WorldWideScience

Sample records for enzyme-based microfluidic biofuel

  1. Integrated enzyme-based biofuel cells-a review

    Energy Technology Data Exchange (ETDEWEB)

    Willner, I.; Yan, Y.M.; Willner, B.; Tel-Vered, R. [Institute of Chemistry, Hebrew University of Jerusalem (Israel)

    2009-02-15

    Enzyme-based biofuel cells provide versatile means to generate electrical power from biomass or biofuel substrates, and to use biological fluids as fuel-sources for the electrical activation of implantable electronic medical devices, or prosthetic aids. This review addresses recent advances for assembling biofuel cells based on integrated, electrically contacted thin film-modified enzyme electrodes. Different methods to electrically communicate the enzymes associated with the anodes/cathodes of the biofuel cell elements are presented. These include: (i) The reconstitution of apo-enzymes on relay-cofactor monolayers assembled on electrodes, or the crosslinking of cofactor-enzyme affinity complexes assembled on electrodes. (ii) The immobilisation of enzymes in redox-active hydrogels associated with electrodes. (iii) The use of nano-elements, such as carbon nanotubes, for the electrical contacting of the enzyme electrodes comprising the biofuel cells. All three methods are implemented for the electrical contacting of oxidases and dehydrogenases with electrodes acting as anodes of biofuel cells, and for the electrical wiring of bilirubin oxidase, cytochrome oxidase, and laccase with electrodes, that yield the cathode units of the biofuel cells. Different methods to control the biofuel cells, operation by external stimuli are discussed, including the application of external magnetic fields, and the electrochemical switching of the biofuel cell operation. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Methanol dehydrogenase biofuel cells and enzyme-based electrodes

    OpenAIRE

    Aston, W. J.

    1984-01-01

    This thesis describes the linking of enzymes to electrodes and their application in biofuel cells and as analytical devices. Methanol dehydrogenase, an NAD independent enzyme was purified by two phase aqueous partition. The enzyme incorporated into a biofuel cell was capable of producing a current in the presence of either a soluble or insoluble mediator. Optimisation of the current was carried out and a variety of alternative membranes, mediators and electrodes were investigated for possi...

  3. Stack air-breathing membraneless glucose microfluidic biofuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Moreno-Zuria, A.; Vallejo-Becerra, V.; Arjona, N.; Guerra-Balcázar, M.; Ledesma-García, J.; Arriaga, L. G.

    2016-11-01

    A novel stacked microfluidic fuel cell design comprising re-utilization of the anodic and cathodic solutions on the secondary cell is presented. This membraneless microfluidic fuel cell employs porous flow-through electrodes in a “V”-shape cell architecture. Enzymatic bioanodic arrays based on glucose oxidase were prepared by immobilizing the enzyme onto Toray carbon paper electrodes using tetrabutylammonium bromide, Nafion and glutaraldehyde. These electrodes were characterized through the scanning electrochemical microscope technique, evidencing a good electrochemical response due to the electronic transference observed with the presence of glucose over the entire of the electrode. Moreover, the evaluation of this microfluidic fuel cell with an air-breathing system in a double-cell mode showed a performance of 0.8951 mWcm-2 in a series connection (2.2822mAcm-2, 1.3607V), and 0.8427 mWcm-2 in a parallel connection (3.5786mAcm-2, 0.8164V).

  4. Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells

    Science.gov (United States)

    Kim, Byoung Chan; Lee, Inseon; Kwon, Seok-Joon; Wee, Youngho; Kwon, Ki Young; Jeon, Chulmin; An, Hyo Jin; Jung, Hee-Tae; Ha, Su; Dordick, Jonathan S.; Kim, Jungbae

    2017-01-01

    CNTs need to be dispersed in aqueous solution for their successful use, and most methods to disperse CNTs rely on tedious and time-consuming acid-based oxidation. Here, we report the simple dispersion of intact multi-walled carbon nanotubes (CNTs) by adding them directly into an aqueous solution of glucose oxidase (GOx), resulting in simultaneous CNT dispersion and facile enzyme immobilization through sequential enzyme adsorption, precipitation, and crosslinking (EAPC). The EAPC achieved high enzyme loading and stability because of crosslinked enzyme coatings on intact CNTs, while obviating the chemical pretreatment that can seriously damage the electron conductivity of CNTs. EAPC-driven GOx activity was 4.5- and 11-times higher than those of covalently-attached GOx (CA) on acid-treated CNTs and simply-adsorbed GOx (ADS) on intact CNTs, respectively. EAPC showed no decrease of GOx activity for 270 days. EAPC was employed to prepare the enzyme anodes for biofuel cells, and the EAPC anode produced 7.5-times higher power output than the CA anode. Even with a higher amount of bound non-conductive enzymes, the EAPC anode showed 1.7-fold higher electron transfer rate than the CA anode. The EAPC on intact CNTs can improve enzyme loading and stability with key routes of improved electron transfer in various biosensing and bioelectronics devices.

  5. Improving the performance of lactate/oxygen biofuel cells using a microfluidic design

    Science.gov (United States)

    Escalona-Villalpando, Ricardo A.; Reid, Russell C.; Milton, Ross D.; Arriaga, L. G.; Minteer, Shelley D.; Ledesma-García, Janet

    2017-02-01

    Lactate/O2 biofuel cells (BFC) can have high theoretical energy densities due to high solubility and high fuel energy density; however, they are rarely studied in comparison to glucose BFCs. In this paper, lactate oxidase (LOx) was coupled with a ferrocene-based redox polymer (dimethylferrocene-modified linear polyethylenimine, FcMe2-LPEI) as the bioanode and laccase (Lc) connected to pyrene-anthracene modified carbon nanotubes (PyrAn-MWCNT) to facilitate the direct electron transfer (DET) at the biocathode. Both electrodes were evaluated in two BFC configurations using different concentrations of lactate, in the range found in sweat (0-40 mM). A single compartment BFC evaluated at pH 5.6 provided an open circuit potential (OCP) of 0.68 V with a power density of 61.2 μWcm-2. On the other hand, a microfluidic BFC operating under the same conditions resulted in an OCP of 0.67 V, although an increase in the power density, increasing to 305 μW cm-2, was observed. Upon changing the pH to 7.4 in only the anolyte, its performance was further increased to 0.73 V and 404 μW cm-2, respectively. This work reports the first microfluidic lactate/oxygen enzymatic BFC and shows the importance of microfluidic flow in high performing BFCs where lactate is utilized as the fuel and O2 is the final electron acceptor.

  6. Optimized electrode arrangement and activation of bioelectrodes activity by carbon nanoparticles for efficient ethanol microfluidic biofuel cells

    Science.gov (United States)

    Selloum, D.; Tingry, S.; Techer, V.; Renaud, L.; Innocent, C.; Zouaoui, A.

    2014-12-01

    This work presents the construction of an ethanol microfluidic biofuel cell based on a biocathode and a bioanode, and operating in a Y-shaped microfluidic channel. At the anode, ethanol was oxidized by alcohol dehydrogenase, whereas at the cathode, the oxygen was reduced by laccase. Fuel and oxidant streams moved in parallel laminar flow without turbulent mixing into a microchannel fabricated using soft lithography methods. The enzymes were immobilized in the presence of reactive species at gold electrode surfaces. Bioelectrocatalytic processes were enhanced by combination of enzymes and carbon nanoparticles, attributed to appropriate electron transport and high amount enzyme loading. The benefit of the nanoparticles with higher surface porosity was explained by the high porous structure that offered a closer proximity to the reactive species and improved diffusion of the substrates within the enzyme films. The microfluidic BFC was optimized as function of electrode patterns, showing that higher current and power densities were achieved for shorter and wider electrodes that allow for thinner boundary layer depletion at the electrodes surface resulting in efficient catalytic consumption of fuel and oxidant. This miniaturized device generated maximum power density of 90 μW cm-2 at 0.6 V for a flow rate 16 μL min-1.

  7. A computational study of enzyme patterning on microfluidic biofuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kjeang, E.; Sinton, D.; Harrington, D.; Djilali, N. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2005-07-01

    In an enzymatic fuel cell, chemical reactions are catalyzed by biological redox enzymes that can be separated and purified from suitable organisms. Enzyme catalysts are specific to particular substances and the presence of other substances does not usually impact the rate of catalysis. Enzyme catalysis enables the combination of fuel and oxidant streams in a single manifold, with many benefits regarding fuel cell design and operation. This study examined ways to produce biofuel cell systems through experiments that modeled species transfer associated with heterogenous chemical reactions and enzyme kinetics based on a microchannel geometry. An electrically conducting material was deposited on the interior surfaces to form the anode and cathode, and the enzymes were tethered directly to the layers. The intent was to determine whether the process was diffusion limited or reaction rate limited. Various enzyme-electrode patterns coupled with coherent bulk velocities were investigated in order to realize efficient fuel cell operation. A microstructured multi-step enzymatic biofuel cell structure was proposed. Species transport coupled with laminar flow and Michaelis-Menten kinetics was examined using a 2-dimensional numerical solution. Biofuel cell performance was shown to be limited by the reactions rates associated with enzyme kinetics. Turnover rates for individual enzymes were key parameters throughout the analysis and directly determined the realizable current densities. The pumping power required for the microchannel flow was determined to be negligible compared to the output power of the unit cell. It was concluded that methanol is the better fuel in terms of energy density. Four separated and mixed electrode enzyme strategies were presented and tested with bulk velocities to optimize overall current density and fuel consumption. It was suggested that the mixed transport regime is particularly attractive for biofuel cell operation, with superior characteristics

  8. Microfluidic fuel cells: A review

    Science.gov (United States)

    Kjeang, Erik; Djilali, Ned; Sinton, David

    A microfluidic fuel cell is defined as a fuel cell with fluid delivery and removal, reaction sites and electrode structures all confined to a microfluidic channel. Microfluidic fuel cells typically operate in a co-laminar flow configuration without a physical barrier, such as a membrane, to separate the anode and the cathode. This review article summarizes the development of microfluidic fuel cell technology, from the invention in 2002 until present, with emphasis on theory, fabrication, unit cell development, performance achievements, design considerations, and scale-up options. The main challenges associated with the current status of the technology are provided along with suggested directions for further research and development. Moreover, microfluidic fuel cell architectures show great potential for integration with biofuel cell technology. This review therefore includes microfluidic biofuel cell developments to date and presents opportunities for future work in this multi-disciplinary field.

  9. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  10. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  11. Suspended microfluidics

    OpenAIRE

    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Jean BERTHIER; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.

    2013-01-01

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale...

  12. Suspended microfluidics

    National Research Council Canada - National Science Library

    Benjamin P. Casavant; Erwin Berthier; Ashleigh B. Theberge; Jean Berthier; Sara I. Montanez-Sauri; Lauren L. Bischel; Kenneth Brakke; Curtis J. Hedman; Wade Bushman; Nancy P. Keller; David J. Beebe

    2013-01-01

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited...

  13. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  14. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  15. Theoretical microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow...... in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters...... introducing microfluidics, the governing equations for mass, momentum and energy, and some basic flow solutions, the following 14 chapters treat hydraulic resistance/compliance, diffusion/dispersion, time-dependent flow, capillarity, electro- and magneto-hydrodynamics, thermal transport, two-phase flow...

  16. Limits to biofuels

    OpenAIRE

    Johansson S.

    2013-01-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, b...

  17. Digital Microfluidic Logic Gates

    Science.gov (United States)

    Zhao, Yang; Xu, Tao; Chakrabarty, Krishnendu

    Microfluidic computing is an emerging application for microfluidics technology. We propose microfluidic logic gates based on digital microfluidics. Using the principle of electrowetting-on-dielectric, AND, OR, NOT and XOR gates are implemented through basic droplet-handling operations such as transporting, merging and splitting. The same input-output interpretation enables the cascading of gates to create nontrivial computing systems. We present a potential application for microfluidic logic gates by implementing microfluidic logic operations for on-chip HIV test.

  18. Bioinspired microfluidics

    OpenAIRE

    Diamond, Dermot; Dunne, Aishling; Bruen, Danielle; Delaney, Colm; McCluskey, Peter; McCaul, Margaret; Florea, Larisa

    2017-01-01

    Through developments in 3D fabrication technologies in recent years, it is now possible to build and characterize much more sophisticated 3D platforms than was formerly the case. Regions of differing polarity, binding behaviour, flexibility/rigidity, can be incorporated into these fluidic systems. Furthermore, materials that can switch these characteristics can be incorporated, enabling the creation of microfluidic building blocks that exhibit switchable characteristics such as programmed ...

  19. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  20. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    This paper assesses the implications of large-scale investments in biofuels for growth and income distribution. We find that biofuels investment enhances growth and poverty reduction despite some displacement of food crops by biofuels. Overall, the biofuel investment trajectory analyzed increases...... and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...

  1. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  2. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  3. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  4. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  5. Biofuels in China

    Science.gov (United States)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  6. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  7. Improving EU biofuels policy?

    DEFF Research Database (Denmark)

    Swinbank, Alan; Daugbjerg, Carsten

    2013-01-01

    in the WTO, as there would be a clearer link between policy measures and the objective of reductions in GHG emissions; and the combination of the revised RED and the FQD would lessen the commercial incentive to import biofuels with modest GHG emission savings, and thus reduce the risk of trade tension....... to biofuels under both the RED and the FQD. In particular, biofuels have to demonstrate a 35% (later increasing to 50/60%) saving in life-cycle GHG emissions. This could be problematic in the World Trade Organization (WTO), as a non-compliant biofuel with a 34% emissions saving would probably be judged...

  8. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  9. A roadmap for biofuels...

    NARCIS (Netherlands)

    Faaij, A.P.C.; Londo, H.M.

    2009-01-01

    Biofuels have been in the eye of the storm, in particular since 2008, when the food crisis was considered by many to be caused by the increased production of biofuels. Heavy criticism in public media made various governments, including the European Commission, reconsider their targets and ambitions

  10. Biofuels for sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, S.

    2000-05-23

    Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

  11. Engineering microbes to produce biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  12. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  13. Extended lifetime biofuel cells.

    Science.gov (United States)

    Moehlenbrock, Michael J; Minteer, Shelley D

    2008-06-01

    Over the last 40 years, researchers have been studying and improving enzymatic biofuel cells, but until the last five years, the technology was plagued by short active lifetimes (typically 8 hours to 7 days) that prohibited the commercial use of this technology. This tutorial review introduces the topic of enzymatic biofuel cells and discusses the recent work done to stabilize and immobilize enzymes at bioanodes and biocathodes of biofuel cells. This review covers a wide variety of fuel systems from sugar to alcohols and covers both direct electron transfer (DET) systems and mediated electron transfer (MET) systems.

  14. Printed biofuel cells

    Science.gov (United States)

    Wang, Joseph; Windmiller, Joshua Ray; Jia, Wenzhao

    2016-11-22

    Methods, systems, and devices are disclosed for implementing a biofuel cell device for extracting energy from a biofuel. In one aspect, a biofuel cell device includes a substrate, an anode including a catalyst to facilitate the conversion of a fuel in a biological fluid in an oxidative process that releases electrons captured at the anode, thereby extracting energy from the fuel substance, a cathode configured on the substrate adjacent to the anode and separated from the anode by a spacing region, and a load electrically coupled to the anode and cathode via electrical interconnects to obtain the extracted energy as electrical energy.

  15. Applications of microfluidics in microalgae biotechnology: A review.

    Science.gov (United States)

    Juang, Yi-Je; Chang, Jo-Shu

    2016-03-01

    Microalgae have been one of the important sources for biofuel production owing to their competitive advantages such as no need to tap into the global food supply chain, higher energy density, and absorbing carbon dioxide to mitigate global warming. One of the key factors to ensure successful biofuel production is that it requires not only bioprospecting of the microalgae with high lipid content, high growth rate and tolerance to environmental parameters but also on-site monitoring of the cultivation process and optimization of the culturing conditions. However, as the conventional techniques usually involve in complicated procedures, or are time-consuming or labor intensive, microfluidics technology offers an attractive alternative to resolve these issues. In this review, applications of microfluidics to bioprospecting in microalgae biotechnology were discussed such as cell identification, cell sorting/screening, cell culturing and cell disruption. In addition, utilization of microalgae in micro-sized fuel cells and microfluidic platforms for biosensing was addressed. This review reports the recent studies and offers a look into how microfluidics is exploited to tackle the issues encountered in the microalgae biotechnology. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DMF - A New Biofuel Candidate

    OpenAIRE

    Tian, Guohong; Daniel, Ritchie; Xu, Hongming

    2011-01-01

    This book aspires to be a comprehensive summary of current biofuels issues and thereby contribute to the understanding of this important topic. Readers will find themes including biofuels development efforts, their implications for the food industry, current and future biofuels crops, the successful Brazilian ethanol program, insights of the first, second, third and fourth biofuel generations, advanced biofuel production techniques, related waste treatment, emissions and environmental impacts...

