

    Karpinska, Barbara; Alomrani, Sarah Owdah; Foyer, Christine H

    2017-09-26

    Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction-oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1 , WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  9. Structural characterization of coatomer in its cytosolic state

    Directory of Open Access Journals (Sweden)

    Shengliu Wang

    2016-07-01

    Full Text Available Abstract Studies on coat protein I (COPI have contributed to a basic understanding of how coat proteins generate vesicles to initiate intracellular transport. The core component of the COPI complex is coatomer, which is a multimeric complex that needs to be recruited from the cytosol to membrane in order to function in membrane bending and cargo sorting. Previous structural studies on the clathrin adaptors have found that membrane recruitment induces a large conformational change in promoting their role in cargo sorting. Here, pursuing negative-stain electron microscopy coupled with single-particle analyses, and also performing CXMS (chemical cross-linking coupled with mass spectrometry for validation, we have reconstructed the structure of coatomer in its soluble form. When compared to the previously elucidated structure of coatomer in its membrane-bound form we do not observe a large conformational change. Thus, the result uncovers a key difference between how COPI versus clathrin coats are regulated by membrane recruitment.

  10. Epidermal CYP2 family cytochromes P450

    International Nuclear Information System (INIS)

    Du Liping; Hoffman, Susan M.G.; Keeney, Diane S.

    2004-01-01

    Skin is the largest and most accessible drug-metabolizing organ. In mammals, it is the competent barrier that protects against exposure to harmful stimuli in the environment and in the systemic circulation. Skin expresses many cytochromes P450 that have critical roles in exogenous and endogenous substrate metabolism. Here, we review evidence for epidermal expression of genes from the large CYP2 gene family, many of which are expressed preferentially in extrahepatic tissues or specifically in epithelia at the environmental interface. At least 13 CYP2 genes (CYP2A6, 2A7, 2B6, 2C9, 2C18, 2C19, 2D6, 2E1, 2J2, 2R1, 2S1, 2U1, and 2W1) are expressed in skin from at least some human individuals, and the majority of these genes are expressed in epidermis or cultured keratinocytes. Where epidermal expression has been localized in situ by hybridization or immunocytochemistry, CYP2 transcripts and proteins are most often expressed in differentiated keratinocytes comprising the outer (suprabasal) cell layers of the epidermis and skin appendages. The tissue-specific transcriptional regulation of CYP2 genes in the epidermis, and in other epithelia that interface with the environment, suggests important roles for at least some CYP2 gene products in the production and disposition of molecules affecting competency of the epidermal barrier

  11. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    Science.gov (United States)

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  12. Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors.

    OpenAIRE

    Suen, K L; Bustelo, X R; Pawson, T; Barbacid, M

    1993-01-01

    We report the isolation and molecular characterization of the mouse grb2 gene. The product of this gene, the Grb2 protein, is highly related to the Caenorhabditis elegans sem-5 gene product and the human GRB2 protein and displays the same SH3-SH2-SH3 structural motifs. In situ hybridization studies revealed that the mouse grb2 gene is widely expressed throughout embryonic development (E9.5 to P0). However, grb2 transcripts are not uniformly distributed, and in certain tissues (e.g., thymus) t...

  13. Comparison of monoclonal antibodies and tritiated ligands for estrogen receptor assays in 241 breast cancer cytosols

    International Nuclear Information System (INIS)

    Goussard, J.; Lechevrel, C.; Martin, P.M.; Roussel, G.

    1986-01-01

    Estrogen receptor determinations have been performed on 241 cytosols from 160 breast cancer tumors using both radioactive ligands ([ 3 H]-estradiol, [3H]R2858) and monoclonal antibodies (Abbott ER-EIA Kit) to compare the two methods and to evaluate the clinical usefulness of the new immunological, simplified assay. Intra- and interassay reproducibility of the enzyme immunoassay (EIA) method was studied during a 6-month period on 35 standard curves with 4 different batches of monoclonal antibodies. Intraassay coefficients of variation studied on duplicates were smaller than 5% in most cases and reproducibility of the curves showed coefficients of variation lower than 10% except for standard 0 and 5 fmol/ml. Pooled cytosols used as control for the dextran coated charcoal method had interassay variation coefficients between 3.8 and 11.4%. Reproducibility has been studied on clinical specimens assayed twice at two different periods with either EIA or dextran coated charcoal methods. Slopes obtained were 1.05 and 0.96, respectively. A good stability of EIA results was obtained with protein concentrations in the range 4-0.15 mg/ml cytosol. No significant effects of dithiothreitol or monothioglycerol (1 mM) on EIA and dextran coated charcoal assay were observed. Eighty breast cancer cytosols were assayed with both EIA and Scatchard analysis. The slope of the regression curve obtained was 1.04 (r = 0.963). Cytosols were assayed by EIA and by a saturating concentration of tritiated ligand (5 nM). With 153 cytosols the EIA/5 nM slope was 1.34 (r = 0.978). This slope can be compared with the slope Scatchard/5 nM obtained with 90 cytosols: 1.29 (r = 0.985). Absence of cross-reactivity of monoclonal ER antibodies with progesterone receptor was observed

  14. Protein levels and gene expressions of the epidermal growth factor receptors, HER1, HER2, HER3 and HER4 in benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, Marianne; Fredslund Andersen, Rikke

    2008-01-01

    , but this is not elucidated in detail in ovarian tissue. High tumor-to-normal-tissue concentration ratios would be favorable for molecular targeted anti-cancer treatment. The primary aim of the study was to analyze the potential differential protein content and gene expression of the four receptors in benign and malignant...

  15. Toxic epidermal necrolysis.

    Science.gov (United States)

    Pereira, Frederick A; Mudgil, Adarsh Vijay; Rosmarin, David M

    2007-02-01

    Toxic epidermal necrolysis (TEN) is an unpredictable, life-threatening drug reaction associated with a 30% mortality. Massive keratinocyte apoptosis is the hallmark of TEN. Cytotoxic T lymphocytes appear to be the main effector cells and there is experimental evidence for involvement of both the Fas-Fas ligand and perforin/granzyme pathways. Optimal treatment for these patients remains to be clarified. Discontinuation of the offending drug and prompt referral to a burn unit are generally agreed upon steps. Beyond that, however, considerable controversy exists. Evidence both pro and con exists for the use of IVIG, systemic corticosteroid, and other measures. There is also evidence suggesting that combination therapies may be of value. All the clinical data, however, is anecdotal or based on observational or retrospective studies. Definitive answers are not yet available. Given the rarity of TEN and the large number of patients required for a study to be statistically meaningful, placebo controlled trials are logistically difficult to accomplish. The absence of an animal model further hampers research into this condition. This article reviews recent data concerning clinical presentation, pathogenesis and treatment of TEN. At the conclusion of this learning activity, participants should have acquired a more comprehensive knowledge of our current understanding of the classification, clinical presentation, etiology, pathophysiology, prognosis, and treatment of TEN.

  16. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  17. Silencing of reversion-inducing cysteine-rich protein with Kazal motifs stimulates hyperplastic phenotypes through activation of epidermal growth factor receptor and hypoxia-inducible factor-2α.

    Directory of Open Access Journals (Sweden)

    You Mie Lee

    Full Text Available Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb, but decreased the expression of p21(cip1, p27(kip1, and p16(ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.

  18. Epidermal Growth Factor Cytoplasmic Domain Affects ErbB Protein Degradation by the Lysosomal and Ubiquitin-Proteasome Pathway in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aleksandra Glogowska

    2012-05-01

    Full Text Available The cytoplasmic domains of EGF-like ligands, including EGF cytoplasmic domain (EGFcyt, have important biological functions. Using specific constructs and peptides of human EGF cytoplasmic domain, we demonstrate that EGFcyt facilitates lysosomal and proteasomal protein degradation, and this coincided with growth inhibition of human thyroid and glioma carcinoma cells. EGFcyt and exon 22–23-encoded peptide (EGF22.23 enhanced procathepsin B (procathB expression and procathB-mediated lysosomal degradation of EGFR/ErbB1 as determined by inhibitors for procathB and the lysosomal ATPase inhibitor BafA1. Presence of mbEGFctF, EGFcyt, EGF22.23, and exon 23-encoded peptides suppressed the expression of the deubiqitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1. This coincided with hyperubiquitination of total cellular proteins and ErbB1/2 and reduced proteasome activity. Upon small interfering RNA-mediated silencing of endogenously expressed UCH-L1, a similar hyperubiquitinylation phenotype, reduced ErbB1/2 content, and attenuated growth was observed. The exon 23-encoded peptide region of EGFcyt was important for these biologic actions. Structural homology modeling of human EGFcyt showed that this molecular region formed an exposed surface loop. Peptides derived from this EGFcyt loop structure may aid in the design of novel peptide therapeutics aimed at inhibiting growth of cancer cells.

  19. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  20. AUTOIMMUNE EPIDERMAL BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-11-01

    Full Text Available Autoimmune bullous skin diseases (ABDs are uncommon, potentially fatal diseases of skin and mucous membranes which are associated with deposits of autoantibodies and complement against distinct molecules of the epidermis and dermal/epidermal basement membrane zone (BMZ. These autoantibodies lead to a loss in skin molecular integrity, which manifests clinically as formation of blisters or erosions. In pemphigus vulgaris, loss of adhesion occurs within the epidermis. The pioneering work of Ernst H. Beutner, Ph.D. and Robert E. Jordon, M.D. confirmed the autoimmune nature of these diseases. Walter F. Lever, M.D. contributed significantly to our understanding of the histopathologic features of these diseases. Walter Lever, M.D. and Ken Hashimoto, M.D. contributed electron microscopic studies of these diseases, especially in pemphigus vulgaris and bullous pemphigoid. In bullous pemphigoid (BP, linear IgA bullous dermatosis, epidermolysis bullosa acquisita (EBA and dermatitis herpetiformis (DH, loss of adhesion takes place within or underneath the BMZ. Classic EBA demonstrates extensive skin fragility; DH is commonly associated with gluten-sensitive enteropathy, and manifests clinically with pruritic papulovesicles on the extensor surfaces of the extremities and the lumbosacral area. The clinical spectrum of bullous pemphigoid includes tense blisters, urticarial plaques, and prurigo-like eczematous lesions. Pemphigoid gestationis mostly occurs during the last trimester of pregnancy, and mucous membrane pemphigoid primarily involves the oral mucosa and conjunctivae and leads to scarring. Linear IgA bullous dermatosis manifests with tense blisters in a „cluster of jewels”-like pattern in childhood (chronic bullous disease of childhood and is more clinically heterogeneous in adulthood. Many of the autoantigens in these disorders are known and have been well characterized. ABDs may be influenced by both genetic and exogenous factors. The diagnoses of

  1. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    International Nuclear Information System (INIS)

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-01-01

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis

  2. Soluble components of the flagellar export apparatus, FliI, FliJ, and FliH, do not deliver flagellin, the major filament protein, from the cytosol to the export gate.

    Science.gov (United States)

    Sajó, Ráchel; Liliom, Károly; Muskotál, Adél; Klein, Agnes; Závodszky, Péter; Vonderviszt, Ferenc; Dobó, József

    2014-11-01

    Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook-filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear. We have used continuous ATPase activity measurements and quartz crystal microbalance (QCM) studies to characterize interactions between the soluble export components and flagellin or the FliC:FliS substrate-chaperone complex. As controls, interactions between soluble export component pairs were characterized providing Kd values. FliC or FliC:FliS did not influence the ATPase activity of FliI alone or in complex with FliH and/or FliJ suggesting lack of interaction in solution. Immobilized FliI, FliH, or FliJ did not interact with FliC or FliC:FliS detected by QCM. The lack of interaction in the fluid phase between FliC or FliC:FliS and the soluble export components, in particular with the ATPase FliI, suggests that cells use different mechanisms for the export of late minor substrates, and the major substrate, FliC. It seems that the abundantly produced flagellin does not require the assistance of the soluble export components to efficiently reach the export gate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cytosolic adenylate changes during exercise in prawn muscle

    International Nuclear Information System (INIS)

    Thebault, M.T.; Raffin, J.P.; Pichon, R.

    1994-01-01

    31 P NMR and biochemical analysis were used to assess the effect of heavy exercise on cytosolic adenylate levels in Palaemon serratus abdominal muscle. At rest, the MgATP level corresponded to 85.5% of the total ATP content. The cytosolic adenylate concentrations of the prawn muscle are considerably different from that of vertebrates. The percentage of ADP bound to myofilaments was lower in the prawn muscle. Consequently, the level of free cytosolic AMP was greatly higher (thirty fold higher) than in vertebrate muscle. During vigorous work, the concentration of MgATP dropped and the cytosolic AMP accumulated, while the cytosolic adenine nucleotide pool decreased significantly. The phosphorylation potential value and the ATP/ADP ratio, calculated from the cytosolic adenylate, dropped acutely during the whole period of muscular contractions. On the contrary, the adenylate energy charge calculated from the cytosolic adenylate decreased slightly. Therefore, even in muscle displaying no AMP deamination, the adenylate charge is stabilized during exercise by the dynamic changes between cytosolic and bound adenylate species. (author). 21 refs., 2 tabs

  4. Cloning and characterization of human liver cytosolic beta-glycosidase

    NARCIS (Netherlands)

    De Graaf, M; Van Veen, IC; Van Der Meulen-Muileman, IH; Gerritsen, WR; Pinedo, HM; Haisma, HJ

    2001-01-01

    Cytosolic beta -glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta -D-glycosides. including beta -D-glucoside acid beta -D-galactoside. We therefore refer to this enzyme as cytosolic beta

  5. Well-defined polypeptide-based systems as non-viral vectors for cytosolic delivery

    OpenAIRE

    Niño Pariente, Amaya

    2017-01-01

    A convenient cytosolic drug delivery constitutes a very powerful tool for the treatment and/or prevention of several relevant human diseases. Along with recent advances in therapeutic technologies based on biomacromolecules (e.g. oligonucleotides or proteins), we also require the development of technologies which improve the transport of therapeutic molecules to the cell of choice. This has led to the emergence of a variety of promising methods over the last 20 years. Despite significant prog...

  6. From Proteomics to Structural Studies of Cytosolic/Mitochondrial-Type Thioredoxin Systems in Barley Seeds

    DEFF Research Database (Denmark)

    Shahpiri, Azar; Svensson, Birte; Finnie, Christine

    2009-01-01

    Thioredoxins (Trx) are ubiquitous proteins that participate in thiol disulfide reactions via two active site cysteine residues, allowing Trx to reduce disulfide bonds in target proteins. Recent progress in proteome analysis has resulted in identification of a wide range of potential target proteins...... for Trx, indicating that Trx plays a key role in several aspects of cell metabolism. In contrast to other organisms, plants contain multiple forms of Trx that are classified based on their primary structures and sub-cellular localization. The reduction of cytosolic and mitochondrial types of Trx...

  7. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol

    Directory of Open Access Journals (Sweden)

    Flores Rhonda

    2011-04-01

    Full Text Available Abstract Background The periplasmic High Temperature Requirement protein A (HtrA plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA in chlamydial pathogenesis is not clear. Results The cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor. Conclusion Since it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.

  8. Evolution of dinosaur epidermal structures.

    Science.gov (United States)

    Barrett, Paul M; Evans, David C; Campione, Nicolás E

    2015-06-01

    Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling

    DEFF Research Database (Denmark)

    Peiter, Edgar; Sun, Jongho; Heckmann, Anne Birgitte Lau

    2007-01-01

    In addition to establishing symbiotic relationships with arbuscular mycorrhizal fungi, legumes also enter into a nitrogen-fixing symbiosis with rhizobial bacteria that results in the formation of root nodules. Several genes involved in the development of both arbuscular mycorrhiza and legume...

  10. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    Science.gov (United States)

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  11. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  12. Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm

    Directory of Open Access Journals (Sweden)

    Nora eMellouk

    2016-04-01

    Full Text Available Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  13. Chromosomal instability drives metastasis through a cytosolic DNA response.

    Science.gov (United States)

    Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C

    2018-01-25

    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.

  14. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Lykke, Anne; Rasmussen, Lene Juel

    2010-01-01

    Several enzymes of the metabolic pathways responsible for metabolism of cytosolic ribonucleotides and deoxyribonucleotides are located in mitochondria. Studies described in this paper suggest dysfunction of the mitochondria to affect these metabolic pathways and limit the available levels...

  15. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses.

    Science.gov (United States)

    Takahama, Michihiro; Fukuda, Mitsunori; Ohbayashi, Norihiko; Kozaki, Tatsuya; Misawa, Takuma; Okamoto, Toru; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya

    2017-09-19

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Michihiro Takahama

    2017-09-01

    Full Text Available Cyclic GMP-AMP synthase (cGAS is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5, in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING, the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.

  17. Cytosolic calcium homeostasis in fungi: Roles of plasma membrane transport and intracellular sequestration of calcium

    International Nuclear Information System (INIS)

    Miller, A.J.; Vogg, G.; Sanders, D.

    1990-01-01

    Cytosolic free calcium ([Ca 2+ ] c ) has been measured in the mycelial fungus Neurospora crassa with Ca 2+ - selective microelectrodes. The mean value of [Ca 2+ ] c is 92 ± 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca 2+ across the plasma membrane to be estimated as about -60 kJmol -1 - a value that cannot be sustained either by a simple Ca 2+ - ATPase, or, in alkaline conditions, by straightforward H + /Ca 2+ exchange with a stoichiometric ratio of + /Ca 2+ . The authors propose that the most likely alternative mechanism of Ca 2+ efflux is ATP-driven H + /Ca 2+ exchange, with a stoichiometric ratio of at least 2 H + /Ca 2+ . The increase in [Ca 2+ ] c in the presence of CN - at pH 8.4 is compared with 45 Ca 2+ influx under the same conditions. The proportion of entering Ca 2+ remaining free in the cytosol is only 8 x 10 -5 , and since the concentration of available chelation sites on Ca 2+ binding proteins is unlikely to exceed 100 μM, a major role for the fungal vacuole in short-term Ca 2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca 2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force for Ca 2+ uptake into fungal vacuoles

  18. A gene-protein assay for human epidermal growth factor receptor 2 (HER2: brightfield tricolor visualization of HER2 protein, the HER2 gene, and chromosome 17 centromere (CEN17 in formalin-fixed, paraffin-embedded breast cancer tissue sections

    Directory of Open Access Journals (Sweden)

    Nitta Hiroaki

    2012-05-01

    Full Text Available Abstract Background The eligibility of breast cancer patients for human epidermal growth factor receptor 2 (HER2-directed therapies is determined by the HER2 gene amplification and/or HER2 protein overexpression status of the breast tumor as determined by in situ hybridization (ISH or immunohistochemistry (IHC, respectively. Our objective was to combine the US Food and Drug Administration (FDA-approved HER2 & chromosome 17 centromere (CEN17 brightfield ISH (BISH and HER2 IHC assays into a single automated HER2 gene-protein assay allowing simultaneous detection of all three targets in a single tissue section. Methods The HER2 gene-protein assay was optimized using formalin-fixed, paraffin-embedded (FFPE samples of the xenograft tumors MCF7 [HER2 negative (non-amplified gene, protein negative] and Calu-3 [HER2 positive (amplified gene, protein positive]. HER2 IHC was performed using a rabbit monoclonal anti-HER2 antibody (clone 4B5 and a conventional 3,3'-diaminobenzidine IHC detection. The HER2 & CEN17 BISH signals were visualized using horseradish peroxidase-based silver and alkaline phosphatase-based red detection systems, respectively with a cocktail of 2,4-dinitrophenyl-labeled HER2 and digoxigenin-labeled CEN17 probes. The performance of the gene-protein assay on tissue microarray slides containing 189 randomly selected FFPE clinical breast cancer tissue cores was compared to that of the separate HER2 IHC and HER2 & CEN17 BISH assays. Results HER2 protein detection was optimal when the HER2 IHC protocol was used before (rather than after the BISH protocol. The sequential use of HER2 IHC and HER2 & CEN17 BISH detection steps on FFPE xenograft tumor sections appropriately co-localized the HER2 protein, HER2 gene, and CEN17 signals after mitigating the silver background staining by using a naphthol phosphate-containing hybridization buffer for the hybridization step. The HER2 protein and HER2 gene status obtained using the multiplex HER2 gene-protein

  19. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosol...ic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D

  20. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    Science.gov (United States)

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  1. Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation

    International Nuclear Information System (INIS)

    An Zhu; Shaeffer, James; Leslie, Susan; Kolm, Paul; El-Mahdi, Anas M.

    1996-01-01

    Purpose: To determine whether the expression of epidermal growth factor receptor (EGFR) protein was predictive of patient survival independently of other prognostic factors in astrocytic tumors. Methods and Materials: Epidermal growth factor receptor protein expression was investigated immunohistochemically in formalin-fixed, paraffin-embedded surgical specimens of 55 glioblastoma multiforme, 14 anaplastic astrocytoma, and 2 astrocytomas given definitive irradiation. We evaluated the relationship of EGFR protein expression and tumor grade, histologic features, age at diagnosis, sex, patient survival, and recurrence-free survival. Results: The percentage of tumor cells which were EGFR positive related to reduced survival by Cox regression analysis in both univariate (p = 0.0424) and multivariate analysis (p = 0.0016). Epidermal growth factor receptor positivity was the only 1 of 11 clinical and histological variables associated with decreased recurrence-free survival by either univariate (p = 0.0353) or multivariate (p = 0.0182) analysis. Epidermal growth factor receptor protein expression was not related to patient age, sex, or histologic features. Conclusion: Epidermal growth factor receptor positivity was a significant and independent prognostic indicator for overall survival and recurrence-free survival for irradiated patients with astrocytic gliomas

  2. Cytosolic superoxide dismutase can provide protection against Fasciola gigantica.

    Science.gov (United States)

    Jaikua, Wipaphorn; Kueakhai, Pornanan; Chaithirayanon, Kulathida; Tanomrat, Rataya; Wongwairot, Sirima; Riengrojpitak, Suda; Sobhon, Prasert; Changklungmoa, Narin

    2016-10-01

    Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Purification and characterization of a novel cytosolic NADP(H)-dependent retinol oxidoreductase from rabbit liver.

    Science.gov (United States)

    Huang, D Y; Ichikawa, Y

    1997-03-07

    Rabbit liver cytosol exhibits very high retinol dehydrogenase activity. At least two retinol dehydrogenases were demonstrated to exist in rabbit liver cytosol, and the major one, a cytosolic NADP(H)-dependent retinol dehydrogenase (systematic name: retinol oxidoreductase) was purified about 1795-fold to electrophoretic and column chromatographic homogeneity by a procedure involving column chromatography on AF-Red Toyopearl twice and then hydroxyapatite. Its molecular mass was estimated to be 34 kDa by SDS-PAGE, and 144 kDa by HPLC gel filtration, suggesting that it is a homo-tetramer. The enzyme uses free retinol and retinal, and their complexes with CRBP as substrates in vitro. The optimum pH values for retinol oxidation of free retinol and CRBP-retinol were 8.8-9.2 and 8.0-9.0, respectively, and those for retinal reduction of free retinal and retinal-CRBP were the same, 7.0-7.6. Km for free retinol and Vmax for retinal formation were 2.8 microM and 2893 nmol/min per mg protein at 37 degrees C (pH 9.0) and the corresponding values with retinol-CRBP as a substrate were 2.5 microM and 2428 nmol/min per mg protein at 37 degrees C (pH 8.6); Km for free retinal and Vmax for retinol formation were 6.5 microM and 4108 nmol/min per mg protein, and the corresponding values with retinal-CRBP as a substrate were 5.1 microM and 3067 nmol/min per mg protein at 37 degrees C, pH 7.4. NAD(H) was not effective as a cofactor. 4-Methylpyrazole was a weak inhibitor (IC50 = 28 mM) of the enzyme, and ethanol was neither a substrate nor an inhibitor of the enzyme. This enzyme exhibits relatively broad aldehyde reductase activity and some ketone reductase activity, the activity for aromatic substitutive aldehydes being especially high and effective. Whereas, except in the case of retinol, oxidative activity toward the corresponding alcohols was not detected. This novel cytosolic enzyme may play an important role in vivo in maintaining the homeostasis of retinal, the substrate of retinoic

  4. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    Science.gov (United States)

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-03-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol.

  5. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional.The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  6. Toxic epidermal necrolysis successfully treated with etanercept.

    Science.gov (United States)

    Gubinelli, Emanuela; Canzona, Flora; Tonanzi, Tiziano; Raskovic, Desanka; Didona, Biagio

    2009-03-01

    Toxic epidermal necrolysis (TEN) is a rare and acute severe adverse reaction to drugs, characterised by massive apoptosis and widespread epidermal and mucosal detachment. Although no gold standard therapy exists, human i.v. immunoglobulins have recently been described as an effective treatment for this disease. We report a case of phenobarbital-induced TEN in a 59-year-old white woman where the epidermal detachment stopped 48 h after beginning the etanercept treatment with complete healing after 20 days. To the best of our knowledge, this is only the second reported case of TEN successfully treated with etanercept.

  7. Prognostic significance of cytosolic pS2 content in ovarian tumors

    International Nuclear Information System (INIS)

    Raigoso, P.; Allende, T.; Zeidan, N.; Llana, B.; Bernardo, L.; Roiz, C.; Tejuca, S.; Vazquez, J.; Lamelas, M.L.

    2002-01-01

    Aim: pS2 is an estrogen regulated peptide which has been associated with a good prognosis an with a more favorable response to treatment in breast cancer patients. In ovarian tumors, the expression of pS2 was demonstrated at both mRNA and protein levels. In addition, it has been showed significant association of pS2 with mucinous differentiation or well differentiation grade of the tumors. However, it is little know about the prognostic significance of the pS2 content in ovarian carcinomas. The aims of the present work were to analyze the cytosolic pS2 content in benign and malignant ovarian tumors, its relationship with clinico-pathologic parameters, steroid receptor status, and prognostic significance. Material and Methods: We analysed the cytosolic concentrations of pS2 in 91 specimen ovarian tissues by an immunoradiometric assay (ELSA-pS2, CIS, France). The tissues were 8 normal ovaries, 43 benign tumors and 40 malignant ovarian tumors. The same ovarian tissues processed to pS2 were analyzed to Estrogen (ER) and Progesterone (PgR) Receptor status. These steroid receptors were quantified biochemically following commercial ELISA method (ABBOTT Diagnostics, Germany). The relationship between cytosolic content and clinico-pathologic factors was examined by the Mann-Whitney or Kruskall-Wallis test. Correlation between steroid receptors and pS2 content was calculated with the Spearman test. Survival curves were calculated using the Kaplan-Meier method and compared by the log-rank test. Differences were considered significant at 5% probability level. Results: pS2 could be detected in 30 cases (32.9%) with values ranged from 0.04 to 89 ng/mg prt. Only one normal ovary showed detectable levels of pS2 and there were not differences in cytosolic content between benign and malignant ovarian tumors. The pS2 levels were only associated to mucinous differentiation in both benign and malignant ovarian tumors (p=0.029 and p=0.015, respectively). Significantly higher

  8. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2001-01-01

    ...). An epidermal biosensor is a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  9. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2003-01-01

    ...) An epidermal biosensor was conceived as a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  10. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  11. Foliar Epidermal Studies of Plants in Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    H. A. Thakur

    2014-03-01

    Full Text Available This paper describes foliar epidermal structure in 17 species belonging to 17 genera of the family Euphoprbiaceae. Anomocytic stomata is predominant, rarely they are anisocytic, paracytic on the same foliar surface with different combinations. Leaves are hypostomatic and rarely amphistomatic. The foliar surface is smooth, rarely striated. The foliar epidermal cell walls are straight or undulate. Distribution of stomata, stomatal index, stomatal frequency, stomatal size and other cell wall contours are described in detail.

