WorldWideScience

Sample records for ep4 receptor antagonist

  1. The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells

    International Nuclear Information System (INIS)

    Cherukuri, Durga Prasad; Chen, Xiao B.O.; Goulet, Anne-Christine; Young, Robert N.; Han, Yongxin; Heimark, Ronald L.; Regan, John W.; Meuillet, Emmanuelle; Nelson, Mark A.

    2007-01-01

    Accumulating evidence indicates that elevated levels of prostaglandin E 2 (PGE 2 ) can increase intestinal epithelial cell proliferation, and thus play a role in colorectal tumorigenesis. PGE 2 exerts its effects through four G-protein-coupled PGE receptor (EP) subtypes, named the EP1, EP2, EP3, and EP4. Increased phosphorylation of extracellular regulated kinases (ERK1/2) is required for PGE 2 to stimulate cell proliferation of human colon cancer cells. However, the EP receptor(s) that are involved in this process remain unknown. We provide evidence that L-161,982, a selective EP4 receptor antagonist, completely blocks PGE 2 -induced ERK phosphorylation and cell proliferation of HCA-7 cells. In order to identify downstream target genes of ERK1/2 signaling, we found that PGE 2 induces expression of early growth response gene-1 (EGR-1) downstream of ERK1/2 and regulates its expression at the level of transcription. PGE 2 treatment induces phosphorylation of cyclic AMP response element binding protein (CREB) at Ser133 residue and CRE-mediated luciferase activity in HCA-7 cells. Studies with dominant-negative CREB mutant (ACREB) provide clear evidence for the involvement of CREB in PGE 2 driven egr-1 transcription in HCA-7 cells. In conclusion, this study reveals that egr-1 is a target gene of PGE 2 in HCA-7 cells and is regulated via the newly identified EP4/ERK/CREB pathway. Finally our results support the notion that antagonizing EP4 receptors may provide a novel therapeutic approach to the treatment of colon cancer

  2. Prostaglandin E2 EP2 and EP4 receptor activation mediates cAMP-dependent hyperpolarization and exocytosis of renin in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, Ulla Glenert; Stubbe, Jane; Uhrenholt, Torben Rene

    2005-01-01

    /l), AE1-259-01 (1 nmol/l), EP4-selective agonist AE1-329 (1 nmol/l), and IP agonist iloprost (1 micromol/l) significantly increased C(m) mediated by PKA. The EP4 antagonist AE3-208 (10 nmol/l) blocked the effect of EP4 agonist but did not alter the response to PGE(2). Application of both EP4 antagonist....... The membrane potential hyperpolarized significantly after PGE(2), butaprost, AE1-329 and AE1-259 and outward current was augmented in a PKA-dependent fashion. PGE(2)-stimulated outward current, but not C(m) change, was abolished by the BK(Ca) channel inhibitor iberiotoxin (300 nmol/l). EP2 and EP4 m......RNA was detected in sampled JG cells, and the preglomerular and glomerular vasculature was immunopositive for EP4. Thus IP, EP2, and EP4 receptors are associated with JG cells, and their activation leads to rapid PKA-mediated exocytotic fusion and release of renin granules....

  3. PGE2 maintains the tone of the guinea pig trachea through a balance between activation of contractile EP1 receptors and relaxant EP2 receptors

    Science.gov (United States)

    Säfholm, J; Dahlén, S-E; Delin, I; Maxey, K; Stark, K; Cardell, L-O; Adner, M

    2013-01-01

    Background and Purpose The guinea pig trachea (GPT) is commonly used in airway pharmacology. The aim of this study was to define the expression and function of EP receptors for PGE2 in GPT as there has been ambiguity concerning their role. Experimental Approach Expression of mRNA for EP receptors and key enzymes in the PGE2 pathway were assessed by real-time PCR using species-specific primers. Functional studies of GPT were performed in tissue organ baths. Key Results Expression of mRNA for the four EP receptors was found in airway smooth muscle. PGE2 displayed a bell-shaped concentration–response curve, where the initial contraction was inhibited by the EP1 receptor antagonist ONO-8130 and the subsequent relaxation by the EP2 receptor antagonist PF-04418948. Neither EP3 (ONO-AE5-599) nor EP4 (ONO-AE3-208) selective receptor antagonists affected the response to PGE2. Expression of COX-2 was greater than COX-1 in GPT, and the spontaneous tone was most effectively abolished by selective COX-2 inhibitors. Furthermore, ONO-8130 and a specific PGE2 antibody eliminated the spontaneous tone, whereas the EP2 antagonist PF-04418948 increased it. Antagonists of other prostanoid receptors had no effect on basal tension. The relaxant EP2 response to PGE2 was maintained after long-term culture, whereas the contractile EP1 response showed homologous desensitization to PGE2, which was prevented by COX-inhibitors. Conclusions and Implications Endogenous PGE2, synthesized predominantly by COX-2, maintains the spontaneous tone of GPT by a balance between contractile EP1 receptors and relaxant EP2 receptors. The model may be used to study interactions between EP receptors. PMID:22934927

  4. Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer.

    LENUS (Irish Health Repository)

    Doherty, Glen A

    2009-01-01

    BACKGROUND: Prostaglandin E2 (PGE2) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE2 cell surface receptors (EP 1-4) to examine the mechanisms by which PGE2 regulates tumour progression. METHODS: Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue. RESULTS: EP4 was the most abundant subtype of PGE2 receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE2 generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0\\/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 microM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE2 (1 microM). G0\\/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21WAF1\\/CIP1 expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21WAF1\\/CIP1 was also seen with PD153025 (1 microM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted. CONCLUSION: COX-2 regulates cell cycle transition via EP4 receptor and altered p21WAF1\\/CIP1 expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative

  5. Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4

    Science.gov (United States)

    Torres-Atencio, Ivonne; Ainsua-Enrich, Erola; de Mora, Fernando; Picado, César; Martín, Margarita

    2014-01-01

    Background Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition. PMID:25329458

  6. Structural features of subtype-selective EP receptor modulators.

    Science.gov (United States)

    Markovič, Tijana; Jakopin, Žiga; Dolenc, Marija Sollner; Mlinarič-Raščan, Irena

    2017-01-01

    Prostaglandin E2 is a potent endogenous molecule that binds to four different G-protein-coupled receptors: EP1-4. Each of these receptors is a valuable drug target, with distinct tissue localisation and signalling pathways. We review the structural features of EP modulators required for subtype-selective activity, as well as the structural requirements for improved pharmacokinetic parameters. Novel EP receptor subtype selective agonists and antagonists appear to be valuable drug candidates in the therapy of many pathophysiological states, including ulcerative colitis, glaucoma, bone healing, B cell lymphoma, neurological diseases, among others, which have been studied in vitro, in vivo and in early phase clinical trials. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A maladaptive role for EP4 receptors in mouse mesangial cells.

    Directory of Open Access Journals (Sweden)

    Guang-xia Yang

    Full Text Available Roles of the prostaglandin E2 E-prostanoid 4 receptor (EP4 on extracellular matrix (ECM accumulation induced by TGF-β1 in mouse glomerular mesangial cells (GMCs remain unknown. Previously, we have identified that TGF-β1 stimulates the expression of FN and Col I in mouse GMCs. Here we asked whether stimulation of EP4 receptors would exacerbate renal fibrosis associated with enhanced glomerular ECM accumulation. We generated EP4(Flox/Flox and EP4(+/- mice, cultured primary WT, EP4(Flox/Flox and EP4(+/- GMCs, AD-EP4 transfected WT GMCs (EP4 overexpression and AD-Cre transfected EP4(Flox/Flox GMCs (EP4 deleted. We found that TGF-β1-induced cAMP and PGE2 synthesis decreased in EP4 deleted GMCs and increased in EP4 overexpressed GMCs. Elevated EP4 expression in GMCs augmented the coupling of TGF-β1 to FN, Col I expression and COX2/PGE2 signaling, while TGF-β1 induced FN, Col I expression and COX2/PGE2 signaling were down-regulated in EP4 deficiency GMCs. 8 weeks after 5/6 nephrectomy (Nx, WT and EP4(+/- mice exhibited markedly increased accumulation of ECM compared with sham-operated controls. Albuminuria, blood urea nitrogen and creatinine (BUN and Cr concentrations were significantly increased in WT mice as compared to those of EP4(+/- mice. Urine osmotic pressure was dramatically decreased after 5/6 Nx surgery in WT mice as compared to EP4(+/- mice. The pathological changes in kidney of EP4(+/- mice was markedly alleviated compared with WT mice. Immunohistochemical analysis showed significant reductions of Col I and FN in the kidney of EP4(+/- mice compared with WT mice. Collectively, this investigation established EP4 as a potent mediator of the pro-TGF-β1 activities elicited by COX2/PGE2 in mice GMCs. Our findings suggested that prostaglandin E2, acting via EP4 receptors contributed to accumulation of ECM in GMCs and promoted renal fibrosis.

  8. The PGE(2)-EP4 receptor is necessary for stimulation of the renin-angiotensin-aldosterone system in response to low dietary salt intake in vivo

    DEFF Research Database (Denmark)

    Pöschke, Antje; Kern, Niklas; Maruyama, Takayuki

    2012-01-01

    , creatinine clearance, and plasma antidiuretic hormone (ADH) concentration. Following salt restriction, plasma renin and aldosterone concentrations and kidney renin mRNA level rose significantly in EP4(+/+) but not in EP4(-/-) and in wild-type mice treated with EP4 antagonist ONO-AE3-208. In the latter two...... groups, the low-salt diet caused a significantly greater rise in PGE(2) excretion. Furthermore, mRNA expression for COX-2 and PGE(2) synthetic activity was significantly greater in EP4(-/-) than in EP4(+/+) mice. We conclude that low dietary salt intake induces expression of COX-2 followed by enhanced...... renal PGE(2) synthesis, which stimulates the renin-angiotensin-aldosterone system by activation of EP4 receptor. Most likely, defects at the step of EP4 receptor block negative feedback mechanisms on the renal COX system, leading to persistently high PGE(2) levels, diuresis, and K(+) loss....

  9. Development and labeling of EP-00652218 analogues, NK1 receptors antagonist, for PET and SPECT imaging

    International Nuclear Information System (INIS)

    Bagot-Gueret, C.

    2001-12-01

    The aim of this work was the synthesis and radiosynthesis of compounds labelled either with a positron emitter (fluorine-18, t 1/2 = 109 minutes) or with a gamma emitter (iodine-123, t 1/2 = 16.2 hours), for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) studies. EP-00652218 is a novel potent antagonist, with a sub-nano-molar affinity towards the NK 1 receptors. In order to develop ligands that could be used either in PET or SPECT, we undertook the synthesis of poly-halogenated analogues of EP-00652218. Compound 17 was synthesized through two different synthetic pathways. A series of original compounds has been obtained from compound 17 by halogen exchanges on the naphthyridone or the benzene ring. These molecules were tested to determine their in vitro affinity towards NK 1 receptors. Compound 21 was labelled with fluorine-18 in 135 minutes and with a 20% radiochemical yield. Compound 26 was radioiodinated following reaction with Na 125 I (t 1/2 = 60.14 days) in a 18% radiochemical yield. Despite expectation, these analogues of EP-00652218 exhibited an insufficient affinity for NK 1 receptors (IC 50 = 10 -7 M) and thus unlikely usable for in vivo studies with PET and SPECT. (author)

  10. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    Science.gov (United States)

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs. Copyright © 2015 the American Physiological Society.

  11. Systemic EP4 Inhibition Increases Adhesion Formation in a Murine Model of Flexor Tendon Repair.

    Directory of Open Access Journals (Sweden)

    Michael B Geary

    Full Text Available Flexor tendon injuries are a common clinical problem, and repairs are frequently complicated by post-operative adhesions forming between the tendon and surrounding soft tissue. Prostaglandin E2 and the EP4 receptor have been implicated in this process following tendon injury; thus, we hypothesized that inhibiting EP4 after tendon injury would attenuate adhesion formation. A model of flexor tendon laceration and repair was utilized in C57BL/6J female mice to evaluate the effects of EP4 inhibition on adhesion formation and matrix deposition during flexor tendon repair. Systemic EP4 antagonist or vehicle control was given by intraperitoneal injection during the late proliferative phase of healing, and outcomes were analyzed for range of motion, biomechanics, histology, and genetic changes. Repairs treated with an EP4 antagonist demonstrated significant decreases in range of motion with increased resistance to gliding within the first three weeks after injury, suggesting greater adhesion formation. Histologic analysis of the repair site revealed a more robust granulation zone in the EP4 antagonist treated repairs, with early polarization for type III collagen by picrosirius red staining, findings consistent with functional outcomes. RT-PCR analysis demonstrated accelerated peaks in F4/80 and type III collagen (Col3a1 expression in the antagonist group, along with decreases in type I collagen (Col1a1. Mmp9 expression was significantly increased after discontinuing the antagonist, consistent with its role in mediating adhesion formation. Mmp2, which contributes to repair site remodeling, increases steadily between 10 and 28 days post-repair in the EP4 antagonist group, consistent with the increased matrix and granulation zones requiring remodeling in these repairs. These findings suggest that systemic EP4 antagonism leads to increased adhesion formation and matrix deposition during flexor tendon healing. Counter to our hypothesis that EP4 antagonism

  12. Role of the Prostaglandin E2 EP1 Receptor in Traumatic Brain Injury

    Science.gov (United States)

    Glushakov, Alexander V.; Fazal, Jawad A.; Narumiya, Shuh; Doré, Sylvain

    2014-01-01

    Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic

  13. The Vasopressin Type-2 Receptor and Prostaglandin Receptors EP2 and EP4 can Increase Aquaporin-2 Plasma Membrane Targeting Through a cAMP Independent Pathway

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Moeller, Hanne Bjerregaard; Assentoft, Mette

    2016-01-01

    Apical membrane targeting of the collecting duct water channel aquaporin-2 (AQP2) is essential for body water balance. As this event is regulated by Gs coupled 7-transmembrane receptors such as the vasopressin type 2 receptor (V2R) and the prostanoid receptors EP2 and EP4, it is believed to be c...

  14. Prostaglandin E2 produced by Entamoeba histolytica binds to EP4 receptors and stimulates interleukin-8 production in human colonic cells.

    Science.gov (United States)

    Dey, Indranil; Chadee, Kris

    2008-11-01

    Entamoeba histolytica pathogenesis in the colon occurs in a stepwise fashion. It begins with colonization of the mucin layer, which is followed by stimulation of a proinflammatory response that causes nonspecific tissue damage that may facilitate parasite invasion of the underlying colonic mucosa. Unfortunately, the parasite and/or host factors that stimulate a proinflammatory response in the gut are poorly understood. In this study, we found that live E. histolytica or secretory or proteins (SP) and soluble ameba components (SAP) can markedly increase interleukin-8 (IL-8) mRNA expression and protein production in colonic epithelial cells. The IL-8-stimulating molecule produced by live amebae was identified as prostaglandin E(2) (PGE(2)) as trophozoites treated with cyclooxygenase inhibitors inhibited the biosynthesis of PGE(2) and eliminated IL-8 production induced by live parasites or ameba components. Moreover, using specific prostaglandin EP2 and EP4 receptor agonists and antagonists, we found that PGE(2) binds exclusively through EP4 receptors in colonic epithelial cells to stimulate IL-8 production. Silencing of EP4 receptors with EP4 small interfering RNA completely eliminated SP- and SAP-induced IL-8 production. These studies identified bioactive PGE(2) as a one of the major virulence factors produced by E. histolytica that can stimulate the potent neutrophil chemokine and activator IL-8, which can trigger an acute host inflammatory response. Thus, the induction of IL-8 production in response to E. histolytica-derived PGE(2) may be a mechanism that explains the initiation and amplification of acute inflammation associated with intestinal amebiasis.

  15. Paricalcitol attenuates lipopolysaccharide-induced inflammation and apoptosis in proximal tubular cells through the prostaglandin E₂ receptor EP4

    Directory of Open Access Journals (Sweden)

    Yu Ah Hong

    2017-06-01

    Full Text Available Background: Vitamin D is considered to exert a protective effect on various renal diseases but its underlying molecular mechanism remains poorly understood. This study aimed to determine whether paricalcitol attenuates inflammation and apoptosis during lipopolysaccharide (LPS-induced renal proximal tubular cell injury through the prostaglandin E₂ (PGE₂ receptor EP4. Methods: Human renal tubular epithelial (HK-2 cells were pretreated with paricalcitol (2 ng/mL for 1 hour and exposed to LPS (1 μg/mL. The effects of paricalcitol pretreatment in relation to an EP4 blockade using AH-23848 or EP4 small interfering RNA (siRNA were investigated. Results: The expression of cyclooxygenase-2, PGE₂, and EP4 were significantly increased in LPS-exposed HK-2 cells treated with paricalcitol compared with cells exposed to LPS only. Paricalcitol prevented cell death induced by LPS exposure, and the cotreatment of AH-23848 or EP4 siRNA offset these cell-protective effects. The phosphorylation and nuclear translocation of p65 nuclear factor-kappaB (NF-κB were decreased and the phosphorylation of Akt was increased in LPS-exposed cells with paricalcitol treatment. AH-23848 or EP4 siRNA inhibited the suppressive effects of paricalcitol on p65 NF-κB nuclear translocation and the activation of Akt. The production of proinflammatory cytokines and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were attenuated by paricalcitol in LPS exposed HK-2 cells. The cotreatment with an EP4 antagonist abolished these anti-inflammatory and antiapoptotic effects. Conclusion: EP4 plays a pivotal role in anti-inflammatory and antiapoptotic effects through Akt and NF-κB signaling after paricalcitol pretreatment in LPS-induced renal proximal tubule cell injury.

  16. EP4 as a Therapeutic Target for Aggressive Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mousumi Majumder

    2018-03-01

    selective EP4 antagonists (EP4A could mitigate all of these events tested with cells in vitro as well as in vivo in syngeneic COX-2 expressing mammary cancer bearing mice or immune-deficient mice bearing COX-2 over-expressing human breast cancer xenografts. We suggest that EP4A can avoid thrombo-embolic side effects of long term use of COX-2 inhibitors by sparing cardio-protective roles of PGI2 via IP receptor activation or PGE2 via EP3 receptor activation. Furthermore, we identified two COX-2/EP4 induced oncogenic and SLC-stimulating microRNAs—miR526b and miR655, one of which (miR655 appears to be a potential blood biomarker in breast cancer patients for monitoring SLC-ablative therapies, such as with EP4A. We suggest that EP4A will likely produce the highest benefit in aggressive breast cancers, such as COX-2 expressing triple-negative breast cancers, when combined with other newer agents, such as inhibitors of programmed cell death (PD-1 or PD-L1.

  17. Progesterone receptor activates Msx2 expression by downregulating TNAP/Akp2 and activating the Bmp pathway in EpH4 mouse mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jodie M Fleming

    Full Text Available Previously we demonstrated that EpH4 mouse mammary epithelial cells induced the homeobox transcription factor Msx2 either when transfected with the progesterone receptor (PR or when treated with Bmp2/4. Msx2 upregulation was unaffected by Wnt inhibitors s-FRP or Dkk1, but was inhibited by the Bmp antagonist Noggin. We therefore hypothesized that PR signaling to Msx2 acts through the Bmp receptor pathway. Herein, we confirm that transcripts for Alk2/ActR1A, a non-canonical BmpR Type I, are upregulated in mammary epithelial cells overexpressing PR (EpH4-PR. Increased phosphorylation of Smads 1,5, 8, known substrates for Alk2 and other BmpR Type I proteins, was observed as was their translocation to the nucleus in EpH4-PR cells. Analysis also showed that Tissue Non-Specific Alkaline Phosphatase (TNAP/Akp2 was also found to be downregulated in EpH4-PR cells. When an Akp2 promoter-reporter construct containing a ½PRE site was transfected into EpH4-PR cells, its expression was downregulated. Moreover, siRNA mediated knockdown of Akp2 increased both Alk2 and Msx2 expression. Collectively these data suggest that PR inhibition of Akp2 results in increased Alk2 activity, increased phosphorylation of Smads 1,5,8, and ultimately upregulation of Msx2. These studies imply that re-activation of the Akp2 gene could be helpful in downregulating aberrant Msx2 expression in PR+ breast cancers.

  18. Anti-HIV Effect of Liposomes Bearing CXCR4 Receptor Antagonist ...

    African Journals Online (AJOL)

    Keywords: Antagonist, CXCR4, Liposomes, Receptor, Inflammation, HIV. Tropical Journal of ... receptors and inhibits HIV-1 entry mediated through CCR3, CCR5, and ..... circulation, facilitating HIV-targeted drug delivery. By tissue distribution ...

  19. Prostaglandin receptor EP3 regulates cell proliferation and migration with impact on survival of endometrial cancer patients.

    Science.gov (United States)

    Zhu, Junyan; Trillsch, Fabian; Mayr, Doris; Kuhn, Christina; Rahmeh, Martina; Hofmann, Simone; Vogel, Marianne; Mahner, Sven; Jeschke, Udo; von Schönfeldt, Viktoria

    2018-01-02

    Prostaglandin E2 (PGE2) receptor 3 (EP3) regulates tumor cell proliferation, migration, and invasion in numerous cancers. The role of EP3 as a prognostic biomarker in endometrial cancer remains unclear. The primary aim of this study was to analyze the prognostic significance of EP3 expression in endometrial cancer. We analyzed the EP3 expression of 140 endometrial carcinoma patients by immunohistochemistry. RL95-2 endometrial cancer cell line was chosen from four endometrial cancer cell lines (RL95-2, Ishikawa, HEC-1-A, and HEC-1-B) according to EP3 expression level. Treated with PGE2 and EP3 antagonist, RL95-2 cells were investigated by MTT, BrdU, and wound healing assay for functional assessment of EP3. EP3 staining differed significantly according to WHO tumor grading in both whole cohort (p = 0.01) and the subgroup of endometrioid carcinoma (p = 0.01). Patients with high EP3 expression in their respective tumors had impaired progression-free survival as well as overall survival in both cohorts above. EP3 expression in the overall cohort was identified as an independent prognostic marker for progression-free survival (HR 1.014, 95%CI 1.003-1.024, p = 0.01) when adjusted for age, stage, grading, and recurrence. Treatment with EP3 antagonists induced upregulation of estrogen receptor β and decreased activity of Ras and led to attenuated proliferation and migration of RL95-2 cells. EP3 seems to play a crucial role in endometrial cancer progression. In the context of limited systemic treatment options for endometrial cancer, this explorative analysis identifies EP3 as a potential target for diagnostic workup and therapy.

  20. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  1. Effects of a histamine H4 receptor antagonist on cisplatin-induced anorexia in mice.

    Science.gov (United States)

    Yamamoto, Kouichi; Okui, Rikuya; Yamatodani, Atsushi

    2018-04-12

    Cancer chemotherapy often induces gastrointestinal symptoms such as anorexia, nausea, and vomiting. Antiemetic agents are effective in inhibiting nausea and vomiting, but patients still experience anorexia. We previously reported that chemotherapeutic agent-induced anorexia is associated with an increase of inflammatory cytokines. Other studies also reported that antagonism of the histamine H 4 receptor is anti-inflammatory. In this study, we investigated the involvement of the H 4 receptor in the development of chemotherapy-induced anorexia in mice. Cisplatin-induced anorexia occurred within 24 h of its administration and continued for 3 days. The early phase (day 1), but not the delayed phase (days 2 and 3), of anorexia was inhibited by the daily injection of a 5-HT 3 receptor antagonist (granisetron). However, a corticosteroid (dexamethasone) or selective H 4 receptor antagonist (JNJ7777120) abolished the delayed phases of anorexia. Cisplatin significantly increased TNF-α mRNA expression in the hypothalamus and spleen, and the period of expression increase paralleled the onset period of anorexia. In addition, pretreatment with JNJ7777120 completely inhibited the increased expression. These results suggest that TNF-α mRNA expression via H 4 receptors may contribute to the development of cisplatin-induced anorexia, and that H 4 receptor antagonists are potentially useful treatments. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    Science.gov (United States)

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    Science.gov (United States)

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Obligatory Role of EP1 Receptors in the Increase in Cerebral Blood Flow Produced by Hypercapnia in the Mice.

    Directory of Open Access Journals (Sweden)

    Ken Uekawa

    Full Text Available Hypercapnia induces potent vasodilation in the cerebral circulation. Although it has long been known that prostanoids participate in the cerebrovascular effects of hypercapnia, the role of prostaglandin E2 (PGE2 and PGE2 receptors have not been fully investigated. In this study, we sought to determine whether cyclooxygenase-1 (COX-1-derived PGE2 and EP1 receptors are involved in the cerebrovascular response induced by hypercapnia. Cerebral blood flow (CBF was recorded by laser-Doppler flowmetry in the somatosenasory cortex of anesthetized male EP1-/- mice and wild type (WT littermates. In WT mice, neocortical application of the EP1 receptor antagonist SC-51089 attenuated the increase in CBF elicited by systemic hypercapnia (pCO2 = 50-60 mmHg. SC-51089 also attenuated the increase in CBF produced by neocortical treatment of arachidonic acid or PGE2. These CBF responses were also attenuated in EP1-/- mice. In WT mice, the COX-1 inhibitor SC-560, but not the COX-2 inhibitor NS-398, attenuated the hypercapnic CBF increase. Neocortical application of exogenous PGE2 restored the attenuation in resting CBF and the hypercapnic response induced by SC-560. In contrast, exogenous PGE2 failed to rescue the attenuation both in WT mice induced by SC-51089 and EP1-/- mice, attesting to the obligatory role of EP1 receptors in the response. These findings indicate that the hypercapnic vasodilatation depends on COX-1-derived PGE2 acting on EP1 receptors and highlight the critical role that COX-1-derived PGE2 and EP1 receptors play in the hypercapnic regulation of the cerebral circulation.

  5. Sequence analysis and identification of new isoform of EP4 receptors in different atlantic salmon tissues (Salmo salar L. and its role in PGE2 induced immunomodulation in vitro.

    Directory of Open Access Journals (Sweden)

    Tz Chun Guo

    Full Text Available PGE2 plays an important role in a broad spectrum of physiological and pathological processes mediated through a membrane-bound G protein-coupled receptor (GPCR called EP receptor. In mammals, four subtypes of EP receptor (EP 1-4 are identified and each of them functions through different signal transduction pathways. Orthologous EP receptors have also been identified in other non-mammalian species, such as chicken and zebrafish. EP4 is the only identified PGE2 receptor to date in Atlantic salmon but its tissue distribution and function have not been studied in any detail. In this study, we first sequenced EP4 receptor in different tissues and found that the presence of the 3nt deletion in the 5' untranslated region was accompanied by silent mutation at nt 668. While attempting to amplify the same sequence in TO cells (an Atlantic salmon macrophage-like cell line, we failed to obtain the full-length product. Further investigation revealed different isoform of EP4 receptor in TO cells and we subsequently documented its presence in different Atlantic salmon tissues. These two isoforms of EP4 receptor share high homology in their first half of sequence but differ in the second half part with several deletion segments though the final length of coding sequence is the same for two isoforms. We further studied the immunomodulation effect of PGE2 in TO cells and found that PGE2 inhibited the induction of CXCL-10, CCL-4, IL-8 and IL-1β genes expression in a time dependent manner and without cAMP upregulation.

  6. Microarray evaluation of EP4 receptor-mediated prostaglandin E2 suppression of 3T3-L1 adipocyte differentiation

    International Nuclear Information System (INIS)

    Sugimoto, Yukihiko; Tsuboi, Hiroaki; Okuno, Yasushi; Tamba, Shigero; Tsuchiya, Soken; Tsujimoto, Gozo; Ichikawa, Atsushi

    2004-01-01

    Prostaglandin E 2 (PGE 2 ) has been shown to negatively regulate adipogenesis. To explore to what extent PGE 2 inhibits the differentiation of cells to adipocytes and to examine whether its effect could be due to EP4 receptor signaling, we used microarrays to analyze the gene expression profiles of 3T3-L1 cells exposed to a differentiation cocktail supplemented with PGE 2 , AE1-329 (an EP4 agonist), or vehicle. The differentiation-associated responses in genes such as adipocytokines and enzymes related to lipid metabolism were largely weakened upon PGE 2 treatment. In particular, the expression of peroxisome proliferator activated receptor-γ and CCAAT/enhancer binding protein-α, genes playing a central role in adipogenesis, was greatly suppressed. PGE 2 appears to be ineffective to a subclass of insulin target genes such as hexokinase 2 and phosphofructokinase. Similar responses were produced in the differentiation-associated genes upon AE1-329 treatment. These results suggest that PGE 2 inhibits a crucial step of the adipocyte differentiation process by acting on the EP4 receptor in 3T3-L1 cells

  7. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    Science.gov (United States)

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  8. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    Science.gov (United States)

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Return of D4 Dopamine Receptor Antagonists in Drug Discovery.

    Science.gov (United States)

    Lindsley, Craig W; Hopkins, Corey R

    2017-09-14

    The dopamine D 4 receptor garnered a great deal of interest in the early 1990s when studies showed the atypical antipsychotic clozapine possessed higher affinity for D 4 , relative to other dopamine receptor subtypes, and that this activity might underlie the unique clinical efficacy of clozapine. Unfortunately, D 4 antagonists that were developed for schizophrenia failed in the clinic. Thus, D 4 fell out of favor as a therapeutic target, and work in this area was silent for decades. Recently, D 4 ligands with improved selectivity for D 4 against not only D 1-3,5 but also other biogenic amine targets have emerged, and D 4 is once again in the spotlight as a novel target for both addiction and Parkinson's disease (PD), as well as other emerging diseases. This report will review the historical data for D 4 , review the known D 4 ligands, and then highlight new data supporting a role for D 4 inhibition in addiction, PD, and cancer.

  10. Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus

    Science.gov (United States)

    Rojas, Asheebo; Ganesh, Thota; Lelutiu, Nadia; Gueorguieva, Paoula; Dingledine, Raymond

    2015-01-01

    Exposure to high levels of organophosphorus compounds (OP) can induce status epilepticus (SE) in humans and rodents via acute cholinergic toxicity, leading to neurodegeneration and brain inflammation. Currently there is no treatment to combat the neuropathologies associated with OP exposure. We recently demonstrated that inhibition of the EP2 receptor for PGE2 reduces neuronal injury in mice following pilocarpine-induced SE. Here, we investigated the therapeutic effects of an EP2 inhibitor (TG6-10-1) in a rat model of SE using diisopropyl fluorophosphate (DFP). We tested the hypothesis that EP2 receptor inhibition initiated well after the onset of DFP-induced SE reduces the associated neuropathologies. Adult male Sprague-Dawley rats were injected with pyridostigmine bromide (0.1 mg/kg, sc) and atropine methylbromide (20 mg/kg, sc) followed by DFP (9.5 mg/kg, ip) to induce SE. DFP administration resulted in prolonged upregulation of COX-2. The rats were administered TG6-10-1 or vehicle (ip) at various time points relative to DFP exposure. Treatment with TG6-10-1 or vehicle did not alter the observed behavioral seizures, however six doses of TG6-10-1 starting 80-150 min after the onset of DFP-induced SE significantly reduced neurodegeneration in the hippocampus, blunted the inflammatory cytokine burst, reduced microglial activation and decreased weight loss in the days after status epilepticus. By contrast, astrogliosis was unaffected by EP2 inhibition 4 d after DFP. Transient treatments with the EP2 antagonist 1 h before DFP, or beginning 4 h after DFP, were ineffective. Delayed mortality, which was low (10%) after DFP, was unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor within a time window that coincides with the induction of cyclooxygenase-2 by DFP is neuroprotective and accelerates functional recovery of rats. PMID:25656476

  11. Role of dopamine D4 receptors in copulatory behavior: Studies with selective D4 agonists and antagonists in male rats.

    Science.gov (United States)

    Sanna, Fabrizio; Contini, Andrea; Melis, Maria Rosaria; Argiolas, Antonio

    2015-10-01

    Dopamine influences the anticipatory and consummatory phases of sexual behavior, by acting on receptors of the D2 family (D2, D3 and D4) and in particular of the D2 subtype, although evidence for a role of D4 receptors in erectile function and copulatory behavior is also available. In order to clarify such a role of D4 receptors, the effect of selective D4 receptor agonists and antagonists on copulatory behavior of sexually potent male rats in classic copulation tests with a receptive female, was compared with that of apomorphine and haloperidol, a classic dopamine receptor agonist and antagonist, respectively. PD-168,077 (0.05-0.2mg/kg) and ABT-724 (0.01-0.04mg/kg), two selective D4 receptor agonists, given subcutaneously, improved dose-dependently copulatory behavior as shown by the decrease of mount frequency and post ejaculatory interval induced by PD-168,077, and of mount frequency, ejaculation latency, post ejaculatory and inter intromission intervals induced by ABT-724, and by the increase of ejaculation frequency and copulatory efficacy induced by both drugs. Conversely, L-745,870 (1-5mg/kg), a selective D4 receptor antagonist, given intraperitoneally, impaired dose-dependently copulatory behavior, as shown by the increase in intromission and ejaculation latencies, mount frequency, post ejaculatory interval and the decrease in ejaculation frequency and copulatory efficacy induced by this drug. L-745,870 (5mg/kg) administered before PD-168,077 (0.2mg/kg) or ABT-724 (0.04mg/kg), also abolished completely the facilitatory effects of both PD-168,077 and ABT-724 on sexual behavior. These results confirm the involvement of D4 receptors in specific aspects of male rat copulatory behavior that overlap only partially with those influenced by apomorphine and haloperidol. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Ciproxifan, a histamine H{sub 3} receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cheng-Wei; Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan (China); Chang, Chia-Ying [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Department of Chemistry, Fu Jen Catholic University, No. 510, Chung-Cheng Road, Hsin-Chuang District, New Taipei City 24205, Taiwan (China); Huang, Shu-Kuei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [School of Medicine, Fu Jen Catholic University, No. 510, Chung-Cheng Rd., Hsin-Chuang, New Taipei 24205, Taiwan (China); Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan (China)

    2017-03-15

    Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{sub 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of

  13. Molecular and preclinical basis to inhibit PGE2 receptors EP2 and EP4 as a novel nonsteroidal therapy for endometriosis

    Science.gov (United States)

    Arosh, Joe A.; Lee, JeHoon; Balasubbramanian, Dakshnapriya; Stanley, Jone A.; Long, Charles R.; Meagher, Mary W.; Osteen, Kevin G.; Bruner-Tran, Kaylon L.; Burghardt, Robert C.; Starzinski-Powitz, Anna; Banu, Sakhila K.

    2015-01-01

    Endometriosis is a debilitating, estrogen-dependent, progesterone-resistant, inflammatory gynecological disease of reproductive age women. Two major clinical symptoms of endometriosis are chronic intolerable pelvic pain and subfertility or infertility, which profoundly affect the quality of life in women. Current hormonal therapies to induce a hypoestrogenic state are unsuccessful because of undesirable side effects, reproductive health concerns, and failure to prevent recurrence of disease. There is a fundamental need to identify nonestrogen or nonsteroidal targets for the treatment of endometriosis. Peritoneal fluid concentrations of prostaglandin E2 (PGE2) are higher in women with endometriosis, and this increased PGE2 plays important role in survival and growth of endometriosis lesions. The objective of the present study was to determine the effects of pharmacological inhibition of PGE2 receptors, EP2 and EP4, on molecular and cellular aspects of the pathogenesis of endometriosis and associated clinical symptoms. Using human fluorescent endometriotic cell lines and chimeric mouse model as preclinical testing platform, our results, to our knowledge for the first time, indicate that selective inhibition of EP2/EP4: (i) decreases growth and survival of endometriosis lesions; (ii) decreases angiogenesis and innervation of endometriosis lesions; (iii) suppresses proinflammatory state of dorsal root ganglia neurons to decrease pelvic pain; (iv) decreases proinflammatory, estrogen-dominant, and progesterone-resistant molecular environment of the endometrium and endometriosis lesions; and (v) restores endometrial functional receptivity through multiple mechanisms. Our novel findings provide a molecular and preclinical basis to formulate long-term nonestrogen or nonsteroidal therapy for endometriosis. PMID:26199416

  14. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation.

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2016-08-01

    Full Text Available Rickettsial agents are sensed by pattern recognition receptors but lack pathogen-associated molecular patterns commonly observed in facultative intracellular bacteria. Due to these molecular features, the order Rickettsiales can be used to uncover broader principles of bacterial immunity. Here, we used the bacterium Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, to reveal a novel microbial surveillance system. Mechanistically, we discovered that upon A. phagocytophilum infection, cytosolic phospholipase A2 cleaves arachidonic acid from phospholipids, which is converted to the eicosanoid prostaglandin E2 (PGE2 via cyclooxygenase 2 (COX2 and the membrane associated prostaglandin E synthase-1 (mPGES-1. PGE2-EP3 receptor signaling leads to activation of the NLRC4 inflammasome and secretion of interleukin (IL-1β and IL-18. Importantly, the receptor-interacting serine/threonine-protein kinase 2 (RIPK2 was identified as a major regulator of the immune response against A. phagocytophilum. Accordingly, mice lacking COX2 were more susceptible to A. phagocytophilum, had a defect in IL-18 secretion and exhibited splenomegaly and damage to the splenic architecture. Remarkably, Salmonella-induced NLRC4 inflammasome activation was not affected by either chemical inhibition or genetic ablation of genes associated with PGE2 biosynthesis and signaling. This divergence in immune circuitry was due to reduced levels of the PGE2-EP3 receptor during Salmonella infection when compared to A. phagocytophilum. Collectively, we reveal the existence of a functionally distinct NLRC4 inflammasome illustrated by the rickettsial agent A. phagocytophilum.

  15. Screening of chemokine receptor CCR4 antagonists by capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Zhe Sun

    2011-11-01

    Full Text Available CC chemokine receptor 4 (CCR4 is a kind of G-protein-coupled receptor, which plays a pivotal role in allergic inflammation. The interaction between 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide (S009 and the N-terminal extracellular tail (ML40 of CCR4 has been validated to be high affinity by capillary zone electrophoresis (CZE. The S009 is a known CCR4 antagonist. Now, a series of new thiourea derivatives have been synthesized. Compared with positive control S009, they were screened using ML40 as target by CZE to find some new drugs for allergic inflammation diseases. The synthesized compounds XJH-5, XJH-4, XJH-17 and XJH-1 displayed the interaction with ML40, but XJH-9, XJH-10, XJH-11, XJH-12, XJH-13, XJH-14, XJH-3, XJH-8, XJH-6, XJH-7, XJH-15, XJH-16 and XJH-2 did not bind to ML40. Both qualification and quantification characterizations of the binding were determined. The affinity of the four compounds was valued by the binding constant, which was similar with the results of chemotactic experiments. The established CEZ method is capable of sensitive and fast screening for a series of lactam analogs in the drug discovery for allergic inflammation diseases. Keywords: Capillary zone electrophoresis, CCR4 antagonist, 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide, Interactions, Structural modification

  16. Design and Synthesis of a Series of L-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Delgar, Claudia; Koch, Karina

    2017-01-01

    Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxy-phenoxy)pyrrolidine-2-carboxylic acid (1b...... to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C,O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents......), for cloned homomeric kainic acid receptor subtype 1 (GluK1) was attained (Ki = 4 µM). In a functional assay, 1b displayed full antagonist activity with IC50 = 6 ± 2 µM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared...

  17. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2014-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the 125 iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer 125 I-GLP-1(7-36)amide. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist 125 I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer 125 I-GLP-1(7-36)amide. For comparison, 125 I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with 125 I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  18. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  19. Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hsi-Hsien Hsu

    2017-05-01

    Full Text Available Metastasis is the most dangerous risk faced by patients with hereditary non-polyposis colon cancer (HNPCC. The expression of matrix metalloproteinases (MMPs has been observed in several types of human cancers and regulates the efficacy of many therapies. Here, we show that treatment with various concentrations of prostaglandin E2 (PGE2; 0, 1, 5 or 10 μM promotes the migration ability of the human LoVo colon cancer cell line. As demonstrated by mRNA and protein expression analyses, EP2 and EP4 are the major PGE2 receptors expressed on the LoVo cell membrane. The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K/Akt cell survival pathway was upregulated by EP2 and EP4 activation. Following the activation of the PI3K/Akt pathway, β-catenin translocated into the nucleus and triggered COX2 transcription via LEF-1 and TCF-4 and its subsequent translation. COX2 expression correlated with the elevation in the migration ability of LoVo cells. The experimental evidence shows a possible mechanism by which PGE2 induces cancer cell migration and further suggests PGE2 to be a potential therapeutic target in colon cancer metastasis. On inhibition of PGE2, in order to determine the downstream pathway, the levels of PI3K/Akt pathway were suppressed and the β-catenin expression was also modulated. Inhibition of EP2 and EP4 shows that PGE2 induces protein expression of COX-2 through EP2 and EP4 receptors in LoVo colon cancer cells.

  20. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    Science.gov (United States)

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  1. Benzodiazepine receptor antagonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy....

  2. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.

    1999-01-01

    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when

  3. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available The objective of the present study was to investigate the role of high-mobility group box-1 (HMGB1 in the seizure-induced P-glycoprotein (P-gp overexpression and the underlying mechanism. Kainic acid (KA-induced mouse seizure model was used for in vivo experiments. Male C57BL/6 mice were divided into four groups: normal saline control (NS group, KA-induced epileptic seizure (EP group, and EP group pretreated with HMGB1 (EP+HMGB1 group or BoxA (HMGB1 antagonist, EP+BoxA group. Compared to the NS group, increased levels of HMGB1 and P-gp in the brain were observed in the EP group. Injection of HMGB1 before the induction of KA further increased the expression of P-gp while pre-treatment with BoxA abolished this up-regulation. Next, the regulatory role of HMGB1 and its potential involved signal pathways were investigated in mouse microvascular endothelial bEnd.3 cells in vitro. Cells were treated with HMGB1, HMGB1 plus lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS [toll-like receptor 4 (TLR4 antagonist], HMGB1 plus FPS-ZM1 [receptor for advanced glycation end products (RAGE inhibitor], HMGB1 plus SN50 [nuclear factor-kappa B (NF-κB inhibitor], or vehicle. Treatment with HMGB1 increased the expression levels of P-gp, TLR4, RAGE and the activation of NF-κB in bEnd.3 cells. These effects were inhibited by the pre-treatment with either LPS-RS or FPS-ZM1, and were abolished by the pre-treatment of SN50 or a combination treatment of both LPS-RS and FPS-ZM1. Luciferase reporter assays showed that exogenous expression of NF-κB p65 increased the promoter activity of multidrug resistance 1a (P-gp-encoding gene in endothelial cells. These data indicate that HMGB1 contributes to the overexpression of P-gp in mouse epileptic brain tissues via activation of TLR4/RAGE receptors and the downstream transcription factor NF-κB in brain microvascular endothelial cells.

  4. Small molecule antagonists of integrin receptors.

    Science.gov (United States)

    Perdih, A; Dolenc, M Sollner

    2010-01-01

    The complex and widespread family of integrin receptors is involved in numerous physiological processes, such as tissue remodeling, angiogenesis, development of the immune response and homeostasis. In addition, their key role has been elucidated in important pathological disorders such as cancer, cardiovascular diseases, osteoporosis, autoimmune and inflammatory diseases and in the pathogenesis of infectious diseases, making them highly important targets for modern drug design campaigns. In this review we seek to present a concise overview of the small molecule antagonists of this diverse and highly complex receptor family. Integrin antagonists are classified according to the targeted integrin receptor and are discussed in four sections. First we present the fibrinogen alpha(IIb)beta3 and the vitronectin alpha (V)beta(3) receptor antagonists. The remaining selective integrin antagonists are examined in the third section. The final section is dedicated to molecules with dual or multiple integrin activity. In addition, the use of antibodies and peptidomimetic approaches to modulate the integrin receptors are discussed, as well providing the reader with an overall appreciation of the field.

  5. Prostaglandin E2 EP2 Receptor Deletion Attenuates Intracerebral Hemorrhage-Induced Brain Injury and Improves Functional Recovery

    Directory of Open Access Journals (Sweden)

    Jenna L. Leclerc

    2015-04-01

    Full Text Available Intracerebral hemorrhage (ICH is a devastating type of stroke characterized by bleeding into the brain parenchyma and secondary brain injury resulting from strong neuroinflammatory responses to blood components. Production of prostaglandin E2 (PGE2 is significantly upregulated following ICH and contributes to this inflammatory response in part through its E prostanoid receptor subtype 2 (EP2. Signaling through the EP2 receptor has been shown to affect outcomes of many acute and chronic neurological disorders; although, not yet explored in the context of ICH. Wildtype (WT and EP2 receptor knockout (EP2−/− mice were subjected to ICH, and various anatomical and functional outcomes were assessed by histology and neurobehavioral testing, respectively. When compared with age-matched WT controls, EP2−/− mice had 41.9 ± 4.7% smaller ICH-induced brain lesions and displayed significantly less ipsilateral hemispheric enlargement and incidence of intraventricular hemorrhage. Anatomical outcomes correlated with improved functional recovery as identified by neurological deficit scoring. Histological staining was performed to begin investigating the mechanisms involved in EP2-mediated neurotoxicity after ICH. EP2−/− mice exhibited 45.5 ± 5.8% and 41.4 ± 8.1% less blood and ferric iron accumulation, respectively. Furthermore, significantly less striatal and cortical microgliosis, striatal and cortical astrogliosis, blood–brain barrier breakdown, and peripheral neutrophil infiltration were seen in EP2−/− mice. This study is the first to suggest a deleterious role for the PGE2-EP2 signaling axis in modulating brain injury, inflammation, and functional recovery following ICH. Targeting the EP2 G protein-coupled receptor may represent a new therapeutic avenue for the treatment of hemorrhagic stroke.

  6. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  7. Prostaglandins and prostaglandin receptor antagonism in migraine

    DEFF Research Database (Denmark)

    Antonova, Maria

    2013-01-01

    Human models of headache may contribute to understanding of prostaglandins' role in migraine pathogenesis. The current thesis investigated the migraine triggering effect of prostaglandin E2 (PGE2) in migraine patients without aura, the efficacy of a novel EP4 receptor antagonist, BGC20....... The infusion of PGE2 caused the immediate migraine-like attacks and vasodilatation of the middle cerebral artery in migraine patients without aura. The highly specific and potent EP4 receptor antagonist, BGC20-1531, was not able to attenuate PGE2-induced headache and vasodilatation of both intra- and extra......-cerebral arteries. The intravenous infusion of PGF2α did not induce headache or statistically significant vasoconstriction of cerebral arteries in healthy volunteers. Novel data on PGE2-provoked immediate migraine-like attacks suggest that PGE2 may be one of the important final products in the pathogenesis...

  8. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    Science.gov (United States)

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  9. Anxiolytic-like and antidepressant-like activities of MCL0129 (1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine), a novel and potent nonpeptide antagonist of the melanocortin-4 receptor.

    Science.gov (United States)

    Chaki, Shigeyuki; Hirota, Shiho; Funakoshi, Takeo; Suzuki, Yoshiko; Suetake, Sayoko; Okubo, Taketoshi; Ishii, Takaaki; Nakazato, Atsuro; Okuyama, Shigeru

    2003-02-01

    We investigated the effects of a novel melanocortin-4 (MC4) receptor antagonist,1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine (MCL0129) on anxiety and depression in various rodent models. MCL0129 inhibited [(125)I][Nle(4)-D-Phe(7)]-alpha-melanocyte-stimulating hormone (alpha-MSH) binding to MC4 receptor with a K(i) value of 7.9 nM, without showing affinity for MC1 and MC3 receptors. MCL0129 at 1 microM had no apparent affinity for other receptors, transporters, and ion channels related to anxiety and depression except for a moderate affinity for the sigma(1) receptor, serotonin transporter, and alpha(1)-adrenoceptor, which means that MCL0129 is selective for the MC4 receptor. MCL0129 attenuated the alpha-MSH-increased cAMP formation in COS-1 cells expressing the MC4 receptor, whereas MCL0129 did not affect basal cAMP levels, thereby indicating that MCL0129 acts as an antagonist at the MC4 receptor. Swim stress markedly induced anxiogenic-like effects in both the light/dark exploration task in mice and the elevated plus-maze task in rats, and MCL0129 reversed the stress-induced anxiogenic-like effects. Under nonstress conditions, MCL0129 prolonged time spent in the light area in the light/dark exploration task and suppressed marble-burying behavior. MCL0129 shortened immobility time in the forced swim test and reduced the number of escape failures in inescapable shocks in the learned helplessness test, thus indicating an antidepressant potential. In contrast, MCL0129 had negligible effects on spontaneous locomotor activity, Rotarod performance, and hexobarbital-induced anesthesia. These observations indicate that MCL0129 is a potent and selective MC4 antagonist with anxiolytic- and antidepressant-like activities in various rodent models. MC4 receptor antagonists may prove effective for treating subjects with stress-related disorders such as depression and/or anxiety.

  10. Prostanoid Receptors Involved in Regulation of the Beating Rate of Neonatal Rat Cardiomyocytes

    Science.gov (United States)

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Robinet, Arnaud; Nazeyrollas, Pierre; Devillier, Philippe

    2012-01-01

    Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F2α and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate). PMID:22984630

  11. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    Science.gov (United States)

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-05

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  12. Prostanoid receptor EP2 as a therapeutic target.

    Science.gov (United States)

    Ganesh, Thota

    2014-06-12

    Cycoloxygenase-2 (COX-2) induction is prevalent in a variety of (brain and peripheral) injury models where COX-2 levels correlate with disease progression. Thus, COX-2 has been widely explored for anti-inflammatory therapy with COX-2 inhibitors, which proved to be effective in reducing the pain and inflammation in patients with arthritis and menstrual cramps, but they have not provided any benefit to patients with chronic inflammatory neurodegenerative disease. Recently, two COX-2 drugs, rofecoxib and valdecoxib, were withdrawn from the United States market due to cardiovascular side effects. Thus, future anti-inflammatory therapy could be targeted through a specific prostanoid receptor downstream of COX-2. The PGE2 receptor EP2 is emerging as a pro-inflammatory target in a variety of CNS and peripheral diseases. Here we highlight the latest developments on the role of EP2 in diseases, mechanism of activation, and small molecule discovery targeted either to enhance or to block the function of this receptor.

  13. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes

    DEFF Research Database (Denmark)

    Tricoci, Pierluigi; Huang, Zhen; Held, Claes

    2012-01-01

    Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation.......Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation....

  14. Extended N-Arylsulfonylindoles as 5-HT6 Receptor Antagonists: Design, Synthesis & Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Gonzalo Vera

    2016-08-01

    Full Text Available Based on a known pharmacophore model for 5-HT6 receptor antagonists, a series of novel extended derivatives of the N-arylsulfonyindole scaffold were designed and identified as a new class of 5-HT6 receptor modulators. Eight of the compounds exhibited moderate to high binding affinities and displayed antagonist profile in 5-HT6 receptor functional assays. Compounds 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-tosyl-1H-indol-3-ylethanol (4b, 1-(1-(4-iodophenylsulfonyl-1H-indol-3-yl-2-(4-(2-methoxyphenylpiperazin-1-ylethanol (4g and 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-(naphthalen-1-ylsulfonyl-1H-indol-3-ylethanol (4j showed the best binding affinity (4b pKi = 7.87; 4g pKi = 7.73; 4j pKi = 7.83. Additionally, compound 4j was identified as a highly potent antagonist (IC50 = 32 nM in calcium mobilisation functional assay.

  15. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation

    Czech Academy of Sciences Publication Activity Database

    Wang, X.; Shaw, D.K.; Hammond, H.L.; Sutterwala, F.S.; Rayamajhi, M.; Shirey, K.A.; Perkins, D.J.; Bonventre, J.V.; Velayutham, T.S.; Evans, S.M.; Rodino, K.G.; VieBrock, L.; Scanlon, K.M.; Carbonetti, N.H.; Carlyon, J.A.; Miao, E.A.; McBride, J.W.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2016-01-01

    Roč. 12, č. 8 (2016), č. článku e1005803. E-ISSN 1553-7374 Institutional support: RVO:60077344 Keywords : Rickettsial agents * Anaplasma phagocytophilum * prostaglandin E2-EP3 Receptor Axis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.003, year: 2015

  16. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    Science.gov (United States)

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  17. 4-(Phenylsulfonyl)piperidines: novel, selective, and bioavailable 5-HT(2A) receptor antagonists.

    Science.gov (United States)

    Fletcher, Stephen R; Burkamp, Frank; Blurton, Peter; Cheng, Susan K F; Clarkson, Robert; O'Connor, Desmond; Spinks, Daniel; Tudge, Matthew; van Niel, Monique B; Patel, Smita; Chapman, Kerry; Marwood, Rose; Shepheard, Sara; Bentley, Graham; Cook, Gina P; Bristow, Linda J; Castro, Jose L; Hutson, Peter H; MacLeod, Angus M

    2002-01-17

    On the basis of a spirocyclic ether screening lead, a series of acyclic sulfones have been identified as high-affinity, selective 5-HT(2A) receptor antagonists. Bioavailability lacking in the parent, 1-(2-(2,4-difluorophenyl)ethyl)-4-(phenylsulfonyl)piperidine (12), was introduced by using stability toward rat liver microsomes as a predictor of bioavailability. By this means, the 4-cyano- and 4-carboxamidophenylsulfonyl derivatives 26 and 31 were identified as orally bioavailable, brain-penetrant analogues suitable for evaluation in animal models. Bioavailability was also attainable by N substitution leading to the N-phenacyl derivative 35. IKr activity detected through counterscreening was reduced to insignificant levels in vivo with the latter compound.

  18. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  19. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice

    DEFF Research Database (Denmark)

    Joseph, Lauren; Thomsen, Morgane

    2017-01-01

    Muscarinic M1/M4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (SD) effects, but the receptor subtypes mediating those...