  17. Microfluidics in biotechnology

    OpenAIRE

    Ivanov Dimitri; Barry Richard

    2004-01-01

    Abstract Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarra...

  18. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  19. The Danish Biofuel Debate

    DEFF Research Database (Denmark)

    Hansen, Janus

    2014-01-01

    What role does scientific claims-making play in the worldwide promotion of biofuels for transport, which continues despite serious concerns about its potentially adverse social and environmental effects? And how do actors with very different and conflicting viewpoints on the benefits and drawbacks...... of biofuels enrol scientific authority to support their positions? The sociological theory of functional differentiation combined with the concept of advocacy coalition can help in exploring this relationship between scientific claims-making and the policy stance of different actors in public debates about...... biofuels. In Denmark two distinct scientific perspectives about biofuels map onto the policy debates through articulation by two competing advocacy coalitions. One is a reductionist biorefinery perspective originating in biochemistry and neighbouring disciplines. This perspective works upwards from...

  20. Outlook for advanced biofuels

    OpenAIRE

    Hamelinck, Carlo Noël

    2004-01-01

    Modern use of biomass can play an important role in a sustainable energy supply. Biomass abounds in most parts of the world and substantial amounts could be produced at low costs. Motor biofuels seem a sensible application of biomass: they are among the few sustainable alternatives to the transportation sector and can address many of the problems associated with mineral oil. Many biofuels are conceivable. Biodiesel (from oil crops) and ethanol from sugar beets or grains are already used in pr...

  1. Microalgae: biofuel production

    OpenAIRE

    Babita Kumari; Vinay Sharma

    2013-01-01

    In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels....

  2. Public acceptance of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Savvanidou, Electra; Zervas, Efthimios; Tsagarakis, Konstantinos P. [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi (Greece)

    2010-07-15

    The public acceptance of biofuels in Greece is examined in this work. The analysis of 571 face to face interviews shows that 90.7% of the respondents believe that climatic changes are related to fossil fuel consumption, while only 23.8% know the difference between biodiesel and bioethanol. 76.1% believe that energy saving should precede the use of an alternative source of energy. Only 27.3% believe that priority must be given to biofuels over other renewable energy sources. Only 49.9% think that the use of biofuels can be an effective solution against climatic changes and 53.9% believe that the use of biofuels can be an effective solution for the energy problem. Finally, 80.9% of the car owners are willing to use biofuels, 44.8% are willing to pay the supplementary amount of 0.06 EUR/L of the fuel market price, while the average amount reported as willing to pay was 0.079 EUR/L on top of the fuel market price. Furthermore, eight models correlating the eight main responses with several socioeconomic variables are developed and analyzed. Those findings heave important policy implications related to the use and promotion of biofuels. (author)

  3. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  4. Microfluidic fuel cell systems

    Science.gov (United States)

    Ho, Bernard; Kjeang, Erik

    2011-06-01

    A microfluidic fuel cell is a microfabricated device that produces electrical power through electrochemical reactions involving a fuel and an oxidant. Microfluidic fuel cell systems exploit co-laminar flow on the microscale to separate the fuel and oxidant species, in contrast to conventional fuel cells employing an ion exchange membrane for this function. Since 2002 when the first microfluidic fuel cell was invented, many different fuels, oxidants, and architectures have been investigated conceptually and experimentally. In this mini-review article, recent advancements in the field of microfluidic fuel cell systems are documented, with particular emphasis on design, operation, and performance. The present microfluidic fuel cell systems are categorized by the fluidic phases of the fuel and oxidant streams, featuring gaseous/gaseous, liquid/gaseous, and liquid/liquid systems. The typical cell configurations and recent contributions in each category are analyzed. Key research challenges and opportunities are highlighted and recommendations for further work are provided.

  5. Microfluidics in biotechnology

    Directory of Open Access Journals (Sweden)

    Ivanov Dimitri

    2004-03-01

    Full Text Available Abstract Microfluidics enables biotechnological processes to proceed on a scale (microns at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarray assay hybridisation times. The linking of microfluidics to protein analysis techologies, e.g. mass spectrometry, enables picomole amounts of peptide to be analysed within a controlled micro-environment. The flexibility of microfluidics will facilitate its exploitation in assay development across multiple biotechnological disciplines.

  6. Waste-to-energy conversion from a microfluidic device

    Science.gov (United States)

    López-González, B.; Jiménez-Valdés, R. J.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; García-Cordero, J. L.; Arriaga, L. G.

    2017-08-01

    This work reports the successful harvesting of energy from waste produced in a microfluidic device using a fuel cell. A miniaturized glucose air-breathing microfluidic fuel cell (ABμFFC) was designed, fabricated and tested with three different configurations according to their electrode nature: inorganic, hybrid and biofuel cell. Each ABμFFC was characterized using an ideal medium, with sterile cell culture medium, and with waste produced on a microfluidic device. The inorganic-ABμFFC exhibited the highest performance compared to the rest of the configurations. As a proof-of-concept, cancer cells were cultured on a microfluidic device and the consumed cell culture media (glucose concentration <11 mM) was used as an energy source without further treatment, into the inorganic-ABμFFC. The fuel cell generated a maximum total power of 5.2 μW, which is enough energy to power low-consumption microelectronic chips. This application demonstrates that the waste produced by microfluidic applications could be potentially scavenged to produce electrical energy. It also opens the possibility to develop truly energy self-sufficient portable devices.

  7. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  8. BioFuels Atlas (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  9. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  10. Applying Microfluidics to Electrophysiology

    Science.gov (United States)

    Eddington, David T.

    2007-01-01

    Microfluidics can be integrated with standard electrophysiology techniques to allow new experimental modalities. Specifically, the motivation for the microfluidic brain slice device is discussed including how the device docks to standard perfusion chambers and the technique of passive pumping which is used to deliver boluses of neuromodulators to the brain slice. By simplifying the device design, we are able to achieve a practical solution to the current unmet electrophysiology need of applying multiple neuromodulators across multiple regions of the brain slice. This is achieved by substituting the standard coverglass substrate of the perfusion chamber with a thin microfluidic device bonded to the coverglass substrate. This was then attached to the perfusion chamber and small holes connect the open-well of the perfusion chamber to the microfluidic channels buried within the microfluidic substrate. These microfluidic channels are interfaced with ports drilled into the edge of the perfusion chamber to access and deliver stimulants. This project represents how the field of microfluidics is transitioning away from proof-of concept device demonstrations and into practical solutions for unmet experimental and clinical needs. PMID:18989410

  11. Laccase applications in biofuels production: current status and future prospects.

    Science.gov (United States)

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

  12. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  13. The Brazilian biofuels industry

    Directory of Open Access Journals (Sweden)

    Goldemberg José

    2008-05-01

    Full Text Available Abstract Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion.

  14. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  15. Outlook for advanced biofuels

    NARCIS (Netherlands)

    Hamelinck, Carlo Noël

    2004-01-01

    Modern use of biomass can play an important role in a sustainable energy supply. Biomass abounds in most parts of the world and substantial amounts could be produced at low costs. Motor biofuels seem a sensible application of biomass: they are among the few sustainable alternatives to the

  16. The Biofuel Controversy

    NARCIS (Netherlands)

    Keyzer, M.A.; Merbis, M.D.; Voortman, R.L.

    2008-01-01

    About a decade ago, the main OECD countries decided to promote the use of biofuels so as to reduce greenhouse gases, to contribute to energy self-sufficiency and to create additional demand for agricultural commodities. The introduction of mandatory blending requirements and lavish subsidies spurred

  17. Biofuel seeks endorsement

    NARCIS (Netherlands)

    Jongeneel, C.; Rentmeester, S.

    2015-01-01

    Biofuels such as ethanol from sugar cane and cellulose ‘waste’ are theoretically sustainable, as their combustion releases no more CO2 than is absorbed during production. Even so, they are also controversial, because they are believed to be grown at the expense of food crops, or because areas of

  18. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  19. Droplet-based microfluidics.

    Science.gov (United States)

    Sharma, Sanjiv; Srisa-Art, Monpichar; Scott, Steven; Asthana, Amit; Cass, Anthony

    2013-01-01

    Droplet-based microfluidics or digital microfluidics is a subclass of microfluidic devices, wherein droplets are generated using active or passive methods. The active method for generation of droplets involves the use of an external factor such as an electric field for droplet generation. Two techniques that fall in this category are dielectrophoresis (DEP) and electrowetting on dielectric (EWOD). In passive methods, the droplet generation depends on the geometry and dimensions of the device. T-junction and flow focusing methods are examples of passive methods used for generation of droplets. In this chapter the methods used for droplet generation, mixing of contents of droplets, and the manipulation of droplets are described in brief. A review of the applications of digital microfluidics with emphasis on the last decade is presented.

  20. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  1. Biofuel on contaminated land

    Science.gov (United States)

    Suer, Pascal; Andersson-Sköld, Yvonne; Blom, Sonja; Bardos, Paul; Polland, Marcel; Track, Thomas

    2010-05-01

    Desktop studies of two Swedish contaminated sites has indicated that growing biofuel crops on these sites may be more environmentally beneficial than alternative risk management approaches such as excavation / removal or containment The demand for biofuel increases pressure on the cultivatable soil of the world. While contaminated land is not very suitable for food production, cultivation of low and medium contaminated soil may remove some pressure from agricultural soils. For larger sites, biofuel cultivation may be economically viable without a remediation bonus. Suitable sites have topographic conditions that allow agricultural machinery, are not in urgent need of remediation, and contamination levels are not plant toxic. Life cycle assessment (LCA) was done for two cases. The (desk top) case studies were - Case K, a 5000 m2 site where salix (willow) was cultivated with hand-held machinery and the biofuel harvest was left on site, and - Case F, a 12 ha site were on site ensuring was being considered, and were salix might have rented an economic profit if the remediation had not been urgent due to exploitation pressure. Some selected results for biofuel K; biofuel F; excavation K; and on site ensuring F respectively: Energy: 0,05; 1,4; 3,5; 19 TJ Waste: 1; 9; 1200; 340 ton Land use off-site: 190; 3 500; 200 000; 1 400 000 m² a Global warming: 3; 86; 230; 1 200 ton CO2 eq Acidification: 25; 1 000; 2 600; 14 000 kg SO2 eq Photochemical smog: 10; 180; 410; 2 300 kg ethene eq Human health: 2; 51; 150; 620 index The environmental impact of the traditional remediation methods of excavation and on-site ensuring was mainly due to the transport of contaminated soil and replacement soil, and landfilling of the contaminated soil. Biofuel cultivation avoids these impacts, while fertiliser production and agricultural machinery would have a lower environmental impact than moving large volumes of soil around. Journeys of a controller to check on the groundwater quality also

  2. A simple enzyme based biosensor on flexible plastic substrate

    Science.gov (United States)

    Kanakamedala, Senaka K.; Alshakhouri, Haidar T.; Agarwal, Mangilal; Fang, Ji; DeCoster, Mark A.

    2010-08-01

    An enzyme based biosensor was fabricated by employing a simple, inexpensive and rapid xurography fabrication process. The electrodes and channel were made from the conducting polymer poly(3,4-ethyelenedioxythiphene) poly(styrene sulfonate) (PEDOT:PSS). PEDOT:PSS was selectively deposited using a polyimide tape mask. The tape mask was peeled off from the substrate after annealing the polymer in vacuum. Polymer wells of defined dimensions were made and were attached to the device to accommodate the solutions. This sensor utilizes the change in current as a parameter to measure different analyte concentrations. Initial experiments were done by using the sensor for glucose detection. The sensor is able to detect the glucose concentrations approximately from 1 μM to 10 mM range covering glucose in human saliva (8-210 μM). The glucose oxidase activity was independently measured using colorimetric method and the results indicate that the sensor retains the enzyme activity and can be used as a biosensor to detect various analytes. The analyte of interest can be measured by preloading the corresponding enzyme into the wells.

  3. MEMS in microfluidic channels.

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  4. Breaking new boundaries with microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2010-09-01

    Full Text Available Microfluidics is an important emerging research platform in South Africa. It deals with the control and manipulation of very small quantities of fluids (typically microlitre and smaller) inside micro-channels. Microfluidic-based devices show great...

  5. Punch card programmable microfluidics.

    Directory of Open Access Journals (Sweden)

    George Korir

    Full Text Available Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  6. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  7. HAWAII ALGAL BIOFUEL

    OpenAIRE

    Affandy, Gabriel; Bridges, Donald; Daniels, Quinn; Janicek, Drew; Martin, Julia; Poling, Edward; Schmalz, Jordan; Allen, Charles; Brown, Scott; Dobrowolski, Valerie; Jeffries, Jessica; McGovern, Jonathan; Praschak, Megan; Soques, Christopher; Black, Jesse

    2013-01-01

    This report investigates the feasibility and affordability of producing algae-derived biofuel in Hawaii for military aviation. The authors evaluated methods for cultivation of algae, investigated the processes necessary to locally refine bio-oil into bio-kerosene, researched the environmental impacts of cultivation and refinement facilities in Hawaii, and studied the resultant cost per gallon of bio-kerosene production. Based on the current state of technology and the proposed system of syste...

  8. Microfluidics without channels: highly-flexible synthesis on a digital-microfluidic chip for production of diverse PET tracers

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, Robert Michael [Univ. of California, Los Angeles, CA (United States)

    2010-09-01

    Positron emission tomography (PET) imaging is used for fundamental studies of living biological organisms and microbial ecosystems in applications ranging from biofuel production to environmental remediation to the study, diagnosis, and treatment monitoring of human disease. Routine access to PET imaging, to monitor biochemical reactions in living organisms in real time, could accelerate a broad range of research programs of interest to DOE. Using PET requires access to short-lived radioactive-labeled compounds that specifically probe the desired living processes. The overall aims of this project were to develop a miniature liquid-handling technology platform (called “microfluidics”) that increases the availability of diverse PET probes by reducing the cost and complexity of their production. Based on preliminary experiments showing that microfluidic chips can synthesis such compounds, we aimed to advance this technology to improve its robustness, increase its flexibility for a broad range of probes, and increase its user-friendliness. Through the research activities of this project, numerous advances were made; Tools were developed to enable the visualization of radioactive materials within microfluidic chips; Fundamental advances were made in the microfluidic chip architecture and fabrication process to increase its robustness and reliability; The microfluidic chip technology was shown to produce useful quantities of an example PET probes, and methods to further increase the output were successfully pursued; A “universal” chip was developed that could produce multiple types of PET probes, enabling the possibility of “on demand” synthesis of different probes; and Operation of the chip was automated to ensure minimal radiation exposure to the operator Based on the demonstrations of promising technical feasibility and performance, the microfluidic chip technology is currently being commercialized. It is anticipated that costs of microfluidic chips can be

  9. Cyanobacterial biofuel production.

    Science.gov (United States)

    Machado, Iara M P; Atsumi, Shota

    2012-11-30

    The development of new technologies for production of alternative fuel became necessary to circumvent finite petroleum resources, associate rising costs, and environmental concerns due to rising fossil fuel CO₂ emissions. Several alternatives have been proposed to develop a sustainable industrial society and reduce greenhouse emissions. The idea of biological conversion of CO₂ to fuel and chemicals is receiving increased attention. In particular, the direct conversion of CO₂ with solar energy to biofuel by photosynthetic microorganisms such as microalgae and cyanobacteria has several advantages compared to traditional biofuel production from plant biomass. Photosynthetic microorganisms have higher growth rates compared with plants, and the production systems can be based on non-arable land. The advancement of synthetic biology and genetic manipulation has permitted engineering of cyanobacteria to produce non-natural chemicals typically not produced by these organisms in nature. This review addresses recent publications that utilize different approaches involving engineering cyanobacteria for production of high value chemicals including biofuels. Published by Elsevier B.V.

  10. Benchmarking biofuels; Biobrandstoffen benchmarken

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Kampman, B.; Bergsma, G.

    2012-03-15

    A sustainability benchmark for transport biofuels has been developed and used to evaluate the various biofuels currently on the market. For comparison, electric vehicles, hydrogen vehicles and petrol/diesel vehicles were also included. A range of studies as well as growing insight are making it ever clearer that biomass-based transport fuels may have just as big a carbon footprint as fossil fuels like petrol or diesel, or even bigger. At the request of Greenpeace Netherlands, CE Delft has brought together current understanding on the sustainability of fossil fuels, biofuels and electric vehicles, with particular focus on the performance of the respective energy carriers on three sustainability criteria, with the first weighing the heaviest: (1) Greenhouse gas emissions; (2) Land use; and (3) Nutrient consumption [Dutch] Greenpeace Nederland heeft CE Delft gevraagd een duurzaamheidsmeetlat voor biobrandstoffen voor transport te ontwerpen en hierop de verschillende biobrandstoffen te scoren. Voor een vergelijk zijn ook elektrisch rijden, rijden op waterstof en rijden op benzine of diesel opgenomen. Door onderzoek en voortschrijdend inzicht blijkt steeds vaker dat transportbrandstoffen op basis van biomassa soms net zoveel of zelfs meer broeikasgassen veroorzaken dan fossiele brandstoffen als benzine en diesel. CE Delft heeft voor Greenpeace Nederland op een rijtje gezet wat de huidige inzichten zijn over de duurzaamheid van fossiele brandstoffen, biobrandstoffen en elektrisch rijden. Daarbij is gekeken naar de effecten van de brandstoffen op drie duurzaamheidscriteria, waarbij broeikasgasemissies het zwaarst wegen: (1) Broeikasgasemissies; (2) Landgebruik; en (3) Nutriëntengebruik.