  12. Epidermal Inclusion Cysts of The Breast

    Directory of Open Access Journals (Sweden)

    Amir R. Motabar

    2009-02-01

    Full Text Available Epidermal inclusion cysts are uncommon in the breast, but the consequences can besevere when these cysts occur in the breast parenchyma. Here,we report two suchcases. The patient in case 1 was an 37-year-old woman with a 3-cm palpable mass inthe right breast. Mammography revealed a round and smoothly outlined mass, whichindicated a benign tumor, and sonography showed an irregularly shaped and heterogeneoushypoechoic mass, fibroadenoma was suspected on the basis of clinical andimage findings, but excisional biopsy revealed an epidermal inclusion cyst. The patientin case 2 was a 50-year-old woman with a 2.5-cm lesion in the left breast. Mammographyrevealed a round, dense, smoothly outlined mass, and sonography showeda well-defined, central hyperechoic mass. . Breast cancer was suspected on the basisof the sonographic findings and the age of the patient, but the resected specimen revealedan epidermal inclusion cyst. Although epidermal inclusion cysts are benign,occasionally they may play a role in the origin of squamous carcinoma of the breast. .Mammographic and sonographic features of an epidermal cyst may mimic a malignantlesion. Malignant change appears to occur more frequently in epidermal inclusioncysts in the mammary gland, compared to common epidermal inclusion cysts,and this may be associated with origination of mammary epidermal inclusion cystsfrom squamous metaplasia of the mammary duct epithelium.Epidermmoid inclusion cyst of the breast is potentially serious, although such cystsare rare, and differentiation from a malignant or benign breast tumor is required. Excisionis probably the most appropriate treatment, and can eliminate the possible riskof malignant transformation.

  13. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.

    Science.gov (United States)

    Offringa, Remko; Huang, Fang

    2013-09-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples. © 2013 Institute of Botany, Chinese Academy of Sciences.

  14. Cloning and Expression of a Cytosolic HSP90 Gene in Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Zhengyi Liu

    2014-01-01

    Full Text Available Heat shock protein 90 (HSP90, a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90 by combining homology cloning with rapid amplification of cDNA ends (RACE. Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5–45°C for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰ was almost fourfold of that at 25 in salinity (‰ for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes.

  15. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells*

    Science.gov (United States)

    VanLinden, Magali R.; Dölle, Christian; Pettersen, Ina K. N.; Kulikova, Veronika A.; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E.; Palmieri, Ferdinando; Nikiforov, Andrey A.; Tronstad, Karl Johan; Ziegler, Mathias

    2015-01-01

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. PMID:26432643

  16. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells.

    Science.gov (United States)

    VanLinden, Magali R; Dölle, Christian; Pettersen, Ina K N; Kulikova, Veronika A; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E; Palmieri, Ferdinando; Nikiforov, Andrey A; Tronstad, Karl Johan; Ziegler, Mathias

    2015-11-13

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD(+) biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD(+) in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD(+) content, we have expressed plant and yeast mitochondrial NAD(+) carriers in human cells and observed a profound increase in mitochondrial NAD(+). None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD(+) content. Surprisingly, constitutive redistribution of NAD(+) from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD(+) transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD(+) levels. These results suggest that a mitochondrial NAD(+) transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD(+) synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol.

    Science.gov (United States)

    Pavlik, Benjamin J; Hruska, Elizabeth J; Van Cott, Kevin E; Blum, Paul H

    2016-03-30

    Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.

  18. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: mvchuong@yahoo.fr [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  19. Cytosolic 5'-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf.

    Directory of Open Access Journals (Sweden)

    Federico Cividini

    Full Text Available IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.

  20. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing...... multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis...... of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned...

  1. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellula...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  2. Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein

    DEFF Research Database (Denmark)

    Liu, Xiangdong; Martens, Helle; Schulz, Alexander

    Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein.......Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein....

  3. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Directory of Open Access Journals (Sweden)

    David Judah

    Full Text Available Integrin-linked kinase (ILK is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  4. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Science.gov (United States)

    Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina

    2012-01-01

    Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  5. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    Science.gov (United States)

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  6. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction.

    Directory of Open Access Journals (Sweden)

    Rachael Barton

    Full Text Available Plexins (plxns are transmembrane (TM receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET² suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.

  7. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  9. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  10. Covisualization in living onion cells of putative integrin, putative spectrin, actin, putative intermediate filaments, and other proteins at the cell membrane and in an endomembrane sheath

    Science.gov (United States)

    Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.

  11. Detection of Cytosolic Shigella flexneri via a C-Terminal Triple-Arginine Motif of GBP1 Inhibits Actin-Based Motility

    Directory of Open Access Journals (Sweden)

    Anthony S. Piro

    2017-12-01

    Full Text Available Dynamin-like guanylate binding proteins (GBPs are gamma interferon (IFN-γ-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6. GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment.

  12. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells

    Science.gov (United States)

    Zhang, Hui-ming; Talbot, Mark J.; McCurdy, David W.; Patrick, John W.; Offler, Christina E.

    2015-01-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca2+ levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane–microtubule inter-relationship is discussed. PMID:26136268

  13. Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J.

    2013-01-01

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers the host immune responses such as the production of type-I interferons (IFN). Cytosolic DNA induces IFN through the production of cyclic-GMP-AMP (cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced IFNβ in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and IFNβ induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP. PMID:23258413

  14. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J

    2013-02-15

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.

  15. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  16. Aspartic cathepsin D degrades the cytosolic cysteine cathepsin inhibitor stefin B in the cells.

    Science.gov (United States)

    Železnik, Tajana Zajc; Kadin, Andrey; Turk, Vito; Dolenc, Iztok

    2015-09-18

    Stefin B is the major general cytosolic protein inhibitor of cysteine cathepsins. Its main function is to protect the organism against the activity of endogenous potentially hazardous proteases accidentally released from lysosomes. In this study, we investigated the possible effect of endosomal/lysosomal aspartic cathepsins D and E on stefin B after membrane permeabilization. Loss of membrane integrity of lysosomes and endosomes was induced by a lysosomotropic agent L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe). The rat thyroid cell line FRTL-5 was selected as a model cell line owing to its high levels of proteases, including cathepsin D and E. Permeabilization of acid vesicles from FRTL-5 cells induced degradation of stefin B. The process was inhibited by pepstatin A, a potent inhibitor of aspartic proteases. However, degradation of stefin B was prevented by siRNA-mediated silencing of cathepsin D expression. In contrast, cathepsin E silencing had no effect on stefin B degradation. These results showed that cathepsin D and not cathepsin E degrades stefin B. It can be concluded that the presence of cathepsin D in the cytosol affects the inhibitory potency of stefin B, thus preventing the regulation of cysteine cathepsin activities in various biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress.

    Science.gov (United States)

    Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin

    2010-02-28

    Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.

  18. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    Science.gov (United States)

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Human cytosolic thymidine kinase: purification and physical characterization of the enzyme from HeLa cells

    International Nuclear Information System (INIS)

    Sherley, J.L.; Kelly, T.J.

    1988-01-01

    The mammalian cytosolic thymidine kinase is one of a number of enzymes involved in DNA replication whose activities increase dramatically during S phase of the cell cycle. As a first step in defining the mechanisms that control the S phase induction of thymidine kinase activity, the authors have purified the human enzyme from HeLa cells and raised a specific immune serum against the purified protein. The enzyme was isolated from cells arrested in S phase by treatment with methotrexate and purified to near homogeneity by ion-exchange and affinity chromatography. Stabilization of the purified enzyme was achieved by the addition of digitonin. An electrophoretic R/sub m/ of 0.2 in nondenaturing gels characterizes the purified enzyme activity as cytosolic thymidine kinase. The enzyme has a Stoke's radius of 40 A determined by gel filtration and a sedimentation coefficient of 5.5 S determined by glycerol gradient sedimentation. Based on these hydrodynamic values, a native molecular weight of 96,000 was calculated for the purified enzyme. When electrophoresed in denaturing sodium dodecyl sulfate-polyacrylamide gels under reducing conditions, the most purified enzyme fraction was found to contain one predominant polypeptide of M/sub r/ = 24,000. Several lines of evidence indicate that this polypeptide is responsible for thymidine kinase enzymatic activity

  20. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Jeong [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Gu, Dong Ryun [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Jin, Su Hyun [Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Park, Keun Ha [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Lee, Seoung Hoon, E-mail: leesh2@wku.ac.kr [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of)

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  1. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    International Nuclear Information System (INIS)

    Oh, Se Jeong; Gu, Dong Ryun; Jin, Su Hyun; Park, Keun Ha; Lee, Seoung Hoon

    2016-01-01

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  2. Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction.

    Science.gov (United States)

    Lee, Hee Jung; Seo, Seong Rak; Yoon, Moon Soo; Song, Ji-Ye; Lee, Eun Young; Lee, Sang Eun

    2016-02-01

    Skin aging results in physiological alterations in keratinocyte activities and epidermal function, as well as dermal changes. Yet, the cellular and molecular mechanisms that cause epidermal dysfunction during skin aging are not well understood. Recently, the role of epidermal hyaluronan (HA) as an active regulator of dynamic cellular processes is getting attention and alterations in HA metabolism are thought to be important in age-related epidermal dysfunction. Microneedle fractional radiofrequency (RF) has shown effects for improving cutaneous aging. However, little is known about the effects of fractional RF on the epidermal HA and epidermal function. We investigated the effect of microneedle fractional RF on the expression of epidermal HA in young and aged mice epidermis. We performed fractional RF on the dorsal skin of 30 8-week-old (young) hairless mice and 15 47-week-old (aged) C57BL/6J mice. Skin samples were collected on day 1, 3, and 7. HA content was measured by ELISA. Gene expressions of CD 44, HABP4, and HAS3 were measured using real time RT-PCR. Immunohistochemistry for detection of HA, CD44, PCNA, and filaggrin were performed. HA content and the mRNA levels of HABP4, CD44, and HAS3 were upregulated in the epidermis of both young and aged mice after microneedle fractional RF treatment. The expression was increased from day 1 after treatment and increased expression persisted on day 7. Fractional RF treatment significantly increased PCNA and filaggrin expression only in the aged mice skin. Microneedle fractional RF increased epidermal HA and CD44 expression in both young and aged mice and reversed age-related epidermal dysfunction especially in aged mice, suggesting a new mechanism involved in the skin rejuvenation effect of microneedle fractional RF. © 2015 Wiley Periodicals, Inc.

  3. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  4. Analysis of E2F factors during epidermal differentiation.

    Science.gov (United States)

    Chang, Wing Y; Dagnino, Lina

    2005-01-01

    The multigene E2F family of transcription factors is central in the control of cell cycle progression. The expression and activity of E2F proteins is tightly regulated transcriptionally and posttranslationally as a function of the proliferation and differentiation status of the cell. In this chapter, we review protocols designed to determine E2F mRNA abundance in tissues by in situ hybridization techniques. The ability to culture primary epidermal keratinocytes and maintain them as either undifferentiated or terminally differentiated cells allows the biochemical and molecular characterization of changes in E2F expression and activity. Thus, we also discuss in detail methods to analyze E2F protein abundance by immunoblot and their ability to bind DNA in cultured cells using electrophoretic mobility shift assays.

  5. Cytosol cathepsin-D content and proliferative activity of human breast cancer. The Comitato Italiano per il Controllo di Qualita del Laboratorio in Oncologia.

    Science.gov (United States)

    Paradiso, A; Mangia, A; Correale, M; Abbate, I; Ferri, G; Piffanelli, A; Catozzi, L; Amadori, D; Riccobon, A; De Lena, M

    1992-01-01

    Mitogenic properties have been demonstrated in vitro for the lysosomal acidic protease cathepsin-D (cath-D). We investigated possible relationships between cath-D cytosol cell content and tumor proliferative activity in a series of 129 operable breast cancer patients. For total cytosol cath-D evaluation, a solid phase two-site immunoradiometric assay was utilized on tumor cell cytosol obtained for hormone receptor assay (DCC method). The percentage of S-phase cells was analyzed by 3H-thymidine autoradiographic assay. Median 3H-thymidine Labeling Index (3H-Tdr-LI) of the series was 2.7%; median cath-D content resulted 57 pmol/mg of protein cytosol and was significantly higher in node-positive with respect to the node-negative subgroup (p < 0.03). When classified in low, intermediate or high tumor cath-D content and slow or fast proliferative activity (cut-off: median values of the series), no significant agreement was found between the two variables. Statistical analysis, however, showed that a significant inverse correlation existed in node positive tumors between cath-D and 3H-Tdr-LI values which was even more evident in N-positive high estrogen receptor-positive (ER+) cases (coefficient of correlation = 0.6828; p = 0.0001). Cytosol cath-D content cannot be generally proposed as a direct marker of proliferative activity for operable breast cancer.

  6. Cytosolic proteome profiling of aminoglycosides resistant Mycobacterium tuberculosis clinical isolates using MALDI-TOF/MS

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2016-11-01

    Full Text Available Emergence of extremely drug resistant tuberculosis (XDR-TB is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB. Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK and kanamycin (KM resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636 and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can

  7. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS.

    Science.gov (United States)

    Sharma, Divakar; Lata, Manju; Singh, Rananjay; Deo, Nirmala; Venkatesan, Krishnamurthy; Bisht, Deepa

    2016-01-01

    Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented.

  8. A Cytosolic Arabidopsis d-Xylulose Kinase Catalyzes the Phosphorylation of 1-Deoxy-d-Xylulose into a Precursor of the Plastidial Isoprenoid Pathway1

    Science.gov (United States)

    Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J.

    2006-01-01

    Plants are able to integrate exogenous 1-deoxy-d-xylulose (DX) into the 2C-methyl-d-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-d-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing d-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as “xylulose kinase” might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-d-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta. PMID:16920870

  9. EPIDERMAL MORPHOLOGY OF WEST AFRICAN OKRA ...

    African Journals Online (AJOL)

    Administrator

    stem peels were obtained from a slight cut on the tenth internodes. Peels from fruit ... xia l su rfa ce. A b a xia l su rfa ce. Adaxial surface. Abaxial surface. L e n g th. (µ m. ) ..... Variations in epidermal cell shape of both adaxial and abaxial surfaces ...

  10. FOLIAR EPIDERMAL AND PHYTOCHEMICAL STUDIES OF THE ...

    African Journals Online (AJOL)

    Administrator

    alkaloid, saponin, inulin, cellulose, tannin and lignin; Eragrostis tremula tested negative for lignin and positive for cellulose, saponin and alkaloids while Axonopus compressus tested negative for lignin, but positive for alkaloid, saponin, inulin, cellulose and tannin respectively. Leaf epidermal studies help to determine ...

  11. Stevens Johnsons syndrom og toksisk epidermal nekrolyse

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Zachariae, Claus; Thomsen, Simon Francis

    2013-01-01

    Stevens-Johnson syndrome and toxic epidermal necrolysis are acute mucocutaneous diseases primarily due to drug intake. The diseases are characterised by the separation of epidermis from dermis which can be life-threatening. Mortality is often caused by sepsis and multiple organ failure. The most...

  12. Targeting of a Nicotiana plumbaginifolia H+ -ATPase to the plasma membrane is not by default and requires cytosolic structural determinants.

    Science.gov (United States)

    Lefebvre, Benoit; Batoko, Henri; Duby, Geoffrey; Boutry, Marc

    2004-07-01

    The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+ -ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane-span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting.

  13. LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salker, Madhuri S.; Zhou, Yuetao; Singh, Yogesh [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany); Brosens, Jan [Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX (United Kingdom); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany)

    2015-05-08

    Objective: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H{sup +} and lactate. H{sup +} extrusion is in part accomplished by Na{sup +}/H{sup +} exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. Methods: NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pH{sub i} estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na{sup +}/H{sup +} exchanger activity from Na{sup +} dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. Results: A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na{sup +}/H{sup +} exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). Conclusions: LeftyA markedly down-regulates NHE1 expression, Na{sup +}/H{sup +} exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. - Highlights: • LeftyA, an inhibitor of tumor growth, reduces Na{sup +}/H{sup +}-exchanger activity by 55%. • LeftyA decreases NHE1 transcripts by 99.6% and NHE1 protein by 71%. • LeftyA decreases cytosolic pH from 7.22 ± 0.02 to 7.05 ± 0.02. • Cytosolic acidification by Lefty A decreases glycolysis by 41%. • Cytosolic acidification by Lefty A compromises energy production of tumor cells.

  14. A novel role of RASSF9 in maintaining epidermal homeostasis.

    Directory of Open Access Journals (Sweden)

    Chiou-Mei Lee

    Full Text Available The physiological role of RASSF9, a member of the Ras-association domain family (RASSF, is currently unclear. Here, we report a mouse line in which an Epstein-Barr virus Latent Membrane Protein 1 (LMP1 transgene insertion has created a 7.2-kb chromosomal deletion, which abolished RASSF9 gene expression. The RASSF9-null mice exhibited interesting phenotypes that resembled human ageing, including growth retardation, short lifespan, less subcutaneous adipose layer and alopecia. In the wild-type mice, RASSF9 is predominantly expressed in the epidermal keratinocytes of skin, as determined by quantitative reverse-transcription PCR, immunofluorescence and in situ hybridization. In contrast, RASSF9-/- mice presented a dramatic change in epithelial organization of skin with increased proliferation and aberrant differentiation as detected by bromodeoxyuridine incorporation assays and immunofluorescence analyses. Furthermore, characteristic functions of RASSF9-/- versus wild type (WT mouse primary keratinocytes showed significant proliferation linked to a reduction of p21Cip1 expression under growth or early differentiation conditions. Additionally, in RASSF9-/- keratinocytes there was a drastic down-modulation of terminal differentiation markers, which could be rescued by infection with a recombinant adenovirus, Adv/HA-RASSF9. Our results indicate a novel and significant role of RASSF9 in epidermal homeostasis.

  15. Radiotherapy and receptor of epidermal growth factor

    International Nuclear Information System (INIS)

    Deberne, M.

    2009-01-01

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  16. Decrease in the cytosolic NADP+-dependent isocitrate dehydrogenase activity through porcine sperm capacitation.

    Science.gov (United States)

    Katoh, Yuki; Tamba, Michiko; Matsuda, Manabu; Kikuchi, Kazuhiro; Okamura, Naomichi

    2018-02-26

    In order to understand the molecular mechanisms involved in the sperm capacitation, we have identified the proteins tyrosine-phosphorylated during the capacitation especially in conjunction with the regulation of the levels of reactive oxygen species (ROS) in sperm. In the present study, the effects of the tyrosine phosphorylation of cytosolic NADP + -dependent isocitrate dehydrogenase (IDPc) on its catalytic activity and on the levels of ROS in sperm have been studied. The tyrosine phosphorylated IDPc showed a significantly lowered enzymatic activity. The immunocytochemical analyses using the highly specific antisera against IDPc revealed that IDPc was mainly localized to the principal piece of the porcine sperm flagellum. As IDPc is one of the major NADPH regenerating enzymes in porcine sperm, it is strongly suggested that the decrease in IDPc activity is involved in the increased levels of ROS, which results in the induction of hyperactivated flagellar movement and capacitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport.

    Science.gov (United States)

    Makiuchi, Takashi; Mi-ichi, Fumika; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2013-01-01

    Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment.

  18. Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana.

    Science.gov (United States)

    Schnaubelt, Daniel; Queval, Guillaume; Dong, Yingping; Diaz-Vivancos, Pedro; Makgopa, Matome Eugene; Howell, Gareth; De Simone, Ambra; Bai, Juan; Hannah, Matthew A; Foyer, Christine H

    2015-02-01

    Reduced glutathione (GSH) is considered to exert a strong influence on cellular redox homeostasis and to regulate gene expression, but these processes remain poorly characterized. Severe GSH depletion specifically inhibited root meristem development, while low root GSH levels decreased lateral root densities. The redox potential of the nucleus and cytosol of Arabidopsis thaliana roots determined using roGFP probes was between -300 and -320 mV. Growth in the presence of the GSH-synthesis inhibitor buthionine sulfoximine (BSO) increased the nuclear and cytosolic redox potentials to approximately -260 mV. GSH-responsive genes including transcription factors (SPATULA, MYB15, MYB75), proteins involved in cell division, redox regulation (glutaredoxinS17, thioredoxins, ACHT5 and TH8) and auxin signalling (HECATE), were identified in the GSH-deficient root meristemless 1-1 (rml1-1) mutant, and in other GSH-synthesis mutants (rax1-1, cad2-1, pad2-1) as well as in the wild type following the addition of BSO. Inhibition of auxin transport had no effect on organ GSH levels, but exogenous auxin decreased the root GSH pool. We conclude that GSH depletion significantly increases the redox potentials of the nucleus and cytosol, and causes arrest of the cell cycle in roots but not shoots, with accompanying transcript changes linked to altered hormone responses, but not oxidative stress. © 2013 John Wiley & Sons Ltd.

  19. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers.

    Science.gov (United States)

    Stary, Creed M; Hogan, Michael C

    2016-05-15

    The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role. Copyright © 2016 the American Physiological Society.

  20. Cytosolic Pellino-1-Mediated K63-Linked Ubiquitination of IRF5 in M1 Macrophages Regulates Glucose Intolerance in Obesity

    Directory of Open Access Journals (Sweden)

    Donghyun Kim

    2017-07-01

    Full Text Available IRF5 is a signature transcription factor that induces M1 macrophage polarization. However, little is known regarding cytosolic proteins that induce IRF5 activation for M1 polarization. Here, we report the interaction between ubiquitin E3 ligase Pellino-1 and IRF5 in the cytoplasm, which increased nuclear translocation of IRF5 by K63-linked ubiquitination in human and mouse M1 macrophages. LPS and/or IFN-γ increased Pellino-1 expression, and M1 polarization was attenuated in Pellino-1-deficient macrophages in vitro and in vivo. Defective M1 polarization in Pellino-1-deficient macrophages improved glucose intolerance in mice fed a high-fat diet. Furthermore, macrophages in adipose tissues from obese humans exhibited increased Pellino-1 expression and IRF5 nuclear translocation compared with nonobese subjects, and these changes are associated with insulin resistance index. This study demonstrates that cytosolic Pellino-1-mediated K63-linked ubiquitination of IRF5 in M1 macrophages regulates glucose intolerance in obesity, suggesting a cytosolic mediator function of Pellino-1 in TLR4/IFN-γ receptor-IRF5 axis during M1 polarization.

  1. Liver cytosolic 1 antigen-antibody system in type 2 autoimmune hepatitis and hepatitis C virus infection.

    Science.gov (United States)

    Lenzi, M; Manotti, P; Muratori, L; Cataleta, M; Ballardini, G; Cassani, F; Bianchi, F B

    1995-01-01

    Within the multiform liver/kidney microsomal (LKM) family, a subgroup of sera that reacts with a liver cytosolic (LC) protein has been isolated and the new antigen-antibody system is called LC1. Unlike LKM antibody type 1 (anti-LKM1), anti-LC1 is said to be unrelated to hepatitis C virus (HCV) infection and has therefore been proposed as a marker of 'true' autoimmune hepatitis type 2. Altogether 100 LKM1 positive sera were tested by immunodiffusion (ID). Twenty five gave a precipitation line with human liver cytosol; 17 of the 25 also reacted with rat liver cytosol. Thirteen of the 25 sera were anti-HCV positive by second generation ELISA: anti-HCV positive patients were significantly older (p LKM1, and that it is an additional marker of juvenile autoimmune hepatitis type 2. It does not, however, discriminate between patients with and without HCV infection. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7797126

  2. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    Science.gov (United States)

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  3. AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA.

    Science.gov (United States)

    Nakaya, Yuki; Lilue, Jingtao; Stavrou, Spyridon; Moran, Eileen A; Ross, Susan R

    2017-07-05

    Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA. IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease. Copyright © 2017 Nakaya et al.

  4. SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains.

    Directory of Open Access Journals (Sweden)

    Joshua Holcomb

    Full Text Available The Nogo-B receptor (NgBR is involved in oncogenic Ras signaling through directly binding to farnesylated Ras. It recruits farnesylated Ras to the non-lipid-raft membrane for interaction with downstream effectors. However, the cytosolic domain of NgBR itself is only partially folded. The lack of several conserved secondary structural elements makes this domain unlikely to form a complete farnesyl binding pocket. We find that inclusion of the extracellular and transmembrane domains that contain additional conserved residues to the cytosolic region results in a well folded protein with a similar size and shape to the E.coli cis-isoprenyl transferase (UPPs. Small Angle X-ray Scattering (SAXS analysis reveals the radius of gyration (Rg of our NgBR construct to be 18.2 Å with a maximum particle dimension (Dmax of 61.0 Å. Ab initio shape modeling returns a globular molecular envelope with an estimated molecular weight of 23.0 kD closely correlated with the calculated molecular weight. Both Kratky plot and pair distribution function of NgBR scattering reveal a bell shaped peak which is characteristic of a single globularly folded protein. In addition, circular dichroism (CD analysis reveals that our construct has the secondary structure contents similar to the UPPs. However, this result does not agree with the currently accepted topological orientation of NgBR which might partition this construct into three separate domains. This discrepancy suggests another possible NgBR topology and lends insight into a potential molecular basis of how NgBR facilitates farnesylated Ras recruitment.