  20. Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM

    International Nuclear Information System (INIS)

    Kim, Hyonchol; Arakawa, Hideo; Hatae, Noriyuki; Sugimoto, Yukihiko; Matsumoto, Osamu; Osada, Toshiya; Ichikawa, Atsushi; Ikai, Atsushi

    2006-01-01

    The distribution of EP3 receptors on a living cell surface was quantitatively studied by atomic force microscopy (AFM). Green fluorescent protein (GFP) was introduced to the extracellular region of the EP3 receptor on a CHO cell. A microbead was used as a probe to ensure certain contact area, whose surface was coated with anti-GFP antibody. The interactions between the antibodies and GFP molecules on the cell surface were recorded to observe the distribution of the receptors. The result indicated that EP3 receptors were distributed on the CHO cell surface not uniformly but in small patches coincident with immunohistochemical observation. Repeated measurements on the same area of cell surface gave confirmation that it was unlikely that the receptors were extracted from the cell membrane during the experiments. The measurement of single molecular interaction between GFP and the anti-GFP antibody was succeeded on the cell surface using compression-free force spectroscopy. The value of separation work required to break a single molecular pair was estimated to be about 1.5x10 -18 J. The number of EP3 receptor on the CHO cell surface was estimated using this value to be about 1x10 4 under the assumption that the area of the cell surface was about 5000 μm 2 . These results indicated that the number of receptors on a living cell surface could be quantified through the force measurement by the AFM

  1. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    Science.gov (United States)

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  2. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar

    2016-05-01

    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  3. Antiallergic effects of H1-receptor antagonists.

    Science.gov (United States)

    Baroody, F M; Naclerio, R M

    2000-01-01

    The primary mechanism of antihistamine action in the treatment of allergic diseases is believed to be competitive antagonism of histamine binding to cellular receptors (specifically, the H1-receptors), which are present on nerve endings, smooth muscles, and glandular cells. This notion is supported by the fact that structurally unrelated drugs antagonize the H1-receptor and provide clinical benefit. However, H1-receptor antagonism may not be their sole mechanism of action in treating allergic rhinitis. On the basis of in vitro and animal experiments, drugs classified as H1-receptor antagonists have long been recognized to have additional pharmacological properties. Most first-generation H1-antihistamines have anticholinergic, sedative, local anaesthetic, and anti-5-HT effects, which might favourably affect the symptoms of the allergic response but also contribute to side-effects. These additional properties are not uniformly distributed among drugs classified as H1-receptor antagonists. Azatadine, for example, inhibits in vitro IgE-mediated histamine and leukotriene (LT) release from mast cells and basophils. In human challenge models, terfenadine, azatadine, and loratadine reduce IgE-mediated histamine release. Cetirizine reduces eosinophilic infiltration at the site of antigen challenge in the skin, but not the nose. In a nasal antigen challenge model, cetirizine pretreatment did not affect the levels of histamine and prostaglandin D2 recovered in postchallenge lavages, whereas the levels of albumin, N-tosyl-L-arginine methyl ester (TAME) esterase activity, and LTs were reduced. Terfenadine, cetirizine, and loratadine blocked allergen-induced hyperresponsiveness to methacholine. In view of the complexity of the pathophysiology of allergy, a number of H1 antagonists with additional properties are currently under development for allergic diseases. Mizolastine, a new H1-receptor antagonist, has been shown to have additional actions that should help reduce the

  4. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels

    2015-01-01

    to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...... antagonists have been essential in defining the tonic current but both remaining issues concerning the GABAARs involved and the therapeutic possibilities of modulating tonic inhibition underline the need for GABAAR antagonists with improved selectivity....

  5. A prototypical Sigma-1 receptor antagonist protects against brain ischemia

    OpenAIRE

    Schetz, John A.; Perez, Evelyn; Liu, Ran; Chen, Shiuhwei; Lee, Ivan; Simpkins, James W.

    2007-01-01

    Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this s...

  6. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    Science.gov (United States)

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  7. Kinetic properties of 'dual' orexin receptor antagonists at OX1R and OX2R orexin receptors.

    Directory of Open Access Journals (Sweden)

    Gabrielle Elizabeth Callander

    2013-12-01

    Full Text Available Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various ‘dual’ orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [3H]-BBAC ((S-N-([1,1'-biphenyl]-2-yl-1-(2-((1-methyl-1H-benzo[d]imidazol-2-ylthioacetylpyrrolidine-2-carboxamide. In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-ylmethyl-9-(4-methoxypyrimidin-2-yl-2,9-diazaspiro[5.5]undecan-1-one bind rapidly and reach equilibrium very quickly in both binding and / or functional assays. Overall, the dual antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the dual antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.

  8. Selective antagonists at group I metabotropic glutamate receptors: synthesis and molecular pharmacology of 4-aryl-3-isoxazolol amino acids

    DEFF Research Database (Denmark)

    Kromann, Hasse; Sløk, Frank A; Stensbøl, Tine B

    2002-01-01

    Homologation of (S)-glutamic acid (Glu, 1) and Glu analogues has previously provided ligands with activity at metabotropic Glu receptors (mGluRs). The homologue of ibotenic acid (7), 2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid (HIBO, 8), and the 4-phenyl derivative of 8, compound 9a, are bot...... antagonists at group I mGluRs. Here we report the synthesis and molecular pharmacology of HIBO analogues 9b-h containing different 4-aryl substituents. All of these compounds possess antagonist activity at group I mGluRs but are inactive at group II and III mGluRs....

  9. Human microdose evaluation of the novel EP1 receptor antagonist GSK269984A.

    Science.gov (United States)

    Ostenfeld, Thor; Beaumont, Claire; Bullman, Jonathan; Beaumont, Maria; Jeffrey, Phillip

    2012-12-01

    The primary objective was to evaluate the pharmacokinetics (PK) of the novel EP(1) antagonist GSK269984A in human volunteers after a single oral and intravenous (i.v.) microdose (100 µg). GSK269984A was administered to two groups of healthy human volunteers as a single oral (n= 5) or i.v. (n= 5) microdose (100 µg). Blood samples were collected for up to 24 h and the parent drug concentrations were measured in separated plasma using a validated high pressure liquid chromatography-tandem mass spectrometry method following solid phase extraction. Following the i.v. microdose, the geometric mean values for clearance (CL), steady-state volume of distribution (V(ss) ) and terminal elimination half-life (t(1/2) ) of GSK269984A were 9.8 l h(-1) , 62.8 l and 8.2 h. C(max) and AUC(0,∞) were 3.2 ng ml(-1) and 10.2 ng ml(-1)  h, respectively; the corresponding oral parameters were 1.8 ng ml(-1) and 9.8 ng ml(-1)  h, respectively. Absolute oral bioavailability was estimated to be 95%. These data were inconsistent with predictions of human PK based on allometric scaling of in vivo PK data from three pre-clinical species (rat, dog and monkey). For drug development programmes characterized by inconsistencies between pre-clinical in vitro metabolic and in vivo PK data, and where uncertainty exists with respect to allometric predictions of the human PK profile, these data support the early application of a human microdose study to facilitate the selection of compounds for further clinical development. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  10. Endothelin receptor antagonists influence cardiovascular morphology in uremic rats.

    Science.gov (United States)

    Nabokov, A V; Amann, K; Wessels, S; Münter, K; Wagner, J; Ritz, E

    1999-02-01

    In is generally held that renal failure results in blood pressure (BP)-independent structural changes of the myocardium and the vasculature. The contribution, if any, of endothelin (ET) to these changes has been unknown. We morphometrically studied random samples of the left ventricle myocardium and small intramyocardial arteries in subtotally (5/6) nephrectomized (SNx) male Sprague-Dawley rats treated with either the selective ETA receptor antagonist BMS182874 (30 mg/kg/day) or the nonselective ETA/ETB receptor antagonist Ro46-2005 (30 mg/kg/day) in comparison with either sham-operated rats, untreated SNx, or SNx rats treated with the angiotensin-converting enzyme inhibitor trandolapril (0.1 mg/kg/day). Eight weeks later, systolic BP was lower in trandolapril-treated SNx compared with untreated SNx animals. No decrease in BP was seen following either ET receptor antagonist at the dose used. A significantly increased volume density of the myocardial interstitium was found in untreated SNx rats as compared with sham-operated controls. Such interstitial expansion was prevented by trandolapril and either ET receptor antagonist. SNx caused a substantial increase in the wall thickness of small intramyocardial arteries. The increase was prevented by trandolapril or BMS182874 treatment. The arteriolar wall:lumen ratio was significantly lower in all treated groups when compared with untreated SNx. In contrast, only trandolapril, but not the ET receptor antagonists, attenuated thickening of the aortic media in SNx animals. The ETA-selective and ETA/ETB-nonselective receptor antagonists appear to prevent development of myocardial fibrosis and structural changes of small intramyocardial arteries in experimental chronic renal failure. This effect is independent of systemic BP.

  11. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    Science.gov (United States)

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  12. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    OpenAIRE

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited...

  13. The role of prostaglandins in spinal transmission of the exercise pressor reflex in decerebrate rats

    Science.gov (United States)

    Stone, Audrey J.; Copp, Steven W.; Kaufman, Marc P.

    2014-01-01

    Previous studies found that prostaglandins in skeletal muscle play a role in evoking the exercise pressor reflex; however the role played by prostaglandins in the spinal transmission of the reflex is not known. We determined, therefore, whether or not spinal blockade of cyclooxygenase (COX) activity and/or spinal blockade of endoperoxide receptor (EP) 2 or EP4 receptors attenuated the exercise pressor reflex in decerebrate rats. We first established that intrathecal doses of a non-specific COX inhibitor Ketorolac (100ug in 10ul), a COX-2 specific inhibitor Celecoxib (100μg in 10μl), an EP2 antagonist PF-04418948 (10μg in 10μl), and an EP4 antagonist L-161,982 (4μg in 10μl) effectively attenuated the pressor responses to intrathecal injections of Arachidonic Acid (100μg in 10μl), EP2 agonist Butaprost (4ng in 10 μl), and EP4 agonist TCS 2510 (6.25μg in 2.5 μl), respectively. Once effective doses were established, we statically contracted the hindlimb before and after intrathecal injections of Ketorolac, Celecoxib, the EP2 antagonist and the EP4 antagonist. We found that Ketorolac significantly attenuated the pressor response to static contraction (before Ketorolac: 23±5 mmHg, after Ketorolac 14±5 mmHg; preflex, and that the spinal prostaglandins produced by this enzyme are most likely activating spinal EP4 receptors, but not EP2 receptors. PMID:25003710

  14. Synthesis and SAR studies of novel 2-(6-aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide vasopressin V1b receptor antagonists.

    Science.gov (United States)

    Napier, Susan E; Letourneau, Jeffrey J; Ansari, Nasrin; Auld, Douglas S; Baker, James; Best, Stuart; Campbell-Wan, Leigh; Chan, Ray; Craighead, Mark; Desai, Hema; Ho, Koc-Kan; MacSweeney, Cliona; Milne, Rachel; Richard Morphy, J; Neagu, Irina; Ohlmeyer, Michael H J; Pick, Jack; Presland, Jeremy; Riviello, Chris; Zanetakos, Heather A; Zhao, Jiuqiao; Webb, Maria L

    2011-06-15

    Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning.

    Science.gov (United States)

    Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K

    2003-11-01

    Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.

  16. A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined with Enzalutamide in Castrate Resistant Prostate Cancer

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-14-1-0021 TITLE: A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined...way it adapts is by upregulating another hormone receptor, the glucocorticoid receptor (GR), which may compensate for diminished AR activity. The

  17. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  18. Pre-treatment with Toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Persing, David; Novy, Miles J.; Sadowsky, Drew W.; Gravett, Michael G.

    2009-01-01

    Intra-uterine infection, which occurs in the majority of early preterm births, triggers an immune response culminating in preterm labor. We hypothesized that blockade of lipopolysaccharide (LPS)-induced immune responses by a Toll-like receptor 4 antagonist (TLR4A) would prevent elevations in amniotic fluid (AF) cytokines, prostaglandins, and uterine contractility. Chronically catheterized rhesus monkeys at 128-147 days gestation received intra-amniotic infusions of either: 1) saline (n=6), 2) LPS (0.15-10μg; n=4), or 3) TLR4A pre-treatment with LPS (10 μg) one hour later (n=4). AF cytokines, prostaglandins, and uterine contractility were compared using oneway ANOVA with Bonferroni-adjusted pairwise comparisons. Compared to saline controls, LPS induced significant elevations in AF IL-8, TNF-α, PGE2, PGF2α, and uterine contractility (p<0.05). In contrast, TLR4A pre-treatment inhibited LPS-induced uterine activity and was associated with significantly lower AF IL-8, TNF-α, PGE2, and PGF2α versus LPS alone (p<0.05). Toll-like receptor antagonists, together with antibiotics, may delay or prevent infection-associated preterm birth. PMID:18187405

  19. Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.

    Science.gov (United States)

    Li, Fengyin; He, Bing; Ma, Xiaoke; Yu, Shuyang; Bhave, Rupali R; Lentz, Steven R; Tan, Kai; Guzman, Monica L; Zhao, Chen; Xue, Hai-Hui

    2017-09-07

    Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34 + stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkappaB, and beta-catenin pathways and activation of intrinsic apoptotic mechanisms.

    Science.gov (United States)

    Banu, Sakhila K; Lee, JeHoon; Speights, V O; Starzinski-Powitz, Anna; Arosh, Joe A

    2009-08-01

    Endometriosis is a benign chronic gynecological disease of reproductive-age women characterized by the presence of functional endometrial tissues outside the uterine cavity. It is an estrogen-dependent disease. Current treatment modalities to inhibit biosynthesis and actions of estrogen compromise menstruation, pregnancy, and the reproductive health of women and fail to prevent reoccurrence of disease. There is a critical need to identify new specific signaling modules for non-estrogen-targeted therapies for endometriosis. In our previous study, we reported that selective inhibition of cyclooxygenase-2 prevented survival, migration, and invasion of human endometriotic epithelial and stromal cells, which was due to decreased prostaglandin E(2) (PGE(2)) production. In this study, we determined mechanisms through which PGE(2) promoted survival of human endometriotic cells. Results of the present study indicate that 1) PGE(2) promotes survival of human endometriotic cells through EP2 and EP4 receptors by activating ERK1/2, AKT, nuclear factor-kappaB, and beta-catenin signaling pathways; 2) selective inhibition of EP2 and EP4 suppresses these cell survival pathways and augments interactions between proapoptotic proteins (Bax and Bad) and antiapoptotic proteins (Bcl-2/Bcl-XL), facilitates the release of cytochrome c, and thus activates caspase-3/poly (ADP-ribose) polymerase-mediated intrinsic apoptotic pathways; and 3) these PGE(2) signaling components are more abundantly expressed in ectopic endometriosis tissues compared with eutopic endometrial tissues during the menstrual cycle in women. These novel findings may provide an important molecular framework for further evaluation of selective inhibition of EP2 and EP4 as potential therapy, including nonestrogen target, to expand the spectrum of currently available treatment options for endometriosis in women.

  1. CCR5 receptor antagonists: discovery and SAR study of guanylhydrazone derivatives.

    Science.gov (United States)

    Wei, Robert G; Arnaiz, Damian O; Chou, Yuo-Ling; Davey, Dave; Dunning, Laura; Lee, Wheeseong; Lu, Shou-Fu; Onuffer, James; Ye, Bin; Phillips, Gary

    2007-01-01

    High throughput screening (HTS) led to the identification of the guanylhydrazone of 2-(4-chlorobenzyloxy)-5-bromobenzaldehyde as a CCR5 receptor antagonist. Initial modifications of the guanylhydrazone series indicated that substitution of the benzyl group at the para-position was well tolerated. Substitution at the 5-position of the central phenyl ring was critical for potency. Replacement of the guanylhydrazone group led to the discovery of a novel series of CCR5 antagonists.

  2. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    Science.gov (United States)

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  3. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

    Science.gov (United States)

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-01-01

    SB-706375 potently inhibited [125I]hU-II binding to both mammalian recombinant and ‘native' UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). Prior exposure to SB-706375 (1 μM, 30 min) did not alter [125I]hU-II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. The novel, nonpeptidic radioligand [3H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U-II isopeptides and SB-706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. SB-706375 was a potent, competitive hU-II antagonist across species with pKb 7.29–8.00 in HEK293-UT receptor cells (inhibition of [Ca2+]i-mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (Kapp∼20 nM). SB-706375 was a selective U-II antagonist with ⩾100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 μM). In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals. PMID:15852036

  4. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-01-01

    Research highlights: → Evodiamine interacted with the AhR. → Evodiamine inhibited the specific binding of [ 3 H]-TCDD to the AhR. → Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K i value of 28.4 ± 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  5. Identification and Characterization of a Novel IL-4 Receptor α Chain (IL-4Antagonist to Inhibit IL-4 Signalling

    Directory of Open Access Journals (Sweden)

    Nayyar Ahmed

    2015-05-01

    Full Text Available Background/Aims: In recent times, allergy has become a financial, physical and psychological burden to the society as a whole. In allergic cascades, cytokine IL-4 binds to IL-4 receptor (IL-4R, consequently producing allergen-specific IgE antibodies by B cells. In addition, among other functions, IL-4 is also responsible for B and T cell proliferation and differentiation. Hence, characterization of novel antagonists that inhibit IL-4 signalling forms the overall aim of this study. Methods: Phage display was used to screen a random 12-mer synthetic peptide library with a human IL-4Rα to identify peptide candidates. Once identified, the peptides were commercially synthesized and used for in vitro immunoassays. Results: We have successfully used phage display to identify M13 phage clones that demonstrated specific binding to IL-4Rα. The peptide N1 was synthesized for use in ELISA, demonstrating significant binding to IL-4Rα and inhibiting interaction with cytokine IL-4. Furthermore, the peptide was tested in a transfected HEK-Blue IL-4 reporter cell line model, which produces alkaline phosphatase (AP. QUANTI-Blue, a substrate, breaks down in the presence of AP producing a blue coloration. Using this colorimetric analysis, >50% inhibition of IL-4 signalling was achieved. Conclusion: We have successfully identified and characterised a synthetic peptide antagonist against IL-4Rα, which effectively inhibits IL-4 interaction with the IL-4Rα in vitro. Since IL-4 interaction with IL-4Rα is a common pathway for many allergies, a prophylactic treatment can be devised by inhibiting this interaction for future treatment of allergies.

  6. Inhibition of the prostaglandin E2 receptor EP2 prevents status epilepticus-induced deficits in the novel object recognition task in rats

    Science.gov (United States)

    Rojas, Asheebo; Ganesh, Thota; Manji, Zahra; O’neill, Theon; Dingledine, Raymond

    2016-01-01

    Survivors of exposure to an organophosphorus nerve agent may develop a number of complications including long-term cognitive deficits (Miyaki et al., 2005; Nishiwaki et al., 2001). We recently demonstrated that inhibition of the prostaglandin E2 receptor, EP2, attenuates neuroinflammation and neurodegeneration caused by status epilepticus (SE) induced by the soman analog, diisopropylfluorophosphate (DFP), which manifest within hours to days of the initial insult. Here, we tested the hypothesis that DFP exposure leads to a loss of cognitive function in rats that is blocked by early, transient EP2 inhibition. Adult male Sprague-Dawley rats were administered vehicle or the competitive EP2 antagonist, TG6-10-1, (ip) at various times relative to DFP-induced SE. DFP administration resulted in prolonged seizure activity as demonstrated by cortical electroencephalography (EEG). A single intraperitoneal injection of TG6-10-1 or vehicle 1 h prior to DFP did not alter the development of seizures, the latency to SE or the duration of SE. Rats administered six injections of TG6-10-1 starting 90 min after the onset of DFP-induced SE could discriminate between a novel and familiar object 6–12 weeks after SE, unlike vehicle treated rats which showed no preference for the novel object. By contrast, behavioral changes in the light-dark box and open field assays were not affected by TG6-10-1. Delayed mortality after DFP was also unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor may prevent SE-induced memory impairment in rats caused by exposure to a high dose of DFP. PMID:27477533

  7. Purification and reconstitution of the calcium antagonist receptor of the voltage-sensitive calcium channel

    International Nuclear Information System (INIS)

    Curtis, B.M.

    1986-01-01

    Treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with [ 3 H]nitrendipine from rat brain membranes. The solubilized complex retains allosteric coupling to binding sites for diltiazem, verapamil, and inorganic calcium antagonist sites. The calcium antagonist receptor from cardiac sarcolemma and the transverse-tubule membrane of skeletal muscle is also efficiently solubilized with digitonin and the receptor in all three tissues is a large glycoprotein with a sedimentation coefficient of 20 S. The T-tubule calcium antagonist receptor complex was extensively purified by a combination of chromatography on WGA-Sepharose, ion exchange chromatography, and sedimentation on sucrose gradients to yield preparations estimated to be 41% homogeneous by specific activity and 63% homogeneous by SDS gel electrophoresis. Analysis of SDS gels detect three polypeptides termed α(Mr 135,000), β(Mr 50,000), and γ(Mr 32,000) as noncovalently associated subunits of the calcium antagonist receptor. The α and γ subunits are glycosylated polypeptides, and the molecular weight of the core polypeptides are 108,000 and 24,000 respectively. The calcium antagonist receptor was reconstituted into a phospholipid bilayer by adding CHAPS and exogeneous lipid to the purified receptor followed by rapid detergent removal. This procedure resulted in the incorporation of 45% of the calcium antagonist receptor into closed phospholipid vesicles. Data suggests that the α, β, and γ subunits of the T-tubule calcium antagonist receptor are sufficient to form a functional calcium channel

  8. Palliation of bone cancer pain by antagonists of platelet-activating factor receptors.

    Directory of Open Access Journals (Sweden)

    Katsuya Morita

    Full Text Available Bone cancer pain is the most severe among cancer pain and is often resistant to current analgesics. Thus, the development of novel analgesics effective at treating bone cancer pain are desired. Platelet-activating factor (PAF receptor antagonists were recently demonstrated to have effective pain relieving effects on neuropathic pain in several animal models. The present study examined the pain relieving effect of PAF receptor antagonists on bone cancer pain using the femur bone cancer (FBC model in mice. Animals were injected with osteolytic NCTC2472 cells into the tibia, and subsequently the effects of PAF receptor antagonists on pain behaviors were evaluated. Chemical structurally different type of antagonists, TCV-309, BN 50739 and WEB 2086 ameliorated the allodynia and improved pain behaviors such as guarding behavior and limb-use abnormalities in FBC model mice. The pain relieving effects of these antagonists were achieved with low doses and were long lasting. Blockade of spinal PAF receptors by intrathecal injection of TCV-309 and WEB 2086 or knockdown of the expression of spinal PAF receptor protein by intrathecal transfer of PAF receptor siRNA also produced a pain relieving effect. The amount of an inducible PAF synthesis enzyme, lysophosphatidylcholine acyltransferase 2 (LPCAT2 protein significantly increased in the spinal cord after transplantation of NCTC 2472 tumor cells into mouse tibia. The combination of morphine with PAF receptor antagonists develops marked enhancement of the analgesic effect against bone cancer pain without affecting morphine-induced constipation. Repeated administration of TCV-309 suppressed the appearance of pain behaviors and prolonged survival of FBC mice. The present results suggest that PAF receptor antagonists in combination with, or without, opioids may represent a new strategy for the treatment of persistent bone cancer pain and improve the quality of life of patients.

  9. Aldosterone and aldosterone receptor antagonists in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Nappi J

    2011-06-01

    Full Text Available Jean M Nappi, Adam SiegClinical Pharmacy and Outcome Sciences, South Carolina College of Pharmacy, Medical University of South Carolina Campus, Charleston, SC, USAAbstract: Aldosterone is a mineralocorticoid hormone synthesized by the adrenal glands that has several regulatory functions to help the body maintain normal volume status and electrolyte balance. Studies have shown significantly higher levels of aldosterone secretion in patients with congestive heart failure compared with normal patients. Elevated levels of aldosterone have been shown to elevate blood pressure, cause left ventricular hypertrophy, and promote cardiac fibrosis. An appreciation of the true role of aldosterone in patients with chronic heart failure did not become apparent until the publication of the Randomized Aldactone Evaluation Study. Until recently, the use of aldosterone receptor antagonists has been limited to patients with severe heart failure and patients with heart failure following myocardial infarction. The Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF study added additional evidence to support the expanded use of aldosterone receptor antagonists in heart failure patients. The results of the EMPHASIS-HF trial showed that patients with mild-to-moderate (New York Heart Association Class II heart failure had reductions in mortality and hospitalizations from the addition of eplerenone to optimal medical therapy. Evidence remains elusive about the exact mechanism by which aldosterone receptor antagonists improve heart failure morbidity and mortality. The benefits of aldosterone receptor antagonist use in heart failure must be weighed against the potential risk of complications, ie, hyperkalemia and, in the case of spironolactone, possible endocrine abnormalities, in particular gynecomastia. With appropriate monitoring, these risks can be minimized. We now have evidence that patients with mild-to-severe symptoms

  10. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Terry W. Moody

    2017-07-01

    Full Text Available While peptide antagonists for the gastrin-releasing peptide receptor (BB2R, neuromedin B receptor (BB1R, and bombesin (BB receptor subtype-3 (BRS-3 exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM. AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  11. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    Science.gov (United States)

    Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244

  12. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    Science.gov (United States)

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  13. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    Science.gov (United States)

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  14. COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems

    Science.gov (United States)

    Katoh, Hiroshi; Hosono, Kanako; Ito, Yoshiya; Suzuki, Tatsunori; Ogawa, Yasufumi; Kubo, Hidefumi; Kamata, Hiroki; Mishima, Toshiaki; Tamaki, Hideaki; Sakagami, Hiroyuki; Sugimoto, Yukihiko; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2010-01-01

    Bone marrow (BM)–derived hematopoietic cells, which are major components of tumor stroma, determine the tumor microenvironment and regulate tumor phenotypes. Cyclooxygenase (COX)−2 and endogenous prostaglandins are important determinants for tumor growth and tumor-associated angiogenesis; however, their contributions to stromal formation and angiogenesis remain unclear. In this study, we observed that Lewis lung carcinoma cells implanted in wild-type mice formed a tumor mass with extensive stromal formation that was markedly suppressed by COX-2 inhibition, which reduced the recruitment of BM cells. Notably, COX-2 inhibition attenuated CXCL12/CXCR4 expression as well as expression of several other chemokines. Indeed, in a Matrigel model, prostaglandin (PG) E2 enhanced stromal formation and CXCL12/CXCR4 expression. In addition, a COX-2 inhibitor suppressed stromal formation and reduced expression of CXCL12/CXCR4 and a fibroblast marker (S100A4) in a micropore chamber model. Moreover, stromal formation after tumor implantation was suppressed in EP3−/− mice and EP4−/− mice, in which stromal expression of CXCL12/CXCR4 and S100A4 was reduced. The EP3 or EP4 knockout suppressed S100A4+ fibroblasts, CXCL12+, and/or CXCR4+ stromal cells as well. Immunofluorescent analyses revealed that CXCL12+CXCR4+S100A4+ fibroblasts mainly comprised stromal cells and most of these were recruited from the BM. Additionally, either EP3- or EP4-specific agonists stimulated CXCL12 expression by fibroblasts in vitro. The present results address the novel activities of COX-2/PGE2-EP3/EP4 signaling that modulate tumor biology and show that CXCL12/CXCR4 axis may play a crucial role in tumor stromal formation and angiogenesis under the control of prostaglandins. PMID:20110411

  15. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    John Gatfield

    Full Text Available Two endothelin receptor antagonists (ERAs, bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH, a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC. The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP(1 assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with K(b values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt(1/2 compared to bosentan and ambrisentan (ROt(1/2:17 minutes versus 70 seconds and 40 seconds, respectively. Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP(1 assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1 concentrations. However, prolongation of the ET-1 stimulation time beyond ROt(1/2 rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive

  16. Serotonin 2A receptor antagonists for treatment of schizophrenia

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn Hylsebeck; Rasmussen, Hans; Arnt, Jørn

    2011-01-01

    Introduction: All approved antipsychotic drugs share an affinity for the dopamine 2 (D2) receptor; however, these drugs only partially ameliorate the symptoms of schizophrenia. It is, therefore, of paramount importance to identify new treatment strategies for schizophrenia. Areas covered......: Preclinical, clinical and post-mortem studies of the serotonin 5-HT2A system in schizophrenia are reviewed. The implications of a combined D2 and 5-HT2A receptor blockade, which is obtained by several current antipsychotic drugs, are discussed, and the rationale for the development of more selective 5-HT2A...... receptor antagonists is evaluated. Moreover, the investigational pipeline of major pharmaceutical companies is examined and an Internet search conducted to identify other pharmaceutical companies investigating 5-HT2A receptor antagonists for the treatment of schizophrenia. Expert opinion: 5-HT2A receptor...

  17. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1 receptor antagonist after MI in rats.Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823 or AT1 receptor antagonist (irbesartan alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP; greater first derivative of left ventricular pressure (± dp/dt max, left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2 and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1 mRNA expression were not significantly affected by B1 receptor blockade.The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.

  18. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    Science.gov (United States)

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    Recent research indicates that the C-terminal Eps15 homology domain 1 is associated with epithelial growth factor receptor-mediated endocytosis recycling in non-small-cell lung cancer. The aim of this study was to determine the clinical significance of Eps15 homology domain 1 gene expression in relation to phosphorylation of epithelial growth factor receptor expression in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Eps15 homology domain 1, RAB11FIP3, and phosphorylation of epithelial growth factor receptor expression via immunohistochemistry. The clinical significance was assessed via a multivariate Cox regression analysis, Kaplan-Meier curves, and the log-rank test. Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor were upregulated in 60.46% (185/306) and 53.92% (165/306) of tumor tissues, respectively, as assessed by immunohistochemistry. The statistical correlation analysis indicated that Eps15 homology domain 1 overexpression was positively correlated with the increases in phosphorylation of epithelial growth factor receptor ( r = 0.242, p breast cancer for the overall survival in the total, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. However, the use of combined expression of Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor markers is more effective for the disease-free survival in the overall population, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. Moreover, the combined markers are also significant prognostic markers of breast cancer in the human epidermal growth factor receptor 2 (+), estrogen receptor (+), and estrogen receptor (-) groups. Eps15 homology domain 1 has a tumor suppressor function, and the combined marker of Eps15 homology domain 1/phosphorylation of epithelial growth factor receptor expression was identified as a better prognostic marker in breast cancer diagnosis

  19. Cardiohemodynamic and electrophysiological effects of a selective EP4 receptor agonist ONO--AE1--329 in the halothane-anesthetized dogs.

    Science.gov (United States)

    Nomura, Hiroaki; Nakamura, Yuji; Cao, Xin; Honda, Atsushi; Katagi, Jun; Ohara, Hiroshi; Izumi-Nakaseko, Hiroko; Satoh, Yoshioki; Ando, Kentaro; Sugiyama, Atsushi

    2015-08-15

    Cardiovascular effects of a highly selective prostaglandin E2 type 4 (EP4) receptor agonist ONO-AE1-329 were assessed with the halothane-anesthetized dogs (n=6). ONO-AE1-329 was intravenously infused in three escalating doses of 0.3, 1 and 3ng/kg/min for 10min with a pause of 20min between the doses. The low dose of 0.3ng/kg/min significantly increased maximum upstroke velocity of left ventricular pressure by 18% at 20min, indicating increase of ventricular contractility. The middle dose of 1ng/kg/min significantly decreased total peripheral resistance by 24% and left ventricular end-diastolic pressure by 32% at 10min, indicating dilation of arteriolar resistance vessels and venous capacitance ones, respectively; and increased cardiac output by 25% at 10min in addition to the change induced by the low dose. The high dose of 3ng/kg/min increased heart rate by 34% at 10min; decreased mean blood pressure by 14% at 10min and atrioventricular nodal conduction time by 13% at 5min; and shortened left ventricular systolic period by 8% at 10min and electromechanical coupling defined as an interval from completion of repolarization to the start of ventricular diastole by 39% at 10min in addition to the changes induced by the middle dose. No significant change was detected in a ventricular repolarization period. These results indicate that ONO-AE1-329 may possess a similar cardiovascular profile to typical phosphodiesterase 3 inhibitors as an inodilator, and suggest that EP4 receptor stimulation can become an alternative strategy for the treatment of congestive heart failure. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 4-Acylamino-and 4-ureidobenzamides as melanin-concentrating hormone (MCH) receptor 1 antagonists

    DEFF Research Database (Denmark)

    Receveur, Jean-Marie; Bjurling, Emelie; Ulven, Trond

    2004-01-01

    Synthesis, in vitro biological evaluation and structure-activity relationships of 4-acylamino-and 4-ureidobenzamides as novel hMCH1R-antagonists are disclosed. The nature of the amine side chains could be varied considerably in contrast to the central benzamide scaffold and aromatic substituents....

  1. Discovery of an imidazopyridine-containing 1,4-benzodiazepine nonpeptide vitronectin receptor (alpha v beta 3) antagonist with efficacy in a restenosis model.

    Science.gov (United States)

    Keenan, R M; Lago, M A; Miller, W H; Ali, F E; Cousins, R D; Hall, L B; Hwang, S M; Jakas, D R; Kwon, C; Louden, C; Nguyen, T T; Ohlstein, E H; Rieman, D J; Ross, S T; Samanen, J M; Smith, B R; Stadel, J; Takata, D T; Vickery, L; Yuan, C C; Yue, T L

    1998-11-17

    In the 3-oxo-1,4-benzodiazepine-2-acetic acid series of vitronectin receptor (alpha v beta 3) antagonists, a compound containing an imidazopyridine arginine mimetic was discovered which had sufficient potency and i.v. pharmacokinetics for demonstration of efficacy in a rat restenosis model.

  2. 5-HT7 Receptor Antagonists with an Unprecedented Selectivity Profile.

    Science.gov (United States)

    Ates, Ali; Burssens, Pierre; Lorthioir, Olivier; Lo Brutto, Patrick; Dehon, Gwenael; Keyaerts, Jean; Coloretti, Francis; Lallemand, Bénédicte; Verbois, Valérie; Gillard, Michel; Vermeiren, Céline

    2018-04-23

    Selective leads: In this study, we generated a new series of serotonin 5-HT 7 receptor antagonists. Their synthesis, structure-activity relationships, and selectivity profiles are reported. This series includes 5-HT 7 antagonists with unprecedented high selectivity for the 5-HT 7 receptor, setting the stage for lead optimization of drugs acting on a range of neurological targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    Science.gov (United States)

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  4. A review of granisetron, 5-hydroxytryptamine3 receptor antagonists, and other antiemetics.

    Science.gov (United States)

    Hsu, Eric S

    2010-01-01

    Nausea and vomiting are 2 of the most upsetting adverse reactions of chemotherapy. Current guidelines propose 5-hydroxytryptamine3 (5-HT3) receptor antagonists as a pharmacologic intervention for acute and delayed nausea and vomiting [chemotherapy-induced nausea and vomiting (CINV)] associated with moderately and highly emetogenic chemotherapy. Meanwhile, both postoperative nausea and vomiting (PONV) and postdischarge nausea and vomiting are challenging situations after surgeries and procedures. Prophylactic and therapeutic combinations of antiemetics are recommended in patients at high risk of suffering from PONV and postdischarge nausea and vomiting. Granisetron (Kytril) is a selective 5-HT3 receptor antagonist that does not induce or inhibit the hepatic cytochrome P-450 system in vitro. There are also 4 other antagonists of 5-HT3 receptor (dolasetron, ondansetron, palonosetron, and tropisetron) being metabolized via the CYP2D6 and are subject to potential genetic polymorphism. The launch of a new class of antiemetics, the substance P/neurokinin1 receptor antagonists, was attributed to the scientific update on the central generator responsible for emesis and role of substance P. There has been mounting interest in exploring integrative medicine, either acupuncture or acustimulation of P6 (Nei-Kuwan), to complement the western medicine for prevention and management of nausea and vomiting. The potential application of cannabinoids, either alone or in combination with other agents of different mechanism, could contribute further to improve outcome in CINV. Implementation of future treatment guidelines for more effective management of CINV and PONV could certainly improve the efficacy and outcome of cancer and postoperative care.

  5. Dual Nicotinic Acetylcholine Receptor α4β2 Antagonists/α7 Agonists: Synthesis, Docking Studies, and Pharmacological Evaluation of Tetrahydroisoquinolines and Tetrahydroisoquinolinium Salts

    DEFF Research Database (Denmark)

    Crestey, François; Jensen, Anders A; Soerensen, Christian

    2018-01-01

    We describe the synthesis of tetrahydroisoquinolines and tetrahydroisoquinolinium salts together with their pharmacological properties at various nicotinic acetylcholine receptors. In general, the compounds were α4β2 nAChR antagonists, with the tetrahydroisoquinolinium salts being more potent than...

  6. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    Science.gov (United States)

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  7. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy

    NARCIS (Netherlands)

    Roscioni, Sara S.; de Zeeuw, Dick; Bakker, Stephan J. L.; Lambers Heerspink, Hiddo J.

    2012-01-01

    Mineralocorticoid-receptor antagonists (MRAs) reduce blood pressure and albuminuria in patients treated with angiotensin-converting-enzyme inhibitors or angiotensin-II-receptor blockers. The use of MRAs, however, is limited by the occurrence of hyperkalaemia, which frequently occurs in patients

  8. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat

    Directory of Open Access Journals (Sweden)

    Alireza Komaki

    2014-07-01

    Full Text Available Introduction: Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP injection of cannabinoid CB1 receptor antagonist (AM251 in the presence of alpha-1 adrenergic antagonist (Prazosin on rat behavior in the EPM. Methods: In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg, Prazosin (0.3 mg/kg and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg. Results: Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Discussion: Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  9. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat.

    Science.gov (United States)

    Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj

    2014-01-01

    Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  10. Role of prostaglandins in spinal transmission of the exercise pressor reflex in decerebrated rats.

    Science.gov (United States)

    Stone, A J; Copp, S W; Kaufman, M P

    2014-09-26

    Previous studies found that prostaglandins in skeletal muscle play a role in evoking the exercise pressor reflex; however the role played by prostaglandins in the spinal transmission of the reflex is not known. We determined, therefore, whether or not spinal blockade of cyclooxygenase (COX) activity and/or spinal blockade of endoperoxide (EP) 2 or 4 receptors attenuated the exercise pressor reflex in decerebrated rats. We first established that intrathecal doses of a non-specific COX inhibitor Ketorolac (100 μg in 10 μl), a COX-2-specific inhibitor Celecoxib (100 μg in 10 μl), an EP2 antagonist PF-04418948 (10 μg in 10 μl), and an EP4 antagonist L-161,982 (4 μg in 10 μl) effectively attenuated the pressor responses to intrathecal injections of arachidonic acid (100 μg in 10 μl), EP2 agonist Butaprost (4 ng in 10 μl), and EP4 agonist TCS 2510 (6.25 μg in 2.5 μl), respectively. Once effective doses were established, we statically contracted the hind limb before and after intrathecal injections of Ketorolac, Celecoxib, the EP2 antagonist and the EP4 antagonist. We found that Ketorolac significantly attenuated the pressor response to static contraction (before Ketorolac: 23 ± 5 mmHg, after Ketorolac 14 ± 5 mmHg; preflex, and that the spinal prostaglandins produced by this enzyme are most likely activating spinal EP4 receptors, but not EP2 receptors. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. CHOLECYSTOKININ RECEPTOR ANTAGONIST HALTS PROGRESSION OF PANCREATIC CANCER PRECURSOR LESIONS AND FIBROSIS IN MICE

    Science.gov (United States)

    Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.

    2014-01-01

    Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882

  12. Discovery of MK-3697: a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia.

    Science.gov (United States)

    Roecker, Anthony J; Reger, Thomas S; Mattern, M Christa; Mercer, Swati P; Bergman, Jeffrey M; Schreier, John D; Cube, Rowena V; Cox, Christopher D; Li, Dansu; Lemaire, Wei; Bruno, Joseph G; Harrell, C Meacham; Garson, Susan L; Gotter, Anthony L; Fox, Steven V; Stevens, Joanne; Tannenbaum, Pamela L; Prueksaritanont, Thomayant; Cabalu, Tamara D; Cui, Donghui; Stellabott, Joyce; Hartman, George D; Young, Steven D; Winrow, Christopher J; Renger, John J; Coleman, Paul J

    2014-10-15

    Orexin receptor antagonists have demonstrated clinical utility for the treatment of insomnia. The majority of clinical efforts to date have focused on the development of dual orexin receptor antagonists (DORAs), small molecules that antagonize both the orexin 1 and orexin 2 receptors. Our group has recently disclosed medicinal chemistry efforts to identify highly potent, orally bioavailable selective orexin 2 receptor antagonists (2-SORAs) that possess acceptable profiles for clinical development. Herein we report additional SAR studies within the 'triaryl' amide 2-SORA series focused on improvements in compound stability in acidic media and time-dependent inhibition of CYP3A4. These studies resulted in the discovery of 2,5-disubstituted isonicotinamide 2-SORAs such as compound 24 that demonstrated improved stability and TDI profiles as well as excellent sleep efficacy across species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    Science.gov (United States)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  14. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    Science.gov (United States)

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine

  15. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure

    DEFF Research Database (Denmark)

    Kjekshus, John K; Torp-Pedersen, Christian; Gullestad, Lars

    2009-01-01

    weeks up titration. The primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI). Secondary endpoints were LV volumes, N-terminal pro-brain natriuretic peptide, norepinephrine, quality of life, and 6 min walk test. Piboserod significantly increased LVEF by 1.7% vs. placebo (CI 0.......3, 3.2, P = 0.020), primarily through reduced end-systolic volume from 165 to 158 mL (P = 0.060). There was a trend for greater increase in LVEF (2.7%, CI -1.1, 6.6, P = 0.15) in a small subset of patients not on chronic beta-blocker therapy. There was no significant effect on neurohormones, quality......AIMS: Myocardial 5-HT(4) serotonin (5-HT) receptors are increased and activated in heart failure (HF). Blockade of 5-HT(4) receptors reduced left ventricular (LV) remodelling in HF rats. We evaluated the effect of piboserod, a potent, selective, 5-HT(4) serotonin receptor antagonist, on LV function...

  16. Inhibition of CPU0213, a Dual Endothelin Receptor Antagonist, on Apoptosis via Nox4-Dependent ROS in HK-2 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-06-01

    Full Text Available Background/Aims: Our previous studies have indicated that a novel endothelin receptor antagonist CPU0213 effectively normalized renal function in diabetic nephropathy. However, the molecular mechanisms mediating the nephroprotective role of CPU0213 remain unknown. Methods and Results: In the present study, we first detected the role of CPU0213 on apoptosis in human renal tubular epithelial cell (HK-2. It was shown that high glucose significantly increased the protein expression of Bax and decreased Bcl-2 protein in HK-2 cells, which was reversed by CPU0213. The percentage of HK-2 cells that showed Annexin V-FITC binding was markedly suppressed by CPU0213, which confirmed the inhibitory role of CPU0213 on apoptosis. Given the regulation of endothelin (ET system to oxidative stress, we determined the role of redox signaling in the regulation of CPU0213 on apoptosis. It was demonstrated that the production of superoxide (O2-. was substantially attenuated by CPU0213 treatment in HK-2 cells. We further found that CPU0213 dramatically inhibited expression of Nox4 protein, which gene silencing mimicked the role of CPU0213 on the apoptosis under high glucose stimulation. We finally examined the role of CPU0213 on ET-1 receptors and found that high glucose-induced protein expression of endothelin A and B receptors was dramatically inhibited by CPU0213. Conclusion: Taken together, these results suggest that this Nox4-dependenet O2- production is critical for the apoptosis of HK-2 cells in high glucose. Endothelin receptor antagonist CPU0213 has an anti-apoptosis role through Nox4-dependent O2-.production, which address the nephroprotective role of CPU0213 in diabetic nephropathy.

  17. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    Science.gov (United States)

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. NMDA receptor antagonists for the treatment of neuropathic pain

    NARCIS (Netherlands)

    Collins, S.; Sigtermans, M.J.; Dahan, A.; Zuurmond, W.W.A.; Perez, R.S.G.M.

    2010-01-01

    Objective. The N-methyl-D-Aspartate (NMDA) receptor has been proposed as a primary target for the treatment of neuropathic pain. The aim of the present study was to perform a meta-analysis evaluating the effects of (individual) NMDA receptor antagonists on neuropathic pain, and the response

  19. Fluorescent imaging of high-grade bladder cancer using a specific antagonist for chemokine receptor CXCR4.

    Science.gov (United States)

    Nishizawa, Koji; Nishiyama, Hiroyuki; Oishi, Shinya; Tanahara, Noriko; Kotani, Hirokazu; Mikami, Yoshiki; Toda, Yoshinobu; Evans, Barry J; Peiper, Stephen C; Saito, Ryoichi; Watanabe, Jun; Fujii, Nobutaka; Ogawa, Osamu

    2010-09-01

    We previously reported that the expression of CXC chemokine receptor-4 (CXCR4) was upregulated in invasive bladder cancers and that the small peptide T140 was a highly sensitive antagonist for CXCR4. In this study, we identified that CXCR4 expression was induced in high-grade superficial bladder tumors, including carcinoma in situ and invasive bladder tumors. To visualize the bladder cancer cells using urinary sediments from the patients and chemically induced mouse bladder cancer model, a novel fluorescent CXCR4 antagonist TY14003 was developed, that is a T140 derivative. TY14003 could label bladder cancer cell lines expressing CXCR4, whereas negative-control fluorescent peptides did not label them. When labeling urinary sediments from patients with invasive bladder cancer, positive-stained cells were identified in all patients with bladder cancer and positive urine cytology but not in controls. Although white blood cells in urine were also labeled with TY14003, they could be easily discriminated from urothelial cells by their shape and size. Finally, intravesical instillation of TY14003 into mouse bladder, using N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer model, demonstrated that fluorescent signals were detected in the focal areas of bladder of all mice examined at 12 weeks of BBN drinking by confocal microscopy and fluorescent endoscopy. On the contrary, all the normal bladders were found to be negative for TY14003 staining. In conclusion, these results indicate that TY14003 is a promising diagnostic tool to visualize small or flat high-grade superficial bladder cancer.

  20. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    2011-02-01

    Full Text Available Corticotropin-releasing factor (CRF signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse injected peripherally once a day for 5 days in 4-9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF₂ receptor antagonist, astressin₂-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.

  1. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A

    2015-01-01

    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  2. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    OpenAIRE

    Terry W. Moody; Nicole Tashakkori; Samuel A. Mantey; Paola Moreno; Irene Ramos-Alvarez; Marcello Leopoldo; Robert T. Jensen

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar ...

  3. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    Science.gov (United States)

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  4. The 5-HT2A receptor antagonist M100907 produces antiparkinsonian effects and decreases striatal glutamate

    Directory of Open Access Journals (Sweden)

    Twum eAnsah

    2011-06-01

    Full Text Available 5-HT plays a regulatory role in voluntary movements of the basal ganglia and have a major impact on disorders of the basal ganglia such as Parkinson’s disease (PD. Clinical studies have suggested that 5-HT2 receptor antagonists may be useful in the treatment of the motor symptoms of PD. We hypothesized that 5-HT2A receptor antagonists may restore motor function by regulating glutamatergic activity in the striatum. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP exhibited decreased performance on the beam-walking apparatus. Peripheral administration of the 5-HT2A receptor antagonist M100907 improved performance of MPTP-treated mice on the beam-walking apparatus. In vivo microdialysis revealed an increase in striatal extracellular glutamate in MPTP-treated mice and local perfusion of M100907 into the dorsal striatum significantly decreased extracellular glutamate levels in saline and MPTP-treated mice. Our studies suggest that blockade of 5-HT2A receptors may represent a novel therapeutic target for the motor symptoms of Parkinson’s disease.

  5. Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex.

    Science.gov (United States)

    Banerjee, Abhishek; Meredith, Rhiannon M; Rodríguez-Moreno, Antonio; Mierau, Susanna B; Auberson, Yves P; Paulsen, Ole

    2009-12-01

    Spike timing-dependent plasticity (STDP) is a strong candidate for an N-methyl-D-aspartate (NMDA) receptor-dependent form of synaptic plasticity that could underlie the development of receptive field properties in sensory neocortices. Whilst induction of timing-dependent long-term potentiation (t-LTP) requires postsynaptic NMDA receptors, timing-dependent long-term depression (t-LTD) requires the activation of presynaptic NMDA receptors at layer 4-to-layer 2/3 synapses in barrel cortex. Here we investigated the developmental profile of t-LTD at layer 4-to-layer 2/3 synapses of mouse barrel cortex and studied their NMDA receptor subunit dependence. Timing-dependent LTD emerged in the first postnatal week, was present during the second week and disappeared in the adult, whereas t-LTP persisted in adulthood. An antagonist at GluN2C/D subunit-containing NMDA receptors blocked t-LTD but not t-LTP. Conversely, a GluN2A subunit-preferring antagonist blocked t-LTP but not t-LTD. The GluN2C/D subunit requirement for t-LTD appears to be synapse specific, as GluN2C/D antagonists did not block t-LTD at horizontal cross-columnar layer 2/3-to-layer 2/3 synapses, which was blocked by a GluN2B antagonist instead. These data demonstrate an NMDA receptor subunit-dependent double dissociation of t-LTD and t-LTP mechanisms at layer 4-to-layer 2/3 synapses, and suggest that t-LTD is mediated by distinct molecular mechanisms at different synapses on the same postsynaptic neuron.

  6. Orexin 1 receptor antagonists in compulsive behaviour and anxiety: possible therapeutic use.

    Directory of Open Access Journals (Sweden)

    Emilio eMerlo-Pich

    2014-02-01

    Full Text Available Fifteen years after the discovery of hypocretin/orexin a large body of evidence has been collected supporting its critical role in the modulation of several regulatory physiological functions. While reduced levels of hypocretin/orexin were early on associated with narcolepsy, increased levels have been linked in recent years to pathological states of hypervigilance and, in particular, to insomnia. The filing to FDA of the dual-activity orexin receptor antagonist (DORA suvorexant for the indication of insomnia further corroborates the robustness of such evidences. However, as excessive vigilance is also typical of anxiety and panic episodes, as well as of abstinence and craving in substance misuse disorders, in this review we briefly discuss the evidence supporting the development of hypocretin/orexin receptor 1 (OX1 antagonists for these indications. Experiments using the OX1 antagonist SB-334867 and mutant mice have involved the OX1 receptor in mediating the compulsive reinstatement of drug seeking for ethanol, nicotine, cocaine, cannabinoids and morphine. More recently, data have been generated with the novel selective OX1 antagonists GSK1059865 and ACT-335827 on behavioural and cardiovascular response to stressors and panic-inducing agents in animals. Concluding, while waiting for pharmacologic data to become available in humans, risks and benefits for the development of an OX1 receptor antagonist for Binge Eating and Anxiety Disorders are discussed.

  7. Benzodiazepine receptor antagonists for acute and chronic hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Kjaergard, L L; Gluud, C

    2001-01-01

    The pathogenesis of hepatic encephalopathy is unknown. It has been suggested that liver failure leads to the accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition which may progress to coma. Several trials have assessed benzodiazepine receptor...... antagonists for hepatic encephalopathy, but the results are conflicting....

  8. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats.

    Science.gov (United States)

    Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E

    2001-04-01

    Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.

  9. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    Science.gov (United States)

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  10. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    Science.gov (United States)

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  11. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    Science.gov (United States)

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  12. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    Science.gov (United States)

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    The adenosine A2A receptor agonist CGS 21680 has shown effects similar to dopamine antagonists in behavioural assays in rats predictive for antipsychotic activity, without induction of extrapyramidal side-effects (EPS). In the present study, we examined whether this functional dopamine antagonism...... showed a functional anti-dopaminergic effect in Cebus apella monkeys without production of EPS. This further substantiates that adenosine A2A receptor agonists may have potential as antipsychotics with atypical profiles....

  14. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

    Science.gov (United States)

    Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun

    2015-10-01

    Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious

  15. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    Science.gov (United States)

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  16. Nonpeptidic angiotensin II AT₁ receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles.

    Science.gov (United States)

    Zhang, Jun; Wang, Jin-Liang; Yu, Wei-Fa; Zhou, Zhi-Ming; Tao, Wen-Chang; Wang, Yi-Cheng; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2013-11-01

    Both 6-substituted aminocarbonyl and acylamino benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT₁ receptor antagonists. Compounds 6f, 6g, 11e, 11f, 11g, and 12 showed nanomolar AT₁ receptor binding affinity and high AT₁ receptor selectivity over AT₂ receptor in a preliminary pharmacological evaluation. Among them, the two most active compounds 6f (AT₁ IC₅₀ = 3 nM, AT₂ IC₅₀ > 10,000 nM, PA₂ = 8.51) and 11g (AT₁ IC₅₀ = 0.1 nM, AT₂ IC₅₀ = 149 nM, PA₂ = 8.43) exhibited good antagonistic activity in isolated rabbit aortic strip functional assay. In addition, they were orally active AT₁ receptor antagonists in spontaneous hypertensive rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Selective Toll-Like Receptor 4 Antagonists Prevent Acute Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Mice.

    Science.gov (United States)

    Okada, Takeshi; Kawakita, Fumihiro; Nishikawa, Hirofumi; Nakano, Fumi; Liu, Lei; Suzuki, Hidenori

    2018-05-31

    There are no direct evidences showing the linkage between Toll-like receptor 4 (TLR4) and blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH). The purpose of this study was to examine if selective blockage of TLR4 prevents BBB disruption after SAH in mice and if the TLR4 signaling involves mitogen-activated protein kinases (MAPKs). One hundred and fifty-one C57BL/6 male mice underwent sham or endovascular perforation SAH operation, randomly followed by an intracerebroventricular infusion of vehicle or two dosages (117 or 585 ng) of a selective TLR4 antagonist IAXO-102 at 30 min post-operation. The effects were evaluated by survival rates, neurological scores, and brain water content at 24-72 h and immunoglobulin G immunostaining and Western blotting at 24 h post-SAH. IAXO-102 significantly prevented post-SAH neurological impairments, brain edema, and BBB disruption, resulting in improved survival rates. IAXO-102 also significantly suppressed post-SAH activation of a major isoform of MAPK p46 c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-9 as well as periostin induction and preserved tight junction protein zona occludens-1. Another selective TLR4 antagonist TAK-242, which has a different binding site from IAXO-102, also showed similar effects to IAXO-102. This study first provided the evidence that TLR4 signaling is involved in post-SAH acute BBB disruption and that the signaling is mediated at least partly by JNK activation. TLR4-targeted therapy may be promising to reduce post-SAH morbidities and mortalities.