  11. Microfluidic Synthesis of Nanohybrids.

    Science.gov (United States)

    Wang, Junmei; Song, Yujun

    2017-05-01

    Nanohybrids composed of two or more components exhibit many distinct physicochemical properties and hold great promise for applications in optics, electronics, magnetics, new energy, environment protection, and biomedical engineering. Microfluidic systems exhibit many advantages due to their unique characteristics of narrow channels, variable length, controllable number of channels and multiple integrations. Particularly their spatial-temporarily splitting of the formation stages during nanomaterials formation along the microfluidic channels favors the online control of the reaction kinetic parameters and in situ tuning of the product properties. This Review is focused on the features of the current types of microfluidic devices in the synthesis of different types of nanohybrids based on the classification of the four main kinds of materials: metal, nonmetal inorganic, polymer and composites. Their morphologies, compositions and properties can be adjusted conveniently in these synthesis systems. Synthesis advantages of varieties of microfluidic devices for specific nanohybrids of defined surfaces and interfaces are presented according to their process and microstructure features of devices as compared with conventional methods. A summary is presented, and challenges are put forward for the future development of the microfluidic synthesis of nanohybrids for advanced applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  13. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  14. Micromixing within microfluidic devices.

    Science.gov (United States)

    Capretto, Lorenzo; Cheng, Wei; Hill, Martyn; Zhang, Xunli

    2011-01-01

    Micromixing is a crucial process within microfluidic systems such as micro total analysis systems (μTAS). A state-of-art review on microstructured mixing devices and their mixing phenomena is given. The review first presents an overview of the characteristics of fluidic behavior at the microscale and their implications in microfluidic mixing processes. According to the two basic principles exploited to induce mixing at the microscale, micromixers are generally classified as being passive or active. Passive mixers solely rely on pumping energy, whereas active mixers rely on an external energy source to achieve mixing. Typical types of passive micromixers are discussed, including T- or Y-shaped, parallel lamination, sequential, focusing enhanced mixers, and droplet micromixers. Examples of active mixers using external forces such as pressure field, electrokinetic, dielectrophoretic, electrowetting, magneto-hydrodynamic, and ultrasound to assist mixing are presented. Finally, the advantages and disadvantages of mixing in a microfluidic environment are discussed.

  15. Paper microfluidics goes digital.

    Science.gov (United States)

    Fobel, Ryan; Kirby, Andrea E; Ng, Alphonsus H C; Farnood, Ramin R; Wheeler, Aaron R

    2014-05-01

    The first example of so-called "digital microfluidics" (DMF) implemented on paper by inkjet printing is reported. A sandwich enzyme-linked immunosorbent assay (ELISA) is demonstrated as an example of a complex, multistep protocol that would be difficult to achieve with capillary-driven paper microfluidics. Furthermore, it is shown that paper-based DMF devices have comparable performance to traditional photolithographically patterned DMF devices at a fraction of the cost. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted by that enzyme......Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...

  17. Biofuels: Project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  18. Biofuels for Transport in Australia

    OpenAIRE

    McCormick, Kes

    2013-01-01

    In Australia, policy at the National and State levels induces and blocks the development of biofuels. There is no strong, integrated and consistent policy framework. The market for biofuels lacks momentum and confidence of investors is weak. Current capacity is not utilised. Expansion is not expected before 2015.

  19. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  20. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available . Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  1. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  2. Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; van den Berg, A.; Segerink, L.I.; Segerink, Loes Irene; Unknown, [Unknown

    2015-01-01

    Lab-on-a-chip devices for point of care diagnostics have been present in clinics for several years now. Alongside their continual development, research is underway to bring the organs and tissue on-a-chip to the patient, amongst other medical applications of microfluidics. This book provides the

  3. Basic Microfluidics Theory

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith

    2015-01-01

    ,000 m−1, which is a huge difference and has a large impact on flow behavior. In this chapter the basic microfluidic theory will be presented, enabling the reader to gain a comprehensive understanding of how liquids behave at the microscale, enough to be able to engage in design of micro systems...

  4. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2017-01-01

    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...

  5. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  6. Biofuels: 1995 project summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  7. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  8. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  9. Microfluidic Chips for Semen Analysis

    Science.gov (United States)

    Segerink, L.I.; Sprenkels, A.J.; Oosterhuis, G.J.E.; Vermes, I.; van den Berg, A.

    2012-01-01

    The gold standard of semen analysis is still an manual method, which is time-consuming, labour intensive and needs thorough quality control. Microfluidics can also offer advantages for this application. Therefore a first step in the development of a microfluidic chip has been made, which enables the man the semen analysis at home. In this article recent efforts to determine the concentration and motility using a microfluidic chip are summarized. PMID:27683417

  10. Microfluidic Circuitry via Additive Manufacturing

    OpenAIRE

    Glick, Casey Carter

    2017-01-01

    Microfluidics, the science and engineering of fluid at small scales, affords numerous benefits for applications in chemistry and biology, including rapid reaction rates, reaction uniformity and precision, and reagent minimization but the technology remains limited by the availability of appropriate control mechanisms and related microfluidic components. Microfluidic devices have traditionally been fabricated using soft-lithography, which is time-consuming, costly, and reliant on extensive fac...

  11. Modification of Glucose Oxidase biofuel cell by multi-walled carbon nanotubes

    Science.gov (United States)

    Lotfi, Ladan; Farahbakhsh, Afshin; Aghili, Sina

    2018-01-01

    Biofuel cells are a subset of fuel cells that employ biocatalysts. Enzyme-based biofuel cells (EBFCs) generate electrical energy from biofuels such as glucose and ethanol, which are renewable and sustainable energy sources. Glucose biofuel cells (GBFCs) are particularly interesting nowadays due to continuous harvesting of oxygen and glucose from bioavailable substrates, activity inside the human body, and environmental benign, which generate electricity through oxidation of glucose on the anode and reduction of oxygen on the cathode. Promoting the electron transfer of redox enzymes at modified electrode utilizing Nano size materials, such as carbon nanotubes (CNT), to achieve the direct electrochemistry of enzymes has been reported. The polypyrrole-MWCNTs-glucose oxidase (PY-CNT-GOx) electrode has been investigated in the present work. Cyclic voltammetry tests were performed in a three-electrode electrochemical set-up with modified electrode (Pt/PPy/MWCNTs/GOx) was used as working electrode. Platinum flat and Ag/AgCl (saturated KCl) were used as counter electrode and the reference electrode, respectively. The biofuel cells probe was prepared by immobilizing MWCNTs at the tip of a platinum (Pt) electrode (0.5 cm2) with PPy as the support matrix We have demonstrated a well-dispersed nanomaterial PPy/MWNT, which is able to immobilize GOx firmly under the condition of the absence of any other cross-linking agent.

  12. International Trade of Biofuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  13. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  14. Microfluidic Techniques for Analytes Concentration

    Directory of Open Access Journals (Sweden)

    Cunlu Zhao

    2017-01-01

    Full Text Available Microfluidics has been undergoing fast development in the past two decades due to its promising applications in biotechnology, medicine, and chemistry. Towards these applications, enhancing concentration sensitivity and detection resolution are indispensable to meet the detection limits because of the dilute sample concentrations, ultra-small sample volumes and short detection lengths in microfluidic devices. A variety of microfluidic techniques for concentrating analytes have been developed. This article presents an overview of analyte concentration techniques in microfluidics. We focus on discussing the physical mechanism of each concentration technique with its representative advancements and applications. Finally, the article is concluded by highlighting and discussing advantages and disadvantages of the reviewed techniques.

  15. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2017-06-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided to allow, for example, research groups to have access to microfluidic fabrication. Unlike most fabrication methods, a method is provided to fabricate a microfluidic device in one step. In an embodiment, a resolution of 50 micrometers was achieved by using maskless high-resolution digital light projection (MDLP). Bonding and channel fabrication of complex or simple structures can be rapidly incorporated to fabricate the microfluidic devices.

  16. The Microfluidic Jukebox

    Science.gov (United States)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  17. Microfluidic Biochip Design

    Science.gov (United States)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  18. Tunable Microfluidic Microlasers

    Science.gov (United States)

    2011-09-01

    Francesco Simoni Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio Università Politecnica delle Marche Via Brecce Bianche, 60131...circuits, in order to point out advantages and drawbacks of different experimental techniques. The alignment of liquid crystal in microfluidic...Lasing was detected through an optical fiber connected to a spectrometer. A preliminary experimental result is reported in fig. 13 where the light

  19. Microfluidics realizes potential

    OpenAIRE

    Gould, Paula

    2004-01-01

    Advanced fabrication technologies are being used to make microscale tools for fluid manipulation. Interest in the development of microfluidic devices has been encouraged by the number of fluid-based processes that could benefit from miniaturization. A number of companies are now marketing fluidic ‘lab-on-a-chip’ systems for applications in biomedical research, environmental testing, and medical diagnostics. However, the full commercial potential of this technology has yet to be realized.

  20. Animal microsurgery using microfluidics

    OpenAIRE

    Stirman, Jeffrey N.; Harker, Bethany; Lu, Hang; Crane, Matthew M.

    2013-01-01

    Small multicellular genetic organisms form a central part of modern biological research. Using these small organisms provides significant advantages in genetic tractability, manipulation, lifespan and cost. Although the small size is generally advantageous, it can make procedures such as surgeries both time consuming and labor intensive. Over the past few years there have been dramatic improvements in microfluidic technologies that enable significant improvements in microsurgery and interroga...

  1. High-pressure microfluidics

    Science.gov (United States)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  2. Energy: the microfluidic frontier.

    Science.gov (United States)

    Sinton, David

    2014-09-07

    Global energy is largely a fluids problem. It is also large-scale, in stark contrast to microchannels. Microfluidic energy technologies must offer either massive scalability or direct relevance to energy processes already operating at scale. We have to pick our fights. Highlighted here are the exceptional opportunities I see, including some recent successes and areas where much more attention is needed. The most promising directions are those that leverage high surface-to-volume ratios, rapid diffusive transport, capacity for high temperature and high pressure experiments, and length scales characteristic of microbes and fluids (hydrocarbons, CO2) underground. The most immediate areas of application are where information is the product; either fluid sample analysis (e.g. oil analysis); or informing operations (e.g. CO2 transport in microporous media). I'll close with aspects that differentiate energy from traditional microfluidics applications, the uniquely important role of engineering in energy, and some thoughts for the research community forming at the nexus of lab-on-a-chip and energy--a microfluidic frontier.

  3. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  4. Biofuels: policies, standards and technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Skyrocketing prices of crude oil in the middle of the first decade of the 21st century accompanied by rising prices for food focused political and public attention on the role of biofuels. On the one hand, biofuels were considered as a potential automotive fuel with a bright future, on the other hand, biofuels were accused of competing with food production for land. The truth must lie somewhere in-between and is strongly dependent on the individual circumstance in different countries and regions. As food and energy are closely interconnected and often compete with each other for other resources, such as water, the World Energy Council - following numerous requests of its Member Committees - decided to undertake an independent assessment of biofuels policies, technologies and standards.

  5. Biofuels and sustainability in Africa

    CSIR Research Space (South Africa)

    Amigun, B

    2011-10-01

    Full Text Available function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels production thereby contributing to sustainable...

  6. Microfluidic desalination : capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  7. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  8. Sustainable biomass potential for biofuels

    OpenAIRE

    Lossau, Selma

    2017-01-01

    There is a large interest in biofuels in Brazil and India as a substitute to fossil fuels, with a purpose of enhancing energy security and promoting rural development. The critical question is whether there is adequate spare land available in Brazil and India that is suited for biofuel feedstock production. For these reasons, Daimler AG launched a project in co-operation with the International Institute for Applied System Analysis (IIASA) and the Technical University of Berlin to assess t...

  9. Biofuel: A Comparative Case Study

    Science.gov (United States)

    2013-06-01

    1. FIRST-GENERATION BIOFUELS First-generation biofuel sources include traditional food items such as potatoes , corn, sugar, and various vegetable ...Finally, it requires that life- cycle cost analysis for 11 new systems include calculation of the fully burdened cost of fuel and an analysis of...2008). Clearing these lands releases carbon stored in the vegetation . The carbon removal capacity of this vegetation is lost, effectively increasing

  10. MICROFLUIDIC COMPONENT CAPABLE OF SELF-SEALING

    DEFF Research Database (Denmark)

    2009-01-01

    A microfluidic component (100) for building a microfluidic system is provided. The microfluidic component (100) can be mounted on a microf luidic breadboard (202) in a manner that allows it to be connected to other microfluidic components (204, 206) without the requirement of additional devices. ...... (204, 206). Applying the pressure causes the two tubes to be fluidically sealed....

  11. Acoustofluidics 1: Governing equations in microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2011-01-01

    Governing equations for microfluidics and basic flow solutions are presented. Equivalent circuit modeling for determining flow rates in microfluidic networks is introduced.......Governing equations for microfluidics and basic flow solutions are presented. Equivalent circuit modeling for determining flow rates in microfluidic networks is introduced....

  12. Biofuels and food security

    Directory of Open Access Journals (Sweden)

    Dmitry S. STREBKOV

    2015-03-01

    Full Text Available The major source of energy comes from fossil fuels. The current situation in the field of fuel and energy is becoming more problematic as world population continues to grow because of the limitation of fossil fuels reserve and its pressure on environment. This review aims to find economic, reliable, renewable and non-polluting energy sources to reduce high energy tariffs in Russian Federation. Biofuel is fuel derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Other alternative energy sources including solar energy and electric power generation are also discussed. Over 100 Mt of biomass available for energy purposes is produced every year in Russian. One of the downsides of biomass energy is its potential threatens to food security and forage industries. An innovative approach proved that multicomponent fuel (80% diesel oil content for motor and 64% for in stove fuel can remarkably reduce the costs. This paper proposed that the most promising energy model for future is based on direct solar energy conversion and transcontinental terawatt power transmission with the use of resonant wave-guide technology.

  13. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  14. BIOFUEL FROM CORN STOVER

    Directory of Open Access Journals (Sweden)

    Ljiljanka Tomerlin

    2003-12-01

    Full Text Available This paper deals with production of ethyl alcohol (biofuel from corn stover acid hydrolysate by yeasts, respectively at Pichia stipitis y-7124 and Pachysolen tannophilus y-2460 and Candida shehatae y-12856. Since moist corn stover (Hybryds 619 is proving to decomposition by phyllospheric microflora. It was (conserved spattered individually by microbicids: Busan-90, Izosan-G and formalin. In form of prismatic bales, it was left in the open air during 6 months (Octobar - March. At the beginning and after 6 months the microbiological control was carried out. The only one unspattered (control and three stover corn bals being individually spattered by microbicids were fragmented and cooked with sulfur acid. The obtained four acid hydrolysates are complex substratums, containing, apart from the sugars (about 11 g dm-3 pentosa and about 5.4 g dm-3 hexose, decomposite components as lignin, caramel sugars and uronic acids. By controlling the activity of the mentioned yeasts it was confirmed that yeasts Pichia stipitis y-7124 obtained best capability of ethyl alcohol production from corn stover acid hydrolysate at 0.23 vol. % to 0.49 vol. %.

  15. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  16. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  17. Spatial manipulation with microfluidics

    Directory of Open Access Journals (Sweden)

    Benjamin eLin

    2015-04-01

    Full Text Available Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well controlled environments at cellular length scales. This minireview will highlight their utility for studying gradient sensing along with relevant applications to biology.

  18. A model-based framework for design of intensified enzyme-based processes

    DEFF Research Database (Denmark)

    Román-Martinez, Alicia

    in enzyme-based processes which have found significant application in the pharmaceutical, food, and renewable fuels sector. The framework uses model-based strategies for (bio)-chemical process design and optimization, including the use of a superstructure to generate all potential reaction....../removal (ISPR), where, for example, a separation step is integrated with the reaction step. Often, enzyme-based processes have limited productivity and yield, which may be due to the unfavorable reaction equilibrium, product inhibition to the enzyme and/or product degradation. Additionally, downstream...... processing for enzyme-based processes is difficult and a way to simplify it is by reducing the reaction and separation steps by for example, combining the reaction and separation in a single processing step. The implementation of intensification methods usually involves experiment-based investigation which...