  5. Identification and comparative analysis of the epidermal differentiation complex in snakes

    Science.gov (United States)

    Brigit Holthaus, Karin; Mlitz, Veronika; Strasser, Bettina; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2017-01-01

    The epidermis of snakes efficiently protects against dehydration and mechanical stress. However, only few proteins of the epidermal barrier to the environment have so far been identified in snakes. Here, we determined the organization of the Epidermal Differentiation Complex (EDC), a cluster of genes encoding protein constituents of cornified epidermal structures, in snakes and compared it to the EDCs of other squamates and non-squamate reptiles. The EDC of snakes displays shared synteny with that of the green anole lizard, including the presence of a cluster of corneous beta-protein (CBP)/beta-keratin genes. We found that a unique CBP comprising 4 putative beta-sheets and multiple cysteine-rich EDC proteins are conserved in all snakes and other squamates investigated. Comparative genomics of squamates suggests that the evolution of snakes was associated with a gene duplication generating two isoforms of the S100 fused-type protein, scaffoldin, the origin of distinct snake-specific EDC genes, and the loss of other genes that were present in the EDC of the last common ancestor of snakes and lizards. Taken together, our results provide new insights into the evolution of the skin in squamates and a basis for the characterization of the molecular composition of the epidermis in snakes. PMID:28345630

  6. The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.

    Science.gov (United States)

    Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina

    2004-12-03

    The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.

  7. Exchange of cytosolic content between T cells and tumor cells activates CD4 T cells and impedes cancer growth.

    Directory of Open Access Journals (Sweden)

    Matthias Hardtke-Wolenski

    Full Text Available BACKGROUND: T cells are known to participate in the response to tumor cells and react with cytotoxicity and cytokine release. At the same time tumors established versatile mechanisms for silencing the immune responses. The interplay is far from being completely understood. In this study we show contacts between tumor cells and lymphocytes revealing novel characteristics in the interaction of T cells and cancer cells in a way not previously described. METHODS/ FINDINGS: Experiments are based on the usage of a hydrophilic fluorescent dye that occurs free in the cytosol and thus transfer of fluorescent cytosol from one cell to the other can be observed using flow cytometry. Tumor cells from cell lines of different origin or primary hepatocellular carcinoma (HCC cells were incubated with lymphocytes from human and mice. This exposure provoked a contact dependent uptake of tumor derived cytosol by lymphocytes--even in CD4⁺ T cells and murine B cells--which could not be detected after incubation of lymphocytes with healthy cells. The interaction was a direct one, not requiring the presence of accessory cells, but independent of cytotoxicity and TCR engagement. Electron microscopy disclosed 100-200 nm large gaps in the cell membranes of connected cells which separated viable and revealed astonishing outcome. While the lymphocytes were induced to proliferate in a long term fashion, the tumor cells underwent a temporary break in cell division. The in vitro results were confirmed in vivo using a murine acute lymphoblastic leukemia (ALL model. The arrest of tumor proliferation resulted in a significant prolonged survival of challenged mice. CONCLUSIONS: The reported cell-cell contacts reveal new characteristics i.e. the enabling of cytosol flow between the cells including biological active proteins that influence the cell cycle and biological behaviour of the recipient cells. This adds a completely new aspect in tumor induced immunology.

  8. Surface-Enhanced Raman Spectroscopy (SERS Tracking of Chelerythrine, a Na+/K+ Pump Inhibitor, into Cytosol and Plasma Membrane Fractions of Human Lens Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Kevin M. Dorney

    2013-12-01

    Full Text Available Background/Aims: The quaternary benzo-phenanthridine alkaloid (QBA chelerythrine (CET is a pro-apoptotic drug and Na+/K+ pump (NKP inhibitor in human lens epithelial cells (HLECs. In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS. Methods: Silver nanoparticles (AgNPs prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm-1 marker band as a function of CET concentration. Results: SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Conclusion: Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET+ accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect.

  9. Surface-enhanced Raman spectroscopy (SERS) tracking of chelerythrine, a Na(+)/K(+) pump inhibitor, into cytosol and plasma membrane fractions of human lens epithelial cell cultures.

    Science.gov (United States)

    Dorney, Kevin M; Sizemore, Ioana E P; Alqahtani, Tariq; Adragna, Norma C; Lauf, Peter K

    2013-01-01

    The quaternary benzo-phenanthridine alkaloid (QBA) chelerythrine (CET) is a pro-apoptotic drug and Na(+)/K(+) pump (NKP) inhibitor in human lens epithelial cells (HLECs). In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm(-1) marker band as a function of CET concentration. SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET(+)) accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect. © 2014 S. Karger AG, Basel.

  10. Collagen sheet dressings for cutaneous lesions of toxic epidermal necrolysis

    Directory of Open Access Journals (Sweden)

    S Bhattacharya

    2011-01-01

    Full Text Available Toxic epidermal necrolysis (TEN is associated with a significant mortality of 30-50% and long-term sequelae. Treatment includes early admission to a burn unit, where management with precise fluid, electrolyte, protein, and energy supplementation, moderate mechanical ventilation, and expert wound care can be provided. Specific treatment with immunosuppressive drugs or immunoglobulins did not show an improved outcome in most studies and remains controversial. We have treated the cutaneous lesions of seven patients of TEN with collagen sheet dressings and have found a significant reduction in morbidity. The sheets are a one-time dressing, easy to apply and they reduce fluid loss, prevent infection, reduce pain, avoid repeated dressings and gradually peal off as the underlying lesions heal.

  11. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  12. A membrane model for cytosolic calcium oscillations. A study using Xenopus oocytes.

    OpenAIRE

    Jafri, M S; Vajda, S; Pasik, P; Gillo, B

    1992-01-01

    Cytosolic calcium oscillations occur in a wide variety of cells and are involved in different cellular functions. We describe these calcium oscillations by a mathematical model based on the putative electrophysiological properties of the endoplasmic reticulum (ER) membrane. The salient features of our membrane model are calcium-dependent calcium channels and calcium pumps in the ER membrane, constant entry of calcium into the cytosol, calcium dependent removal from the cytosol, and buffering ...

  13. Epidermal cell death in frogs with chytridiomycosis

    Directory of Open Access Journals (Sweden)

    Laura A. Brannelly

    2017-02-01

    Full Text Available Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection.

  14. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F

    1999-01-01

    Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential...

  15. Localization of age-related macular degeneration-associated ARMS2 in cytosol, not mitochondria

    Science.gov (United States)

    Wang, Gaofeng; Spencer, Kylee L.; Court, Brenda L.; Olson, Lana M.; Scott, William K.; Haines, Jonathan L.; Pericak-Vance, Margaret A.

    2010-01-01

    PURPOSE To analyze the relationship between ARMS2 and HTRA1 in the association with age-related macular degeneration (AMD) in an independent case-control dataset, and to investigate the subcellular localization of the ARMS2 protein in an in vitro system. METHOD Two SNPs in ARMS2 and HTRA1 were genotyped in 685 cases and 269 controls by Taqman Assay. Allelic association was tested by a χ2 test. A likelihood ratio test (LRT) of full vs. reduced models was utilized to analyze the interaction between ARMS2 and smoking and HTRA1 and smoking, after adjusting for CFH and age. Immunofluorescence and immunoblot were applied to localize ARMS2 in retinal epithelial ARPE-19 cells and COS7 cell transfected by ARMS2 constructs. RESULT Both significantly associated SNP rs10490924 and rs11200638 (P<0.0001) are in strong linkage disequilibrium (LD) (D′=0.97, r2=0.93) that generates virtually identical association test and odds ratios. In separate logistic regression models the interaction effect for both smoking with ARMS2 and with HTRA1 was not statistically significant. Immunofluorescence and immunoblot show that both endogenous and exogenous ARMS2 are mainly distributed in the cytosol, not the mitochondria. Comparing to wild type, ARMS2 A69S is more likely to be associated with cytoskeleton in COS7 cells. CONCLUSIONS The significant associations in ARMS2 and HTRA1 are with polymorphisms in strong LD that confer virtually identical risks, preventing differentiation at the statistical level. We found that ARMS2 was mainly distributed in the cytosol, not in mitochondrial outer membrane as previously reported, suggesting that ARMS2 may not confer risk to AMD through the mitochondrial pathway. PMID:19255159

  16. Expression of cytosolic NADP(+)-dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant.

    Science.gov (United States)

    Kim, Ji Young; Shin, Jae Yong; Kim, Miri; Hann, Seung-Kyung; Oh, Sang Ho

    2012-02-01

    Cytosolic NADP(+)-dependent ICDH (IDPc) has an antioxidant effect as a supplier of NADPH to the cytosol, which is needed for the production of glutathione. To evaluate the expression of IDPc in melanocytes and to elucidate its role as an antioxidant. The knock-down of IDPc expression in immortalized mouse melanocyte cell lines (melan-a) was performed using the short interfering RNA (siRNA)-targeted gene silencing method. After confirming the silencing of IDPc expression with mRNA and protein levels, viability, apoptosis and necrosis, as well as ROS production in IDPc-silenced melanocytes were monitored under conditions of oxidative stress and non-stress. Also, the ratio of oxidized glutathione to total glutathione was examined, and whether the addition of glutathione recovered cell viability, decreased by oxidant stress, was checked. The expression of IDPc in both primary human melanocytes and melan-a cells was confirmed by Western blot and RT-PCR. The silencing of IDPc expression by transfecting IDPc siRNA in melan-a cells was observed by Western blotting and real-time RT-PCR. IDPc knock-down cells showed significantly decreased cell viability and an increased number of cells under apoptosis and necrosis. IDPc siRNA-treated melanocytes demonstrated a higher intensity of DCFDA after the addition of H(2)O(2) compared with scrambled siRNA-treated melanocytes, and a lower ratio of reduced glutathione to oxidized glutathione were observed in IDPc siRNA transfected melanocytes. In addition, the addition of glutathione recovered cell viability, which was previously decreased after incubation with H(2)O(2). This study suggests that decreased IDPc expression renders melanocytes more vulnerable to oxidative stress, and IDPc plays an important antioxidant function in melanocytes. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    Science.gov (United States)

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, Simona, E-mail: s.salerno@itm.cnr.it [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); Messina, Antonietta [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); Giordano, Francesca [Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS) (Italy); Bader, Augustinus [Biomedical-Biotechnological Center, BBZ, University of Leipzig, D-04103 Leipzig (Germany); Drioli, Enrico [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); WCU Energy Engineering Department, Hanyang University, Seoul (Korea, Republic of); De Bartolo, Loredana, E-mail: l.debartolo@itm.cnr.it [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy)

    2017-02-01

    Dermal-epidermal membrane systems were developed by co-culturing human keratinocytes with Skin derived Stem Cells (SSCs), which are Mesenchymal Stem Cells (MSCs) isolated from dermis, on biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT and PCL. The membranes display physico-chemical, morphological, mechanical and biodegradation properties that could satisfy and fulfil specific requirements in skin tissue engineering. CHT membrane exhibits an optimal biodegradation rate for acute wounds; CHT-PCL for the chronic ones. On the other hand, PCL membrane in spite of its very slow biodegradation rate exhibits mechanical properties similar to in vivo dermis, a lower hydrophilic character, and a surface roughness, all properties that make it able to sustain cell adhesion and proliferation for in vitro skin models. Both CHT–PCL and PCL membranes guided epidermal and dermal differentiation of SSCs as pointed out by the expression of cytokeratins and the deposition of the ECM protein fibronectin, respectively. In the dermal-epidermal membrane systems, a more suitable microenvironment for the SSCs differentiation was promoted by the interactions and the mutual interplay with keratinocytes. Being skin tissue-biased stem cells committed to their specific final dermal and/or epidermal cell differentiation, SSCs are more suitable for skin tissue engineering than other adult MSCs with different origin. For this reason, they represent a useful autologous cell source for engineering skin substitutes for both in vivo and in vitro applications.

  19. Grhl3 and Lmo4 play coordinate roles in epidermal migration.

    Science.gov (United States)

    Hislop, Nikki R; Caddy, Jacinta; Ting, Stephen B; Auden, Alana; Vasudevan, Sumitha; King, Sarah L; Lindeman, Geoffrey J; Visvader, Jane E; Cunningham, John M; Jane, Stephen M

    2008-09-01

    In addition to its role in formation of the epidermal barrier, the mammalian transcription factor Grainy head-like 3 (Grhl3) is also essential for neural tube closure and wound repair, processes that are dependent in part on epidermal migration. Here, we demonstrate that the LIM-only domain protein, LMO4 serves as a functional partner of GRHL3 in its established roles, and define a new cooperative role for these factors in another developmental epidermal migration event, eyelid fusion. GRHL3 and LMO4 interact biochemically and genetically, with mutant mice exhibiting fully penetrant exencephaly, thoraco-lumbo-sacral spina bifida, defective skin barrier formation, and a co-incident eyes-open-at-birth (EOB) phenotype, which is not observed in the original individual null lines. The two genes are co-expressed in the surface ectoderm of the migrating eyelid root, and electron microscopy of Grhl3/Lmo4-null eyes reveals a failure in epithelial extension and a lack of peridermal clump formation at the eyelid margins. Accumulation of actin fibers is also absent in the circumference of these eyelids, and ERK1/2 phosphorylation is lost in the epidermis and eyelids of Grhl3(-/-)/Lmo4(-/-) embryos. Keratinocytes from mutant mice fail to "heal" in in vitro scratch assays, consistent with a general epidermal migratory defect that is dependent on ERK activation and actin cable formation.

  20. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka

    2008-01-01

    Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase...... differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane...

  1. TMEM45A Is Dispensable for Epidermal Morphogenesis, Keratinization and Barrier Formation.

    Directory of Open Access Journals (Sweden)

    Aurélie Hayez

    Full Text Available TMEM45A gene encodes an initially uncharacterized predicted transmembrane protein. We previously showed that this gene is highly expressed in keratinocytes where its expression correlates with keratinization, suggesting a role in normal epidermal physiology. To test this hypothesis, we generated TMEM45A knockout mice and found that these mice develop without any evident phenotype. The morphology of the epidermis assessed by histology and by labelling differentiation markers in immunofluorescence was not altered. Toluidine blue permeability assay showed that the epidermal barrier develops normally during embryonic development. We also showed that depletion of TMEM45A in human keratinocytes does not alter their potential to form in vitro 3D-reconstructed epidermis. Indeed, epidermis with normal morphogenesis were generated from TMEM45A-silenced keratinocytes. Their expression of differentiation markers quantified by RT-qPCR and evidenced by immunofluorescence labelling as well as their barrier function estimated by Lucifer yellow permeability were similar to the control epidermis. In summary, TMEM45A gene expression is dispensable for epidermal morphogenesis, keratinization and barrier formation. If this protein plays a role in the epidermis, its experimental depletion can possibly be compensated by other proteins in the two experimental models analyzed in this study.

  2. Characterization of the cytosolic distribution of priority pollutant metals and metalloids in the digestive gland cytosol of marine mussels: seasonal and spatial variability.

    Science.gov (United States)

    Strižak, Zeljka; Ivanković, Dušica; Pröfrock, Daniel; Helmholz, Heike; Cindrić, Ana-Marija; Erk, Marijana; Prange, Andreas

    2014-02-01

    Cytosolic profiles of several priority pollutant metals (Cu, Cd, Zn, Pb) and metalloid As were analyzed in the digestive gland of the mussel (Mytilus galloprovincialis) sampled at locations with different environmental pollution levels along the Croatian coast in the spring and summer season. Size-exclusion chromatography (SEC) connected to inductively coupled plasma mass spectrometry (ICP-MS) was used to determine selected elements bound to cytosolic biomolecules separated based on their molecular size. Copper, cadmium and zinc eluted mostly associated with high molecular weight (HMW) and medium molecular weight (MMW) biomolecules, but with a more prominent elution in the MMW peak at polluted locations which were probably associated with the 20 kDa metallothionein (MT). Elution of all three metals within this peak was also strongly correlated with cytosolic Cd as strong inducer of MT. Lead mostly eluted in HMW biomolecule range, but in elevated cytosolic Pb concentrations, significant amount eluted in low molecular weight (LMW) biomolecules. Arsenic, on the other hand eluted almost completely in LMW range, but we could not distinguish specific molecular weight biomolecules which would be predominant in detoxification mechanism. Seasonal variability in element abundance within specific peaks was present, although not in the same extent, for all elements and locations, especially for As. The results confirm the suitability of the distribution of selected metals/metalloids among different cytosolic ligands as potential indicator for metal exposure. Obtained findings can also serve as guidelines for further separation and characterization of specific cytosolic metal-binding biomolecules. © 2013.

  3. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.

    Science.gov (United States)

    Holtgrefe, Simone; Gohlke, Jochen; Starmann, Julia; Druce, Samantha; Klocke, Susanne; Altmann, Bianca; Wojtera, Joanna; Lindermayr, Christian; Scheibe, Renate

    2008-06-01

    Cytosolic NAD-dependent glyceraldehyde 3-P dehydrogenase (GAPDH; GapC; EC 1.2.1.12) catalyzes the oxidation of triose phosphates during glycolysis in all organisms, but additional functions of the protein has been put forward. Because of its reactive cysteine residue in the active site, it is susceptible to protein modification and oxidation. The addition of GSSG, and much more efficiently of S-nitrosoglutathione, was shown to inactivate the enzymes from Arabidopsis thaliana (isoforms GapC1 and 2), spinach, yeast and rabbit muscle. Inactivation was fully or at least partially reversible upon addition of DTT. The incorporation of glutathione upon formation of a mixed disulfide could be shown using biotinylated glutathione ethyl ester. Furthermore, using the biotin-switch assay, nitrosylated thiol groups could be shown to occur after treatment with nitric oxide donors. Using mass spectrometry and mutant proteins with one cysteine lacking, both cysteines (Cys-155 and Cys-159) were found to occur as glutathionylated and as nitrosylated forms. In preliminary experiments, it was shown that both GapC1 and GapC2 can bind to a partial gene sequence of the NADP-dependent malate dehydrogenase (EC 1.2.1.37; At5g58330). Transiently expressed GapC-green fluorescent protein fusion proteins were localized to the nucleus in A. thaliana protoplasts. As nuclear localization and DNA binding of GAPDH had been shown in numerous systems to occur upon stress, we assume that such mechanism might be part of the signaling pathway to induce increased malate-valve capacity and possibly other protective systems upon overreduction and initial formation of reactive oxygen and nitrogen species as well as to decrease and protect metabolism at the same time by modification of essential cysteine residues.

  4. Synthetic inhibitors of matrix metalloproteinases prevent sulfur mustard-induced epidermal-dermal separation in human skin pieces

    NARCIS (Netherlands)

    Mol, M.A.E.; Alblas, S.W.; Hammer, A.; Benschop, H.P.

    2000-01-01

    Degradation of proteins of the basement membrane zone (BMZ) in the skin depends on the activity of proteolytic enzymes, particularly those belonging to the group of matrix metalloproteinases (MMPs). In the present study we have investigated the contribution of these enzymes to the epidermal-dermal

  5. Intracellular protein breakdown. 8

    International Nuclear Information System (INIS)

    Bohley, P.; Kirschke, H.; Langner, J.; Wiederanders, B.; Ansorge, S.

    1976-01-01

    Double-labelled proteins from rat liver cytosol ( 14 C in long-lived, 3 H in short-lived proteins after in-vivo-labelling) are used as substrates for unlabelled proteinases in vitro. Differences in the degradation rates of short-lived and long-lived proteins in vitro by different proteinases and after addition of different effectors allow conclusions concerning their importance for the in-vivo-turnover of substrate proteins. The main activity (>90%) of soluble lysosomal proteinases at pH 6.1 and pH 6.9 is caused by thiolproteinases, which degrade preferentially short-lived cytosol proteins. These proteinases are inhibited by leupeptin. Autolysis of double-labelled cell fractions shows a remarkably faster breakdown of short-lived substrate proteins only in the soluble part of lysosomes. Microsomal fractions degrade in vitro preferentially long-lived substrate proteins. (author)

  6. Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle

    DEFF Research Database (Denmark)

    Satrústegui, Jorgina; Bak, Lasse K

    2015-01-01

    that MAS is regulated by fluctuations in cytosolic Ca(2+) levels, and that this regulation is required to maintain a tight coupling between neuronal activity and mitochondrial respiration and oxidative phosphorylation. At cytosolic Ca(2+) fluctuations below the threshold of the mitochondrial calcium...

  7. Induction of Cytosolic Acetyl-Coenzyme A Carboxylase in Pea Leaves by Ultraviolet-B Irradiation

    OpenAIRE

    Tomokazu, Konishi; Takahiro, Kamoi; Ryuichi, Matsuno; Yukiko, Sasaki; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University:(Present)Laboratory of Molecular Genetics, Biotechnology Institute, Akita Prefectural College of Agriculture; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University:(Present)Laboratory of Plant Molecular Biology, School of Agricultural Sciences, Nagoya University

    1996-01-01

    Levels of subunits of two acetyl-coenzyme A carboxylases were high in small leaves of Pisum sativum, decreased with growth, and remained constant in fully expanded leaves. Irradiation of fully expanded leaves induced the cytosolic isozyme only. This result suggests a key role for the cytosolic enzyme in protection against UV-B.

  8. Reptured Epidermal Inclusion Cyst in the Axilla: A Case Report

    International Nuclear Information System (INIS)

    Kim, Kyu Soon; Kim, Hak Hee; Shin, Hee Jeong; Yang, Hye Rin; Sohn, Jeong Hee; Kwon, Gui Young; Gong, Gyung Yub

    2006-01-01

    Epidermal inclusion cysts, the most common type of simple epithelial cyst, are typically well-encapsulated, subepidermal and mobile nodules. They may occur anywhere, but are mostly found on the scalp, face, neck, trunk, and back. Less than 10% of epidermal inclusion cysts occur on the extremities, and even fewer are found on the palms, soles, and breasts. If epidermal inclusion cysts rupture, foreign body reaction, granulomatous reaction or abscess formation could follow. We described here the sonographic findings of ruptured epidermal inclusion cyst of the right axilla in a 33-year-old woman who presented with a palpable axillary mass forming an inflammatory abscess

  9. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization.

    Science.gov (United States)

    León-Del-Río, Alfonso; Valadez-Graham, Viviana; Gravel, Roy A

    2017-08-21

    The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.

  10. Culture technique of rabbit primary epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Marini M

    2012-10-01

    Full Text Available The epidermis is the protective covering outer layer of the mammalian skin. The epidermal cells are stratified squamous epithelia which undergo continuous differentiation of loss and replacement of cells. Ninety per cent of epidermal cells consist of keratinocytes that are found in the basal layer of the stratified epithelium called epidermis. Keratinocytes are responsible for forming tight junctions with the nerves of the skin as well as in the process of wound healing. This article highlights the method of isolation and culture of rabbit primary epidermal keratinocytes in vitro. Approximately 2cm x 2cm oval shaped line was drawn on the dorsum of the rabbit to mark the surgical area. Then, the skin was carefully excised using a surgical blade and the target skin specimens harvested from the rabbits were placed in transport medium comprising of Dulbecco’s Modified Eagle Medium (DMEM and 1% of antibiotic-antimycotic solution. The specimens were transferred into a petri dish containing 70% ethanol and washed for 5 min followed by a wash in 1 x Dulbecco’s Phosphate Buffered Saline (DBPS. Then, the skin specimens were placed in DMEM and minced into small pieces using a scalpel. The minced pieces were placed in a centrifuge tube containing 0.6% Dispase and 1% antibiotic-antimycotic solution overnight at 4°C in a horizontal orientation. The epidermis layer (whitish, semi-transparent was separated from the dermis (pink, opaque, gooey with the aid of curved forceps by fixing the dermis with one pair of forceps while detaching the epidermis with the second pair. The cells were cultured at a density of 4 x 104 cells/cm2 in culture flask at 37°C and 5% CO2. The cell morphology of the keratinocytes was analyzed using inverted microscope.

  11. The Epidermal Growth Factor Receptor Is a Regulator of Epidermal Complement Component Expression and Complement Activation

    DEFF Research Database (Denmark)

    Abu-Humaidan, Anas H A; Ananthoju, Nageshwar; Mohanty, Tirthankar

    2014-01-01

    The complement system is activated in response to tissue injury. During wound healing, complement activation seems beneficial in acute wounds but may be detrimental in chronic wounds. We found that the epidermal expression of many complement components was only increased to a minor extent in skin...

  12. O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α.

    Directory of Open Access Journals (Sweden)

    Pedro Latorre

    Full Text Available PGC1α is a coactivator of many transcription factors and cytosolic phosphoenolpyruvate carboxykinase (PCK1 is a key enzyme for gluconeogenesis. PGC1α interacts with the transcription factor PPARγ to stimulate PCK1 expression and thus de novo glucose synthesis. These proteins are not only important for central energy metabolism but also for supplying intermediates for other metabolic pathways, including lipidogenesis and protein synthesis and might therefore be important factors in the ethiopathogenesis of metabolic disorders like diabetes but also in other pathologies like cancer. Since polymorphisms in these proteins have been related to some phenotypic traits in animals like pigs and PGC1α G482S polymorphism increases fat deposition in humans, we have investigated the molecular basis of such effects focusing on a commonly studied polymorphism in pig Pgc1α, which changes a cysteine at position 430 (WT of the protein to a serine (C430S. Biochemical analyses show that Pgc1α WT stimulates higher expression of human PCK1 in HEK293T and HepG2 cells. Paradoxically, Pgc1α WT is less stable than Pgc1α p.C430S in HEK293T cells. However, the study of different post-translational modifications shows a higher O-GlcNAcylation level of Pgc1α p.C430S. This higher O-GlcNAcylation level significantly decreases the interaction between Pgc1α and PPARγ demonstrating the importance of post-translational glycosylation of PGC1α in the regulation of PCK1 activity. This, furthermore, could explain at least in part the observed epistatic effects between PGC1α and PCK1 in pigs.

  13. Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Zhang Peiqun; Chai Zhifang; He Wei; Huang Yuying

    2003-01-01

    An improved method of analysis of metals in protein bands with synchrotron radiation X-ray fluorescence (SRXRF) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation is introduced and applied to human liver cytosol. Through a step of drying the gel before SRXRF determination, the continuous background resulting mainly from the Compton-scattering of X-rays by the gel matrix was substantially reduced, and the detection of biological trace elements, such as Cu, Fe, and Zn in protein bands was thereby made possible. With the new procedure, six Zn-containing proteins with molecular weights (MWs) of 17.5, 20.5, 27, 35, 55, and 63 kDa, respectively were found in human liver cytosol, among which the 63 kDa Zn-containing band was shown to be the dominant form of zinc. In addition, at least four Fe containing proteins with MWs of 20, 23, 43, and 83.5 kDa, respectively, were present in the samples. The metal contents in some metalloproteins, such as the 63 kDa Zn-containing protein, the 23 and 83.5 kDa Fe-containing proteins, and a 22 kDa Cu-containing protein were more closely related to the metal level in the sample. It is demonstrated that the procedure could be widely used to further investigate metal-binding proteins in biological samples

  14. UVA-induced immune suppression in human skin: protective effect of vitamin E in human epidermal cells in vitro

    International Nuclear Information System (INIS)

    Clement-Lacroix, P.; Michel, L.; Moysan, A.; Morliere, P.; Dubertret, L.