  18. Muscarinic Receptor Agonists and Antagonists

    Directory of Open Access Journals (Sweden)

    David R. Kelly

    2001-02-01

    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  19. Antagonist profile of ibodutant at the tachykinin NK2 receptor in guinea pig isolated bronchi.

    Science.gov (United States)

    Santicioli, Paolo; Meini, Stefania; Giuliani, Sandro; Lecci, Alessandro; Maggi, Carlo Alberto

    2013-10-24

    In this study we have characterized the pharmacological profile of the non-peptide tachykinin NK 2 receptor antagonist ibodutant (MEN15596) in guinea pig isolated main bronchi contractility. The antagonist potency of ibodutant was evaluated using the selective NK 2 receptor agonist [βAla 8 ]NKA(4-10)-mediated contractions of guinea pig isolated main bronchi. In this assay ibodutant (30, 100 and 300nM) induced a concentration-dependent rightward shift of the [βAla 8 ]NKA(4-10) concentration-response curves without affecting the maximal contractile effect. The analysis of the results yielded a Schild-plot linear regression with a slope not different from unity (0.95, 95% c.l. 0.65-1.25), thus indicating a surmountable behaviour. The calculated apparent antagonist potency as pK B value was 8.31±0.05. Ibodutant (0.3-100nM), produced a concentration-dependent inhibition of the nonadrenergic-noncholinergic (NANC) contractile response induced by electrical field stimulation (EFS) of intrinsic airway nerves in guinea pig isolated main bronchi. At the highest concentration tested (100nM) ibodutant almost abolished the EFS-induced bronchoconstriction (95±4% inhibition), the calculated IC 50 value was 2.98nM (95% c.l. 1.73-5.16nM). In bronchi from ovalbumin (OVA) sensitized guinea pigs ibodutant (100nM) did not affect the maximal contractile response to OVA, but completely prevented the slowing in the fading of the motor response induced by phosphoramidon pretreatment linked to the endogenous neurokinin A release. Altogether, the present study demonstrate that ibodutant is a potent NK 2 receptor antagonist in guinea pig airways. © 2013 Published by Elsevier B.V.

  20. 3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a novel adenosine receptor antagonist with A(2A)-mediated neuroprotective effects.

    Science.gov (United States)

    Scatena, Alessia; Fornai, Francesco; Trincavelli, Maria Letizia; Taliani, Sabrina; Daniele, Simona; Pugliesi, Isabella; Cosconati, Sandro; Martini, Claudia; Da Settimo, Federico

    2011-09-21

    In this study, compound FTBI (3-(2-furyl)-10-(2-phenylethyl)[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one) was selected from a small library of triazinobenzimidazole derivatives as a potent A(2A) adenosine receptor (AR) antagonist and tested for its neuroprotective effects against two different kinds of dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) and methamphetamine (METH), in rat PC12 and in human neuroblastoma SH-SY5Y cell lines. FTBI, in a concentration range corresponding to its affinity for A(2A) AR subtype, significantly increased the number of viable PC12 cells after their exposure to METH and, to a similar extent, to MPP+, as demonstrated in both trypan blue exclusion assay and in cytological staining. These neuroprotective effects were also observed with a classical A(2A) AR antagonist, ZM241385, and appeared to be completely counteracted by the AR agonist, NECA, supporting A(2A) ARs are directly involved in FTBI-mediated effects. Similarly, in human SH-SY5Y cells, FTBI was able to prevent cell toxicity induced by MPP+ and METH, showing that this A(2A) AR antagonist has a neuroprotective effect independently by the specific cell model. Altogether these results demonstrate that the A(2A) AR blockade mediates cell protection against neurotoxicity induced by dopaminergic neurotoxins in dopamine containing cells, supporting the potential use of A(2A) AR antagonists in dopaminergic degenerative diseases including Parkinson's disease.

  1. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; De Clercq, Erik

    2005-01-01

    The chemokine receptors CCR5 and CXCR4 function as coreceptors for human immunodeficiency virus (HIV) and are attractive targets for the development of anti-HIV drugs. The most potent CXCR4 antagonists described until today are the bicyclams. The prototype compound, AMD3100, exhibits potent and s...

  2. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist.

    Science.gov (United States)

    Yoshida, Yu; Naoe, Yoshimitsu; Terauchi, Taro; Ozaki, Fumihiro; Doko, Takashi; Takemura, Ayumi; Tanaka, Toshiaki; Sorimachi, Keiichi; Beuckmann, Carsten T; Suzuki, Michiyuki; Ueno, Takashi; Ozaki, Shunsuke; Yonaga, Masahiro

    2015-06-11

    The orexin/hypocretin receptors are a family of G protein-coupled receptors and consist of orexin-1 (OX1) and orexin-2 (OX2) receptor subtypes. Orexin receptors are expressed throughout the central nervous system and are involved in the regulation of the sleep/wake cycle. Because modulation of these receptors constitutes a promising target for novel treatments of disorders associated with the control of sleep and wakefulness, such as insomnia, the development of orexin receptor antagonists has emerged as an important focus in drug discovery research. Here, we report the design, synthesis, characterization, and structure-activity relationships (SARs) of novel orexin receptor antagonists. Various modifications made to the core structure of a previously developed compound (-)-5, the lead molecule, resulted in compounds with improved chemical and pharmacological profiles. The investigation afforded a potential therapeutic agent, (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006), an orally active, potent orexin antagonist. The efficacy was demonstrated in mice in an in vivo study by using sleep parameter measurements.

  3. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  4. Viability of D283 medulloblastoma cells treated with a histone deacetylase inhibitor combined with bombesin receptor antagonists.

    Science.gov (United States)

    Jaeger, Mariane; Ghisleni, Eduarda C; Fratini, Lívia; Brunetto, Algemir L; Gregianin, Lauro José; Brunetto, André T; Schwartsmann, Gilberto; de Farias, Caroline B; Roesler, Rafael

    2016-01-01

    Medulloblastoma (MB) comprises four distinct molecular subgroups, and survival remains particularly poor in patients with Group 3 tumors. Mutations and copy number variations result in altered epigenetic regulation of gene expression in Group 3 MB. Histone deacetylase inhibitors (HDACi) reduce proliferation, promote cell death and neuronal differentiation, and increase sensitivity to radiation and chemotherapy in experimental MB. Bombesin receptor antagonists potentiate the antiproliferative effects of HDACi in lung cancer cells and show promise as experimental therapies for several human cancers. Here, we examined the viability of D283 cells, which belong to Group 3 MB, treated with an HDACi alone or combined with bombesin receptor antagonists. D283 MB cells were treated with different doses of the HDACi sodium butyrate (NaB), the neuromedin B receptor (NMBR) antagonist BIM-23127, the gastrin releasing peptide receptor (GRPR) antagonist RC-3095, or combinations of NaB with each receptor antagonist. Cell viability was examined by cell counting. NaB alone or combined with receptor antagonists reduced cell viability at all doses tested. BIM-23127 alone did not affect cell viability, whereas RC-3095 at an intermediate dose significantly increased cell number. Although HDACi are promising agents to inhibit MB growth, the present results provide preliminary evidence that combining HDACi with bombesin receptor antagonists is not an effective strategy to improve the effects of HDACi against MB cells.

  5. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F

    1999-01-01

    Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential...

  6. Expression of prostanoid receptors in human ductus arteriosus

    Science.gov (United States)

    Leonhardt, Andreas; Glaser, Alexander; Wegmann, Markus; Schranz, Dietmar; Seyberth, Hannsjörg; Nüsing, Rolf

    2003-01-01

    Prostaglandins play a major role in maintaining ductal patency in utero. Ductal tone is regulated by both locally released and circulating vasodilatory prostaglandins. In infants with ductus arteriosus-dependent congenital heart disease, ductal patency is maintained by intravenous administration of prostaglandin (PG) E1. Little information is available regarding the expression of prostaglandin receptors in man. By means of RT–PCR and immunohistochemistry we studied the expression of the PGI2 receptor (IP), the four different PGE2 receptors (EP1, EP2, EP3 and EP4), and the receptors for thromboxane (Tx) A2 (TP), PGD2 (DP) and PGF2α (FP) in the ductus arteriosus of three newborn infants with ductus arteriosus-dependent congenital heart disease and intravenous infusion of PGE1 and of one 8 month old child with a patent ductus arteriosus. The EP3, EP4, FP, IP and TP receptor were markedly expressed at the mRNA and protein level, whereas the EP2 receptor was weakly expressed and the EP1 receptor was detected in two out of four tissue specimens only. The DP receptor was not detected in any of the samples. The most pronounced expression, which was located in the media of the ductus arteriosus, was observed for the EP4 and TP receptors followed by IP and FP receptor protein. These data indicate that ductal patency during the infusion of PGE1 in infants with ductus arteriosus-dependent congenital heart disease might be mediated by the EP4 and IP receptor. The data further suggest that a heterogeneous population of prostanoid receptors may contribute to the regulation of ductus arteriosus tone in humans. PMID:12598419

  7. The Histamine H4 Receptor: From Orphan to the Clinic

    Directory of Open Access Journals (Sweden)

    Robin L. Thurmond

    2015-03-01

    Full Text Available The histamine H4 receptor (H4R was first noted as a sequence in genomic databases that had features of a G-protein coupled receptor. This putative receptor was found to bind histamine consistent with its homology to other histamine receptors and thus became the fourth member of the histamine receptor family. Due to the previous success of drugs that target the H1 and H2 receptors, an effort was made to understand the function of this receptor and determine if it represented a drug target. Taking advantage of the vast literature on histamine, a search for histamine activity that did not appear to be mediated by the other three histamine receptors was undertaken. From this asthma and pruritus emerged as areas of particular interest. Histamine has long been suspected to play a role in the pathogenesis of asthma, but antihistamines that target the H1 and H2 receptors have not been shown to be effective for this condition. The use of selective ligands in animal models of asthma has now potentially filled this gap by showing a role for the H4R in mediating lung function and inflammation. A similar story exists for chronic pruritus associated with conditions such as atopic dermatitis. Antihistamines that target the H1 receptor are effective in reducing acute pruritus, but are ineffective in pruritus experienced by patients with atopic dermatitis. As for asthma, animal models have now suggested a role for the H4R in mediating pruritic responses, with antagonists to the H4R reducing pruritus in a number of different conditions. The anti-pruritic effect of H4R antagonists has recently been shown in human clinical studies, validating the preclinical findings in the animal models. A selective H4R antagonist inhibited histamine-induced pruritus in health volunteers and reduced pruritus in patients with atopic dermatitis. The history to date of the H4R provides an excellent example of the deorphanization of a novel receptor and the translation of this into

  8. CGRP receptors mediating CGRP-, adrenomedullin- and amylin-induced relaxation in porcine coronary arteries. Characterization with 'Compound 1' (WO98/11128), a non-peptide antagonist

    DEFF Research Database (Denmark)

    Hasbak, P; Sams, A; Schifter, S

    2001-01-01

    . The partial porcine mRNA sequences shared 82 - 92% nucleotide identity with human sequences. 3. The human peptides alphaCGRP, betaCGRP, AM and amylin induced relaxation with pEC(50) values of 8.1, 8.1, 6.7 and 6.1 M respectively. 4. The antagonistic properties of a novel non-peptide CGRP antagonist 'Compound...... 1' (WO98/11128), betaCGRP(8 - 37) and the proposed AM receptor antagonist AM(22 - 52) were compared to the well-known CGRP(1) receptor antagonist alphaCGRP(8 - 37). 5. The alphaCGRP(8 - 37) and betaCGRP(8 - 37) induced concentration-dependent (10(-7) - 10(-5) M) rightward shift of both the alpha......(-6) M) had no significant antagonistic effect. 7. In conclusion, the building blocks forming CGRP and AM receptors were present in the porcine LAD, whereas those of the amylin receptor were not. alphaCGRP, betaCGRP, AM and amylin mediated vasorelaxation via the CGRP receptors. No functional response...

  9. Suvorexant: The first orexin receptor antagonist to treat insomnia

    OpenAIRE

    Dubey, Ashok K.; Handu, Shailendra S.; Mediratta, Pramod K.

    2015-01-01

    Primary insomnia is mainly treated with drugs acting on benzodiazepine receptors and a few other classes of drugs used for different co-morbidities. A novel approach to treat insomnia has been introduced recently, with the approval of suvorexant, the first in a new class of orexin receptor antagonists. Orexin receptors in the brain have been found to play an important role in the regulation of various aspects of arousal and motivation. The drugs commonly used for insomnia therapy to date, hav...

  10. Shifting physician prescribing to a preferred histamine-2-receptor antagonist. Effects of a multifactorial intervention in a mixed-model health maintenance organization.

    Science.gov (United States)

    Brufsky, J W; Ross-Degnan, D; Calabrese, D; Gao, X; Soumerai, S B

    1998-03-01

    This study was undertaken to determine whether a program of education, therapeutic reevaluation of eligible patients, and performance feedback could shift prescribing to cimetidine from other histamine-2 receptor antagonists, which commonly are used in the management of ulcers and reflux, and reduce costs without increasing rates of ulcer-related hospital admissions. This study used an interrupted monthly time series with comparison series in a large mixed-model health maintenance organization. Physicians employed in health centers (staff model) and physicians in independent medical groups contracting to provide health maintenance organization services (group model) participated. The comparative percentage prescribed of specific histamine-2 receptor antagonists (market share), total histamine-2 receptor antagonist prescribing, cost per histamine-2 receptor antagonist prescription, and the rate of hospitalization for gastrointestinal illness were assessed. In the staff model, therapeutic reevaluation resulted in a sudden increase in market share of the preferred histamine-2 receptor antagonist cimetidine (+53.8%) and a sudden decrease in ranitidine (-44.7%) and famotidine (-4.8%); subsequently, cimetidine market share grew by 1.1% per month. In the group model, therapeutic reevaluation resulted in increased cimetidine market share (+9.7%) and decreased prescribing of other histamine-2 receptor antagonists (ranitidine -11.6%; famotidine -1.2%). Performance feedback did not result in further changes in prescribing in either setting. Use of omeprazole, an expensive alternative, essentially was unchanged by the interventions, as were overall histamine-2 receptor antagonist prescribing and hospital admissions for gastrointestinal illnesses. This intervention, which cost approximately $60,000 to implement, resulted in estimated annual savings in histamine-2 receptor antagonist expenditures of $1.06 million. Annual savings in histamine-2 receptor antagonist expenditures

  11. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    Science.gov (United States)

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mutational analysis of the antagonist-binding site of the histamine H(1) receptor.

    Science.gov (United States)

    Wieland, K; Laak, A M; Smit, M J; Kühne, R; Timmerman, H; Leurs, R

    1999-10-15

    We combined in a previously derived three-dimensional model of the histamine H(1) receptor (Ter Laak, A. M., Timmerman, H., Leurs, H., Nederkoorn, P. H. J., Smit, M. J., and Donne-Op den Kelder, G. M. (1995) J. Comp. Aid. Mol. Design. 9, 319-330) a pharmacophore for the H(1) antagonist binding site (Ter Laak, A. M., Venhorst, J., Timmerman, H., and Donné-Op de Kelder, G. M. (1994) J. Med. Chem. 38, 3351-3360) with the known interacting amino acid residue Asp(116) (in transmembrane domain III) of the H(1) receptor and verified the predicted receptor-ligand interactions by site-directed mutagenesis. This resulted in the identification of the aromatic amino acids Trp(167), Phe(433), and Phe(436) in transmembrane domains IV and VI of the H(1) receptor as probable interaction points for the trans-aromatic ring of the H(1) antagonists. Subsequently, a specific interaction of carboxylate moieties of two therapeutically important, zwitterionic H(1) antagonists with Lys(200) in transmembrane domain V was predicted. A Lys(200) --> Ala mutation results in a 50- (acrivastine) to 8-fold (d-cetirizine) loss of affinity of these zwitterionic antagonists. In contrast, the affinities of structural analogs of acrivastine and cetirizine lacking the carboxylate group, triprolidine and meclozine, respectively, are unaffected by the Lys(200) --> Ala mutation. These data strongly suggest that Lys(200), unique for the H(1) receptor, acts as a specific anchor point for these "second generation" H(1) antagonists.

  13. Efficacy and safety of histamine-2 receptor antagonists

    NARCIS (Netherlands)

    van der Pol, Rachel; Langendam, Miranda; Benninga, Marc; van Wijk, Michiel; Tabbers, Merit

    2014-01-01

    Histamine-2 receptor antagonists (H2RAs) are frequently used in the treatment of gastroesophageal reflux disease (GERD) in children; however, their efficacy and safety is questionable. To systematically review the literature to assess the efficacy and safety of H2RAs in pediatric GERD. PubMed,

  14. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  15. Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2011-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-Bolton-Hunter-exendin(9-39) antagonist radioligands were performed in mice pancreas and insulinomas as well as in human insulinomas; competition experiments were performed in the presence of increasing concentration of GLP-1(7-36)amide or exendin(9-39). The antagonist 125 I-Bolton-Hunter-exendin(9-39) labels mouse pancreatic β-cells and mouse insulinomas, but it does not label human pancreatic β-cells and insulinomas. High affinity displacement (IC 50 approximately 2 nM) is observed in mouse β-cells and insulinomas with either the exendin(9-39) antagonist or GLP-1(7-36)amide agonist. For comparison, the agonist 125 I-GLP-1(7-36)amide intensively labels mouse pancreatic β-cells, mouse insulinoma and human insulinomas; high affinity displacement is observed for the GLP-1(7-36)amide in all tissues; however, a 5 and 20 times lower affinity is found for exendin(9-39) in the mouse and human tissues, respectively. This study reports a species-dependent behaviour of the GLP-1 receptor antagonist exendin(9-39) that can optimally target GLP-1 receptors in mice but not in human tissue. Due to its overly low binding affinity, this antagonist is an inadequate targeting agent for human GLP-1 receptor-expressing tissues, as opposed to the GLP-1 receptor agonist, GLP-1(7-36)amide. (orig.)

  16. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures.

    Science.gov (United States)

    Martin, Shelley E; de Fiebre, Nancy Ellen C; de Fiebre, Christopher M

    2004-10-01

    Studies have suggested that the neuroprotective actions of alpha7 nicotinic agonists arise from activation of receptors and not from the extensive desensitization which rapidly follows activation. Here, we report that the alpha7-selective nicotinic antagonist, methyllycaconitine (MLA), protects against beta-amyloid-induced neurotoxicity; whereas the alpha4beta2-selective antagonist, dihydro-beta-erythroidine, does not. These findings suggest that neuroprotective actions of alpha7-acting agents arise from receptor inhibition/desensitization and that alpha7 antagonists may be useful neuroprotective agents.

  17. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective

  18. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  19. Effects of a prostagrandin EP4-receptor agonist ONO-AE1-329 on the left ventricular pressure-volume relationship in the halothane-anesthetized dogs.

    Science.gov (United States)

    Honda, Atsushi; Nakamura, Yuji; Ohara, Hiroshi; Cao, Xin; Nomura, Hiroaki; Katagi, Jun; Wada, Takeshi; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Sugiyama, Atsushi

    2016-03-15

    Cardiac effects of a prostagrandin EP4-receptor agonist ONO-AE1-329 were assessed in the halothane-anesthetized dogs under the monitoring of left ventricular pressure-volume relationship, which were compared with those of clinically recommended doses of dopamine, dobutamine and milrinone (n=4-5 for each treatment). ONO-AE1-329 was intravenously administered in doses of 0.3, 1 and 3 ng/kg/min for 10 min with a pause of 20 min. Dopamine in a dose of 3 µg/kg/min for 10 min, dobutamine in a dose of 1 µg/kg/min for 10 min and milrinone in a dose of 5 µg/kg/min for 10 min followed by 0.5 µg/kg/min for 10 min were intravenously administered. Low dose of ONO-AE1-329 increased the stroke volume. Middle dose of ONO-AE1-329 increased the cardiac output, left ventricular end-diastolic volume, ejection fraction, maximum upstroke/downstroke velocities of the left ventricular pressure and external work, but decreased the end-systolic pressure and internal work besides the change by the low dose. High dose of ONO-AE1-329 increased the heart rate and maximum elastance, but decreased the end-systolic volume besides the changes by the middle dose. Dopamine, dobutamine and milrinone exerted essentially similar cardiac effects to ONO-AE1-329, but they did not significantly change the end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, end-systolic pressure, maximum elastance, external work or internal work. Thus, EP4-receptor stimulation by ONO-AE1-329 may have potential to better promote the passive ventricular filling than the conventional cardiotonic drugs, which could become a candidate of novel therapeutic strategy for the treatment of heart failure with preserved ejection fraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    Science.gov (United States)

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2007-01-01

    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive...... placebo. At baseline and at 13 weeks, all patients underwent an oral glucose-tolerance test, followed by an intravenous bolus of 0.3 g of glucose per kilogram of body weight, 0.5 mg of glucagon, and 5 g of arginine. In addition, 35 patients underwent a hyperinsulinemic-euglycemic clamp study. The primary...

  2. The discovery of the benzazepine class of histamine H3 receptor antagonists.

    Science.gov (United States)

    Wilson, David M; Apps, James; Bailey, Nicholas; Bamford, Mark J; Beresford, Isabel J; Briggs, Michael A; Calver, Andrew R; Crook, Barry; Davis, Robert P; Davis, Susannah; Dean, David K; Harris, Leanne; Heightman, Tom D; Panchal, Terry; Parr, Christopher A; Quashie, Nigel; Steadman, Jon G A; Schogger, Joanne; Sehmi, Sanjeet S; Stean, Tania O; Takle, Andrew K; Trail, Brenda K; White, Trevor; Witherington, Jason; Worby, Angela; Medhurst, Andrew D

    2013-12-15

    This Letter describes the discovery of a novel series of H3 receptor antagonists. The initial medicinal chemistry strategy focused on deconstructing and simplifying an early screening hit which rapidly led to the discovery of a novel series of H3 receptor antagonists based on the benzazepine core. Employing an H3 driven pharmacodynamic model, the series was then further optimised through to a lead compound that showed robust in vivo functional activity and possessed overall excellent developability properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Stereochemical studies of the monocyclic agouti-related protein (103-122) Arg-Phe-Phe residues: conversion of a melanocortin-4 receptor antagonist into an agonist and results in the discovery of a potent and selective melanocortin-1 agonist.

    Science.gov (United States)

    Joseph, Christine G; Wang, Xiang S; Scott, Joseph W; Bauzo, Rayna M; Xiang, Zhimin; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-12-30

    The agouti-related protein (AGRP) is an endogenous antagonist of the centrally expressed melanocortin receptors. The melanocortin-4 receptor (MC4R) is involved in energy homeostasis, food intake, sexual function, and obesity. The endogenous hAGRP protein is 132 amino acids in length, possesses five disulfide bridges at the C-terminus of the molecule, and is expressed in the hypothalamus of the brain. We have previously reported that a monocyclic hAGRP(103-122) peptide is an antagonist at the melanocortin receptors expressed in the brain. Stereochemical inversion from the endogenous l- to d-isomers of single or multiple amino acid modifications in this monocyclic truncated hAGRP sequence resulted in molecules that are converted from melanocortin receptor antagonists into melanocortin receptor agonists. The Asp-Pro-Ala-Ala-Thr-Ala-Tyr-cyclo[Cys-Arg-DPhe-DPhe-Asn-Ala-Phe-Cys]-Tyr-Ala-Arg-Lys-Leu peptide resulted in a 60 nM melanocortin-1 receptor agonist that is 100-fold selective versus the mMC4R, 1000-fold selective versus the mMC3R, and ca. 180-fold selective versus the mMC5R. In attempts to identify putative ligand-receptor interactions that may be participating in the agonist induced stimulation of the MC4R, selected ligands were docked into a homology molecular model of the mMC4R. These modeling studies have putatively identified hAGRP ligand DArg111-mMC4RAsn115 (TM3) and the hAGRP DPhe113-mMC4RPhe176 (TM4) interactions as important for agonist activity.

  4. Identification of pyrazolopyrimidine arylsulfonamides as CC-chemokine receptor 4 (CCR4) antagonists.

    Science.gov (United States)

    Miah, Afjal H; Champigny, Aurelie C; Graves, Rebecca H; Hodgson, Simon T; Percy, Jonathan M; Procopiou, Panayiotis A

    2017-10-15

    A novel 4-aminoindazole sulfonamide hit (13) was identified as a human CCR4 antagonists from testing a focussed library of compounds in the primary GTPγS assay. Replacing the indazole core with a pyrazolopyrimidine, and introduction of a methoxy group adjacent to the sulfonamide substituent, resulted in the identification of pyrazolopyrimidine 37a, which exhibited good binding affinity in the GTPγS assay (pIC 50 =7.2), low lipophilicity (clogP=2.2, chromlogD 7.4 =2.4), high LE (0.41), high solubility (CLND solubility ≥581µM), and an excellent PK profile in both the rat (F=62%) and the dog (F=100%). Further SAR investigation of the pyrazolopyrimidine suggested that substitution at N1 is tolerated, providing a suitable vector to modulate the properties, and increase the potency in a lead optimisation campaign. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    International Nuclear Information System (INIS)

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-01-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of 125 I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain

  6. Enantiopure Indolo[2,3-a]quinolizidines: Synthesis and Evaluation as NMDA Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Nuno A. L. Pereira

    2016-08-01

    Full Text Available Enantiopure tryptophanol is easily obtained from the reduction of its parent natural amino acid trypthophan (available from the chiral pool, and can be used as chiral auxiliary/inductor to control the stereochemical course of a diastereoselective reaction. Furthermore, enantiopure tryptophanol is useful for the syntheses of natural products or biological active molecules containing the aminoalcohol functionality. In this communication, we report the development of a small library of indolo[2,3-a]quinolizidines and evaluation of their activity as N-Methyl d-Aspartate (NMDA receptor antagonists. The indolo[2,3-a]quinolizidine scaffold was obtained using the following key steps: (i a stereoselective cyclocondensation of (S- or (R-tryptophanol with appropriate racemic δ-oxoesters; (ii a stereocontrolled cyclization on the indole nucleus. The synthesized enantiopure indolo[2,3-a]quinolizidines were evaluated as NMDA receptor antagonists and one compound was identified to be 2.9-fold more potent as NMDA receptor blocker than amantadine (used in the clinic for Parkinson’s disease. This compound represents a hit compound for the development of novel NMDA receptor antagonists with potential applications in neurodegenerative disorders associated with overactivation of NMDA receptors.

  7. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid.

    Science.gov (United States)

    Chapman, A G; Talebi, A; Yip, P K; Meldrum, B S

    2001-07-20

    The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not

  8. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions.

    Science.gov (United States)

    Nakamura, Y; Nakamura, K; Morrison, S F

    2009-06-30

    The central mechanism of fever induction is triggered by an action of prostaglandin E(2) (PGE(2)) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE(2) pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT

  9. Role of muscarinic receptor antagonists in urgency and nocturia

    NARCIS (Netherlands)

    Michel, Martin C.; de La Rosette, Jean J. M. C. H.

    2005-01-01

    The overactive bladder (OAB) syndrome is defined as urgency, with or without urgency incontinence, usually accompanied by frequency and nocturia. Muscarinic receptor antagonists are the most established form of treatment for OAB, but until recently their effectiveness was only confirmed for symptoms

  10. Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, P.O. Box 62, Bern (Switzerland)

    2011-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-Bolton-Hunter-exendin(9-39) antagonist radioligands were performed in mice pancreas and insulinomas as well as in human insulinomas; competition experiments were performed in the presence of increasing concentration of GLP-1(7-36)amide or exendin(9-39). The antagonist {sup 125}I-Bolton-Hunter-exendin(9-39) labels mouse pancreatic {beta}-cells and mouse insulinomas, but it does not label human pancreatic {beta}-cells and insulinomas. High affinity displacement (IC{sub 50} approximately 2 nM) is observed in mouse {beta}-cells and insulinomas with either the exendin(9-39) antagonist or GLP-1(7-36)amide agonist. For comparison, the agonist {sup 125}I-GLP-1(7-36)amide intensively labels mouse pancreatic {beta}-cells, mouse insulinoma and human insulinomas; high affinity displacement is observed for the GLP-1(7-36)amide in all tissues; however, a 5 and 20 times lower affinity is found for exendin(9-39) in the mouse and human tissues, respectively. This study reports a species-dependent behaviour of the GLP-1 receptor antagonist exendin(9-39) that can optimally target GLP-1 receptors in mice but not in human tissue. Due to its overly low binding affinity, this antagonist is an inadequate targeting agent for human GLP-1 receptor-expressing tissues, as opposed to the GLP-1 receptor agonist, GLP-1(7-36)amide. (orig.)

  11. 5-HT6 receptor antagonist attenuates the memory deficits associated with neuropathic pain and improves the efficacy of gabapentinoids.

    Science.gov (United States)

    Jayarajan, Pradeep; Nirogi, Ramakrishna; Shinde, Anil; Goura, Venkatesh; Babu, Vuyyuru Arun; Yathavakilla, Sumanth; Bhyrapuneni, Gopinadh

    2015-10-01

    Memory deficit is a co-morbid disorder in patients suffering from neuropathic pain. Gabapentin and pregabalin (gabapentinoids) are among the widely prescribed medications for the treatment of neuropathic pain. Memory loss and sedation are the commonly reported side effects with gabapentinoids. Improving the cognitive functions and attenuating drug-induced side effects may play a crucial role in the management of pain. We evaluated the effects of 5-HT6 receptor antagonists on the memory deficits associated with neuropathy. We also studied the effects of 5-HT6 receptor antagonists on the side effects, and the analgesic effects of gabapentinoids. 5-HT6 receptor antagonists attenuated the cognitive deficits in neuropathic rats. Neuropathic rats co-treated with 5-HT6 receptor antagonist and gabapentinoids showed improvement in memory. 5-HT6 receptor antagonists enhanced the analgesic effects of gabapentinoids but had no effect on the motor side effects. The observed effects may not be due to pharmacokinetic interactions. 5-HT6 receptor antagonist attenuate the cognitive deficits associated with neuropathy, and this effect is also seen when co-treated with gabapentinoids. Since, 5-HT6 antagonists improved the effectiveness of gabapentinoids, reduction in the dosage and frequency of gabapentinoids treatment may reduce the side effects. Combining 5-HT6 receptor antagonist with gabapentinoids may offer a novel treatment strategy for neuropathic pain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. A SELECTIVE ANTAGONIST OF MINERALOCORTICOID RECEPTOR EPLERENONE IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    B. B. Gegenava

    2015-01-01

    Full Text Available The role of aldosterone in pathophysiological processes is considered. The effects of the selective antagonist of mineralocorticoid receptor eplerenone are analyzed. The advantages of eplerenone compared with spironolactone are discussed.

  13. Effects of cannabinoid and glutamate receptor antagonists and their interactions on learning and memory in male rats.

    Science.gov (United States)

    Barzegar, Somayeh; Komaki, Alireza; Shahidi, Siamak; Sarihi, Abdolrahman; Mirazi, Naser; Salehi, Iraj

    2015-04-01

    Despite previous findings on the effects of cannabinoid and glutamatergic systems on learning and memory, the effects of the combined stimulation or the simultaneous inactivation of these two systems on learning and memory have not been studied. In addition, it is not clear whether the effects of the cannabinoid system on learning and memory occur through the modulation of glutamatergic synaptic transmission. Hence, in this study, we examined the effects of the simultaneous inactivation of the cannabinoid and glutamatergic systems on learning and memory using a passive avoidance (PA) test in rats. On the test day, AM251, which is a CB1 cannabinoid receptor antagonist; MK-801, which is a glutamate receptor antagonist; or both substances were injected intraperitoneally into male Wistar rats 30min before placing the animal in a shuttle box. A learning test (acquisition) was then performed, and a retrieval test was performed the following day. Learning and memory in the PA test were significantly different among the groups. The CB1 receptor antagonist improved the scores on the PA acquisition and retention tests. However, the glutamatergic receptor antagonist decreased the acquisition and retrieval scores on the PA task. The CB1 receptor antagonist partly decreased the glutamatergic receptor antagonist effects on PA learning and memory. These results indicated that the acute administration of a CB1 antagonist improved cognitive performance on a PA task in normal rats and that a glutamate-related mechanism may underlie the antagonism of cannabinoid by AM251 in learning and memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Synthesis and pharmacological evaluation of DHβE analogs as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Jepsen, Tue H.; Jensen, Anders A.; Lund, Mads Henrik

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis...

  15. Substituted 7-amino-5-thio-thiazolo[4,5-d]pyrimidines as potent and selective antagonists of the fractalkine receptor (CX3CR1).

    Science.gov (United States)

    Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf

    2013-04-25

    We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.

  16. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    Science.gov (United States)

    2016-08-01

    approximately halfway into the solution. All animals were tested at 60, 15 and 0 min before drug injection. For each animal , the first reading was discarded...approval (December 31, 2015), hiring new personnel, conducting baseline testing for procedures not involving animals , testing equipment, developing...treatment; Analgesia; Nociception; Antinociception; Inflammation; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain

  17. Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory.

    Science.gov (United States)

    Alaghband, Yasaman; Marshall, John F

    2013-04-01

    Environmental stimuli or contexts previously associated with rewarding drugs contribute importantly to relapse among addicts, and research has focused on neurobiological processes maintaining those memories. Much research shows contributions of cell surface receptors and intracellular signaling pathways in maintaining associations between rewarding drugs (e.g., cocaine) and concurrent cues/contexts; these memories can be degraded at the time of their retrieval through reconsolidation interference. Much less studied is the consolidation of drug-cue memories during their acquisition. The present experiments use the cocaine-conditioned place preference (CPP) paradigm in rats to directly compare, in a consistent setting, the effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists MK-801 and memantine on the consolidation and reconsolidation of cocaine-cue memories. For the consolidation studies, animals were systemically administered MK-801 or memantine immediately following training sessions. To investigate the effects of these NMDA receptor antagonists on the retention of previously established cocaine-cue memories, animals were systemically administered MK-801 or memantine immediately after memory retrieval. Animals given either NMDA receptor antagonist immediately following training sessions did not establish a preference for the cocaine-paired compartment. Post-retrieval administration of either NMDA receptor antagonist attenuated the animals' preference for the cocaine-paired compartment. Furthermore, animals given NMDA receptor antagonists post-retrieval showed a blunted response to cocaine-primed reinstatement. Using two distinct NMDA receptor antagonists in a common setting, these findings demonstrate that NMDA receptor-dependent processes contribute both to the consolidation and reconsolidation of cocaine-cue memories, and they point to the potential utility of treatments that interfere with drug-cue memory reconsolidation.

  18. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    Science.gov (United States)

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  19. Sympatho-inhibitory properties of various AT1 receptor antagonists

    NARCIS (Netherlands)

    Balt, Jippe C.; Mathy, Marie-Jeanne; Pfaffendorf, Martin; van Zwieten, Peter A.

    2002-01-01

    It is well known that angiotensin II (Ang II) can facilitate the effects of sympathetic neurotransmission. In the present study, using various experimental models, we investigated the inhibitory effects of several Ang II subtype 1 receptor (AT1) antagonists on this Ang II-induced facilitation. We

  20. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression

    Directory of Open Access Journals (Sweden)

    Laura López-Cruz

    2018-06-01

    Full Text Available Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.

  1. 125I-labeled 8-phenylxanthine derivatives: antagonist radioligands for adenosine A1 receptors

    International Nuclear Information System (INIS)

    Linden, J.; Patel, A.; Earl, C.Q.; Craig, R.H.; Daluge, S.M.

    1988-01-01

    A series of 8-phenylxanthine derivatives has been synthesized with oxyacetic acid on the para phenyl position to increase aqueous solubility and minimize nonspecific binding and iodinatable groups on the 1- or 3-position of the xanthine ring. The structure-activity relationship for binding of these compounds to A1 adenosine receptors of bovine and rat brain and A2 receptors of human platelets was examined. The addition of arylamine or photosensitive aryl azide groups to the 3-position of xanthine had little effect on A1 binding affinity with or without iodination, whereas substitutions at the 1-position caused greatly reduced A1 binding affinity. The addition of an aminobenzyl group to the 3-position of the xanthine had little effect on A2 binding affinity, but 3-aminophenethyl substitution decreased A2 binding affinity. Two acidic 3-(arylamino)-8-phenylxanthine derivatives were labeled with 125 I and evaluated as A1 receptor radioligands. The new radioligands bound to A1 receptors with KD values of 1-1.25 nM. Specific binding represented over 80% of total binding. High concentrations of NaCl or other salts increased the binding affinity of acidic but not neutral antagonists, suggesting that interactions between ionized xanthines and receptors may be affected significantly by changes in ionic strength. On the basis of binding studies with these antagonists and isotope dilution with the agonist [ 125 I]N6-(4-amino-3-iodobenzyl)adenosine, multiple agonist affinity states of A1 receptors have been identified

  2. Affinity and selectivity of PD156707, a novel nonpeptide endothelin antagonist, for human ET(A) and ET(B) receptors.

    Science.gov (United States)

    Maguire, J J; Kuc, R E; Davenport, A P

    1997-02-01

    We have determined the affinity and selectivity of a new nonpeptide antagonist PD156707 (sodium 2-benzo(1,3ioxol-5-yl-4-(4-methoxy-pheny l)-4-oxo-3-(3,4,5-trime tho xybenzyl)-but-2-enoate) for human endothelin (ET)(A) and ET(B) receptors. In human coronary artery and saphenous vein the affinity of the ET(A) receptor for PD156707 was 0.15 +/- 0.06 nM and 0.5 +/- 0.13 nM, respectively. Competition experiments in human left ventricle and kidney revealed that PD156707 had 1,000- to 15,000-fold selectivity for the ET(A) receptor over the ET(B) receptor. This selectivity was confirmed autoradiographically. In human coronary artery, mammary artery and saphenous vein PD156707 (3-300 nM) potently antagonized the vasoconstrictor responses to ET-1. The pA2 values estimated from the Gaddum-Schild equation were 8.07 +/- 0.09, 8.45 +/- 0.11 and 8.70 +/- 0.13, respectively. The concentration-response curves to ET-1 were shifted to the right in parallel fashion, without reduction of the maximum response. However, the regression lines fitted to the resulting Schild data deviated significantly from one. PD156707 appeared to be a more effective antagonist at lower concentrations than at the higher ones. It is possible that PD156707, a sodium salt, was reverting to a less soluble form which results in underestimation of its potency. These data show that PD156707 is a potent and selective antagonist at human ET(A) receptors and will be useful in clarifying the role of the endothelin peptides in human cardiovascular disease.

  3. Sulforaphane is not an effective antagonist of the human pregnane X-receptor in vivo

    International Nuclear Information System (INIS)

    Poulton, Emma Jane; Levy, Lisa; Lampe, Johanna W.; Shen, Danny D.; Tracy, Julia; Shuhart, Margaret C.; Thummel, Kenneth E.; Eaton, David L.

    2013-01-01

    Sulforaphane (SFN), is an effective in vitro antagonist of ligand activation of the human pregnane and xenobiotic receptor (PXR). PXR mediated CYP3A4 up-regulation is implicated in adverse drug-drug interactions making identification of small molecule antagonists a desirable therapeutic goal. SFN is not an antagonist to mouse or rat PXR in vitro; thus, normal rodent species are not suitable as in vivo models for human response. To evaluate whether SFN can effectively antagonize ligand activation of human PXR in vivo, a three-armed, randomized, crossover trial was conducted with 24 healthy adults. The potent PXR ligand — rifampicin (300 mg/d) was given alone for 7 days in arm 1, or in daily combination with 450 μmol SFN (Broccoli Sprout extract) in arm 2; SFN was given alone in arm 3. Midazolam as an in vivo phenotype marker of CYP3A was administered before and after each treatment arm. Rifampicin alone decreased midazolam AUC by 70%, indicative of the expected increase in CYP3A4 activity. Co-treatment with SFN did not reduce CYP3A4 induction. Treatment with SFN alone also did not affect CYP3A4 activity in the cohort as a whole, although in the subset with the highest basal CYP3A4 activity there was a statistically significant increase in midazolam AUC (i.e., decrease in CYP3A4 activity). A parallel study in humanized PXR mice yielded similar results. The parallel effects of SFN between humanized PXR mice and human subjects demonstrate the predictive value of humanized mouse models in situations where species differences in ligand-receptor interactions preclude the use of a native mouse model for studying human ligand-receptor pharmacology. -- Highlights: ► The effects of SFN on PXR mediated CYP3A4 induction in humanized PXR mice and humans were examined. ► SFN had no effect on rifampicin mediated CYP3A4 induction in humans or humanized mice. ► SFN had a modest effect on basal CYP3A4 activity among subjects with higher baseline activity. ► Humanized PXR

  4. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    Science.gov (United States)

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Interaction between Ca++-channel antagonists and α2-adrenergic receptors in rabbit ileal cell membrane

    International Nuclear Information System (INIS)

    Homeidan, F.R.; Wicks, J.; Cusolito, S.; El-Sabban, M.E.; Sharp, G.W.G.; Donowitz, M.

    1986-01-01

    An interaction between Ca ++ -channel antagonists and the α 2 -adrenergic receptor on active electrolyte transport was demonstrated in rabbit ileum. Clonidine, an α 2 -agonist, stimulated NaCl absorption apparently by Ca ++ -channel antagonism since it inhibited 45 Ca ++ uptake across the basolateral membrane and decreased total ileal calcium content. This stimulation was inhibited by the Ca ++ -channel antagonists dl- and l-verapamil and cadmium but not by nifedipine. The binding of 3 H-yohimbine, a specific α 2 -adrenergic antagonist, was studied on purified ileal cell membranes using a rapid filtration technique. dl-Verapamil and Cd ++ inhibited the specific binding of 3 H-yohimbine over the same concentration range in which they affected transport. In contrast, nifedipine had no effect on binding, just as it had no effect on clonidine-stimulated NaCl absorption. These data demonstrate that there is an interaction between Ca ++ -channels and α 2 -adrenergic receptors in ileal basolateral membranes. Some Ca ++ -channel antagonists alter α 2 -adrenergic binding to the receptor and α 2 -agonist binding leads to changes in Ca ++ entry. A close spatial relationship between the Ca ++ -channel and the α 2 -receptor could explain the data

  6. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  7. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  8. Emerging growth factor receptor antagonists for the treatment of renal cell carcinoma.

    Science.gov (United States)

    Zahoor, Haris; Rini, Brian I

    2016-12-01

    The landscape of systemic treatment for metastatic renal cell carcinoma (RCC) has dramatically changed with the introduction of targeted agents including vascular endothelial growth factor (VEGF) inhibitors. Recently, multiple new agents including growth factor receptor antagonists and a checkpoint inhibitor were approved for the treatment of refractory metastatic RCC based on encouraging benefit shown in clinical trials. Areas covered: The background and biological rationale of existing treatment options including a brief discussion of clinical trials which led to their approval, is presented. This is followed by reviewing the limitations of these therapeutic options, medical need to develop new treatments and major goals of ongoing research. We then discuss two recently approved growth factor receptor antagonists i.e. cabozantinib and lenvatinib, and a recently approved checkpoint inhibitor, nivolumab, and issues pertaining to drug development, and future directions in treatment of metastatic RCC. Expert opinion: Recently approved growth factor receptor antagonists have shown encouraging survival benefit but associated drug toxicity is a major issue. Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, has similarly shown survival benefit and is well tolerated. With multiple options now available in this patient population, the right sequence of these agents remains to be determined.

  9. Serotonergic 5-HT6 Receptor Antagonists: Heterocyclic Chemistry and Potential Therapeutic Significance.

    Science.gov (United States)

    Bali, Alka; Singh, Shalu

    2015-01-01

    The serotonin 5-HT(6) receptor (5- HT(6)R) is amongst the recently discovered serotonergic receptors with almost exclusive localization in the brain. Hence, this receptor is fast emerging as a promising target for cognition enhancement in central nervous system (CNS) diseases such as Alzheimer's disease (cognitive function), obesity, schizophrenia and anxiety. The last decade has seen a surge of literature reports on the functional role of this receptor in learning and memory processes and investigations related to the chemistry and pharmacology of 5-HT(6) receptor ligands, especially 5- HT(6) receptor antagonists. Studies show the involvement of multiple neurotransmitter systems in cognitive enhancement by 5-HT(6)R antagonists including cholinergic, glutamatergic, and GABAergic systems. Several of the 5-HT(6)R ligands are indole based agents bearing structural similarity to the endogenous neurotransmitter serotonin. Based on the pharmacophoric models proposed for these agents, drug designing has been carried out incorporating various heterocyclic replacements for the indole nucleus. In this review, we have broadly summarized the medicinal chemistry and current status of this fairly recent class of drugs along with their potential therapeutic applications.

  10. Progress of study on the dopamine D4 receptor imaging agent

    International Nuclear Information System (INIS)

    Tian Haibin; Zhang Lan; Zhang Chunfu; Li Junling; Yin Duanzhi

    2001-01-01

    Dopamine receptors were originally classified into five receptors subtypes, the dopamine D 4 receptor was included. Schizophrenic pathophysiology may be associated with expression and function of the dopamine D 4 receptor; it is of great importance to study the imaging agent of dopamine D 4 receptor. The study on radioactivity distribution and metabolize of radioligand remains hampered by the lack radioligand for the D 4 receptor which can be labeled using suitable nuclei. This paper reviews the progress of study on the dopamine D 4 receptor imaging agent, with particular emphasis vary nuclei, for example 11 C, 18 F, 123 I, labeled D 4 receptor ligands, antagonists and analogs as PET or SPECT imaging agents. Authors estimated affinity and selectivity of radioligands for the dopamine D 4 receptor in laboratory animal tests

  11. A naturally occurring Lgr4 splice variant encodes a soluble antagonist useful for demonstrating the gonadal roles of Lgr4 in mammals.

    Directory of Open Access Journals (Sweden)

    Pei-Jen Hsu

    Full Text Available Leucine-rich repeat containing G protein-coupled receptor 4 (LGR4 promotes the Wnt signaling through interaction with R-spondins or norrin. Using PCR amplification from rat ovarian cDNAs, we identified a naturally occurring Lgr4 splice variant encoding only the ectodomain of Lgr4, which was named Lgr4-ED. Lgr4-ED can be detected as a secreted protein in the extracts from rodent and bovine postnatal gonads, suggesting conservation of Lgr4-ED in mammals. Recombinant Lgr4-ED purified from the conditioned media of transfected 293T cells was found to dose-dependently inhibit the LGR4-mediated Wnt signaling induced by RSPO2 or norrin, suggesting that it is capable of ligand absorption and could have a potential role as an antagonist. Intraperitoneal injection of purified recombinant Lgr4-ED into newborn mice was found to significantly decrease the testicular expression of estrogen receptor alpha and aquaporin 1, which is similar to the phenotype found in Lgr4-null mice. Administration of recombinant Lgr4-ED to superovulated female rats can also decrease the expression of estrogen receptor alpha, aquaporin 1, LH receptor and other key steroidogenic genes as well as bring about the suppression of progesterone production. Thus, these findings suggest that endogenously expressed Lgr4-ED may act as an antagonist molecule and help to fine-tune the R-spondin/norrin-mediated Lgr4-Wnt signaling during gonadal development.

  12. Attenuation of antagonist-induced impairment of dopamine receptors by L-prolyl-L-leucyl-glycinamide

    International Nuclear Information System (INIS)

    Saleh, M.I.M.

    1988-01-01

    The present study was undertaken in order to determine whether chronic,long-term postnatal challenge of rat pups per se, with specific dopamine D1 and D2 receptor antagonists, would modify the ontogeny of the respective receptor types. Since the neuropeptide L-prolyl-L-leucyl-glycinamide (PLG) attenuates the effect of haloperidol on dopamine D2 receptors in adult rats it was of interest to determine whether PLG would modulate antagonists-induced alterations in the ontogeny of striatal dopamine D1 and D2 receptors. Half of the rats were treated daily for 32 days from birth with SCH-23390, a selective dopamine D1 antagonist; or spiroperidol, a selective dopamine D2 antagonists; or both SCH-23390 and spiroperidol; or saline. The other half of the litters were treated with PLG, in combination with the other treatments. Animals were decapitated at 5, 8, and 12 weeks from birth for neurochemical analysis of the striatum. Chronic SCH-23390 treatment produced a 70-80% decrease in the binding of [ 3 H] SCH-23390 to striatal homogenates. The alteration at 5 weeks was associated with a 78% decrease in the Bmax for [ 3 H] SCH-23390 binding, and no change in the K D . Similarly, at 5, 8, and 12 weeks, chronic spiroperidol treatment reduced the binding of [ 3 H] spiroperidol to striatal homogenates by 70-80%

  13. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia.

    Science.gov (United States)

    Li, Jun; Liang, Xibin; Wang, Qian; Breyer, Richard M; McCullough, Louise; Andreasson, Katrin

    2008-06-20

    Induction of COX-2 activity in cerebral ischemia results in increased neuronal injury and infarct size. Recent studies investigating neurotoxic mechanisms of COX-2 demonstrate both toxic and paradoxically protective effects of downstream prostaglandin receptor signaling pathways. We tested whether misoprostol, a PGE(2) receptor agonist that is utilized clinically as an anti-ulcer agent and signals through the protective PGE(2) EP2, EP3, and EP4 receptors, would reduce brain injury in the murine middle cerebral artery occlusion-reperfusion (MCAO-RP) model. Administration of misoprostol, at the time of MCAO or 2h after MCAO, resulted in significant rescue of infarct volume at 24 and 72h. Immunocytochemistry demonstrated dynamic regulation of the EP2 and EP4 receptors during reperfusion in neurons and endothelial cells of cerebral cortex and striatum, with limited expression of EP3 receptor. EP3-/- mice had no significant changes in infarct volume compared to control littermates. Moreover, administration of misoprostol to EP3+/+ and EP3-/- mice showed similar levels of infarct rescue, indicating that misoprostol protection was not mediated through the EP3 receptor. Taken together, these findings suggest a novel function for misoprostol as a protective agent in cerebral ischemia acting via the PGE(2) EP2 and/or EP4 receptors.

  14. Interactions of CB1 and mGlu5 receptor antagonists in food intake, anxiety and memory models in rats.

    Science.gov (United States)

    Varga, Balázs; Kassai, Ferenc; Gyertyán, István

    2012-12-01

    CB(1) receptor antagonists proved to be effective anti-obesity drugs, however, their depressive and anxiogenic effects became also evident. Finding solution to overcome these psychiatric side effects is still in focus of research. Based on the available clinical and preclinical results we hypothesized that the combination of CB(1) and mGlu(5) receptor antagonisms may result in a pharmacological intervention, where the anxiolytic mGlu(5) receptor inhibition may counteract the anxiogenic psychiatric side effects of CB(1) antagonism, while CB(1) antagonism may ameliorate the memory impairing effect of mGlu(5) receptor antagonism. Further, the two components will synergistically interact in blocking food-intake and reducing obesity. For testing the interaction of mGlu(5) and CB(1) receptor antagonism MTEP [3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pridine; SIB-1757, 6-methyl-2-(phenylazo)-3-pyridinol)] (mGlu(5) antagonist) and rimonabant [(5-(4-Chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide)hydrochloride] (CB(1) antagonist) were used. All experiments were carried out in rats. Effects of the compounds on anxiety were tested in two foot shock induced ultrasonic vocalization paradigms, appetite suppression was assessed in the food intake test, while memory effects were tested in a context conditioned ultrasonic vocalization setup. MTEP abolished the anxiogenic effect of rimonabant, while there was an additive cooperation in suppressing appetite. However, rimonabant did not ameliorate the memory impairing effect of MTEP. By combination of CB(1) and mGluR5 antagonism, anxiety related side effects might be attenuated, appetite suppression maintained, nevertheless, the possible emergence of unwanted memory impairments can overshadow its therapeutic success. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Multiple sclerosis following treatment with a cannabinoid receptor-1 antagonist

    NARCIS (Netherlands)

    van Oosten, B. W.; Killestein, J.; Mathus-Vliegen, E. M. H.; Polman, C. H.

    2004-01-01

    Laboratory research including animal models of human disease suggests that cannabinoids might have therapeutic potential in multiple sclerosis (MS). We have recently seen a 46-year-old woman who developed MS after starting treatment with a cannabinoid receptor antagonist for obesity. The occurrence

  16. Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children

    DEFF Research Database (Denmark)

    Bisgaard, H; Nielsen, K G

    2000-01-01

    We hypothesized that a leukotriene receptor antagonist (LTRA) could provide bronchoprotection against the cold, dry air-induced response in asthmatic preschool children. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of the specific LTRA montelukast at 5...

  17. Mice lacking prostaglandin E receptor subtype 4 manifest disrupted lipid metabolism attributable to impaired triglyceride clearance.

    Science.gov (United States)

    Cai, Yin; Ying, Fan; Song, Erfei; Wang, Yu; Xu, Aimin; Vanhoutte, Paul M; Tang, Eva Hoi-Ching

    2015-12-01

    Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4. © FASEB.

  18. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  19. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists

    Directory of Open Access Journals (Sweden)

    Sadek B

    2016-11-01

    , in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-ylpropoxyphenylmethanol, and its (S-enantiomer (4 significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R-enantiomer (3 in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H3R agonist R-(α-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1–6 revealed profound stereoselectivity at human H3Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1–6 showed stereoselectivity in different convulsion models in male adult rats. Keywords: histamine, H3 receptor, isomeric antagonists, anticonvulsant activity, stereo­selectivity

  20. Decrement in operant performance produced by NMDA receptor antagonists in the rat: tolerance and cross-tolerance.

    Science.gov (United States)

    Dravolina, O A; Zvartau, E E; Bespalov, A Y

    2000-04-01

    Current perspectives on the clinical use of NMDA receptor antagonists infer repeated administration schedules for the management of different pathological states. The development of tolerance and cross-tolerance between different NMDA receptor antagonists may be an important factor contributing to the clinical efficacy of these drugs. The present study aimed to characterize the development of tolerance and cross-tolerance to the ability of various site-selective NMDA receptor antagonists to produce a decrement of operant responding (multiple extinction 9 s fixed-interval 1-s schedule of water reinforcement). Acute administration of D-CPPen (SDZ EAA 494; 1-5.6 mg/kg), dizocilpine (MK-801; 0.03-0.3 mg/kg), memantine (0.3-17 mg/kg), ACEA-1021 (10-56 mg/kg), and eliprodil (1-30 mg/kg) differentially affected operant responding. Both increases and decreases in response rates and accuracy of responding were observed. Repeated preexposure to D-CPPen (5.6 mg/kg, once a day for 7 days) attenuated a behavioral disruption produced by an acute challenge with D-CPPen or ACEA-1021, but potentiated the effects of dizocilpine, memantine, and eliprodil. Based on the present results, one can suggest that the repeated administration of a competitive NMDA receptor antagonist differentially affects the functional activity of various sites on NMDA receptor complex.