  19. 2013 Cellulosic Biofuel Standard: Direct Final Rule

    Science.gov (United States)

    The direct final action is to revise the 2013 cellulosic biofuel standard. This action follows from EPA having granted API's and AFPM's petitions for reconsideration of the 2013 cellulosic biofuel standard published on August 15, 2013.

  20. Biofuels from Microalgae and Seaweeds

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

    2010-03-01

    8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

  1. Green chemistry, biofuels, and biorefinery.

    Science.gov (United States)

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery.

  2. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  3. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  4. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  6. Policies promoting Biofuels in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina [IVL Swedish Environmental Research Inst., Goeteborg (Sweden); Chalmers Univ. of Technology, Div. of Heat and Power Technology., Goeteborg (Sweden)

    2012-07-01

    This report was written as part of a course in Environmental Economics and Policy Instruments at the University of Gothenburg. It aims at summarizing the policy instruments introduced to directly affect the production and use of biofuels in Sweden. Since Sweden is part of the EU also EU policies were included. There are additional policy instruments which affect the production and utilization of biofuels in a more indirect way that are not presented here. The economic analysis in this paper is limited and could be developed from the information presented in order to draw further conclusions on necessary changes in order to reach set targets.

  7. LCA of Biofuels and Biomaterials

    DEFF Research Database (Denmark)

    Hjuler, Susanne Vedel; Hansen, Sune Balle

    2017-01-01

    Biofuels and biomaterials can today substitute many commodities produced from fossil resources, and the bio-based production is increasing worldwide. As fossil resources are limited, and the use of such resources is a major contributor to global warming and other environmental impacts, the potent......Biofuels and biomaterials can today substitute many commodities produced from fossil resources, and the bio-based production is increasing worldwide. As fossil resources are limited, and the use of such resources is a major contributor to global warming and other environmental impacts...

  8. Biofuel supply chain, market, and policy analysis

    Science.gov (United States)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  9. Kinetic ELISA in microfluidic channels

    National Research Council Canada - National Science Library

    Yanagisawa, Naoki; Dutta, Debashis

    2011-01-01

    In this article, we describe the kinetic ELISA of Blue Tongue and Epizootic Hemorrhagic Disease viral antibodies in microfluidic channels by monitoring the rate of generation of the enzyme reaction...

  10. Microfluidic Multichannel Flow Cytometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a "Microfluidic Multichannel Flow Cytometer." Several novel concepts are integrated to produce the final design, which is compatible with...

  11. Whole-Teflon microfluidic chips

    National Research Council Canada - National Science Library

    Kangning Ren; Wen Dai; Jianhua Zhou; Jing Su; Hongkai Wu

    2011-01-01

    ... them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents...

  12. Microfluidics - Sorting particles with light

    DEFF Research Database (Denmark)

    Glückstad, J.

    2004-01-01

    Microfluidic systems have great potential to perform complex chemical and biological processing and analysis on a single disposable chip. That goal is now a step closer with the demonstration of an efficient all-optical particle sorter.......Microfluidic systems have great potential to perform complex chemical and biological processing and analysis on a single disposable chip. That goal is now a step closer with the demonstration of an efficient all-optical particle sorter....

  13. Towards printable open air microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Collord, Andrew; Cook, Adam W.; Clem, Paul Gilbert; Fenton, Kyle Ross (University of New Mexico); Apblett, Christopher Alan; Branson, Eric D.

    2010-04-01

    We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.

  14. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2009-07-01

    Full Text Available for standard geotechnical tests from two types of soils treated with the two enzyme-based products. One soil had a plasticity index of 35% and the other had a plasticity index of 7%. The maximum plasticity index reduction after treatment of both soils was less...

  15. Digital Microfluidic Cell Culture.

    Science.gov (United States)

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF.

  16. Interplay between materials and microfluidics

    Science.gov (United States)

    Hou, Xu; Zhang, Yu Shrike; Santiago, Grissel Trujillo-De; Alvarez, Mario Moisés; Ribas, João; Jonas, Steven J.; Weiss, Paul S.; Andrews, Anne M.; Aizenberg, Joanna; Khademhosseini, Ali

    2017-04-01

    Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties — in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.

  17. Digital Microfluidics Sample Analyzer

    Science.gov (United States)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  18. Biofuel production by recombinant microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  19. LCA of Biofuels and Biomaterials

    DEFF Research Database (Denmark)

    Hjuler, Susanne Vedel; Hansen, Sune Balle

    2017-01-01

    Biofuels and biomaterials can today substitute many commodities produced from fossil resources, and the bio-based production is increasing worldwide. As fossil resources are limited, and the use of such resources is a major contributor to global warming and other environmental impacts, the potent...

  20. An Outlook on Microalgal Biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.

    2010-01-01

    Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing

  1. Advancing Biofuels: Balancing for Sustainability

    Science.gov (United States)

    As with most technologies, use of biofuels has both benefits and risks, which vary by feedstock. Expected benefits include increased energy independence, reduced consumption of fossil fuels, reduced emission of greenhouse gases and invigorated rural economies. Anticipated risks include potential com...

  2. Biofuels Refining Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lobban, Lance [Univ. of Oklahoma, Norman, OK (United States)

    2017-03-28

    The goal of this project is the development of novel catalysts and knowledge of reaction pathways and mechanisms for conversion of biomass-based compounds to fuels that are compatible with oil-based fuels and with acceptable or superior fuel properties. The research scope included both catalysts to convert lignocellulosic biomass-based molecules (from pyrolysis) and vegetable oil-based molecules (i.e., triglycerides and fatty acid methyl esters). This project comprised five technical tasks. Each task is briefly introduced below, and major technical accomplishments summarized. Technical accomplishments were described in greater detail in the quarterly progress reports, and in even more detail in the >50 publications acknowledging this DoE project funding (list of publications and presentations included at the end of this report). The results of this research added greatly to the knowledge base necessary for upgrading of pyrolysis oil to hydrocarbon fuels and chemicals, and for conversion of vegetable oils to fungible diesel fuel. Numerous new catalysts and catalytic reaction systems were developed for upgrading particular compounds or compound families found in the biomass-based pyrolysis oils and vegetable oils. Methods to mitigate catalyst deactivation were investigated, including novel reaction/separation systems. Performance and emission characteristics of biofuels in flames and engines were measured. Importantly, the knowledge developed from this project became the basis for a subsequent collaborative proposal led by our research group, involving researchers from the University of Wisconsin, the University of Pittsburg, and the Idaho National Lab, for the DoE Carbon, Hydrogen and Separations Efficiency (CHASE) program, which was subsequently funded (one of only four projects awarded in the CHASE program). The CHASE project examined novel catalytic processes for lignocellulosic biomass conversion as well as technoeconomic analyses for process options for maximum

  3. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic components

    Directory of Open Access Journals (Sweden)

    Smith, Suzanne

    2015-05-01

    Full Text Available A centrifugal microfluidic platform to develop various microfluidic operations – the first of its kind in South Africa – is presented. Rapid and low-cost prototyping of centrifugal microfluidic disc devices, as well as a set-up to test the devices using centrifugal forces, is described. Preliminary results show that various microfluidic operations such as fluidic valving, transportation, and microfluidic droplet generation can be achieved. This work provides a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of microfluidic applications and potential products rapidly and at a low cost.

  4. High-Throughput Microfluidics for the Screening of Yeast Libraries.

    Science.gov (United States)

    Huang, Mingtao; Joensson, Haakan N; Nielsen, Jens

    2018-01-01

    Cell factory development is critically important for efficient biological production of chemicals, biofuels, and pharmaceuticals. Many rounds of the Design-Build-Test-Learn cycles may be required before an engineered strain meeting specific metrics required for industrial application. The bioindustry prefer products in secreted form (secreted products or extracellular metabolites) as it can lower the cost of downstream processing, reduce metabolic burden to cell hosts, and allow necessary modification on the final products , such as biopharmaceuticals. Yet, products in secreted form result in the disconnection of phenotype from genotype, which may have limited throughput in the Test step for identification of desired variants from large libraries of mutant strains. In droplet microfluidic screening, single cells are encapsulated in individual droplet and enable high-throughput processing and sorting of single cells or clones. Encapsulation in droplets allows this technology to overcome the throughput limitations present in traditional methods for screening by extracellular phenotypes. In this chapter, we describe a protocol/guideline for high-throughput droplet microfluidics screening of yeast libraries for higher protein secretion . This protocol can be adapted to screening by a range of other extracellular products from yeast or other hosts.

  5. Paper based microfluidic devices for environmental diagnostics

    CSIR Research Space (South Africa)

    Govindasamy, K

    2012-09-01

    Full Text Available Microfluidics has found widespread application in the fields of molecular biology, DNA analysis and most recently, point of care diagnostics. We present a paper based microfluidic device for rapid, in-the-field detection of pathogenic bacteria...

  6. Microfluidics to define leukocyte migration patterns

    NARCIS (Netherlands)

    Boneschansker, Johan

    2017-01-01

    Leukocyte migration into tissues is characteristic of inflammation. In this thesis, we design and validate microfluidic devices that allow for precise quantification of leukocyte migration patterns. Our microfluidic platform can quantify migration patterns using single-cell quantitative metrics that

  7. Microfluidic tools for cell biological research

    OpenAIRE

    Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.

    2010-01-01

    Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications.

  8. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  9. From first generation biofuels to advanced solar biofuels.

    Science.gov (United States)

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  10. Fabrication of a multiplexed microfluidic system for scaled up production of cross-linked biocatalytic microspheres

    CSIR Research Space (South Africa)

    Mbanjwa, M

    2014-06-01

    Full Text Available , production of biofuels3 and textiles processing4. Enzymes can be stabilised by rendering them into insoluble form using a process referred to as immobilisation. Enzyme immobilisation helps to improve their functionality and stability in harsh reaction... colour, was then emulsified by magnetic stirring in 1.2 ml of mineral oil containing 5% m/m Span 80 for 15 minutes. The microfluidic device was operated on an inverted optical microscope (Olympus) fitted with a digital camera. The flow images recorded...

  11. 75 FR 20085 - Subpart B-Advanced Biofuel Payment Program

    Science.gov (United States)

    2010-04-16

    ... Rural Business-Cooperative Service 7 CFR Part 4288 RIN 0570-AA75 Subpart B--Advanced Biofuel Payment... biofuels to support existing advanced biofuel production and to encourage new production of advanced biofuels. The Agency would enter into contracts with advanced biofuel producers to pay such producers for...

  12. Toward nitrogen neutral biofuel production.

    Science.gov (United States)

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Algal biofuels: challenges and opportunities.

    Science.gov (United States)

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  15. Health effects of biofuel exhaust

    OpenAIRE

    Vugt, M.A.T.M. van; Mulderij, M.; Usta, M; Kadijk, G.; Kooter, I.M.; Krul, C.A.M.

    2009-01-01

    Alternatives to fossil fuels receive a lot of attention. In particular, oil derived of specific crops forms a promising fuel. In order to warrant global expectance of such novel fuels, safety issues associated with combustion of these fuels needs to be assessed. Although only a few public reports exist, recently potential toxic effects associated with biofuels has been published. Here, we report the analysis of a comprehensive study, comparing the toxic effects of conventional diesel, biodies...

  16. Evaluation of biofuels sustainability: can we keep biofuel appropriate and green?

    CSIR Research Space (South Africa)

    Amigun, B

    2009-11-01

    Full Text Available Biofuels are Liquid, solid and gaseous fuel derived from organic matter-biomass-including plant materials and animal waste. This paper is about the state of biofuels in Africa and the initiatives thereof....

  17. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  18. Land Clearing and the Biofuel Carbon Debt

    Science.gov (United States)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  19. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    , and it is argued that it is a good measure, when comparing the performance of magnetic bead separators. It is described how numeric modelling is used to aid the design of microfluidic magnetic separation systems. An example of a design optimization study is given. A robust fabrication scheme has been developed...... for fabrication of silicon based systems. This fabrication scheme is explained, and it is shown how, it is applied with variations for several designs of magnetic separators. An experimental setup for magnetic separation experiments has been developed. It has been coupled with an image analysis program......This Ph.D. thesis presents theory, modeling, design, fabrication, experiments and results for microfluidic magnetic separators. A model for magnetic bead movement in a microfluidic channel is presented, and the limits of the model are discussed. The effective magnetic field gradient is defined...

  20. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  1. Microfluidics for Combating Antimicrobial Resistance.

    Science.gov (United States)

    Liu, Zhengzhi; Banaei, Niaz; Ren, Kangning

    2017-08-08

    The ever-growing threat of antimicrobial resistance (AMR) demands immediate countermeasures. With its novelty and enabling features including downscaled analysis, precisely controlled local environment, and enhanced speed, accuracy, and cost-efficiency, microfluidics has demonstrated potential in several key areas, including furthering our understanding of bacteria, developing better susceptibility testing tools, and overcoming obstacles in discovery and research of new antibiotics. While ample research results in the field of microfluidics are available, their transformation into practical application is still lagging far behind. We believe that the challenge of AMR will give microfluidics a much-needed opportunity to leap from research papers to true productivity, and gain wider acceptance as a mature technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microfluidics Device Simulation in MATLAB

    Science.gov (United States)

    Foreman, Michael; Shirk, Kathryn

    Microfluidics fluid channels have different dominant properties of flow than do macrofluidic channels. At small channel sizes, the calculations that model the fluid flow need to include slip velocity at the walls of the channel, the mean free path of particles, and other factors that can be difficult to compute. In order to reduce the potential for error and provide meaningful graphical representations of the computations, a computer program can be implemented. We are creating a MATLAB program suite to perform the relevant calculations quickly and accurately. Additionally, by building on this program, the potential for testing new ideas for microfluidic devices can be realized. This would reduce the costs associated with prototyping microfluidic devices as devices can be modeled in software without the need for creating physical devices until the concepts are shown to be viable.

  3. Optimization of Biofuel Production From Transgenic Microalgae

    Science.gov (United States)

    2013-02-27

    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  4. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  5. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  6. Biofuel supply chain considering depreciation cost of installed plants

    National Research Council Canada - National Science Library

    Rabbani, Masoud; Ramezankhani, Farshad; Giahi, Ramin; Farshbaf-Geranmayeh, Amir

    2016-01-01

    .... Nowadays there has been a growing interest for biofuels. Thus, this paper reveals a general optimization model which enables the selection of preprocessing centers for the biomass, biofuel plants, and warehouses to store the biofuel...

  7. Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies

    Energy Technology Data Exchange (ETDEWEB)

    Laak, W.W.M. van der [Province of Noord-Brabant, MC ' s-Hertogenbosch (Netherlands); Raven, R.P.J.M.; Verbong, G.P.J. [Technische Universiteit Eindhoven, MB Eindhoven (Netherlands). Department of Technology Management

    2007-06-15

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for stimulating biofuels by analysing three experiments in depth. The approach of strategic niche management (SNM) is used to explain success and failure of these projects. Based on the analysis as well as recent innovation literature we develop a list of guidelines that is important to consider when developing biofuel policies. (author)

  8. Microfluidic fabrication of plasmonic microcapsules

    NARCIS (Netherlands)

    Wang, J.; Jin, Mingliang; Eijkel, Jan C.T.; van den Berg, Albert; Zhou, G.F.; Shui, L.L.

    2016-01-01

    This paper presents the plasmonic microcapsules with well-ordered nanoparticles embedded in polymer network fabricated by using a microfluidic device. The well-ordered nanoparticle arrays on the microcapsule form high-density uniform “hot-spots‿ with a deposited metal film, on which the localized

  9. Topology optimization of microfluidic mixers

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Gersborg, Allan Roulund; Sigmund, Ole

    2009-01-01

    This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering...

  10. Optical detection in microfluidic systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2009-01-01

    Optical detection schemes continue to be favoured for measurements in microfluidic systems. A selection of the latest progress mainly within the last two years is critically reviewed. Emphasis is on integrated solutions, such as planar waveguides, coupling schemes to the outside world, evanescent...

  11. Mixing in a Microfluid Device

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Deryabin, Mikhail

    Mixing of fluids in microchannels cannot rely on turbulence since the flow takes place at extremly low Reynolds numbers. Various active and passive devices have been developed to induce mixing in microfluid flow devices. We describe here a model of an active mixer where a transverse periodic flow...

  12. A microfluidic device with pillars

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a microfluidic device for mixing liquid reagents, the device comprises, a chip forming at least one reaction chamber between a bottom and a top and extending between an inlet and an outlet. To enable manufacturing from less rigid materials, the device comprises pillars...

  13. Microfluidic Liquid-Liquid Contactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcculloch, Quinn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-25

    This report describes progress made on the microfluidic contactor. A model was developed to predict its failure, a surrogate chemical system was selected to demonstrate mass transfer, and an all-optical system has been invented and implemented to monitor carryover and flowrates.