    1996-01-01

    UVA (320-400 nm) radiation damage to membranes, proteins, DNA and other cellular targets is predominantly related to oxidative processes. In the present study, we demonstrated that cutaneous UVA-induced immunosuppression can be related, at least in part, to the appearance of these oxidative processes. The UVA-induced oxidative processes in freshly isolated epidermal cells were monitored by measuring the thiobarbituric acid reactive substances (TBARS) as an index of peroxidation. The in vitro immunosuppressive effects of UVA were demonstrated by measuring the allogenic lymphocyte proliferation induced by epidermal cells or purified Langerhans cells in the mixed epidermal cell-lymphocyte reaction (MECLR). In addition, the effects of a potent antioxidant (vitamin E) on these two UVA-induced processes were analysed. (author)

  15. Bioengineering a human plasma-based epidermal substitute with efficient grafting capacity and high content in clonogenic cells.

    Science.gov (United States)

    Alexaline, Maia M; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T; Doucet, Christelle; Fortunel, Nicolas O; Lataillade, Jean-Jacques

    2015-06-01

    Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. ©AlphaMed Press.

  16. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.

    Science.gov (United States)

    Fernando, Lawrence P; Lewis, Jamal S; Evans, Brian C; Duvall, Craig L; Keselowsky, Benjamin G

    2018-04-01

    Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018. © 2017 Wiley Periodicals, Inc.

  17. Etanercept therapy for toxic epidermal necrolysis.

    Science.gov (United States)

    Paradisi, Andrea; Abeni, Damiano; Bergamo, Fabio; Ricci, Francesco; Didona, Dario; Didona, Biagio

    2014-08-01

    Toxic epidermal necrolysis (TEN) is a severe and potentially lethal drug reaction for which no standard treatment is available. To describe a case series of patients with TEN treated with a single dose of etanercept. We observed 10 consecutive patients with TEN. For each patient, we recorded the presence of comorbidities and all the drugs recently started (ie, in the last month). In all cases, 50 mg of etanercept was administered in a single subcutaneous injection. The clinical severity of disease was computed using the SCORe of Toxic Epidermal Necrosis (SCORTEN) scale. Using the probabilities of death linked to each level of SCORTEN score, we calculated the expected probability of death in our patients. Healing was defined as complete reepithelialization, and a time to healing curve was then obtained using the Kaplan-Meier method. All patients promptly responded to treatment, reaching complete reepithelialization without complications or side effects. The median time to healing was 8.5 days. This is a small, uncontrolled case series. These preliminary results suggest the possibility that tumor necrosis factor-alfa may be an effective target for control of TEN, a dangerous skin condition for which no effective cure has yet been found. Copyright © 2014 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  18. Cytosolic lipolysis and lipophagy: two sides of the same coin.

    Science.gov (United States)

    Zechner, Rudolf; Madeo, Frank; Kratky, Dagmar

    2017-11-01

    Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.

  19. Surveillance for Intracellular Antibody by Cytosolic Fc Receptor TRIM21

    Directory of Open Access Journals (Sweden)

    William A. McEwan

    2016-11-01

    Full Text Available TRIM21 has emerged as an atypical Fc receptor that is broadly conserved and widely expressed in the cytoplasm of mammalian cells. Viruses that traffic surface-bound antibodies into the cell during infection recruit TRIM21 via a high affinity interaction between Fc and TRIM21 PRYSPRY domain. Following binding of intracellular antibody, TRIM21 acts as both antiviral effector and sensor for innate immune signalling. These activities serve to reduce viral replication by orders of magnitude in vitro and contribute to host survival during in vivo infection. Neutralization occurs rapidly after detection and requires the activity of the ubiquitin-proteasome system. The microbial targets of this arm of intracellular immunity are still being identified: TRIM21 activity has been reported following infection by several non-enveloped viruses and intracellular bacteria. These findings extend the sphere of influence of antibodies to the intracellular domain and have broad implications for immunity. TRIM21 has been implicated in the chronic auto-immune condition systemic lupus erythematosus and is itself an auto-antigen in Sjögren’s syndrome. This review summarises our current understanding of TRIM21’s role as a cytosolic Fc receptor and briefly discusses pathological circumstances where intracellular antibodies have been described, or are hypothesized to occur, and may benefit from further investigations of the role of TRIM21.

  20. Cytosolic sensing of immuno-stimulatory DNA, the enemy within.

    Science.gov (United States)

    Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia

    2018-02-01

    In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.

  1. Response of human epidermal keratinocytes to UV light

    International Nuclear Information System (INIS)

    Kartasova, A.A.

    1987-01-01

    This thesis presents a study on the response of human epidermal keratinocytes to UV light as well as to other agents like 4-NQO and TPA. The effects of ultraviolet (UV) light on the protein synthesis in cultured keratinocytes are presented in ch. III. The next chapter describes the construction of a cDNA library using mRNA isolated from UV irradiated kernatinocytes. This library was differentially screened with cDNA probes synthesized on mRNA from either UV irradiated or nonirradiated cells. Several groups of cDNA clones corresponding to transcripts whose level in the cytoplasm seem to be affected by exposure to UV light have been isolated and characterized by cross-hybridization, sequencing and Northern blot analysis. More detailed analysis of some of the cDNA clones is presented in the two chapters following ch. IV. The complete cDNA sequence of the proteinase inhibitor cystatin A and the modulation of its expression by UV light and the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in keratinocytes are described in ch. V. Two other groups of cDNA clones have been isolated which do not cross-hybridize with each other on Southern blots. However, the primary structures of the proteins deduced from the nucleotide sequences of these two groups of cDNA clones are very similar. 212 refs.; 33 figs.; 2 tabs

  2. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  3. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  4. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  5. A homolog of Drosophila grainy head is essential for epidermal integrity in mice.

    Science.gov (United States)

    Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M

    2005-04-15

    The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.

  6. Compromised epidermal barrier stimulates Harderian gland activity and hypertrophy in ACBP-/- mice

    DEFF Research Database (Denmark)

    Sørensen, Signe Bek; Neess, Ditte; Dixen, Karen

    2015-01-01

    of the eye lid. We show that disruption of the Acbp gene leads to a significant enlargement of this gland with hypertrophy of the acinar cells and increased de novo synthesis of monoalkyl diacylglycerol, the main lipid species produced by the gland. Mice with conditional targeting of the Acbp gene......Acyl-CoA binding protein (ACBP) is a small, ubiquitously expressed intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity and specificity. We have recently shown that targeted disruption of the Acbp gene leads to a compromised epidermal barrier and that this causes delayed...

  7. Post-female-circumcision clitoral epidermal inclusion cyst: a case ...

    African Journals Online (AJOL)

    Keywords: complication, epidermal inclusion cyst, female circumcision. Pediatric Urology Division, Department of Urology, ... transplantation of the epidermis into the subcutaneous tissue with subsequent proliferation of epidermal ... The evolution of the practice of FGM, from being performed by traditional birth attendants to.

  8. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells.

    Science.gov (United States)

    Zhang, Hui-ming; Talbot, Mark J; McCurdy, David W; Patrick, John W; Offler, Christina E

    2015-09-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca(2+) levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane-microtubule inter-relationship is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  10. Genetic analysis of Ras genes in epidermal development and tumorigenesis

    Science.gov (United States)

    Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano

    2013-01-01

    Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175

  11. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    International Nuclear Information System (INIS)

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-01-01

    Highlights: → Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. → UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. → UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm 2 ) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  12. Epidermal transglutaminase (TGase 3 is required for proper hair development, but not the formation of the epidermal barrier.

    Directory of Open Access Journals (Sweden)

    Susan John

    Full Text Available Transglutaminases (TGase, a family of cross-linking enzymes present in most cell types, are important in events as diverse as cell-signaling and matrix stabilization. Transglutaminase 1 is crucial in developing the epidermal barrier, however the skin also contains other family members, in particular TGase 3. This isoform is highly expressed in the cornified layer, where it is believed to stabilize the epidermis and its reduction is implicated in psoriasis. To understand the importance of TGase 3 in vivo we have generated and analyzed mice lacking this protein. Surprisingly, these animals display no obvious defect in skin development, no overt changes in barrier function or ability to heal wounds. In contrast, hair lacking TGase 3 is thinner, has major alterations in the cuticle cells and hair protein cross-linking is markedly decreased. Apparently, while TGase 3 is of unique functional importance in hair, in the epidermis loss of TGase 3 can be compensated for by other family members.

  13. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation.

    Science.gov (United States)

    Ivanova, Iordanka A; D'Souza, Sudhir J A; Dagnino, Lina

    2005-01-01

    The epidermis is the outermost layer in the skin, and it is the first line of defence against the environment. The epidermis also provides a barrier against loss of fluids and electrolytes, which is crucial for life. Essential in the maintenance of this tissue is its ability to continually self-renew and regenerate after injury. These two characteristics are critically dependent on the ability of the principal epidermal cell type, the keratinocyte, to proliferate and to respond to differentiation cues. Indeed, the epidermis is a multilayered tissue composed of keratinocyte stem cells and their differentiated progeny. Central for the control of cell proliferation is the E2F transcription factor regulatory network. This signaling network also includes cyclins, cdk, cdk inhibitors and the retinoblastoma (pRb) family of proteins. The biological importance of the E2F/pRb pathway is emphasized by the fact that a majority of human tumours exhibit alterations that disrupt the ability of pRb proteins to inhibit E2F, leading to permanent activation of the latter. Further, E2F is essential for normal epidermal regeneration after injury. Other member of the E2F signaling pathway are also involved in epidermal development and pathophysiology. Thus, whereas the pRb family of proteins is essential for epidermal morphogenesis, abnormal regulation of cyclins and E2F proteins results in tumorgenesis in this tissue. In this review, we discuss the role of each member of this important growth regulatory network in epidermal formation, homeostasis and carcinogenesis.

  14. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation ...of arachidonic acid release and cytosolic phospholipase A2activation. Authors Gij

  15. The Yeast Nbp35-Cfd1 Cytosolic Iron-Sulfur Cluster Scaffold Is an ATPase.

    Science.gov (United States)

    Camire, Eric J; Grossman, John D; Thole, Grace J; Fleischman, Nicholas M; Perlstein, Deborah L

    2015-09-25

    Nbp35 and Cfd1 are prototypical members of the MRP/Nbp35 class of iron-sulfur (FeS) cluster scaffolds that function to assemble nascent FeS clusters for transfer to FeS-requiring enzymes. Both proteins contain a conserved NTPase domain that genetic studies have demonstrated is essential for their cluster assembly activity inside the cell. It was recently reported that these proteins possess no or very low nucleotide hydrolysis activity in vitro, and thus the role of the NTPase domain in cluster biogenesis has remained uncertain. We have reexamined the NTPase activity of Nbp35, Cfd1, and their complex. Using in vitro assays and site-directed mutagenesis, we demonstrate that the Nbp35 homodimer and the Nbp35-Cfd1 heterodimer are ATPases, whereas the Cfd1 homodimer exhibited no or very low ATPase activity. We ruled out the possibility that the observed ATP hydrolysis activity might result from a contaminating ATPase by showing that mutation of key active site residues reduced activity to background levels. Finally, we demonstrate that the fluorescent ATP analog 2'/3'-O-(N'-methylanthraniloyl)-ATP (mantATP) binds stoichiometrically to Nbp35 with a KD = 15.6 μM and that an Nbp35 mutant deficient in ATP hydrolysis activity also displays an increased KD for mantATP. Together, our results demonstrate that the cytosolic iron-sulfur cluster assembly scaffold is an ATPase and pave the way for interrogating the role of nucleotide hydrolysis in cluster biogenesis by this large family of cluster scaffolding proteins found across all domains of life. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis

    Science.gov (United States)

    Shiga toxin 1, exotoxin A, diphtheria toxin and ricin are all AB-type protein toxins that act within the host cytosol to kill the host cell through a pathway involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. In...

  17. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    Science.gov (United States)

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  18. Cellular defense against UVB-induced phototoxicity by cytosolic NADP+-dependent isocitrate dehydrogenase

    International Nuclear Information System (INIS)

    Jo, Seung-Hee; Lee, So-Hyun; Suk Chun, Hang; Min Lee, Su; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-01-01

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury

  19. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-03-29

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).

  20. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  1. Structure of Human GIVD Cytosolic Phospholipase A2 Reveals Insights into Substrate Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Klein, Michael G.; Snell, Gyorgy; Lane, Weston; Zou, Hua; Levin, Irena; Li, Ke; Sang, Bi-Ching (Takeda Cali)

    2016-07-01

    Cytosolic phospholipases A2 (cPLA2s) consist of a family of calcium-sensitive enzymes that function to generate lipid second messengers through hydrolysis of membrane-associated glycerophospholipids. The GIVD cPLA2 (cPLA2δ) is a potential drug target for developing a selective therapeutic agent for the treatment of psoriasis. Here, we present two X-ray structures of human cPLA2δ, capturing an apo state, and in complex with a substrate-like inhibitor. Comparison of the apo and inhibitor-bound structures reveals conformational changes in a flexible cap that allows the substrate to access the relatively buried active site, providing new insight into the mechanism for substrate recognition. The cPLA2δ structure reveals an unexpected second C2 domain that was previously unrecognized from sequence alignments, placing cPLA2δ into the class of membrane-associated proteins that contain a tandem pair of C2 domains. Furthermore, our structures elucidate novel inter-domain interactions and define three potential calcium-binding sites that are likely important for regulation and activation of enzymatic activity. These findings provide novel insights into the molecular mechanisms governing cPLA2's function in signal transduction.

  2. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-10-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.

  3. Properties of purified cytosolic isoenzyme I of Cu,Zn-superoxide dismutase from Nicotiana plumbaginifolia leaves.

    Science.gov (United States)

    Ragusa, S; Cambria, M T; Scarpa, M; Di Paolo, M L; Falconi, M; Rigo, A; Cambria, A

    2001-11-01

    The isoenzyme I of cytosolic Cu,Zn-superoxide dismutase (SOD) from Nicotiana plumbaginifolia (tobacco) leaves has been purified to apparent homogeneity. The relative molecular mass of the native isoenzyme, determined by gel filtration chromatography, is about 33.2 kDa. SDS-polyacrylamide gel electrophoresis shows that the enzyme is composed of two equal subunits of 16.6 kDa The isolectric point, assayed by isoelectric focusing, in the pH range of 3.5-6.5, is 4.3. The enzyme stability was tested at different temperatures, pH, and concentration of inhibitors (KCN and H(2)O(2)). The catalytic constant (k(cat)) was 1.17 +/- 0.14 x 10(9) M(-1) s(-1) at pH 9.9 and 0.1 M ionic strength. The activation energy of the thermal denaturation process is 263 kJ mol(-1). The electrostatic surface potential of the modeled tobacco Cu,Zn-SOD I was calculated showing that the functional spatial network of charges on the protein surface has been maintained, independently of the amino acid substitution around the active sites. Copyright 2001 Academic Press.

  4. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  5. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    Science.gov (United States)

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  6. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

    Science.gov (United States)

    Deng, Liufu; Liang, Hua; Xu, Meng; Yang, Xuanming; Burnette, Byron; Arina, Ainhoa; Li, Xiao-Dong; Mauceri, Helena; Beckett, Michael; Darga, Thomas; Huang, Xiaona; Gajewski, Thomas F; Chen, Zhijian J; Fu, Yang-Xin; Weichselbaum, Ralph R

    2014-11-20

    Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    LENUS (Irish Health Repository)

    Caiazza, Francesco

    2010-05-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapidly activate cPLA(2)alpha in MCF-7 breast cancer cells. Overexpression or gene amplification of HER2 is found in approximately 30% of breast cancer patients and correlates with a poor clinical outcome and resistance to endocrine therapy. This study reports the first evidence for a correlation between cPLA(2)alpha enzymatic activity and overexpression of the HER2 receptor. The activation of cPLA(2)alpha in response to E2 treatment was biphasic with the first phase dependent on trans-activation through the matrix metalloproteinase-dependent release of heparin-bound epidermal growth factor. EGFR\\/HER2 heterodimerization resulted in downstream signaling through the ERK1\\/2 cascade to promote cPLA(2)alpha phosphorylation at Ser505. There was a correlation between HER2 and cPLA(2)alpha expression in six breast cancer cell lines examined, and inhibition of HER2 activation or expression in the SKBR3 cell line using herceptin or HER2-specific small interfering RNA, respectively, resulted in decreased activation and expression of cPLA(2)alpha. Pharmacological blockade of cPLA(2)alpha using a specific antagonist suppressed the growth of both MCF-7 and SKBR3 cells by reducing E2-induced proliferation and by stimulating cellular apoptosis and necrosis. This study highlights cPLAalpha(2) as a potential target for therapeutic intervention in endocrine-dependent and endocrine-independent breast cancer.

  8. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    Science.gov (United States)

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  9. PaTrx1 and PaTrx3, Two Cytosolic Thioredoxins of the Filamentous Ascomycete Podospora anserina Involved in Sexual Development and Cell Degeneration▿ †

    OpenAIRE

    Malagnac, Fabienne; Klapholz, Benjamin; Silar, Philippe

    2007-01-01

    In various organisms, thioredoxins are known to be involved in the reduction of protein disulfide bonds and in protecting the cell from oxidative stress. Genes encoding thioredoxins were found by searching the complete genome sequence of the filamentous ascomycete Podospora anserina. Among them, PaTrx1, PaTrx2, and PaTrx3 are predicted to be canonical cytosolic proteins without additional domains. Targeted disruption of PaTrx1, PaTrx2, and PaTrx3 shows that PaTrx1 is the major thioredoxin inv...

  10. Spatiotemporal Expression of p63 in Mouse Epidermal Commitment

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2015-12-01

    Full Text Available The embryonic surface ectoderm is a simple flat epithelium consisting of cells that express the cytokeratins K8/K18. Before stratification, K5/K14 expression substitutes K8/K18 expression, marking the event called epidermal commitment. Previous studies show that the transcription factor p63 plays an essential role in epidermal commitment. However, detailed expression information of p63 during early epidermal development in mice is still unclear. We systematically studied the expression pattern of p63 in mouse epidermal commitment, together with K8 and K5. We show that p63 expression could be detected as early as E8.5 in mouse embryos preceding epidermal commitment. p63 expression first appears near the newly formed somites and the posterior part of the embryo, further expanding to the whole embryonic surface with particular enrichment in the first branchial arches and the limb buds. ΔNp63 is the major class of isoforms expressed in this period. Relative expression intensity of p63 depends on the embryonic position. In summary, there is a sequential and regular expression pattern of K8, p63 and K5 in mouse epidermal commitment. Our study not only contributes to understanding the early events during epidermal development but also provides a basal tool to study the function of p63 in mammals.

  11. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Epidermal stem cells: location, potential and contribution to cancer.

    Science.gov (United States)

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  13. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    Energy Technology Data Exchange (ETDEWEB)

    Rimsa, Vadim; Eadsforth, Thomas C. [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom)

    2014-02-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn{sup 2+}-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn{sup 2+}, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate.

  14. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    International Nuclear Information System (INIS)

    Rimsa, Vadim; Eadsforth, Thomas C.; Joosten, Robbie P.; Hunter, William N.

    2014-01-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn 2+ -containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn 2+ , where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate

  15. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    Science.gov (United States)

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  16. Real-time visualization of macromolecule uptake by epidermal Langerhans cells in living animals.

    Science.gov (United States)

    Frugé, Rachel E; Krout, Colleen; Lu, Ran; Matsushima, Hironori; Takashima, Akira

    2012-03-01

    As a skin-resident member of the dendritic cell family, Langerhans cells (LCs) are generally regarded to function as professional antigen-presenting cells. Here we report a simple method to visualize the endocytotic activity of LCs in living animals. BALB/c mice received subcutaneous injection of FITC-conjugated dextran (DX) probes into the ear skin and were then examined under confocal microscopy. Large numbers of FITC(+) epidermal cells became detectable 12-24 hours after injection as background fluorescence signals began to disappear. Most (>90%) of the FITC(+) epidermal cells expressed Langerin, and >95% of Langerin(+) epidermal cells exhibited significant FITC signals. To assess intracellular localization, Alexa Fluor 546-conjugated DX probes were locally injected into IAβ-enhanced green fluorescent protein (EGFP) knock-in mice and Langerin-EGFP-diphtheria toxin receptor mice--three dimensional rotation images showed close association of most of the internalized DX probes with major histocompatibility complex (MHC) class II molecules, but not with Langerin molecules. These observations support the current view that LCs constantly sample surrounding materials, including harmful and innocuous antigens, at the environmental interface. Our data also validate the potential utility of the newly developed imaging approach to monitor LC function in wild-type animals.

  17. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  18. Roles of p63 in epidermal development and tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeng-Yuan Yao

    2012-12-01

    Full Text Available pidermis is composed mainly of keratinocytes and is the ma­jor barrier of human body. The development and maintenance of normal epithelial structures and functions require the transcrip­tion factor p63. The p63 gene encodes proteins with structures simi­lar to that of p53, including an N-terminal transacti­vation (TA domain, a DNA-binding domain and a car­boxy-oligomerization domain. TAp63 and ΔNp63 (p63 isoforms without TA domain regulate a wide range of target genes that are important for embryonal development and epithelial integrity. Mutations of p63 gene cause epider­mal abnormalities characterized by ectodermal dysplasia. Recent reports have indicated that p63 plays important role in tumorigenesis as well. However, the relative importance of TAp63 and ΔNp63 in epidermal development and tumorigenesis re­mains mostly unclear and awaits further investigation. In this review, we summarize the current knowledge on the structure and function of p63 and its isoforms.

  19. Leptin regulates the pro-inflammatory response in human epidermal keratinocytes.

    Science.gov (United States)

    Lee, Moonyoung; Lee, Eunyoung; Jin, Sun Hee; Ahn, Sungjin; Kim, Sae On; Kim, Jungmin; Choi, Dalwoong; Lim, Kyung-Min; Lee, Seung-Taek; Noh, Minsoo

    2018-05-01

    The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.

  20. UVB-induced epidermal hyperproliferation is modified by a single, topical treatment with a mitosis inhibitory epidermal pentapeptide

    International Nuclear Information System (INIS)

    Olsen, W.M.; Elgjo, K.

    1990-01-01

    A single application of a water-miscible cream base containing the recently identified mitosis inhibitory epidermal pentapeptide pyroGlu-Glu-Asp-Ser-GlyOH (EPP) to hairless mouse skin is followed by a long-lasting period of reduced epidermal cell proliferation. To examine if a similar growth inhibition could be achieved in stimulated and rapidly proliferating epidermis, EPP was applied at two different concentrations, 0.005 or 0.02%, to hairless mouse skin immediately after exposure of the left flank to an erythemic dose of ultraviolet B light (UVB). This dose of UVB alone induces a sustained period of rapid epidermal cell proliferation, starting at about 18 h after the irradiation. Epidermal cell proliferation was followed from 18 to 54 h (0.005% cream) or from 18 to 30 h (0.02% cream) after the treatment by estimating the rate of G2-M cell flux (the mitotic rate) by means of Colcemid, and epidermal DNA synthesis by counting labeled cells after pulse-labeling with 3H-thymidine. The unirradiated side of the mice was used as reference. The results showed that topical treatment with a 0.02% EPP cream partially inhibited UVB-induced epidermal hyperproliferation, while the 0.005% EPP cream inhibited as well as stimulated the UVB-induced hyperproliferation. Thus, EPP is effective even in rapidly proliferating epidermal cell populations, but the outcome is obviously dose-dependent in this test system

  1. Unraveling the sequence of cytosolic reactions in the export of GspB adhesin from Streptococcus gordonii.

    Science.gov (United States)

    Chen, Yu; Bensing, Barbara A; Seepersaud, Ravin; Mi, Wei; Liao, Maofu; Jeffrey, Philip D; Shajahan, Asif; Sonon, Roberto N; Azadi, Parastoo; Sullam, Paul M; Rapoport, Tom A

    2018-04-06

    Many pathogenic bacteria, including Streptococcus gordonii , possess a pathway for the cellular export of a single serine-rich-repeat protein that mediates the adhesion of bacteria to host cells and the extracellular matrix. This adhesin protein is O -glycosylated by several cytosolic glycosyltransferases and requires three accessory Sec proteins (Asp1-3) for export, but how the adhesin protein is processed for export is not well understood. Here, we report that the S. gordonii adhesin GspB is sequentially O -glycosylated by three enzymes (GtfA/B, Nss, and Gly) that attach N -acetylglucosamine and glucose to Ser/Thr residues. We also found that modified GspB is transferred from the last glycosyltransferase to the Asp1/2/3 complex. Crystal structures revealed that both Asp1 and Asp3 are related to carbohydrate-binding proteins, suggesting that they interact with carbohydrates and bind glycosylated adhesin, a notion that was supported by further analyses. We further observed that Asp1 also has an affinity for phospholipids, which is attenuated by Asp2. In summary, our findings support a model in which the GspB adhesin is sequentially glycosylated by GtfA/B, Nss, and Gly and then transferred to the Asp1/2/3 complex in which Asp1 mediates the interaction of the Asp1/2/3 complex with the lipid bilayer for targeting of matured GspB to the export machinery.