  1. Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus.

    Science.gov (United States)

    Jiang, Dong-Neng; Li, Jian-Tao; Tao, Ya-Xiong; Chen, Hua-Pu; Deng, Si-Ping; Zhu, Chun-Hua; Li, Guang-Li

    2017-05-01

    Melanocortin-4 receptor (Mc4r) function related to reproduction in fish has not been extensively investigated. Here, we report on gene expression changes by real-time PCR following treatment with Mc4r agonists and antagonists in the spotted scat (Scatophagus argus). Using in vitro incubated hypothalamus, the Mc4r nonselective agonist NDP-MSH ([Nle 4 , D-Phe 7 ]-α-melanocyte stimulating hormone; 10 -6 M) and selective agonist THIQ (N-[(3R)-1, 2, 3, 4-Tetrahydroisoquinolinium-3-ylcarbonyl]- (1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine; 10 -7 M) significantly increased the expression of gnrh (Gonadotropin releasing hormone), while the Mc4r nonselective antagonist SHU9119 (Ac-Nle-[Asp-His-DPhe/DNal(2')-Arg-Trp-Lys]-NH2; 10 -6 M) and selective antagonist Ipsen 5i (compound 5i synthesized in Ipsen Research Laboratories; 10 -6 M) significantly inhibited gnrh expression after 3 h of incubation. In incubated pituitary tissue, NDP-MSH and THIQ significantly increased the expression of fshb (Follicle-stimulating hormone beta subunit) and lhb (Luteinizing hormone beta subunit), while SHU9119 and Ipsen 5i significantly decreased fshb and lhb expression after 3 h of incubation. During the in vivo experiment, THIQ (1 mg/kg bw) significantly increased gnrh expression in hypothalamic tissue, as well as the fshb and lhb expression in pituitary tissue 12 h after abdominal injection. Furthermore, Ipsen 5i (1 mg/kg bw) significantly inhibited gnrh expression in hypothalamic tissue, as well as fshb and lhb gene expression in pituitary tissue 12 h after abdominal injection. In summary, Mc4r singling appears to stimulate gnrh expression in the hypothalamus, thereby modulating the synthesis of Fsh and Lh in the pituitary. In addition, Mc4r also appears to directly regulate fshb and lhb levels in the pituitary in spotted scat. Our study suggests that Mc4r, through the hypothalamus and pituitary, participates in reproductive

  2. Muscarinic receptor antagonists for overactive bladder treatment: does one fit all?

    NARCIS (Netherlands)

    Witte, Lambertus P. W.; Mulder, Wilhelmina M. C.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2009-01-01

    Purpose of review To review evidence and regulatory dosing recommendations for muscarinic receptor antagonists used in the treatment of overactive bladder symptom complex (darifenacin, fesoterodine oxybutynin propiverine solifenacin tolterodine trospium) in special patient populations. Recent

  3. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  4. Studies on an (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor antagonist IKM-159

    DEFF Research Database (Denmark)

    Juknaite, Lina; Sugamata, Yutaro; Tokiwa, Kazuya

    2013-01-01

    IKM-159 was developed and identified as a member of a new class of heterotricyclic glutamate analogs that act as AMPA receptor-selective antagonists. However, it was not known which enantiomer of IKM-159 was responsible for its pharmacological activities. Here, we report in vivo and in vitro neur...

  5. Growth Hormone Receptor Antagonist Treatment Reduces Exercise Performance in Young Males

    DEFF Research Database (Denmark)

    Goto, K.; Doessing, S.; Nielsen, R.H.

    2009-01-01

    between the groups in terms of changes in serum free fatty acids, glycerol, (V) over dotO(2), or relative fat oxidation. Conclusion: GH might be an important determinant of exercise capacity during prolonged exercise, but GHR antagonist did not alter fat metabolism during exercise. (J Clin Endocrinol......Context: The effects of GH on exercise performance remain unclear. Objective: The aim of the study was to examine the effects of GH receptor (GHR) antagonist treatment on exercise performance. Design: Subjects were treated with the GHR antagonist pegvisomant or placebo for 16 d. After the treatment...... period, they exercised to determine exercise performance and hormonal and metabolic responses. Participants: Twenty healthy males participated in the study. Intervention: Subjects were treated with the GHR antagonist (n = 10; 10 mg/d) or placebo (n = 10). After the treatment period, they performed...

  6. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    Science.gov (United States)

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. © The Author(s) 2016.

  7. Recent progress in the development of small-molecule glucagon receptor antagonists.

    Science.gov (United States)

    Sammons, Matthew F; Lee, Esther C Y

    2015-10-01

    The endocrine hormone glucagon stimulates hepatic glucose output via its action at the glucagon receptor (GCGr) in the liver. In the diabetic state, dysregulation of glucagon secretion contributes to abnormally elevated hepatic glucose output. The inhibition of glucagon-induced hepatic glucose output via antagonism of the GCGr using small-molecule ligands is a promising mechanism for improving glycemic control in the diabetic state. Clinical data evaluating the therapeutic potential of small-molecule GCGr antagonists is currently emerging. Recently disclosed clinical data demonstrates the potential efficacy and possible therapeutic limitations of small-molecule GCGr antagonists. Recent pre-clinical work on the development of GCGr antagonists is also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Systematic review: Antacids, H2-receptor antagonists, prokinetics, bismuth and sucralfate therapy for non-ulcer dyspepsia.

    Science.gov (United States)

    Moayyedi, P; Soo, S; Deeks, J; Forman, D; Harris, A; Innes, M; Delaney, B

    2003-05-15

    Evidence for the effectiveness of antacids, histamine-2 receptor antagonists, bismuth salts, sucralfate and prokinetic therapy in non-ulcer dyspepsia is conflicting. To conduct a systematic review evaluating these therapies in non-ulcer dyspepsia. Electronic searches were performed using the Cochrane Controlled Trials Register, Medline, EMBASE, Cinahl and SIGLE until September 2002. Dyspepsia outcomes were dichotomized into cured/improved vs. same/worse. Prokinetics [14 trials, 1053 patients; relative risk reduction (RRR), 48%; 95% confidence interval (95% CI), 27-63%] and histamine-2 receptor antagonists (11 trials, 2164 patients; RRR, 22%; 95% CI, 7-35%) were significantly more effective than placebo. Bismuth salts (RRR, 40%; 95% CI, - 3% to 65%) were superior to placebo, but this was of marginal statistical significance. Antacids and sucralfate were not statistically significantly superior to placebo. A funnel plot suggested that the prokinetic and histamine-2 receptor antagonist results could be due to publication bias. The meta-analyses suggest that histamine-2 receptor antagonists and prokinetics are superior to placebo. These data are difficult to interpret, however, as funnel plot asymmetry suggests that the magnitude of the effect could be due to publication bias or other heterogeneity-related issues.

  9. Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Huanzhong Cui

    2016-10-01

    Full Text Available A series of antagonists specifically targeting growth hormone receptors (GHR in different species, such as humans, rats, bovines, and mice, have been designed; however, there are currently no antagonists that target the porcine growth hormone (GH. Therefore, in this study, we developed and characterized a porcine GHR (pGHR antibody antagonist (denoted by AN98 via the hybridoma technique. The results from enzyme-linked immunosorbent assay, fluorescence activated cell sorter, indirect immunoinfluscent assay, and competitive receptor binding analysis showed that AN98 could specifically recognize pGHR, and further experiments indicated that AN98 could effectively inhibit pGH-induced signalling in CHO-pGHR cells and porcine hepatocytes. In addition, AN98 also inhibited GH-induced insulin-like growth factor-1 (IGF-1 secretion in porcine hepatocytes. In summary, these findings indicated that AN98, as a pGHR-specific antagonist, has potential applications in pGH-pGHR-related research on domestic pigs.

  10. Discovery of a Manduca sexta Allatotropin Antagonist from a Manduca sexta Allatotropin Receptor Homology Model

    Directory of Open Access Journals (Sweden)

    Zhen-Peng Kai

    2018-04-01

    Full Text Available Insect G protein coupled receptors (GPCRs have important roles in modulating biology, physiology and behavior. They have been identified as candidate targets for next-generation insecticides, yet these targets have been relatively poorly exploited for insect control. In this study, we present a pipeline of novel Manduca sexta allatotropin (Manse-AT antagonist discovery with homology modeling, docking, molecular dynamics simulation and structure-activity relationship. A series of truncated and alanine-replacement analogs of Manse-AT were assayed for the stimulation of juvenile hormone biosynthesis. The minimum sequence required to retain potent biological activity is the C-terminal amidated octapeptide Manse-AT (6–13. We identified three residues essential for bioactivity (Thr4, Arg6 and Phe8 by assaying alanine-replacement analogs of Manse-AT (6–13. Alanine replacement of other residues resulted in reduced potency but bioactivity was retained. The 3D structure of the receptor (Manse-ATR was built and the binding pocket was identified. The binding affinities of all the analogs were estimated by calculating the free energy of binding. The calculated binding affinities corresponded to the biological activities of the analogs, which supporting our localization of the binding pocket. Then, based on the docking and molecular dynamics studies of Manse-AT (10–13, we described it can act as a potent Manse-AT antagonist. The antagonistic effect on JH biosynthesis of Manse-AT (10–13 validated our hypothesis. The IC50 value of antagonist Manse-AT (10–13 is 0.9 nM. The structure-activity relationship of antagonist Manse-AT (10–13 was also studied for the further purpose of investigating theoretically the structure factors influencing activity. These data will be useful for the design of new Manse-AT agonist and antagonist as potential pest control agents.

  11. Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT₁ receptor antagonists.

    Science.gov (United States)

    Zhang, Jun; Wang, Jin-Liang; Zhou, Zhi-Ming; Li, Zhi-Huai; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2012-07-15

    A series of 6-substituted carbamoyl benzimidazoles were designed and synthesised as new nonpeptidic angiotensin II AT(1) receptor antagonists. The preliminary pharmacological evaluation revealed a nanomolar AT(1) receptor binding affinity for all compounds in the series, and a potent antagonistic activity in an isolated rabbit aortic strip functional assay for compounds 6f, 6g, 6h and 6k was also demonstrated. Furthermore, evaluation in spontaneous hypertensive rats and a preliminary toxicity evaluation showed that compound 6g is an orally active AT(1) receptor antagonist with low toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    Science.gov (United States)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  13. Tachykinin NK₁ receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation.

    Science.gov (United States)

    Tumati, Suneeta; Largent-Milnes, Tally M; Keresztes, Attila I; Yamamoto, Takashi; Vanderah, Todd W; Roeske, William R; Hruby, Victor J; Varga, Eva V

    2012-06-05

    Prolonged morphine treatment increases pain sensitivity in many patients. Enhanced spinal Substance P release is one of the adaptive changes associated with sustained opioid exposure. In addition to pain transmitting second order neurons, spinal microglia and astrocytes also express functionally active Tachykinin NK₁ (Substance P) receptors. In the present work we investigated the role of glial Tachykinin NK₁ receptors in morphine withdrawal-mediated spinal microglia and astrocyte activation. Our data indicate that intrathecal co-administration (6 days, twice daily) of a selective Tachykinin NK₁ receptor antagonist (N-acetyl-L-tryptophan 3,5-bis(trifluoromethyl)benzylester (L-732,138; 20 μg/injection)) attenuates spinal microglia and astrocyte marker and pro-inflammatory mediator immunoreactivity as well as hyperalgesia in withdrawn rats. Furthermore, covalent linkage of the opioid agonist with a Tachykinin NK₁ antagonist pharmacophore yielded a bivalent compound that did not augment spinal microglia or astrocyte marker or pro-inflammatory mediator immunoreactivity and did not cause paradoxical pain sensitization upon drug withdrawal. Thus, bivalent opioid/Tachykinin NK₁ receptor antagonists may provide a novel paradigm for long-term pain management.

  14. PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes.

    Science.gov (United States)

    Hassouneh, Ramzi; Nasrallah, Rania; Zimpelmann, Joe; Gutsol, Alex; Eckert, David; Ghossein, Jamie; Burns, Kevin D; Hébert, Richard L

    2016-06-01

    The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.

  15. Nuclear receptor 4A (NR4A) family - orphans no more.

    Science.gov (United States)

    Safe, Stephen; Jin, Un-Ho; Morpurgo, Benjamin; Abudayyeh, Ala; Singh, Mandip; Tjalkens, Ronald B

    2016-03-01

    The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Glucose attenuates impairments in memory and CREB activation produced by an α4β2 but not an α7 nicotinic receptor antagonist.

    Science.gov (United States)

    Morris, Ken A; Li, Sisi; Bui, Duat D; Gold, Paul E

    2013-04-01

    Glucose improves memory for a variety of tasks when administered to rats and mice near the time of training. Prior work indicates glucose may enhance memory by increasing the synthesis and release of the neurotransmitter acetylcholine in the brain. To investigate if specific acetylcholine receptor subtypes may mediate some of the memory-enhancing actions of glucose, we examined the effects of subtype-specific nicotinic acetylcholine receptor antagonists on memory in Fischer-344 rats and also examined the ability of glucose to reverse drug-induced impairments. Pre-training peripheral injections of methyllycaconitine (MLA) or dihydro-beta-erythroidine (DHβE), which are specific α7 and α4β2 nicotinic receptor antagonists, respectively, dose-dependently impaired retention latencies in an inhibitory avoidance task when tested 7-days but not 1 h after training. Immediate post-training glucose injections attenuated the impairments, but were more effective in attenuating the DHβE-induced impairments. Likewise, peripheral or direct intrahippocampal injections of MLA or DHβE dose-dependently impaired spatial working memory scores on a spontaneous alternation task. Concurrent administration of glucose reversed DHβE- but not MLA-induced impairments. CREB phosphorylation downstream of cholinergic signaling was assessed 30 min after spontaneous alternation testing and intrahippocampal drug infusions. Both MLA and DHβE impaired hippocampal CREB phosphorylation; glucose reversed DHβE- but not MLA-induced deficits. The effectiveness of glucose in reversing DHβE- but not MLA-induced impairments in behavioral performance and CREB phosphorylation suggests that activation of α7 receptors may play an important role in memory enhancement by glucose. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion.

    Science.gov (United States)

    Dill, M Joelle; Shaw, Janice; Cramer, Jeff; Sindelar, Dana K

    2013-11-01

    Serotonin acts through receptors controlling several physiological functions, including energy homeostasis regulation and food intake. Recent experiments demonstrated that 5-HT1A receptor antagonists reduce food intake. We sought to examine the microstructure of feeding with 5-HT1A receptor antagonists using a food intake monitoring system. We also examined the relationship between food intake, inhibition of binding and pharmacokinetic (PK) profiles of the antagonists. Ex vivo binding revealed that, at doses used in this study to reduce food intake, inhibition of binding of a 5-HT1A agonist by ~40% was reached in diet-induced obese (DIO) mice with a trend for higher binding in DIO vs. lean animals. Additionally, PK analysis detected levels from 2 to 24h post-compound administration. Male DIO mice were administered 5-HT1A receptor antagonists LY439934 (10 or 30 mg/kg, p.o.), WAY100635 (3 or 10mg/kg, s.c.), SRA-333 (10 or 30 mg/kg, p.o.), or NAD-299 (3 or 10mg/kg, s.c.) for 3 days and meal patterns were measured. Analyses revealed that for each antagonist, 24-h food intake was reduced through a specific decrease in the total number of meals. Compared to controls, meal number was decreased 14-35% in the high dose. Average meal size was not changed by any of the compounds. The reduction in food intake reduced body weight 1-4% compared to Vehicle controls. Subsequently, a conditioned taste aversion (CTA) assay was used to determine whether the feeding decrease might be an indicator of aversion, nausea, or visceral illness caused by the antagonists. Using a two bottle preference test, it was found that none of the compounds produced a CTA. The decrease in food intake does not appear to be a response to nausea or malaise. These results indicate that 5-HT1A receptor antagonist suppresses feeding, specifically by decreasing the number of meals, and induce weight loss without an aversive side effect. © 2013 Elsevier Inc. All rights reserved.

  18. The discovery of tropane-derived CCR5 receptor antagonists.

    Science.gov (United States)

    Armour, Duncan R; de Groot, Marcel J; Price, David A; Stammen, Blanda L C; Wood, Anthony; Perros, Manos; Burt, Catherine

    2006-04-01

    The development of compound 1, a piperidine-based CCR5 receptor antagonist with Type I CYP2D6 inhibition, into the tropane-derived analogue 5, is described. This compound, which is devoid of CYP2D6 liabilities, is a highly potent ligand for the CCR5 receptor and has broad-spectrum activity against a range of clinically relevant HIV isolates. The identification of human ether a-go-go-related gene channel inhibition within this series is described and the potential for QTc interval prolongation discussed. Furthermore, structure activity relationship (SAR) around the piperidine moiety is also described.

  19. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    Science.gov (United States)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  20. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  1. Pharmacological characterization of BR-A-657, a highly potent nonpeptide angiotensin II receptor antagonist.

    Science.gov (United States)

    Chi, Yong Ha; Lee, Joo Han; Kim, Je Hak; Tan, Hyun Kwang; Kim, Sang Lin; Lee, Jae Yeol; Rim, Hong-Kun; Paik, Soo Heui; Lee, Kyung-Tae

    2013-01-01

    The pharmacological profile of BR-A-657, 2-n-butyl-5-dimethylamino-thiocarbonyl-methyl-6-methyl-3-{[2-(1H-tetrazole-5-yl)biphenyl-4-yl]methyl}-pyrimidin-4(3H)-one, a new nonpeptide AT1-selective angiotensin receptor antagonist, has been investigated in a variety of in vitro and in vivo experimental models. In the present study, BR-A-657 displaced [(125)I][Sar(1)-Ile(8)]angiotensin II (Ang II) from its specific binding sites to AT1 subtype receptors in membrane fractions of HEK-293 cells with an IC50 of 0.16 nM. In a functional assay using isolated rabbit thoracic aorta, BR-A-657 inhibited the contractile response to Ang II (pD'2: 9.15) with a significant reduction in the maximum. In conscious rats, BR-A-657 (0.01, 0.1, 1 mg/kg; intravenously (i.v.)) dose-dependently antagonized Ang II-induced pressor responses. In addition, BR-A-657 dose-dependently decreased mean arterial pressure in furosemide-treated rats and renal hypertensive rats. Moreover, BR-A-657 given orally at 1 and 3 mg/kg reduced blood pressure in conscious renal hypertensive rats. Taken together, these findings indicate that BR-A-657 is a potent and specific antagonist of Ang II at the AT1 receptor subtype, and reveal the molecular basis responsible for the marked lowering of blood pressure in conscious rats.

  2. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists.

    Science.gov (United States)

    Nakao, Toshifumi; Banba, Shinich; Nomura, Michikazu; Hirase, Kangetsu

    2013-04-01

    The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2'S, A2'G, and A2'N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2' mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2'S·T6'V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2'S・T6'S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2' mutant RDL GABA receptors with a different mode of action. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    Science.gov (United States)

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in

  4. Evidence that diclofenac and celecoxib are thyroid hormone receptor beta antagonists.

    Science.gov (United States)

    Zloh, Mire; Perez-Diaz, Noelia; Tang, Leslie; Patel, Pryank; Mackenzie, Louise S

    2016-02-01

    Long term use of NSAIDs is linked to side effects such as gastric bleeding and myocardial infarction. Use of in silico methods and pharmacology to investigate the potential for NSAIDs diclofenac, celecoxib and naproxen to bind to nuclear receptors. In silico screening predicted that both diclofenac and celecoxib has the potential to bind to a number of different nuclear receptors; docking analysis confirmed a theoretical ability for diclofenac and celecoxib but not naproxen to bind to TRβ. Results from TRβ luciferase reporter assays confirmed that both diclofenac and celecoxib display TRβ antagonistic properties; celecoxib, IC50 3.6 × 10(-6)M, and diclofenac IC50 5.3 × 10(-6)M, comparable to the TRβ antagonist MLS (IC50 3.1 × 10(-6)M). In contrast naproxen, a cardio-sparing NSAID, lacked TRβ antagonist effects. In order to determine the effects of NSAIDs in whole organ in vitro, we used isometric wire myography to measure the changes to Triiodothyronine (T3) induced vasodilation of rat mesenteric arteries. Incubation of arteries in the presence of the TRβ antagonist MLS000389544 (10(-5)M), as well as diclofenac (10(-5)M) and celecoxib (10(-5)M) but not naproxen significantly inhibited T3 induced vasodilation compared to controls. These results highlight the benefits of computational chemistry methods used to retrospectively analyse well known drugs for side effects. Using in silico and in vitro methods we have shown that both celecoxib and diclofenac but not naproxen exhibit off-target TRβ antagonist behaviour, which may be linked to their detrimental side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Evidence that the angiotensin at 2-receptor agonist compound 21 is also a low affinity thromboxane TXA2-receptor antagonist

    DEFF Research Database (Denmark)

    Fredgart, M.; Leurgans, T.; Stenelo, M.

    2015-01-01

    Objective: The objective of this study was to test whether Compound 21 (C21), a high-affinity, non-peptide angiotensinAT2-receptor agonist, is also an antagonist of thromboxane A2 (TXA2) receptors thus reducing both vasoconstriction and platelet aggregation. Design and method: Binding of C21...... to the TXA2 receptor was determined by TBXA2R Arrestin Biosensor Assay. Mouse mesenteric arteries were mounted in wire myographs, and responses to increasing concentrations of C21 (1nM- 10muM) were recorded during submaximal contractions with 0.1muM U46619 (TXA2 analogue) or 1muMphenylephrine. To control for......AT2-receptor specificity, arteries were pre-incubated with the AT2-receptor antagonist PD123319 (10muM), or mesenteric arteries from AT2-receptor knock-out (AT2R-/y) mice were used. An inhibitory effect of C21 (100nM - 10muM) on U46619 (0,3muM) induced platelet aggregation was examined in whole human...

  6. Stereochemistry of quinoxaline antagonist binding to a glutamate receptor investigated by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Madden, D R; Thiran, S; Zimmermann, H; Romm, J; Jayaraman, V

    2001-10-12

    The stereochemistry of the interactions between quinoxaline antagonists and the ligand-binding domain of the glutamate receptor 4 (GluR4) have been investigated by probing their vibrational modes using Fourier transform infrared spectroscopy. In solution, the electron-withdrawing nitro groups of both compounds establish a resonance equilibrium that appears to stabilize the keto form of one of the cyclic amide carbonyl bonds. Changes in the 6,7-dinitro-2,3-dihydroxyquinoxaline vibrational spectra on binding to the glutamate receptor, interpreted within the framework of a published crystal structure, illuminate the stereochemistry of the interaction and suggest that the binding site imposes a more polarized electronic bonding configuration on this antagonist. Similar spectral changes are observed for 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline, confirming that its interactions with the binding site are highly similar to those of 6,7-dinitro-2,3-dihydroxyquinoxaline and leading to a model of the 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline-S1S2 complex, for which no crystal structure is available. Conformational changes within the GluR ligand binding domain were also monitored. Compared with the previously reported spectral changes seen on binding of the agonist glutamate, only a relatively small change is detected on antagonist binding. This correlation between the functional effects of different classes of ligand and the magnitude of the spectroscopic changes they induce suggests that the spectral data reflect physiologically relevant conformational processes.

  7. Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials.

    Science.gov (United States)

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A

    2011-12-27

    Histamine receptors (HRs) are excellent drug targets for the treatment of diseases, such as schizophrenia, psychosis, depression, migraine, allergies, asthma, ulcers, and hypertension. Among them, the human H(3) histamine receptor (hH(3)HR) antagonists have been proposed for specific therapeutic applications, including treatment of Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity. However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity and activity for such treatments, it would be useful to have the three-dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H(1), H(2), H(3), and H(4)) using the GEnSeMBLE (GPCR ensemble of structures in membrane bilayer environment) Monte Carlo protocol, sampling ∼35 million combinations of helix packings to predict the 10 most stable packings for each of the four subtypes. Then we used these 10 best protein structures with the DarwinDock Monte Carlo protocol to sample ∼50 000 × 10(20) poses to predict the optimum ligand-protein structures for various agonists and antagonists. We find that E206(5.46) contributes most in binding H(3) selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/S5.43 in both of hH(3)HR and hH(4)HR are involved in H(3)/ H(4) subtype selectivity. In addition, we find that M378(6.55) in hH(3)HR provides additional hydrophobic interactions different from hH(4)HR (the corresponding amino acid of T323(6.55) in hH(4)HR) to provide additional subtype bias. From these studies, we developed a pharmacophore model based on our predictions for known hH(3)HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2, PF-3654746 3, and BF2.649 (tiprolisant) 4] that suggests critical selectivity directing elements are: the basic proton

  8. Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, a 250-Fold Selective Melanocortin-4 Receptor (MC4R) Antagonist over the Melanocortin-3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently.

    Science.gov (United States)

    Lensing, Cody J; Adank, Danielle N; Doering, Skye R; Wilber, Stacey L; Andreasen, Amy; Schaub, Jay W; Xiang, Zhimin; Haskell-Luevano, Carrie

    2016-09-21

    The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice's food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7.

  9. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    Science.gov (United States)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  10. Cellular and behavioural profile of the novel, selective neurokinin1 receptor antagonist, vestipitant: a comparison to other agents.

    Science.gov (United States)

    Brocco, Mauricette; Dekeyne, Anne; Mannoury la Cour, Clotilde; Touzard, Manuelle; Girardon, Sylvie; Veiga, Sylvie; de Nanteuil, Guillaume; deJong, Trynke R; Olivier, Berend; Millan, Mark J

    2008-10-01

    This study characterized the novel neurokinin (NK)(1) antagonist, vestipitant, under clinical evaluation for treatment of anxiety and depression. Vestipitant possessed high affinity for human NK(1) receptors (pK(i), 9.4), and potently blocked Substance P-mediated phosphorylation of Extracellular-Regulated-Kinase. In vivo, it occupied central NK(1) receptors in gerbils (Inhibitory Dose(50), 0.11 mg/kg). At similar doses, it abrogated nociception elicited by formalin in gerbils, and blocked foot-tapping and locomotion elicited by the NK(1) agonist, GR73632, in gerbils and guinea pigs, respectively. Further, vestipitant attenuated fear-induced foot-tapping in gerbils, separation-induced distress-vocalizations in guinea pigs, marble-burying behaviour in mice, and displayed anxiolytic actions in Vogel conflict and fear-induced ultrasonic vocalization procedures in rats. These actions were mimicked by CP99,994, L733,060 and GR205,171 which acted stereoselectively vs its less active isomer, GR226,206. In conclusion, vestipitant is a potent NK(1) receptor antagonist: its actions support the utility of NK(1) receptor blockade in the alleviation of anxiety and, possibly, depression.

  11. Effect of the selective vasopressin V2 receptor antagonists in hepatic cirrhosis patients with ascites: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Shao-hui TANG

    2013-07-01

    Full Text Available Objective To evaluate the efficacy and safety of selective vasopressin V2 receptor antagonists in the treatment of hepatic cirrhosis patients with ascites. Methods PubMed, EMBASE, Web of Science, The Cochrane Central Register of Controlled Trials, Database for Chinese Technical Periodical (VIP, Chinese Journal Full-Text Database (CNKI, and Wan Fang Digital Journal Full-text Database were retrieved to collect clinical randomized controlled trials of hepatic cirrhosis with ascites treated by selective vasopressin V2 receptor antagonists. Meta analysis was performed by using Review Manager 5.0. Results Nine randomized controlled trials including 1884 patients met the inclusion criteria. Meta-analysis showed that: 1 The selective vasopressin V2 receptor antagonists were associated with a significant reduction in body weight compared with placebo (WMD=–1.98kg, 95%CI:–3.24-–0.72kg, P=0.002. Treatment with selective vasopressin V2 receptor antagonists was associated with an improvement of low serum sodium concentration compared to placebo (WMD=3.74mmol/L, 95%CI: 0.91-6.58mmol/L, P=0.01. The percentage of patients with worsening ascites was higher in the group of patients treated with placebo (RR=0.51, 95%CI: 0.34-0.77, P=0.001. 2 The amplitude of increased urine volume was obviously higher in selective vasopressin V2 receptor antagonists group than in placebo group (WMD=1437.65ml, 95%CI: 649.01-2226.30ml, P=0.0004. The difference of serum creatinine in the selective vasopressin V2 receptor antagonists group was not statistically significant compared with the control group (WMD=–3.49μmol/L, 95%CI: –12.54¬5.56μmol/L, P=0.45. 3 There was no statistical significance between the two groups in the heart rate, systolic pressure, diastolic pressure and mortality (P>0.05. The rate of other adverse reactions was higher in the selective vasopressin V2 receptor antagonists group compared with that of placebo group (P=0.003. Conclusion

  12. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, Maibritt B; Fink-Jensen, Anders; Peacock, Linda

    2003-01-01

    (EPS) at therapeutically relevant doses. In the present study, we examined whether the xanomeline-induced functional dopamine antagonism found in rodent studies could also be observed in nonhuman primates. In addition, we studied whether the lack of EPS observed in rodents also applies to primates......Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects...

  13. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis

    DEFF Research Database (Denmark)

    Confalonieri, S; Salcini, A E; Puri, C

    2000-01-01

    for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function....... Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization...... of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular...

  14. The GABAA Antagonist DPP-4-PIOL Selectively Antagonises Tonic over Phasic GABAergic Currents in Dentate Gyrus Granule Cells

    DEFF Research Database (Denmark)

    Boddum, Kim; Frølund, Bente; Kristiansen, Uffe

    2014-01-01

    that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent...

  15. Chemogenomic discovery of allosteric antagonists at the GPRC6A receptor

    DEFF Research Database (Denmark)

    Gloriam, David E.; Wellendorph, Petrine; Johansen, Lars Dan

    2011-01-01

    and pharmacological character: (1) chemogenomic lead identification through the first, to our knowledge, ligand inference between two different GPCR families, Families A and C; and (2) the discovery of the most selective GPRC6A allosteric antagonists discovered to date. The unprecedented inference of...... pharmacological activity across GPCR families provides proof-of-concept for in silico approaches against Family C targets based on Family A templates, greatly expanding the prospects of successful drug design and discovery. The antagonists were tested against a panel of seven Family A and C G protein-coupled receptors...

  16. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    Science.gov (United States)

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  17. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    Science.gov (United States)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new

  18. Stability of tramadol with three 5-HT3 receptor antagonists in polyolefin bags for patient-controlled delivery systems

    Directory of Open Access Journals (Sweden)

    Chen FC

    2016-06-01

    Full Text Available Fu-chao Chen,1 Jun Zhu,1 Bin Li,1 Fang-jun Yuan,1 Lin-hai Wang2 1Department of Pharmacy, Dongfeng Hospital, 2Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China Background: Mixing 5-hydroxytryptamine-3 (5-HT3 receptor antagonists with patient-controlled analgesia (PCA solutions of tramadol has been shown to decrease the incidence of nausea and vomiting associated with the use of tramadol PCA for postoperative pain. However, such mixtures are not commercially available, and the stability of the drug combinations has not been duly studied. The study aimed to evaluate the stability of tramadol with three 5-HT3 receptor antagonists in 0.9% sodium chloride injection for PCA administration.Materials and methods: Test samples were prepared by adding 1,000 mg tramadol hydrochloride, 8 mg ondansetron hydrochloride, and 6 mg granisetron hydrochloride or 5 mg tropisetron hydrochloride to 100 mL of 0.9% sodium chloride injection in polyolefin bags. The samples were prepared in triplicates, stored at either 25°C or 4°C for 14 days, and assessed using the following compatibility parameters: precipitation, cloudiness, discoloration, and pH. Chemical stability was also determined using a validated high-pressure liquid chromatography method.Results: All of the mixtures were clear and colorless throughout the initial observation period. No change in the concentration of tramadol hydrochloride occurred with any of the 5-HT3 receptor antagonists during the 14 days. Similarly, little or no loss of the 5-HT3 receptor antagonists occurred over the 14-day period.Conclusion: Our results suggest that mixtures of tramadol hydrochloride, ondansetron hydrochloride, granisetron hydrochloride, or tropisetron hydrochloride in 0.9% sodium chloride injection were physically and chemically stable for 14 days when stored in polyolefin bags at both 4°C and 25°C. Keywords: tramadol, ondansetron, granisetron

  19. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    Science.gov (United States)

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  20. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists.

    Science.gov (United States)

    Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake; Beck, Johannes G; Opperer, Florian; Rechenmacher, Florian; Kessler, Horst; Hruby, Victor J

    2017-08-15

    Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His 6 -d-Nal(2') 7 -NMe-Arg 8 -Trp 9 -Lys]-NH 2 (15) and Ac-Nle-c[Asp-His 6 -d-Nal(2') 7 -NMe-Arg 8 -NMe-Trp 9 -NMe-Lys]-NH 2 (17). It is known that the pharmacophore (His 6 -DNal 7 -Arg 8 -Trp 9 ) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal 7 -Arg 8 . The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp 9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg 8 and Trp 9 side chains are involved in a majority of the interactions with the receptor. While Arg 8 forms polar contacts with D154 and D158 of hMC3R, Trp 9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp 9 -hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.

  1. The pharmacological rationale for combining muscarinic receptor antagonists and beta-adrenoceptor agonists in the treatment of airway and bladder disease

    NARCIS (Netherlands)

    Dale, Philippa R.; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R.; Charlton, Steven J.; Pieper, Michael P.; Michel, Martin C.

    Muscarinic receptor antagonists and beta-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and beta-adrenoceptors are physiological antagonists for

  2. Casopitant: a novel NK1-receptor antagonist in the prevention of chemotherapy-induced nausea and vomiting

    Directory of Open Access Journals (Sweden)

    Christina Ruhlmann

    2009-05-01

    Full Text Available Christina Ruhlmann, Jørn HerrstedtOdense University Hospital, Department of Oncology, Odense, DenmarkAbstract: Chemotherapy-induced nausea and vomiting (CINV are among the most feared and distressing symptoms experienced by patients with cancer. The knowledge of the pathogenesis and neuropharmacology of CINV has expanded enormously over the last decades, the most significant discoveries being the role of 5-hydroxytryptamine (5-HT3- and neurokinin (NK1 receptors in the emetic reflex arch. This has led to the development of two new classes of antiemetics acting as highly selective antagonists at one of these receptors. These drugs have had a huge impact in the protection from chemotherapy-induced vomiting, whereas the effect on nausea seems to be limited. The first NK1 receptor antagonist, aprepitant, became clinically available in 2003, and casopitant, the second in this class of antiemetics, has now completed phase III trials. This review delineates the properties and clinical use of casopitant in the prevention of CINV.Keywords: casopitant, GW679769, NK1 receptor antagonist, chemotherapy, emesis

  3. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: are they still an interesting challenge?

    Science.gov (United States)

    Cacciari, Barbara; Federico, Stephanie; Spalluto, Giampiero

    2018-04-22

    In the past decades, many efforts were done to develope ligands for the adenosine receptors, with the purpose to individuate agonists and antagonists affine and selective for each subtypes , named A1, A2A, A2B, and A3. These intense studies allowed a deeper and deeper knowledge of the nature and, moreover, of the pathophysiological roles of all the adenosine receptor subtypes. In particular, the involvment of the A2A adenosine receptor subtype in some physiological mechanisms in the brain, that could be related to important diseases such as the Parkinson's disease, encouraged the research in this field. Particular attention was given to the antagonists endowed with high affinity and selectivity since they could have a real employment in the treatment of Parkinson's disease, and some compounds, such as istradefylline, preladenant and tozadenant, are already studied in clinical trials. Actually, the role of A2A antagonists in Parkinson's disease is becoming contradictory due to contrasting results in the last studies, but, at the same time, new possible employments are emerging for this class of antagonists in cancer pathologies as much interesting to legitimate further efforts in the research of A2A ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Selective Glucocorticoid Receptor (GR-II Antagonist Reduces Body Weight Gain in Mice

    Directory of Open Access Journals (Sweden)

    Tomoko Asagami

    2011-01-01

    Full Text Available Previous research has shown that mifepristone can prevent and reverse weight gain in animals and human subjects taking antipsychotic medications. This proof-of-concept study tested whether a more potent and selective glucocorticoid receptor antagonist could block dietary-induced weight gain and increase insulin sensitivity in mice. Ten-week-old, male, C57BL/6J mice were fed a diet containing 60% fat calories and water supplemented with 11% sucrose for 4 weeks. Groups (=8 received one of the following: CORT 108297 (80 mg/kg QD, CORT 108297 (40 mg/kg BID, mifepristone (30 mg/kg BID, rosiglitazone (10 mg/kg QD, or vehicle. Compared to mice receiving a high-fat, high-sugar diet plus vehicle, mice receiving a high-fat, high-sugar diet plus either mifepristone or CORT 108297 gained significantly less weight. At the end of the four week treatment period, mice receiving CORT 108297 40 mg/kg BID or CORT 108297 80 mg/kg QD also had significantly lower steady plasma glucose than mice receiving vehicle. However, steady state plasma glucose after treatment was not highly correlated with reduced weight gain, suggesting that the effect of the glucocorticoid receptor antagonist on insulin sensitivity may be independent of its mitigating effect on weight gain.

  5. Non-peptidic antagonists of the CGRP receptor, BIBN4096BS and MK-0974, interact with the calcitonin receptor-like receptor via methionine-42 and RAMP1 via tryptophan-74.

    Science.gov (United States)

    Miller, Philip S; Barwell, James; Poyner, David R; Wigglesworth, Mark J; Garland, Stephen L; Donnelly, Dan

    2010-01-01

    The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing...... multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis...... of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned...

  7. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    Science.gov (United States)

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  8. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch

    Directory of Open Access Journals (Sweden)

    Tunyu Jian

    2016-01-01

    Full Text Available Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip—a histamine H4 receptor special agonist under cutaneous injection—obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3–50 μM could also induce a dose-dependent increase in intracellular Ca2+ (Ca2+i of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca2+ responses. In addition, immepip-induced Ca2+i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons’ responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  9. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    Science.gov (United States)

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    Science.gov (United States)

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  11. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  12. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    Science.gov (United States)

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. PMID:21163582

  13. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability.

    Science.gov (United States)

    Beckley, Ethan H; Scibelli, Angela C; Finn, Deborah A

    2011-07-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone's GABA(A) receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Effect of leukotriene receptor antagonists on vascular permeability during endotoxic shock

    International Nuclear Information System (INIS)

    Cook, J.A.; Li, E.J.; Spicer, K.M.; Wise, W.C.; Halushka, P.V.

    1990-01-01

    Evidence has accumulated that sulfidopeptide leukotrienes are significant pathogenic mediators of certain hematologic and hemodynamic sequelae of endotoxic shock. In the present study, the effects of a selective LTD4/E4 receptor antagonist, LY171883 (LY), or a selective LTD4 receptor antagonist, SKF-104353 (SKF), were assessed on splanchnic and pulmonary localization of 99mTechnetium-labeled human serum albumin (99mTc-HSA) in acute endotoxic shock in the rat. Dynamic gamma camera imaging of heart (H), midabdominal (GI), and lung regions of interest generated time activity curves for baseline and at 5-35 min after Salmonella enteritidis endotoxin (10 mg/kg, i.v.). Slopes of GI/H and lung/H activity (permeability index, GI/H or lung/H X 10(-3)/min) provided indices of intestinal and lung localization. Rats received LY (30 mg/kg, i.v.), LY vehicle (LY Veh), SKF (10 mg/kg), or SKF vehicle (SK Veh) 10 min prior to endotoxin or endotoxin vehicle. In rats receiving the LY Veh and endotoxin (n = 8) or SKF Veh and endotoxin (n = 12), the splanchnic permeability indices to 99mTc-HSA were increased 11.2-fold and 5.1-fold, respectively (P less than 0.05) compared to vehicle control groups not given endotoxin (n = 5). Pulmonary permeability index for 99mTc-HSA was increased (P less than 0.05) to a lesser extent (3.2-fold) by endotoxin compared to vehicle controls. Pretreatment with SKF reduced the mesenteric permeability index to control levels (P less than 0.05) during the 5-35 min time interval post-endotoxin. LY reduced the mesenteric permeability index by 70%. Pulmonary relative permeability to 99mTc-HSA was not affected by LY pretreatment. Both splanchnic and lung relative permeability to the isotope was transient; at 135-225 min post-endotoxin, splanchnic localization of 99mTc-HSA (n = 4) was not significantly different from vehicle controls in these vascular beds

  15. Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Directory of Open Access Journals (Sweden)

    Onofrio Zirafi

    2015-05-01

    Full Text Available CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.

  16. Receptors for luteinizing hormone-releasing hormone (LHRH) in benign prostatic hyperplasia (BPH) as potential molecular targets for therapy with LHRH antagonist cetrorelix.

    Science.gov (United States)

    Rozsa, Bernadett; Nadji, Mehrdad; Schally, Andrew V; Dezso, Balazs; Flasko, Tibor; Toth, Gyorgy; Mile, Melinda; Block, Norman L; Halmos, Gabor

    2011-04-01

    The majority of men will develop symptoms of benign prostatic hyperplasia (BPH) after 70 years of age. Various studies indicate that antagonists of LHRH, such as cetrorelix, exert direct inhibitory effects on BPH mediated by specific LHRH receptors. Our aim was to investigate the mRNA for LHRH and LHRH receptors and the expression of LHRH receptors in specimens of human BPH. The expression of mRNA for LHRH (n=35) and LHRH receptors (n=55) was investigated by RT-PCR in surgical specimens of BPH, using specific primers. The characteristics of binding sites for LHRH on 20 samples were determined by ligand competition assays. The LHRH receptor expression was also examined in 64 BPH specimens by immunohistochemistry. PCR products for LHRH were found in 18 of 35 (51%) BPH tissues and mRNA for LHRH receptors was detected in 39 of 55 (71%) BPH specimens. Eighteen of 20 (90%) samples showed a single class of high affinity binding sites for [D-Trp(6) ]LHRH with a mean K(d) of 4.04 nM and a mean B(max) of 527.6 fmol/mg membrane protein. LHRH antagonist cetrorelix showed high affinity binding to LHRH receptors in BPH. Positive immunohistochemical reaction for LHRH receptors was present in 42 of 64 (67%) BPH specimens. A high incidence of LHRH receptors in BPH supports the use of LHRH antagonists such as cetrorelix, for treatment of patients with lower urinary tract symptoms from BPH. Copyright © 2010 Wiley-Liss, Inc.

  17. Successful treatment of hereditary angioedema with bradykinin B2-receptor antagonist icatibant.

    Science.gov (United States)

    Krause, Karoline; Metz, Martin; Zuberbier, Torsten; Maurer, Marcus; Magerl, Markus

    2010-04-01

    The bradykinin B2 receptor antagonist icatibant has recently become available for treating hereditary angioedema. Our observations demonstrate icatibant to be effective and safe for the treatment of both, abdominal and cutaneous attacks in a practice setting beyond clinical studies.

  18. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    Science.gov (United States)

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the

  19. Antidepressant activity of nociceptin/orphanin FQ receptor antagonists in the mouse learned helplessness.

    Science.gov (United States)

    Holanda, Victor A D; Medeiros, Iris U; Asth, Laila; Guerrini, Remo; Calo', Girolamo; Gavioli, Elaine C

    2016-07-01

    Pharmacological and genetic evidence support antidepressant-like effects elicited by the blockade of the NOP receptor. The learned helplessness (LH) model employs uncontrollable and unpredictable electric footshocks as a stressor stimulus to induce a depressive-like phenotype that can be reversed by classical antidepressants. The present study aimed to evaluate the action of NOP receptor antagonists in helpless mice. Male Swiss mice were subjected to the three steps of the LH paradigm (i.e., (1) induction, (2) screening, and (3) test). Only helpless animals were subjected to the test session. During the test session, animals were placed in the electrified chamber and the latency to escape after the footshock and the frequency of escape failures were recorded. The effect of the following treatments administered before the test session were evaluated: nortriptyline (30 mg/kg, ip, 60 min), fluoxetine (30 mg/kg, ip, four consecutive days of treatment), and NOP antagonists SB-612111 (1-10 mg/kg, ip, 30 min) and UFP-101 (1-10 nmol, icv, 5 min). To rule out possible biases, the effects of treatments on controllable stressful and non stressful situations were assessed. In helpless mice, nortriptyline, fluoxetine, UFP-101 (3-10 nmol), and SB-612111 (3-10 mg/kg) significantly reduced escape latencies and escape failures. No effects of drug treatments were observed in mice subjected to the controllable electric footshocks and non stressful situations. Acute treatment with NOP antagonists reversed helplessness similarly to the classical antidepressants. These findings support the proposal that NOP receptor antagonists are worthy of development as innovative antidepressant drugs.

  20. The Antidepressant 5-HT2A Receptor Antagonists Pizotifen and Cyproheptadine Inhibit Serotonin-Enhanced Platelet Function

    Science.gov (United States)

    Lin, Olivia A.; Karim, Zubair A.; Vemana, Hari Priya; Espinosa, Enma V. P.; Khasawneh, Fadi T.

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  1. Peripherally Administered Y2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice.

    Science.gov (United States)

    Ailanen, Liisa; Vähätalo, Laura H; Salomäki-Myftari, Henriikka; Mäkelä, Satu; Orpana, Wendy; Ruohonen, Suvi T; Savontaus, Eriika

    2018-01-01

    Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y 2 -receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y 2 -receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y 2 -receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPY DβH ) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y 2 -receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPY DβH and WT mice feeding on chow or Western diet. Treatment with Y 2 -receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y 2 -receptors induced obesity in WT mice, whereas OE-NPY DβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y 2 -receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y 2 -receptor antagonism has beneficial effects on metabolic status.

  2. Characterization of muscarinic receptor subtypes in primary cultures of cerebellar granule cells using specific muscarinic receptor antagonists

    International Nuclear Information System (INIS)

    McLeskey, S.W.

    1989-01-01

    In cerebellar granule cell cultures, two muscarinic receptor mediated responses were observed: inhibition of adenylate cyclase (M-AC) and stimulation of phosphoinositide hydrolysis (M-PI). These responses were antagonized by three purported specific muscarinic antagonists: pirenzipine and (-)QNX (specific for M-PI) and methoctramine (specific for M-AC). However, the specificity for the three antagonists in blocking these responses is not comparable to the specificity observed in binding studies on these cells or to that quoted in the literature. Two peaks of molecular sizes were found in these cells corresponding to the two molecular sizes of muscarinic receptive proteins reported in the literature. Muscarinic receptive proteins were alkylated with 3 H-propylbenzilylcholine mustard followed by sodium dodecylsulfate polyacrylamide gel electrophoresis. Pirenzipine and (-)QNX were able to block alkylation of the high molecular size peak, which corresponds to the receptive protein m 3 reported in the literature. Methoctramine was able to block alkylation of a portion of the lower molecular size peak, possibly corresponding to the m 2 and/or m 4 receptive proteins reported in the literature. Studies attempting to show the presence of receptor reserve for either of the two biochemical responses present in these cells by alkylation of the receptive protein with nonradiolabeled propylbenzilylcholine mustard (PBCM) were confounded by specificity of this agent for the lower molecular weight peak of muscarinic receptive protein. Thus the muscarinic receptive proteins coupled to M-AC were alkylated preferentially over the ones coupled to M-PI

  3. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    Science.gov (United States)

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical

  4. A Time-course Study with the Androgen Receptor Antagonist Flutamide in Fish

    Science.gov (United States)

    Flutamide, a drug registered to treat some types of prostate cancer in humans, has been used for many years as a model androgen receptor (AR) antagonist in studies aimed at characterizing disruption of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis. Various studies hav...

  5. ``In silico'' study of the binding of two novel antagonists to the nociceptin receptor

    Science.gov (United States)

    Della Longa, Stefano; Arcovito, Alessandro

    2018-02-01

    Antagonists of the nociceptin receptor (NOP) are raising interest for their possible clinical use as antidepressant drugs. Recently, the structure of NOP in complex with some piperidine-based antagonists has been revealed by X-ray crystallography. In this study, a multi-flexible docking (MF-docking) procedure, i.e. docking to multiple receptor conformations extracted by preliminary molecular dynamics trajectories, together with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have been carried out to provide the binding mode of two novel NOP antagonists, one of them selective (BTRX-246040, formerly named LY-2940094) and one non selective (AT-076), i.e. able to inactivate NOP as well as the classical µ- k- and δ-opioid receptors (MOP KOP and DOP). According to our results, the pivotal role of residue D1303,32 (upper indexes are Ballesteros-Weinstein notations) is analogous to that enlighten by the already known X-ray structures of opioid receptors: binding of the molecules are predicted to require a slight readjustment of the hydrophobic pocket (residues Y1313,33, M1343,36, I2195,43, Q2806,52 and V2836,55) in the orthosteric site of NOP, accommodating either the pyridine-pyrazole (BTRX-246040) or the isoquinoline (AT-076) moiety of the ligand, in turn allowing the protonated piperidine nitrogen to maximize interaction (salt-bridge) with residue D1303,32 of the NOP, and the aromatic head to be sandwiched in optimal π-stacking between Y1313,33 and M1343,36. The QM/MM optimization after the MF-docking procedure has provided the more likely conformations for the binding to the NOP receptor of BTRX-246040 and AT-076, based on different pharmacophores and exhibiting different selectivity profiles. While the high selectivity for NOP of BTRX-246040 can be explained by interactions with NOP specific residues, the lack of selectivity of AT-076 could be associated to its ability to penetrate into the deep hydrophobic pocket of NOP, while retaining a

  6. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells.

    LENUS (Irish Health Repository)

    O'Callaghan, G

    2012-02-03

    Fas ligand (FasL\\/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E(2) (PGE(2)), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE(2) increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E(2)-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE(2) positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE(2).

  7. Highly Potent, Water Soluble Benzimidazole Antagonist for Activated (alpha)4(beta)1 Integrin

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R D; Andrei, M; Lau, E Y; Lightstone, F C; Liu, R; Lam, K S; Kurth, M J

    2007-08-29

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin, activated constitutively in lymphoma, can be targeted with the bisaryl urea peptidomimetic antagonist 1 (LLP2A). However, concerns on its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzimidazole moiety resulting in improved solubility while maintaining picomolar potency [5 (KLCA4); IC{sub 50} = 305 pM]. With exceptional solubility, this finding has potential for improving PK to help diagnose and treat lymphomas.

  8. Effects of mecamylamine (a nicotinic receptor antagonist on harman induced-amnesia in an inhibitory avoidance test

    Directory of Open Access Journals (Sweden)

    Mohammad Nasehi

    2011-10-01

    Full Text Available Introduction: β-carbolines alkaloids suchv as harmane have been found in common plant-derived foodstuffs (wheat, rice, corn, barley, grape and mushrooms. These alkaloids have many cognitive effects including alteration short and long term memory. In the present study, the effect of intra-CA1 injection of the nicotinic receptor antagonist mecamylamine on amnesia induced by harmane was examined in mice. Materials and Methods: Mice were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus. One week after cannulae implantation, mice were trained in a step-down type inhibitory avoidance task, and were tested 24 h after training to measure step-down latency as a scale of memory. Results: Pre-training or post-training systemic injection of harmane induced amnesia. Pre-testing intra-dorsal hippocampus administration of the high dose of nicotinic receptor antagonist, mecamylamine (4 µg/mice also induced amnesia. On the other hand, pre-test intra-CA1 injection of ineffective doses of mecamylamine (0.5, 1 and 2 µg/mice fully restored harmane induced amnesia. Conclusion: The present finding in this study indicated that a complex interaction exists between nicotinic receptor of dorsal hippocampus and amnesia induced by Harmane.

  9. NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia.

    Science.gov (United States)

    Nikitin, V P; Solntseva, S V; Kozyrev, S A; Nikitin, P V; Shevelkin, A V

    2018-06-01

    Elucidation of amnesia mechanisms is one of the central problems in neuroscience with immense practical application. Previously, we found that conditioned food presentation combined with injection of a neurotransmitter receptor antagonist or protein synthesis inhibitor led to amnesia induction. In the present study, we investigated the time course and features of two amnesias: induced by impairment of memory reconsolidation using an NMDA glutamate receptor antagonist (MK-801) and a serotonin receptor antagonist (methiothepin, MET) on snails trained with food aversion conditioning. During the early period of amnesia (types of amnesia. Retraining an on 1st or 3rd day of amnesia induction facilitated memory formation, i.e. the number of CS + US pairings was lower than at initial training. On the 10th or 30th day after the MET/reminder, the number of CS + US pairings did not change between initial training and retraining. Retraining on the 10th or 30th day following the MK-801/reminder in the same or a new context of learning resulted in short, but not long-term, memory, and the number of CS + US pairings was higher than at the initial training. This type of amnesia was specific to the CS we used at initial training, since long-term memory for another kind of CS could be formed in the same snails. The attained results suggest that disruption of memory reconsolidation using antagonists of serotonin or NMDA glutamate receptors induced amnesias with different abilities to form long-term memory during the late period of development. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  11. Potential Clinical Implications of the Urotensin II Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Emilie Kane

    2011-07-01

    Full Text Available Urotensin-II (UII, which binds to its receptor UT, plays an important role in the heart, kidneys, pancreas, adrenal gland and CNS. In the vasculature, it acts as a potent endothelium-independent vasoconstrictor and endothelium-dependent vasodilator. In disease states, this constriction-dilation equilibrium is disrupted. There is an upregulation of the UII system in heart disease, metabolic syndrome and kidney failure. The increase in UII release and UT expression suggest that UII system may be implicated in the pathology and pathogenesis of these diseases by causing an increase in ACAT-1 activity leading to SMC proliferation and foam cell infiltration, insulin resistance (DMII, as well as inflammation, high blood pressure and plaque formation. Recently, UT antagonists such as SB-611812, palosuran, and most recently a piperazino-isoindolinone based antagonist have been developed in the hope of better understanding the UII system and treating its associated diseases.