  14. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    Science.gov (United States)

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards.

  15. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  16. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  17. Synthetic Biology Guides Biofuel Production

    Science.gov (United States)

    Connor, Michael R.; Atsumi, Shota

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

  18. International Policies on Bioenergy and Biofuels

    NARCIS (Netherlands)

    Rajcaniova, M.; Ciaian, P.; Drabik, D.

    2015-01-01

    This chapter provides an overview of international biofuel polices and their main impacts on food prices and land use. Global biofuel production has experienced a rapid growth by increasing from almost a zero level in 1970 to 29 billion gallons in 2011; the United States, the European Union, and

  19. Microalgae for biofuels production and environmental applications ...

    African Journals Online (AJOL)

    Microalgae can provide several different types of renewable biofuels. These include methane produced by anaerobic digestion of the algal biomass; biodiesel derived from microalgal oil and photobiologically produced biohydrogen. This review presents the current classification of biofuels, with special focus on microalgae ...

  20. Is biofuel policy harming biodiversity in Europe?

    NARCIS (Netherlands)

    Eggers, J.; Tröltzsch, K.; Falcucci, A.; Verburg, P.H.; Ozinga, W.A.

    2009-01-01

    We assessed the potential impacts of land-use changes resulting from a change in the current biofuel policy on biodiversity in Europe. We evaluated the possible impact of both arable and woody biofuel crops on changes in distribution of 313 species pertaining to different taxonomic groups. Using

  1. Toward Inclusive Biofuel Innovation in Indonesia | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Toward Inclusive Biofuel Innovation in Indonesia. Concern about energy security prompted the Indonesian government to issue several presidential decrees in 2005 and 2006 promoting a national biofuels program based on a vegetable oil produced from the seeds of Jatropha curcas, a plant that can be grown on marginal ...

  2. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  3. 76 FR 7935 - Advanced Biofuel Payment Program

    Science.gov (United States)

    2011-02-11

    ... actual amount of advanced biofuel produced in the quarter; Requiring participating producers to submit... biorefinery. However, the option for a facility to produce biogas that could be used commercially off-site or... ethanol facilities will produce gaseous advanced biofuels via anaerobic digesters. This biogas will be...

  4. Bounded Biofuels? Sustainability of Global Biogas Developments

    NARCIS (Netherlands)

    Mol, A.P.J.

    2014-01-01

    Compared to liquid biofuels biogas has hardly drawn any attention from social sciences researchers lately. Although the share of biogas and liquid biofuels in the energy portfolio of many countries are comparable, biogas systems are strongly place-based and are non-controversial in terms of

  5. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  6. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  7. Montana Advanced Biofuels Great Falls Approval

    Science.gov (United States)

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  8. REFUEL: an EU road map for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Londo, M.; Deurwarder, E.; Lensink, S. (and others)

    2007-05-15

    A successful mid-term development of biofuels calls for a robust road map. REFUEL assesses inter alia least-cost biofuel chain options, their benefits, outlines the technological, legislative and other developments that should take place, and evaluate different policy strategies for realisation. Some preliminary conclusions of the project are discussed here. There is a significant domestic land potential for energy crops in the EU, which could supply between one quarter and one third of gasoline and diesel demand by 2030 if converted into advanced biofuels. A biomass supply of 8 to 10 EJ of primary energy could be available at costs around or below 3 EURO/GJ. However, the introduction of advanced biofuel options may meet a considerable introductory cost barrier, which will not be overcome when EU policy is oriented to the introduction of biofuels at least cost. Therefore, conventional biodiesel and ethanol may dominate the market for decades to come, unless biofuels incentives are differentiated, e.g. on the basis of the differences in greenhouse gas performance among biofuels.The introduction of advanced biofuels may also be enhanced by creating stepping stones or searching introduction synergies. A stepping stone can be the short-term development of lignocellulosic biomass supply chains for power generation by co-firing; synergies can be found between advanced FT-diesel production and hydrogen production for the fuel cell. (au)

  9. Biofuels. Environment, technology and food security

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Jose C.; Lora, Electo S.; Venturini, Osvaldo J. [NEST - Excellence Group in Thermal Power and Distributed Generation, Mechanical Engineering Institute, Universidade Federal de Itajuba (Brazil); Yanez, Edgar E. [CENIPALMA, Oil Palm Research Center - Cenipalma, Calle 21 42-C-47, Bogota (Colombia); Castillo, Edgar F. [CENICANA - Sugarcane Research Center of Colombia, Calle 58 N, 3BN-110, A.A., 9138 - Cali (Colombia); Almazan, Oscar [ICIDCA - Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar, Via Blanca y Carretera Central 804, San Miguel del Padron, A.P. 4036, La Habana (Cuba)

    2009-08-15

    The imminent decline of the world's oil production, its high market prices and environmental impacts have made the production of biofuels to reach unprecedent volumes over the last 10 years. This is why there have been intense debates among international organizations and political leaders in order to discuss the impacts of the biofuel use intensification. Besides assessing the causes of the rise in the demand and production of biofuels, this paper also shows the state of the art of their world's current production. It is also discussed different vegetable raw materials sources and technological paths to produce biofuels, as well as issues regarding production cost and the relation of their economic feasibility with oil international prices. The environmental impacts of programs that encourage biofuel production, farmland land requirements and the impacts on food production are also discussed, considering the life cycle analysis (LCA) as a tool. It is concluded that the rise in the use of biofuels is inevitable and that international cooperation, regulations and certification mechanisms must be established regarding the use of land, the mitigation of environmental and social impacts caused by biofuel production. It is also mandatory to establish appropriate working conditions and decent remuneration for workers of the biofuels production chain. (author)

  10. NREL Algal Biofuels Projects and Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  11. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  13. Coupling of Algal Biofuel Production with Wastewater

    Science.gov (United States)

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  14. Scope of Algae as Third Generation Biofuels

    Science.gov (United States)

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2015-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  15. Scope of algae as third generation biofuels

    Directory of Open Access Journals (Sweden)

    Shuvashish eBehera

    2015-02-01

    Full Text Available An initiative has been taken to develop different solid, liquid and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass have been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  16. Scope of algae as third generation biofuels.

    Science.gov (United States)

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2014-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  17. Coupling of algal biofuel production with wastewater.

    Science.gov (United States)

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  18. Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation.

    Science.gov (United States)

    Cha, Tae-Gon; Pan, Jing; Chen, Haorong; Robinson, Heather N; Li, Xiang; Mao, Chengde; Choi, Jong Hyun

    2015-07-29

    Dynamic DNA enzyme-based walkers complete their stepwise movements along the prescribed track through a series of reactions, including hybridization, enzymatic cleavage, and strand displacement; however, their overall translocation kinetics is not well understood. Here, we perform mechanistic studies to elucidate several key parameters that govern the kinetics and processivity of DNA enzyme-based walkers. These parameters include DNA enzyme core type and structure, upper and lower recognition arm lengths, and divalent metal cation species and concentration. A theoretical model is developed within the framework of single-molecule kinetics to describe overall translocation kinetics as well as each reaction step. A better understanding of kinetics and design parameters enables us to demonstrate a walker movement near 5 μm at an average speed of ∼1 nm s(-1). We also show that the translocation kinetics of DNA walkers can be effectively controlled by external light stimuli using photoisomerizable azobenzene moieties. A 2-fold increase in the cleavage reaction is observed when the hairpin stems of enzyme catalytic cores are open under UV irradiation. This study provides general design guidelines to construct highly processive, autonomous DNA walker systems and to regulate their translocation kinetics, which would facilitate the development of functional DNA walkers.

  19. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...... channel chip parts resulted from a separate injection molding process. The microfluidic chip part and the nanostructured chip part were successfully bonded to form a sealed microfluidic system using air plasma assisted thermal bonding....

  20. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were fabricated using a free-surface thermo-compression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microlenses providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microlens in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities. © 2013 IEEE.

  1. Biofuels News - Spring 2002, Vol. 5, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    Biofuels News is a quarterly publication produced by the Department of Energy's Biofuels Program. This issue contains information on DOE's Enzyme Sugar Platform Project, the Enzyme Sugar Project's stage-gate review, the Biomass R&D Advisory Committee's recommendations for biofuels development, and biofuels and homeland security.

  2. Indirect land use change and biofuel policy

    Science.gov (United States)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  3. Potential of biofuels for shipping. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Florentinus, A.; Hamelinck, C.; Van den Bos, A.; Winkel, R.; Cuijpers, M. [Ecofys Netherlands, Utrecht (Netherlands)

    2012-01-15

    Biofuels could be one of the options to realize a lower carbon intensity in the propulsion of ships and also possibly reduce the effect of ship emissions on local air quality. Therefore, EMSA, the European Maritime Safety Agency, is evaluating if and how biofuels could be used in the shipping sector as an alternative fuel. To determine the potential of biofuels for ships, a clearer picture is needed on technical and organizational limitations of biofuels in ships, both on board of the ship as in the fuel supply chain to the ship. Economic and sustainability analysis of biofuels should be included in this picture, as well as an overview on current and potential policy measures to stimulate the use of biofuels in shipping. Ecofys has determined the potential of biofuels, based on analysis of collected data through literature review, own expertise and experiences, direct communication with EMSA, research publications, market developments based on press and other media, and consultations with relevant stakeholders in the shipping market.

  4. Biofuels and the need for additional carbon

    Science.gov (United States)

    Searchinger, Timothy D.

    2010-04-01

    Use of biofuels does not reduce emissions from energy combustion but may offset emissions by increasing plant growth or by reducing plant residue or other non-energy emissions. To do so, biofuel production must generate and use 'additional carbon', which means carbon that plants would not otherwise absorb or that would be emitted to the atmosphere anyway. When biofuels cause no direct land use change, they use crops that would grow regardless of biofuels so they do not directly absorb additional carbon. All potential greenhouse gas reductions from such biofuels, as well as many potential emission increases, result from indirect effects, including reduced crop consumption, price-induced yield gains and land conversion. If lifecycle analyses ignore indirect effects of biofuels, they therefore cannot properly find greenhouse gas reductions. Uncertainties in estimating indirect emission reductions and increases are largely symmetrical. The failure to distinguish 'additional' carbon from carbon already absorbed or withheld from the atmosphere also leads to large overestimates of global bioenergy potential. Reasonable confidence in greenhouse gas reductions requires a precautionary approach to estimating indirect effects that does not rely on any single model. Reductions can be more directly assured, and other adverse indirect effects avoided, by focusing on biofuels from directly additional carbon.

  5. Assessment of Peruvian biofuel resources and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regional production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.

  6. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  7. Droplet microfluidics for synthetic biology.

    Science.gov (United States)

    Gach, Philip C; Iwai, Kosuke; Kim, Peter W; Hillson, Nathan J; Singh, Anup K

    2017-10-11

    Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.

  8. Contrasts and synergies in different biofuel reports.

    Science.gov (United States)

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-06

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  9. Integrated Microfluidic Variable Optical Attenuator

    Science.gov (United States)

    2005-11-28

    indices , the optical output power is gradually attenuated. We obtain a maximum attenuation of 28 dB when the fluid refractive index changes from 1.557 to...Electron. 23, pp. 1348-1354 (2005). 14. J. M. Ruano, V. Benoit, J. S. Aitchison , and J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for...different refractive indices flowing in a microfluidic channel as the cladding for a segment of straight optical waveguide. Recently, the integration of

  10. Dielectric Elastomer Actuators for Microfluidics

    OpenAIRE

    Maffli, Luc; Rosset, Samuel; Shea, Herbert

    2012-01-01

    One of the goals of microfluidics is to bring a whole laboratory processing chain on a few square centimeters, Lab-On-Chips (LOC). But current LOCs require many heavy and power-consuming off-chip controls like pneumatics, pumps and valves, which keep the small chip bound to the lab. Miniaturized Dielectric Elastomer Actuators (DEA) are excellent candidates to make LOC truly portable, since they combine electrical actuation, large stroke volumes and high output forces. We report on the use of ...

  11. Multidimensional bioseparation with modular microfluidics

    Science.gov (United States)

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  12. Microfluidic Devices for Blood Fractionation

    Directory of Open Access Journals (Sweden)

    Chwee Teck Lim

    2011-07-01

    Full Text Available Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity, purity (selectivity, and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC devices and provide future perspectives.

  13. Bubbles and foams in microfluidics.

    Science.gov (United States)

    Huerre, Axel; Miralles, Vincent; Jullien, Marie-Caroline

    2014-09-28

    Microfluidics offers great tools to produce highly-controlled dispersions of gas into liquid, from isolated bubbles to organized microfoams. Potential technological applications are manifold, from novel materials to scaffolds for tissue engineering or enhanced oil recovery. More fundamentally, microfluidics makes it possible to investigate the physics of complex systems such as foams at scales where the capillary forces become dominant, in model experiments involving few well-controlled parameters. In this context, this review does not have the ambition to detail in a comprehensive manner all the techniques and applications involving bubbles and foams in microfluidics. Rather, it focuses on particular consequences of working at the microscale, under confinement, and hopes to provide insight into the physics of such systems. The first part of this work focuses on bubbles, and more precisely on (i) bubble generation, where the confinement can suppress capillary instabilities while inertial effects may play a role, and (ii) bubble dynamics, paying special attention to the lubrication film between bubble and wall and the influence of confinement. The second part addresses the formation and dynamics of microfoams, emphasizing structural differences from macroscopic foams and the influence of the confinement.

  14. Whole-Teflon microfluidic chips.

    Science.gov (United States)

    Ren, Kangning; Dai, Wen; Zhou, Jianhua; Su, Jing; Wu, Hongkai

    2011-05-17

    Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluidic materials [e.g., poly(dimethylsiloxane) (PDMS)] the whole-Teflon chip has a few more advantages, such as no absorption of small molecules, little adsorption of biomolecules onto channel walls, and no leaching of residue molecules from the material bulk into the solution in the channel. Various biological cells have been cultured in the whole-Teflon channel. Adherent cells can attach to the channel bottom, spread, and proliferate well in the channels (with similar proliferation rate to the cells in PDMS channels with the same dimensions). The moderately good gas permeability of the Teflon materials makes it suitable to culture cells inside the microchannels for a long time.

  15. Liquid biofuels in the aeroderivative gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    DiCampli, James; Schornick, Joe; Farr, Rachel

    2010-09-15

    While there are regional economic and political incentives for using liquid biofuels for renewable power generation, several challenges must be addressed. Given the fuel volumes required, base-load operation with renewable fuels such as biodiesel and ethanol are not likely sustainable with today's infrastructure. However, blending of biofuels with fossil fuels is a more economic option to provide renewable power. In turn, this lays the foundation to increase to more power generation in the future as new generation biofuels come on line. And, much like the automotive industry, the power industry will need to institute design changes to accommodate these fuels.

  16. Biofuels development and the policy regime.

    Science.gov (United States)

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    Science.gov (United States)

    Lu, Yi [Champaign, IL; Liu, Juewen [Albuquerque, NM

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  18. New Trends in the Design of Enzyme-based Biosensors for Medical Applications.

    Science.gov (United States)

    Palchetti, Ilaria

    2016-01-01

    A biosensor is a self-contained integrated device, which is capable of providing specific quantitative or semiquantitative analytical information using a biological (or biomimetic) recognition element, which is retained in direct spatial contact with an electrochemical transduction element. One of the main features of biosensors is the remarkable selectivity that their biological components confer on them. Enzymes are the most common and well-developed recognition system of the family known as catalytic biosensors. This mini-review is focused on enzyme-based biosensors for medical applications. In particular, the new trends for the technology are described. A special emphasis is devoted to the non-invasive and painless monitoring of body metabolites, such as glucose.

  19. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects.

    Science.gov (United States)

    Al Loman, Abdullah; Ju, Lu-Kwang

    2017-11-01

    Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 75 FR 21191 - Subpart B-Advanced Biofuel Payment Program; Correction

    Science.gov (United States)

    2010-04-23

    ...--Advanced Biofuel Payment Program; Correction AGENCY: Rural Business-Cooperative Service, USDA. ACTION... existing advanced biofuel production and to encourage new production of advanced biofuels. As published...

  1. Biofuels, land use change and smallholder livelihoods

    DEFF Research Database (Denmark)

    Hought, Joy Marie; Birch-Thomsen, Torben; Petersen, Jacob

    2012-01-01

    Crop-based biofuels represent an environmental and political alternative to fossil fuels, as well as an important source of rural development income; as global biofuel markets continue to mature, however, their impact on food security remains controversial. This study investigates the effects...... of biofuel feedstock adoption by smallholders in the northwestern Cambodian province of Banteay Meanchey, a region undergoing rapid land use change following the formal end of the Khmer Rouge era in 1989 and subsequent rural resettlement. Remote sensing data combined with field interviews pointed to three...... market had severe consequences for livelihoods and food security. The paper concludes with a discussion of the probable impacts of the emerging cassava market on trajectories in land use, land ownership, and land access in rural Cambodia. The case looks at biofuel adoption in the context of other land...