  2. Fatal toxic epidermal necrolysis associated with minoxidil.

    Science.gov (United States)

    Karaoui, Lamis R; Chahine-Chakhtoura, Corinne

    2009-04-01

    Minoxidil is a direct-acting peripheral vasodilator for the treatment of symptomatic hypertension, or refractory hypertension associated with target organ damage, that is not manageable with a diuretic and two other antihypertensive drugs. The most frequent adverse events associated with minoxidil include hypertrichosis and cardiovascular events related to its powerful antihypertensive effect, and less frequently, rashes, bullous eruptions, and Stevens-Johnson syndrome (SJS). Evidence suggests that SJS and toxic epidermal necrolysis (TEN) are variants of a single disease with common causes and mechanisms, but differing severities. Epidermal detachment is mild in SJS, moderate in overlap SJS-TEN, and severe (> 30% of body surface area) in TEN. We describe a case of minoxidil-associated SJS that evolved into fatal TEN. A 69-year-old African-American woman with a history of chronic kidney disease was admitted to the hospital for a cerebrovascular accident and uncontrolled hypertension. On hospital day 12, oral minoxidil was added to her drug regimen. On day 23, she developed a maculopapular rash on her face that gradually diffused to her chest and back. Vesicles and papular lesions extended to her extremities and mucosal membranes; results of a skin biopsy revealed SJS. A positive Nikolsky's sign (blisters spread on application of pressure) was detected. On days 27-31, diffuse bullae developed with rash exacerbation. Skin detachment exceeded 30% and was consistent with TEN. The patient died on day 39. An evaluation of the causality and time course suggested that minoxidil was the most likely culpable drug, with a Naranjo adverse drug reaction probability scale score indicating that the likelihood of the association was possible (score of 3). The mechanism of this reaction has not been well elucidated. It may be related to an impaired clearance of the minoxidil metabolite, or an immune stimulation resulting in apoptosis and epidermis destruction. To our knowledge, this

  3. Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis ...

    African Journals Online (AJOL)

    REVIEW. Introduction. Stevens-Johnson syndrome (SJS) and toxic epidermal ... that affect the skin and mucous membranes. ... Open Access article distributed under the terms of the .... pathogenic components are removed from plasma. The.

  4. Epidermal and dermal integumentary structures of ankylosaurian dinosaurs.

    Science.gov (United States)

    Arbour, Victoria M; Burns, Michael E; Bell, Phil R; Currie, Philip J

    2014-01-01

    Ankylosaurian dinosaurs are most notable for their abundant and morphologically diverse osteoderms, which would have given them a spiky appearance in life. Isolated osteoderms are relatively common and provide important information about the structure of the ankylosaur dermis, but fossilized impressions of the soft-tissue epidermis of ankylosaurs are rare. Nevertheless, well-preserved integument exists on several ankylosaur fossils that shows osteoderms were covered by a single epidermal scale, but one or many millimeter-sized ossicles may be present under polygonal, basement epidermal scales. Evidence for the taxonomic utility of ankylosaurid epidermal scale architecture is presented for the first time. This study builds on previous osteological work that argues for a greater diversity of ankylosaurids in the Dinosaur Park Formation of Alberta than has been traditionally recognized and adds to the hypothesis that epidermal skin impressions are taxonomically relevant across diverse dinosaur clades. Copyright © 2013 Wiley Periodicals, Inc.

  5. "Cut-and-paste" manufacture of multiparametric epidermal electronic systems

    Science.gov (United States)

    Lu, Nanshu; Yang, Shixuan; Wang, Pulin

    2016-05-01

    Epidermal electronics is a class of noninvasive and unobstructive skin-mounted, tattoo-like sensors and electronics capable of vital sign monitoring and establishing human-machine interface. The high cost of manpower, materials, vacuum equipment, and photolithographic facilities associated with its manufacture greatly hinders the widespread use of disposable epidermal electronics. Here we report a cost and time effective, completely dry, benchtop "cut-and-paste" method for the freeform and portable manufacture of multiparametric epidermal sensor systems (ESS) within minutes. This versatile method works for all types of thin metal and polymeric sheets and is compatible with any tattoo adhesives or medical tapes. The resulting ESS are multimaterial and multifunctional and have been demonstrated to noninvasively but accurately measure electrophysiological signals, skin temperature, skin hydration, as well as respiratory rate. In addition, planar stretchable coils exploiting double-stranded serpentine design have been successfully applied as wireless, passive epidermal strain sensors.

  6. Predicting human epidermal melanin concentrations for different skin tones

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2011-07-01

    Full Text Available epidermal melanin concentrations for different skin tones JE Smit 1 , AE Karsten 2 , RW Sparrow 1 1 CSIR Biosciences, Pretoria, South Africa 2 CSIR National Laser Centre, Pretoria, South Africa Author e-mail address: KSmit...

  7. Epidermal Nevus Syndrome Associated with Brain Malformations and Medulloblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-01-01

    Full Text Available Researchers at Juntendo University and Tokyo Women’s Medical University, Japan; and University of California, San Francisco, Ca, report a male infant with epidermal nevus syndrome associated with brainstem and cerebellar malformations and neonatal medulloblastoma.

  8. Optimal allocation of leaf epidermal area for gas exchange

    OpenAIRE

    de Boer, Hugo J.; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2016-01-01

    Summary A long?standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of ...

  9. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  10. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  11. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Directory of Open Access Journals (Sweden)

    John W Yarham

    2014-06-01

    Full Text Available Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  12. Crystallization and preliminary X-ray analysis of a decameric form of cytosolic thioredoxin peroxidase 1 (Tsa1), C47S mutant, from Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos Antonio de, E-mail: scaff@lnls.br; Genu, Victor; Discola, Karen Fulan; Alves, Simone Vidigal; Netto, Luis Eduardo Soares [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo-SP (Brazil); Guimarães, Beatriz Gomes, E-mail: scaff@lnls.br [Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, 13084-971 Campinas-SP (Brazil); Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo-SP (Brazil)

    2007-08-01

    A recombinant mutant (C47S) of cytosolic thioredoxin peroxidase 1 from S. cerevisiae was expressed, purified and crystallized by the hanging-drop vapour-diffusion method from protein previously treated with 1,4-dithiothreitol. The crystals belong to the monoclinic space group C2 and diffraction data were collected to 2.8 Å resolution using a synchrotron-radiation source. Saccharomyces cerevisiae cytosolic thioredoxin peroxidase 1 (cTPxI or Tsa1) is a bifunctional enzyme with protective roles in cellular defence against oxidative and thermal stress that exhibits both peroxidase and chaperone activities. Protein overoxidation and/or high temperatures induce great changes in its quaternary structure and lead to its assembly into large complexes that possess chaperone activity. A recombinant mutant of Tsa1 from S. cerevisiae, with Cys47 substituted by serine, was overexpressed in Escherichia coli as a His{sub 6}-tagged fusion protein and purified by nickel-affinity chromatography. Crystals were obtained from protein previously treated with 1,4-dithiothreitol by the hanging-drop vapour-diffusion method using PEG 3000 as precipitant and sodium fluoride as an additive. Diffraction data were collected to 2.8 Å resolution using a synchrotron-radiation source. The crystal structure was solved by molecular-replacement methods and structure refinement is currently in progress.

  13. Regulation of autophagy by cytosolic acetyl-coenzyme A

    DEFF Research Database (Denmark)

    Mariño, Guillermo; Pietrocola, Federico; Eisenberg, Tobias

    2014-01-01

    Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic p...

  14. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast.

    Science.gov (United States)

    Johnson, Courtney R; Weems, Andrew D; Brewer, Jennifer M; Thorner, Jeremy; McMurray, Michael A

    2015-04-01

    Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases. © 2015 Johnson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  16. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism.

    Science.gov (United States)

    Koh, Ho-Jin; Lee, Su-Min; Son, Byung-Gap; Lee, Soh-Hyun; Ryoo, Zae Young; Chang, Kyu-Tae; Park, Jeen-Woo; Park, Dong-Chan; Song, Byoung J; Veech, Richard L; Song, Hebok; Huh, Tae-Lin

    2004-09-17

    NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP(+)-dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor gamma were markedly elevated. The hepatic and epididymal fat pad contents of acetyl-CoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.

  17. An alpha-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol

    International Nuclear Information System (INIS)

    Srisomsap, C.; Richardson, K.L.; Jay, J.C.; Marchase, R.B.

    1989-01-01

    UDP-glucose:glycoprotein glucose-1-phosphotransferase (Glc-phosphotransferase) catalyzes the transfer of alpha-Glc-1-P from UDP-Glc to mannose residues on acceptor glycoproteins. The predominant acceptor for this transfer in both mammalian cells and Paramecium is a cytoplasmic glycoprotein of 62-63 kDa. When cytoplasmic proteins from rat liver were fractionated by preparative isoelectric focusing following incubation of a liver homogenate with the 35S-labeled phosphorothioate analogue of UDP-Glc ([beta-35S]UDP-Glc), the acceptor was found to have a pI of about 6.0. This fraction, when not labeled prior to the focusing, became very heavily labeled when mixed with [beta-35S]. UDP-Glc and intact liver microsomes, a rich source of the Glc-phosphotransferase. In addition, it was observed that the isoelectric fractions of the cytosol having pI values of 2-3.2 contained a degradative activity, alpha-Glc-1-P phosphodiesterase, that was capable of removing alpha-Glc-1-P, monitored through radioactive labeling both in the sugar and the phosphate, as an intact unit from the 62-kDa acceptor. Identification of the product of this cleavage was substantiated by its partial transformation to UDP-Glc in the presence of UTP and UDP-Glc pyrophosphorylase. The alpha-Glc-1-P phosphodiesterase had a pH optimum of 7.5 and was not effectively inhibited by any of the potential biochemical inhibitors that were tested. Specificity for the Glc-alpha-1-P-6-Man diester was suggested by the diesterase's inability to degrade UDP-Glc or glucosylphosphoryldolichol. This enzyme may be important in the regulation of secretion since the alpha-Glc-1-P present on the 62-kDa phosphoglycoprotein appears to be removed and then rapidly replaced in response to secretagogue

  18. The cytosolic glyoxalases of Plasmodium falciparum are dispensable during asexual blood-stage development

    Directory of Open Access Journals (Sweden)

    Cletus A. Wezena

    2017-11-01

    Full Text Available The enzymes glyoxalase 1 and 2 (Glo1 and Glo2 are found in most eukaryotes and catalyze the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Four glyoxalases are encoded in the genome of the malaria parasite Plasmodium falciparum, the cytosolic enzymes PfGlo1 and PfcGlo2, the apicoplast enzyme PftGlo2, and an inactive Glo1-like protein that also carries an apicoplast-targeting sequence. Inhibition or knockout of the Plasmodium glyoxalases was hypothesized to lead to an accumulation of 2-oxoaldehydes and advanced glycation end-products (AGE in the host-parasite unit and to result in parasite death. Here, we generated clonal P. falciparum strain 3D7 knockout lines for PFGLO1 and PFcGLO2 using the CRISPR-Cas9 system. Although 3D7Δglo1 knockout clones had an increased susceptibility to external glyoxal, all 3D7Δglo1 and 3D7Δcglo2 knockout lines were viable and showed no significant growth phenotype under standard growth conditions. Furthermore, the lack of PfcGlo2, but not PfGlo1, increased gametocyte commitment in the knockout lines. In summary, PfGlo1 and PfcGlo2 are dispensable during asexual blood-stage development while the loss of PfcGlo2 may induce the formation of transmissible gametocytes. These combined data show that PfGlo1 and PfcGlo2 are most likely not suited as targets for selective drug development.

  19. Cytosolic streaming in vegetative mycelium and aerial structures of Aspergillus niger.

    Science.gov (United States)

    Bleichrodt, R; Vinck, A; Krijgsheld, P; van Leeuwen, M R; Dijksterhuis, J; Wösten, H A B

    2013-03-15

    Aspergillus niger forms aerial hyphae and conidiophores after a period of vegetative growth. The hyphae within the mycelium of A. niger are divided by septa. The central pore in these septa allows for cytoplasmic streaming. Here, we studied inter- and intra-compartmental streaming of the reporter protein GFP in A. niger. Expression of the gene encoding nuclear targeted GFP from the gpdA or glaA promoter resulted in strong fluorescence of nuclei within the vegetative hyphae and weak fluorescence in nuclei within the aerial structures. These data and nuclear run on experiments showed that gpdA and glaA are higher expressed in the vegetative mycelium when compared to aerial hyphae, conidiophores and conidia. Notably, gpdA or glaA driven expression of the gene encoding cytosolic GFP resulted in strongly fluorescent vegetative hyphae and aerial structures. Apparently, GFP streams from vegetative hyphae into aerial structures. This was confirmed by monitoring fluorescence of photo-activatable GFP (PA-GFP). In contrast, PA-GFP did not stream from aerial structures to vegetative hyphae. Streaming of PA-GFP within vegetative hyphae or within aerial structures of A. niger occurred at a rate of 10-15 μm s(-1). Taken together, these results not only show that GFP streams from the vegetative mycelium to aerial structures but it also indicates that its encoding RNA is not streaming. Absence of RNA streaming would explain why distinct RNA profiles were found in aerial structures and the vegetative mycelium by nuclear run on analysis and micro-array analysis.

  20. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response.

    Science.gov (United States)

    Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine

    2018-01-01

    The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane; Demangel, Caroline; Van Ingen, Jakko; Perez, Jorge; Baldeó n, Lucy R.; Abdallah, Abdallah; Caleechurn, Laxmee; Bottai, Daria; Van Zon, Maaike; De Punder, Karin; Van Der Laan, Tridia; Kant, Arie; Bossers-De Vries, Ruth; Willemsen, Peter Th J; Bitter, Wilbert M.; Van Soolingen, Dick; Brosch, Roland; Van Der Wel, Nicole N.; Peters, Peter J.

    2012-01-01

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  2. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  3. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane

    2012-05-08

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  4. Epidermal growth factor and growth in vivo

    International Nuclear Information System (INIS)

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of 3 H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of 3 H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated

  5. The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer.

    Science.gov (United States)

    Zimmermann, Kerstin; Eells, Rebecca; Heinrich, Frank; Rintoul, Stefanie; Josey, Brian; Shekhar, Prabhanshu; Lösche, Mathias; Stern, Lawrence J

    2017-10-27

    Interactions between lipid bilayers and the membrane-proximal regions of membrane-associated proteins play important roles in regulating membrane protein structure and function. The T-cell antigen receptor is an assembly of eight single-pass membrane-spanning subunits on the surface of T lymphocytes that initiates cytosolic signaling cascades upon binding antigens presented by MHC-family proteins on antigen-presenting cells. Its ζ-subunit contains multiple cytosolic immunoreceptor tyrosine-based activation motifs involved in signal transduction, and this subunit by itself is sufficient to couple extracellular stimuli to intracellular signaling events. Interactions of the cytosolic domain of ζ (ζ cyt ) with acidic lipids have been implicated in the initiation and regulation of transmembrane signaling. ζ cyt is unstructured in solution. Interaction with acidic phospholipids induces structure, but its disposition when bound to lipid bilayers is controversial. Here, using surface plasmon resonance and neutron reflection, we characterized the interaction of ζ cyt with planar lipid bilayers containing mixtures of acidic and neutral lipids. We observed two binding modes of ζ cyt to the bilayers in dynamic equilibrium: one in which ζ cyt is peripherally associated with lipid headgroups and one in which it penetrates deeply into the bilayer. Such an equilibrium between the peripherally bound and embedded forms of ζ cyt apparently controls accessibility of the immunoreceptor tyrosine-based activation signal transduction pathway. Our results reconcile conflicting findings of the ζ structure reported in previous studies and provide a framework for understanding how lipid interactions regulate motifs to tyrosine kinases and may regulate the T-cell antigen receptor biological activities for this cell-surface receptor system.

  6. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  7. Ex vivo cytosolic delivery of functional macromolecules to immune cells.

    Directory of Open Access Journals (Sweden)

    Armon Sharei

    Full Text Available Intracellular delivery of biomolecules, such as proteins and siRNAs, into primary immune cells, especially resting lymphocytes, is a challenge. Here we describe the design and testing of microfluidic intracellular delivery systems that cause temporary membrane disruption by rapid mechanical deformation of human and mouse immune cells. Dextran, antibody and siRNA delivery performance is measured in multiple immune cell types and the approach's potential to engineer cell function is demonstrated in HIV infection studies.

  8. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli.

    Science.gov (United States)

    Percoco, Giuseppe; Merle, Chloé; Jaouen, Thomas; Ramdani, Yasmina; Bénard, Magalie; Hillion, Mélanie; Mijouin, Lily; Lati, Elian; Feuilloley, Marc; Lefeuvre, Luc; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2013-12-01

    The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1α and (IL)-1-β, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes.

    Science.gov (United States)

    Schröder, B; Schlumbohm, C; Kaune, R; Breves, G

    1996-05-01

    1. The aim of the present study was to test whether the vitamin D-dependent Ca(2+)-binding protein calbindin-D9k could function as an important cytosolic Ca2+ buffer in duodenal enterocytes while facilitating transepithelial active transport of Ca2+ ions. For the investigations we used dual-wavelength, fluorescence ratio imaging, with fura-2 as the Ca(2+)-sensitive dye, to measure changes in cytosolic concentrations of free Ca2+ ions ([Ca2+]i) in isolated pig duodenal enterocytes affected by different cytosolic calbindin-D9k concentrations. 2. Epithelial cells were obtained from weaned piglets with normal calbindin-D9k concentrations (con-piglets), from piglets with low calbindin-D9k levels due to inherited calcitriol deficiency caused by defective renal 25-hydroxycholecalciferol D3-1 alpha-hydroxylase activity (def-piglets), and from piglets with reconstituted calbindin-D9k concentrations, i.e. def-animals treated with high doses of vitamin D3 which elevated plasma calcitriol levels by extrarenal production (def-D3-piglets). Basal levels of [Ca2+]i ranged between 170 and 205 nM and did not differ significantly between the groups. 3. After addition of 5 mM theophylline, the [Ca2+]i in enterocytes from con-piglets doubled during the 10 min incubation. This effect, however, was three times higher in enterocytes from def-piglets compared with those from con-piglets. Similar results were obtained after 4 min incubation of enterocytes from con- and def-piglets in the presence of 1 microM ionomycin. In preparations from def-D3-piglets, ionomycin-induced increases in [Ca2+]i were significantly lower compared with enterocytes from def-piglets and were not different from the control values. 4. From the results, substantial support is given for the hypothesis that one of the major functions of mucosal calbindin-D9k is the effective buffering of Ca2+ ions.

  10. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding[OPEN

    Science.gov (United States)

    Vincent, Thomas R.; Avramova, Marieta; Canham, James; Higgins, Peter; Bilkey, Natasha; Mugford, Sam T.; Pitino, Marco; Toyota, Masatsugu

    2017-01-01

    A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction. PMID:28559475

  11. The cytosolic exonuclease TREX1 inhibits the innate immune response to HIV-1

    Science.gov (United States)

    Yan, Nan; Regalado-Magdos, Ashton D.; Stiggelbout, Bart; Lee-Kirsch, Min Ae; Lieberman, Judy

    2010-01-01

    Viral infection triggers innate immune sensors to produce type I interferons (IFN). However, HIV infection of T cells and macrophages does not trip these alarms. How HIV avoids activating nucleic acid sensors is unknown. The cytosolic exonuclease TREX1 suppressed IFN triggered by HIV. In Trex1−/− mouse cells and human CD4+ T cells and macrophages in which TREX1 was inhibited by RNA interference, cytosolic HIV DNA accumulated, and HIV infection induced type I IFN that inhibited HIV replication and spreading. TREX1 bound to cytosolic HIV DNA and digested excess HIV DNA that would otherwise activate IFN expression via a TBK1, STING and IRF3 dependent pathway. HIV-stimulated IFN production in cells deficient in TREX1 did not involve known nucleic acid sensors. PMID:20871604

  12. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  13. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  14. Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lamotte, Olivier; Courtois, Cécile; Dobrowolska, Grazyna; Besson, Angélique; Pugin, Alain; Wendehenne, David

    2006-04-15

    In this study, we investigated a role for nitric oxide (NO) in mediating the elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in plants using Nicotiana plumbaginifolia cells expressing the Ca(2+) reporter apoaequorin. Hyperosmotic stress induced a fast increase of [Ca(2+)](cyt) which was strongly reduced by pretreating cell suspensions with the NO scavenger carboxy PTIO, indicating that NO mediates [Ca(2+)](cyt) changes in plant cells challenged by abiotic stress. Accordingly, treatment of transgenic N. plumbaginifolia cells with the NO donor diethylamine NONOate was followed by a transient increase of [Ca(2+)](cyt) sensitive to plasma membrane Ca(2+) channel inhibitors and antagonist of cyclic ADP ribose. We provided evidence that NO might activate plasma membrane Ca(2+) channels by inducing a rapid and transient plasma membrane depolarization. Furthermore, NO-induced elevation of [Ca(2+)](cyt) was suppressed by the kinase inhibitor staurosporine, suggesting that NO enhances [Ca(2+)](cyt) by promoting phosphorylation-dependent events. This result was further supported by the demonstration that the NO donor induced the activation of a 42-kDa protein kinase which belongs to SnRK2 families and corresponds to Nicotiana tabacum osmotic-stress-activated protein kinase (NtOSAK). Interestingly, NtOSAK was activated in response to hyperosmotic stress through a NO-dependent process, supporting the hypothesis that NO also promotes protein kinase activation during physiological processes.

  15. Mediator-assisted Simultaneous probing of Cytosolic and Mitochondrial Redox activity in living cells

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Spegel, Christer; Kostesha, Natalie

    2009-01-01

    the ferricyanide-menadione double mediator system to study the effect of dicoumarol, an inhibitor of cytosolic and mitochondrial oxidoreductases and an uncoupler of the electron transport chain. Evaluation of the role of NAD(P)H-producing pathways in mediating biological effects is facilitated by introducing...... either fructose or glucose as the carbon source, yielding either NADH or NADPH through the glycolytic or pen-rose phosphate pathway, respectively. Respiratory noncompetent cells show greater inhibition of cytosolic menadione-reducing enzymes when NADH rather than NADPH is produced. Spectrophotometric...

  16. Oral mucosa: an alternative epidermic cell source to develop autologous dermal-epidermal substitutes from diabetic subjects

    Directory of Open Access Journals (Sweden)

    Daniela GUZMÁN-URIBE

    Full Text Available Abstract Oral mucosa has been highlighted as a suitable source of epidermal cells due to its intrinsic characteristics such as its higher proliferation rate and its obtainability. Diabetic ulcers have a worldwide prevalence that is variable (1%-11%, meanwhile treatment of this has been proven ineffective. Tissue-engineered skin plays an important role in wound care focusing on strategies such autologous dermal-epidermal substitutes. Objective The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Material and Methods Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group. Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. Results It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Conclusion Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues.

  17. Immune sensitization against epidermal antigens in polymorphous light eruption

    International Nuclear Information System (INIS)

    Gonzalez-Amaro, R.; Baranda, L.; Salazar-Gonzalez, J.F.; Abud-Mendoza, C.; Moncada, B.

    1991-01-01

    To get further insight into the pathogenesis of polymorphous light eruption, we studied nine patients with polymorphous light eruption and six healthy persons. Two skin biopsy specimens were obtained from each person, one from previously ultraviolet light-irradiated skin and another one from unirradiated skin. An epidermal cell suspension, skin homogenate, or both were prepared from each specimen. Autologous cultures were made with peripheral blood mononuclear cells combined with irradiated or unirradiated skin homogenate and peripheral blood mononuclear cells combined with irradiated or unirradiated epidermal cell suspension. Cell proliferation was assessed by 3H-thymidine incorporation assay. The response of peripheral blood mononuclear cells to unirradiated epidermal cells or unirradiated skin homogenate was similar in both patients and controls. However, peripheral blood mononuclear cells from patients with polymorphous light eruption showed a significantly increased proliferative response to both irradiated epidermal cells and irradiated skin homogenate. Our results indicate that ultraviolet light increases the stimulatory capability of polymorphous light eruption epidermal cells in a unidirectional mixed culture with autologous peripheral blood mononuclear cells. This suggests that an immune sensitization against autologous ultraviolet light-modified skin antigens occurs in polymorphous light eruption

  18. Towards a complete proteome of Bacillus subtilis : cytosolic, cell wall-associated and extracellular proteins

    NARCIS (Netherlands)

    Antelmann, Haike; van Dijl, Jan Maarten; Hecker, Michael

    2003-01-01

    Bacillus subtilis is widely regarded as a model organism for the functional genome analysis of Gram-positive bacteria. This is based on two factors: first, the genome sequence that predicts about 4100 open reading frames was completed in 1997 (1) and second, B. subtilis strain 168 is highly amenable

  19. Genetic Markers and Danger Signals in Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis

    Directory of Open Access Journals (Sweden)

    Wen-Hung Chung

    2010-01-01

    Full Text Available Stevens-Johnson syndrome (SJS and toxic epidermal necrolysis (TEN are life-threatening adverse reactions, which could be induced by a variety of drugs. It was proposed that human leukocyte antigen (HLA-restricted presentation of antigens (drugs or their metabolites to T lymphocytes initiates the immune reactions of SJS/ TEN. However, the genetic susceptibility and the exact pathogenesis were not clear until the recent studies. We first identified that HLA-B*1502 is strongly associated with carbamazepine (CBZ-induced SJS/TEN and HLA-B*5801 with allopurinol-SJS/TEN in Han Chinese. The same associations had been validated across different human populations. For the downstream danger signals, Fas-Fas ligand (FasL and perforin/granzyme B had been advocated as cytotoxic mediators for keratinocyte death in SJS/TEN. However, expression levels of these cytotoxic proteins from the skin lesions were too low to explain the distinct and extensive epidermal necrosis. Our recent study identified that the granulysin, a cytotoxic protein released from cytotoxic T cells or natural killer (NK cells, is a key mediator for disseminated keratinocyte death in SJS/TEN. This article aims to provide an overview of both of the genomic and immunologic perspectives of SJS/TEN. These studies give us a better understanding of the immune mechanisms, biomarkers for disease prevention and early diagnosis, as well as providing the therapeutic targets for the treatments of SJS/TEN.

  20. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  1. Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cells.