  12. 5α-Bile alcohols function as farnesoid X receptor antagonists

    International Nuclear Information System (INIS)

    Nishimaki-Mogami, Tomoko; Kawahara, Yosuke; Tamehiro, Norimasa; Yoshida, Takemi; Inoue, Kazuhide; Ohno, Yasuo; Nagao, Taku; Une, Mizuho

    2006-01-01

    The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5β-configuration in FXR activation. The results showed that the 5β-(A/B cis) bile alcohols 5β-cyprinol and bufol are potent FXR agonists, whereas their 5α-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A orientation of bile salts in agonist/antagonist function

  13. Differential effects of the new glucocorticoid receptor antagonist ORG 34517 and RU486 (mifepristone) on glucocorticoid receptor nuclear translocation in the AtT20 cell line.

    Science.gov (United States)

    Peeters, B W M M; Ruigt, G S F; Craighead, M; Kitchener, P

    2008-12-01

    Glucocorticoid agonists bind to cytoplasmic glucocorticoid receptors (GRs) and subsequently translocate as an agonist-GR complex into the nucleus. In the nucleus the complex regulates the transcription of target genes. A number of GR antagonists (RU486, progesterone, RU40555) have also been shown to induce receptor translocation. These compounds should be regarded as partial agonists. For the nonselective progesterone receptor antagonists, RTI3021-012 and RTI3021-022, it was shown that GR antagonism is possible without the induction of GR translocation. In the present studies, the new GR antagonist, ORG 34517, was investigated for its potential to induce GR translocation and to antagonize corticosterone-induced GR translocation in the AtT20 (mouse pituitary) cell line. ORG 34517 was compared to RU486. In contrast to RU486, ORG 34517 (at doses up to 3 x 10(-7) M) did not induce GR translocation, but was able to block corticosterone (3 x 10(-8) M) induced GR translocation. ORG 34517 can be regarded as a true competitive GR antagonist without partial agonistic activities.

  14. A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined with Enzalutamide in Castrate-Resistant Prostate Cancer

    Science.gov (United States)

    2017-12-01

    Receptor Antagonist Mifepristone Combined with Enzalutamide in Castrate-Resistant Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER... receptor (AR) targeted therapies, prostate cancer adapts. One way it adapts is by upregulating another hormone receptor , the glucocorticoid receptor (GR...trial. 15. SUBJECT TERMS Castration resistant prostate cancer (CRPC); Androgen Receptor (AR); Glucocorticoid receptor (GR); Enzalutamide;

  15. Modulation of cytokine and cytokine receptor/antagonist by treatment with doxycycline and tetracycline in patients with dengue fever.

    Science.gov (United States)

    Castro, J E Z; Vado-Solis, I; Perez-Osorio, C; Fredeking, T M

    2011-01-01

    Dengue virus infection can lead to dengue fever (DF) or dengue hemorrhagic fever (DHF). Disease severity has been linked to an increase in various cytokine levels. In this study, we evaluated the effectiveness of doxycycline and tetracycline to modulate serum levels of IL-6, IL-1B, and TNF and cytokine receptor/receptor antagonist TNF-R1 and IL-1RA in patients with DF or DHF. Hospitalized patients were randomized to receive standard supportive care or supportive care combined with doxycycline or tetracycline therapy. Serum cytokine and cytokine receptor/antagonist levels were determined at the onset of therapy and after 3 and 7 days. Cytokine and cytokine receptor/antagonist levels were substantially elevated at day 0. IL-6, IL-1β, and TNF remained at or above day 0 levels throughout the study period in untreated patients. Treatment with tetracycline or doxycycline resulted in a significant decline in cytokine levels. Similarly, IL-1RA and TNF-R1 serum concentrations were elevated at baseline and showed a moderate increase among untreated patients. Both drugs resulted in a significant rise in IL-1Ra levels by day 3 in patients. In contrast, treatment did not affect a similar result for TNF-R1. When compared to the control group, however, a significant rise post-treatment was seen upon intragroup analysis. Further analysis demonstrated that doxycycline was significantly more effective at modulating cytokine and cytokine receptor/antagonist levels than tetracycline.

  16. A peptide antagonist of the ErbB1 receptor inhibits receptor activation, tumor cell growth and migration in vitro and xenograft tumor growth in vivo

    DEFF Research Database (Denmark)

    Xu, Ruodan; Povlsen, Gro Klitgaard; Soroka, Vladislav

    2010-01-01

    The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in tumorigenesis and cancer disease progression, and therefore has become an attractive target for structure-based drug design. ErbB receptors are activated by ligand-induced homo- and heterodimerization...... constitutes part of the dimerization arm of ErbB3. Inherbin3 binds to the extracellular domains of all four ErbB receptors, with the lowest peptide binding affinity for ErbB4. Inherbin3 functions as an antagonist of epidermal growth factor (EGF)-ErbB1 signaling. We show that Inherbin3 inhibits EGF-induced Erb....... Structural studies have revealed that ErbB receptor dimers are stabilized by receptor-receptor interactions, primarily mediated by a region in the second extracellular domain, termed the "dimerization arm". The present study is the first biological characterization of a peptide, termed Inherbin3, which...

  17. QSAR of adenosine receptor antagonists. Part 3: Exploring physicochemical requirements for selective binding of 1,2,4-triazolo[5,1-i]purine derivatives with human adenosine A3 receptor subtype.

    Science.gov (United States)

    Roy, Kunal; Leonard, J Thomas; Sengupta, Chandana

    2004-07-16

    Considering potential of selective adenosine A3 receptor antagonists in the development of prospective therapeutic agents, an attempt has been made to explore selectivity requirements of 1,2,4-triazolo[5,1-i]purine derivatives for binding with cloned human adenosine A3 receptor subtype. In this study, partition coefficient (logP) values of the molecules (calculated by Crippen's fragmentation method) and Wang-Ford charges of the common atoms of the triazolopurine nucleus (calculated from molecular electrostatic potential surface of energy minimized geometry using AM1 technique) were used as independent variables along with suitable dummy parameters. The best equation describing A3 binding affinity [n=29, Q2=0.796, Ra2=0.853, R2=0.874, R=0.935, s=0.342, F=41.5 (df 4,24), SDEP=0.396] showed parabolic relation with logP (optimum value being 4.134). Further, it was found that an aromatic substituent conjugated with the triazole nucleus should be present at R2 position for A3 binding affinity. Again, high negative charges on N2 and N4 are conducive to the binding affinity. While exploring selectivity requirements of the compounds for binding with A3 receptor over that with A2A receptor, the selectivity relation [n=23, Q2=0.909, Ra2=0.918, R2=0.933, R=0.966, s=0.401, F=62.4 (df 4,18), SDEP=0.412] showed that an aromatic R2 substituent conjugated with the triazole nucleus contributes significantly to the selectivity. Again, presence of a 4-substituted-phenyl ring (except 4-OH-phenyl and 4-CH3-phenyl) at R2 position also increases selectivity. Further, charge difference between N2 and N11 (negative charge on the former should be higher and that on the latter should be less) contributes significantly to the selectivity. In addition, negative charge on N7 is conducive while presence of substituents like propyl, butyl, pentyl or phenyl at R1 position is detrimental for the A3 selectivity.

  18. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    Science.gov (United States)

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  19. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    Science.gov (United States)

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    administration in the VTA or NACs was also preceded by administration of NTX (0.1, 1, 5 μg, 0.5 h), BFNA (0.4, 4 μg, 24 h), NBNI (0.6, 6 μg, 0.5 h) or NTI (0.4, 4 μg, 0.5 h) into the other site with intake measured 1, 2 and 4 h after agonist treatment. VTA NTX significantly reduced NACs baclofen-induced feeding. Correspondingly, NACs NTX significantly reduced VTA baclofen-induced feeding, indicating a robust and bidirectional general opioid and GABA-B receptor feeding interaction. Whereas the high, but not low VTA BFNA dose reduced NACs baclofen-induced feeding, NACs BFNA failed to affect VTA baclofen-induced feeding, indicating a unidirectional mu opioid and GABA-B receptor feeding interaction. Whereas VTA NBNI at both doses reduced NACs baclofen-induced feeding, the high, but not low NACs NBNI dose significantly reduced VTA baclofen-induced feeding, indicating a bidirectional kappa opioid and GABA-B receptor feeding interaction. Whereas VTA NTI only transiently reduced NACs baclofen-induced feeding, NACs NTI failed to affect VTA baclofen-induced feeding, indicating a weak unidirectional delta opioid and GABA-B receptor interaction. Whereas administration of NTX or BFNA into the NACs or VTA marginally reduced spontaneous food intake, NBNI or NTI into the same sites failed to alter food intake alone. Therefore, the present study suggests that GABA employs a distributed brain network in mediating its ingestive effects that is dependent upon intact opioid receptor signaling with kappa opioid receptors more involved than mu and delta opioid receptors underlying these regional effects. An alternative hypothesis to be considered is that these effects could be the sum of two independent drug effects (opioid antagonists decreasing and baclofen increasing food intake). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Pathophysiological role of prostaglandin E2-induced up-regulation of the EP2 receptor in motor neuron-like NSC-34 cells and lumbar motor neurons in ALS model mice.

    Science.gov (United States)

    Kosuge, Yasuhiro; Miyagishi, Hiroko; Yoneoka, Yuki; Yoneda, Keiko; Nango, Hiroshi; Ishige, Kumiko; Ito, Yoshihisa

    2017-07-04

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of motor neurons. The primary triggers for motor neuronal death are still unknown, but inflammation is considered to be an important factor contributing to the pathophysiology of ALS both clinically and in ALS models. Prostaglandin E2 (PGE2) and its corresponding four E-prostanoid receptors play a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. It has also been shown that PGE2-EP2 signaling in glial cells (astrocytes or microglia) promotes motor neuronal death in G93A mice. The present study was designed to investigate the levels of expression of EP receptors in the spinal motor neurons of ALS model mice and to examine whether PGE2 alters the expression of EP receptors in differentiated NSC-34 cells, a motor neuron-like cell line. Immunohistochemical staining demonstrated that EP2 and EP3 immunoreactivity was localized in NeuN-positive large cells showing the typical morphology of motor neurons in mice. Semi-quantitative analysis showed that the immunoreactivity of EP2 in motor neurons was significantly increased in the early symptomatic stage in ALS model mice. In contrast, the level of EP3 expression remained constant, irrespective of age. In differentiated NSC-34 cells, bath application of PGE2 resulted in a concentration-dependent decrease of MTT reduction. Although PGE2 had no effect on cell survival at concentrations of less than 10 μM, pretreatment with 10 μM PGE2 significantly up-regulated EP2 and concomitantly potentiated cell death induced by 30 μM PGE2. These results suggest that PGE2 is an important effector for induction of the EP2 subtype in differentiated NSC-34 cells, and that not only EP2 up-regulation in glial cells but also EP2 up-regulation in motor neurons plays a pivotal role in the vulnerability of motor neurons in ALS model mice. Copyright © 2017 Elsevier Ltd. All rights

  1. Emerging migraine treatments and drug targets

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2011-01-01

    Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5......-hydroxytrypamine (5-HT)(1F) receptor agonists, which are in late-stage development. Nitric oxide antagonists are also in development. New forms of administration of sumatriptan might improve efficacy and reduce side effects. Botulinum toxin A has recently been approved for the prophylaxis of chronic migraine....... Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development...

  2. Orexin receptor antagonists as therapeutic agents for insomnia

    Directory of Open Access Journals (Sweden)

    Ana Clementina Equihua

    2013-12-01

    Full Text Available Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor, although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects.Orexin (hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g. impaired cognition, disturbed arousal, and motor balance difficulties. However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  3. Examining SLV-323, a novel NK1 receptor antagonist, in a chronic psychosocial stress model for depression

    NARCIS (Netherlands)

    Czeh, B; Pudovkina, O; van der Hart, MGC; Simon, M; Heilbronner, U; Michaelis, T; Watanabe, T; Frahm, J; Fuchs, E

    Rationale: Substance P antagonists have been proposed as candidates for a new class of antidepressant compounds. Objectives: We examined the effects of SLV-323, a novel neurokinin 1 receptor (NK1R) antagonist, in the chronic psychosocial stress paradigm of adult male tree shrews. Methods: Animals

  4. Differential binding of urokinase and peptide antagonists to the urokinase receptor

    DEFF Research Database (Denmark)

    Engelholm, L H; Behrendt, N

    2001-01-01

    though these sequences contain very few substitutions relative to the human uPAR, the receptor protein products differ markedly in terms of ligand selectivity. Thus, a well described competitive peptide antagonist directed against the human uPAR reacts with only one of the monkey receptors (chimpanzee u......PAR), in spite of the fact that uPAR from all of the four species cross-reacts with human uPA. Notably, uPAR from African green monkey, which is completely devoid of reactivity with the peptide, contains only three substitutions relative to chimpanzee uPAR in the molecular regions critical for binding...

  5. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    International Nuclear Information System (INIS)

    Vikram, Ajit; Jena, Gopabandhu

    2010-01-01

    Research highlights: →Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. →Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. →Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. →Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia (∼18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARγ) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 ± 16.32 vs. 126.37 ± 27.07 mg/dl) and glucose intolerance (∼78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  6. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    Science.gov (United States)

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  7. Receptor protection studies comparing recombinant and native nicotinic receptors: Evidence for a subpopulation of mecamylamine-sensitive native alpha3beta4* nicotinic receptors.

    Science.gov (United States)

    Free, R Benjamin; Kaser, Daniel J; Boyd, R Thomas; McKay, Dennis B

    2006-01-09

    Studies involving receptor protection have been used to define the functional involvement of specific receptor subtypes in tissues expressing multiple receptor subtypes. Previous functional studies from our laboratory demonstrate the feasibility of this approach when applied to neuronal tissues expressing multiple nicotinic acetylcholine receptors (nAChRs). In the current studies, the ability of a variety of nAChR agonists and antagonists to protect native and recombinant alpha3beta4 nAChRs from alkylation were investigated using nAChR binding techniques. Alkylation of native alpha3beta4* nAChRs from membrane preparations of bovine adrenal chromaffin cells resulted in a complete loss of specific [(3)H]epibatidine binding. This loss of binding to native nAChRs was preventable by pretreatment with the agonists, carbachol or nicotine. The partial agonist, cytisine, produced partial protection. Several nAChR antagonists were also tested for their ability to protect. Hexamethonium and decamethonium were without protective activity while mecamylamine and tubocurarine were partially effective. Addition protection studies were performed on recombinant alpha3beta4 nAChRs. As with native alpha3beta4* nAChRs, alkylation produced a complete loss of specific [(3)H]epibatidine binding to recombinant alpha3beta4 nAChRs which was preventable by pretreatment with nicotine. However, unlike native alpha3beta4* nAChRs, cytisine and mecamylamine, provide no protection for alkylation. These results highlight the differences between native alpha3beta4* nAChRs and recombinant alpha3beta4 nAChRs and support the use of protection assays to characterize native nAChR subpopulations.

  8. Relationship between structure, conformational flexibility, and biological activity of agonists and antagonists at the N-methyl-D-aspartic acid subtype of excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Brehm, L; Schaumburg, Kjeld

    1990-01-01

    The relationship between conformational flexibility and agonist or antagonist actions at the N-Methyl-D-aspartic acid (NMDA) subtype of central L-glutamic acid (GLU) receptors of a series of racemic piperidinedicarboxylic acids (PDAs) was studied. The conformational analyses were based on 1H NMR...... receptors. Each of the three cyclic acidic amino acids showing NMDA agonist activities was found to exist as an equilibrium mixture of two conformers in aqueous solution. In contrast, the NMDA antagonists cis-2,3-PDA and cis-2,4-PDA as well as the inactive compounds trans-2,5-PDA and cis-2,6-PDA were shown...

  9. Structure-Based Prediction of Subtype Selectivity of Histamine H3 Receptor Selective Antagonists in Clinical Trials

    DEFF Research Database (Denmark)

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder

    2011-01-01

    applications, including treatment of Alzheimer’s disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity.(1) However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity...... and antagonists. We find that E2065.46 contributes most in binding H3 selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/S5.43 in both of hH3HR and hH4HR are involved in H3/ H4 subtype selectivity. In addition, we find that M3786.55 in hH3HR provides...... additional hydrophobic interactions different from hH4HR (the corresponding amino acid of T3236.55 in hH4HR) to provide additional subtype bias. From these studies, we developed a pharmacophore model based on our predictions for known hH3HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2...

  10. I. Effects of a Dopamine Receptor Antagonist on Fathead Minnow, Pimephales promelas ,Reproduction

    Science.gov (United States)

    This study used a 21 d fathead minnow (Pimephales promelas) reproduction assay to test the hypothesis that exposure to the dopamine 2 receptor (D2R) antagonist, haloperidol, would impair fish reproduction. Additionally, a 96 h experiment with fathead minnows and zebrafish (Danio ...

  11. Potentiation of the gastric antisecretory activity of histamine H2-receptor antagonists by clebopride.

    Science.gov (United States)

    Fernández, A G; Massingham, R; Roberts, D J

    1988-05-01

    The substituted benzamide, clebopride, at doses (0.03-3 mg kg-1 i.p.) that were without effect per se on the secretion of gastric acid in pylorus ligated (Shay) rats, potentiated the antisecretory effects of the histamine H2 receptor antagonists cimetidine and ranitidine in this model but not those of the muscarine receptor antagonist pirenzepine nor those of the proton pump inhibitor omeprazole. By contrast, clebopride was without influence on the inhibitory effects of cimetidine on pentagastrin-induced secretion in perfused stomach (Ghosh and Schild) preparations in anaesthetized rats. The significance of these findings is discussed in relation to the previously described potentiating effects of clebopride on the anti-ulcer activity of cimetidine in various experimental models, and the potential beneficial effects of such combined therapy in the clinic.

  12. Neurophysiological mechanisms of bradykinin-evoked mucosal chloride secretion in guinea pig small intestine.

    Science.gov (United States)

    Qu, Mei-Hua; Ji, Wan-Sheng; Zhao, Ting-Kun; Fang, Chun-Yan; Mao, Shu-Mei; Gao, Zhi-Qin

    2016-02-15

    To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion. Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA). Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production. The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK.

  13. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral cir...

  14. Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2

    Directory of Open Access Journals (Sweden)

    Christa E. Müller

    2008-02-01

    Full Text Available The compound L-valine-3-{8-[(E-2-[3-methoxyphenylethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4 was synthesized as an aminoacid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to bestable in artificial gastric acid, but readily cleaved by pig liver esterase.

  15. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2.

    Science.gov (United States)

    Vollmann, Karl; Qurishi, Ramatullah; Hockemeyer, Jörg; Müller, Christa E

    2008-02-12

    The compound L-valine-3-{8-[(E)-2-[3-methoxyphenyl)ethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4) was synthesized as an amino acid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to be stable in artificial gastric acid, but readily cleaved by pig liver esterase.

  16. Efficacy of 5-HT3 receptor antagonists in radiotherapy-induced nausea and vomiting: A quantitative systematic review

    International Nuclear Information System (INIS)

    Tramer, M.R.; Reynolds, D.J.M.; Stoner, N.S.; Moore, R.A.; McQuay, H.J.

    1998-01-01

    5-HT 3 receptor antagonists are used to treat radiation-induced sickness. The purpose of this study was to define anti-emetic efficacy and potential for harm of these drugs in radiotherapy. A systematic search, critical appraisal and quantitative analysis of relevant data using the number-needed-to-treat or harm (NNT/H) were conducted. Acute (0 to 24 h) and delayed (beyond 24 h) anti-emetic efficacy were analysed separately. Data from 1,404 patients were found in 40 trials published in 36 reports. Data from 197 patients receiving ondansetron or granisetron in five randomised trials were regarded as valid according to preset criteria. One placebo-controlled trial had 10 patients per group and in this ondansetron was not significantly different from placebo. In a larger (n=105) placebo-controlled trial, ondansetron was significantly more efficacious than metoclopramide for complete control of acute vomiting (NNT 2.2, 95% confidence interval (CI) 1.7-3.3) and acute nausea (NNT 3.6, 95% CI 2.2-10.2). Three trials reported delayed outcomes with ondansetron or granisetron: there was no evidence of any difference compared with placebo or other anti-emetics. Two trials reported no acute or delayed but a 'worst day' outcome; in these ondansetron's antivomiting effect was significantly better than placebo (NNT 4.4, 95% CI 2.5-23) or prochlorperazine (NNT 3.8, 95% CI 2.4-10.3), but not its antinausea effect. Constipation and headache were associated significantly with 5-HT 3 receptor antagonists compared with other anti-emetics or placebo (NNH 6.4 and 17.1, respectively). Only 14% of published data enabled valid estimation of the anti-emetic efficacy of 5-HT 3 receptor antagonists in radiotherapy. There was some evidence that these drugs prevent acute vomiting: 40% of treated patients will benefit (NNT approximately 2.5). The evidence for nausea was less clear. There was no evidence that these drugs are of any benefit beyond 24 h. There was evidence that they produce specific

  17. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist.

    Science.gov (United States)

    Justinová, Zuzana; Ferré, Sergi; Redhi, Godfrey H; Mascia, Paola; Stroik, Jessica; Quarta, Davide; Yasar, Sevil; Müller, Christa E; Franco, Rafael; Goldberg, Steven R

    2011-07-01

    Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse. Addiction Biology © 2010 Society for the Study of Addiction. No claim to original US government works.

  18. Design and synthesis of labeled analogs of PhTX-56, a potent and selective AMPA receptor antagonist

    DEFF Research Database (Denmark)

    Andersen, Trine F; Vogensen, Stine B; Jensen, Lars S

    2005-01-01

    Polyamines and polyamine toxins are biologically important molecules, having modulatory effects on nucleotides and proteins. The wasp toxin, philanthotoxin-433 (PhTX-433), is a non-selective and uncompetitive antagonist of ionotropic receptors, such as ionotropic glutamate receptors and nicotinic...

  19. Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy

    Directory of Open Access Journals (Sweden)

    Marcin P Komorowski

    2016-01-01

    Full Text Available Ovarian cancer remains the most lethal gynecologic malignancy owing to late detection, intrinsic and acquired chemoresistance, and remarkable heterogeneity. Here, we explored approaches to inhibit metastatic growth of murine and human ovarian tumor variants resistant to paclitaxel and carboplatin by oncolytic vaccinia virus expressing a CXCR4 antagonist to target the CXCL12 chemokine/CXCR4 receptor signaling axis alone or in combination with doxorubicin. The resistant variants exhibited augmented expression of the hyaluronan receptor CD44 and CXCR4 along with elevated Akt and ERK1/2 activation and displayed an increased susceptibility to viral infection compared with the parental counterparts. The infected cultures were more sensitive to doxorubicin-mediated killing both in vitro and in tumor-challenged mice. Mechanistically, the combination treatment increased apoptosis and phagocytosis of tumor material by dendritic cells associated with induction of antitumor immunity. Targeting syngeneic tumors with this regimen increased intratumoral infiltration of antitumor CD8+ T cells. This was further enhanced by reducing the immunosuppressive network by the virally-delivered CXCR4 antagonist, which augmented antitumor immune responses and led to tumor-free survival. Our results define novel strategies for treatment of drug-resistant ovarian cancer that increase immunogenic cell death and reverse the immunosuppressive tumor microenvironment, culminating in antitumor immune responses that control metastatic tumor growth.

  20. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    Science.gov (United States)

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  1. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors

    OpenAIRE

    Tunaru, Sorin; Althoff, Till F.; Nüsing, Rolf M.; Diener, Martin; Offermanns, Stefan

    2012-01-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP3 prostanoid receptor is specifically activated by ricinoleic acid and...

  2. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.

    Science.gov (United States)

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-04-01

    5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.

  3. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5HT3A receptors due to the action of flavonoids

    Directory of Open Access Journals (Sweden)

    Robin eHerbrechter

    2015-07-01

    Full Text Available The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g. setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3A receptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonist of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (--liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (--liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito.

  4. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    Science.gov (United States)

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Vorapaxar: The Current Role and Future Directions of a Novel Protease-Activated Receptor Antagonist for Risk Reduction in Atherosclerotic Disease.

    Science.gov (United States)

    Gryka, Rebecca J; Buckley, Leo F; Anderson, Sarah M

    2017-03-01

    Despite the current standard of care, patients with cardiovascular disease remain at a high risk for recurrent events. Inhibition of thrombin-mediated platelet activation through protease-activated receptor-1 antagonism may provide reductions in atherosclerotic disease beyond those achievable with the current standard of care. Our primary objective is to evaluate the clinical literature regarding the role of vorapaxar (Zontivity™) in the reduction of cardiovascular events in patients with a history of myocardial infarction and peripheral artery disease. In particular, we focus on the potential future directions for protease-activating receptor antagonists in the treatment of a broad range of atherosclerotic diseases. A literature search of PubMed and EBSCO was conducted to identify randomized clinical trials from August 2005 to June 2016 using the search terms: 'vorapaxar', 'SCH 530348', 'protease-activated receptor-1 antagonist', and 'Zontivity™'. Bibliographies were searched and additional resources were obtained. Vorapaxar is a first-in-class, protease-activated receptor-1 antagonist. The Thrombin Receptor Antagonist for Clinical Event Reduction (TRACER) trial did not demonstrate a significant reduction in a broad primary composite endpoint. However, the Thrombin-Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events (TRA 2°P-TIMI 50) trial examined a more traditional composite endpoint and found a significant benefit with vorapaxar. Vorapaxar significantly increased bleeding compared with standard care. Ongoing trials will help define the role of vorapaxar in patients with peripheral arterial disease, patients with diabetes mellitus, and other important subgroups. The use of multivariate modeling may enable the identification of subgroups with maximal benefit and minimal harm from vorapaxar. Vorapaxar provides clinicians with a novel mechanism of action to further reduce the burden of ischemic heart disease. Identification of

  6. The safety of interleukin-1 receptor antagonist (anakinra in the treatment of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    L. Riente

    2011-09-01

    Full Text Available The safety profile of interleukin-1 receptor antagonist (anakinra has been studied with randomised, placebo-controlled trials involving 2932 patients affected by rheumatoid arthritis. The most frequently reported adverse events were represented by injection site reactions (71% and headache (13.6%. No statistically significant difference in the incidence of infections was observed among the patients treated with the interleukin-1 receptor antagonist and the patients receiving placebo. In particular, the incidence of serious infections was 1,8% in rheumatoid arthritis patients on anakinra therapy and 0,7% in patients on placebo. The reported serious infections consisted of pneumonia, cellulitis, bone and joint infections, bursitis. No case of opportunistic infections or tubercolosis was observed. The results of clinical studies suggest that anakinra is a new well-tolerated drug for the treatment of patients affected by rheumatoid arthritis.

  7. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    Science.gov (United States)

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  8. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    Directory of Open Access Journals (Sweden)

    Julia D I Meuwese

    Full Text Available Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  9. Effects of melatonin and its receptor antagonist on retinal pigment epithelial cells against hydrogen peroxide damage

    Science.gov (United States)

    Rosen, Richard B.; Hu, Dan-Ning; Chen, Min; McCormick, Steven A.; Walsh, Joseph

    2012-01-01

    Purpose Recently, we reported finding that circulating melatonin levels in age-related macular degeneration patients were significantly lower than those in age-matched controls. The purpose of this study was to investigate the hypothesis that melatonin deficiency may play a role in the oxidative damage of the retinal pigment epithelium (RPE) by testing the protective effect of melatonin and its receptor antagonist on RPE cells exposed to H2O2 damage. Methods Cultured human RPE cells were subjected to oxidative stress induced by 0.5 mM H2O2. Cell viability was measured using the microculture tetrazoline test (MTT) assay. Cells were pretreated with or without melatonin for 24 h. Luzindole (50 μM), a melatonin membrane-receptor antagonist, was added to the culture 1 h before melatonin to distinguish direct antioxidant effects from indirect receptor-dependent effects. All tests were performed in triplicate. Results H2O2 at 0.5 mM decreased cell viability to 20% of control levels. Melatonin showed dose-dependent protective effects on RPE cells against H2O2. Cell viability of RPE cells pretreated with 10−10, 10−8, 10−6, and 10−4 M melatonin for 24 h was 130%, 160%, 187%, and 230% of cells treated with H2O2 alone (all p<0.05). Using cells cultured without H2O2 as the control, cell viability of cells treated with H2O2 after pretreatment with 10−10-10−4 M melatonin was still significantly lower than that of the controls, suggesting that melatonin significantly decreased but did not completely abolish the in vitro cytotoxic effects of H2O2. Luzindole completely blocked melatonin’s protective effects at low concentrations of melatonin (10−10-10−8 M) but not at high concentrations (10−6-10−4 M). Conclusions Melatonin has a partial protective effect on RPE cells against H2O2 damage across a wide range of concentrations (10−10-10−4 M). This protective effect occurs through the activation of melatonin membrane receptors at low concentrations (10−10

  10. In vivo brain dopaminergic receptor site mapping using 75Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    International Nuclear Information System (INIS)

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a [ 75 Se]-radiolabeled pergolide mesylate derivative, [ 75 Se]-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of [ 75 Se]-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ([ 123 I]-iodoamphetamine). However, [ 123 I]-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that [ 75 Se]-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that [ 75 Se]-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals

  11. Sympatholytic properties of several AT(1)-receptor antagonists in the isolated rabbit thoracic aorta

    NARCIS (Netherlands)

    Nap, Alexander; Balt, Jippe C.; Pfaffendorf, Martin; van Zwieten, Pieter A.

    2002-01-01

    Objective To evaluate the facilitating effect of angiotensin II on sympathetic neurotransmission to quantitatively compare the sympatho-inhibitory potencies of the selective AT(1)-receptor antagonists losartan, irbesartan and telmisartan in the isolated rabbit thoracic aorta. Design To investigate

  12. The effects of benzodiazepine-receptor antagonists and partial inverse agonists on acute hepatic encephalopathy in the rat

    NARCIS (Netherlands)

    Bosman, D. K.; van den Buijs, C. A.; de Haan, J. G.; Maas, M. A.; Chamuleau, R. A.

    1991-01-01

    Two benzodiazepine-receptor partial inverse agonists (Ro 15-4513, Ro 15-3505) and one benzodiazepine-receptor antagonist (flumazenil) were administered to rats with hepatic encephalopathy due to acute liver ischemia. Significant improvement (P less than 0.002) of both the clinical grade of hepatic

  13. Characterization of JNJ-42847922, a Selective Orexin-2 Receptor Antagonist, as a Clinical Candidate for the Treatment of Insomnia.

    Science.gov (United States)

    Bonaventure, Pascal; Shelton, Jonathan; Yun, Sujin; Nepomuceno, Diane; Sutton, Steven; Aluisio, Leah; Fraser, Ian; Lord, Brian; Shoblock, James; Welty, Natalie; Chaplan, Sandra R; Aguilar, Zuleima; Halter, Robin; Ndifor, Anthony; Koudriakova, Tatiana; Rizzolio, Michele; Letavic, Michael; Carruthers, Nicholas I; Lovenberg, Timothy; Dugovic, Christine

    2015-09-01

    Dual orexin receptor antagonists have been shown to promote sleep in various species, including humans. Emerging research indicates that selective orexin-2 receptor (OX2R) antagonists may offer specificity and a more adequate sleep profile by preserving normal sleep architecture. Here, we characterized JNJ-42847922 ([5-(4,6-dimethyl-pyrimidin-2-yl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-(2-fluoro-6-[1,2,3]triazol-2-yl-phenyl)-methanone), a high-affinity/potent OX2R antagonist. JNJ-42847922 had an approximate 2-log selectivity ratio versus the human orexin-1 receptor. Ex vivo receptor binding studies demonstrated that JNJ-42847922 quickly occupied OX2R binding sites in the rat brain after oral administration and rapidly cleared from the brain. In rats, single oral administration of JNJ-42847922 (3-30 mg/kg) during the light phase dose dependently reduced the latency to non-rapid eye movement (NREM) sleep and prolonged NREM sleep time in the first 2 hours, whereas REM sleep was minimally affected. The reduced sleep onset and increased sleep duration were maintained upon 7-day repeated dosing (30 mg/kg) with JNJ-42847922, then all sleep parameters returned to baseline levels following discontinuation. Although the compound promoted sleep in wild-type mice, it had no effect in OX2R knockout mice, consistent with a specific OX2R-mediated sleep response. JNJ-42847922 did not increase dopamine release in rat nucleus accumbens or produce place preference in mice after subchronic conditioning, indicating that the compound lacks intrinsic motivational properties in contrast to zolpidem. In a single ascending dose study conducted in healthy subjects, JNJ-42847922 increased somnolence and displayed a favorable pharmacokinetic and safety profile for a sedative/hypnotic, thus emerging as a promising candidate for further clinical development for the treatment of insomnia. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz

    2010-04-01

    Full Text Available It has been recently demonstrated that substance P (SP and neurokinin-1 (NK-1 receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679. We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.

  15. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es; Rosso, Marisa; González-Ortega, Ana [Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla (Spain); Coveñas, Rafael [Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Laboratory 14), Salamanca (Spain)

    2010-04-20

    It has been recently demonstrated that substance P (SP) and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679). We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.

  16. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  17. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2011-04-01

    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  18. SSTR-Mediated Imaging in Breast Cancer: Is There a Role for Radiolabeled Somatostatin Receptor Antagonists?

    Science.gov (United States)

    Dalm, Simone U; Haeck, Joost; Doeswijk, Gabriela N; de Blois, Erik; de Jong, Marion; van Deurzen, Carolien H M

    2017-10-01

    Recent studies have shown enhanced tumor targeting by novel somatostatin receptor (SSTR) antagonists compared with clinically widely used agonists. However, these results have been obtained mostly in neuroendocrine tumors, and only limited data are available for cancer types with lower SSTR expression, including breast cancer (BC). To date, two studies have reported higher binding of the antagonist than the agonist in BC, but in both studies only a limited number of cases were evaluated. In this preclinical study, we further investigated whether the application of an SSTR antagonist can improve SSTR-mediated BC imaging in a large panel of BC specimens. We also generated an in vivo BC mouse model and performed SPECT/MRI and biodistribution studies. Methods: Binding of 111 In-DOTA-Tyr 3 -octreotate (SSTR agonist) and 111 In-DOTA-JR11 (SSTR antagonist) to 40 human BC specimens was compared using in vitro autoradiography. SSTR2 immunostaining was performed to confirm SSTR2 expression of the tumor cells. Furthermore, binding of the radiolabeled SSTR agonist and antagonist was analyzed in tissue material from 6 patient-derived xenografts. One patient-derived xenograft, the estrogen receptor-positive model T126, was chosen to generate in vivo mouse models containing orthotopic breast tumors for in vivo SPECT/MRI and biodistribution studies after injection with 177 Lu-DOTA-Tyr 3 -octreotate or 177 Lu-DOTA-JR11. Results: 111 In-DOTA-JR11 binding to human BC tissue was significantly higher than 111 In-DOTA-Tyr 3 -octreotate binding ( P < 0.001). The median ratio of antagonist binding versus agonist binding was 3.39 (interquartile range, 2-5). SSTR2 immunostaining confirmed SSTR2 expression on the tumor cells. SPECT/MRI of the mouse model found better tumor visualization with the antagonist. This result was in line with the significantly higher tumor uptake of the radiolabeled antagonist than of the agonist as measured in biodistribution studies 285 min after radiotracer

  19. Identification of an endogenous alpha-adrenergic receptor antagonist: studies on its possible role in endocrine and cardiovascular function

    International Nuclear Information System (INIS)

    Dunbar, J.C.; Wider, M.; House, F.; Campbell, R.

    1986-01-01

    The concept of α and β adrenergic receptors that are regulated by epinephrine or norepinephrine (NE) is well established. The reported receptor antagonists have been synthetic. A peptide extracted from the duodenal mucosa with α-2 antagonist properties has been identified. It specifically inhibits 3 H-yohimbine binding (α-2) but not 3 H dihydroalprenolol (β) binding in whole brain membranes. Partially purified preparations of the alpha receptor binding inhibitor (ABI) were tested for endocrine pancreatic and cardiovascular effects. When isolated islets were incubated in the presence of ABI with and without NE, ABI along did not alter insulin secretion but completely reversed the NE suppression of glucose stimulated insulin release. Glucagon secretion by these same islets was enhanced by ABI and augmented the stimulatory effect of NE. Intravenous (I.V.) infusion of ABI increased serum insulin in the presence of NE and decreased the serum glucose response to a glucose load. Infusion of ABI into the 4th ventricle, or I.V. resulted in a decrease (50-60%) in systolic and diastolic blood pressure as well as a decrease (10-20%) in heart rate. From these studies the authors conclude that a duodenal peptide with the capacity to inhibit α-2 agonist binding may play a role in endocrine and cardiovascular functions

  20. Effect of ghrelin receptor agonist and antagonist on the activity of arcuate nucleus tyrosine hydroxylase containing neurons in C57BL/6 male mice exposed to normal or high fat diet

    Czech Academy of Sciences Publication Activity Database

    Pirník, Z.; Majerčíková, Z.; Holubová, Martina; Pirník, R.; Železná, Blanka; Maletínská, Lenka; Kiss, A.

    2014-01-01

    Roč. 65, č. 4 (2014), s. 477-486 ISSN 0867-5910 Institutional support: RVO:61388963 Keywords : growth hormone secretagogue receptor * ghrelin receptor agonist * ghrelin receptor antagonist * high fat diet * tyrosine hydroxylase * arcuate nucleus * food intake Subject RIV: CE - Biochemistry Impact factor: 2.386, year: 2014

  1. Cortical epileptic afterdischarges in immature rats are differently influenced by NMDA receptor antagonists

    Czech Academy of Sciences Publication Activity Database

    Šlamberová, Romana; Mareš, Pavel

    2005-01-01

    Roč. 516, č. 1 (2005), s. 10-17 ISSN 0014-2999 R&D Projects: GA MŠk(CZ) LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : epileptic seizure * cerebral cortex * NMDA receptor antagonist Subject RIV: FH - Neuro logy Impact factor: 2.477, year: 2005

  2. Effects of the noncompetitive N-methyl-d-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats.

    Science.gov (United States)

    Hillhouse, T M; Negus, S S

    2016-09-01

    Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-d-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague-Dawley rats. Ketamine (1.0-10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01-0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. © 2016 European Pain Federation - EFIC®

  3. Similar efficacy from specific and non-specific mineralocorticoid receptor antagonist treatment of muscular dystrophy mice.

    Science.gov (United States)

    Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A

    2016-01-01

    Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.

  4. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017).

    Science.gov (United States)

    Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2018-03-01

    Since years, ligands blocking histamine H 3 receptor (H 3 R) activity (antagonists/inverse agonists) are interesting targets in the search for new cures for CNS disorders. Intensive works done by academic and pharmaceutical company researchers have led to many potent and selective H 3 R antagonists/inverse agonists. Some of them have reached to clinical trials. Areas covered: Patent applications from January 2013 to September 2017 and the most important topics connected with H 3 R field are analysed. Espacenet, Patentscope, Pubmed, GoogleScholar or Cochrane Library online databases were principially used to collect all the materials. Expert opinion: The research interest in histamine H 3 R field is still high although the number of patent applications has decreased during the past 4 years (around 20 publications). Complexity of histamine H 3 R biology e.g. many isoforms, constitutive activity, heteromerization with other receptors (dopamine D 2 , D 1 , adenosine A 2A ) and pharmacology make not easy realization and evaluation of therapeutic potential of anti-H 3 R ligands. First results from clinical trials have verified potential utility of histamine H 3 R antagonist/inverse agonists in some diseases. However, more studies are necessary for better understanding of an involvement of the histaminergic system in CNS-related disorders and helping more ligands approach to clinical trials and the market. Lists of abbreviations: hAChEI - human acetylcholinesterase inhibitor; hBuChEI - human butyrylcholinesterase inhibitor; hMAO - human monoamine oxidase; MAO - monoamine oxidase.

  5. Efficacy of 5-HT{sub 3} receptor antagonists in radiotherapy-induced nausea and vomiting: A quantitative systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Tramer, M.R. [Pain Research and Nuffield Department of Anaesthetics, University of Oxford, Oxford Radcliffe Hospital, The Churchill, Headington, Oxford (United Kingdom); Reynolds, D.J.M. [Department of Clinical Pharmacology, Radcliffe Infirmary, Oxford, Radcliffe Hospital (United Kingdom); Stoner, N.S. [ICRF Department of Medical Oncology, Oxford Radcliffe Hospital (United Kingdom); Moore, R.A.; McQuay, H.J. [Pain Research and Nuffield Department of Anaesthetics, University of Oxford, Oxford Radcliffe Hospital, The Churchill, Headington, Oxford (United Kingdom)

    1998-11-01

    5-HT{sub 3} receptor antagonists are used to treat radiation-induced sickness. The purpose of this study was to define anti-emetic efficacy and potential for harm of these drugs in radiotherapy. A systematic search, critical appraisal and quantitative analysis of relevant data using the number-needed-to-treat or harm (NNT/H) were conducted. Acute (0 to 24 h) and delayed (beyond 24 h) anti-emetic efficacy were analysed separately. Data from 1,404 patients were found in 40 trials published in 36 reports. Data from 197 patients receiving ondansetron or granisetron in five randomised trials were regarded as valid according to preset criteria. One placebo-controlled trial had 10 patients per group and in this ondansetron was not significantly different from placebo. In a larger (n=105) placebo-controlled trial, ondansetron was significantly more efficacious than metoclopramide for complete control of acute vomiting (NNT 2.2, 95% confidence interval (CI) 1.7-3.3) and acute nausea (NNT 3.6, 95% CI 2.2-10.2). Three trials reported delayed outcomes with ondansetron or granisetron: there was no evidence of any difference compared with placebo or other anti-emetics. Two trials reported no acute or delayed but a 'worst day' outcome; in these ondansetron's antivomiting effect was significantly better than placebo (NNT 4.4, 95% CI 2.5-23) or prochlorperazine (NNT 3.8, 95% CI 2.4-10.3), but not its antinausea effect. Constipation and headache were associated significantly with 5-HT{sub 3} receptor antagonists compared with other anti-emetics or placebo (NNH 6.4 and 17.1, respectively). Only 14% of published data enabled valid estimation of the anti-emetic efficacy of 5-HT{sub 3} receptor antagonists in radiotherapy. There was some evidence that these drugs prevent acute vomiting: 40% of treated patients will benefit (NNT approximately 2.5). The evidence for nausea was less clear. There was no evidence that these drugs are of any benefit beyond 24 h. There was

  6. Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors.

    Science.gov (United States)

    El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E

    2005-12-15

    The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.

  7. Discovery of a Manduca sexta Allatotropin Antagonist from a Manduca sexta Allatotropin Receptor Homology Model.

    Science.gov (United States)

    Kai, Zhen-Peng; Zhu, Jing-Jing; Deng, Xi-Le; Yang, Xin-Ling; Chen, Shan-Shan

    2018-04-03

    Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behavior. They have been identified as candidate targets for next-generation insecticides, yet these targets have been relatively poorly exploited for insect control. In this study, we present a pipeline of novel Manduca sexta allatotropin (Manse-AT) antagonist discovery with homology modeling, docking, molecular dynamics simulation and structure-activity relationship. A series of truncated and alanine-replacement analogs of Manse-AT were assayed for the stimulation of juvenile hormone biosynthesis. The minimum sequence required to retain potent biological activity is the C -terminal amidated octapeptide Manse-AT (6-13). We identified three residues essential for bioactivity (Thr⁴, Arg6 and Phe⁸) by assaying alanine-replacement analogs of Manse-AT (6-13). Alanine replacement of other residues resulted in reduced potency but bioactivity was retained. The 3D structure of the receptor (Manse-ATR) was built and the binding pocket was identified. The binding affinities of all the analogs were estimated by calculating the free energy of binding. The calculated binding affinities corresponded to the biological activities of the analogs, which supporting our localization of the binding pocket. Then, based on the docking and molecular dynamics studies of Manse-AT (10-13), we described it can act as a potent Manse-AT antagonist. The antagonistic effect on JH biosynthesis of Manse-AT (10-13) validated our hypothesis. The IC 50 value of antagonist Manse-AT (10-13) is 0.9 nM. The structure-activity relationship of antagonist Manse-AT (10-13) was also studied for the further purpose of investigating theoretically the structure factors influencing activity. These data will be useful for the design of new Manse-AT agonist and antagonist as potential pest control agents.

  8. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response.

    Science.gov (United States)

    Paramo, Teresa; Tomasio, Susana M; Irvine, Kate L; Bryant, Clare E; Bond, Peter J

    2015-12-09

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the "membrane-like" nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics.

  9. Effect of the AT1-receptor antagonists losartan, irbesartan, and telmisartan on angiotensin II-induced facilitation of sympathetic neurotransmission in the rat mesenteric artery

    NARCIS (Netherlands)

    Balt, J. C.; Mathy, M. J.; Nap, A.; Pfaffendorf, M.; van Zwieten, P. A.

    2001-01-01

    SUMMARY: The effect of the AT1-receptor antagonists losartan, irbesartan, and telmisartan on angiotensin II (Ang II)-induced facilitation of noradrenergic neurotransmission was investigated in the isolated rat mesenteric artery under isometric conditions. Electrical field stimulation (2, 4, and 8

  10. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4.

    NARCIS (Netherlands)

    Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H.J.; Kessler, H.

    2011-01-01

    The chemokine receptor CXCR4 is a critical regulator of inflammation and immune surveillance, and it is specifically implicated in cancer metastasis and HIV-1 infection. On the basis of the observation that several of the known antagonists remarkably share a C(2) symmetry element, we constructed

  11. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    Science.gov (United States)

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  12. Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2016-03-01

    Full Text Available Endothelin-1 receptors (ETAR and ETBR act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA.

  13. Molecular pharmacology of the AMPA agonist, (S)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(S)-APPA] and the AMPA antagonist, (R)-APPA

    DEFF Research Database (Denmark)

    Ebert, B; Madsen, U; Lund, Trine Meldgaard

    1994-01-01

    )-APPA, whereas (R)-APPA is a non-N-methyl-D-aspartic acid (non-NMDA) receptor antagonist showing preferential AMPA blocking effects. In agreement with classical theories for competitive interaction between agonists and antagonists, the efficacy of depolarizations produced by (S)-APPA in the rat cortical wedge......The heterocyclic analogue of (S)-glutamic acid, (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [(S)-AMPA] is a potent and selective AMPA receptor agonist, whereas the enantiomeric compound, (R)-AMPA, is virtually inactive. We have previously characterized (RS)-2-amino-3-(3-hydroxy-5......-phenyl-4-isoxazolyl)propionic acid [(RS)-APPA] as a partial AMPA receptor agonist showing about 60% of the efficacy of (RS)-AMPA. This partial agonism produced by (RS)-APPA is, however, only apparent, since resolution of (RS)-APPA has now been shown to provide the full AMPA receptor agonist, (S...

  14. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy.

    Science.gov (United States)

    Rwibasira Rudinga, Gamariel; Khan, Ghulam Jilany; Kong, Yi

    2018-02-14

    Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.

  15. Identification of androgen receptor antagonists: In vitro investigation and classification methodology for flavonoid.

    Science.gov (United States)

    Wu, Yang; Doering, Jon A; Ma, Zhiyuan; Tang, Song; Liu, Hongling; Zhang, Xiaowei; Wang, Xiaoxiang; Yu, Hongxia

    2016-09-01

    A tremendous gap exists between the number of potential endocrine disrupting chemicals (EDCs) possibly in the environment and the limitation of traditional regulatory testing. In this study, the anti-androgenic potencies of 21 flavonoids were analyzed in vitro, and another 32 flavonoids from the literature were selected as additional chemicals. Molecular dynamic simulations were employed to obtain four different separation approaches based on the different behaviors of ligands and receptors during the process of interaction. Specifically, ligand-receptor complex which highlighted the discriminating features of ligand escape or retention via "mousetrap" mechanism, hydrogen bonds formed during simulation times, ligand stability and the stability of the helix-12 of the receptor were investigated. Together, a methodology was generated that 87.5% of flavonoids could be discriminated as active versus inactive antagonists, and over 90% inactive antagonists could be filtered out before QSAR study. This methodology could be used as a "proof of concept" to identify inactive anti-androgenic flavonoids, as well could be beneficial for rapid risk assessment and regulation of multiple new chemicals for androgenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Potential Activity of Fevicordin-A from Phaleria macrocarpa (Scheff Boerl. Seeds as Estrogen Receptor Antagonist Based on Cytotoxicity and Molecular Modelling Studies

    Directory of Open Access Journals (Sweden)

    Muchtaridi Muchtaridi

    2014-04-01

    Full Text Available Fevicordin-A (FevA isolated from Phaleria macrocarpa (Scheff Boerl. seeds was evaluated for its potential anticancer activity by in vitro and in silico approaches. Cytotoxicity studies indicated that FevA was selective against cell lines of human breast adenocarcinoma (MCF-7 with an IC50 value of 6.4 µM. At 11.2 µM, FevA resulted in 76.8% cell death of T-47D human breast cancer cell lines. Critical pharmacophore features amongst human Estrogen Receptor-α (hERα antagonists were conserved in FevA with regard to a hypothesis that they could make notable contributions to its pharmacological activity. The binding stability as well as the dynamic behavior of FevA towards the hERα receptor in agonist and antagonist binding sites were probed using molecular dynamics (MD simulation approach. Analysis of MD simulation suggested that the tail of FevA was accountable for the repulsion of the C-terminal of Helix-11 (H11 in both agonist and antagonist receptor forms. The flexibility of loop-534 indicated the ability to disrupt the hydrogen bond zipper network between H3 and H11 in hERα. In addition, MM/GBSA calculation from the molecular dynamic simulations also revealed a stronger binding affinity of FevA in antagonistic action as compared to that of agonistic action. Collectively, both the experimental and computational results indicated that FevA has potential as a candidate for an anticancer agent, which is worth promoting for further preclinical evaluation.

  17. Effects of NMDA receptor antagonists on probability discounting depend on the order of probability presentation.

    Science.gov (United States)

    Yates, Justin R; Breitenstein, Kerry A; Gunkel, Benjamin T; Hughes, Mallory N; Johnson, Anthony B; Rogers, Katherine K; Shape, Sara M

    Risky decision making can be measured using a probability-discounting procedure, in which animals choose between a small, certain reinforcer and a large, uncertain reinforcer. Recent evidence has identified glutamate as a mediator of risky decision making, as blocking the N-methyl-d-aspartate (NMDA) receptor with MK-801 increases preference for a large, uncertain reinforcer. Because the order in which probabilities associated with the large reinforcer can modulate the effects of drugs on choice, the current study determined if NMDA receptor ligands alter probability discounting using ascending and descending schedules. Sixteen rats were trained in a probability-discounting procedure in which the odds against obtaining the large reinforcer increased (n=8) or decreased (n=8) across blocks of trials. Following behavioral training, rats received treatments of the NMDA receptor ligands MK-801 (uncompetitive antagonist; 0, 0.003, 0.01, or 0.03mg/kg), ketamine (uncompetitive antagonist; 0, 1.0, 5.0, or 10.0mg/kg), and ifenprodil (NR2B-selective non-competitive antagonist; 0, 1.0, 3.0, or 10.0mg/kg). Results showed discounting was steeper (indicating increased risk aversion) for rats on an ascending schedule relative to rats on the descending schedule. Furthermore, the effects of MK-801, ketamine, and ifenprodil on discounting were dependent on the schedule used. Specifically, the highest dose of each drug decreased risk taking in rats in the descending schedule, but only MK-801 (0.03mg/kg) increased risk taking in rats on an ascending schedule. These results show that probability presentation order modulates the effects of NMDA receptor ligands on risky decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A toll-like receptor 9 antagonist improves bladder function and white matter sparing in spinal cord injury.

    Science.gov (United States)

    David, Brian T; Sampath, Sujitha; Dong, Wei; Heiman, Adee; Rella, Courtney E; Elkabes, Stella; Heary, Robert F

    2014-11-01

    Spinal cord injury (SCI) affects motor, sensory, and autonomic functions. As current therapies do not adequately alleviate functional deficits, the development of new and more effective approaches is of critical importance. Our earlier investigations indicated that intrathecal administration of a toll-like receptor 9 (TLR9) antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), to mice sustaining a severe, mid-thoracic contusion injury diminished neuropathic pain but did not alter locomotor deficits. These changes were paralleled by a decrease in the pro-inflammatory response at the injury epicenter. Using the same SCI paradigm and treatment regimen, the current studies investigated the effects of the TLR9 antagonist on bladder function. We report that the TLR9 antagonist decreases SCI-elicited urinary retention and ameliorates bladder morphopathology without affecting kidney function. A significant improvement in white matter sparing was also observed, most likely due to alterations in the inflammatory milieu. These findings indicate that the TLR9 antagonist has beneficial effects not only in reducing sensory deficits, but also on bladder dysfunction and tissue preservation. Thus, modulation of innate immune receptor signaling in the spinal cord can impact the effects of SCI.

  19. Drug safety is a barrier to the discovery and development of new androgen receptor antagonists.

    Science.gov (United States)

    Foster, William R; Car, Bruce D; Shi, Hong; Levesque, Paul C; Obermeier, Mary T; Gan, Jinping; Arezzo, Joseph C; Powlin, Stephanie S; Dinchuk, Joseph E; Balog, Aaron; Salvati, Mark E; Attar, Ricardo M; Gottardis, Marco M

    2011-04-01

    Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs. Copyright © 2010 Wiley-Liss, Inc.

  20. Lower lid entropion secondary to treatment with alpha-1a receptor antagonist: a case report

    Directory of Open Access Journals (Sweden)

    Simcock Peter

    2010-03-01

    Full Text Available Abstract Introduction The use of alpha-1a receptor antagonists (tamsulosin is widely accepted in the treatment of benign prostatic hypertrophy (BPH. It has previously been implicated as a causative agent in intra-operative floppy iris syndrome due to its effects on the smooth muscle. We report a case of lower lid entropion that may be related to a patient commencing treatment of tamsulosin. Case presentation A 74-year-old Caucasian man was started on alpha 1-a receptor antagonist (Tamsulosin treatment for benign prostatic hypertrophy. Eight days later, he presented to the ophthalmology unit with a right lower lid entropion which was successfully treated surgically with a Weiss procedure. Conclusion We report a case of lower lid entropion that may be secondary to the recent use of an alpha-1a blocker (tamsulosin. This can be explained by considering the effect of autonomic blockade on alpha-1 receptors in the Muller's muscle on a patient that may already have an anatomical predisposition to entropion formation due to a further reduction in muscle tone.