  2. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    crops for biofuel production is research in biorefineries using a whole-crop approach with the aim of having an optimal use of all the components of the specific crop. Looking at rape as a model crop, the components can be used for i.e. bioethanol, biodiesel, biogas, biohydrogen, feed, food and plant...... with traditional land based food or feed crops, but can be grown to produce oil or biomass for biofuels as well as a long range of products with huge potential as food, feed or nutritionals. This with smaller requirements towards feed nutrients and land use. Value: If biofuels are to be used as a substitute...... will bring forth new knowledge on biorefineries and help decision makers in their assessment of the potential of biofuels in our future....

  3. Applications of Cyanobacteria in Biofuel Production

    DEFF Research Database (Denmark)

    Möllers, K. Benedikt

    and to evolve from a wasteful petrochemical system into a sustainable bio-based society, biofuels and the introduction of bio-refineries play an essential role. Aquatic phototrophs are promising organisms to employ photosynthetic capacities as well as the derived carbohydrates for the production of biofuels...... and bio-based products. This thesis shows two examples of the applicability of cyanobacterial biomass as a renewable substrate for industrially relevant biofuel fermentations, i.e. ethanol fermentation by Saccharomyces cerevisiae and acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum...... that the substrate specificity of a LPMO could be broadened to be active on cellulose and hemicellulose. These findings may pave the way for new applications and novel biotechnological processes, and are important insights for the development of a sustainable bio-based platform for biofuel production and chemical...

  4. Biofuels and bioenergy: processes and technologies

    National Research Council Canada - National Science Library

    Lee, Sunggyu; Shah, Yatish T

    2013-01-01

    ... since the early twentieth century. Up until recently, however, development interest in biofuels had lessened due to the availability of relatively inexpensive fossil energy resources as well as the handling and transportation...

  5. Biofuels from algae: challenges and potential

    Science.gov (United States)

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  6. Biofuels for transportation : a climate perspective

    Science.gov (United States)

    2008-06-01

    As the United States seeks to reduce greenhouse gas (GHG) emissions from motor vehicles and to lessen its dependence on imported oil, biofuels are gaining increasing attention as one possible solution. This paper offers an introduction to the current...

  7. Algae a promising alternative for biofuel

    National Research Council Canada - National Science Library

    M H Sayadi; S D Ghatnekar; M F Kavian

    2011-01-01

    .... In the present review, the authors present a brief highlight of challenges that necessitates to be covered in order to make both, micro as well as macro algae a viable option to produce renewable biofuel...

  8. Biofuels 2020: Biorefineries based on lignocellulosic materials

    National Research Council Canada - National Science Library

    Valdivia, Miguel; Galan, Jose Luis; Laffarga, Joaquina; Ramos, Juan‐Luis

    2016-01-01

    The production of liquid biofuels to blend with gasoline is of worldwide importance to secure the energy supply while reducing the use of fossil fuels, supporting the development of rural technology with knowledge...

  9. Global evaluation of biofuel potential from microalgae

    National Research Council Canada - National Science Library

    Jeffrey W. Moody; Christopher M. McGinty; Jason C. Quinn

    2014-01-01

    In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data...

  10. Figure 5, Biofuel refinery facility locations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This workbook contains the locations and types of current and anticipated biofuel feedstock processing facilities assumed under the simulated scenarios. This dataset...

  11. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our foc...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  12. Microfluidic tools for cell biological research

    Science.gov (United States)

    Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.

    2010-01-01

    Summary Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications. PMID:21152269

  13. A microfluidic method to study demulsification kinetics

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    We present the results of experiments studying droplet coalescence in a dense layer of emulsion droplets using microfluidic circuits. The microfluidic structure allows direct observation of collisions and coalescence events between oil droplets dispersed in water. The coalescence rate of a flowing

  14. Integrating Electronics and Microfluidics on Paper.

    Science.gov (United States)

    Hamedi, Mahiar M; Ainla, Alar; Güder, Firat; Christodouleas, Dionysios C; Fernández-Abedul, M Teresa; Whitesides, George M

    2016-07-01

    Paper microfluidics and printed electronics have developed independently, and are incompatible in many aspects. Monolithic integration of microfluidics and electronics on paper is demonstrated. This integration makes it possible to print 2D and 3D fluidic, electrofluidic, and electrical components on paper, and to fabricate devices using them. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microfluidic flow driven by electric fields

    NARCIS (Netherlands)

    Mampallil Augustine, Dileep

    2011-01-01

    Microfluidics or lab on chip technology, has developed itself significantly during the past 25 years. Now it has become a robust tool to manipu- late tiny amounts of fluid or gas for various applications. Microfluidics is the process of transporting, mixing, separating small amounts of fluid in

  16. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  17. Preface book Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    This book presents an overview of the major microfluidics techniques and platforms used for medicine and medical applications, providing the reader with an overview of the recent developments in this field. It is divided in three parts: (1) tissue and organs on-chip, (2) microfluidics for medicine

  18. The Evolutionary Dynamics of Biofuel Value Chains

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2014-01-01

    and multipolarity. Empirically, I do so by examining the evolutionary dynamics of governance in biofuel value chains, with specific focus on the key regulatory and institutional features that facilitated their emergence and expansion. First, I examine the formation, evolution, and governance of three national....../regional value chains (in Brazil, the US, and the EU); then, I provide evidence to support a trend towards the increasing but still partial formation of a global biofuel value chain and examine its governance traits....

  19. Green Peace: Can Biofuels Accelerate Energy Security

    Science.gov (United States)

    2013-02-14

    the most widely used biofuel – ethanol – is produced from the fermentation and distillation of sugar or starch-based crops such as sugarcane or corn... ethanol plant first opened in the United States in 1910. Biofuels production declined over time because it was expensive, inefficient, and...ultimately unsustainable.7 Corn-based ethanol reappeared in the 1970s after the oil embargo as a way for the United States to reduce its dependency on

  20. Ensuring sustainability in developing world biofuel productoin

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2009-06-01

    Full Text Available SUSTAINABILITY IN DEVELOPING WORLDS BIOFUEL PRODUCTION Graham von Maltitz, Lorren Haywood and Benita De Wet Natural Resources and the Environment CSIR, Pretoria South Africa forest bioenergy for sustainable development Sustainability Assessment Framework... in Tanzania, Mozambique and Madagascar growing for EU markets Type 3 projects E.g. Outgrowers linked to commercial plantations Small scale farmers linked to commercial biofuel fuel processing plants Type 2 projects E.g. Commercial farmers in South...

  1. Next generation of liquid biofuel production

    OpenAIRE

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such as agricultural and forest residues, as well as purpose-grown energy crops such as vegetative grasses and short rotation forests (SRF). These feedstocks largely consist of cellulose, hemicellulose ...

  2. An assessment of Thailand's biofuel development

    DEFF Research Database (Denmark)

    Kumar, S.; Salam, P. Abdul; Shrestha, Pujan

    2013-01-01

    to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources...... as transportation fuel. Alternatively, the same amount of residue could provide 0.8-2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel) to potentially offset 6%-15% of national diesel consumption in the transportation sector....

  3. Constructed wetlands as biofuel production systems

    Science.gov (United States)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  4. Applications of Microfluidics in Quantitative Biology.

    Science.gov (United States)

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2017-10-04

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Microfluidic desalination techniques and their potential applications.

    Science.gov (United States)

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-07

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  6. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  8. Integration of microcolumns and microfluidic fractionators on multitasking centrifugal microfluidic platforms for the analysis of biomolecules.

    Science.gov (United States)

    Moschou, Elizabeth A; Nicholson, Adrianne D; Jia, Guangyao; Zoval, Jim V; Madou, Marc J; Bachas, Leonidas G; Daunert, Sylvia

    2006-06-01

    This work demonstrates the development of microfluidic compact discs (CDs) for protein purification and fractionation integrating a series of microfluidic features, such as microreservoirs, microchannels, and microfluidic fractionators. The CDs were fabricated with polydimethylsiloxane (PDMS), and each device contained multiple identical microfluidic patterns. Each pattern employed a microfluidic fractionation feature with operation that was based on the redirection of fluid into an isolation chamber as a result of an overflow. This feature offers the advantage of automated operation without the need for any external manipulation, which is independent of the size and the charge of the fractionated molecules. The performance of the microfluidic fractionator was evaluated by its integration into a protein purification microfluidic architecture. The microfluidic architecture employed a microchamber that accommodated a monolithic microcolumn, the fractionator, and an isolation chamber, which was also utilized for the optical detection of the purified protein. The monolithic microcolumn was polymerized "in situ" on the CD from a monolith precursor solution by microwave-initiated polymerization. This technique enabled the fast, efficient, and simultaneous polymerization of monoliths on disposable CD microfluidic platforms. The design of the CD employed allows the integration of various processes on a single microfluidic device, including protein purification, fractionation, isolation, and detection.

  9. Microfluidic platforms for lab-on-a-chip applications.

    Science.gov (United States)

    Haeberle, Stefan; Zengerle, Roland

    2007-09-01

    We review microfluidic platforms that enable the miniaturization, integration and automation of biochemical assays. Nowadays nearly an unmanageable variety of alternative approaches exists that can do this in principle. Here we focus on those kinds of platforms only that allow performance of a set of microfluidic functions--defined as microfluidic unit operations-which can be easily combined within a well defined and consistent fabrication technology to implement application specific biochemical assays in an easy, flexible and ideally monolithically way. The microfluidic platforms discussed in the following are capillary test strips, also known as lateral flow assays, the "microfluidic large scale integration" approach, centrifugal microfluidics, the electrokinetic platform, pressure driven droplet based microfluidics, electrowetting based microfluidics, SAW driven microfluidics and, last but not least, "free scalable non-contact dispensing". The microfluidic unit operations discussed within those platforms are fluid transport, metering, mixing, switching, incubation, separation, droplet formation, droplet splitting, nL and pL dispensing, and detection.

  10. Kinetic ELISA in Microfluidic Channels

    Directory of Open Access Journals (Sweden)

    Debashis Dutta

    2011-06-01

    Full Text Available In this article, we describe the kinetic ELISA of Blue Tongue and Epizootic Hemorrhagic Disease viral antibodies in microfluidic channels by monitoring the rate of generation of the enzyme reaction product under static conditions. It has been shown that this format of the immunoassay allows very reliable quantitation of the target species using inexpensive glass microchips and a standard epifluorescence microscope system coupled to a CCD camera. For the viral antibodies assayed here, the limit of detection (LOD for the analyte concentration in our microchips was established to be 3–5 times lower than that obtained on commercial microwell plates using a fiftieth of the sample volume and less than a third of the incubation time. Our analyses further show that when compared to the end-point ELISA format, the kinetic mode of this assay yields an improvement in the LOD by over an order of magnitude in microfluidic devices. This benefit is primarily realized as the observed variation in the background fluorescence (signal at the start of the enzyme reaction period was significantly larger than that in the rate of signal generation upon repeating these assays in different microchannels/microchips. Because the kinetic ELISA results depend only on the latter quantity, the noise level in them was substantially lower compared to that in its end-point counterpart in which the absolute fluorescence measurements are of greater significance. While a similar benefit was also recorded through implementation of kinetic ELISAs on the microwell platform, the improvement in LOD registered in that system was not as significant as was observed in the case of microfluidic assays.

  11. Liquid biofuels - can they meet our expectations?

    Science.gov (United States)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  12. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    Science.gov (United States)

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  13. Microfluidic Approach to Cell Microencapsulation.

    Science.gov (United States)

    Sharma, Varna; Hunckler, Michael; Ramasubramanian, Melur K; Opara, Emmanuel C; Katuri, Kalyan C

    2017-01-01

    Bioartificial pancreas made of insulin-secreting islets cells holds great promise in the treatment of individuals with Type-1 diabetes. Successful islet cell microencapsulation in biopolymers is a key step for providing immunoisolation of transplanted islet cells. Because of the variability in the size and shape of pancreatic islets, one of the main obstacles in their microencapsulation is the inability to consistently control shape, size, and microstructure of the encapsulating biopolymer capsule. In this chapter, we provide a detailed description of a microfluidic approach to islet cell encapsulation in alginate that might address the microencapsulation challenges.

  14. Microfluidics and microscale transport processes

    CERN Document Server

    Chakraborty, Suman

    2012-01-01

    With an intense focus on micro- and nanotechnology from a fluidic perspective, this book details the research activities in key directions on both the theoretical and experimental fronts. As part of the IIT Kharagpur Research Monograph series, the text discusses topics such as capillary transport in microchannels, fluid friction and heat transfer in microchannels, electrokinetics, and interfacial transport in nanochannels. It also covers nanoparticle transport in colloidal suspensions, bubble generation in microfluidic channels, micro-heat pipe, the lattice Boltzmann method for phase changing

  15. Data model for the elimination of matrix effects in enzyme-based flow-injection systems.

    Science.gov (United States)

    Becker, T M; Schmidt, H L

    2000-08-20

    This contribution presents a new conceptional enzyme-based flow injection analysis (FIA) system for the process and quality control of food processing and biotechnological systems. It provides the determination of different analytes in distinct process media on the base of a common experimental set-up. In contrast to known comparable systems, analysis is performed without the commonly used sample preparation and dilution steps. Instead, the adaptation to the necessary measurement range is realized by optimization of intrinsic system parameters. The central principle of the work presented is the elimination of occurring interferences by the heterogeneous matrix of the process sample. Based on a particular injection mode, the application of dehydrogenases as indicator enzymes and a specially developed data model using cognitive methods, cross sensitivities of the detector as well as disturbed reaction rates of the enzymes could be almost completely compensated. Two applications are presented, the analysis of ethanol in non-alcoholic beer and the online determination of D-/L-lactate during a lactic acid fermentation, which reveal the advantage of the developed system. Copyright 2000 John Wiley & Sons, Inc.

  16. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  17. Amperometric Enzyme-Based Biosensors for Application in Food and Beverage Industry

    Science.gov (United States)

    Csöoregi, Elisabeth; Gáspñr, Szilveszter; Niculescu, Mihaela; Mattiasson, Bo; Schuhmann, Wolfgang

    Continuous, sensitive, selective, and reliable monitoring of a large variety of different compounds in various food and beverage samples is of increasing importance to assure a high-quality and tracing of any possible source of contamination of food and beverages. Most of the presently used classical analytical methods are often requiring expensive instrumentation, long analysis times and well-trained staff. Amperometric enzyme-based biosensors on the other hand have emerged in the last decade from basic science to useful tools with very promising application possibilities in food and beverage industry. Amperometric biosensors are in general highly selective, sensitive, relatively cheap, and easy to integrate into continuous analysis systems. A successful application of such sensors for industrial purposes, however, requires a sensor design, which satisfies the specific needs of monitoring the targeted analyte in the particular application, Since each individual application needs different operational conditions and sensor characteristics, it is obvious that biosensors have to be tailored for the particular case. The characteristics of the biosensors are depending on the used biorecognition element (enzyme), nature of signal transducer (electrode material) and the communication between these two elements (electron-transfer pathway).

  18. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review.

    Science.gov (United States)

    Chatha, Shahzad Ali Shahid; Asgher, Muhammad; Iqbal, Hafiz M N

    2017-06-01

    The textile industry, as recognized conformist and stake industry in the world's economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based "classical/conventional" treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.

  19. Artificial Enzyme-based Logic Operations to Mimic an Intracellular Enzyme-participated Redox Balance System.

    Science.gov (United States)

    Huang, Yanyan; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2017-07-06

    Owing to the biocatalytic properties of artificial enzymes and the redox characteristic of glutathione, a colorimetric and resettable biological operation was successfully designed to mimic enzyme-participated redox balance in living systems. As one promising candidate of a natural enzyme, artificial enzyme possesses many advantages and has been used in numerous fields. Similar to natural enzymes, communications are also present between different artificial enzymes. With the assistance of four artificial enzymes, three simple biological logic gates were fabricated to help us deepen the understanding of communications between artificial enzymes. In the presence of glutathione, the system could be easily reset without any complicated procedures. We prospect that this work may push forward the exploration of communications between different artificial enzymes and the design of novel artificial enzyme-based biological gates or nanodevices. We hope that our mimic system may help us further understand the functioning of complex biological pathways in biological systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microfluidic Devices: Useful Tools for Bioprocess Intensification

    Directory of Open Access Journals (Sweden)

    Pedro Fernandes

    2011-09-01

    Full Text Available The dawn of the new millennium saw a trend towards the dedicated use of microfluidic devices for process intensification in biotechnology. As the last decade went by, it became evident that this pattern was not a short-lived fad, since the deliverables related to this field of research have been consistently piling-up. The application of process intensification in biotechnology is therefore seemingly catching up with the trend already observed in the chemical engineering area, where the use of microfluidic devices has already been upgraded to production scale. The goal of the present work is therefore to provide an updated overview of the developments centered on the use of microfluidic devices for process intensification in biotechnology. Within such scope, particular focus will be given to different designs, configurations and modes of operation of microreactors, but reference to similar features regarding microfluidic devices in downstream processing will not be overlooked. Engineering considerations and fluid dynamics issues, namely related to the characterization of flow in microchannels, promotion of micromixing and predictive tools, will also be addressed, as well as reflection on the analytics required to take full advantage of the possibilities provided by microfluidic devices in process intensification. Strategies developed to ease the implementation of experimental set-ups anchored in the use of microfluidic devices will be briefly tackled. Finally, realistic considerations on the current advantages and limitation on the use of microfluidic devices for process intensification, as well as prospective near future developments in the field, will be presented.