    Science.gov (United States)

    Abdelazeem, Khalid N M; Singh, Yogesh; Lang, Florian; Salker, Madhuri S

    2017-01-01

    Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of Ellagic acid on transport processes has, however, never been reported. The present study thus elucidated an effect of Ellagic acid on cytosolic pH (pHi), NHE1 transcript levels, NHE1 protein abundance, Na+/H+ exchanger activity, and lactate release. Experiments were performed in Ishikawa cells without or with prior Ellagic acid (20 µM) treatment. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance by Western blotting, pHi utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, cell volume from forward scatter in flow cytometry, reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein fluorescence, glucose uptake utilizing 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose, and lactate concentration in the supernatant utilizing a colorimetric (570 nm)/ fluorometric enzymatic assay. A 48 hour treatment with Ellagic acid (20 µM) significantly decreased NHE1 transcript levels by 75%, NHE1 protein abundance by 95%, pHi from 7.24 ± 0.01 to 7.02 ± 0.01, Na+/H+ exchanger activity by 77%, forward scatter by 10%, ROS by 82%, glucose uptake by 58%, and lactate release by 15%. Ellagic acid (20µM) markedly down-regulates ROS formation and NHE1 expression leading to decreased Na+/H+ exchanger activity, pHi, glucose uptake and lactate release in endometrial cancer cells. Those effects presumably contribute to reprogramming and growth

  2. Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Khalid N. M. Abdelazeem

    2017-04-01

    Full Text Available Background/Aims: Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of Ellagic acid on transport processes has, however, never been reported. The present study thus elucidated an effect of Ellagic acid on cytosolic pH (pHi, NHE1 transcript levels, NHE1 protein abundance, Na+/H+ exchanger activity, and lactate release. Methods: Experiments were performed in Ishikawa cells without or with prior Ellagic acid (20 µM treatment. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance by Western blotting, pHi utilizing (2',7'-bis-(2-carboxyethyl-5-(and-6-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, cell volume from forward scatter in flow cytometry, reactive oxygen species (ROS from 2’,7’-dichlorodihydrofluorescein fluorescence, glucose uptake utilizing 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino-2-deoxyglucose, and lactate concentration in the supernatant utilizing a colorimetric (570 nm/ fluorometric enzymatic assay. Results: A 48 hour treatment with Ellagic acid (20 µM significantly decreased NHE1 transcript levels by 75%, NHE1 protein abundance by 95%, pHi from 7.24 ± 0.01 to 7.02 ± 0.01, Na+/H+ exchanger activity by 77%, forward scatter by 10%, ROS by 82%, glucose uptake by 58%, and lactate release by 15%. Conclusion: Ellagic acid (20µM markedly down-regulates ROS formation and NHE1 expression leading to decreased Na+/H+ exchanger activity, pHi, glucose uptake and lactate release in endometrial cancer cells. Those

  3. Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors

    International Nuclear Information System (INIS)

    Weng, Hui; Deng, Yunhua; Xie, Yuyan; Liu, Hongbo; Gong, Feili

    2013-01-01

    High mobility group protein box 1 (HMGB1) is a DNA binding protein located in nucleus. It is released into extracellular fluid where it acts as a novel proinflammatory cytokine which interacts with Toll like receptor 4 (TLR4) to activate nuclear factor-κB (NF-κB). This sequence of events is involved in tumor growth and progression. However, the effects of HMGB1, TLR4 and NF-κB on epidermal tumors remain unclear. Human epidermal tumor specimens were obtained from 96 patients. Immunohistochemistry was used to detect expression of HMGB1, TLR4 and NF-κB p65 in human epidermal tumor and normal skin specimens. Western blot analysis was used to detect the expression of NF-κB p65 in epithelial cell nuclei in human epidermal tumor and normal tissues. Immunohistochemistry and western blot analysis indicated a progressive but statistically significant increase in p65 expression in epithelial nuclei in benign seborrheic keratosis (SK), precancerous lesions (PCL), low malignancy basal cell carcinoma (BCC) and high malignancy squamous cell carcinoma (SCC) (P <0.01). The level of extracellular HMGB1 in SK was significantly higher than in normal skin (NS) (P <0.01), and was higher than in SCC but without statistical significance. The level of TLR4 on epithelial membranes of SCC cells was significantly higher than in SK, PCL, BCC and NS (P <0.01). There was a significant positive correlation between p65 expression in the epithelial nuclei and TLR4 expression on the epithelial cell membranes (r = 0.3212, P <0.01). These findings indicate that inflammation is intensified in parallel with increasing malignancy. They also indicate that the TLR4 signaling pathway, rather than HMGB1, may be the principal mediator of inflammation in high-grade malignant epidermal tumors. Combined detection of p65 in the epithelial nuclei and TLR4 on the epithelial membranes may assist the accurate diagnosis of malignant epidermal tumors

  4. Inhibition of epidermal cell proliferation by borderline rays

    Energy Technology Data Exchange (ETDEWEB)

    Born, W [Freiburg Univ.; Daikeler, G

    1976-08-01

    Treatment of guinea pig flanks with very soft x-rays (borderline rays) directly caused a partial block of epidermal DNA synthesis which had been determined by measuring the /sup 3/H-Tdr incorporation. Higher doses and repeated applications would undoubtedly cause lasting damage to the tissue. The enhanced epidermal DNA synthesis which is sometimes observed should not be misinterpreted as a sign of a directly biopositive utilisation of the quantum energy supplied. Rather, it is a secondary repair process following initial phases of depression. A reparative increase in DNA synthesis may also occur as a primary process if the radiation is almost completely absorbed above the germinative layer.

  5. Epidermal growth factor in mammary glands and milk from rats

    DEFF Research Database (Denmark)

    Thulesen, J; Raaberg, Lasse; Nexø, Ebba

    1993-01-01

    Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF-immunoreact......Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF...

  6. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    Science.gov (United States)

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver CytosolShan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas S-adenosyl-L-methionine (AdoMet): ar...

  7. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    Science.gov (United States)

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-05-27

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.

  8. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... The neutrophil cytosol factor 1 (NCF1) gene consists of 11 exons and is found in two forms; one is wild ... granulomatous disease, multiple sclerosis, arthritis and parasitic infection. ... TCR, T cell receptor; AhR, aryl hydrocarbon receptor; RA, .... During malaria, ROS production can contribute to both.

  9. The role of a cytosolic superoxide dismutase in barley-pathogen interactions

    KAUST Repository

    Lightfoot, Damien; Mcgrann, Graham R. D.; Able, Amanda J.

    2016-01-01

    susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2-HO2 contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi

  10. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  11. A Premature Termination of Human Epidermal Growth Factor Receptor Transcription in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jihene Elloumi-Mseddi

    2014-01-01

    Full Text Available Our success in producing an active epidermal growth factor receptor (EGFR tyrosine kinase in Escherichia coli encouraged us to express the full-length receptor in the same host. Despite its large size, we were successful at producing the full-length EGFR protein fused to glutathione S-transferase (GST that was detected by Western blot analysis. Moreover, we obtained a majoritarian truncated GST-EGFR form detectable by gel electrophoresis and Western blot. This truncated protein was purified and confirmed by MALDI-TOF/TOF analysis to belong to the N-terminal extracellular region of the EGFR fused to GST. Northern blot analysis showed two transcripts suggesting the occurrence of a transcriptional arrest.

  12. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

    Science.gov (United States)

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  13. Improvement of hydration and epidermal barrier function in human skin by a novel compound isosorbide dicaprylate.

    Science.gov (United States)

    Chaudhuri, R K; Bojanowski, K

    2017-10-01

    The study involved the synthesis of a novel derivative of caprylic acid - isosorbide dicaprylate (IDC) - and the evaluation of its potential in improving water homoeostasis and epidermal barrier function in human skin. The effect of IDC on gene expression was assayed in skin organotypic cultures by DNA microarrays. The results were then confirmed for a few key genes by quantitative PCR, immuno- and cytochemistry. Final validation of skin hydration properties was obtained by four separate clinical studies. Level of hydration was measured by corneometer either by using 2% IDC lotion alone vs placebo or in combination with 2% glycerol lotion vs 2% glycerol only. A direct comparison in skin hydration between 2% IDC and 2% glycerol lotions was also carried out. The epidermal barrier function improvement was assessed by determining changes in transepidermal water loss (TEWL) on the arms before and after treatment with 2% IDC lotion versus placebo. IDC was found to upregulate the expression of AQP3, CD44 and proteins involved in keratinocyte differentiation as well as the formation and function of stratum corneum. A direct comparison between 2% IDC versus 2% glycerol lotions revealed a three-fold advantage of IDC in providing skin hydration. Severely dry skin treated with 2% IDC in combination with 2% glycerol showed 133% improvement, whereas 35% improvement was observed with moderately dry human skin. Topical isosorbide dicaprylate favourably modulates genes involved in the maintenance of skin structure and function, resulting in superior clinical outcomes. By improving skin hydration and epidermal permeability barrier, it offers therapeutic applications in skin ageing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Imunolocalização das proteínas dos genes supressores de tumores TP53 e p16CDKN2 no front invasivo do carcinoma epidermóide de cavidade bucal Immunolocalization of TP53 and p16CDKN2 tumour suppressor genes proteins in invasive front of oral epidermoid carcinoma

    Directory of Open Access Journals (Sweden)

    Alfredo Maurício Batista De-Paula

    2006-08-01

    Full Text Available INTRODUÇÃO: A carcinogênese bucal é um processo multipassos no qual eventos genéticos promovem o rompimento de vias regulatórias normais que controlam funções celulares básicas. O carcinoma epidermóide de cavidade bucal (CECB surge como conseqüência de múltiplos eventos moleculares induzidos pelos efeitos de vários carcinógenos influenciados por fatores ambientais contra um quadro de resistência ou suscetibilidade herdada geneticamente. OBJETIVO: Avaliar a importância clínica e morfológica da imunoexpressão das proteínas p53 e p16 na região do front invasivo de uma série de 35 casos rotineiramente processados de CECB. MATERIAL E MÉTODOS: Amostras de CECB primários tratados exclusivamente por cirurgia foram investigadas. O sistema TNM foi empregado para o estadiamento clínico dos pacientes. Para a gradação morfológica das lesões foi adotado o sistema de gradação do front invasivo. A técnica de imuno-histoquímica foi realizada nas lesões fixadas em formalina tamponada a 10% e emblocadas em parafina para identificação das proteínas p53 e p16. As contagens foram realizadas e submetidas a tratamentos estatísticos específicos. RESULTADOS: As taxas de imunolocalização para as proteínas p53 e p16 foram de 63% e 66%, respectivamente, nas 35 amostras de carcinoma estudadas. Não houve relação entre as expressões das proteínas p53 e p16 com os parâmetros clínico-morfológicos analisados. Não houve correlação entre a expressão imuno-histoquímica das proteínas p53/p16. CONCLUSÃO: A expressão das proteínas p53 e p16 não influenciou os parâmetros clínico-morfológicos analisados neste estudo e aparentemente não representa base molecular para o significado biológico da região do front invasivo tumoral. A ausência de forte correlação entre as expressões imuno-histoquímicas das proteínas p53 e p16 sugere que as mesmas podem participar de atividade biológicas do controle do ciclo celular por

  15. Influence of epidermal growth factor on liver regeneration after partial hepatectomy in rats

    DEFF Research Database (Denmark)

    Olsen, Peter Skov; Boesby, S.; Kirkegaard, P.

    2013-01-01

    The role of epidermal growth factor on liver regeneration after partial hepatectomy in rats was investigated. After a 70% hepatectomy in rats, the concentration of epidermal growth factor in portal venous blood was unchanged compared with unoperated controls. However, small amounts of epidermal...... growth factor could be identified in portal venous blood after intestinal instillation of epidermal growth factor. Brunner's glands and the submandibular glands secrete epidermal growth factor. Extirpation of Brunner's glands decreased liver regeneration, whereas removal of the submandibular glands had...... no effect on liver regeneration. Epidermal growth factor antiserum reduced liver regeneration significantly. Oral or s.c. administration of epidermal growth factor had no effect on liver regeneration, whereas epidermal growth factor enhanced the effect of insulin and glucagon on liver regeneration...

  16. Limits to anaerobic energy and cytosolic concentration in the living cell

    Science.gov (United States)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  17. The effects of irradiation on the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver

    International Nuclear Information System (INIS)

    Teshima, Teruki; Mori, Masaki; Honke, Yoshifumi

    1983-01-01

    The effects of irradiation on both the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver were investigated. The liver concentrations of corticosterone and cyclic nucleotides were measured by radioimmunoassay before and after the irradiation of 1,000 rad/l fraction. The glucocorticoid receptor in the liver cytosol was determined by the measurement of the cytosol binding to 3 H-dexamethasone. The cytosol and nuclear corticosterone levels reached a peak 1 day after the irradiation of the rat liver and declined to the control levels after 2 days. The increase in corticosterone levels may be due to the direct stimulation of the right adrenal gland and/ or the stress induced by the irradiation. The binding capacity of the glucocorticoid receptor in rat liver cytosol decreased to the minimum 1 day after the irradiation, and the recovery occurred at 4 days. The Kd value of the glucocorticoid receptor remained unchanged from 1 hour until 4 days but was high at 4 and 7 days. The distinctly increased levels of cyclic GMP in the rat liver were found from 1 hour through 7 days after the irradiation, while cyclic AMP did not change. The inversed relationship between the cytosol glucocorticoid receptor and corticosterone levels in cytosol and the nuclei indicates that the receptor-bound corticosterone in cytosol can be transferred to a nucleus and remain there in the presence of appropriate amounts of corticosterone in cytosol, after which the receptor is released from the nucleus into cytosol. The high Kd values observed 4 -- 7 days after the irradiation may be either due to the direct effect of irradiation or to the replenishment of the receptor with a low affinity. (author)

  18. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2016-01-01

    Full Text Available Human epidermal growth factor (hEGF is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  19. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli.

    Science.gov (United States)

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin; Li, Shan; Wang, Jufang

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H 10 . The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  20. Micromorphology and development of the epicuticular structure on the epidermal cell of ginseng leaves

    Directory of Open Access Journals (Sweden)

    Kyounghwan Lee

    2015-04-01

    Conclusion: The outwardly projected cuticle and epidermal cell wall (i.e., an epicuticular wrinkle acts as a major barrier to block out sunlight in ginseng leaves. The small vesicles in the peripheral region of epidermal cells may suppress the cuticle and parts of epidermal wall, push it upward, and consequently contribute to the formation of the epicuticular structure.

  1. Retrospective Study of Epidermal Parasitic Skin Diseases amongst ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: A ten year retrospective study (1997-2006) was undertaken to determine the prevalence of. Epidermal Parasitic Skin Diseases (EPSD) among out-patients from the skin diseases hospital in Maiduguri, Borno state. Out of 10,000 out-patients examined during the study period, 3527(35.27%) where infected with ...

  2. An immunologic approach to induction of epidermal growth factor deficiency

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) in pharmacologic doses is able to induce growth and development in the fetus and the newborn. To investigate the opposite situation, the effects of insufficient amounts of EGF during development, we wanted to establish an in vivo model with a state of EGF deficiency....

  3. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    Purpose: To study the effect of conformal radiotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell lung cancer (NSCLC). Methods: A total of 316 patients attending Shanghai Pulmonary Hospital affiliated to Tongji University, were divided ...

  4. Assessment of the Developmental Toxicity of Epidermal Growth ...

    African Journals Online (AJOL)

    Purpose: To determine whether epidermal growth factor (EGF) is involved in reproductive developmental toxicity, using the embryonic stem cell test (EST), as well as ascertain how EGF influences embryonic development. Methods: To predict developmental toxicity on the basis of reducing cell viability and inhibition of ...

  5. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    Introduction: Breast cancer is the most common cancer among women globally. With immunohistochemistry (IHC), breast cancer is classified into four groups based on IHC profile of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu) expression, positive (+) and/or ...

  6. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    Science.gov (United States)

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Gastric luminal epidermal growth factor is affected by diet | Iputo ...

    African Journals Online (AJOL)

    Objective. Diet is an area of major interest to those investigating the causes of cancer of the oesophagus in the Transkei. This study looked at the associations between intragastric epidermal growth factor level, diet and intragastric pH. Setting and subjects. A dietary survey was co-ordinated with studies of gastric luminal ...

  8. Epidermal hydration levels in rosacea patients improve after minocycline therapy.

    LENUS (Irish Health Repository)

    Ní Raghallaigh, S

    2013-12-06

    Patients with rosacea frequently report increased skin sensitivity, with features suggestive of an abnormal stratum corneum (SC) permeability barrier. Sebum, pH and hydration levels influence epidermal homeostasis. The correlation of the change in these parameters with clinically effective treatment has not been previously analysed.

  9. Inflammatory linear verrucous epidermal naevus: Report of three ...

    African Journals Online (AJOL)

    Background: Epidermal naevi are congenital harmatomas that arise from embryonal ectodermal cells. The inflammatory linear verrucous variant is rare and presents with disturbing symptoms. In blacks the classical erythema is not common but pruritus and discharge are the commonest features. Methods and results: We ...

  10. Identification of grazed grasses using epidermal characters | R ...

    African Journals Online (AJOL)

    The use of anatomical features of the abaxial epidermis of grasses is discussed for the identification of fragments of epidermis present in samples of rumen. The reliability of this technique, and the variation of the epidermal characters in two widely distributed species of grass, is given. A "Key" to identity certain genera of ...

  11. Improvement of arbutin trans-epidermal delivery using ...

    African Journals Online (AJOL)

    Purpose: To assess the ability of radiofrequency (RF) microporation to promote trans-epidermal delivery of arbutin. Methods: To investigate the enhancing effect of RF microchannels on skin permeation of arbutin, in vitro skin permeability studies were performed with RF microporation-treated Hartley albino guinea pig skin ...

  12. Epidermal growth factor reactivity in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Tollund, L

    1990-01-01

    whey elutes as a broad peak corresponding to a Stokes radius of 4.0 nm (an approximate molecular weight of 80 kDa). Almost no 6 kDa EGF is present. Judged by gel filtration of whey pre-incubated with 125I-EGF (6 kDa), no binding protein for EGF is present in rat whey. When rat milk is incubated...

  13. Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase

    Directory of Open Access Journals (Sweden)

    Zheng Yanning

    2012-10-01

    Full Text Available Abstract Background Thioesterases remove the fatty acyl moiety from the fatty acyl-acyl carrier proteins (ACPs, releasing them as free fatty acids (FFAs, which can be further used to produce a variety of fatty acid-based biofuels, such as biodiesel, fatty alcohols and alkanes. Thioesterases play a key role in the regulation of the fatty acid synthesis in Escherichia coli. Therefore, exploring more promising thioesterases will contribute to the development of industrial microbial lipids production. Results We cloned and expressed a cytosolic Acinetobacter baylyi thioesterase (‘AcTesA in E. coli by deleting its leader sequence. Protein sequence alignment, structure modeling and site-directed mutagenesis demonstrated that Ser10, Gly48, Asn77, Asp158 and His161 residues composed the active centre of ‘AcTesA. The engineered strain that overexpressed ‘AcTesA achieved a FFAs titer of up to 501.2 mg/L in shake flask, in contrast to only 20.5 mg/L obtained in wild-type E. coli, demonstrating that the expression of ‘AcTesA indeed boosted the synthesis of FFAs. The ‘AcTesA exhibited a substrate preference towards the C8-C16 acyl groups, with C14:0, C16:1, C12:0 and C8:0 FFAs being the top four components. Optimization of expression level of ‘AcTesA made the FFAs production increase to 551.3 mg/L. The FFAs production further increased to 716.1 mg/L by optimization of the culture medium. Fed-batch fermentation was also carried out to evaluate the FFAs production in a scaleable process. Finally, 3.6 g/L FFAs were accumulated within 48 h, and a maximal FFAs yield of 6.1% was achieved in 12–16 h post induction. Conclusions For the first time, an A. baylyi thioesterase was cloned and solubly expressed in the cytosol of E. coli. This leaderless thioesterase (‘AcTesA was found to be capable of enhancing the FFAs production of E. coli. Without detailed optimization of the strain and fermentation, the finally achieved 3.6 g/L FFAs is encouraging. In

  14. Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells.

    Science.gov (United States)

    Yanagihara, K; Cheng, H; Cheng, P W

    2000-01-01

    Poor transfection efficiency is the major drawback of lipofection. We showed previously that addition of transferrin (TF) to Lipofectin enhanced the expression of a reporter gene in HeLa cells by 120-fold and achieved close to 100% transfection efficiency. The purpose of this study was to determine whether TF and other ligands could improve the efficiency of lipofection in lung carcinoma cells. Confluent A549, Calu3, and H292 cells were transfected for 18 hours with a plasmid DNA (pCMVlacZ) using Lipofectin plus TF, insulin, or epidermal growth factor as the vector. The transfected cells were assessed for transfection efficiency by beta-galactosidase activity (light units/microg protein) and the percentage of blue cells following 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside staining. Lipofectin supplemented with epidermal growth factor yielded the largest enhancement of lipofection efficiency (lipofection efficiency in A549 and Calu3 cells but not in H292 cells, whereas TF showed significant lipofection efficiency-enhancing effect in Calu3 and H292 cells but not in A549 cells. The transfection efficiency correlated well with the amounts of DNA delivered to the nucleus as well as the amounts of the receptor. These results indicate that the gene delivery strategy employing ligand-facilitated lipofection can achieve high transfection efficiency in human lung carcinoma cells. In addition, enhancement of the expression of the receptor may be a possible strategy for increasing the efficiency of gene targeting.

  15. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis

    International Nuclear Information System (INIS)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-01-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that [ 125 I]EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers

  16. Superficial Dsg2 Expression Limits Epidermal Blister Formation Mediated by Pemphigus Foliaceus Antibodies and Exfoliative Toxins

    Directory of Open Access Journals (Sweden)

    Donna Brennan

    2010-01-01

    Full Text Available Cell-cell adhesion mediated by desmosomes is crucial for maintaining proper epidermal structure and function, as evidenced by several severe and potentially fatal skin disorders involving impairment of desmosomal proteins. Pemphigus foliaceus (PF and staphylococcal scalded skin syndrome (SSSS are subcorneal blistering diseases resulting from loss of function of the desmosomal cadherin, desmoglein 1 (Dsg1. To further study the pathomechanism of these diseases and to assess the adhesive properties of Dsg2, we employed a recently established transgenic (Tg mouse model expressing Dsg2 in the superficial epidermis. Neonatal Tg and wild type (WT mice were injected with purified ETA or PF Ig. We showed that ectopic expression of Dsg2 reduced the extent of blister formation in response to both ETA and PF Ig. In response to PF Ig, we observed either a dramatic loss or a reorganization of Dsg1-α, Dsg1-β, and, to a lesser extent, Dsg1-γ, in WT mice. The Inv-Dsg2 Tg mice showed enhanced retention of Dsg1 at the cell-cell border. Collectively, our data support the role for Dsg2 in cell adhesion and suggest that ectopic superficial expression of Dsg2 can increase membrane preservation of Dsg1 and limit epidermal blister formation mediated by PF antibodies and exfoliative toxins.

  17. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    Science.gov (United States)

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  19. Glucose acutely reduces cytosolic and mitochondrial H2O2 in rat pancreatic beta-cells.

    Science.gov (United States)

    Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe

    2018-05-14

    Whether H2O2 contributes to the glucose-dependent stimulation of insulin secretion by pancreatic β-cells is highly controversial. We used two H2O2-sensitive probes, roGFP2-Orp1 and HyPer with its pH-control SypHer, to test the acute effects of glucose, monomethylsuccinate, leucine with glutamine, and α-ketoisocaproate, on β-cell cytosolic and mitochondrial H2O2 concentrations. We then tested the effects of low H2O2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H2O2 (response at 2-5 vs. 10µM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15µM exogenous H2O2. The glucose effects were not affected by overexpression of catalase, mitochondrial catalase or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5mM glucose in the cytosol and 10mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H2O2 (1-15µM) did not affect insulin secretion. By contrast, menadione (1-5µM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20mM glucose. Subcellular changes in β-cell H2O2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H2O2 levels in β-cells and promote degradation of exogenously supplied H2O2 in both cytosolic and mitochondrial compartments. The glucose-dependent stimulation of insulin secretion occurs independently of a detectable increase in β-cell cytosolic or mitochondrial H2O2 levels.

  20. Investigation of metalloproteins distributions in cytosol of hepatocellular carcinoma and its surrounding tissues by using synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Li Bai; Chai Zhifang; Huang Yuying; He Wei; Deng Guilong; Liu Yingbin

    2004-01-01

    Synchrotron radiation X-ray fluorescence (SRXRF) spectroscopy is an advanced quantitative multielemental analytical technique with space resolution of several μm and sensitivities in the μ g/g range. It can be used for keeping track of trace elements in biological samples after an electrophoretic separation. In this paper, proteins in cytosol of human hepatocellular carcinoma and the surrounding 'normal' tissue were separated with thin layer isoelectric focusing (IEF). The contents of metal ions in protein bands were determined by SRXRF. The results showed that the metal-containing proteins detected in the two samples were very much alike, but their distribution patterns were easily distinguishable. The contents of iron, zinc, and copper in bands from the surrounding 'normal' tissue were generally higher than that from hepatoma tissue, especially in Fe-containing proteins with pIs of 6.5, 7.7, 8.0 and less than 3.5, Cu-containing proteins with PIs of 3.2, 4.9, 5.5, 5.9 and 6.5, as well as Zn-containing proteins with pI of 5.5 and 6.5. However, Fe contents in Fe-containing proteins of 4.0, and 7.0 from the hepatoma tissue were slight higher than that from the surrounding 'normal' tissue. Further studies are necessary to validate the universality and the biological meaning of the pattern. (authors)

  1. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell

    Directory of Open Access Journals (Sweden)

    Sachie Tanaka

    2017-05-01

    Full Text Available Background/Aims: Our previous study revealed that cytosolic Cl- affected neurite elongation promoted via assembly of microtubule in rat pheochromocytoma PC12D cells and Cl-–induced blockade of intrinsic GTPase enhanced tubulin polymerization in vitro. Paclitaxel (PTX is a microtubule-targeted chemotherapeutic drug and stabilizes microtubules resulting in mainly blockade of mitosis at the metaphase-anaphase transition and induction of apoptosis. In the present study, we tried to clarify whether the cytosolic Cl- affected PTX ability to inhibit cell growth in the gastric cancer cell line, MKN28. Methods: To clarify the cytosolic Cl- action on PTX-induced cell death and metaphase-anaphase transition in the gastric cancer cell line, MKN28 cell, and PTX-induced tubulin polymerization, we performed cell proliferation assay, cytosolic Cl- concentration measurement, immunofluorescence microscopy, and in vitro tubulin polymerization assay. Results: The decline of cytosolic Cl- weakened the cytotoxic effect of PTX on cell proliferation of MKN28 cells, which could pass through the metaphase-anaphase transition. Moreover, in vitro PTX-induced tubulin polymerization was diminished under the low Cl- condition. Conclusions: Our results strongly suggest that the upregulation of cytosolic Cl- concentration would enhance the antitumor effect of PTX, and that the cytosolic Cl- would be one of the key targets for anti-cancer therapy.

  2. Radiotherapy and receptor of epidermal growth factor; Radiotherapie et recepteur de l'Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Deberne, M. [Institut Gustave-Roussy, 94 - Villejuif (France)

    2009-10-15

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  3. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi.