  1. Task-specific enhancement of short-term, but not long-term, memory by class I metabotropic glutamate receptor antagonist 1-aminoindan-1,5-dicarboxylic acid in rats

    DEFF Research Database (Denmark)

    Christoffersen, G.R.J.; Christensen, Lone H.; Harrington, Nicholas R.

    1999-01-01

    Metabotropic glutamate receptors; Class I antagonist; 1-aminoindan-1,5-dicarboxylic acid; spatial learning; contextual conditioning; rats......Metabotropic glutamate receptors; Class I antagonist; 1-aminoindan-1,5-dicarboxylic acid; spatial learning; contextual conditioning; rats...

  2. GLP-1 receptor antagonist as a potential probe for pancreatic β-cell imaging

    International Nuclear Information System (INIS)

    Mukai, Eri; Toyoda, Kentaro; Kimura, Hiroyuki; Kawashima, Hidekazu; Fujimoto, Hiroyuki; Ueda, Masashi; Temma, Takashi; Hirao, Konomu; Nagakawa, Kenji; Saji, Hideo; Inagaki, Nobuya

    2009-01-01

    We examined exendin(9-39), an antagonist of glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), as a potential probe for imaging of pancreatic β-cells. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Binding assay showed competitive inhibition of [ 125 I]BH-exendin(9-39) binding by non-radioactive exendin(9-39). To assess in vivo selectivity, the biodistribution was evaluated by intravenous administration of [ 125 I]BH-exendin(9-39) to mice. Radioactivity of harvested pancreas reached highest levels at 60 and 120 min among organs examined except lung. Pre-administration of excess non-radioactive exendin(9-39) remarkably and specifically blocked the radioactivity of pancreas. After [ 125 I]BH-exendin(9-39) injection into transgenic mice with pancreatic β-cells expressing GFP, fluorescent and radioactive signals of sections of pancreas were evaluated with an image analyzer. Imaging analysis showed that the fluorescent GFP signals and the radioactive signals were correspondingly located. Thus, the GLP-1R antagonist exendin(9-39) may serve as a useful probe for pancreatic β-cell imaging.

  3. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    International Nuclear Information System (INIS)

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-01-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of [ 3 H]-antagonist as well as of the labeled natural neurotransmitter, [ 3 H]-acetylcholine [( 3 H]-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of [ 3 H]-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity [ 3 H]-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with [ 3 H]-antagonist represent a loss of low-affinity agonist binding sites. In contrast, [ 3 H]-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms

  4. Design and synthesis of aryloxypropanolamine as β3-adrenergic receptor antagonist in cancer and lipolysis.

    Science.gov (United States)

    Jin, Jiyu; Miao, Chunxiao; Wang, Zhilong; Zhang, Wanli; Zhang, Xiongwen; Xie, Xin; Lu, Wei

    2018-04-25

    β-adrenergic receptors (β-ARs) are broadly distributed in various tissues and regulate a panel of important physiological functions and disease states including cancer. Above all, β 3 -adrenergic receptor (β 3 -AR) plays a significant role in regulating lipolysis and thermogenesis in adipose tissue. In this study, we designed and synthesized a series of novel L-748,337 derivatives as selective human β 3 -AR antagonists. Among all the tested L-748,337 analogs, compound 23d was found to display 23-fold more potent β 3 -AR antagonist activity (EC 50  = 0.5117 nM) than L-748,337 (EC 50  = 11.91 nM). In vivo, compound 23d could alleviate weight loss and inhibit tumor growth in C26 tumor cachexia animal model. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Disulfide high mobility group box-1 causes bladder pain through bladder Toll-like receptor 4.

    Science.gov (United States)

    Ma, Fei; Kouzoukas, Dimitrios E; Meyer-Siegler, Katherine L; Westlund, Karin N; Hunt, David E; Vera, Pedro L

    2017-05-25

    Bladder pain is a prominent symptom in several urological conditions (e.g. infection, painful bladder syndrome/interstitial cystitis, cancer). Understanding the mechanism of bladder pain is important, particularly when the pain is not accompanied by bladder pathology. Stimulation of protease activated receptor 4 (PAR4) in the urothelium results in bladder pain through release of urothelial high mobility group box-1 (HMGB1). HGMB1 has two functionally active redox states (disulfide and all-thiol) and it is not known which form elicits bladder pain. Therefore, we investigated whether intravesical administration of specific HMGB1 redox forms caused abdominal mechanical hypersensitivity, micturition changes, and bladder inflammation in female C57BL/6 mice 24 hours post-administration. Moreover, we determined which of the specific HMGB1 receptors, Toll-like receptor 4 (TLR4) or receptor for advanced glycation end products (RAGE), mediate HMGB1-induced changes. Disulfide HMGB1 elicited abdominal mechanical hypersensitivity 24 hours after intravesical (5, 10, 20 μg/150 μl) instillation. In contrast, all-thiol HMGB1 did not produce abdominal mechanical hypersensitivity in any of the doses tested (1, 2, 5, 10, 20 μg/150 μl). Both HMGB1 redox forms caused micturition changes only at the highest dose tested (20 μg/150 μl) while eliciting mild bladder edema and reactive changes at all doses. We subsequently tested whether the effects of intravesical disulfide HMGB1 (10 μg/150 μl; a dose that did not produce inflammation) were prevented by systemic (i.p.) or local (intravesical) administration of either a TLR4 antagonist (TAK-242) or a RAGE antagonist (FPS-ZM1). Systemic administration of either TAK-242 (3 mg/kg) or FPS-ZM1 (10 mg/kg) prevented HMGB1 induced abdominal mechanical hypersensitivity while only intravesical TLR4 antagonist pretreatment (1.5 mg/ml; not RAGE) had this effect. The disulfide form of HMGB1 mediates bladder pain directly (not

  6. Radiosynthesis and biodistribution of a histamine H3 receptor antagonist 4-[3-(4-piperidin-1-yl-but-1-ynyl)-[11C]benzyl]-morpholine: evaluation of a potential PET ligand

    International Nuclear Information System (INIS)

    Airaksinen, Anu J.; Jablonowski, Jill A.; Mey, Margreet van der; Barbier, Ann J.; Klok, Rob P.; Verbeek, Joost; Schuit, Robert; Herscheid, Jacobus D.M.; Leysen, Josee E.; Carruthers, Nicholas I.; Lammertsma, Adriaan A.; Windhorst, Albert D.

    2006-01-01

    The potent histamine H 3 receptor antagonist JNJ-10181457 () was successfully labeled with 11 C in a novel one-pot reaction sequence, with high chemical yield (decay-corrected yield, 28±8%) and high specific radioactivity (56±26 GBq/μmol). The binding of [ 11 C] to H 3 receptors was studied in vitro in rat brain and in vivo in rats and mice. The in vitro binding of [ 11 C] in rat coronal brain slices showed high binding in the striatum, and this binding was blocked by histamine and by two known H 3 antagonists, JNJ-5207852 () and unlabeled Compound (), in a concentration-dependent manner. The biodistribution of [ 11 C] in rats was measured at 5, 10, 30 and 60 min. The uptake of [ 11 C] in regions rich in H 3 receptors was highest at 30 min, giving 0.98%, 1.41%, 1.28% and 1.72% dose/g for the olfactory bulb, hippocampus, striatum and cerebral cortex, respectively. However, the binding of [ 11 C] in the rat brain could not be blocked by pretreatment with either Compound () (30 min or 24 h pretreatment) or cold Compound () (30-min pretreatment). The biodistribution of [ 11 C] in a second species (Balb/c mice) showed a higher overall uptake of the radioligand with an average brain uptake of 8.9% dose/g. In C57BL/6-H 3 (-/-) knockout mice, a higher brain uptake was also observed. Analyses of metabolites and plasma protein binding were also undertaken. It appeared that [ 11 C] could not specifically label H 3 receptors in rodent brain in vivo. Possible causes are discussed

  7. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia

    OpenAIRE

    Li, Jun; Liang, Xibin; Wang, Qian; Breyer, Richard M.; McCullough, Louise; Andreasson, Katrin

    2008-01-01

    Induction of COX-2 activity in cerebral ischemia results in increased neuronal injury and infarct size. Recent studies investigating neurotoxic mechanisms of COX-2 demonstrate both toxic and paradoxically protective effects of downstream prostaglandin receptor signaling pathways. We tested whether misoprostol, a PGE2 receptor agonist that is utilized clinically as an anti-ulcer agent and signals through the protective PGE2 EP2, EP3, and EP4 receptors, would reduce brain injury in the murine m...

  8. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea; Hansen, Kasper B. (JHU); (Milan); (Montana)

    2017-07-31

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.

  9. Lead identification of benzimidazolone and azabenzimidazolone arylsulfonamides as CC-chemokine receptor 4 (CCR4) antagonists.

    Science.gov (United States)

    Miah, Afjal H; Abas, Hossay; Begg, Malcolm; Marsh, Benjamin J; O'Flynn, Daniel E; Ford, Alison J; Percy, Jonathan M; Procopiou, Panayiotis A; Richards, Steve A; Rumley, Sally-Anne

    2014-08-01

    A knowledge-based library of 2,3-dichlorophenylsulfonyl derivatives of commercially available aryl amines was synthesised and screened as human CCR4 antagonists, in order to identify a suitable hit for the start of a lead-optimisation programme. Hits were required to be more potent than an existing indazole series, have better physicochemical properties (clogP 116 μg/mL), and be stable to acid and light. The benzimidazol-2-one core was identified as a hit suitable for further investigation. Substitution at N1 with small alkyl groups was tolerated; however, these analogues were inactive in the whole blood assay (pA₂ <5). Azabenzimidazolone analogues were all found to be active, with compound 38 exhibiting whole blood activity of 6.1, low molecular weight (389) and chrom logD₇.₄ (2.4), high LE (0.43), and solubility (152 μg/mL). In addition, 38 had human serum albumin binding of around 93% and met all the criteria for progression to lead optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Molecular characterization of the gerbil C5a receptor and identification of a transmembrane domain V amino acid that is crucial for small molecule antagonist interaction.

    Science.gov (United States)

    Waters, Stephen M; Brodbeck, Robbin M; Steflik, Jeremy; Yu, Jianying; Baltazar, Carolyn; Peck, Amy E; Severance, Daniel; Zhang, Lu Yan; Currie, Kevin; Chenard, Bertrand L; Hutchison, Alan J; Maynard, George; Krause, James E

    2005-12-09

    Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.

  11. Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice.

    Science.gov (United States)

    Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami

    2014-01-15

    TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Melanin concentrating hormone receptor 1 (MCHR1) antagonists - Still a viable approach for obesity treatment?

    DEFF Research Database (Denmark)

    Högberg, T.; Frimurer, T.M.; Sasmal, P.K.

    2012-01-01

    Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the melanin concentrating hormone (MCH) and its receptor 1. The development of MCHR1 antagonists are described with a specific perspective on different chemotypes...

  13. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries

    NARCIS (Netherlands)

    L. Edvinsson (Lars); K.Y. Chan (Kayi); S. Eftekhari; E. Nilsson (Elisabeth); R. de Vries (René); H. Säveland (Hans); C.M.F. Dirven (Clemens); A.H.J. Danser (Jan)

    2010-01-01

    textabstractIntroduction: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. Materials and methods: We investigated the effect of the CGRP receptor antagonist, telcagepant, on

  14. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  15. Radiolabeling with fluorine-18 of a protein, interleukin-1 receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Prenant, C., E-mail: cprenant@cyclopharma.f [Wolfson Molecular Imaging Centre, University of Manchester, Manchester (United Kingdom); Cawthorne, C. [Academic Department of Radiation Oncology, Christie NHS Foundation Trust, Manchester (United Kingdom); Fairclough, M. [Wolfson Molecular Imaging Centre, University of Manchester, Manchester (United Kingdom); Rothwell, N.; Boutin, H. [Faculty of Life Sciences, University of Manchester, Manchester (United Kingdom)

    2010-09-15

    IL-1RA is a naturally occurring antagonist of the pro-inflammatory cytokine interleukin-1 (IL-1) with high therapeutic promise, but its pharmacokinetic remains poorly documented. In this report, we describe the radiolabeling of recombinant human interleukin-1 receptor antagonist (rhIL-1RA) with fluorine-18 to allow pharmacokinetic studies by positron emission tomography (PET). rhIL-1RA was labeled randomly by reductive alkylation of free amino groups (the {epsilon}-amino group of lysine residues or amino-terminal residues) using [{sup 18}F]fluoroacetaldehyde under mild reaction conditions. Radiosyntheses used a remotely controlled experimental rig within 100 min and the radiochemical yield was in the range 7.1-24.2% (decay corrected, based on seventeen syntheses). We showed that the produced [{sup 18}F]fluoroethyl-rhIL-1ra retained binding specificity by conducting an assay on rat brain sections, allowing its pharmakokinetic study using PET.

  16. Association between Interleukin-1 Receptor Antagonist (IL1RN) Variable Number of Tandem Repeats (VNTR) Polymorphism and Pulmonary Tuberculosis.

    Science.gov (United States)

    Hashemi, Mohammad; Naderi, Mohammad; Ebrahimi, Mahboubeh; Amininia, Shadi; Bahari, Gholamreza; Taheri, Mohsen; Eskandari-Nasab, Ebrahim; Ghavami, Saeid

    2015-02-01

    Macrophages and T-lymphocytes are involved in immune response to Mycobacterium tuberculosis. Macrophage produces interleukin (IL)-1 as an inflammatory mediator. IL-1 receptor antagonist (IL1-Ra) is a natural antagonist of IL-1 receptors. In this study we aimed to examine the possible association between the variable number of tandem repeats (VNTR) of the IL-1 receptor antagonist (IL1RN) gene and pulmonary tuberculosis (TB) in a sample of Iranian population. Our study is a case-control study and we examined the VNTR of the IL1RN gene in 265 PTB and 250 healthy subjects by PCR. Neither the overall chi-square comparison of PTB and control subjects nor the logistic regression analysis indicated any association between VNTR IL1RN polymorphism and PTB. Our data suggest that VNTR IL1RN polymorphism may not be associated with the risk of PTB in a sample of Iranian population. Larger studies with different ethnicities are needed to find out the impact of IL1RN VNTR polymorphism on risk of developing TB.

  17. Alterations of M1 and M4 acetylcholine receptors in the genetically dystonic (dtsz) hamster and moderate antidystonic efficacy of M1 and M4 anticholinergics.

    Science.gov (United States)

    Hamann, Melanie; Plank, Jagoda; Richter, Franziska; Bode, Christoph; Smiljanic, Sinisa; Creed, Meaghan; Nobrega, José N; Richter, Angelika

    2017-08-15

    Striatal cholinergic dysfunction has been suggested to play a critical role in the pathophysiology of dystonia. In the dt sz hamster, a phenotypic model of paroxysmal dystonia, M1 antagonists exerted moderate antidystonic efficacy after acute systemic administration. In the present study, we examined the effects of the M4 preferring antagonist tropicamid and whether long-term systemic or acute intrastriatal injections of the M1 preferring antagonist trihexyphenidyl are more effective in mutant hamsters. Furthermore, M1 and M4 receptors were analyzed by autoradiography and immunohistochemistry. Tropicamide retarded the onset of dystonic attacks, as previously observed after acute systemic administration of trihexyphenidyl. Combined systemic administration of trihexyphenidyl (30mg/kg) and tropicamide (15mg/kg) reduced the severity in acute trials and delayed the onset of dystonia during long-term treatment. In contrast, acute striatal microinjections of trihexyphenidyl, tropicamid or the positive allosteric M4 receptor modulator VU0152100 did not exert significant effects. Receptor analyses revealed changes of M1 receptors in the dorsomedial striatum, suggesting that the cholinergic system is involved in abnormal striatal plasticity in dt sz hamsters, but the pharmacological data argue against a crucial role on the phenotype in this animal model. However, antidystonic effects of tropicamide after systemic administration point to a novel therapeutic potential of M4 preferring anticholinergics for the treatment of dystonia. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. The P2Y12 Receptor Antagonist Ticagrelor Reduces Lysosomal pH and Autofluorescence in Retinal Pigmented Epithelial Cells From the ABCA4-/- Mouse Model of Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Wennan Lu

    2018-04-01

    Full Text Available The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt’s disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.

  19. Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus

    Directory of Open Access Journals (Sweden)

    F. A. Zeiler

    2015-01-01

    Full Text Available Refractory status epilepticus (RSE and superrefractory status epilepticus (SRSE pose a difficult clinical challenge. Multiple cerebral receptor and transporter changes occur with prolonged status epilepticus leading to pharmacoresistance patterns unfavorable for conventional antiepileptics. In particular, n-methyl-d-aspartate (NMDA receptor upregulation leads to glutamate mediated excitotoxicity. Targeting these NMDA receptors may provide a novel approach to otherwise refractory seizures. Ketamine has been utilized in RSE. Recent systematic review indicates 56.5% and 63.5% cessation in seizures in adults and pediatrics, respectively. No complications were described. We should consider earlier implementation of ketamine or other NMDA receptor antagonists, for RSE. Prospective study of early implementation of ketamine should shed light on the role of such medications in RSE.

  20. [Leukotriene antagonists: a new approach in the treatment of asthma].

    Science.gov (United States)

    Devillier, P; Bessard, G; Advenier, C

    1997-06-01

    Inflammation plays an essential role in the genesis of airflow obstruction and bronchial hyper-reactivity in the early stages of clinical asthma. The treatment of bronchial inflammation has become an essential element in the therapeutic strategy and principally rests on inhaled glucocorticoids. Amongst a number of inflammatory mediators leukotrienes occupy a privileged place by the power of their inflammatory and constrictor effects on bronchial smooth muscles. These properties have justified the clinical development of inhibitors of their synthesis and of specific antagonists to their receptors. Leukotriene antagonists are specific for a sub type of leukotriene receptors C4, D4 and E4 which is implicated in the majority of the bronchial constrictor and inflammatory effects of leukotrienes. The antagonists of Cys-LT1 receptor but also the inhibitors of the leukotriene synthesis exert an additive bronchodilator effect to those of B2 stimulants confirming an efficacious protection vis a vis bronchial provocation tests and above all they improve the clinical scores, lung function and also enable a decrease in the consumption of beta 2 agonists. The marketing of these products represents a major event because it corresponds to the advent of a new therapeutic class. The ease of administration by the oral route, their demonstrated efficacy and their good tolerance profile (in particular for ICI 204.219, and antagonists to Cys-LT1 receptors) are elements which foresee a success for this new asthmatic treatment. However numerous studies, notably comparative studies vis a vis reference treatments will be necessary to define their place in the strategic approach to the treatment of asthma.

  1. Modification of Anxious Behavior after Psychogenic Trauma and Treatment with Galanin Receptor Antagonist.

    Science.gov (United States)

    Lyudyno, V I; Tsikunov, S G; Abdurasulova, I N; Kusov, A G; Klimenko, V M

    2015-07-01

    Effects of blockage of central galanin receptors on anxiety manifestations were studied in rats with psychogenic trauma. Psychogenic trauma was modeled by exposure of a group of rats to the situation when the partner was killed by a predator. Antagonist of galanin receptors was intranasally administered before stress exposure. Animal behavior was evaluated using the elevated-plus maze test, free exploratory paradigm, and open-field test. Psychogenic trauma was followed by an increase in anxiety level and appearance of agitated behavior. Blockage of galanin receptors aggravated behavioral impairment, which manifested in the pathological anxious reactions - manifestations of hypervigilance and hyperawareness. The results suggest that endogenous pool of galanin is involved into prevention of excessive CNS response to stressful stimuli typical of posttraumatic stress disorder.

  2. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455

    Directory of Open Access Journals (Sweden)

    Stefania Gessi

    2017-12-01

    Full Text Available Several evidences indicate that the ubiquitous nucleoside adenosine, acting through A1, A2A, A2B, and A3 receptor (AR subtypes, plays crucial roles in tumor development. Adenosine has contrasting effects on cell proliferation depending on the engagement of different receptor subtypes in various tumors. The involvement of A2AARs in human A375 melanoma, as well as in human A549 lung and rat MRMT1 breast carcinoma proliferation has been evaluated in view of the availability of a novel A2AAR antagonist, with high affinity and selectivity, named as 2-(2-furanyl-N5-(2-methoxybenzyl[1,3]thiazolo[5,4-d]pyrimidine-5,7-diammine (TP455. Specifically, the signaling pathways triggered in the cancer cells of different origin and the antagonist effect of TP455 were investigated. The A2AAR protein expression was evaluated through receptor binding assays. Furthermore, the effect of A2AAR activation on cell proliferation at 24, 48 and 72 hours was studied. The selective A2AAR agonist 2-p-(2-carboxyethylphenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS21680, concentration-dependently induced cell proliferation in A375, A549, and MRMT1 cancer cells and the effect was potently antagonized by the A2AAR antagonist TP455, as well as by the reference A2AAR blocker 4-(2-[7-amino-2-(2-furyl[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethylphenol (ZM241385. As for the signaling pathway recruited in this response we demonstrated that, by using the specific inhibitors of signal transduction pathways, the effect of A2AAR stimulation was induced through phospholipase C (PLC and protein kinase C-delta (PKC-δ. In addition, we evaluated, through the AlphaScreen SureFire phospho(p protein assay, the kinases enrolled by A2AAR to stimulate cell proliferation and we found the involvement of protein kinase B (AKT, extracellular regulated kinases (ERK1/2, and c-Jun N-terminal kinases (JNKs. Indeed, we demonstrated that the CGS21680 stimulatory effect on kinases was

  3. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    International Nuclear Information System (INIS)

    Martinovic-Weigelt, Dalma; Wang Ronglin; Villeneuve, Daniel L.; Bencic, David C.; Lazorchak, Jim; Ankley, Gerald T.

    2011-01-01

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  4. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic-Weigelt, Dalma, E-mail: dalma@stthomas.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105 (United States); Wang Ronglin [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Villeneuve, Daniel L. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Bencic, David C.; Lazorchak, Jim [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Ankley, Gerald T. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States)

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  5. Synthesis of AMD3100 for antagonist of CXCR4 and labeled with 99Tcm

    International Nuclear Information System (INIS)

    Gui Yuan; Xu Zhihong; Zhang Xiaojun; Zhang Shuwen; Liu Jian; Tian Jiahe; Zhang Jinming

    2013-01-01

    Most of human tumors over-express CXCR4. AMD3100, a nonpeptide antagonist for CXCR4 receptor, can be used for therapy of those tumors. It was found that metal ion complex, such as Cu 2+ , with AMD3100 enhanced its binding affinity to the receptor 10-fold higher as compared to AMD3100 alone. AMD3100 was synthesis from 3-aminopropyl ethylene diamine. 99 Tc m -AMD3100 was labeled directly. Biodistribution studies were carried out in NH mice. SPECT imaging was performed in Hep-G2 tumor bearing mouse. The synthetic yield was 5.8% from 3-aminopropyl ethylene diamine to AMD3100. The labeling yield of 99 Tc m -AMD3100 was over 98%. Biodistribution studies showed high accumulation of radio- tracer in liver which had high-expression of CXCR4. SPECT imaging results showed that uptake in Hep-G2 tumor was high. The results showed that 99 Tc m -AMD3100 was an attractive candidate for further development of SPECT radiotracer potentially suitable for CXCR4. (authors)

  6. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence.

    Directory of Open Access Journals (Sweden)

    Theresa Alexandra Mattioli

    Full Text Available The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4. Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (- naloxone, an opioid receptor antagonist, and (+ naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.

  7. Identification of putative agouti-related protein(87-132)-melanocortin-4 receptor interactions by homology molecular modeling and validation using chimeric peptide ligands.

    Science.gov (United States)

    Wilczynski, Andrzej; Wang, Xiang S; Joseph, Christine G; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Sorensen, Nicholas B; Shaw, Amanda M; Millard, William J; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-04-22

    Agouti-related protein (AGRP) is one of only two naturally known antagonists of G-protein-coupled receptors (GPCRs) identified to date. Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these melanocortin receptors. Insight into putative interactions between the antagonist AGRP amino acids with the melanocortin-4 receptor (MC4R) may be important for the design of unique ligands for the treatment of obesity related diseases and is currently lacking in the literature. A three-dimensional homology molecular model of the mouse MC4 receptor complex with the hAGRP(87-132) ligand docked into the receptor has been developed to identify putative antagonist ligand-receptor interactions. Key putative AGRP-MC4R interactions include the Arg111 of hAGRP(87-132) interacting in a negatively charged pocket located in a cavity formed by transmembrane spanning (TM) helices 1, 2, 3, and 7, capped by the acidic first extracellular loop (EL1) and specifically with the conserved melanocortin receptor residues mMC4R Glu92 (TM2), mMC4R Asp114 (TM3), and mMC4R Asp118 (TM3). Additionally, Phe112 and Phe113 of hAGRP(87-132) putatively interact with an aromatic hydrophobic pocket formed by the mMC4 receptor residues Phe176 (TM4), Phe193 (TM5), Phe253 (TM6), and Phe254 (TM6). To validate the AGRP-mMC4R model complex presented herein from a ligand perspective, we generated nine chimeric peptide ligands based on a modified antagonist template of the hAGRP(109-118) (Tyr-c[Asp-Arg-Phe-Phe-Asn-Ala-Phe-Dpr]-Tyr-NH(2)). In these chimeric ligands, the antagonist AGRP Arg-Phe-Phe residues were replaced by the melanocortin agonist His/D-Phe-Arg-Trp amino acids. These peptides resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs). The most notable results include the identification of a novel subnanomolar melanocortin peptide

  8. Leukotriene Receptor Antagonists in the Treatment of Asthma: Implications for Eosinophilic Inflammation

    Directory of Open Access Journals (Sweden)

    Redwan Moqbel

    1999-01-01

    Full Text Available Recent advances in the treatment and management of asthma have suggested that leukotriene (LT receptor antagonists may be very beneficial as a second generation therapy with steroid-sparing properties and negligible side effects. These agents have shown interesting effects on peripheral blood and sputum eosinophils. A major contributor to the damage in the airway of asthmatic patients is the eosinophil, which, upon activation, releases a battery of granule-associated cytotoxic, cationic proteins, including the major basic protein and eosinophil peroxidase, and membrane-derived de novo-synthesized bioactive lipid mediators, including LTC4, LTD4 and LTE4, as well as platelet activating factor. These products have deleterious effects on the airway tissue including mucosal and smooth muscle layers. Accumulating evidence suggests that these agents may also influence the accumulation and maintenance of eosinophilic responses at the site of inflammation. This article reviews the possible anti-inflammatory mode of action of these therapies. It also discusses where there may be a gap in the knowledge regarding the potential direct and indirect effects of LT modifiers on eosinophil function and recruitment.

  9. Interleukin-1 Receptor Antagonist and Interleukin-4 Genes Variable Number Tandem Repeats Are Associated with Adiposity in Malaysian Subjects

    Directory of Open Access Journals (Sweden)

    Yung-Yean Kok

    2017-01-01

    Full Text Available Interleukin-1 receptor antagonist (IL1RA intron 2 86 bp repeat and interleukin-4 (IL4 intron 3 70 bp repeat are variable number tandem repeats (VNTRs that have been associated with various diseases, but their role in obesity is elusive. The objective of this study was to investigate the association of IL1RA and IL4 VNTRs with obesity and adiposity in 315 Malaysian subjects (128 M/187 F; 23 Malays/251 ethnic Chinese/41 ethnic Indians. The allelic distributions of IL1RA and IL4 were significantly different among ethnicities, and the alleles were associated with total body fat (TBF classes. Individuals with IL1RA I/II genotype or allele II had greater risk of having higher overall adiposity, relative to those having the I/I genotype or I allele, respectively, even after controlling for ethnicity [Odds Ratio (OR of I/II genotype = 12.21 (CI = 2.54, 58.79; p=0.002; II allele = 5.78 (CI = 1.73, 19.29; p=0.004]. However, IL4 VNTR B2 allele was only significantly associated with overall adiposity status before adjusting for ethnicity [OR = 1.53 (CI = 1.04, 2.23; p=0.03]. Individuals with IL1RA II allele had significantly higher TBF than those with I allele (31.79±2.52 versus 23.51±0.40; p=0.005. Taken together, IL1RA intron 2 VNTR seems to be a genetic marker for overall adiposity status in Malaysian subjects.

  10. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 1. Synthesis and SAR of alpha,alpha-dimethylglycine sulfonamides.

    Science.gov (United States)

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Berettoni, Marco; Calvani, Federico; Catrambone, Fernando; Felicetti, Patrizia; Gensini, Martina; Terracciano, Rosa; Altamura, Maria; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2006-06-15

    We recently published the extensive in vivo pharmacological characterization of MEN 16132 (J. Pharmacol. Exp. Ther. 2005, 616-623; Eur. J. Pharmacol. 2005, 528, 7), a member of the sulfonamide-containing human B(2) receptor (hB(2)R) antagonists. Here we report, in detail, how this family of compounds was designed, synthesized, and optimized to provide a group of products with subnanomolar affinity for the hB(2)R and high in vivo potency after topical administration to the respiratory tract. The series was designed on the basis of indications from the X-ray structures of the key structural motifs A and B present in known antagonists and is characterized by the presence of an alpha,alpha-dialkyl amino acid. The first lead (17) of the series was submitted to extensive chemical work to elucidate the structural requirements to increase hB(2) receptor affinity and antagonist potency in bioassays expressing the human B(2) receptor (hB(2)R). The following structural features were selected: a 2,4-dimethylquinoline moiety and a piperazine linker acylated with a basic amino acid. The representative lead compound 68 inhibited the specific binding of [(3)H]BK to hB(2)R with a pKi of 9.4 and antagonized the BK-induced inositolphosphate (IP) accumulation in recombinant cell systems expressing the hB(2)R with a pA(2) of 9.1. Moreover, compound 68 when administered (300 nmol/kg) intratracheally in the anesthetized guinea pig, was able to significantly inhibit BK-induced bronchoconstriction for up to 120 min after its administration, while having a lower and shorter lasting effect on hypotension.

  11. Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist.

    Science.gov (United States)

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L; Litherland, Sally A; Haskell-Luevano, Carrie

    2010-06-08

    The melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic biomarker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and nonobese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [alpha-, beta-, and gamma(2)-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-dPhe-Arg-Trp-NH(2) (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219 V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F, and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface

  12. Effects of combining opioids and clinically available NMDA receptor antagonists in the treatment of pain.

    NARCIS (Netherlands)

    Snijdelaar, D.G.

    2005-01-01

    This thesis concerns the effects of combining opioids with clinically available NMDA receptor antagonists in the treatment of acute and chronic pain. There are a number of problems with the use of opioids, such as, the development of tolerance/hyperalgesia, the reduced effectiveness in (central)

  13. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats.

    Science.gov (United States)

    Blitzer, D S; Wells, T E; Hawley, W R

    2017-08-01

    In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The oxytocin/vasopressin receptor antagonist atosiban delays the gastric emptying of a semisolid meal compared to saline in human

    Directory of Open Access Journals (Sweden)

    Ekberg Olle

    2006-03-01

    Full Text Available Abstract Background Oxytocin is released in response to a meal. Further, mRNA for oxytocin and its receptor have been found throughout the gastrointestinal (GI tract. The aim of this study was therefore to examine whether oxytocin, or the receptor antagonist atosiban, influence the gastric emptying. Methods Ten healthy volunteers (five men were examined regarding gastric emptying at three different occasions: once during oxytocin stimulation using a pharmacological dose; once during blockage of the oxytocin receptors (which also blocks the vasopressin receptors and thereby inhibiting physiological doses of oxytocin; and once during saline infusion. Gastric emptying rate (GER was assessed and expressed as the percentage reduction in antral cross-sectional area from 15 to 90 min after ingestion of rice pudding. The assessment was performed by real-time ultrasonography. At the same time, the feeling of satiety was registered using visual satiety scores. Results Inhibition of the binding of endogenous oxytocin by the receptor antagonist delayed the GER by 37 % compared to saline (p = 0.037. In contrast, infusion of oxytocin in a dosage of 40 mU/min did not affect the GER (p = 0.610. Satiation scores areas in healthy subjects after receiving atosiban or oxytocin did not show any significant differences. Conclusion Oxytocin and/or vasopressin seem to be regulators of gastric emptying during physiological conditions, since the receptor antagonist atosiban delayed the GER. However, the actual pharmacological dose of oxytocin in this study had no effect. The effect of oxytocin and vasopressin on GI motility has to be further evaluated.

  15. Protease-Activated Receptor 4 (PAR4: A Promising Target for Antiplatelet Therapy

    Directory of Open Access Journals (Sweden)

    Gamariel Rwibasira Rudinga

    2018-02-01

    Full Text Available Cardiovascular diseases (CVDs are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs, including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR. Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.

  16. The ability of H1 or H2 receptor antagonists or their combination in counteracting the glucocorticoid-induced alveolar bone loss in rats.

    Science.gov (United States)

    Ezzat, Bassant A; Abbass, Marwa M S

    2014-02-01

    The aim of the present study was to compare between three possible osteoporotic treatments in prevention of glucocorticoid-induced alveolar bone loss. Fifty adult female Wistar rats with an average weight 150-200 g were randomized into five groups: group I (control) was intraperitoneally injected with saline. The other experimental groups (II & III, IV & V) were intraperitoneally injected with 200 µg/100 g body weight dexamethasone. The experimental groups III, IV and V received intraperitoneal injection of 10 mg/kg/day pheniramine maleate (H1 receptor antagonist), ranitidine hydrochloride (H2 receptor antagonist) and concomitant doses of both H1 & H2 receptor antagonists respectively. After 30 days, the rats have been sacrificed. The mandibles were examined histologically, histochemically and histomorphometrically. The bone mineral density was measured using dual-energy X-ray absorptiometry (DEXA). Histopathologically the glucocorticoid group showed wide medullary cavities with wide osteocytic lacunae. These marrow cavities were reduced in the prophylactic groups (III, IV) but increased in group V. Bone histomorphometric analysis revealed improvement in static bone parameters in groups III and IV and deterioration in group V in comparison to group II. The DEXA revealed significant reduction in the bone mineral density in all experimental groups compared to the control group. In a rat model, the administration of H1 or H2 receptor antagonists separately could minimize the alveolar bone loss caused by the administration of glucocorticoids while concomitant administration of both H1 and H2 receptor antagonists deteriorated the bone condition. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists.

    Science.gov (United States)

    Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf

    2004-07-29

    The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.

  18. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists.

    Science.gov (United States)

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Baraldi, Stefania; Gessi, Stefania; Merighi, Stefania; Borea, Pier Andrea

    2017-07-01

    Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel. © 2016 Wiley Periodicals, Inc.

  19. Effect of the low-affinity, noncompetitive N-methyl-D-aspartate receptor antagonist dextromethorphan on visceral perception in healthy volunteers

    NARCIS (Netherlands)

    Kuiken, S. D.; Lei, A.; Tytgat, G. N. J.; Holman, R.; Boeckxstaens, G. E. E.

    2002-01-01

    Background: The use of N-methyl-d-aspartate (NMDA) receptor antagonists may hold promise for the treatment of pain of visceral origin, in particular in conditions characterized by visceral hypersensitivity. Aim: To study the effect of dextromethorphan, a low affinity, non-competitive NMDA receptor

  20. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  1. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  2. Characterization of the binding of [3H]-(+/-)-L-364,718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors

    International Nuclear Information System (INIS)

    Chang, R.S.; Lotti, V.J.; Chen, T.B.; Kunkel, K.A.

    1986-01-01

    [3H]-(+/-)-L-364,718 a new, potent and selective nonpeptide peripheral cholecystokinin (CCK) antagonist bound saturably and reversibly to rat pancreatic membranes. The radioligand recognized a single class of binding sites with a high affinity (Kd = 0.23 nM). The binding of [ 3 H]-(+/-)-L-364,718 was stereospecific in that the more biologically active (-)-enantiomer demonstrated greater potency than the (+)-enantiomer. The rank order of potency of various CCK agonists and antagonists in displacing [ 3 H]-(+/-)-L-364,718 correlated with their ability to displace [ 125 I]CCK-8 and their known pharmacological activities in peripheral tissues. However, the absolute potencies of agonists were greater in displacing [ 125 I]CCK-8 than [ 3 H]-(+/-)-L-364,718. As described for other physiologically relevant receptor systems, the potency for displacement of [ 3 H]-(+/-)-L-364,718 binding by CCK agonists, but not antagonists, was reduced by guanosine 5'-(beta, gamma-imido)triphosphate and NaCl and enhanced by MgCl 2 . [ 3 H]-(+/-)-L-364,718 also demonstrated specific binding to bovine gall bladder tissue but not guinea pig brain or gastric glands, consistent with its selectivity as a peripheral CCK antagonist. [ 3 H]-(+/-)-L-364,718 binding to pancreatic membranes was not affected by various pharmacological agents known to interact with other common peptide and nonpeptide receptor systems. These data indicate that [ 3 H]-(+/-)-L-364,718 represents a new potent nonpeptide antagonist radioligand for the study of peripheral CCK receptors which may allow differentiation of agonist and antagonist interactions

  3. Effect of the Toll-Like Receptor 4 Antagonist Eritoran on Retinochoroidal Inflammatory Damage in a Rat Model of Endotoxin-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Feyzahan Ekici

    2014-01-01

    Full Text Available Purpose. We investigated the effect of eritoran, a Toll-like receptor 4 antagonist, on retinochoroidal inflammatory damage in an endotoxin-induced inflammatory rat model. Methods. Endotoxin-induced inflammatory model was obtained by intraperitoneal injection of 1.5 mg/kg lipopolysaccharide (LPS. Group 1 had control rats; in groups 2-3 LPS and 0.5 mg/kg sterile saline were injected; and in groups 4-5 LPS and 0.5 mg/kg eritoran were injected. Blood samples were taken and eyes were enucleated after 12 hours (h (groups 2 and 4 or 24 hours (Groups 3 and 5. Tumor necrosis factor-α (TNF-α and malondialdehyde (MDA levels in the serum and retinochoroidal tissue and nuclear factor kappa-B (NFκB levels in retinochoroidal tissue were determined. Histopathological examination was performed and retinochoroidal changes were scored. Results. Eritoran treatment resulted in lower levels of TNF-α, MDA, and NFκB after 12 h which became significant after 24 h. Serum TNF-α and retinochoroidal tissue NFκB levels were similar to control animals at the 24th h of the study. Eritoran significantly reversed histopathological damage after 24 h. Conclusions. Eritoran treatment resulted in less inflammatory damage in terms of serum and retinochoroidal tissue parameters.

  4. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C. (Cornell); (Scripps); (NIDA); (Columbia); (UCSD); (Receptos)

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.

  5. Effect of corticotropin-releasing factor receptor antagonist on psychologically suppressed masculine sexual behavior in rats.

    Science.gov (United States)

    Miwa, Yoshiji; Nagase, Keiko; Oyama, Nobuyuki; Akino, Hironobu; Yokoyama, Osamu

    2011-03-01

    Corticotropin-releasing factor (CRF) coordinates various responses of the body to stress, and CRF receptors are important targets of treatment for stress-related disorders. To investigate the effect of a nonselective CRF receptor antagonist, astressin, on suppression of masculine sexual behavior by psychological stress in rats. First, we investigated the influence of psychological stress, induced 2 hours per day for three consecutive days, on sexual behavior. Then, rats were divided into 4 groups: a control group, an astressin administration group (A), a psychological stress loading group (PS), and a psychological stress loading and astressin administration group (PS + A). The rats were exposed to sham or psychological stress for three consecutive days. After the last stress loading, the rats were injected with vehicle or astressin, and their sexual behavior was observed. We also measured serum levels of adrenocorticotropic hormone (ACTH). The effects of astressin on sexual behavior and serum levels of ACTH in rats affected by psychological stress were determined. Sexual behavior was reduced after psychological stress loading. The PS rats had significantly longer mount, intromission, and ejaculation latencies and lower ejaculation frequency than did the control, A, and PS + A rats. The intromission latency and ejaculation frequency in the PS + A rats did not achieve the level observed in the controls. There was no significant difference in these parameters between the control and A rats. Serum ACTH levels were significantly lower in PS + A rats than in PS rats. Psychologically suppressed masculine sexual behavior could be partially recovered with astressin administration in rats. These data provide a rationale for the further study of CRF receptor antagonists as novel agents for treating psychological sexual disorders. © 2010 International Society for Sexual Medicine.

  6. Pharmacological Characterization of 5-Substituted 1-[(2,3-dihydro-1-benzofuran-2-ylmethyl]piperazines: Novel Antagonists for the Histamine H3 and H4 Receptors with Anti-inflammatory Potential

    Directory of Open Access Journals (Sweden)

    Michelle F. Corrêa

    2017-11-01

    Full Text Available The histamine receptors (HRs are traditional G protein-coupled receptors of extensive therapeutic interest. Recently, H3R and H4R subtypes have been targeted in drug discovery projects for inflammation, asthma, pain, cancer, Parkinson’s, and Alzheimer’s diseases, which includes searches for dual acting H3R/H4R ligands. In the present work, nine 1-[(2,3-dihydro-1-benzofuran-2-ylmethyl]piperazine (LINS01 series molecules were synthesized and evaluated as H3R and H4R ligands. Our data show that the N-allyl-substituted compound LINS01004 bears the highest affinity for H3R (pKi 6.40, while the chlorinated compound LINS01007 has moderate affinity for H4R (pKi 6.06. In addition, BRET assays to assess the functional activity of Gi1 coupling indicate that all compounds have no intrinsic activity and act as antagonists of these receptors. Drug-likeness assessment indicated these molecules are promising leads for further improvements. In vivo evaluation of compounds LINS01005 and LINS01007 in a mouse model of asthma showed a better anti-inflammatory activity of LINS01007 (3 g/kg than the previously tested compound LINS01005. This is the first report with functional data of these compounds in HRs, and our results also show the potential of their applications as anti-inflammatory.

  7. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    2011-01-01

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  8. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    International Nuclear Information System (INIS)

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr.

    1991-01-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative 14 C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions

  9. The role of opioid antagonist efficacy and constitutive opioid receptor activity in the opioid withdrawal syndrome in mice

    OpenAIRE

    Navani, Dipesh M.; Sirohi, Sunil; Madia, Priyanka A.; Yoburn, Byron C.

    2011-01-01

    On the basis of efficacy, opioid antagonists are classified as inverse opioid agonists (e.g. naltrexone) or neutral opioid antagonists (e.g. 6β-naltrexol). This study examined the interaction between naltrexone and 6β-naltrexol in the precipitated opioid withdrawal syndrome in morphine dependent mice. Furthermore, the possible contribution of constitutive opioid receptor activity to precipitated withdrawal was evaluated using increasing levels of morphine dependence. In the first experiment, ...

  10. Behavioural profiles in the mouse defence test battery suggest anxiolytic potential of 5-HT(1A) receptor antagonists.

    Science.gov (United States)

    Griebel, G; Rodgers, R J; Perrault, G; Sanger, D J

    1999-05-01

    Compounds varying in selectivity as 5-HT1A receptor antagonists have recently been reported to produce anxiolytic-like effects comparable to those of benzodiazepines in the mouse elevated plus-maze procedure. In view of the potential clinical significance of these findings, the present experiments compared the behavioural effects of diazepam (0.5-3.0 mg/kg) with those of several non-selective 5-HT1A receptor antagonists [NAN-190, 0.1-3.0 mg/kg, MM-77, 0.03-1.0 mg/kg, (S)-UH-301, 0.3-3.0 mg/kg and pindobind-5-HT1A, 0.03-1.0 mg/kg], and three selective 5-HT1A receptor antagonists (WAY100635, 0.01-3.0 mg/kg, p-MPPI, 0.1-3.0 mg/kg and SL88.0338, 0.3-3.0 mg/kg) in the mouse defence test battery (MDTB). In this well-validated anxiolytic screening test, Swiss mice are directly confronted with a natural threat (a rat) as well as situations associated with this threat. Primary measures taken during and after rat confrontation were flight, risk assessment (RA), defensive threat/attack and escape attempts. Diazepam significantly decreased flight reactions after the rat was introduced into the runway, reduced RA activities of mice chased by the rat, increased RA responses displayed when subjects were constrained in a straight alley and reduced defensive upright postures and biting upon forced contact. All the selective 5-HT1A receptor antagonists and NAN-190 also reduced flight, RA in the chase test, and defensive threat and attack behaviours. (S)-UH-301 and pindobind-5-HT1A reduced RA in the chase test, but only partially modified defensive threat and attack. Unlike the other drugs tested, MM-77 produced significant effects only at doses which also markedly reduced spontaneous locomotor activity, suggesting a behaviourally non-specific action. In contrast to diazepam, the 5-HT1A receptor ligands failed to affect RA in the straight alley test. Following removal of the rat from the test area, only diazepam and (S)-UH-301 reduced escape behaviour (contextual defence) at doses

  11. Modelling of absorption, distribution and physicochemical properties of AT1 receptor antagonists / Modelovanie absorpcie, distribúcie a fyzikálnochemických vlastnosti antagonistov AT1 receptorov

    Directory of Open Access Journals (Sweden)

    Ježko Pavol

    2015-12-01

    Full Text Available The theoretical chemistry methods were used to elucidate absorption, distribution and physicochemical properties of AT1 receptor antagonists and dual angiotensin II and endothelin A receptor antagonist (PS-433540. Computed partition coefficients (ALOGPS method studied for drugs varied between 2.98 and 6.66. Neutral compounds are described as lipophilic drugs. Telmisartan is a drug with the highest lipophilicity. The neutral forms of the studied AT1 receptor antagonists are practically insoluble in water, and their computed solubilities is in interval between 2.04 and 22.65 mg/l (ALOGpS method. The calculated pKa values for tetrazolyle moiety are in the range 3.92-5.00 and for carboxylic moiety 3.12-5.50. Telmisartan (polar surface area = 72.95 A and irbesartan (polar surface area = 87.14 A belong to the AT1 receptor antagonists with increased absorption.

  12. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K. (Stanford-MED); (ConfometRx); (UCB Pharma)

    2017-02-06

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.

  13. Dopamine D(3) receptor antagonists. 1. Synthesis and structure-activity relationships of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans.

    Science.gov (United States)

    Haadsma-Svensson, S R; Cleek, K A; Dinh, D M; Duncan, J N; Haber, C L; Huff, R M; Lajiness, M E; Nichols, N F; Smith, M W; Svensson, K A; Zaya, M J; Carlsson, A; Lin, C H

    2001-12-20

    5,6-Dimethoxy-2-(N-dipropyl)-aminoindan (3, PNU-99194A) was found to be a selective dopamine D(3) receptor antagonist with potential antipsychotic properties in animal models. To investigate the effects of nitrogen substitution on structure-activity relationships, a series of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans were synthesized and evaluated in vitro for binding affinity and metabolic stability. The results indicate that substitution at the amine nitrogen of the 2-aminoindans is fairly limited to the di-N-propyl group in order to achieve selective D(3) antagonists. Thus, combinations of various alkyl groups were generally inactive at the D(3) receptor. Although substitution with an N-alkylaryl or N-alkylheteroaryl group yields compounds with potent D(3) binding affinity, the D(2) affinity is also enhanced, resulting in a less than 4-fold preference for the D(3) receptor site, and no improvements in metabolic stability were noted. A large-scale synthesis of the D(3) antagonist 3 has been developed that has proven to be reproducible with few purification steps. The improvements include the use of 3,4-dimethoxybenzaldehyde as a low-cost starting material to provide the desired 5,6-dimethoxy-1-indanone 5c in good overall yield (65%) and the formation of a soluble silyl oxime 17 that was reduced efficiently with BH(3).Me(2)S. The resulting amino alcohol was alkylated and then deoxygenated using a Lewis acid and Et(3)SiH to give the desired product 3 in good overall yield of ( approximately 65%) from the indanone 5c.

  14. Assay method for organic calcium antagonist drugs and a kit for such an assay

    International Nuclear Information System (INIS)

    Snyder, S. H.; Gould, R. J.

    1985-01-01

    A method for measuring the level of organic calcium antagonist drug in a body fluid comprises preparing a mixture of a radioactive calcium antagonist drug, a body fluid containing a calcium antagonist drug and a calcium antagonist receptor material, measuring the radioactivity of the radioactive calcium antagonist drug bound to said calcium antagonist receptor material and deriving the concentration of the calcium antagonist drug in the body fluid from a standard curve indicating the concentration of calcium antagonist drug versus inhibition of binding of said radioactive calcium antagonist drug to said receptor sites caused by the calcium antagonist drug in said body fluid. A kit for measuring the level of an organic calcium drug comprises a receptacle containing a radioactive calcium antagonist drug, a calcium antagonist receptor material and a standard amount of a nonradioactive calcium antagonist drug

  15. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    Science.gov (United States)

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Crystal structure of the[mu]-opioid receptor bound to a morphinan antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Mathiesen, Jesper M.; Sunahara, Roger K.; Pardo, Leonardo; Weis, William I.; Kobilka, Brian K.; Granier, Sébastien (Michigan-Med); (Stanford-MED); (UAB, Spain)

    2012-06-27

    Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled {mu}-opioid receptor ({mu}-OR) in the central nervous system. Here we describe the 2.8 {angstrom} crystal structure of the mouse {mu}-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the {mu}-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

  17. Emerging migraine treatments and drug targets

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2011-01-01

    Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5....... Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development....... The greatest need is for new prophylactic drugs, and it seems likely that such compounds will be developed in the coming decade....

  18. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads.

    Science.gov (United States)

    Martinović-Weigelt, Dalma; Wang, Rong-Lin; Villeneuve, Daniel L; Bencic, David C; Lazorchak, Jim; Ankley, Gerald T

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4×44K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals. 2010 Elsevier B.V. All rights reserved.

  19. Wake-promoting effects of ONO-4127Na, a prostaglandin DP1 receptor antagonist, in hypocretin/orexin deficient narcoleptic mice.

    Science.gov (United States)

    Sagawa, Yohei; Sato, Masatoshi; Sakai, Noriaki; Chikahisa, Sachiko; Chiba, Shintaro; Maruyama, Takashi; Yamamoto, Junki; Nishino, Seiji

    2016-11-01

    Prostaglandin (PG)D2 is an endogenous sleep substance, and a series of animal studies reported that PGD2 or PGD2 receptor (DP1) agonists promote sleep, while DP1 antagonists promote wakefulness. This suggests the possibility of use of PG DP1 antagonists as wake-promoting compounds. We therefore evaluated the wake-promoting effects of ONO-4127Na, a DP1 antagonist, in a mouse model of narcolepsy (i.e., orexin/ataxin-3 transgenic mice) and compared those to effects of modafinil. ONO-4127Na perfused in the basal forebrain (BF) area potently promoted wakefulness in both wild type and narcoleptic mice, and the wake-promoting effects of ONO-4127Na at 2.93 × 10(-4) M roughly corresponded to those of modafinil at 100 mg/kg (p.o.). The wake promoting effects of ONO-4127Na was observed both during light and dark periods, and much larger effects were seen during the light period when mice slept most of the time. ONO-4127Na, when perfused in the hypothalamic area, had no effects on sleep. We further demonstrated that wake-promoting effects of ONO-4127Na were abolished in DP1 KO mice, confirming that the wake-promoting effect of ONO-4127Na is mediated by blockade of the PG DP1 receptors located in the BF area. ONO-4127Na reduced DREM, an EEG/EMG assessment of behavioral cataplexy in narcoleptic mice, suggesting that ONO-4127Na is likely to have anticataplectic effects. DP1 antagonists may be a new class of compounds for the treatment of narcolepsy-cataplexy, and further studies are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Pharmacological Characterization of 30 Human Melanocortin-4 Receptor Polymorphisms with the Endogenous Proopiomelanocortin Derived Agonists, Synthetic Agonists, and the Endogenous Agouti-Related Protein (AGRP) Antagonist

    Science.gov (United States)

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L.; Litherland, Sally A.; Haskell-Luevano, Carrie

    2010-01-01

    The melanocortin-4 receptor (MC4R) is a G-protein coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic bio marker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and non-obese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [α-, β, γ2-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface expression by flow

  1. Pegvisomant: a growth hormone receptor antagonist used in the treatment of acromegaly.

    Science.gov (United States)

    Tritos, Nicholas A; Biller, Beverly M K

    2017-02-01

    To review published data on pegvisomant and its therapeutic role in acromegaly. Electronic searches of the published literature were conducted using the keywords: acromegaly, growth hormone (GH) receptor (antagonist), pegvisomant, therapy. Relevant articles (n = 141) were retrieved and considered for inclusion in this manuscript. Pegvisomant is a genetically engineered, recombinant growth hormone receptor antagonist, which is effective in normalizing serum insulin-like growth factor 1 (IGF-1) levels in the majority of patients with acromegaly and ameliorating symptoms and signs associated with GH excess. Pegvisomant does not have direct antiproliferative effects on the underlying somatotroph pituitary adenoma, which is the etiology of GH excess in the vast majority of patients with acromegaly. Therefore, patients receiving pegvisomant monotherapy require regular pituitary imaging in order to monitor for possible increase in tumor size. Adverse events in patients on pegvisomant therapy include skin rashes, lipohypertrophy at injection sites, and idiosyncratic liver toxicity (generally asymptomatic transaminitis that is reversible upon drug discontinuation), thus necessitating regular patient monitoring. Pegvisomant is an effective therapeutic agent in patients with acromegaly who are not in remission after undergoing pituitary surgery. It mitigates excess GH action, as demonstrated by IGF-1 normalization, but has no direct effects on pituitary tumors causing acromegaly. Regular surveillance for possible tumor growth and adverse effects (hepatotoxicity, skin manifestations) is warranted.