  1. Microfluidic ion-sensing devices.

    Science.gov (United States)

    Johnson, R Daniel; Gavalas, Vasilis G; Daunert, Sylvia; Bachas, Leonidas G

    2008-04-14

    Quantitative determinations of ions in a variety of media have been performed traditionally via one of three approaches: optical instrumental methods (e.g., atomic absorption, and inductively-coupled plasma-optical emission or mass spectrometry), "wet" methods, or ion-selective sensors. Each of the approaches, though, possesses limitations including: power/reagent consumption and lack of portability for instrumental techniques; laborious sample-treatment steps for wet methods; and lack of selectivity and sensitivity with sensors when employed with complex samples. Microfluidic device have emerged as a solution to some of these challenges associated with ion analysis. Such systems can integrate multiple sample handling, calibration, and detection steps ("lab-on-a-chip" concept) into a footprint amenable to portability, while requiring small amounts of sample and power. Furthermore, devices can be constructed for multi-analyte detection, either through multiple parallel fluidic architectures or by using arrays of detection elements. This paper reviews recent progress in the development of total-analysis systems for ionic species. Fabrication techniques and various fluid-handling operations are discussed briefly, followed by a number of more mature strategies for microfluidic ion analysis. A variety of approaches expected to comprise the next generation of devices are also presented.

  2. Microfluidic ion-sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. Daniel [Department of Chemistry, Murray State University, Murray, KY 42071-3346 (United States)], E-mail: daniel.johnson@murraystate.edu; Gavalas, Vasilis G.; Daunert, Sylvia [Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055 (United States); Bachas, Leonidas G. [Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055 (United States)], E-mail: bachas@uky.edu

    2008-04-14

    Quantitative determinations of ions in a variety of media have been performed traditionally via one of three approaches: optical instrumental methods (e.g., atomic absorption, and inductively-coupled plasma-optical emission or mass spectrometry), 'wet' methods, or ion-selective sensors. Each of the approaches, though, possesses limitations including: power/reagent consumption and lack of portability for instrumental techniques; laborious sample-treatment steps for wet methods; and lack of selectivity and sensitivity with sensors when employed with complex samples. Microfluidic device have emerged as a solution to some of these challenges associated with ion analysis. Such systems can integrate multiple sample handling, calibration, and detection steps ('lab-on-a-chip' concept) into a footprint amenable to portability, while requiring small amounts of sample and power. Furthermore, devices can be constructed for multi-analyte detection, either through multiple parallel fluidic architectures or by using arrays of detection elements. This paper reviews recent progress in the development of total-analysis systems for ionic species. Fabrication techniques and various fluid-handling operations are discussed briefly, followed by a number of more mature strategies for microfluidic ion analysis. A variety of approaches expected to comprise the next generation of devices are also presented.

  3. Hyperuniform materials made with microfluidics

    Science.gov (United States)

    Yazhgur, Pavel; Ricouvier, Joshua; Pierrat, Romain; Carminati, RéMi; Tabeling, Patrick

    Hyperuniform materials, being disordered systems with suppressed long-scale fluctuations, now attract a significant scientific interest, especially due to their potential applications for disordered photonic materials production. In our project we study a jammed packing of oil droplets in water. The droplets are produced in a PDMS microfluidic chip and directly assembled in a microfluidic channel. By varying the fluid pressures we manage to sharply control the droplet production and thereby govern the structural properties of the obtained material. The pseudo-2D (a monolayer of droplets) and 3D systems are investigated. Our results show that at appropriate experimental conditions droplets self-organize in hyperuniform patterns. Our electromagnetic simulations also show that the obtained material can be transparent while staying optically dense. As far as we know, the proposed material is one of the first examples of experimentally made hyperuniform materials. We hope that our studies will help to establish a new way of disordered photonic materials production. The Microflusa project receives funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 664823.

  4. Frontal photopolymerization for microfluidic applications.

    Science.gov (United States)

    Cabral, João T; Hudson, Steven D; Harrison, Christopher; Douglas, Jack F

    2004-11-09

    Frontal photopolymerization (FPP) offers numerous advantages for the rapid prototyping of microfluidic devices. Quantitative utilization of this method, however, requires a control of the vertical dimensions of the patterned resist material. To address this fundamental problem, we study the ultraviolet (UV) photopolymerization of a series of multifunctional thiolene resists through a combination of experiments and analytical modeling of the polymerization fronts. We describe this nonlinear spatio-temporal growth process in terms of a "minimal" model involving an order parameter phi(x, t) characterizing the extent of monomer-to-polymer conversion, the optical attenuation T(x, t), and the solid front position h(t). The latter exhibits an induction time (or equivalent critical UV dose) characterizing the onset of frontal propagation. We also observe a novel transition between two logarithmic rates of growth, determined by the Beer-Lambert attenuation constants mu(0) and mu(infinity) of the monomer and fully polymerized material, respectively. The measured frontal kinetics and optical transmission of the thiolene resist materials are consistent with our photopolymerization model, exhibiting both "photodarkening" and "photoinvariant" polymerization. This is apparently the first observation of photodarkening reported in FPP. On the basis of these results, multilevel fluidic devices with controlled height are readily fabricated with modulated illumination. A representative two-level microfluidic device, incorporating a chaotic mixer, a T junction, and a series of controlled flow constrictions, illustrates the practical versatility of this fabrication method.

  5. Probing circulating tumor cells in microfluidics.

    Science.gov (United States)

    Li, Peng; Stratton, Zackary S; Dao, Ming; Ritz, Jerome; Huang, Tony Jun

    2013-02-21

    Circulating tumor cells (CTCs) are important targets for study as we strive to better understand, diagnose, and treat cancers. However, CTCs are found in blood at extremely low concentrations; this makes isolation, enrichment, and characterization of CTCs technically challenging. Recently, the development of CTC separation devices has grown rapidly in both academia and industry. Part of this development effort centered on microfluidic platforms, exploiting the advantages of microfluidics to improve CTC separation performance and device integration. In this Focus article, we highlight some of the recent work in microfluidic CTC separation and detection systems and discuss our appraisal of what the field should do next.

  6. Microfluidic Systems for Pathogen Sensing: A Review

    Directory of Open Access Journals (Sweden)

    Peter Ertl

    2009-06-01

    Full Text Available Rapid pathogen sensing remains a pressing issue today since conventional identification methodsare tedious, cost intensive and time consuming, typically requiring from 48 to 72 h. In turn, chip based technologies, such as microarrays and microfluidic biochips, offer real alternatives capable of filling this technological gap. In particular microfluidic biochips make the development of fast, sensitive and portable diagnostic tools possible, thus promising rapid and accurate detection of a variety of pathogens. This paper will provide a broad overview of the novel achievements in the field of pathogen sensing by focusing on methods and devices that compliment microfluidics.

  7. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Perspectives for Sustainable Aviation Biofuels in Brazil

    Directory of Open Access Journals (Sweden)

    Luís A. B. Cortez

    2015-01-01

    Full Text Available The aviation industry has set ambitious goals to reduce carbon emissions in coming decades. The strategy involves the use of sustainable biofuels, aiming to achieve benefits from environmental, social, and economic perspectives. In this context, Brazilian conditions are favorable, with a mature agroindustry that regularly produces automotive biofuel largely adopted by Brazilian road vehicles, while air transportation has been growing at an accelerating pace and a modern aircraft industry is in place. This paper presents the main conclusions and recommendations from a broad assessment of the technological, economic, and sustainability challenges and opportunities associated with the development of drop-in aviation biofuels in Brazil. It was written by a research team that prepared the initial reports and conducted eight workshops with the active participation of more than 30 stakeholders encompassing the private sector, government institutions, NGOs, and academia. The main outcome was a set of guidelines for establishing a new biofuels industry, including recommendations for (a filling the identified research and development knowledge gaps in the production of sustainable feedstock; (b overcoming the barriers in conversion technology, including scaling-up issues; (c promoting greater involvement and interaction between private and government stakeholders; and (d creating a national strategy to promote the development of aviation biofuels.

  9. Pulsatile microfluidics as an analytical tool for determining the dynamic characteristics of microfluidic systems

    DEFF Research Database (Denmark)

    Vedel, Søren; Olesen, Laurits Højgaard; Bruus, Henrik

    2010-01-01

    An understanding of all fluid dynamic time scales is needed to fully understand and hence exploit the capabilities of fluid flow in microfluidic systems. We propose the use of harmonically oscillating microfluidics as an analytical tool for the deduction of these time scales. Furthermore, we......-filled interconnected elastic microfluidic tubes containing a large, trapped air bubble and driven by a pulsatile pressure difference. We demonstrate good agreement between the system-level model and the experimental results, allowing us to determine the dynamic time scales of the system. However, the generic analysis...... can be applied to all microfluidic systems, both ac and dc....

  10. New electrodes for biofuel cells

    Science.gov (United States)

    Stom, D. I.; Zhdanova, G. O.; Lashin, A. F.

    2017-11-01

    Two new types of electrodes for biofuel elements (BFC) are proposed. One of them is based on a microchannel plate (MCP). Its peculiarity is a special structure with a large number of glass channels being 6-10 μm in diameter with an internal semiconducting surface. The MCP operation is based on the principle of the channel secondary emission multiplication of the electrons. The second type of electrode presented in the work is made of silicon carbide. This type of electrodes has a developed porous structure. The electrode pores account for at least 30% of the total volume. The pore size varies from 10 to 100 μm. Such porosity greatly increases the anode area and volume. This allows us to achieve sorption of a larger number of microorganisms interacting with the anode and transformed by electron donors. The work of the electrodes developed in BFC was tested, their effectiveness was estimated. A comparison is made with electrodes made of carbon cloth, the most widely used material for working with BFC. It is shown that the MCP based electrode is not inferior to the power characteristics of carbon cloth. The generated power when using silicon carbide was slightly lower than the other two electrodes. However, the stability of silicon carbide to aggressive media (alkalis, acids, strong oxidants, etc.), as well as to mechanical damages gives additional advantages to such electrodes compared to the materials that are commonly used in BFC. The noted features are extremely important for the BFC to work in harsh conditions of treatment facilities and to utilize wastewater components.

  11. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  12. Production of biofuels and chemicals with ionic liquids

    CERN Document Server

    Fang, Zhen; Qi, Xinhua

    2013-01-01

    This book explores the application of ionic liquids to biomass for producing biofuels and chemicals. Covers pretreatment, fermentation, cellulose transformation, reaction kinetics and more, as well as subsequent production of biofuels and platform chemicals.

  13. Biofuel and Food-Commodity Prices

    Directory of Open Access Journals (Sweden)

    David Zilberman

    2012-09-01

    Full Text Available The paper summarizes key findings of alternative lines of research on the relationship between food and fuel markets, and identifies gaps between two bodies of literature: one that investigates the relationship between food and fuel prices, and another that investigates the impact of the introduction of biofuels on commodity-food prices. The former body of literature suggests that biofuel prices do not affect food-commodity prices, but the latter suggests it does. We try to explain this gap, and then show that although biofuel was an important contributor to the recent food-price inflation of 2001–2008, its effect on food-commodity prices declined after the recession of 2008/09. We also show that the introduction of cross-price elasticity is important when explaining soybean price, but less so when explaining corn prices.

  14. Peroxidase Biocathodes for a Biofuel Cell Development

    DEFF Research Database (Denmark)

    Gomes, Celso; Shipovskov, Stepan; Ferapontova, Elena

    energy sources in the world energy consumption within the period from 2006 to 2030, with a biomass conversion mentioned only briefly. Along with this, the expedient development of new bioenergy technologies may change the future role of biological sources. One example is production of bioethanol......Among such efficient sustainable energy sources, as wind and solar power, photovoltaics, geothermal and water power and other1-3, biofuels are ranked as less efficient. The latest 2009 report of the International Energy Agency4 plans approximately 100% increase of the contribution of the renewable...... as alternative fuel5,6; another example is a steadily expanding field of biofuel cells development7-10, with a number of scientific publications and patent applications increased more than 40 times during the last decade11. In terms of sustainable energy production, enzymatic biofuel cells are attractive...

  15. Impacts of Climate Change on Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  16. Mitochondrial bioelectrocatalysis for biofuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Arechederra, Robert L.; Boehm, Kevin [Saint Louis University, Department of Chemistry, 3501 Laclede Ave., St. Louis, MO 63103 (United States); Minteer, Shelley D., E-mail: minteers@slu.ed [Saint Louis University, Department of Chemistry, 3501 Laclede Ave., St. Louis, MO 63103 (United States)

    2009-12-01

    Mitochondria modified electrodes have been developed and characterized that utilize whole mitochondria isolated from tubers and immobilized within a quaternary ammonium modified Nafion membrane on a carbon electrode that can oxidize pyruvate and fatty acids. Detailed characterization of the performance of these mitochondria modified electrodes has been accomplished by coupling the mitochondria-based bioanode with a commercial air breathing cathode in a complete pyruvate/air biofuel cell. The studies included the effect of fuel (pyruvate) concentration, mitochondria lysing, temperature and pH on the performance of the mitochondria catalyzed, pyruvate/air biofuel cell. Effect of oxygen and cytochrome c oxidase inhibitors on biofuel cell performance has allowed us to further understand the mechanism of electron transfer with the carbon electrode.

  17. Next generation biofuel engineering in prokaryotes

    Science.gov (United States)

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  18. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  19. Sustainability of biofuels and bioproducts: socio-economic impact assessment

    OpenAIRE

    Rutz, D; van Eijck, J.A.J.; Faaij, A.P.C.

    2011-01-01

    Many countries worldwide are increasingly engaging in the promotion of biomass production for industrial uses such as biofuels and bioproducts (chemicals, bioplastics, etc.). Until today, mainly biofuels were supported by European policies, but support for bioproducts is still lacking behind. Thus, also the public sustainability debate concentrated on biofuels, but so far not on bioproducts. Driven by the strong public debate on sustainability aspects, biofuels are confronted with many enviro...

  20. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  1. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  2. Microfluidic Analytical Separator for Proteomics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a microfluidic device designed to effect a 2-dimensional resolution of a mixture of proteins based on isoelectric point (pI) and molecular...

  3. A Microfluidics Approach to Investigate Axon Guidance

    National Research Council Canada - National Science Library

    Sohn, Lydia L

    2007-01-01

    The purpose of this STR project was to demonstrate and explore the capabilities of a novel microfluidic concentration-gradient generator, as it relates to developmental and regenerative neurobiology...

  4. Microfluidic chip based microfiber/nanofiber sensors

    Science.gov (United States)

    Zhang, Lei; Tong, Limin

    2017-04-01

    We demonstrate three microfluidic chip based microfiber/nanofiber sensors for ultra-sensitive absorption, fluorescence, and femtoliter-scale sensing, respectively. The sensors shown here may open up new opportunities for ultra-sensitive biosensing and single molecule analysis.

  5. Microfluidic Analytical Separator for Proteomics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SHOT proposes an innovative microfluidic device designed to effect a 2-dimensional resolution of a mixture of proteins based on isoelectric point (pI) and molecular...

  6. Microfluidics technology for drug delivery: A review.

    Science.gov (United States)

    Mancera-Andrade, Elena I; Parsaeimehr, Ali; Arevalo-Gallegos, Alejandra; Ascencio-Favela, Guadalupe; Parra Saldivar, Roberto

    2018-01-01

    Microfluidics is undoubtedly an influential technology that is currently revolutionizing the chemical and biological studies by replicating laboratory bench-top technology on a miniature chip-scale device. In the area of drug delivery science, microfluidics offers advantages, such as precise dosage, ideal delivery, target-precise delivery, sustainable and controlled release, multiple dosing, and slight side effects. These advantages bring significant assets to the drug delivery systems. Microfluidic technology has been progressively used for fabrication of drug carriers, direct drug delivery systems, high-throughput screening, and formulation and immobilization of drugs. This review discusses the recent technological progress, outcomes and available opportunities for the usage of microfluidics systems in drug delivery systems.