    Science.gov (United States)

    Nývltová, Eva; Šuták, Robert; Harant, Karel; Šedinová, Miroslava; Hrdy, Ivan; Paces, Jan; Vlček, Čestmír; Tachezy, Jan

    2013-04-30

    In most eukaryotes, the mitochondrion is the main organelle for the formation of iron-sulfur (FeS) clusters. This function is mediated through the iron-sulfur cluster assembly machinery, which was inherited from the α-proteobacterial ancestor of mitochondria. In Archamoebae, including pathogenic Entamoeba histolytica and free-living Mastigamoeba balamuthi, the complex iron-sulfur cluster machinery has been replaced by an ε-proteobacterial nitrogen fixation (NIF) system consisting of two components: NifS (cysteine desulfurase) and NifU (scaffold protein). However, the cellular localization of the NIF system and the involvement of mitochondria in archamoebal FeS assembly are controversial. Here, we show that the genes for both NIF components are duplicated within the M. balamuthi genome. One paralog of each protein contains an amino-terminal extension that targets proteins to mitochondria (NifS-M and NifU-M), and the second paralog lacks a targeting signal, thereby reflecting the cytosolic form of the NIF machinery (NifS-C and NifU-C). The dual localization of the NIF system corresponds to the presence of FeS proteins in both cellular compartments, including detectable hydrogenase activity in Mastigamoeba cytosol and mitochondria. In contrast, E. histolytica possesses only single genes encoding NifS and NifU, respectively, and there is no evidence for the presence of the NIF machinery in its reduced mitochondria. Thus, M. balamuthi is unique among eukaryotes in that its FeS cluster formation is mediated through two most likely independent NIF machineries present in two cellular compartments.

  4. Genética Molecular das Epidermólises Bolhosas Molecular Genetics of Epidermolysis Bullosa

    Directory of Open Access Journals (Sweden)

    Hiram Larangeira de Almeida Jr

    2002-10-01

    Full Text Available O estudo das alterações moleculares das epidermólises bolhosas tem contribuído para que se compreenda melhor essas enfermidades. Na epidermólise bolhosa simples a maioria dos casos está associada com alteração nas citoqueratinas basais 5 (gen KRT5 e 14 (gen KRT14, o que modifica o citoesqueleto na camada basal da epiderme, levando à degeneração dessa camada, formando bolha intra-epidérmica. Mutações na plectina (gen PLEC1, componente da placa interna do hemidesmossoma, levam também à clivagem intra-epidérmica. Na epidermólise bolhosa juncional vários gens estão envolvidos, em decorrência da complexidade da zona da membrana basal, todos levando ao descolamento dos queratinócitos basais na lâmina lúcida, pela disfunção da aderência entre esses e a lâmina densa. Alterações na laminina 5 (gens LAMA3, LAMB3 e LAMC2, integrina alfa6beta4 (gens ITGA6 e ITGB4 e colágeno XVII (gen COL17A1 foram descritas. Por fim, na epidermólise bolhosa distrófica apenas um gen está mutado, alterando o colágeno VII (gen COL7A1, principal componente das fibrilas ancorantes, produzindo clivagem abaixo da lâmina densa, variando fenotipicamente de acordo com a conseqüência da mutação. Outra aplicação importante dessas informações refere-se ao diagnóstico pré-natal, com a perspectiva no futuro da terapia gênica.New data regarding the molecular aspects of the heterogeneous group of epidermolysis bullosa has brought some important information about its pathogenesis. In epidermolysis bullosa simplex the majority of mutations are localized in the genes of the basal cytokeratin 5 (gene KRT5 and 14 (gene KRT14, cytolysis at this layer with intraepidermal blister is seen under light microscopy. Mutations of plectin (gene PLEC1, a protein found in the inner hemidesmosomal plaque, leads also to intraepidermal blisters. In junctional epidermolysis bullosa many proteins from the basal membrane zone are involved, such as laminin 5 (genes

  5. Automation of metabolic stability studies in microsomes, cytosol and plasma using a 215 Gilson liquid handler.

    Science.gov (United States)

    Linget, J M; du Vignaud, P

    1999-05-01

    A 215 Gilson liquid handler was used to automate enzymatic incubations using microsomes, cytosol and plasma. The design of automated protocols are described. They were based on the use of 96 deep well plates and on HPLC-based methods for assaying the substrate. The assessment of those protocols was made with comparison between manual and automated incubations, reliability and reproducibility of automated incubations in microsomes and cytosol. Examples of the use of those programs in metabolic studies in drug research, i.e. metabolic screening in microsomes and plasma were shown. Even rapid processes (with disappearance half lives as low as 1 min) can be analysed. This work demonstrates how stability studies can be automated to save time, render experiments involving human biological media less hazardous and may be improve inter-laboratory reproducibility.

  6. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    Science.gov (United States)

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Detecting Release of Bacterial dsDNA into the Host Cytosol Using Fluorescence Microscopy.

    Science.gov (United States)

    Dreier, Roland Felix; Santos, José Carlos; Broz, Petr

    2018-01-01

    Recognition of pathogens by the innate immune system relies on germline-encoded pattern recognition receptors (PRRs) that recognize unique microbial molecules, so-called pathogen-associated molecular patterns (PAMPs). Nucleic acids and their derivatives are one of the most important groups of PAMPs, and are recognized by a number of surface-associated as well as cytosolic PRRs. Cyclic GMP-AMP synthase (cGAS) recognizes the presence of pathogen- or host-derived dsDNA in the cytosol and initiates type-I-IFN production. Here, we describe a methodology that allows for evaluating the association of cGAS with released bacterial dsDNA during Francisella novicida infection of macrophages, by fluorescence confocal microscopy. This method can be adapted to the study of cGAS-dependent responses elicited by other intracellular bacterial pathogens and in other cell types.

  8. A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2013-05-01

    Full Text Available The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH, predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.

  9. Identification of cytosolic peroxisome proliferator binding protein as a member of the heat shock protein HSP70 family.

    OpenAIRE

    Alvares, K; Carrillo, A; Yuan, P M; Kawano, H; Morimoto, R I; Reddy, J K

    1990-01-01

    Clofibrate and many of its structural analogues induce proliferation of peroxisomes in the hepatic parenchymal cells of rodents and certain nonrodent species including primates. This induction is tissue specific, occurring mainly in the liver parenchymal cells and to a lesser extent in the kidney cortical epithelium. The induction of peroxisomes is associated with a predictable pleiotropic response, characterized by hepatomegaly, and increased activities and mRNA levels of certain peroxisomal...

  10. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  11. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney

    OpenAIRE

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V.; Park, Kwon Moo

    2008-01-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expressio...

  12. BAF is a cytosolic DNA sensor that leads to exogenous DNA avoiding autophagy.

    Science.gov (United States)

    Kobayashi, Shouhei; Koujin, Takako; Kojidani, Tomoko; Osakada, Hiroko; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-06-02

    Knowledge of the mechanisms by which a cell detects exogenous DNA is important for controlling pathogen infection, because most pathogens entail the presence of exogenous DNA in the cytosol, as well as for understanding the cell's response to artificially transfected DNA. The cellular response to pathogen invasion has been well studied. However, spatiotemporal information of the cellular response immediately after exogenous double-stranded DNA (dsDNA) appears in the cytosol is lacking, in part because of difficulties in monitoring when exogenous dsDNA enters the cytosol of the cell. We have recently developed a method to monitor endosome breakdown around exogenous materials using transfection reagent-coated polystyrene beads incorporated into living human cells as the objective for microscopic observations. In the present study, using dsDNA-coated polystyrene beads (DNA-beads) incorporated into living cells, we show that barrier-to-autointegration factor (BAF) bound to exogenous dsDNA immediately after its appearance in the cytosol at endosome breakdown. The BAF(+) DNA-beads then assembled a nuclear envelope (NE)-like membrane and avoided autophagy that targeted the remnants of the endosome membranes. Knockdown of BAF caused a significant decrease in the assembly of NE-like membranes and increased the formation of autophagic membranes around the DNA-beads, suggesting that BAF-mediated assembly of NE-like membranes was required for the DNA-beads to evade autophagy. Importantly, BAF-bound beads without dsDNA also assembled NE-like membranes and avoided autophagy. We propose a new role for BAF: remodeling intracellular membranes upon detection of dsDNA in mammalian cells.

  13. Effect of starvation, diabetes and insulin on the casein kinase 2 from rat liver cytosol.

    OpenAIRE

    Martos, C; Plana, M; Guasch, M D; Itarte, E

    1985-01-01

    Starvation, diabetes and insulin did not alter the concentration of casein kinases in rat liver cytosol. However, the Km for casein of casein kinase 2 from diabetic rats was about 2-fold lower than that from control animals. Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats. Starvation did not affect the kinetic constants of casein kinases. The effect of diabetes on casein kinase 2 persisted after partia...

  14. Unique hepatic cytosolic arginase evolved independently in ureogenic freshwater air-breathing teleost, Heteropneustes fossilis.

    Directory of Open Access Journals (Sweden)

    Shilpee Srivastava

    Full Text Available Hepatic cytosolic arginase (ARG I, an enzyme of the urea cycle operating in the liver of ureotelic animals, is reported to be present in an ammoniotelic freshwater air-breathing teleost, Heteropneustes fossilis which has ureogenic potential. Antibodies available against mammalian ARG I showed no cross reactivity with the H. fossilis ARG I. We purified unique ARG I from H. fossilis liver. Purified ARG I is a homotrimer with molecular mass 75 kDa and subunit molecular mass of 24 kDa. The pI value of the enzyme was 8.5. It showed maximum activity at pH 10.5 and 55°C. The Km of purified enzyme for L-arginine was 2.65±0.39 mM. L-ornithine and N(ω-hydroxy-L-arginine showed inhibition of the ARG I activity, with Ki values 0.52±0.02mM and 0.08±0.006mM, respectively. Antibody raised against the purified fish liver ARG I showed exclusive specificity, and has no cross reactivity against fish liver ARG II and mammalian liver ARG I and ARG II. We found another isoform of arginase bound to the outer membrane of the mitochondria which was released by 150-200 mM KCl in the extraction medium. This isoform was immunologically different from the soluble cytosolic and mitochondrial arginase. The results of present study support that hepatic cytosolic arginase evolved in this ureogenic freshwater teleost, H. fossilis. Phylogenetic analysis confirms an independent evolution event that occurred much after the evolution of the cytosolic arginase of ureotelic vertebrates.

  15. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    Science.gov (United States)

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  17. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing.

    Science.gov (United States)

    Seo, Gil Ju; Kim, Charlotte; Shin, Woo-Jin; Sklan, Ella H; Eoh, Hyungjin; Jung, Jae U

    2018-02-09

    Intracellular nucleic acid sensors often undergo sophisticated modifications that are critical for the regulation of antimicrobial responses. Upon recognition of DNA, the cytosolic sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the second messenger cGAMP, which subsequently initiates downstream signaling to induce interferon-αβ (IFNαβ) production. Here we report that TRIM56 E3 ligase-induced monoubiquitination of cGAS is important for cytosolic DNA sensing and IFNαβ production to induce anti-DNA viral immunity. TRIM56 induces the Lys335 monoubiquitination of cGAS, resulting in a marked increase of its dimerization, DNA-binding activity, and cGAMP production. Consequently, TRIM56-deficient cells are defective in cGAS-mediated IFNαβ production upon herpes simplex virus-1 (HSV-1) infection. Furthermore, TRIM56-deficient mice show impaired IFNαβ production and high susceptibility to lethal HSV-1 infection but not to influenza A virus infection. This adds TRIM56 as a crucial component of the cytosolic DNA sensing pathway that induces anti-DNA viral innate immunity.

  18. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts.

    Science.gov (United States)

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R

    1997-11-01

    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  19. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.

    Science.gov (United States)

    Jahn, Stephan C; Rowland-Faux, Laura; Stacpoole, Peter W; James, Margaret O

    2015-04-10

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Identification and characterization of two novel cytosolic sulfotransferases, SULT1 ST7 and SULT1 ST8, from zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.-A. [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (China); Bhuiyan, Shakhawat [Division of Arts and Sciences, Jarvis Christian College, Hawkins, TX 75765 (United States); Snow, Rhodora [School of Mathematics and Science, J. Sargeant Reynolds Community College, Richmond, VA 23285 (United States); Yasuda, Shin; Yasuda, Tomoko [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Yang, Y.-S. [Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (China); Williams, Frederick E.; Liu, M.-Y.; Suiko, Masahito [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Carter, Glendora [School of Mathematics and Science, J. Sargeant Reynolds Community College, Richmond, VA 23285 (United States); Liu, M.-C. [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States)], E-mail: ming.liu@utoledo.edu

    2008-08-29

    Cytosolic sulfotransferases (SULTs) constitute a family of Phase II detoxification enzymes that are involved in the protection against potentially harmful xenobiotics as well as the regulation and homeostasis of endogenous compounds. Compared with humans and rodents, the zebrafish serves as an excellent model for studying the role of SULTs in the detoxification of environmental pollutants including environmental estrogens. By searching the expressed sequence tag database, two zebrafish cDNAs encoding putative SULTs were identified. Sequence analysis indicated that these two putative zebrafish SULTs belong to the SULT1 gene family. The recombinant form of these two novel zebrafish SULTs, designated SULT1 ST7 and SULT1 ST8, were expressed using the pGEX-2TK glutathione S-transferase (GST) gene fusion system and purified from transformed BL21 (DE3) cells. Purified GST-fusion protein form of SULT1 ST7 and SULT1 ST8 exhibited strong sulfating activities toward environmental estrogens, particularly hydroxylated polychlorinated biphenyls (PCBs), among various endogenous and xenobiotic compounds tested as substrates. pH-dependence experiments showed that SULT1 ST7 and SULT1 ST8 displayed pH optima at 6.5 and 8.0, respectively. Kinetic parameters of the two enzymes in catalyzing the sulfation of catechin and chlorogenic acid as well as 3-chloro-4-biphenylol were determined. Developmental expression experiments revealed distinct patterns of expression of SULT1 ST7 and SULT1 ST8 during embryonic development and throughout the larval stage onto maturity.

  2. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-01-01

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO 4 /polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  3. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors

    International Nuclear Information System (INIS)

    Ogiwara, Kazutaka; Nagaoka, Masato; Cho, Chong-Su; Akaike, Toshihiro

    2006-01-01

    We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg 2+ although integrin-mediated cell adhesion to natural ECMs is dependent on Mg 2+ . Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF

  5. Epidermal growth factor and lung development in the offspring of the diabetic rat

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Nexø, Ebba

    2000-01-01

    Fetuses of diabetic mothers who were exposed to excessive glucose show delayed maturation. Under these conditions, altered growth factor expression or signaling may have important regulatory influences. We examined the role of epidermal growth factor (EGF) in lung development and maternal diabetes...... in the rat. In order to evaluate the possible role of glucose for the expression of EGF and the growth of lung tissue, we performed in vitro studies with organotypic cultures of fetal alveolar cells obtained from control rats. Compared to pups of normal rats, the newborn rats of untreated diabetic rats had...... and was associated with a reduced intensity of surfactant protein A-IR. The only difference observed between pups of treated diabetic rats and controls was a decrease in the lung weight:body weight ratio. In organotypic cultures, the presence of 13 mmol/L glucose in the cell media increased immunoreactive staining...

  6. Delayed Hepatic Adaptation to Weaning in ACBP(-/-) Mice Is Caused by Disruption of the Epidermal Barrier

    DEFF Research Database (Denmark)

    Neess, Ditte; Bek, Signe; Bloksgaard, Maria

    2013-01-01

    in the skin rather than in the liver. Similarly to ACBP(-/-) mice, K14-ACBP(-/-) mice exhibit an increased transepidermal water loss, and we show that the hepatic phenotype is caused specifically by the epidermal barrier defect, which leads to increased lipolysis in white adipose tissue. Our data demonstrate......We previously reported that mice deficient in acyl-CoA-binding protein (ACBP) display a delayed metabolic adaptation to weaning. This includes a delayed activation of the hepatic lipogenic gene program, which may result from hepatic accumulation of triacylglycerol and/or cholesteryl esters...... in the late suckling period. To further investigate the basis for this phenotype, we generated mice deficient in ACBP in hepatocytes (Alb-ACBP(-/-)) and keratinocytes (K14-ACBP(-/-)). Surprisingly, the delayed adaptation to weaning, including hepatic lipid accumulation, is caused by ACBP deficiency...

  7. Cytosolic glyceraldehyde-3-phosphate dehydrogenases play crucial roles in controlling cold-induced sweetening and apical dominance of potato (Solanum tuberosum L.) tubers.

    Science.gov (United States)

    Liu, Tengfei; Fang, Hui; Liu, Jun; Reid, Stephen; Hou, Juan; Zhou, Tingting; Tian, Zhendong; Song, Botao; Xie, Conghua

    2017-12-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs-silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB-meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy-related protein 3 (ATG3), implying that the occurrence of cell death in TAB-meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers. © 2017 John Wiley & Sons Ltd.

  8. The epidermal biosynthesis of cholecalciferol (vitamin D3)

    International Nuclear Information System (INIS)

    Beadle, P.C.

    1977-01-01

    An attempt has been made to calculate the rate of ultraviolet absorption by 7-dehydrocholesterol, provitamin D 3 , in the epidermis as a function of latitude, season and skin type, in the hope that it will provide an upper-limit estimate of the epidermal vitamin production. The results indicate that a significant fraction of the total epidermal production may occur in the stratum corneum with figures of 15 and 31% being found for non-pigmented and pigmented epidermises, respectively. Total production in negroid epidermis is predicted to be about 40% of that in the caucasian one and the latitudinal variation is greater than the seasonal variation, in agreement with the behaviour of the available solar ultraviolet. Overall production rates were sufficiently high for it to be unnecessary to invoke an enhanced absorption mechanism for the provitamin, although the results do indicate that there may be a risk of deficient production above about 40 0 N. (author)

  9. Metabolic epidermal necrosis in two dogs with different underlying diseases.

    Science.gov (United States)

    Bond, R; McNeil, P E; Evans, H; Srebernik, N

    1995-05-06

    Two dogs with metabolic epidermal necrosis had hyperkeratosis of the footpads accompanied by erythematous, erosive and crusting lesions affecting the muzzle, external genitalia, perineum and periocular regions. Histopathological examination of skin biopsies revealed a superficial hydropic dermatitis with marked parakeratosis. Both dogs had high plasma activities of alkaline phosphatase and alanine aminotransferase and high concentrations of glucose, and also a marked hypoaminoacidaemia. Despite these similarities, the cutaneous eruptions were associated with different underlying diseases. One dog had a pancreatic carcinoma which had metastasised widely; the primary tumour and the metastases showed glucagon immunoreactivity on immunocytochemical staining, and the dog's plasma glucagon concentration was markedly greater than that of control dogs. The other dog had diffuse hepatic disease; its plasma glucagon concentration was similar to that of control samples and cirrhosis was identified post mortem. Metabolic epidermal necrosis in dogs is a distinct cutaneous reaction pattern which may be associated with different underlying systemic diseases; however, the pathogenesis of the skin lesions remains unclear.

  10. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  11. Immunohistochemical localization of epidermal growth factor in rat and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands is...... antisera against human urinary EGF worked in rat as well as man. EGF was found only in cells with an exocrine function.......Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands...... is well documented. The localization of EGF in other tissues is still unclarified. In the present study, the immunohistochemical localization of EGF in tissues from rat, man and a 20 week human fetus were investigated. In man and rat, immunoreaction was found in the submandibular glands, the serous glands...

  12. Keratins K2 and K10 are essential for the epidermal integrity of plantar skin.

    Science.gov (United States)

    Fischer, Heinz; Langbein, Lutz; Reichelt, Julia; Buchberger, Maria; Tschachler, Erwin; Eckhart, Leopold

    2016-01-01

    K1 and K2 are the main type II keratins in the suprabasal epidermis where each of them heterodimerizes with the type I keratin K10 to form intermediate filaments. In regions of the ears, tail, and soles of the mouse, only K2 is co-expressed with K10, suggesting that these keratins suffice to form a mechanically resilient cytoskeleton. To determine the effects of the suppression of both main keratins, K2 and K10, in the suprabasal plantar epidermis of the mouse. Krt2(-/-) Krt10(-/-) mice were generated by crossing Krt2(-/-) and Krt10(-/-) mice. Epidermal morphology of soles of hind-paws was examined macroscopically and histologically. Immunofluorescence analysis and quantitative PCR analysis were performed to analyze the expression of keratins in sole skin of wildtype and Krt2(-/-) Krt10(-/-) mice. Highly abundant proteins of the sole stratum corneum were determined by electrophoretic and chromatographic separation and subsequent mass spectrometry. K2 and K10 are the most prominent suprabasal keratins in normal mouse soles with the exception of the footpads where K1, K9 and K10 predominate. Mice lacking both K2 and K10 were viable and developed epidermal acanthosis and hyperkeratosis in inter-footpad epidermis of the soles. The expression of keratins K1, K9 and K16 was massively increased at the RNA and protein levels in the soles of Krt2(-/-) Krt10(-/-) mice. This study demonstrates that the loss of the main cytoskeletal components of plantar epidermis, i.e. K2 and K10, can be only partly compensated by the upregulation of other keratins. The thickening of the epidermis in the soles of Krt2(-/-) Krt10(-/-) mice may serve as a model for pathomechanistic aspects of palmoplantar keratoderma. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Directory of Open Access Journals (Sweden)

    Bronwyn Jane Barkla

    2015-06-01

    Full Text Available One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR. Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells.

  14. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na(+) and Cl(-) ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells.

  15. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na+ and Cl− ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells. PMID:26113856

  16. Deregulation of epidermal stem cell niche contributes to pathogenesis of non-healing venous ulcers

    Science.gov (United States)

    Nusbaum, Aron G.; Vukelic, Sasa; Krzyzanowska, Agata; Tomic-Canic, Marjana

    2014-01-01

    The epidermis is maintained by epidermal stem cells (ESC) that reside in distinct niches and contribute to homeostasis and wound closure. Keratinocytes at the non-healing edges of venous ulcers (VUs) are healing-incompetent, hyper-proliferative and non-migratory suggesting deregulation of ESCs. To date genes which regulate ESC niches have been studied in mice only. Utilizing microarray analysis of VU non-healing edges, we identified changes in expression of genes harboring regulation of ESCs and their fate. In a prospective clinical study of ten VUs, we confirmed suppression of the bone morphogenetic protein receptor and GATA binding protein3 as well as inhibitors of DNA-binding proteins 2 and 4. We also found decreased levels of phosphorylated glycogen synthase kinase 3, nuclear presence of ß-catenin and overexpression of its transcriptional target, c-myc indicating activation of the Wnt pathway. Additionally, we found down-regulation of leucine-rich repeats and immunoglobulin-like domains protein 1, a gene important for maintaining ESCs in a quiescent state, and absence of keratin 15, a marker of the basal stem cell compartment suggesting local depletion of ESCs. Our study shows that loss of genes important for regulation of ESCs and their fate along with activation of ß-catenin and c-myc in the VU may contribute to ESC deprivation and a hyper-proliferative, non-migratory, healing incapable wound edge. PMID:24635172

  17. Phosphoproteomic fingerprinting of epidermal growth factor signaling and anticancer drug action in human tumor cells.

    Science.gov (United States)

    Lim, Yoon-Pin; Diong, Lang-Shi; Qi, Robert; Druker, Brian J; Epstein, Richard J

    2003-12-01

    Many proteins regulating cancer cell growth are tyrosine phosphorylated. Using antiphosphotyrosine affinity chromatography, thiourea protein solubilization, two-dimensional PAGE, and mass spectrometry, we report here the characterization of the epidermal growth factor (EGF)-induced phosphoproteome in A431 human epidermoid carcinoma cells. Using this approach, more than 50 distinct tyrosine phosphoproteins are identifiable within five main clusters-cytoskeletal proteins, signaling enzymes, SH2-containing adaptors, chaperones, and focal adhesion proteins. Comparison of the phosphoproteomes induced in vitro by transforming growth factor-alpha and platelet-derived growth factor demonstrates the pathway- and cell-specific nature of the phosphoproteomes induced. Elimination of both basal and ligand-dependent phosphoproteins by cell exposure to the EGF receptor catalytic inhibitor gefitinib (Iressa, ZD1839) suggests either an autocrine growth loop or the presence of a second inhibited kinase in A431 cells. By identifying distinct patterns of phosphorylation involving novel signaling substrates, and by clarifying the mechanism of action of anticancer drugs, these findings illustrate the potential of immunoaffinity-based phosphoproteomics for guiding the discovery of new drug targets and the rational utilization of pathway-specific chemotherapies.

  18. Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Dragun, Zrinka; Krasnići, Nesrete; Kolar, Nicol; Filipović Marijić, Vlatka; Ivanković, Dušica; Erk, Marijana

    2018-05-15

    Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Grafting of human epidermal cells, presence and perspectives

    Czech Academy of Sciences Publication Activity Database

    Smetana, Karel; Dvořánková, B.; Labský, Jiří; Vacík, Jiří; Holíková, Z.

    2001-01-01

    Roč. 102, č. 1 (2001), s. 1-6 ISSN 0036-5327 R&D Projects: GA ČR GA203/00/1310; GA AV ČR IBS4050005; GA MZd ND6340; GA MŠk LN00A065; GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z4050913 Keywords : cell therapy-keratinocyte-epidermal stem cell * skin defect Subject RIV: CD - Macromolecular Chemistry

  20. Epidermal electronics with advanced capabilities in near-field communication.

    Science.gov (United States)

    Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A

    2015-02-25

    Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A review of toxic epidermal necrolysis management in Japan

    Directory of Open Access Journals (Sweden)

    Yuri Kinoshita

    2017-01-01

    Full Text Available Toxic epidermal necrolysis (TEN is a severe adverse drug reaction characterized by necrosis of the epidermis. Its incidence is approximately 1 per million a year and average mortality rate is high at 25–50%. TEN has a flu-like prodrome, followed by atypical, targetoid erythematous or purpuric macules on the skin. These macules coalesce to form flaccid blisters that slough off as areas of epidermal necrosis. Drugs such as allopurinol, sulfonamides, and carbamazepine are the most common causes. The human leukocyte antigen (HLA-B*15:02 in Asians being administered carbamazepine and the HLA-B*58:01 antigen in patients of all ethnicities being administered allopurinol are known to be high-risk factors. Rapid diagnosis, discontinuation of the causative drug, and supportive treatment are essential for better prognosis and improvement of sequelae. Till now, systemic corticosteroids and intravenous immunoglobulins have been used as the most common active interventions; however, no gold standard has been established. In Japan, physicians follow a unique diagnostic criteria and treatment guideline to improve the diagnosis rate and streamline treatments. This may be a contributing factor for the lower mortality rate (14.3%. The efficacy of systemic corticosteroids, immunoglobulins, and plasmapheresis may have been beneficial as well. In Japan, TEN is defined as an epidermal detachment of over 10% of the body surface area (BSA, while the globally accepted definition established by Bastuji-Garin describes it as an epidermal detachment of over 30% of the BSA. In Japanese individuals, HLA-A*02:06, HLA-A*02:07, HLA-A*31:01 and HLA-B*51:01 may be linked to higher risks of TEN.