  2. Effects of cannabinoid CB(1) receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda P; Werge, Thomas

    2011-01-01

    81297 (SKF) and acute dystonia induced by the dopamine D(2) receptor antagonist haloperidol in Cebus apella monkeys. The monkeys were sensitised to EPS by prior exposure to D(2) receptor antagonists. SKF (0.3 mg/kg) was administered alone and in combination with the CB(1) agonist CP55,940 (0.......0025-0.01 mg/kg) or the CB(1) antagonist SR141716A (0.25-0.75 mg/kg). Haloperidol (individual doses at 0.01-0.02 mg/kg) was administered alone and in combination with CP55,940 (0.005 or 0.01 mg/kg) or SR141716A (0.5 or 0.75 mg/kg). Subsequently, the monkeys were videotaped, and the recordings were rated...... for oral dyskinesia or dystonia. SKF-induced oral dyskinesia was dose-dependently reduced by CP55,940, with no effect of SR141716A. Haloperidol-induced dystonia was not affected by either CP55,940 or SR141716A....

  3. WAY 267,464, a non-peptide oxytocin receptor agonist, impairs social recognition memory in rats through a vasopressin 1A receptor antagonist action.

    Science.gov (United States)

    Hicks, Callum; Ramos, Linnet; Reekie, Tristan A; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    2015-08-01

    Recent in vitro studies suggest that the oxytocin receptor (OTR) agonist WAY 267,464 has vasopressin 1A receptor (V1AR) antagonist effects. This might limit its therapeutic potential due to the positive involvement of the V1AR in social behavior. The objective of this study was to assess functional V1AR antagonist-like effects of WAY 267,464 in vivo using a test of social recognition memory. Adult experimental rats were tested for their recognition of a juvenile conspecific rat that they had briefly met 30 or 120 min previously. The modulatory effects of vasopressin (AVP), the selective V1AR antagonist SR49059, and WAY 267,464 were examined together with those of the selective OTR antagonist Compound 25 (C25). Drugs were administered immediately after the first meeting. Control rats showed recognition of juveniles at a 30 min, but not a 120 min retention interval. AVP (0.005, but not 0.001 mg/kg intraperitoneal (i.p.)) improved memory such that recognition was evident after 120 min. This was prevented by pretreatment with SR49059 (1 mg/kg) and WAY 267,464 (10, 30, and 100 mg/kg). Given alone, SR49059 (1 mg/kg) and WAY 267,464 (30 and 100 mg/kg) impaired memory at a 30 min retention interval. The impairment with WAY 267,464 was not prevented by C25 (5 mg/kg), suggesting V1AR rather than OTR mediation of the effect. Given alone, C25 also impaired memory. These results highlight a tonic role for endogenous AVP (and oxytocin) in social recognition memory and indicate that WAY 267,464 functions in vivo as a V1AR antagonist to prevent the memory-enhancing effects of AVP.

  4. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    Science.gov (United States)

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  5. Changes in haematological indices following local application of interleukin-1 receptor antagonist protein after tenotomy in rabbits

    Directory of Open Access Journals (Sweden)

    Marko Pecin

    2017-01-01

    Full Text Available Interleukin-1 (IL-1 is the most important cytokine in the inflammation cascade activation in all tissues and is present in acute and chronic phases of inflammation. By blocking IL-1 binding to target cells, numerous inflammation processes are prevented. The use of autologous conditioned serum rich with IL-1 receptor antagonist protein (IL-1Ra is a novel treatment method of tendon inflammation in domestic animals and humans. Injections of autologous conditioned serum (ACS have demonstrated clinical efficacy and safety in animal models and humans in the treatment of osteoarthritis, disc prolapse and muscles and tendons injuries with low side effect. Neutropaenia, reduced white blood cell count, and infections or local irritations are described as side effects of IL-1 antagonist use in humans. Therefore, a study of blood changes in rabbits after local administration of IL-1Ra in the Achilles tendon tissue after iatrogenic inflammation was conducted. Interleukin-1 receptor antagonist protein was used to prevent and reduce tendon inflammation after longitudinal tenotomy. The study was done on 26 white Californian rabbits, divided into two equal groups consisting of 13 animals each; the experimental interleukin-1 receptor antagonist protein (irap group, and the control group. In the irap group, autologous serum rich with IL-1Ra was used (Orthokine®vet irap, Alfa-Arthro, Croatia. Differences between two groups were considered significant as changes in the blood for certain blood elements at P < 0.01. The P value was P = 0.0153 for the white blood cells, P = 0.00153 for neutrophils, P = 0.00017 and for platelets. In the control group, an increased platelet count was noticed in 70% of blood samples and a decreased neutrophil count was found in all of the irap group samples at the end of the study in comparison to the initial blood count prior to application.

  6. Ariadne merione ecdysone receptor (AmEcR protein: An in silico approach for comparison of agonist and antagonist compounds

    Directory of Open Access Journals (Sweden)

    Chandran Sundaravadivelan

    2017-12-01

    Full Text Available Ecdysteroid signal transduction plays a major role in insect metamorphosis, 20-hydroxyecdysone (20E binds to the nuclear receptor composed of the ecdysone receptor ligand binding domine (EcR-LBD and triggers the developmental transitions. Ariadne merione ecdysone receptor (AmEcR cDNA was amplified and partially sequenced of about 553 bp, which encodes a polypeptide of 184 amino acids (aa. The theoretical molecular weight (MW, isoelectric point (pI and aliphatic index of the deduced AmEcR protein were predicted using BIOEDIT (v7.2.5 to be 21.192 kDa, 9.31 and 101.739 respectively. Identified ecdysone receptor gene of A. merione showed maximum similarity with Precis coenia gene. In this research, we have employed ligand-receptor engineering technique to screen a specific compound which plays antagonist role and assist to formulate an insect specific pesticide. The EcR protein 3D structure of AmEcR modeled using Schrödinger maestro and virtual screening was performed using 5554 molecules from Zinc database, where ZINC20031812 showed highest glide score of −6.257 and Etoxazole chosen on literature basis and showed best glide score −6.671. We have compared the antagonist with agonist (20E by molecular dynamics (MD simulation. Root Mean Square Deviation (RMSD value of agonist and antagonist indicates the binding were stable in water with a range of distance from 2.3 to 2.6 Å, 1.8 to 2.3 Å and 1.9 to 2.3 Å with a variation over the time scale of 1 ps. Since Etoxazole and ZINC20031812 are antagonists, computationally they were more stable than 20E. Keywords: Ariadne merione, 20 Hydroxyecdysone (20E, Etoxazole, Schrödinger

  7. Long-term activation upon brief exposure to xanomleline is unique to M1 and M4 subtypes of muscarinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Eva Šantrůčková

    Full Text Available Xanomeline is an agonist endowed with functional preference for M1/M4 muscarinic acetylcholine receptors. It also exhibits both reversible and wash-resistant binding to and activation of these receptors. So far the mechanisms of xanomeline selectivity remain unknown. To address this question we employed microfluorometric measurements of intracellular calcium levels and radioligand binding to investigate differences in the short- and long-term effects of xanomeline among muscarinic receptors expressed individually in Chinese hamster ovary cells. 1/One-min exposure of cells to xanomeline markedly increased intracellular calcium at hM1 and hM4, and to a lesser extent at hM2 and hM3 muscarinic receptors for more than 1 hour. 2/Unlike the classic agonists carbachol, oxotremorine, and pilocarpine 10-min exposure to xanomeline did not cause internalization of any receptor subtype. 3/Wash-resistant xanomeline selectively prevented further increase in intracellular calcium by carbachol at hM1 and hM4 receptors. 4/After transient activation xanomeline behaved as a long-term antagonist at hM5 receptors. 5/The antagonist N-methylscopolamine (NMS reversibly blocked activation of hM1 through hM4 receptors by xanomeline. 6/NMS prevented formation of xanomeline wash-resistant binding and activation at hM2 and hM4 receptors and slowed them at hM1, hM3 and hM5 receptors. Our results show commonalities of xanomeline reversible and wash-resistant binding and short-time activation among the five muscarinic receptor subtypes. However long-term receptor activation takes place in full only at hM1 and hM4 receptors. Moreover xanomeline displays higher efficacy at hM1 and hM4 receptors in primary phasic intracellular calcium release. These findings suggest the existence of particular activation mechanisms specific to these two receptors.

  8. Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 1

    DEFF Research Database (Denmark)

    Rist, Oystein; Grimstrup, Marie; Receveur, Jean-Marie

    2009-01-01

    Structure-activity relationships of three related series of 4-phenylthiazol-5-ylacetic acids, derived from two hits emanating from a focused library obtained by in silico screening, have been explored as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) antagonists....... Several compounds with double digit nanomolar binding affinity and full antagonistic efficacy for human CRTH2 receptor were obtained in all subclasses. The most potent compound was [2-(4-chloro-benzyl)-4-(4-phenoxy-phenyl)-thiazol-5-yl]acetic acid having an binding affinity of 3.7nM and functional...

  9. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension.

    Science.gov (United States)

    Li, Wencheng; Sullivan, Michelle N; Zhang, Sheng; Worker, Caleb J; Xiong, Zhenggang; Speth, Robert C; Feng, Yumei

    2015-02-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT(1) receptor-dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. © 2014 American Heart Association, Inc.

  10. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

    Science.gov (United States)

    Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effects of the alpha2-adrenergic receptor agonists clonidine and rilmenidine, and antagonists yohimbine and efaroxan, on the spinal cholinergic receptor system in the rat

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Höglund, A Urban

    2004-01-01

    Cholinergic agonists produce spinal antinociception via mechanisms involving an increased release of intraspinal acetylcholine. The cholinergic receptor system interacts with several other receptor types, such as alpha2-adrenergic receptors. To fully understand these interactions, the effects...... of various receptor ligands on the cholinergic system must be investigated in detail. This study was initiated to investigate the effects of the alpha2-adrenergic receptor agonists clonidine and rilmenidine and the alpha2-adrenergic receptor antagonists yohimbine and efaroxan on spinal cholinergic receptors......, all ligands possessed affinity for nicotinic receptors. Clonidine and yohimbine binding was best fit to a one site binding curve and rilmenidine and efaroxan to a two site binding curve. The present study demonstrates that the tested alpha2-adrenergic receptor ligands affect intraspinal acetylcholine...

  12. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-01-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  13. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    International Nuclear Information System (INIS)

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-01-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 μM, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. 45 Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45 Ca outflux. BPP was also capable of displacing the specific binding of [ 3 H]-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 μM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant

  14. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization

    DEFF Research Database (Denmark)

    Coda, L; Salcini, A E; Confalonieri, S

    1998-01-01

    in NIH-3T3 cells overexpressing the receptor, even at low levels of receptor occupancy, thus behaving as physiological substrates. A role for eps15R in clathrin-mediated endocytosis is suggested by its localization in plasma membrane-coated pits and in vivo association to the coated pits' adapter protein...... AP-2. Finally, we demonstrate that a sizable fraction of eps15R exists in the cell as a complex with eps15 and that its EH domains exhibit binding specificities that are partially distinct from those of eps15. We propose that eps15 and eps15R are multifunctional binding proteins that serve...

  15. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    Science.gov (United States)

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  16. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Zoltewicz, J A; Meyers, C; King, M A; Papke, R L; De Fiebre, C M

    1998-03-01

    The goals of this study were to develop compounds that were selective and highly efficacious agonists at alpha-7 receptors, while varying in antagonist activity; and to test the hypothesis that these compounds had memory-related and neuroprotective actions associated with both agonist and antagonist alpha-7 receptor activities. Three compounds were identified; E,E-3-(cinnamylidene)anabaseine (3-CA), E,E-3-(2-methoxycinnamylidene) anabaseine (2-MeOCA) and E,E-3-(4-methoxycinnamylidene) anabaseine (4-MeOCA) each displaced [125I]alpha-bungarotoxin binding from rat brain membranes and activated rat alpha-7 receptors in a Xenopus oocyte expression system fully efficaciously. The potency series for binding and receptor activation was 2-MeOCA > 4-MeOCA = 3-CA and 2-MeOCA = 3-CA > 4-MeOCA, respectively. No compound significantly activated oocyte-expressed alpha-4beta-2 receptors. Although each cinnamylidene-anabaseine caused a long-term inhibition of alpha-7 receptors, as measured by ACh-application 5 min later, this inhibition ranged considerably, from less than 20% (3-CA) to 90% (2-MeOCA) at an identical concentration (10 microM). These compounds improved passive avoidance behavior in nucleus basalis lesioned rats, with 2-MeOCA most potent in this respect. In contrast, only 3-CA was neuroprotective against neurite loss during nerve growth factor deprivation in differentiated rat pheochromocytoma (PC12) cells. Choline, an efficacious alpha-7 agonist without antagonist activity, was also protective in this model. These results suggest that the neurite-protective action of alpha-7 receptor agonists may be more sensitive to potential long-term antagonist properties than acute behavioral actions are.

  17. Analysis of hydrophobic interactions of antagonists with the beta2-adrenergic receptor.

    Science.gov (United States)

    Novoseletsky, V N; Pyrkov, T V; Efremov, R G

    2010-01-01

    The adrenergic receptors mediate a wide variety of physiological responses, including vasodilatation and vasoconstriction, heart rate modulation, and others. Beta-adrenergic antagonists ('beta-blockers') thus constitute a widely used class of drugs in cardiovascular medicine as well as in management of anxiety, migraine, and glaucoma. The importance of the hydrophobic effect has been evidenced for a wide range of beta-blocker properties. To better understand the role of the hydrophobic effect in recognition of beta-blockers by their receptor, we carried out a molecular docking study combined with an original approach to estimate receptor-ligand hydrophobic interactions. The proposed method is based on automatic detection of molecular fragments in ligands and the analysis of their interactions with receptors separately. A series of beta-blockers, based on phenylethanolamines and phenoxypropanolamines, were docked to the beta2-adrenoceptor binding site in the crystal structure. Hydrophobic complementarity between the ligand and the receptor was calculated using the PLATINUM web-server (http://model.nmr.ru/platinum). Based on the analysis of the hydrophobic match for molecular fragments of beta-blockers, we have developed a new scoring function which efficiently predicts dissociation constant (pKd) with strong correlations (r(2) approximately 0.8) with experimental data.

  18. The somatostatin receptor 2 antagonist 64Cu-NODAGA-JR11 outperforms 64Cu-DOTA-TATE in a mouse xenograft model

    Science.gov (United States)

    Rylova, Svetlana N.; Stoykow, Christian; Del Pozzo, Luigi; Abiraj, Keelara; Tamma, Maria Luisa; Kiefer, Yvonne; Fani, Melpomeni; Maecke, Helmut R.

    2018-01-01

    Copper-64 is an attractive radionuclide for PET imaging and is frequently used in clinical applications. The aim of this study was to perform a side-by-side comparison of the in vitro and in vivo performance of 64Cu-NODAGA-JR11 (NODAGA = 1,4,7-triazacyclononane,1-glutaric acid,4,7-acetic acid, JR11 = p-Cl-Phe-cyclo(D-Cys-Aph(Hor)-D-Aph(cbm)-Lys-Thr-Cys)D-Tyr-NH2), a somatostatin receptor 2 antagonist, with the clinically used sst2 agonist 64Cu-DOTA-TATE ((TATE = D-Phe-cyclo(Cys-Tyr-D-Trp-Lys-Thr-Cys)Thr). In vitro studies demonstrated Kd values of 5.7±0.95 nM (Bmax = 4.1±0.18 nM) for the antagonist 64/natCu-NODAGA-JR11 and 20.1±4.4. nM (Bmax = 0.48±0.18 nM) for the agonist 64/natCu-DOTA-TATE. Cell uptake studies showed the expected differences between agonists and antagonists. Whereas 64Cu-DOTA-TATE (the agonist) showed very effective internalization in the cell culture assay (with 50% internalized at 4 hours post-peptide addition under the given experimental conditions), 64Cu-NODAGA-JR11 (the antagonist) showed little internalization but strong receptor-mediated uptake at the cell membrane. Biodistribution studies of 64Cu-NODAGA-JR11 showed rapid blood clearance and tumor uptake with increasing tumor-to-relevant organ ratios within the first 4 hours and in some cases, 24 hours, respectively. The tumor washout was slow or non-existent in the first 4 hours, whereas the kidney washout was very efficient, leading to high and increasing tumor-to-kidney ratios over time. Specificity of tumor uptake was proven by co-injection of high excess of non-radiolabeled peptide, which led to >80% tumor blocking. 64Cu-DOTA-TATE showed less favorable pharmacokinetics, with the exception of lower kidney uptake. Blood clearance was distinctly slower and persistent higher blood values were found at 24 hours. Uptake in the liver and lung was relatively high and also persistent. The tumor uptake was specific and similar to that of 64Cu-NODAGA-JR11 at 1 h, but release from the tumor

  19. The effects of estrogen receptors α- and β-specific agonists and antagonists on cell proliferation and energy metabolism in human bone cell line.

    Science.gov (United States)

    Somjen, D; Katzburg, S; Sharon, O; Grafi-Cohen, M; Knoll, E; Stern, N

    2011-02-01

    In cultured human osteoblasts estradiol-17β (E2) modulated DNA synthesis, the specific activity of creatine kinase BB (CK), 12 and 15 lipoxygenase (LO) mRNA expression and formation of 12- and 15-hydroxyeicosatetraenoic acid (HETE). We now investigate the response of human bone cell line (SaOS2) to phytoestrogens and estrogen receptors (ER)-specific agonists and antagonists. Treatment of SaSO2 with E2, 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN; ERβ-specific agonist), 4,4',4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl] tris-phenol (PPT; ERα-specific agonist), biochainin A (BA), daidzein (D), genistein (G) and raloxifene (Ral) showed increased DNA synthesis and CK. Ral inhibited completely all stimulations except DPN and to some extent D. The ERα-specific antagonist methyl-piperidino-pyrazole (MPP) and the ERβ-specific antagonist 4-[2-phenyl-5,7-bis (tri-fluoro-methyl) pyrazolo [1,5-a]pyrimidin-3-yl] phenol (PTHPP) inhibited DNA synthesis, CK and reactive oxygen species (ROS) formation induced by estrogens according to their receptors affinity. The LO inhibitor baicaleine inhibited only E2, DPN and G's effects. E2 and Ral unlike all other compounds had no effect on ERα mRNA expression, while ERβ mRNA expression was stimulated by all compounds. All compounds modulated the expression of 12LO and 15LO mRNA, except E2, PPT and Ral for 12LO, and 12- and 15-HETE productions and stimulated ROS formation which was inhibited by NADPH oxidase inhibitors diphenyleneiodonium chloride (DPI) and N-acetyl cysteine and the estrogen inhibitor ICI. DPI did not affect hormonal-induced DNA and CK. In conclusion, we provide evidence for the separation of mediation via ERα and ERβ pathways in the effects of estrogenic compounds on osteoblasts, but the role of LO/HETE/ROS is unclear. Copyright © 2010 Wiley-Liss, Inc.

  20. Small Molecule Antagonists of the Nuclear Androgen Receptor for the Treatment of Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Johnson, James K; Skoda, Erin M; Zhou, Jianhua; Parrinello, Erica; Wang, Dan; O'Malley, Katherine; Eyer, Benjamin R; Kazancioglu, Mustafa; Eisermann, Kurtis; Johnston, Paul A; Nelson, Joel B; Wang, Zhou; Wipf, Peter

    2016-08-11

    After a high-throughput screening campaign identified thioether 1 as an antagonist of the nuclear androgen receptor, a zone model was developed for structure-activity relationship (SAR) purposes and analogues were synthesized and evaluated in a cell-based luciferase assay. A novel thioether isostere, cyclopropane (1S,2R)-27, showed the desired increased potency and structural properties (stereospecific SAR response, absence of a readily oxidized sulfur atom, low molecular weight, reduced number of flexible bonds and polar surface area, and drug-likeness score) in the prostate-specific antigen luciferase assay in C4-2-PSA-rl cells to qualify as a new lead structure for prostate cancer drug development.

  1. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo

    2014-01-01

    be divided into two groups with most likely two topographically distinct binding sites. The aim of the current study was to identify the binding site of one such group of ligands, exemplified by three allosteric antagonists, CCR2-RA-[R], JNJ-27141491, and SD-24. We first used a chimeric CCR2/CCR5 receptor...

  2. Synthesis of 11C-SCH 23390, a dopamine D-1 receptor antagonist, for use in in vivo receptor binding studies with PET

    International Nuclear Information System (INIS)

    Halldin, Christer; Stone-Elander, Sharon; Farde, Lars; Ehrin, Erling; Fasth, Karl-Johan; Langstroem, Bengt; Sedvall, Goeran; Karolinska Hospital, Stockholm; Uppsala Univ.

    1986-01-01

    Central dopamine receptors are generally accepted to exist in at least two distinct subtypes: D-1 and D-2. Recently a benzazepine, SCH 23390, was reported to be a selective D-1 dopaminergic antagonist. PET studies of the radio-brominated 76 Br-SCH 23390 reported by Friedman, et al. indicated that the analog exhibits specific binding in the striatum of the monkey brain. Here we report the synthesis of 11 C-SCH 23390 suitable for the in vivo study of dopamine D-1 receptors in the human brain. (author)

  3. Transient Receptor Potential Vanilloid 4 Activation-Induced Increase in Glycine-Activated Current in Mouse Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Mengwen Qi

    2018-02-01

    Full Text Available Background/Aims: Glycine plays an important role in regulating hippocampal inhibitory/ excitatory neurotransmission through activating glycine receptors (GlyRs and acting as a co-agonist of N-methyl-d-aspartate-type glutamate receptors. Activation of transient receptor potential vanilloid 4 (TRPV4 is reported to inhibit hippocampal A-type γ-aminobutyric acid receptor, a ligand-gated chloride ion channel. GlyRs are also ligand-gated chloride ion channels and this paper aimed to explore whether activation of TRPV4 could modulate GlyRs. Methods: Whole-cell patch clamp recording was employed to record glycine-activated current (IGly and Western blot was conducted to assess GlyRs subunits protein expression. Results: Application of TRPV4 agonist (GSK1016790A or 5,6-EET increased IGly in mouse hippocampal CA1 pyramidal neurons. This action was blocked by specific antagonists of TRPV4 (RN-1734 or HC-067047 and GlyR (strychnine, indicating that activation of TRPV4 increases strychnine-sensitive GlyR function in mouse hippocampal pyramidal neurons. GSK1016790A-induced increase in IGly was significantly attenuated by protein kinase C (PKC (BIM II or D-sphingosine or calcium/calmodulin-dependent protein kinase II (CaMKII (KN-62 or KN-93 antagonists but was unaffected by protein kinase A or protein tyrosine kinase antagonists. Finally, hippocampal protein levels of GlyR α1 α2, α3 and β subunits were not changed by treatment with GSK1016790A for 30 min or 1 h, but GlyR α2, α3 and β subunits protein levels increased in mice that were intracerebroventricularly (icv. injected with GSK1016790A for 5 d. Conclusion: Activation of TRPV4 increases GlyR function and expression, and PKC and CaMKII signaling pathways are involved in TRPV4 activation-induced increase in IGly. This study indicates that GlyRs may be effective targets for TRPV4-induced modulation of hippocampal inhibitory neurotransmission.

  4. Radiosynthesis and biodistribution of a histamine H{sub 3} receptor antagonist 4-[3-(4-piperidin-1-yl-but-1-ynyl)-[{sup 11}C]benzyl]-morpholine: evaluation of a potential PET ligand

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, Anu J. [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands); Jablonowski, Jill A. [Johnson and Johnson Pharmaceutical Research and Development LLC, San Diego, CA 92121 (United States); Mey, Margreet van der [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands); Barbier, Ann J. [Johnson and Johnson Pharmaceutical Research and Development LLC, San Diego, CA 92121 (United States); Klok, Rob P. [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands); Verbeek, Joost [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands); Schuit, Robert [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands); Herscheid, Jacobus D.M. [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands); Leysen, Josee E. [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands); Carruthers, Nicholas I. [Johnson and Johnson Pharmaceutical Research and Development LLC, San Diego, CA 92121 (United States); Lammertsma, Adriaan A. [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands); Windhorst, Albert D. [Department of Nuclear Medicine and PET Research, Location Radionuclide Center, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam (Netherlands)]. E-mail: bwindhorst@rnc.vu.nl

    2006-08-15

    The potent histamine H{sub 3} receptor antagonist JNJ-10181457 () was successfully labeled with {sup 11}C in a novel one-pot reaction sequence, with high chemical yield (decay-corrected yield, 28{+-}8%) and high specific radioactivity (56{+-}26 GBq/{mu}mol). The binding of [{sup 11}C] to H{sub 3} receptors was studied in vitro in rat brain and in vivo in rats and mice. The in vitro binding of [{sup 11}C] in rat coronal brain slices showed high binding in the striatum, and this binding was blocked by histamine and by two known H{sub 3} antagonists, JNJ-5207852 () and unlabeled Compound (), in a concentration-dependent manner. The biodistribution of [{sup 11}C] in rats was measured at 5, 10, 30 and 60 min. The uptake of [{sup 11}C] in regions rich in H{sub 3} receptors was highest at 30 min, giving 0.98%, 1.41%, 1.28% and 1.72% dose/g for the olfactory bulb, hippocampus, striatum and cerebral cortex, respectively. However, the binding of [{sup 11}C] in the rat brain could not be blocked by pretreatment with either Compound () (30 min or 24 h pretreatment) or cold Compound () (30-min pretreatment). The biodistribution of [{sup 11}C] in a second species (Balb/c mice) showed a higher overall uptake of the radioligand with an average brain uptake of 8.9% dose/g. In C57BL/6-H{sub 3}(-/-) knockout mice, a higher brain uptake was also observed. Analyses of metabolites and plasma protein binding were also undertaken. It appeared that [{sup 11}C] could not specifically label H{sub 3} receptors in rodent brain in vivo. Possible causes are discussed.

  5. Selective Allosteric Antagonists for the G Protein-Coupled Receptor GPRC6A Based on the 2-Phenylindole Privileged Structure Scaffold

    DEFF Research Database (Denmark)

    Johansson, Henrik; Boesgaard, Michael Worch; Nørskov-Lauritsen, Lenea

    2015-01-01

    G protein-coupled receptors (GPCRs) represent a biological target class of fundamental importance in drug therapy. The GPRC6A receptor is a newly deorphanized class C GPCR that we recently reported for the first allosteric antagonists based on the 2-arylindole privileged structure scaffold (e.g., 1...

  6. Medial prefrontal cortex lesions impair decision-making on a rodent gambling task: reversal by D1 receptor antagonist administration.

    Science.gov (United States)

    Paine, Tracie A; Asinof, Samuel K; Diehl, Geoffrey W; Frackman, Anna; Leffler, Joseph

    2013-04-15

    Decision-making is a complex cognitive process that is impaired in a number of psychiatric disorders. In the laboratory, decision-making is frequently assessed using "gambling" tasks that are designed to simulate real-life decisions in terms of uncertainty, reward and punishment. Here, we investigate whether lesions of the medial prefrontal cortex (PFC) cause impairments in decision-making using a rodent gambling task (rGT). In this task, rats have to decide between 1 of 4 possible options: 2 options are considered "advantageous" and lead to greater net rewards (food pellets) than the other 2 "disadvantageous" options. Once rats attained stable levels of performance on the rGT they underwent sham or excitoxic lesions of the medial PFC and were allowed to recover for 1 week. Following recovery, rats were retrained for 5 days and then the effects of a dopamine D1-like receptor antagonist (SCH23390) or a D2-like receptor antagonist (haloperidol) on performance were assessed. Lesioned rats exhibited impaired decision-making: they made fewer advantageous choices and chose the most optimal choice less frequently than did sham-operated rats. Administration of SCH23390 (0.03 mg/kg), but not haloperidol (0.015-0.03 mg/kg) attenuated the lesion-induced decision-making deficit. These results indicate that the medial PFC is important for decision-making and that excessive signaling at D1 receptors may contribute to decision-making impairments. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Chronic administration of the selective P2X3, P2X2/3 receptor antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice

    DEFF Research Database (Denmark)

    Hansen, Rikke Rie; Nasser, Arafat; Falk, Sarah

    2012-01-01

    The purinergic P2X3 and P2X2/3 receptors are in the peripheral nervous system almost exclusively confined to afferent sensory neurons, where they are found both at peripheral and central synapses. The P2X3 receptor is implicated in both neuropathic and inflammatory pain. However, the role of the ......X3 receptor in chronic cancer-induced bone pain is less known. Here we investigated the effect of systemic acute and chronic administration of the selective P2X3, P2X2/3 receptor antagonist (5-[[[(3-Phenoxyphenyl)methyl][(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]carbonyl]-1...

  8. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2.

    Science.gov (United States)

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-08-01

    It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage

  9. The novel adenosine A(2A) antagonist prodrug MSX-4 is effective in animal models related to motivational and motor functions.

    Science.gov (United States)

    Santerre, Jessica L; Nunes, Eric J; Kovner, Rotem; Leser, Chelsea E; Randall, Patrick A; Collins-Praino, Lyndsey E; Lopez Cruz, Laura; Correa, Merce; Baqi, Younis; Müller, Christa E; Salamone, John D

    2012-10-01

    Adenosine A(2A) and dopamine D2 receptors interact to regulate diverse aspects of ventral and dorsal striatal functions related to motivational and motor processes, and it has been suggested that adenosine A(2A) antagonists could be useful for the treatment of depression, parkinsonism and other disorders. The present experiments were performed to characterize the effects of MSX-4, which is an amino acid ester prodrug of the potent and selective adenosine A(2A) receptor antagonist MSX-2, by assessing its ability to reverse pharmacologically induced motivational and motor impairments. In the first group of studies, MSX-4 reversed the effects of the D2 antagonist eticlopride on a concurrent lever pressing/chow feeding task that is used as a measure of effort-related choice behavior. MSX-4 was less potent after intraperitoneal administration than the comparison compound, MSX-3, though both were equally efficacious. With this task, MSX-4 was orally active in the same dose range as MSX-3. MSX-4 also reversed the locomotor suppression induced by eticlopride in the open field, but did not induce anxiogenic effects as measured by the relative amount of interior activity. Behaviorally active doses of MSX-4 also attenuated the increase in c-Fos and pDARPP-32(Thr34) expression in nucleus accumbens core that was induced by injections of eticlopride. In addition, MSX-4 suppressed the oral tremor induced by the anticholinesterase galantamine, which is consistent with an antiparkinsonian profile. These actions of MSX-4 indicate that this compound could have potential utility as a treatment for parkinsonism, as well as some of the motivational symptoms of depression and other disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    International Nuclear Information System (INIS)

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-01-01

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma

  11. Differential regulation of renal prostaglandin receptor mRNAs by dietary salt intake in the rat

    DEFF Research Database (Denmark)

    Jensen, B L; Mann, Birgitte; Skøtt, O

    1999-01-01

    and cells by ribonuclease protection assay and reverse transcription-polymerase chain reaction analysis. Functional correlates were studied by measurement of PGE2-induced cAMP formation and renin secretion in juxtaglomerular (JG) cells isolated from animals on various salt intakes. RESULTS: EP1 and EP3......BACKGROUND: In this study, we tested the hypothesis that prostaglandin (PG) receptor expression in the rat kidney is subject to physiological regulation by dietary salt intake. METHODS: Rats were fed diets with 0.02 or 4% NaCl for two weeks. PG receptor expression was assayed in kidney regions...... did not affect the expression of EP1 or IP receptors, whereas EP4 transcripts in glomeruli were increased twofold by salt deprivation. Consistent with this, we found that PGE2-evoked cAMP production and renin secretion by JG cells from salt-deprived animals were significantly higher compared...

  12. Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test.

    Science.gov (United States)

    Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Ostadhadi, Sattar; Amini-Khoei, Hossein; Dehpour, Ahmad Reza

    2016-02-01

    Recent evidence indicates that 5-hydroxytryptamine 3 (5-HT3) antagonists such as ondansetron and tropisetron exert positive behavioral effects in animal models of depression. Due to the ionotropic nature of 5-HT3 and N-methyl-d-aspartate (NMDA) receptors, plus their contribution to the pathophysiology of depression, we investigated the possible role of NMDA receptors in the antidepressant-like effect of 5-HT3 receptor antagonists in male mice. In order to evaluate the animals' behavior in response to different treatments, we performed open-field test (OFT), forced swimming test (FST), and tail-suspension test (TST), which are considered as valid tasks for measuring locomotor activity and depressive-like behaviors in mice. Our data revealed that intraperitoneal (i.p.) administration of tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01, and 0.1μg/kg) significantly decreased the immobility time in FST and TST. Also, co-administration of subeffective doses of tropisetron (1mg/kg, i.p.) or ondansetron (0.001μg/kg, i.p.) with subeffective doses of NMDA receptor antagonists, ketamine (1mg/kg, i.p.), MK-801 (0.05mg/kg, i.p.) and magnesium sulfate (10mg/kg, i.p.) resulted in a reduced immobility time both in FST and TST. The subeffective dose of NMDA (NMDA receptor agonist, 75mg/kg, i.p.) abolished the effects of 5-HT3 antagonists in FST and TST, further supporting the presumed interaction between 5-HT3 and NMDA receptors. These treatments did not affect the locomotor behavior of animals in OFT. Finally, the results of our study suggest that the positive effects of 5-HT3 antagonists on the coping behavior of mice in FST and TST are at least partly mediated through NMDA receptors participation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  14. Dopamine D4 receptor stimulation contributes to novel object recognition: Relevance to cognitive impairment in schizophrenia.

    Science.gov (United States)

    Miyauchi, Masanori; Neugebauer, Nichole M; Meltzer, Herbert Y

    2017-04-01

    Several atypical antipsychotic drugs (APDs) have high affinity for the dopamine (DA) D 4 receptor, but the relevance to the efficacy for the treatment of cognitive impairment associated with schizophrenia (CIAS) is poorly understood. The aim of this study was to investigate the effects of D 4 receptor stimulation or blockade on novel object recognition (NOR) in normal rats and on the sub-chronic phencyclidine (PCP)-induced novel object recognition deficit. The effect of the D 4 agonist, PD168077, and the D 4 antagonist, L-745,870, were studied alone, and in combination with clozapine and lurasidone. In normal rats, L-745,870 impaired novel object recognition, whereas PD168077 had no effect. PD168077 acutely reversed the sub-chronic phencyclidine-induced novel object recognition deficit. Co-administration of a sub-effective dose (SED) of PD168077 with a sub-effective dose of lurasidone also reversed this deficit, but a sub-effective dose of PD168077 with a sub-effective dose of clozapine, a more potent D 4 antagonist than lurasidone, did not reverse the sub-chronic phencyclidine-induced novel object recognition deficit. At a dose that did not induce a novel object recognition deficit, L-745,870 blocked the ability of clozapine, but not lurasidone, to reverse the novel object recognition deficit. D 4 receptor agonism has a beneficial effect on novel object recognition in sub-chronic PCP-treated rats and augments the cognitive enhancing efficacy of an atypical antipsychotic drug that lacks affinity for the D 4 receptor, lurasidone.

  15. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    Science.gov (United States)

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT

  16. The effects of CRA 1000, a non-peptide antagonist of corticotropin-releasing factor receptor type 1, on adaptive behaviour in the rat.

    Science.gov (United States)

    Harro, J; Tõnissaar, M; Eller, M

    2001-04-01

    Intracerebrally administered CRF has been demonstrated to elicit several behavioural deficits in novel and potentially stressful experimental paradigms, and to promote activity in familiar situations. This study examined the effect of CRA 1000, a novel non-peptide antagonist of CRF(1)receptors, on rat behaviour in tests of anxiolytic and antidepressant activity and novelty-oriented behaviour. CRA 1000 (1.25-10 mg/kg) had no major effect in elevated plus-maze and social interaction tests. However, CRA 1000 (5 mg/kg) significantly reduced immobility in the forced swimming test, suggesting an antidepressant-like effect. In the exploration box test, CRA 1000 (1.25 mg/kg) had an anxiolytic effect on rat exploratory behaviour both in intact rats and after lesioning of the projections of locus coeruleus by DSP-4 (50 mg/kg) treatment. A higher dose of CRA 1000 (5 mg/kg) tended to have anxiolytic-like effects in DSP-4 pretreated rats, but in intact animals this dose prevented the increase in exploration which develops with repeated exposure to initially anxiety-provoking situations. Taken together, these experiments demonstrate that CRF1 receptor blockade by CRA 1000 has antidepressant-like effects, does not have a robust anti-anxiety effect in non-stressed animals, but does have anxiolytic-like effects in more complex tasks, which can be observed also after denervation of the locus coeruleus projections. However, large doses of CRF1 receptor antagonists may reduce motivation of exploratory behaviour in familiar environments. Copyright 2001 Harcourt Publishers Ltd.

  17. The N-Methyl d-Aspartate Glutamate Receptor Antagonist Ketamine Disrupts the Functional State of the Corticothalamic Pathway

    NARCIS (Netherlands)

    Anderson, P.M.; Jones, N.C.; O'Brien, T.J.; Pinault, D.

    2017-01-01

    The non-competitive N-methyl d-aspartate glutamate receptor (NMDAR) antagonist ketamine elicits a brain state resembling high-risk states for developing psychosis and early stages of schizophrenia characterized by sensory and cognitive deficits and aberrant ongoing gamma (30-80 Hz) oscillations in

  18. Combinatorial assembly of small molecules into bivalent antagonists of TrkC or TrkA receptors.

    Directory of Open Access Journals (Sweden)

    Fouad Brahimi

    Full Text Available A library of peptidomimetics was assembled combinatorially into dimers on a triazine-based core. The pharmacophore corresponds to β-turns of the neurotrophin polypeptides neurotrophin-3 (NT-3, nerve growth factor (NGF, or brain-derived neurotrophic factor (BDNF. These are the natural ligands for TrkC, TrkA, and TrkB receptors, respectively. The linker length and the side-chain orientation of each monomer within the bivalent mimics were systematically altered, and the impact of these changes on the function of each ligand was evaluated. While the monovalent peptidomimetics had no detectable binding or bioactivity, four bivalent peptidomimetics (2c, 2d, 2e, 3f are selective TrkC ligands with antagonistic activity, and two bivalent peptidomimetics (1a, 1b are TrkC and TrkA ligands with antagonistic activity. All these bivalent compounds block ligand-dependent receptor activation and cell survival, without affecting neuritogenic differentiation. This work adds to our understanding of how the neurotrophins function through Trk receptors, and demonstrates that peptidomimetics can be designed to selectively disturb specific biological signals, and may be used as pharmacological probes or as therapeutic leads. The concept of altering side-chain, linker length, and sequence orientation of a subunit within a pharmacophore provides an easy modular approach to generate larger libraries with diversified bioactivity.

  19. Radioiodinated SB 207710 as a radioligand in vivo: imaging of brain 5-HT{sub 4} receptors with SPET

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Victor W. [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, MD 20892-1003, Bethesda (United States); Halldin, Christer; Nobuhara, Kenji; Swahn, Carl-Gunnar; Karlsson, Per; Olsson, Hans; Larsson, Stig; Schnell, Per-Olof; Farde, Lars [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Karolinska Hospital, 17176, Stockholm (Sweden); Hiltunen, Julka [MAP Medical Technologies, Oy, Tikkakoski (Finland); Mulligan, Rachel S. [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Institute of Psychiatry, SE 8AF, De Crespigny Park, Denmark Hill, London (United Kingdom); Centre for PET, Austin and Repatriation Medical Centre, Studley Road, Melbourne VIC 3084 (Australia); Hume, Susan P.; Hirani, Ella [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Imaging Research Solutions Ltd., Cyclotron Building, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Whalley, Jaqueline [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Pilowsky, Lyn S. [Institute of Psychiatry, SE 8AF, De Crespigny Park, Denmark Hill, London (United Kingdom); Institute of Nuclear Medicine, Royal Free and University College, Medical School, Mortimer Street, W1N 8AA, London (United Kingdom); Ell, Peter J. [Institute of Nuclear Medicine, Royal Free and University College, Medical School, Mortimer Street, W1N 8AA, London (United Kingdom)

    2003-11-01

    Single-photon emission tomography (SPET) and positron emission tomography (PET), when coupled to suitable radioligands, are uniquely powerful for investigating the status of neurotransmitter receptors in vivo. The serotonin subtype-4 (5-HT{sub 4}) receptor has discrete and very similar distributions in rodent and primate brain. This receptor population may play a role in normal cognition and memory and is perhaps perturbed in some neuropsychiatric disorders. SB 207710 [(1-butyl-4-piperidinylmethyl)-8-amino-7-iodo-1,4-benzodioxan-5-carboxylate] is a selective high-affinity antagonist at 5-HT{sub 4} receptors. We explored radioiodinated SB 207710 as a possible radioligand for imaging 5-HT{sub 4} receptors in vivo. Rats were injected intravenously with iodine-125 labelled SB 207710, euthanised at known times and dissected to establish radioactivity content in brain tissues. Radioactivity entered brain but cleared rapidly and to a high extent from blood and plasma. Between 45 and 75 min after injection, the ratios of radioactivity concentration in each of 12 selected brain tissues to that in receptor-poor cerebellum correlated with previous measures of 5-HT{sub 4} receptor density distribution in vitro. The highest ratio was about 3.4 in striatum. SB 207710 was labelled with iodine-123 by an iododestannylation procedure. A cynomolgus monkey was injected intravenously with [{sup 123}I]SB 207710 and examined by SPET. Maximal whole brain uptake of radioactivity was 2.3% of the injected dose at 18 min after radioligand injection. Brain images acquired between 9 and 90 min showed high radioactivity uptake in 5-HT{sub 4} receptor-rich regions, such as striatum, and low uptake in receptor-poor cerebellum. At 169 min the ratio of radioactivity concentration in striatum to that in cerebellum was 4.0. In a second SPET experiment, the cynomolgus monkey was pretreated with a selective 5-HT{sub 4} receptor antagonist, SB 204070, at 20 min before [{sup 123}I]SB 207710 injection

  20. Glufosinate ammonium induces convulsion through N-methyl-D-aspartate receptors in mice.

    Science.gov (United States)

    Matsumura, N; Takeuchi, C; Hishikawa, K; Fujii, T; Nakaki, T

    2001-05-18

    Glufosinate ammonium, a broad-spectrum herbicide, causes convulsion in rodents and humans. Because of the structural similarities between glufosinate and glutamate, the convulsion induced by glufosinate ammonium may be ascribed to glutamate receptor activation. Three N-methyl-D-asparate (NMDA) receptor antagonists, dizocilpine, LY235959, and Compound 40, and an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist, NBQX, were coadministrated with glufosinate ammonium (80 mg/kg, intraperitoneally) in mice. Statistical analyses showed that the NMDA receptor antagonists markedly inhibited the convulsions, while the AMPA/kainate receptor antagonist had no effect on the convulsion. These results suggest that the convulsion caused by glufosinate ammonium is mediated through NMDA receptors.

  1. Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding.

    Directory of Open Access Journals (Sweden)

    Henrik Keränen

    Full Text Available To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.

  2. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX.

    Science.gov (United States)

    Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D

    2010-02-01

    Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Characterization of solubilized human and rat brain US -endorphin-receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Helmeste, D.M.; Li, C.H.

    1986-01-01

    Opioid receptors have been solubilized from human striatal and rat whole-brain membranes by use of 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS). Tritiated human US -endorphin (TH-US /sub h/-EP) binding revealed high-affinity competition by morphine, naloxone, and various US -EP analogues. Lack of high-affinity competition by (+/-)-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide methanesulfonate (U50-488, Upjohn) indicated that k sites were not labeled by TH-US -/sub h/-EP under these conditions. Affinities were similar in both soluble and membrane preparations except for (Met)enkephalin, which appears to be rapidly degraded by the solubilized extract. Size differences between human and rat solubilized TH-US /sub h/-EP-receptor complexes were revealed by exclusion chromatography.

  4. CysLT2 receptor activation is involved in LTC4-induced lung air-trapping in guinea pigs.

    Science.gov (United States)

    Sekioka, Tomohiko; Kadode, Michiaki; Yonetomi, Yasuo; Kamiya, Akihiro; Fujita, Manabu; Nabe, Takeshi; Kawabata, Kazuhito

    2017-01-05

    CysLT 1 receptors are known to be involved in the pathogenesis of asthma. However, the functional roles of CysLT 2 receptors in this condition have not been determined. The purpose of this study is to develop an experimental model of CysLT 2 receptor-mediated LTC 4 -induced lung air-trapping in guinea pigs and use this model to clarify the mechanism underlying response to such trapping. Because LTC 4 is rapidly converted to LTD 4 by γ-glutamyltranspeptidase (γ-GTP) under physiological conditions, S-hexyl GSH was used as a γ-GTP inhibitor. In anesthetized artificially ventilated guinea pigs with no S-hexyl GSH treatment, i.v. LTC 4 -induced bronchoconstriction was almost completely inhibited by montelukast, a CysLT 1 receptor antagonist, but not by BayCysLT 2 RA, a CysLT 2 receptor antagonist. The inhibitory effect of montelukast was diminished by treatment with S-hexyl GSH, whereas the effect of BayCysLT 2 RA was enhanced with increasing dose of S-hexyl GSH. Macroscopic and histological examination of lung tissue isolated from LTC 4 -/S-hexyl-GSH-treated guinea pigs revealed air-trapping expansion, particularly at the alveolar site. Inhaled LTC 4 in conscious guinea pigs treated with S-hexyl GSH increased both airway resistance and airway hyperinflation. On the other hand, LTC 4 -induced air-trapping was only partially suppressed by treatment with the bronchodilator salmeterol. Although montelukast inhibition of LTC 4 -induced air-trapping was weak, treatment with BayCysLT 2 RA resulted in complete suppression of this air-trapping. Furthermore, BayCysLT 2 RA completely suppressed LTC 4 -induced airway vascular hyperpermeability. In conclusion, we found in this study that CysLT 2 receptors mediate LTC 4 -induced bronchoconstriction and air-trapping in S-hexyl GSH-treated guinea pigs. It is therefore believed that CysLT 2 receptors contribute to asthmatic response involving air-trapping. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of cannabinoid CB1 receptor antagonist rimonabant in consolidation and reconsolidation of methamphetamine reward memory in mice.

    Science.gov (United States)

    Yu, Lu-lu; Wang, Xue-yi; Zhao, Mei; Liu, Yu; Li, Yan-qin; Li, Fang-qiong; Wang, Xiaoyi; Xue, Yan-xue; Lu, Lin

    2009-06-01

    Previous studies have shown that cannabinoid CB1 receptors play an important role in specific aspects of learning and memory, yet there has been no systematic study focusing on the involvement of cannabinoid CB1 receptors in methamphetamine-related reward memory. The purpose of this study was to examine whether rimonabant, a cannabinoid CB1 receptor antagonist, would disrupt the consolidation and reconsolidation of methamphetamine-related reward memory, using conditioned place preference paradigm (CPP). Separate groups of male Kunming mice were trained to acquire methamphetamine CPP. Vehicle or rimonabant (1 mg/kg or 3 mg/kg, i.p.) was given at different time points: immediately after each CPP training session (consolidation), 30 min before the reactivation of CPP (retrieval), or immediately after the reactivation of CPP (reconsolidation). Methamphetamine CPP was retested 24 h and 1 and 2 weeks after rimonabant administration. Rimonabant at doses of 1 and 3 mg/kg significantly inhibited the consolidation of methamphetamine CPP. Only high-dose rimonabant (3 mg/kg) disrupted the retrieval and reconsolidation of methamphetamine CPP. Rimonabant had no effect on methamphetamine CPP in the absence of methamphetamine CPP reactivation. Our findings suggest that cannabinoid CB1 receptors play a major role in methamphetamine reward memory, and cannabinoid CB1 receptor antagonists may be a potential pharmacotherapy to manage relapse associated with drug-reward-related memory.

  6. Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses.

    Science.gov (United States)

    Gronert, K; Martinsson-Niskanen, T; Ravasi, S; Chiang, N; Serhan, C N

    2001-01-01

    Aspirin-triggered lipoxin A(4) (ATL, 15-epi-LXA(4)) and leukotriene D(4) (LTD(4)) possess opposing vascular actions mediated via receptors distinct from the LXA(4) receptor (ALX) that is involved in leukocyte trafficking. Here, we identified these receptors by nucleotide sequencing and demonstrate that LTD(4) receptor (CysLT(1)) is induced in human vascular endothelia by interleukin-1beta. Recombinant CysLT(1) receptor gave stereospecific binding with both [(3)H]-LTD(4) and a novel labeled mimetic of ATL ([(3)H]-ATLa) that was displaced with LTD(4) and ATLa ( approximately IC(50) 0.2 to 0.9 nmol/L), but not with a bioinactive ATL isomer. The clinically used CysLT(1) receptor antagonist, Singulair, showed a lower rank order for competition with [(3)H]-ATLa (IC(50) approximately 8.3 nmol/L). In contrast, LTD(4) was an ineffective competitive ligand for recombinant ALX receptor with [(3)H]-ATLa, and ATLa did not compete for [(3)H]-LTB(4) binding with recombinant LTB(4) receptor. Endogenous murine CysLT(1) receptors also gave specific [(3)H]-ATLa binding that was displaced with essentially equal affinity by LTD(4) or ATLa. Systemic ATLa proved to be a potent inhibitor (>50%) of CysLT(1)-mediated vascular leakage in murine skin (200 microg/kg) in addition to its ability to block polymorphonuclear leukocyte recruitment to dorsal air pouch (4 microg/kg). These results indicate that ATL and LTD(4) bind and compete with equal affinity at CysLT(1), providing a molecular basis for aspirin-triggered LXs serving as a local damper of both vascular CysLT(1) signals as well as ALX receptor-regulated polymorphonuclear leukocyte traffic.

  7. Tc-labeling of Peptidomimetic Antagonist to Selectively Target alpha(v)beta(3) Receptor-Positive Tumor: Comparison of PDA and EDDA as co-Ligands.

    Science.gov (United States)

    Shin, In Soo; Maeng, Jin Soo; Jang, Beom-Su; You, Eric; Cheng, Kenneth; Li, King C P; Wood, Bradford; Carrasquillo, Jorge A; Danthi, S Narasimhan; Paik, Chang H

    2010-01-01

    OBJECTIVES: The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonist with (99m)Tc for rapid targeting of integrin alpha(v)beta(3) receptors in tumor to produce a high tumor to background ratio. METHODS: The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-beta-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with (99m)Tc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. The products, (99m)Tc EDDA(2)/HYNIC-IAC (P1) and (99m)Tc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. RESULTS: P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 degrees C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 +/- 13.48 vs 51.05 +/- 14.05%) when incubated with alpha(v)beta(3) at a molar excess (0.8 muM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17+/-0.52 and 2.13+/-0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 +/- 3.67% ID at 4 h whereas 54.04 +/- 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by

  8. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  9. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    International Nuclear Information System (INIS)

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-01-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor

  10. Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2

    Science.gov (United States)

    Rallabhandi, Prasad; Phillips, Rachel L.; Boukhvalova, Marina S.; Pletneva, Lioubov M.; Shirey, Kari Ann; Gioannini, Theresa L.; Weiss, Jerrold P.; Chow, Jesse C.; Hawkins, Lynn D.; Vogel, Stefanie N.; Blanco, Jorge C. G.

    2012-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. PMID:22872782

  11. Aryl Hydrocarbon Receptor Antagonists Mitigate the Effects of Dioxin on Critical Cellular Functions in Differentiating Human Osteoblast-Like Cells

    Directory of Open Access Journals (Sweden)

    Chawon Yun

    2018-01-01

    Full Text Available The inhibition of bone healing in humans is a well-established effect associated with cigarette smoking, but the underlying mechanisms are still unclear. Recent work using animal cell lines have implicated the aryl hydrocarbon receptor (AhR as a mediator of the anti-osteogenic effects of cigarette smoke, but the complexity of cigarette smoke mixtures makes understanding the mechanisms of action a major challenge. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin is a high-affinity AhR ligand that is frequently used to investigate biological processes impacted by AhR activation. Since there are dozens of AhR ligands present in cigarette smoke, we utilized dioxin as a prototype ligand to activate the receptor and explore its effects on pro-osteogenic biomarkers and other factors critical to osteogenesis using a human osteoblast-like cell line. We also explored the capacity for AhR antagonists to protect against dioxin action in this context. We found dioxin to inhibit osteogenic differentiation, whereas co-treatment with various AhR antagonists protected against dioxin action. Dioxin also negatively impacted cell adhesion with a corresponding reduction in the expression of integrin and cadherin proteins, which are known to be involved in this process. Similarly, the dioxin-mediated inhibition of cell migration correlated with reduced expression of the chemokine receptor CXCR4 and its ligand, CXCL12, and co-treatment with antagonists restored migratory capacity. Our results suggest that AhR activation may play a role in the bone regenerative response in humans exposed to AhR activators, such as those present in cigarette smoke. Given the similarity of our results using a human cell line to previous work done in murine cells, animal models may yield data relevant to the human setting. In addition, the AhR may represent a potential therapeutic target for orthopedic patients who smoke cigarettes, or those who are exposed to secondhand smoke or other

  12. Glutamate metabotropic receptors as targets for drug therapy in epilepsy.

    Science.gov (United States)

    Moldrich, Randal X; Chapman, Astrid G; De Sarro, Giovambattista; Meldrum, Brian S

    2003-08-22

    Metabotropic glutamate (mGlu) receptors have multiple actions on neuronal excitability through G-protein-linked modifications of enzymes and ion channels. They act presynaptically to modify glutamatergic and gamma-aminobutyric acid (GABA)-ergic transmission and can contribute to long-term changes in synaptic function. The recent identification of subtype-selective agonists and antagonists has permitted evaluation of mGlu receptors as potential targets in the treatment of epilepsy. Agonists acting on group I mGlu receptors (mGlu1 and mGlu5) are convulsant. Antagonists acting on mGlu1 or mGlu5 receptors are anticonvulsant against 3,5-dihydroxyphenylglycine (DHPG)-induced seizures and in mouse models of generalized motor seizures and absence seizures. The competitive, phenylglycine mGlu1/5 receptor antagonists generally require intracerebroventricular administration for potent anticonvulsant efficacy but noncompetitive antagonists, e.g., (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydrocyclopenta[c]furan-1-on (BAY36-7620), 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) block generalized seizures with systemic administration. Agonists acting on group II mGlu receptors (mGlu2, mGlu3) to reduce glutamate release are anticonvulsant, e.g., 2R,4R-aminopyrrolidine-2,4-dicarboxylate [(2R,4R)-APDC], (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268). The classical agonists acting on group III mGlu receptors such as L-(+)-2-amino-4-phosphonobutyric acid, and L-serine-O-phosphate are acutely proconvulsant with some anticonvulsant activity. The more recently identified agonists (R,S)-4-phosphonophenylglycine [(R,S)-PPG] and (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid [ACPT-1] are all anticonvulsant without proconvulsant effects. Studies in animal models of kindling

  13. [3H]AVP binding to rat renal tubular receptors during long-term treatment with an antagonist of arginine vasopressin

    International Nuclear Information System (INIS)

    Mah, S.C.; Whitebread, S.E.; De Gasparo, M.; Hofbauer, K.G.