  2. "Cut-and-Paste" Manufacture of Multiparametric Epidermal Sensor Systems.

    Science.gov (United States)

    Yang, Shixuan; Chen, Ying-Chen; Nicolini, Luke; Pasupathy, Praveenkumar; Sacks, Jacob; Su, Becky; Yang, Russell; Sanchez, Daniel; Chang, Yao-Feng; Wang, Pulin; Schnyer, David; Neikirk, Dean; Lu, Nanshu

    2015-11-04

    Multifunctional epidermal sensor systems (ESS) are manufactured with a highly cost and time effective, benchtop, and large-area "cut-and-paste" method. The ESS made out of thin and stretchable metal and conductive polymer ribbons can be noninvasively laminated onto the skin surface to sense electrophysiological signals, skin temperature, skin hydration, and respiratory rate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger; Zenger, Kyall R; Jerry, Dean R; Heimann, Kirsten

    2015-01-01

    as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases

  4. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    International Nuclear Information System (INIS)

    Hicks, B.D.; St Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-01-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed

  5. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  6. Fatty acids are required for epidermal permeability barrier function.

    Science.gov (United States)

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  7. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, B.D.; St. Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-07-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed.

  8. Optimal allocation of leaf epidermal area for gas exchange.

    Science.gov (United States)

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  9. MsrA Overexpression Targeted to the Mitochondria, but Not Cytosol, Preserves Insulin Sensitivity in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    JennaLynn Hunnicut

    Full Text Available There is growing evidence that oxidative stress plays an integral role in the processes by which obesity causes type 2 diabetes. We previously identified that mice lacking the protein oxidation repair enzyme methionine sulfoxide reductase A (MsrA are particularly prone to obesity-induced insulin resistance suggesting an unrecognized role for this protein in metabolic regulation. The goals of this study were to test whether increasing the expression of MsrA in mice can protect against obesity-induced metabolic dysfunction and to elucidate the potential underlying mechanisms. Mice with increased levels of MsrA in the mitochondria (TgMito MsrA or in the cytosol (TgCyto MsrA were fed a high fat/high sugar diet and parameters of glucose homeostasis were monitored. Mitochondrial content, markers of mitochondrial proteostasis and mitochondrial energy utilization were assessed. TgMito MsrA, but not TgCyto MsrA, mice remain insulin sensitive after high fat feeding, though these mice are not protected from obesity. This metabolically healthy obese phenotype of TgMito MsrA mice is not associated with changes in mitochondrial number or biogenesis or with a reduction of proteostatic stress in the mitochondria. However, our data suggest that increased mitochondrial MsrA can alter metabolic homeostasis under diet-induced obesity by activating AMPK signaling, thereby defining a potential mechanism by which this genetic alteration can prevent insulin resistance without affecting obesity. Our data suggest that identification of targets that maintain and regulate the integrity of the mitochondrial proteome, particular against oxidative damage, may play essential roles in the protection against metabolic disease.

  10. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain.

    Science.gov (United States)

    Zhang, Xuanbo; Wang, Lihong; Zhou, Anhua; Zhou, Qing; Huang, Xiaohua

    2016-04-01

    The extensive use of rare earth elements (REEs) has increased their environmental levels. REE pollution concomitant with acid rain in many agricultural regions can affect crop growth. Cytosol free calcium ions (Ca(2+)) play an important role in almost all cellular activities. However, no data have been reported regarding the role of cytosol free Ca(2+) in plant roots simultaneously exposed to REE and acid rain. In this study, the effects of exposures to lanthanum(III) and acid rain, independently and in combination, on cytosol free Ca(2+) levels, root activity, metal contents, biomass, cytosol pH and La contents in horseradish roots were investigated. The simultaneous exposures to La(III) and acid rain increased or decreased the cytosol free Ca(2+) levels, depending on the concentration of La(III), and these effects were more evident than independent exposure to La(III) or acid rain. In combined exposures, cytosol free Ca(2+) played an important role in the regulation of root activity, metal contents and biomass. These roles were closely related to La(III) dose, acid rain strength and treatment mode (independent exposure or simultaneous exposure). A low concentration of La(III) (20 mg L(-1)) could alleviate the adverse effects on the roots caused by acid rain, and the combined exposures at higher concentrations of La(III) and acid rain had synergic effects on the roots. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Sensing radiosensitivity of human epidermal stem cells

    International Nuclear Information System (INIS)

    Rachidi, Walid; Harfourche, Ghida; Lemaitre, Gilles; Amiot, Franck; Vaigot, Pierre; Martin, Michele T.

    2007-01-01

    Purpose: Radiosensitivity of stem cells is a matter of debate. For mouse somatic stem cells, both radiosensitive and radioresistant stem cells have been described. By contrast, the response of human stem cells to radiation has been poorly studied. As epidermis is a radiosensitive tissue, we evaluated in the present work the radiosensitivity of cell populations enriched for epithelial stem cells of human epidermis. Methods and materials: The total keratinocyte population was enzymatically isolated from normal human skin. We used flow cytometry and antibodies against cell surface markers to isolate basal cell populations from human foreskin. Cell survival was measured after a dose of 2 Gy with the XTT assay at 72 h after exposure and with a clonogenic assay at 2 weeks. Transcriptome analysis using oligonucleotide microarrays was performed to assess the genomic cell responses to radiation. Results: Cell sorting based on two membrane proteins, α6 integrin and the transferrin receptor CD71, allowed isolation of keratinocyte populations enriched for the two types of cells found in the basal layer of epidermis: stem cells and progenitors. Both the XTT assay and the clonogenic assay showed that the stem cells were radioresistant whereas the progenitors were radiosensitive. We made the hypothesis that upstream DNA damage signalling might be different in the stem cells and used microarray technology to test this hypothesis. The stem cells exhibited a much more reduced gene response to a dose of 2 Gy than the progenitors, as we found that 6% of the spotted genes were regulated in the stem cells and 20% in the progenitors. Using Ingenuity Pathway Analysis software, we found that radiation exposure induced very specific pathways in the stem cells. The most striking responses were the repression of a network of genes involved in apoptosis and the induction of a network of cytokines and growth factors. Conclusion: These results show for the first time that keratinocyte

  12. Epidermal growth factor induction of front–rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2

    Science.gov (United States)

    Ho, Ernest; Dagnino, Lina

    2012-01-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front–rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front–rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front–rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front–rear polarity and forward movement. PMID:22160594

  13. Epidermal growth factor induction of front-rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2.

    Science.gov (United States)

    Ho, Ernest; Dagnino, Lina

    2012-02-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.

  14. BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2014-10-01

    Full Text Available B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1 was previously reported to define a sebaceous gland (SG progenitor population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminally differentiated epidermal cells within the SG, interfollicular epidermis, and hair follicle. Epidermal overexpression of c-Myc results in loss of BLIMP1+ cells, an effect modulated by androgen signaling. Epidermal-specific deletion of Blimp1 causes multiple differentiation defects in the epidermis in addition to SG enlargement. In culture, BLIMP1+ sebocytes have no greater clonogenic potential than BLIMP1− sebocytes. Finally, lineage-tracing experiments reveal that, under steady-state conditions, BLIMP1-expressing cells do not divide. Thus, rather than defining a sebocyte progenitor population, BLIMP1 functions in terminally differentiated cells to maintain homeostasis in multiple epidermal compartments.

  15. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival.

    Science.gov (United States)

    Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian

    2017-03-21

    Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity. IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis , are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role

  16. Plasma Membrane Ca2+-Permeable Channels are Differentially Regulated by Ethylene and Hydrogen Peroxide to Generate Persistent Plumes of Elevated Cytosolic Ca2+ During Transfer Cell Trans-Differentiation.

    Science.gov (United States)

    Zhang, Hui-ming; van Helden, Dirk F; McCurdy, David W; Offler, Christina E; Patrick, John W

    2015-09-01

    The enhanced transport capability of transfer cells (TCs) arises from their ingrowth wall architecture comprised of a uniform wall on which wall ingrowths are deposited. The wall ingrowth papillae provide scaffolds to amplify plasma membranes that are enriched in nutrient transporters. Using Vicia faba cotyledons, whose adaxial epidermal cells spontaneously and rapidly (hours) undergo a synchronous TC trans-differentiation upon transfer to culture, has led to the discovery of a cascade of inductive signals orchestrating deposition of ingrowth wall papillae. Auxin-induced ethylene biosynthesis initiates the cascade. This in turn drives a burst in extracellular H2O2 production that triggers uniform wall deposition. Thereafter, a persistent and elevated cytosolic Ca(2+) concentration, resulting from Ca(2+) influx through plasma membrane Ca(2+)-permeable channels, generates a Ca(2+) signal that directs formation of wall ingrowth papillae to specific loci. We now report how these Ca(2+)-permeable channels are regulated using the proportionate responses in cytosolic Ca(2+) concentration as a proxy measure of their transport activity. Culturing cotyledons on various combinations of pharmacological agents allowed the regulatory influence of each upstream signal on Ca(2+) channel activity to be evaluated. The findings demonstrated that Ca(2+)-permeable channel activity was insensitive to auxin, but up-regulated by ethylene through two independent routes. In one route ethylene acts directly on Ca(2+)-permeable channel activity at the transcriptional and post-translational levels, through an ethylene receptor-dependent pathway. The other route is mediated by an ethylene-induced production of extracellular H2O2 which then acts translationally and post-translationally to up-regulate Ca(2+)-permeable channel activity. A model describing the differential regulation of Ca(2+)-permeable channel activity is presented. © The Author 2015. Published by Oxford University Press on

  17. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling

    DEFF Research Database (Denmark)

    Blagoev, B.; Kratchmarova, I.; Ong, S.E.

    2003-01-01

    Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we em...

  18. The role of a cytosolic superoxide dismutase in barley-pathogen interactions

    KAUST Repository

    Lightfoot, Damien

    2016-03-19

    Reactive oxygen species (ROS), including superoxide (O2-HO2) and hydrogen peroxide (H2O2), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2-HO2 to H2O2, regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2-HO2 contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.

  19. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium.

    Science.gov (United States)

    Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi

    2017-09-15

    Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.

    Science.gov (United States)

    Rasool, Mohammed I; Bairam, Ahsan F; Kurogi, Katsuhisa; Liu, Ming-Cheh

    2017-10-01

    Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine.

    Science.gov (United States)

    Lee, Su-Min; Park, Sin Young; Shin, Seoung Woo; Kil, In Sup; Yang, Eun Sun; Park, Jeen-Woo

    2009-02-01

    Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.

  2. The epidermal growth factor receptor as a target for gastrointestinal cancer therapy.

    Science.gov (United States)

    Tedesco, Karen L; Lockhart, A Craig; Berlin, Jordan D

    2004-10-01

    The epidermal growth factor receptor (EGFR) is a member of the family of transmembrane protein kinase receptors known as the erbB or HER receptor family. When activated, EGFR phosphorylates and activates other intracellular proteins that affect cell signaling pathways, cellular proliferation, control of apoptosis and angiogenesis. EGFR signaling is best thought of as a network of activating and inactivating proteins with EGFR as the entry point into the network. EGFR overexpression occurs in most GI malignancies and while data are not entirely consistent, EGFR overexpression often confers a poor prognosis in those GI malignancies that have been studied. It often correlates with poorly differentiated histology, more advanced stage and other known poor prognostic markers. The EGFR is a tempting target because of its presence and overexpression on so many tumor types. However, downstream of the EGFR are several proteins that may be activated without EGFR thus allowing blockade to be overcome. Therefore, while blocking the activity of the EGFR protein appears to be a promising anticancer strategy, a simplistic strategy of blocking only EGFR is likely to only impact a minority of patients. It is time for the laboratory and clinical researchers to work closely together to develop this treatment strategy, moving back and forth from clinical to laboratory to best understand how to block this network effectively enough to produce a broader antitumor effect. While multiple methods of targeting the EGFR pathway are under development, including the inhibition of downstream proteins, only two modalities have entered clinical trials in GI malignancies: small molecule inhibitors of the intracellular kinase domain of EGFR and antibodies designed to block the extracellular ligand-binding domain of EGFR. EGFR inhibitors are still experimental in every GI malignancy with the notable exception of cetuximab that is approved for second or third-line therapy of metastatic colorectal

  3. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation.

    LENUS (Irish Health Repository)

    Walsh, Marie-Therese

    2011-11-01

    Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1\\/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.

  4. Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data.

    Directory of Open Access Journals (Sweden)

    Katrina M Waters

    Full Text Available To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  5. Network Analysis of Epidermal Growth Factor Signaling using Integrated Genomic, Proteomic and Phosphorylation Data

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. S.; Thrall, Brian D.

    2012-03-29

    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  6. Immunohistochemical detection of cytochrome P450 isoenzymes in cultured human epidermal cells.

    Science.gov (United States)

    Van Pelt, F N; Meierink, Y J; Blaauboer, B J; Weterings, P J

    1990-12-01

    We used specific monoclonal antibodies (MAb) to human cytochrome P450 isoenzymes to determine the presence of these proteins in human epidermal cells. Two MAb (P450-5 and P450-8) recognize major forms of hepatic cytochrome P450 involved in biotransformation of xenobiotics. A third MAb, to cytochrome P450-9, is not fully characterized. The proteins were determined by the indirect immunoperoxidase technique after fixation with methanol and acetone. Biopsy materials for cultured keratinocytes, i.e., foreskin and hair follicles, contained the two major forms of cytochrome P450. In cultured keratinocytes derived from hair follicles the proteins were undetectable, whereas the keratinocytes derived from foreskin continued to express the two major forms of hepatic cytochrome P450. Cultured human fibroblasts and a human keratinocyte cell line (SVK14) showed staining similar to that of the foreskin keratinocytes. Cytochrome P450-9 was detectable only in human hepatocytes. The results indicate that, under the culture conditions applied, cultured human foreskin cells and the cell line SVK14 continue to express specific cytochrome P450 isoenzymes in culture, in contrast to hair follicle keratinocytes.

  7. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  8. Absolute quantification of superoxide dismutase in cytosol and mitochondria of mice hepatic cells exposed to mercury by a novel metallomic approach

    Energy Technology Data Exchange (ETDEWEB)

    García-Sevillano, M.A.; García-Barrera, T. [Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva 21007 (Spain); Research Center on Health and Environment (CYSMA), University of Huelva (Spain); International Campus of Excellence on Agrofood (ceiA3), University of Huelva (Spain); Navarro, F. [International Campus of Excellence on Agrofood (ceiA3), University of Huelva (Spain); Department of Environmental Biology and Public Health, Cell Biology, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Huelva 21007 (Spain); Gómez-Ariza, J.L., E-mail: ariza@uhu.es [Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva 21007 (Spain); Research Center on Health and Environment (CYSMA), University of Huelva (Spain); International Campus of Excellence on Agrofood (ceiA3), University of Huelva (Spain)

    2014-09-09

    Highlights: • Identification and quantification of Cu,Zn-superoxide dismutase in mice hepatic cells. • IDA-ICP-MSis applied to obtain a high degree of accuracy, precision and sensibility. • This methodology reduces the time of analysis and avoids clean-up procedures. • The application of this method to Hg-exposed mice reveals perturbations in Cu,Zn-SOD. - Abstract: In the last years, the development of new methods for analyzing accurate and precise individual metalloproteins is of increasing importance, since numerous metalloproteins are excellent biomarkers of oxidative stress and diseases. In that way, methods based on the use of post column isotopic dilution analysis (IDA) or enriched protein standards are required to obtain a sufficient degree of accuracy, precision and high limits of detection. This paper reports the identification and absolute quantification of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in cytosol and mitochondria from mice hepatic cells using a innovative column switching analytical approach. The method consisted of orthogonal chromatographic systems coupled to inductively coupling plasma-mass spectrometry equipped with a octopole reaction systems (ICP-ORS-MS) and UV detectors: size exclusion fractionation (SEC) of the cytosolic and mitochondrial extracts followed by online anion exchange chromatographic (AEC) separation of Cu/Zn containing species. After purification, Cu,Zn-SOD was identified after tryptic digestion by molecular mass spectrometry (MS). The MS/MS spectrum of a doubly charged peptide was used to obtain the sequence of the protein using the MASCOT searching engine. This optimized methodology reduces the time of analysis and avoids the use of sample preconcentration and clean-up procedures, such as cut-off centrifuged filters, solid phase extraction (SPE), precipitation procedures, off-line fractions insolates, etc. In this sense, the method is robust, reliable and fast with typical chromatographic run time less than 20 min

  9. Fetal effects of epidermal growth factor deficiency induced in rats by autoantibodies against epidermal growth factor

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Jørgensen, P E

    1995-01-01

    , the amount of surfactant protein-A was decreased, suggesting a delayed lung maturation. The offspring of EGF-immunized rats had dry and wrinkled skin. The skin was thin and the hair follicles were immature. This suggests a role for EGF in the growth and development of the skin. The liver/body weight ratio...

  10. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  11. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model.

    Science.gov (United States)

    Amaro-Ortiz, Alexandra; Vanover, Jillian C; Scott, Timothy L; D'Orazio, John A

    2013-09-07

    Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.

  12. Epidermal growth factor treatment decreases mortality and is associated with improved gut integrity in sepsis.

    Science.gov (United States)

    Clark, Jessica A; Clark, Andrew T; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2008-07-01

    Epidermal growth factor (EGF) is a cytoprotective peptide that has healing effects on the intestinal mucosa. We sought to determine whether systemic administration of EGF after the onset of sepsis improved intestinal integrity and decreased mortality. FVB/N mice were subjected to either sham laparotomy or 2 x 23 cecal ligation and puncture (CLP). Septic mice were further randomized to receive injection of either 150 microg kg(-1) d(-1) (i.p.) EGF or 0.9% saline (i.p.). Circulating EGF levels were decreased after CLP compared with sham animals but were unaffected by giving exogenous EGF treatment. In contrast, intestinal EGF levels increased after CLP and were further augmented by exogenous EGF treatment. Intestinal EGF receptor was increased after CLP, whether assayed by immunohistochemistry, real-time polymerase chain reaction, or Western blot, and exogenous EGF treatment decreased intestinal EGF receptor. Villus length decreased 2-fold between sham and septic animals, and EGF treatment resulted in near total restitution of villus length. Sepsis decreased intestinal proliferation and increased intestinal apoptosis. This was accompanied by increased expression of the proapoptotic proteins Bid and Fas-associated death domain, as well as the cyclin-dependent kinase inhibitor p21 cip1/waf Epidermal growth factor treatment after the onset of sepsis restored both proliferation and apoptosis to levels seen in sham animals and normalized expression of Bid, Fas-associated death domain, and p21 cip1/waf . To determine whether improvements in gut homeostasis were associated with a decrease in sepsis-induced mortality, septic mice with or without EGF treatment after CLP were followed 7 days for survival. Mortality decreased from 60% to 30% in mice treated with EGF after the onset of sepsis (P < 0.05). Thus, EGF may be a potential therapeutic agent for the treatment of sepsis in part due to its ability to protect intestinal integrity.

  13. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  14. Radiologic Findings of Epidermal Cysts in the Trunk

    International Nuclear Information System (INIS)

    Kim, Myung Hyun; Chung, Jae Joon; Park, Kyoung Seuk; Park, Su Mi

    2005-01-01

    To evaluate the ultrasonographic (US) or computer tomography (CT) findings of surgically proven epidermal cysts in the trunk, and to compare the echogenicity of cysts with internal contents. Forty-five patients were retrospectively evaluated. US and CT findings of epidermal cysts were assessed in regard to location, size, shape, number, echogenicity, posterior sound enhancement, internal density, septa, mural nodule and calcification, perilesional infiltration, contrast enhancement, and internal contents. All 45 patients (M:F=29:16; US in 26, CT in 19) had only one cyst, and they were located in the buttocks (n=19), back (n=13), inguinal (n=4), posterior neck (n=3), perineum (n=2), abdominal wall (n=2), presternal (n=1), and axilla (n=1). Of 26 patients who underwent US, there were 8 cases of homogeneously hypoechoic mass (30.8%), 8 of inhomogeneously hypoechoic mass (30.8%), 7 of homogeneously hypoechoic mass with internal hypoechoic lines and echogenic spots (26.9%) and 3 of homogeneously hypoechoic mass with internal echogenic spots (11.5%). Posterior sound enhancement was noted in 21 patients (80.8%). Of 19 patients who underwent CT, there were 14 cases of simple cyst (73.7%) and 5 of abscess-like lesion (26.3%). Overlying skin thickening (n=13), contrast enhancement of cystic wall (n=11), perilesional infiltration (n=7), and internal septa (n=6) were demonstrated. The internal contents of the cysts were keratinous (n=27, 60.0%) or greasy (n=15, 33.3%) material. There was no statistical significance between the echogenicity of the cysts and the internal contents (p > 0.2). Epidermal cysts showed homogeneous or inhomogeneous hypoechoic mass with posterior sound enhancement on US. There was no relationship between the echogenicity of the cysts and the internal contents. In the case of ruptured cyst, an abscess-like lesion with wall enhancement and perilesional infiltration was noted on CT scan

  15. Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes.

    Science.gov (United States)

    Andresen, Lars Ole; Ahrens, Peter; Daugaard, Lise; Bille-Hansen, Vivi

    2005-02-25

    Staphylococcus chromogenes is closely related to Staphylococcus hyicus, which is recognised as the causative agent of exudative epidermitis (EE) in pigs. S. chromogenes is part of the normal skin flora of pigs, cattle and poultry and has so far been considered non-pathogenic to pigs. A strain of S. chromogenes producing exfoliative toxin type B, ExhB, was identified by the use of a multiplex PCR specific for the exfoliative toxins from S. hyicus. The exfoliative toxin from S. chromogenes reacted in immunoblot analysis with polyclonal and monoclonal antibodies specific to ExhB from S. hyicus and had an apparent molecular weight of 30 kDa. Sequencing the gene encoding the exfoliative toxin from S. chromogenes revealed that the molecular weight of the toxin with the signal peptide and the mature toxin was 30,553 and 26,694 Da, respectively. Comparison of the exhB genes from S. chromogenes strain VA654 and S. hyicus strain 1289D-88 showed differences in seven base pairs of the DNA sequences and in two amino acid residues in the deduced amino acid sequences. Pigs were experimentally inoculated with S. chromogenes strain VA654. By clinical observations and histopathological evaluation of the skin alterations, all pigs revealed development of generalized exudative epidermitis. No toxin producing S. hyicus was isolated from the pigs and all ExhB-positive bacterial isolates were identified as S. chromogenes. This confirmed that the disease-causing agent was the inoculated S. chromogenes strain VA654. The results of this study show that S. chromogenes may cause exudative epidermitis in pigs.

  16. The patatin-like protein from the latex of Hevea brasiliensis (Hev b 7) is not a vacuolar protein

    NARCIS (Netherlands)

    Jekel, PA; Hofsteenge, J; Beintema, JJ

    Upon centrifugation, rubber latex is divided into a layer of rubber particles, the cytosol, and the lutoid-body fraction, which is of vacuolar origin. One of the proteins isolated from the lutoid-body fraction is a protein with a molecular mass of 43 kDa, which has esterase activity on

  17. Toxic epidermal necrolysis and Stevens-Johnson syndrome

    Directory of Open Access Journals (Sweden)

    French Lars E

    2010-12-01

    Full Text Available Abstract Toxic epidermal necrolysis (TEN and Stevens Johnson Syndrome (SJS are severe adverse cutaneous drug reactions that predominantly involve the skin and mucous membranes. Both are rare, with TEN and SJS affecting approximately 1or 2/1,000,000 annually, and are considered medical emergencies as they are potentially fatal. They are characterized by mucocutaneous tenderness and typically hemorrhagic erosions, erythema and more or less severe epidermal detachment presenting as blisters and areas of denuded skin. Currently, TEN and SJS are considered to be two ends of a spectrum of severe epidermolytic adverse cutaneous drug reactions, differing only by their extent of skin detachment. Drugs are assumed or identified as the main cause of SJS/TEN in most cases, but Mycoplasma pneumoniae and Herpes simplex virus infections are well documented causes alongside rare cases in which the aetiology remains unknown. Several drugs are at "high" risk of inducing TEN/SJS including: Allopurinol, Trimethoprim-sulfamethoxazole and other sulfonamide-antibiotics, aminopenicillins, cephalosporins, quinolones, carbamazepine, phenytoin, phenobarbital and NSAID's of the oxicam-type. Genetic susceptibility to SJS and TEN is likely as exemplified by the strong association observed in Han Chinese between a genetic marker, the human leukocyte antigen HLA-B*1502, and SJS induced by carbamazepine. Diagnosis relies mainly on clinical signs together with the histological analysis of a skin biopsy showing typical full-thickness epidermal necrolysis due to extensive keratinocyte apoptosis. Differential diagnosis includes linear IgA dermatosis and paraneoplastic pemphigus, pemphigus vulgaris and bullous pemphigoid, acute generalized exanthematous pustulosis (AGEP, disseminated fixed bullous drug eruption and staphyloccocal scalded skin syndrome (SSSS. Due to the high risk of mortality, management of patients with SJS/TEN requires rapid diagnosis, evaluation of the prognosis

  18. Renal origin of rat urinary epidermal growth factor

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1984-01-01

    The origin of rat urinary epidermal growth factor (EGF) has been investigated. Unilateral nephrectomy decreased the concentration, total output of EGF and EGF/creatinine ratio by approximately 50%, while the output of creatinine was unchanged. Removal of the submandibular glands and duodenal...... Brunner's glands, organs known to produce EGF, had no influence on the output of EGF in urine. Renal clearance of EGF exceeded that of creatinine, and after bilateral nephrectomy or bilateral ligation of the ureters, the concentration of creatinine in serum increased, while the concentration of EGF...

  19. Isolation and In Vitro Characterization of Epidermal Stem Cells

    DEFF Research Database (Denmark)

    Moestrup, Kasper S; Andersen, Marianne Stemann; Jensen, Kim Bak

    2017-01-01

    flow cytometry. Using markers that define the spatial origin of epidermal cells, it is possible to interrogate the specific characteristics of subpopulations of cells based on their in vivo credentials. Here, we describe how to isolate, culture, and characterize keratinocytes from murine back and tail......Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized...

  20. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent...

  1. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  2. Repeated short climatic change affects the epidermal differentiation program and leads to matrix remodeling in a human organotypic skin model.

    Science.gov (United States)

    Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, K