    1988-01-01

    The interaction of an antagonist of arginine vasopressin (AVP), d(CH2)5-D-Tyr(Et)VAVP, with renal tubular V2 receptors were studied in medullary membrane preparations from kidneys of Sprague-Dawley and Brattleboro rats. In both rat strains, V2 receptors had comparable KD and Bmax values for binding of [3H]AVP. In vitro studies revealed that the V2-antagonist was more potent than cold AVP in displacing [3H]AVP. In vivo treatment of Sprague-Dawley rats with the antagonist over one week resulted only in a transient state of diabetes insipidus (DI). No specific [3H]AVP binding was detectable throughout the period of administration. Chronic treatment of Brattleboro rats resulted in a complete normalization of water intake. This agonistic effect was also associated with undetectable [3H]AVP binding. After stopping the infusion of d(CH2)5-D-Tyr(Et)VAVP, Bmax values tended to rise but had still not reached base line values after 6 days. In contrast, the chronic infusion of AVP in Brattleboro rats resulted in a reduction in water intake which was accompanied by a decreased Bmax. [3H]AVP binding remained detectable during the entire treatment period. Thereafter Bmax was restored to base line values within 2 days of stopping the infusion. These results suggest that d(CH2)5-D-Tyr(Et)VAVP has a high affinity for V2 receptors in both Sprague-Dawley and Brattleboro rats. Its rate of dissociation from the receptor appears to be much slower than that of AVP. In Brattleboro rats, the binding of d(CH2)5-D-Tyr(Et)VAVP leads to an antidiuretic response. In Sprague-Dawley rats, a transient diuretic response is followed by a progressive normalization in water intake. This occurs despite persistent and complete blockade of renal medullary V2 receptors

  14. Casopitant: a novel NK(1)-receptor antagonist in the prevention of chemotherapy-induced nausea and vomiting

    DEFF Research Database (Denmark)

    Ruhlmann, Christina; Herrstedt, Jørn

    2009-01-01

    Chemotherapy-induced nausea and vomiting (CINV) are among the most feared and distressing symptoms experienced by patients with cancer. The knowledge of the pathogenesis and neuropharmacology of CINV has expanded enormously over the last decades, the most significant discoveries being the role of 5......-hydroxytryptamine (5-HT)(3)- and neurokinin (NK)(1) receptors in the emetic reflex arch. This has led to the development of two new classes of antiemetics acting as highly selective antagonists at one of these receptors. These drugs have had a huge impact in the protection from chemotherapy-induced vomiting...

  15. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral...... group. CBF was measured by the intracarotid 133xenon injection method and BP was raised by noradrenaline infusion and lowered by controlled haemorrhage in separate groups of rats. The limits of autoregulation were determined by computed least-sum-of-squares analysis. PD 123319 did not influence baseline...

  16. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder

    Science.gov (United States)

    Zhang, Y; Simpson-Durand, C D; Standifer, K M

    2015-01-01

    BACKGROUND AND PURPOSE Single-prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), also induces long-lasting hyperalgesia associated with hypocortisolism and elevated nociceptin/orphanin FQ (N/OFQ) levels in serum and CSF. Here, we determined the effect of JTC-801 (N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist, on symptoms of pain and anxiety in rats after SPS exposure, and examined N/OFQ-NOP receptor system changes. EXPERIMENTAL APPROACH Male Sprague Dawley rats received JTC-801 (6 mg kg−1 i.p., once daily) during days 7–21 of SPS. The ability of JTC-801 to inhibit N/OFQ-stimulated [35S]-GTPγS binding was confirmed in rat brain membranes. Anxiety-like behaviour and pain sensitivity were monitored by changes in elevated plus maze performance and withdrawal responses to thermal and mechanical stimuli. Serum corticosterone and N/OFQ content in CSF, serum and brain tissues were determined by radioimmunoassay; NOP receptor protein and gene expression in amygdala, hippocampus and periaqueductal grey (PAG) were examined by immunoblotting and real-time PCR respectively. KEY RESULTS JTC-801 treatment reversed SPS-induced mechanical allodynia, thermal hyperalgesia, anxiety-like behaviour and hypocortisolism. Elevated N/OFQ levels in serum, CSF, PAG and hippocampus at day 21 of SPS were blocked by JTC-801; daily JTC-801 treatment also reversed NOP receptor protein and mRNA up-regulation in amygdala and PAG. CONCLUSION AND IMPLICATIONS JTC-801 reversed SPS-induced anxiety- and pain-like behaviours, and NOP receptor system up-regulation. These findings suggest that N/OFQ plays an important role in hyperalgesia and allodynia maintenance after SPS. NOP receptor antagonists may provide effective treatment for co-morbid PTSD and pain. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view

  17. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Zhang, Y; Simpson-Durand, C D; Standifer, K M

    2015-01-01

    Single-prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), also induces long-lasting hyperalgesia associated with hypocortisolism and elevated nociceptin/orphanin FQ (N/OFQ) levels in serum and CSF. Here, we determined the effect of JTC-801 (N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist, on symptoms of pain and anxiety in rats after SPS exposure, and examined N/OFQ-NOP receptor system changes. Male Sprague Dawley rats received JTC-801 (6 mg kg(-1) i.p., once daily) during days 7-21 of SPS. The ability of JTC-801 to inhibit N/OFQ-stimulated [(35) S]-GTPγS binding was confirmed in rat brain membranes. Anxiety-like behaviour and pain sensitivity were monitored by changes in elevated plus maze performance and withdrawal responses to thermal and mechanical stimuli. Serum corticosterone and N/OFQ content in CSF, serum and brain tissues were determined by radioimmunoassay; NOP receptor protein and gene expression in amygdala, hippocampus and periaqueductal grey (PAG) were examined by immunoblotting and real-time PCR respectively. JTC-801 treatment reversed SPS-induced mechanical allodynia, thermal hyperalgesia, anxiety-like behaviour and hypocortisolism. Elevated N/OFQ levels in serum, CSF, PAG and hippocampus at day 21 of SPS were blocked by JTC-801; daily JTC-801 treatment also reversed NOP receptor protein and mRNA up-regulation in amygdala and PAG. JTC-801 reversed SPS-induced anxiety- and pain-like behaviours, and NOP receptor system up-regulation. These findings suggest that N/OFQ plays an important role in hyperalgesia and allodynia maintenance after SPS. NOP receptor antagonists may provide effective treatment for co-morbid PTSD and pain. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014

  18. 5-hydroxytryptamine1C receptor density and mRNA levels in choroid plexus epithelial cells after treatment with mianserin and (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane.

    Science.gov (United States)

    Barker, E L; Sanders-Bush, E

    1993-10-01

    5-Hydroxytryptamine (5HT)1C and 5HT2 receptors display paradoxical down-regulation when exposed to receptor antagonists in vivo, a property that is unique to these two subtypes of serotonin (5HT) receptors. Because of the absence of cell culture model systems, the mechanisms involved in this paradoxical down-regulation have been difficult to explore. The present study focuses on the regulation of 5HT1C receptors in primary cultures of rat choroid plexus epithelial cells. Exposure of the epithelial cell cultures to 100 nM mianserin, a receptor antagonist, or (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane, an agonist, for 72 hr caused a loss of 5HT1C receptor binding sites, as determined by [3H]mesulergine binding to crude membrane preparations. No significant changes in Kd values were observed. Neither the agonist nor antagonist caused a significant change in binding sites after 24 hr. A solution hybridization assay was used to determine whether the down-regulation by mianserin or (-)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane was accompanied by a decrease in the steady state level of 5HT1C receptor mRNA. These studies showed that neither treatment caused an alteration in the levels of 5HT1C receptor mRNA. Thus, it is possible to reproduce the in vivo regulatory effects of drugs on 5HT1C receptors in choroid plexus epithelial cells in culture, including the atypical down-regulation by receptor antagonists. Using this cell culture model system, indirect transynaptic effects and decreases in receptor mRNA levels have been ruled out as mechanisms accounting for the down-regulation.

  19. Effects of combined administration of 5-HT1A and/or 5-HT1B receptor antagonists and paroxetine or fluoxetine in the forced swimming test in rats.

    Science.gov (United States)

    Tatarczyńska, Ewa; Kłodzińska, Aleksandra; Chojnacka-Wójcik, Ewa

    2002-01-01

    Clinical data suggest that coadministration of pindolol, a 5-HT1A/5-HT1B/beta-adrenoceptor antagonist, and selective serotonin reuptake inhibitors (SSRIs) may shorten the time of onset of a clinical action and may increase beneficial effects of the therapy of drug-resistant depression. Effects of combined administration of SSRIs and 5-HT receptor ligands are currently evaluated in animal models for the detection of an antidepressant-like activity; however, the obtained results turned out to be inconsistent. The aim of the present study was to investigate effects of a 5-HT1A antagonist (WAY 100635), 5-HT1B antagonists (SB 216641 and GR 127935) or pindolol, given in combination with paroxetine or fluoxetine (SSRIs), in the forced swimming test in rats (Porsolt test). When given alone, paroxetine (10 and 20 mg/kg), fluoxetine (10 and 20 mg/kg), WAY 100635 (0.1 and 1 mg/kg), SB 216641 (2 mg/kg), GR 127935 (10 and 20 mg/kg) and pindolol (4 and 8 mg/kg) did not shorten the immobility time of rats in that test. Interestingly, SB 216641 administered alone at a dose of 4 mg/kg produced a significant reduction of the immobility time in that test. A combination of paroxetine (20 mg/kg) and WAY 100635 or pindolol failed to reveal a significant interaction; on the other hand, when paroxetine was given jointly with SB 216641 (2 mg/kg) or GR 127935 (10 and 20 mg/kg), that combination showed a significant antiimmobility action in the forced swimming test in rats. The active behaviors in that test did not reflect increased general activity because combined administration of both the 5-HT1B antagonists and paroxetine failed to alter the locomotor activity of rats, measured in the open field test. Coadministration of fluoxetine and all the antagonists used did not affect the behavior of rats in the forced swimming test. The obtained results seem to indicate that blockade of 5-HT1B receptors, but not 5-HT1A ones, can facilitate the antidepressant-like effect of paroxetine in the

  20. QSAR study on the histamine (H3 receptor antagonists using the genetic algorithm: Multi parameter linear regression

    Directory of Open Access Journals (Sweden)

    Adimi Maryam

    2012-01-01

    Full Text Available A quantitative structure activity relationship (QSAR model has been produced for predicting antagonist potency of biphenyl derivatives as human histamine (H3 receptors. The molecular structures of the compounds are numerically represented by various kinds of molecular descriptors. The whole data set was divided into training and test sets. Genetic algorithm based multiple linear regression is used to select most statistically effective descriptors. The final QSAR model (N =24, R2=0.916, F = 51.771, Q2 LOO = 0.872, Q2 LGO = 0.847, Q2 BOOT = 0.857 was fully validated employing leaveone- out (LOO cross-validation approach, Fischer statistics (F, Yrandomisation test, and predictions based on the test data set. The test set presented an external prediction power of R2 test=0.855. In conclusion, the QSAR model generated can be used as a valuable tool for designing similar groups of new antagonists of histamine (H3 receptors.

  1. Effects of the CGRP receptor antagonist BIBN4096BS on capsaicin-induced carotid haemodynamic changes in anaesthetised pigs.

    NARCIS (Netherlands)

    K. Kapoor (Kapil); U. Arulmani (Udayasankar); J.P. Heiligers (Jan); I.M. Garrelds (Ingrid); E.W. Willems (Edwin); H. Doods (Henri); C.M. Villalón (Carlos); P.R. Saxena (Pramod Ranjan)

    2003-01-01

    textabstract1. Calcitonin gene-related peptide (CGRP), a potent vasodilator released from capsaicin-sensitive trigeminal sensory nerves, seems to be involved in the pathogenesis of migraine. Hence, CGRP receptor antagonists may serve as a novel treatment for migraine. This study

  2. Interleukin-1B and Interleukin-1 Receptor Antagonist in Patients with Helicobacter pylori Associated Diseases

    Directory of Open Access Journals (Sweden)

    Elizaveta S. Ageeva, PhD

    2012-06-01

    Full Text Available The ethnic people of the Republic of Khakassia (the Khakas with ulcer disease show a significant T-cell activation and humoral immune response when compared with the Europoids. The reasons for such differences could be due to certain ethno-specific allelic variants of the interleukins, which considerably change the degree of cytokine expression. The aim was to study the peculiarities of the association of the interleukin-1 (IL-1 gene polymorphisms and interleukin-1 receptor antagonist (IL-1Ra. Patients with chronic gastritis and ulcer disease were examined using the restriction analysis method. The most wide-spread allelic variants among the Khakas were discovered to be С�� IL-1β and R4R4 IL-1Ra. In this study, we suggest the necessity to define the population’s risk and the protective genotypes that promote Helicobacter pylori-associated ulcer disease among the Khakas people.

  3. Interaction between anti-Alzheimer and antipsychotic drugs in modulating extrapyramidal motor disorders in mice

    Directory of Open Access Journals (Sweden)

    Saki Shimizu

    2015-04-01

    Full Text Available Antipsychotics are often used in conjunction with anti-Alzheimer drugs to treat the behavioral and psychological symptoms of dementia (BPSD. Here, we examined the effects of cholinesterase inhibitors (ChEIs, donepezil and galantamine, on antipsychotic-induced extrapyramidal side effects (EPS in mice. The effects of serotonergic agents on the EPS drug interaction were also evaluated. Donepezil (0.3–3 mg/kg did not induce EPS signs by itself; however, it significantly potentiated bradykinesia induction with a low dose of haloperidol (0.5 mg/kg in dose-dependent and synergistic manners. Galantamine (0.3–3 mg/kg elicited mild bradykinesia at a high dose and dose-dependently augmented haloperidol-induced bradykinesia. The EPS potentiation by galantamine was blocked by trihexyphenidyl (a muscarinic antagonist, but not by mecamylamine (a nicotinic antagonist. In addition, the bradykinesia potentiation by galantamine was significantly reduced by (±-8-hydroxy-2-(di-n-propylamino-tetralin (a 5-HT1A agonist, ritanserin (a 5-HT2 antagonist, and SB-258585 (a 5-HT6 antagonist. The present results give us a caution for the antipsychotics and ChEIs interaction in inducing EPS in the treatment of BPSD. In addition, second generation antipsychotics, which can stimulate 5-HT1A receptors or antagonize 5-HT2 and 5-HT6 receptors, seem to be favorable as an adjunctive therapy for BPSD.

  4. Tritium labelling and characterization of the potent imidazoline I1 receptor antagonist [5,7-{sup 3}H] ({+-})-efaroxan at high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.A.; Filer, C.N. E-mail: crist.filer@perkinelmer.com

    2003-06-01

    ({+-})-Efaroxan 1 is a selective antagonist at the imidazoline I1 receptor. [{sup 3}H] ({+-})-Efaroxan was required to explore its mechanism of action via receptor binding assay, and the radioligand was prepared by means of catalytic dehalogenation of a dibrominated precursor with tritium.

  5. Roles of dopamine receptors and their antagonist thioridazine in hepatoma metastasis

    Directory of Open Access Journals (Sweden)

    Lu M

    2015-06-01

    Full Text Available Meiling Lu,1,* Jinghua Li,1,* Zaili Luo,2,3,* Shuai Zhang,3 Shaobo Xue,1 Kesheng Wang,1 Yan Shi,4 Cunzhen Zhang,3 Haiyang Chen,3 Zhong Li1,5 1Central Laboratory, The 10th People’s Hospital, Tongji University, Shanghai, People’s Republic of China; 2International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, The Second Military Medical University, Shanghai, People’s Republic of China; 3Institution of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China; 4Department of Gastroenterology, The 10th People’s Hospital, Tongji University, Shanghai, People’s Republic of China; 5Zhangjiang Center for Translational Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Tumor metastasis is the most common cause of death and poor prognosis for cancer patients. Therapeutics that prevent tumor metastasis are the key to prolonging the lifespan of cancer patients. Cancer stem cells are believed to be critical in the metastatic process. Recently, drug screening for cancer stem cells reports that antipsychotic drugs displayed potential anticancer activity. Thioridazine, one of the antipsychotic drugs for dopamine receptors (DRs, is shown to induce the differentiation of cancer stem cells in leukemic disease and breast cancer, but it is not known if this drug would affect liver cancer. In this study, expression of DR5 was higher in tumors than in nontumor adjacent tissues, while DR1 was lower in human hepatocellular carcinoma (HCC than those in the adjacent tissues. Other DRs were very low or undetectable. Treatment of HCC cells with thioridazine displays a dose-dependent response in HCC cell lines SNU449, LM3, and Huh7. Thioridazine treatment reduced cell viability and sphere formation of HCC cell lines through induction of G0/G1 cell cycle arrest and suppression of stemness genes CD133, OCT4, and EpCam. It also inhibited cell

  6. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis.

    Science.gov (United States)

    Fan, Yu; Wang, Ye; Wang, Ke

    2015-12-18

    Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell

  7. Different behaviour of radioiodinated human recombinant interleukin-1 and its receptor antagonist in an animal model of infection

    International Nuclear Information System (INIS)

    Laken, C.J. van der; Boerman, O.C.; Oyen, W.J.G.; Ven, M.T.P. van den; Claessens, R.A.M.J.; Meer, J.W.M. van der; Corstens, F.H.M.

    1996-01-01

    Recently, we demonstrated that radiolabelled interleukin-1α (IL-1) specifically accumulates in focal infection in mice through interaction with its receptor. Unfortunately, systemic side-effects of IL-1 limit its clinical application. We investigated whether this problem could be circumvented by using the interleukin-1 receptor antagonist (IL-1ra), an equally sized protein that binds to the same receptors as IL-1 without induction of biological effects. Biodistribution of 125 I-IL-1 and 125 I-IL-1ra was determined in Swiss mice with Staphylococcus aureus-induced abscesses in the left calf muscle at 4, 12, 24 and 48 h after injection of either 0.4 MBq 125 I-IL-1 or 0.4 MBq 125 I-IL-1ra. In vitro, the proteins displayed similar binding characteristics. High-performance liquid chromatographic analysis revealed a tendency for IL-1ra to associate with serum proteins. Both proteins rapidly cleared from most organs. However, the abscess uptake of 125 I-IL-1ra was significantly lower than that of 125 I-IL-1 at all time points (48 h p.i.: 0.06±0.01%ID/g vs 0.60±0.04%ID/g; P 125 I-IL-1ra, while the ratios for 125 I-IL-1 reached 46.9±5.7 at 48 h p.i. Despite similar in vitro receptor binding, the abscess uptake of IL-1ra was much lower than that of IL-1. The interaction of IL-1ra with serum proteins in vivo may reduce its availability for receptor binding in the infection. Although on theoretical grounds IL-1ra is very interesting, these characteristics will prevent its development as a clinically useful radiopharmaceutical to image infection. (orig.). With 4 figs., 2 tabs

  8. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  9. Does alpha 1-acid glycoprotein act as a non-functional receptor for alpha 1-adrenergic antagonists?

    Science.gov (United States)

    Qin, M; Oie, S

    1994-11-01

    The ability of a variety of alpha 1-acid glycoproteins (AAG) to affect the intrinsic activity of the alpha 1-adrenergic antagonist prazosin was studied in rabbit aortic strip preparations. From these studies, the activity of AAG appears to be linked to their ability to bind the antagonist. However, a capability to bind prazosin was not the only requirement for this effect. The removal of sialic acid and partial removal of the galactose and mannose residues by periodate oxidation of human AAG all but eliminated the ability of AAG to affect the intrinsic pharmacologic activity of prazosin, although the binding of prazosin was not significantly affected. The presence of bovine AAG, a protein that has a low ability to bind prazosin, reduced the effect of human AAG on prazosin activity. Based upon these results, we propose that AAG is able to bind in the vicinity of the alpha 1-adrenoceptors, therefore extending the binding region for antagonists in such a way as to decrease the ability of the antagonist to interact with the receptor. The carbohydrate side-chains are important for the binding of AAG in the region of the adrenoceptor.

  10. Discovery and computer aided potency optimization of a novel class of small molecule CXCR4 antagonists.

    Directory of Open Access Journals (Sweden)

    Victoria Vinader

    Full Text Available Amongst the chemokine signalling axes involved in cancer, chemokine CXCL12 acting on chemokine receptor CXCR4 is particularly significant since it orchestrates migration of cancer cells in a tissue-specific metastatic process. High CXCR4 tumour expression is associated with poor prognosis of lung, brain, CNS, blood and breast cancers. We have identified a new class of small molecule CXCR4 antagonists based on the use of computational modelling studies in concert with experimental determination of in vitro activity against CXCL12-induced intracellular calcium mobilisation, proliferation and chemotaxis. Molecular modelling proved to be a useful tool in rationalising our observed potencies, as well as informing the direction of the synthetic efforts aimed at producing more potent compounds.

  11. Naloxone : actions of an antagonist

    NARCIS (Netherlands)

    Dorp, Eveline Louise Arianna van

    2009-01-01

    The opioid antagonist naloxone has a special place in pharmacology – it has no intrinsic action of its own, but it is able to save lives in the case of life threatening side-effects caused by other drugs. Naloxone is an antagonist for all opioid receptors, but most specifically for the μ-opioid

  12. The Three Dimensional Quantitative Structure Activity Relationships (3D-QSAR and Docking Studies of Curcumin Derivatives as Androgen Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-05-01

    Full Text Available Androgen receptor antagonists have been proved to be effective anti-prostate cancer agents. 3D-QSAR and Molecular docking methods were performed on curcumin derivatives as androgen receptor antagonists. The bioactive conformation was explored by docking the potent compound 29 into the binding site of AR. The constructed Comparative Molecular Field Analysis (CoMFA and Comparative Similarity Indices Analysis (CoMSIA models produced statistically significant results with the cross-validated correlation coefficients q2 of 0.658 and 0.567, non-cross-validated correlation coefficients r2 of 0.988 and 0.978, and predicted correction coefficients r2pred of 0.715 and 0.793, respectively. These results ensure the CoMFA and CoMSIA models as a tool to guide the design of novel potent AR antagonists. A set of 30 new analogs were proposed by utilizing the results revealed in the present study, and were predicted with potential activities in the developed models.

  13. Effects of mosapride citrate, a 5-HT4-receptor agonist, on gastric distension-induced visceromotor response in conscious rats.

    Science.gov (United States)

    Seto, Yasuhiro; Yoshida, Naoyuki; Kaneko, Hiroshi

    2011-01-01

    Mosapride citrate (mosapride), a prokinetic agent with 5-HT(4)-receptor agonistic activity, is known to enhance gastric emptying and alleviate symptoms in patients with functional dyspepsia (FD). As hyperalgesia and delayed gastric emptying play an important role in the pathogenesis of FD, we used in this study balloon gastric distension to enable abdominal muscle contractions and characterized the visceromotor response (VMR) to such distension in conscious rats. We also investigated the effects of mosapride on gastric distension-induced VMR in the same model. Mosapride (3-10 mg/kg, p.o.) dose-dependently inhibited gastric distension-induced VMR in rats. However, itopride even at 100 mg/kg failed to inhibit gastric distension-induced VMR in rats. Additionally, a major metabolite M1 of mosapride, which possesses 5-HT(3)-receptor antagonistic activity, inhibited gastric distension-induced VMR. The inhibitory effect of mosapride on gastric distension-induced visceral pain was partially, but significantly inhibited by SB-207266, a selective 5-HT(4)-receptor antagonist. This study shows that mosapride inhibits gastric distension-induced VMR in conscious rats. The inhibitory effect of mosapride is mediated via activation of 5-HT(4) receptors and blockage of 5-HT(3) receptors by a mosapride metabolite. This finding indicates that mosapride may be useful in alleviating FD-associated gastrointestinal symptoms via increase in pain threshold.

  14. Characterization of biosynthesis and modes of action of prostaglandin E2 and prostacyclin in guinea pig mesenteric lymphatic vessels.

    Science.gov (United States)

    Rehal, Sonia; Blanckaert, Pauline; Roizes, Simon; von der Weid, Pierre-Yves

    2009-12-01

    Rhythmical transient constrictions of the lymphatic vessels provide the means for efficient lymph drainage and interstitial tissue fluid balance. This activity is critical during inflammation, to avoid or limit oedema resulting from increased vascular permeability, mediated by the release of various inflammatory mediators. In this study, we investigated the mechanisms by which prostaglandin E(2) (PGE(2)) and prostacyclin modulate lymphatic contractility in isolated guinea pig mesenteric lymphatic vessels. Quantitative RT-PCR was used to assess the expression of mRNA for enzymes and receptors involved in the production and action of PGE(2) and prostacyclin in mesenteric collecting lymphatic vessels. Frequency and amplitude of lymphatic vessel constriction were measured in the presence of these prostaglandins and the role of their respective EP and IP receptors assessed. Prostaglandin E(2) and prostacyclin decreased concentration-dependently the frequency, without affecting the amplitude, of lymphatic constriction. Data obtained in the presence of the EP(4) receptor antagonists, GW627368x (1 microM) and AH23848B (30 microM) and the IP receptor antagonist CAY10441 (0.1 microM) suggest that PGE(2) predominantly activates EP(4), whereas prostacyclin mainly stimulates IP receptors. Inhibition of responses to either prostaglandin with H89 (10 microM) or glibenclamide (1 microM) suggested a role for the activation of protein kinase A and ATP-sensitive K(+) channels. Our findings characterized the inhibition of lymphatic pumping induced by PGE(2) or prostacyclin in guinea pig mesenteric lymphatics. This action is likely to impair oedema resolution and to contribute to the pro-inflammatory actions of these prostaglandins.

  15. Production of extracellular polymeric substances (EPS) by Serratia sp.1 using wastewater sludge as raw material and flocculation activity of the EPS produced.

    Science.gov (United States)

    Bezawada, J; Hoang, N V; More, T T; Yan, S; Tyagi, N; Tyagi, R D; Surampalli, R Y

    2013-10-15

    Growth profile and extracellular polymeric substances (EPS) production of Serratia sp.1 was studied in shake flask fermentation for 72 h using wastewater sludge as raw material. Maximum cell concentration of 6.7 × 10(9) cfu/mL was obtained at 48 h fermentation time. EPS dry weight, flocculation activity and dewaterability of different EPS (tightly bound or TB-EPS, loosely bound or LB-EPS and broth-EPS or B-EPS) were also measured. The highest concentration of LB-EPS (2.45 g/L) and TB-EPS (0.99 g/L) were attained at 48 h of fermentation. Maximum flocculation activity and dewaterability (ΔCST) of TB-EPS (76.4%, 14.5s and 76.5%, 15.5s), LB-EPS (67.8%, 8.1s and 64.7%, 7.6s) and broth EPS (61%, 6.1s and 70.4%, 6.8s) were obtained at 36 and 48 h of growth. Higher flocculation activity and dewaterability were achieved with TB-EPS than with the two other EPS. Characterization of TB-EPS and LB-EPS was done in terms of their protein and carbohydrate content. Protein content was much higher in TB-EPS where as carbohydrate content was only slightly higher in TB-EPS than LB-EPS. Morphology of the Serratia strain after fermentation in sludge and TSB was observed under a scanning electron microscope and the cell size was found to be bigger in the sludge medium than the TSB medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Nonpeptide corticotropin-releasing hormone receptor type 1 antagonists and their applications in psychosomatic disorders.

    Science.gov (United States)

    Contoreggi, Carlo; Rice, Kenner C; Chrousos, George

    2004-01-01

    Overproduction of corticotropin-releasing hormone (CRH) and stress system abnormalities are seen in psychiatric diseases such as depression, anxiety, eating disorders, and addiction. Investigations of CRH type 1 receptor (CRHR1) nonpeptide antagonists suggest therapeutic potential for treatment of these and other neuropsychiatric diseases. However, overproduction of CRH in the brain and on its periphery and disruption of the hypothalamic-pituitary-adrenal axis are also found in 'somatic' disorders. Some rare forms of Cushing's disease and related pituitary/adrenal disorders are obvious applications for CRHR1 antagonists. In addition, however, these antagonists may also be effective in treating more common somatic diseases. Patients with obesity and metabolic syndrome who often have subtle, but chronic hypothalamic-pituitary-adrenal hyperactivity, which may reflect central dysregulation of CRH and consequently glucocorticoid hypersecretion, could possibly be treated by administration of CRHR1 antagonists. Hormonal, autonomic, and immune aberrations are also present in chronic inflammatory, autoimmune, and allergic diseases, with considerable evidence linking CRH with the observed abnormalities. Furthermore, autonomic dysregulation is a prominent feature of common gastrointestinal disorders, such as irritable bowel syndrome and peptic ulcer disease. Patients with irritable bowel syndrome and other gastrointestinal disorders frequently develop altered pain perception and affective symptoms. CRH acts peripherally to modulate bowel activity both directly through the autonomic system and centrally by processing viscerosensory and visceromotor neural signals. This review presents clinical and preclinical evidence for the role of CRH in the pathophysiology of these disorders and for potential diagnostic and therapeutic applications of CRHR1 antagonists. Recognition of a dysfunctional stress system in these and other diseases will alter the understanding and treatment of

  17. Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists.

    Science.gov (United States)

    Hoyer, Inna; Haas, Ann-Karin; Kreuchwig, Annika; Schülein, Ralf; Krause, Gerd

    2013-02-01

    The TSHR (thyrotropin receptor) is activated endogenously by the large hormone thyrotropin and activated pathologically by auto-antibodies. Both activate and bind at the extracellular domain. Recently, SMLs (small-molecule ligands) have been identified, which bind in an allosteric binding pocket within the transmembrane domain. Modelling driven site-directed mutagenesis of amino acids lining this pocket led to the delineation of activation and inactivation sensitive residues. Modified residues showing CAMs (constitutively activating mutations) indicate signalling-sensitive positions and mark potential trigger points for agonists. Silencing mutations lead to an impairment of basal activity and mark contact points for antagonists. Mapping these residues on to a structural model of TSHR indicates locations where an SML may switch the receptor to an inactive or active conformation. In the present article, we report the effects of SMLs on these signalling-sensitive amino acids at the TSHR. Surprisingly, the antagonistic effect of SML compound 52 was reversed to an agonistic effect, when tested at the CAM Y667A. Switching agonism to antagonism and the reverse by changing either SMLs or residues covering the binding pocket provides detailed knowledge about discriminative pharmacophores. It prepares the basis for rational optimization of new high-affinity antagonists to interfere with the pathogenic activation of the TSHR.

  18. Orphan nuclear receptor NR4A1 is a negative regulator of DHT-induced rat preantral follicular growth.

    Science.gov (United States)

    Xue, Kai; Liu, Jia-yin; Murphy, Bruce D; Tsang, Benjamin K

    2012-12-01

    Nuclear receptor subfamily 4 group A member1 (NR4A1), an orphan nuclear receptor, is involved in the transcriptional regulation of thecal cell androgen biosynthesis and paracrine factor insulin-like 3 (INSL3) expression. Androgens are known to play an important regulatory role in ovarian follicle growth. Using a chronically androgenized rat model, a preantral follicle culture model and virus-mediated gene delivery, we examined the role and regulation of NR4A1 in the androgenic control of preantral follicular growth. In the present study, Ki67 staining was increased in preantral follicles on ovarian sections from 5α-dihydrotestosterone (DHT)-treated rats. Preantral follicles from DHT-treated rats cultured for 4 d exhibited increased growth and up-regulation of mRNA abundance of G(1)/S-specific cyclin-D2 (Ccnd2) and FSH receptor (Fshr). Similarly, DHT (1 μm) increased preantral follicular growth and Ccnd2 and Fshr mRNA abundance in vitro. The NR4A1 expression was high in theca cells and was down-regulated by DHT in vivo and in vitro. Forced expression of NR4A1 augmented preantral follicular growth, androstenedione production, and Insl3 expression in vitro. Inhibiting the action of androgen (with androgen receptor antagonist flutamide) or INSL3 (with INSL3 receptor antagonist INSL3 B-chain) reduced NR4A1-induced preantral follicular growth. Furthermore, NR4A1 overexpression enhanced DHT-induced preantral follicular growth, a response attenuated by inhibiting INSL3. In conclusion, DHT promotes preantral follicular growth and attenuates thecal NR4A1 expression in vivo and in vitro. Our findings are consistent with the notion that NR4A1 serves as an important point of negative feedback to minimize the excessive preantral follicle growth in hyperandrogenism.

  19. Long-Term Use of Aldosterone-Receptor Antagonists in Uncontrolled Hypertension: A Retrospective Analysis

    Directory of Open Access Journals (Sweden)

    Pieter M. Jansen

    2011-01-01

    Full Text Available Background. The long-term efficacy of aldosterone-receptor antagonists (ARAs as add-on treatment in uncontrolled hypertension has not yet been reported. Methods. Data from 123 patients (21 with primary aldosteronism, 102 with essential hypertension with difficult-to-treat hypertension who received an ARA between May 2005 and September 2009 were analyzed retrospectively for their blood pressure (BP and biochemical response at first followup after start with ARA and the last follow-up available. Results. Systolic BP decreased by 22±20 and diastolic BP by 9.4±12 mmHg after a median treatment duration of 25 months. In patients that received treatment >5 years, SBP was 33±20 and DBP was 16 ± 13 mmHg lower than at baseline. Multivariate analysis revealed that baseline BP and follow-up duration were positively correlated with BP response. Conclusion. Add-on ARA treatment in difficult-to-treat hypertension results in a profound and sustained BP reduction.

  20. A DFT approach to discriminate the antagonist and partial agonist activity of ligands binding to the NMDA receptor

    Science.gov (United States)

    Haslak, Zeynep Pinar; Bozkurt, Esra; Dutagaci, Bercem; De Proft, Frank; Aviyente, Viktorya; De Vleeschouwer, Freija

    2018-02-01

    The activation of N-methyl-D-aspartate receptors is found to be intimately associated with neurodegenerative diseases which make them promising therapeutic targets. Despite the significantly increasing multidisciplinary interests centred on this ionotropic channel, design of new ligands with intended functional activity remains a great challenge. In this article, a computational study based on density functional theory is presented to understand the structural factors of ligands determining their function as antagonists and partial agonists. With this aim, the GluN1 subunit is chosen as being one of the essential components in the activation mechanism, and quantum chemical calculations are implemented for 30 antagonists and 30 partial agonists known to bind to this subunit with different binding affinities. Several quantum chemical descriptors are investigated which might unlock the difference between antagonists and partial agonists.

  1. Dopamine D4 Receptor Counteracts Morphine-Induced Changes in µ Opioid Receptor Signaling in the Striosomes of the Rat Caudate Putamen

    Directory of Open Access Journals (Sweden)

    Diana Suárez-Boomgaard

    2014-01-01

    Full Text Available The mu opioid receptor (MOR is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.

  2. Synthesis of isotopically labelled angiotensin II receptor antagonist GR138950X

    International Nuclear Information System (INIS)

    Carr, R.M.; Cable, K.M.; Newman, J.J.; Sutherland, D.R.

    1996-01-01

    Syntheses of [ 13 C] and [ 14 C]-labelled versions of angiotensin II receptor antagonist GR138950X, labelled in the imidazole carboxamide residue, are described. These involved preparation of an iodoimidazole substrate by a novel iododecarboxylation procedure, followed by cyanation with a mixture of carbon-labelled potassium cyanide and copper (l) iodide in DMF at high temperature. The preparation of a mass-labelled (M+5) version of GR138950X is also described. This involved the synthesis of an [ 13 C 3 , 15 N 2 ]-labelled imidazole from a 1,2,3-tricarbonyl compound, [ 13 C 3 ]propionaldehyde and [ 15 N]ammonia. The labelled imidazole was further elaborated into multiply-labelled GR138950X. (Author)

  3. A radiogallium-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging.

    Science.gov (United States)

    Sano, Kohei; Masuda, Ryo; Hisada, Hayato; Oishi, Shinya; Shimokawa, Kenta; Ono, Masahiro; Fujii, Nobutaka; Saji, Hideo; Mukai, Takahiro

    2014-03-01

    We have developed a novel radiogallium (Ga)-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. A CXCR4 imaging probe with two CXCR4 antagonists (Ac-TZ14011) on Ga-DOTA core, Ga-DOTA-TZ2, was synthesized, and the affinity and binding to CXCR4 was evaluated in CXCR4 expressing cells in vitro. The affinity of Ga-DOTA-TZ2 for CXCR4 was 20-fold greater than the corresponding monovalent probe, Ga-DOTA-TZ1. (67)Ga-DOTA-TZ2 showed the significantly higher accumulation in CXCR4-expressing tumor cells compared with (67)Ga-DOTA-TZ1, suggesting the bivalent effect enhances its binding to CXCR4. The incorporation of two CXCR4 antagonists to Ga-DOTA could be effective in detecting CXCR4-expressing tumors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Science.gov (United States)

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  5. The Effect of Sympathetic Antagonists on the Antidepressant Action of Alprazolam

    Directory of Open Access Journals (Sweden)

    Gorash ZM

    2008-01-01

    Full Text Available Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor antagonists with benzodiazepines, which may impact the clinical use of alprazolam, was also studied. Behavioral despair was examined in six groups of albino mice. Drugs were administered intraperitoneally. The control group received only a single dose of 1% Tween 80. The second group received a single dose of alprazolam, and the third group received an antagonist followed by alprazolam. The fourth group was treated with imipramine, and the fifth group received an antagonist followed by imipramine. The sixth group was treated with a single dose of an antagonist alone (atenolol, a β1-selective adrenoceptor antagonist; propranolol, a non selective β-adrenoceptor antagonist; and prazocin, an α1-adrenoceptor antagonist. Results confirmed the antidepressant action of alprazolam and imipramine. Prazocin treatment alone produced depression, but it significantly potentiated the antidepressant actions of imipramine and alprazolam. Atenolol alone produced an antidepressant effect and potentiated the antidepressant action of alprazolam. Propranolol treatment alone produced depression, and antagonized the effects of alprazolam and imipramine, even producing depression in combined treatments. In conclusion, our results reveal that alprazolam may produce antidepressant effects through the release of noradrenaline, which stimulates β2 receptors to produce an antidepressant action. Imipramine may act by activating β2 receptors by blocking or down-regulating β1 receptors.

  6. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    Science.gov (United States)

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The Role of PPAR Receptors and Leukotriene B4 Receptors in Mediating the Effects of LY293111 in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Thomas E. Adrian

    2008-01-01

    Full Text Available Pancreatic cancer is a devastating disease in which current therapies are inadequate. Separate lines of research have identified the 5-lipoxygenase/leukotriene B4 receptor pathway and the PPAR pathway as potential targets for prevention or treatment of this disease. LY293111 was originally designed as a potent leukotriene B4 receptor antagonist for treatment of inflammatory conditions. LY293111 was also known to have inhibitory effects on 5-lipoxygenase, which is upstream of the production of leukotrienes. LY293111 was shown to have potent anticancer effects in pancreatic cancer and several other solid malignancies, where it caused cell cycle arrest and marked apoptosis. Subsequently, it came to light that LY293111 exhibited PPAR agonist activity in addition to its effects on the 5-lipoxygenase pathway. This raises the question of which of the two targets is of greatest importance with regard to the anticancer effects of this agent. The evidence to date is not conclusive, but suggests that the effects of LY293111 may be mediated by both LTB4 receptors and PPAR.

  8. BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: Preclinical pharmacology.

    Science.gov (United States)

    Ligneau, X; Perrin, D; Landais, L; Camelin, J-C; Calmels, T P G; Berrebi-Bertrand, I; Lecomte, J-M; Parmentier, R; Anaclet, C; Lin, J-S; Bertaina-Anglade, V; la Rochelle, C Drieu; d'Aniello, F; Rouleau, A; Gbahou, F; Arrang, J-M; Ganellin, C R; Stark, H; Schunack, W; Schwartz, J-C

    2007-01-01

    Histamine H3 receptor inverse agonists are known to enhance the activity of histaminergic neurons in brain and thereby promote vigilance and cognition. 1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride (BF2.649) is a novel, potent, and selective nonimidazole inverse agonist at the recombinant human H3 receptor. On the stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate binding to this receptor, BF2.649 behaved as a competitive antagonist with a Ki value of 0.16 nM and as an inverse agonist with an EC50 value of 1.5 nM and an intrinsic activity approximately 50% higher than that of ciproxifan. Its in vitro potency was approximately 6 times lower at the rodent receptor. In mice, the oral bioavailability coefficient, i.e., the ratio of plasma areas under the curve after oral and i.v. administrations, respectively, was 84%. BF2.649 dose dependently enhanced tele-methylhistamine levels in mouse brain, an index of histaminergic neuron activity, with an ED50 value of 1.6 mg/kg p.o., a response that persisted after repeated administrations for 17 days. In rats, the drug enhanced dopamine and acetylcholine levels in microdialysates of the prefrontal cortex. In cats, it markedly enhanced wakefulness at the expense of sleep states and also enhanced fast cortical rhythms of the electroencephalogram, known to be associated with improved vigilance. On the two-trial object recognition test in mice, a promnesiant effect was shown regarding either scopolamine-induced or natural forgetting. These preclinical data suggest that BF2.649 is a valuable drug candidate to be developed in wakefulness or memory deficits and other cognitive disorders.

  9. Prostaglandin E2 activates the mTORC1 pathway through an EP4/cAMP/PKA- and EP1/Ca2+-mediated mechanism in the human pancreatic carcinoma cell line PANC-1.

    Science.gov (United States)

    Chang, Hui-Hua; Young, Steven H; Sinnett-Smith, James; Chou, Caroline Ei Ne; Moro, Aune; Hertzer, Kathleen M; Hines, Oscar Joe; Rozengurt, Enrique; Eibl, Guido

    2015-11-15

    Obesity, a known risk factor for pancreatic cancer, is associated with inflammation and insulin resistance. Proinflammatory prostaglandin E2 (PGE2) and elevated insulin-like growth factor type 1 (IGF-1), related to insulin resistance, are shown to play critical roles in pancreatic cancer progression. We aimed to explore a potential cross talk between PGE2 signaling and the IGF-1/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway in pancreatic cancer, which may be a key to unraveling the obesity-cancer link. In PANC-1 human pancreatic cancer cells, we showed that PGE2 stimulated mTORC1 activity independently of Akt, as evaluated by downstream signaling events. Subsequently, using pharmacological and genetic approaches, we demonstrated that PGE2-induced mTORC1 activation is mediated by the EP4/cAMP/PKA pathway, as well as an EP1/Ca(2+)-dependent pathway. The cooperative roles of the two pathways were supported by the maximal inhibition achieved with the combined pharmacological blockade, and the coexistence of highly expressed EP1 (mediating the Ca(2+) response) and EP2 or EP4 (mediating the cAMP/PKA pathway) in PANC-1 cells and in the prostate cancer line PC-3, which also robustly exhibited PGE2-induced mTORC1 activation, as identified from a screen in various cancer cell lines. Importantly, we showed a reinforcing interaction between PGE2 and IGF-1 on mTORC1 signaling, with an increase in IL-23 production as a cellular outcome. Our data reveal a previously unrecognized mechanism of PGE2-stimulated mTORC1 activation mediated by EP4/cAMP/PKA and EP1/Ca(2+) signaling, which may be of great importance in elucidating the promoting effects of obesity in pancreatic cancer. Ultimately, a precise understanding of these molecular links may provide novel targets for efficacious interventions devoid of adverse effects. Copyright © 2015 the American Physiological Society.

  10. Group III mGlu receptor agonists potentiate the anticonvulsant effect of AMPA and NMDA receptor block.

    Science.gov (United States)

    De Sarro, Giovambattista; Chimirri, Alba; Meldrum, Brian S

    2002-09-06

    We report the anticonvulsant action in DBA/2 mice of two mGlu Group III receptor agonists: (R,S)-4-phosphonophenylglycine, (R,S)-PPG, a compound with moderate mGlu8 selectivity, and of (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid, ACPT-1, a selective agonist for mGlu4alpha receptors. Both compounds, given intracerebroventricularly at doses which did not show marked anticonvulsant activity, produced a consistent shift to the left of the dose-response curves (i.e. enhanced the anticonvulsant properties) of 1-(4'-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one hydrochloride, CFM-2, a noncompetitive AMPA receptor antagonist, and 3-((+/-)-2-carboxypiperazin-4-yl)-1-phosphonic acid, CPPene, a competitive NMDA receptor antagonist, in DBA/2 mice. In addition, (R,S)-PPG and ACPT-1 administered intracerebroventricularly prolonged the time course of the anticonvulsant properties of CFM-2 (33 micromol/kg, i.p.) and CPPene (3.3 micromol/kg, i.p.) administered intraperitoneally. We conclude that modest reduction of synaptic glutamate release by activation of Group III metabotropic receptors potentiates the anticonvulsant effect of AMPA and NMDA receptor blockade. Copyright 2002 Elsevier Science B.V.

  11. Effect of NMDA Receptor Antagonist on Local Cerebral Glucose Metabolic Rate in Focal Cerebral Ischemia

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Hong, Seung Bong; Yoon, Byung Woo

    1995-01-01

    There has recently been increasing interest in the use of NMDA receptor antagonists as potential neuroprotective agents for the treatment of ischemic stroke. To evaluate the neuroprotective effect of the selective non-competitive NMDA receptor antagonist MK-801 in focal cerebral ischemia, local cerebral glucose utilization (1CGU) was examined in 15 neuroanatomically discrete regions of the conscious rat brain using the 2-deoxy-D[14C]glucose quantitative autoradiographic technique 24 hr after left middle cerebral artery occlusion (MCAO). Animals received MK-801 (5 mg/kg i.v.) or saline vehicle before (20-30 min) or after (30 min) MCAO. Both pretreatment and posttreatment of MK-801 increased occluded/non-occluded 1CGU ratio in 7 and 5 of the 15 regions measured, respectively(most notably in cortical structures). Following MK-801 pretreatment, there was evidence of widespread increases in 1CCPU not only in the non-occluded hemisphere (12 of the 15 areas studied) but also in the occluded hemisphere (13 of the 15 areas studied), while MK-801 posttreatment did not significantly increase 1CGU both in the normal and occluded hemispheres. These data indicate that MK-801 has a neuroprotective effect in focal cerebral ischemia and demonstrate that MK-801 provides widespread alterations of glucose utilization in conscious animals.

  12. Discovery of Indazoles as Potent, Orally Active Dual Neurokinin 1 Receptor Antagonists and Serotonin Transporter Inhibitors for the Treatment of Depression.

    Science.gov (United States)

    Degnan, Andrew P; Tora, George O; Huang, Hong; Conlon, David A; Davis, Carl D; Hanumegowda, Umesh M; Hou, Xiaoping; Hsiao, Yi; Hu, Joanna; Krause, Rudolph; Li, Yu-Wen; Newton, Amy E; Pieschl, Rick L; Raybon, Joseph; Rosner, Thorsten; Sun, Jung-Hui; Taber, Matthew T; Taylor, Sarah J; Wong, Michael K; Zhang, Huiping; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E; Gillman, Kevin W

    2016-12-21

    Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.

  13. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    Science.gov (United States)

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  14. The effects of N-methyl D-aspartate and B-adrenergic receptor antagonists on the reconsolidation of reward memory: a meta-analysis.

    Science.gov (United States)

    Das, Ravi K; Freeman, Tom P; Kamboj, Sunjeev K

    2013-03-01

    Pharmacological memory reconsolidation blockade provides a potential mechanism for ameliorating the maladaptive reward memories underlying relapse in addiction. Two of the most promising classes of drug that interfere with reconsolidation and have translational potential for human use are N-methyl-D-aspartate receptor (NMDAR) and B-Adrenergic receptor (B-AR) antagonists. We used meta-analysis and meta-regression to assess the effects of these drugs on the reconsolidation of reward memory in preclinical models of addiction. Pharmacokinetic, mnemonic and methodological factors were assessed for their moderating impact on effect sizes. An analysis of 52 independent effect sizes (NMDAR=30, B-AR=22) found robust effects of both classes of drug on memory reconsolidation, but a far greater overall effect of NMDAR antagonism than B-AR antagonism. Significant moderating effects of drug dose, relapse process and primary reinforcer were found. The findings suggest that reward memory reconsolidation can be robustly targeted by NMDAR antagonists and to a lesser extent, by B-AR antagonists. Implications for future clinical work are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation.

    Science.gov (United States)

    Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens; Zimmer, Jens

    2007-05-01

    Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3), which is known to be toxic in vivo after subchronic, but not acute, administration. Degenerative effects were monitored by measuring the cellular uptake of propidium iodide (PI; continuously present in the medium) and lactate dehydrogenase (LDH) leakage, and by using a panel of histological stains. Hippocampal slices, derived from 2-3 day old rats and grown for 3 weeks, were subsequently exposed for the next 3 weeks to 0, 10 or 100microM L-AP3, with PI (2microM) in the culture medium. Exposure to 100microM L-AP3 induced severe toxicity after 4-6 days, shown by massive PI uptake, LDH leakage, changes in MAP2 and GFAP immunostaining, and in Nissl and Timm staining. In contrast, 10microM L-AP3 did not induce detectable neuronal degeneration. Treatment with the NMDA receptor antagonist, MK-801, or the AMPA/KA receptor antagonist NBQX, together with 100microM L-AP3, reduced neurodegeneration down to close to control values. It is concluded that continuous incubation of hippocampal slice cultures with PI is technically feasible for use in studies of inducible neuronal degeneration over time.

  16. In vitro H1-receptor antagonist activity of methanolic extract of tuber of Stephania glabra

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad Khan

    2010-06-01

    Full Text Available In the present study, methanolic extract of tuber of Stephania glabra was evaluated for H1-bloker activity by employing in vitro screening models of guinea pig ileum and goat tracheal chain preparation. Goat isolated trachea and guinea pig ileum contracted to histamine in a dose-dependent manner while chlorpheniramine blocked this effect. The methanolic extract produced significant dose-dependent H1-receptor antagonist activity by blocking histamine-induced contraction.

  17. Promotion of adipogenesis by an EP2 receptor agonist via stimulation of angiogenesis in pulmonary emphysema.

    Science.gov (United States)

    Tsuji, Takao; Yamaguchi, Kazuhiro; Kikuchi, Ryota; Itoh, Masayuki; Nakamura, Hiroyuki; Nagai, Atsushi; Aoshiba, Kazutetsu

    2014-08-01

    Body weight loss is a common manifestation in patients with chronic obstructive pulmonary disease (COPD), particularly those with severe emphysema. Adipose angiogenesis is a key mediator of adipogenesis and use of pro-angiogenic agents may serve as a therapeutic option for lean COPD patients. Since angiogenesis is stimulated by PGE2, we examined whether ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, might promote adipose angiogenesis and adipogenesis in a murine model of elastase-induced pulmonary emphysema (EIE mice). Mice were intratracheally instilled with elastase or saline, followed after 4 weeks by intraperitoneal administration of ONO-AE1-259 for 4 weeks. The subcutaneous adipose tissue (SAT) weight decreased in the EIE mice, whereas in the EIE mice treated with ONO-AE1-259, the SAT weight was largely restored, which was associated with significant increases in SAT adipogenesis, angiogenesis, and VEGF protein production. In contrast, ONO-AE1-259 administration induced no alteration in the weight of the visceral adipose tissue. These results suggest that in EIE mice, ONO-AE1-259 stimulated adipose angiogenesis possibly via VEGF production, and thence, adipogenesis. Our data pave the way for the development of therapeutic interventions for weight loss in emphysema patients, e.g., use of pro-angiogenic agents targeting the adipose tissue vascular component. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    Directory of Open Access Journals (Sweden)

    Tiong Cheng Sia

    2013-08-01

    Full Text Available Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit ? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT. In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10µM and SDZ-205-557 (1-10µM in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

  19. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    Science.gov (United States)

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  20. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor.

    Science.gov (United States)

    Lazarinis, Nikolaos; Bood, Johan; Gomez, Cristina; Kolmert, Johan; Lantz, Ann-Sofie; Gyllfors, Pär; Davis, Andy; Wheelock, Craig E; Dahlén, Sven-Erik; Dahlén, Barbro

    2018-03-05

    Leukotriene (LT) E 4 is the final active metabolite among the cysteinyl leukotrienes (CysLTs). Animal studies have identified a distinct LTE 4 receptor, suggesting that current cysteinyl leukotriene type 1 (CysLT 1 ) receptor antagonists can provide incomplete inhibition of CysLT responses. We tested this hypothesis by assessing the influence of the CysLT 1 antagonist montelukast on responses induced by means of inhalation of LTE 4 in asthmatic patients. Fourteen patients with mild intermittent asthma and 2 patients with aspirin-exacerbated respiratory disease received 20 mg of montelukast twice daily and placebo for 5 to 7 days in a randomized, double-blind, crossover study (NCT01841164). The PD 20 value was determined at the end of each treatment period based on an increasing dose challenge. Measurements included lipid mediators in urine and sputum cells 4 hours after LTE 4 challenge. Montelukast completely blocked LTE 4 -induced bronchoconstriction. Despite tolerating an at least 10 times higher dose of LTE 4 after montelukast, there was no difference in the percentage of eosinophils in sputum. Urinary excretion of all major lipid mediators increased after LTE 4 inhalation. Montelukast blocked release of the mast cell product prostaglandin (PG) D 2 , as well as release of PGF 2α and thromboxane (Tx) A 2 , but not increased excretion of PGE 2 and its metabolites or isoprostanes. LTE 4 induces airflow obstruction and mast cell activation through the CysLT 1 receptor. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.