  7. Microfluidics for sperm analysis and selection.

    Science.gov (United States)

    Nosrati, Reza; Graham, Percival J; Zhang, Biao; Riordon, Jason; Lagunov, Alexander; Hannam, Thomas G; Escobedo, Carlos; Jarvi, Keith; Sinton, David

    2017-12-01

    Infertility is a growing global health issue with far-reaching socioeconomic implications. A downward trend in male fertility highlights the acute need for affordable and accessible diagnosis and treatment. Assisted reproductive technologies are effective in treating male infertility, but their success rate has plateaued at ∼33% per cycle. Many emerging opportunities exist for microfluidics - a mature technology in other biomedical areas - in male infertility diagnosis and treatment, and promising microfluidic approaches are under investigation for addressing male infertility. Microfluidic approaches can improve our fundamental understanding of sperm motion, and developments in microfluidic devices that use microfabrication and sperm behaviour can aid semen analysis and sperm selection. Many burgeoning possibilities exist for engineers, biologists, and clinicians to improve current practices for infertility diagnosis and treatment. The most promising avenues have the potential to improve medical practice, moving innovations from research laboratories to clinics and patients in the near future.

  8. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    Science.gov (United States)

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  9. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Science.gov (United States)

    2010-03-12

    ... Rural Business-Cooperative Service Bioenergy Program for Advanced Biofuels AGENCY: Rural Business... Program for Advanced Biofuels under criteria established in the prior NOCP, which was published in this... Biofuels. In response to the previously published NOCP, approximately $14.5 million in contracts between...

  10. 76 FR 24343 - Advanced Biofuel Payment Program; Correction

    Science.gov (United States)

    2011-05-02

    ... Service Rural Utilities Service 7 CFR Part 4288 RIN 0570-AA75 Advanced Biofuel Payment Program; Correction... Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. This... contracts with advanced biofuel producers to pay such producers for the production of eligible advanced...

  11. Microspora Floccosa; A Potential Biofuel Producer

    Directory of Open Access Journals (Sweden)

    Aisha Abdul Sattar Memon

    2016-06-01

    Full Text Available The current study is focused on biofuel production from local specie of algae. Initially samples were observed to identify the algal specie. Afterward oil was extracted from algae by Soxhlet extraction method, retention time was optimized to improve the yield of oil at different intervals. The recovered oil from algae was subjected to qualitative analysis by Gas Chromatography. Four major peaks were appeared on GC chromatogram which correspond to methyl esters of Dodecanoic acid, Tetradecanoic acid, 8,11,14-Eicosadienoic acid and 9,10-Dihydroxy octadecanoic. The results reflect that Microspora floccosa algae considered to be favorable for biofuel production.

  12. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.

    Science.gov (United States)

    Najah, Majdi; Calbrix, Raphaël; Mahendra-Wijaya, I Putu; Beneyton, Thomas; Griffiths, Andrew D; Drevelle, Antoine

    2014-12-18

    Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Microfluidics for investigating single-cell biodynamics

    OpenAIRE

    Cookson, Scott Warren

    2008-01-01

    Progress in synthetic biology requires the development of novel techniques for investigating long-term dynamics in single cells. Here, we demonstrate the utility of microfluidics for investigating single-cell biodynamics within tightly-controlled environments in the model organisms Saccharomyces cerevisiae and Escherichia coli. First, we develop a microfluidic chemostat for monitoring single-cell gene expression within large populations of S. cerevisiae over many cellular generations. We over...

  14. 3D Printed Multimaterial Microfluidic Valve

    OpenAIRE

    Keating, Steven J.; Gariboldi, Maria Isabella; Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deform...

  15. Microfluidic Sample Preparation for Immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

    2001-08-09

    Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

  16. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinical...... problems. In this thesis lab on a chip systems for rare single cell analysis are investigated. The focus was to develop a commercial, disposable device for circulating tumour cell (CTC) analysis. Such a device must be able to separate rare cells from blood samples and subsequently capture the specific...... cells, and simultaneously be fabricated and operated at low costs and be user-friendly. These challenges were addressed through development of two microfluidic devices, one for rare cell isolation based on pinched flow fractionation (PFF) and one for single cell capture based on hydrodynamic trapping...

  17. Sampling by Fluidics and Microfluidics

    Directory of Open Access Journals (Sweden)

    V. Tesař

    2002-01-01

    Full Text Available Selecting one from several available fluid samples is a procedure often performed especially in chemical engineering. It is usually done by an array of valves sequentially opened and closed. Not generally known is an advantageous alternative: fluidic sampling units without moving parts. In the absence of complete pipe closure, cross-contamination between samples cannot be ruled out. This is eliminated by arranging for small protective flows that clear the cavities and remove any contaminated fluid. Although this complicates the overall circuit layout, fluidic sampling units with these "guard" flows were successfully built and tested. Recent interest in microchemistry leads to additional problems due very low operating Reynolds numbers. This necessitated the design of microfluidic sampling units based on new operating principles.

  18. Solution landscapes in nematic microfluidics

    Science.gov (United States)

    Crespo, M.; Majumdar, A.; Ramos, A. M.; Griffiths, I. M.

    2017-08-01

    We study the static equilibria of a simplified Leslie-Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G , B) and classify them according to their winding numbers and stability. The case G = 0 is analytically tractable and we numerically study how the solution landscape is transformed as G increases. We study the one-dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate of change of G and B. We provide a physically interesting example of how the time delay between the applications of G and B can determine the selection of the final steady state.

  19. Finger-Powered Electro-Digital-Microfluidics.

    Science.gov (United States)

    Peng, Cheng; Ju, Y Sungtaek

    2017-01-01

    Portable microfluidic devices are promising for point-of-care (POC) diagnosis and bio- and environmental surveillance in resource-constrained or non-laboratory environments. Lateral-flow devices, some built off paper or strings, have been widely developed but the fixed layouts of their underlying wicking/microchannel structures limit their flexibility and present challenges in implementing multistep reactions. Digital microfluidics can circumvent these difficulties by addressing discrete droplets individually. Existing approaches to digital microfluidics, however, often require bulky power supplies/batteries and high voltage circuits. We present a scheme to drive digital microfluidic devices by converting mechanical energy of human fingers to electrical energy using an array of piezoelectric elements. We describe the integration our scheme into two promising digital microfluidics platforms: one based on the electro-wetting-on-dielectric (EWOD) phenomenon and the other on the electrophoretic control of droplet (EPD). Basic operations of droplet manipulations, such as droplet transport, merging and splitting, are demonstrated using the finger-powered digital-microfluidics.

  20. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  1. Dynamics of Microvalve Operations in Integrated Microfluidics

    Directory of Open Access Journals (Sweden)

    Alan T. H. Lau

    2014-02-01

    Full Text Available Pneumatic microvalves are widely used key components for automating liquid manipulation and flow control in microfluidics for more than one decade. Due to their robust operations and the ease of fabrication, tremendous microfluidic systems have been developed with the multiple microvalves for higher throughput and extended functionalities. Therefore, operation performance of the microvalves in the integrated microfluidic devices is crucial to the related applications, in fields such as micro-flows, cell analyses, drug discovery, and physical/chemical detections. It has been reported that operation performance of the microvalves are highly sensitive to the device configuration and pressurization scheme. This implies the further development of integrated microfluidics with a larger number of the valves may suffer the problems of undetermined microvalve behaviors during operations, which can become an unavoidable hurdle in the device design and optimization processes. Herein, we characterize responses of the individual microvalves for different operation configurations, e.g., membrane thicknesses and driving pressures. We investigate also the effects in microfluidics integrated with the more valves, through experiments, modeling and simulations. We show that dynamics of the microvalves is indeed influenced by the configurations, levels of design complexity and positions in the devices. Overall, taken dynamics of the microvalve responses into considerations, this work provides insights and guidelines for better designs of integrated microfluidics for the future applications requiring higher throughput and improved operation performance.

  2. Acoustic Microfluidics for Bioanalytical Application

    Science.gov (United States)

    Lopez, Gabriel

    2013-03-01

    This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.

  3. Biofuel do Brasil? - Impact of Multinational Biofuel Mandates on Agri-food Trade

    OpenAIRE

    Banse, Martin; Junker, Franziska; Prins, Anne Gerdien; Stehfest, Elke; Tabeau, Andrzej A.; Woltjer, Geert B.; van Meijl, Hans

    2012-01-01

    This paper analyzes the consequences of enhanced biofuel production in regions and countries of the world that have announced plans to implement or expand on biofuel policies. The analysis considers not only mandatory blending targets for transportation fuels, but also voluntary ones. The chosen quantitative modeling approach is two-fold: it combines a multi-sectoral economic model (LEITAP) with a spatial bio-physical land use model (IMAGE). This paper adds to existing research by considering...

  4. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    OpenAIRE

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    We estimate the physical supply potential of biofuels from domestic municipal solid waste, forestry residues, crops residues and energy crops grown on existing cropland using optimistic assumptions about near-term conversion technologies. It is technically feasible to produce a significant amount of liquid biofuel (equivalent to 30-100% of 2003 gasoline demand) without reducing domestically produced food and fiber crops or reducing the total calories available as domestic animal feed. Most of...

  5. Recent applications of metabolomics to advance microbial biofuel production.

    Science.gov (United States)

    Martien, Julia I; Amador-Noguez, Daniel

    2017-02-01

    Biofuel production from plant biomass is a promising source of renewable energy [1]. However, efficient biofuel production involves the complex task of engineering high-performance microorganisms, which requires detailed knowledge of metabolic function and regulation. This review highlights the potential of mass-spectrometry-based metabolomic analysis to guide rational engineering of biofuel-producing microbes. We discuss recent studies that apply knowledge gained from metabolomic analyses to increase the productivity of engineered pathways, characterize the metabolism of emerging biofuel producers, generate novel bioproducts, enable utilization of lignocellulosic feedstock, and improve the stress tolerance of biofuel producers. Copyright © 2016. Published by Elsevier Ltd.

  6. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  7. Electric vehicles need biofuels; Elektroautos brauchen Biotreibstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Tomi

    2008-09-15

    The debate over electromobility is in full swing. The effects on the electric power grid and on the biofuels industry are quire different than expected, even paradox. (orig.) [German] Die Debatte um Elektromobilitaet ist in vollem Gang. Die Auswirkung auf das Stromnetz und auf die Biotreibstoffbranche sind ganz anders, als man denkt. Sie wirken fast schon paradox. (Orig.)

  8. Coproduction of bioethanol with other biofuels

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    pilot-scale biorefineries for multiple fuel production and also discuss perspectives for further enhancement of biofuel yields from biomass. The major fuels produced in this refinery are ethanol, hydrogen, and methane. We also discuss the applicability of our biorefinery concept as a bolt-on plant...

  9. Production of biofuels via hydrothermal conversion

    DEFF Research Database (Denmark)

    Biller, Patrick; Ross, Andrew

    2016-01-01

    as the quality of targeted biofuel is a function of feedstock and operating conditions. The quality of hydrochar influences its uses as a solid fuel while biocrude quality affects its use as a liquid fuel and feedstock for upgrading to drop-in replacement fuels, while HTG produces a syngas rich in either H2...

  10. Novel biofuel formulations for enhanced vehicle performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Dennis [Michigan State Univ., East Lansing, MI (United States); Narayan, Ramani [Michigan State Univ., East Lansing, MI (United States); Berglund, Kris [Michigan State Univ., East Lansing, MI (United States); Lira, Carl [Michigan State Univ., East Lansing, MI (United States); Schock, Harold [Michigan State Univ., East Lansing, MI (United States); Jaberi, Farhad [Michigan State Univ., East Lansing, MI (United States); Lee, Tonghun [Michigan State Univ., East Lansing, MI (United States); Anderson, James [Michigan State Univ., East Lansing, MI (United States); Wallington, Timothy [Michigan State Univ., East Lansing, MI (United States); Kurtz, Eric [Michigan State Univ., East Lansing, MI (United States); Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  11. Future of Liquid Biofuels for APEC Economies

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  12. Impact of biofuels on contrail warming

    Science.gov (United States)

    Caiazzo, Fabio; Agarwal, Akshat; Speth, Raymond L.; Barrett, Steven R. H.

    2017-11-01

    Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (~ +8%). On the other hand, these contrails are composed of larger diameter crystals (~ +58%) at lower number concentrations (~ ‑75%), reducing both contrail optical depth (~ ‑29%) and albedo (~ ‑32%). The net changes in contrail RF induced by switching to biofuels range from ‑4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between ‑13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming—contrary to previous expectations of a significant decrease in warming.

  13. Exploring new strategies for cellulosic biofuels production

    Science.gov (United States)

    Paul Langan; S. Gnankaran; Kirk D. Rector; Norma Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel

    2011-01-01

    A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of...

  14. Bio-fuels, wait a minute

    NARCIS (Netherlands)

    Brand, R.

    2006-01-01

    The ethical relevance of this topic is clear. Bio-fuels show great promise as a sustainable energy source, but there are also worries that its production will be at the expense of food security, especially for people in developing countries. The author defends the unconventional position that the

  15. 3 CFR - Biofuels and Rural Economic Development

    Science.gov (United States)

    2010-01-01

    ... American biofuels and reducing our dependence on fossil fuels by providing, within 30 days, under the... biorefineries to replace the use of fossil fuels in plant operations by installing new biomass energy systems or... energizing our economy with new industries and jobs. While producing clean renewable fuels locally is a...

  16. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  17. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    Directory of Open Access Journals (Sweden)

    Hamideh Aghahosseini

    2016-07-01

    Full Text Available Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of electricity. This review article presents how nanoscience, engineering and medicine are combined to assist in the development of renewable glucose-based biofuel cell systems. Here, we review recent advances and applications in both abiotic and enzymatic glucose biofuel cells with emphasis on their “implantable” and “implanted” types. Also the challenges facing the design and application of glucose-based biofuel cells to convert them to promising replacement candidates for non-rechargeable lithium-ion batteries are discussed. Nanotechnology could make glucose-based biofuel cells cheaper, lighter and more efficient and hence it can be a part of the solutions to these challenges.

  18. Engineering biofuel tolerance in non-native producing microorganisms.

    Science.gov (United States)

    Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-01-01

    Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  20. social and economic impact on the use of biofuels

    Directory of Open Access Journals (Sweden)

    Luis Barrera Aguilar

    2011-03-01

    Full Text Available Biofuels currently represent a potential source of renewable energy. As well as that could lead to major new markets for farmers. However, only some of the current biofuel programs are feasible, and most involve high social costs and environmental ironically. The economic, environmental and social impacts of biofuels are widely debated and needs to be carefully assessed before extending public support to programs of biofuels on a large scale.The country strategy on biofuels should be based on a thorough assessment of these opportunities and costs in the medium and long term. One factor to consider is that oil reserves will run out, experts say, in fifty years. This article presents the social and economic impact of biofuel production in industrialized countries and developing countries that are or could become, efficient producers in export markets and new social and economic rentablesmpacto use Biofuels

  1. Compartmentalized 3D Tissue Culture Arrays under Controlled Microfluidic Delivery

    NARCIS (Netherlands)

    Gümüscü, B.; Albers, Hugo J.; Van Den Berg, Albert; Eijkel, Jan C.T.; Van Der Meer, Andries D.

    2017-01-01

    We demonstrate an in vitro microfluidic cell culture platform that consists of periodic 3D hydrogel compartments with controllable shapes. The microchip is composed of approximately 500 discontinuous collagen gel compartments locally patterned in between PDMS pillars, separated by microfluidic

  2. Field-free particle focusing in microfluidic plugs

    National Research Council Canada - National Science Library

    Kurup, G. K; Basu, Amar S

    2012-01-01

    Particle concentration is a key unit operation in biochemical assays. Although there are many techniques for particle concentration in continuous-phase microfluidics, relatively few are available in multiphase (plug-based) microfluidic...

  3. Unilamellar Vesicle Formation and Encapsulation by Microfluidic Jetting

    National Research Council Canada - National Science Library

    Jeanne C. Stachowiak; David L. Richmond; Thomas H. Li; Allen P. Liu; Sapun H. Parekh; Daniel A. Fletcher

    2008-01-01

    ...) using a pulsed microfluidic jet. Akin to blowing a bubble, the microfluidic jet deforms a planar lipid bilayer into a vesicle that is filled with solution from the jet and separates from the planar bilayer...

  4. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Andersen, Karsten Brandt; Dimaki, Maria

    2015-01-01

    The presented microfluidic interconnection system provides an alternative for the individual interfacing of simple microfluidic devices fabricated in polymers such as polymethylmethacrylate, polycarbonate and cyclic olefin polymer. A modification of the device inlet enables the direct attachment...

  5. Isolation of cancer cells by "in situ" microfluidic biofunctionalization protocols

    DEFF Research Database (Denmark)

    De Vitis, Stefania; Matarise, Giuseppina; Pardeo, Francesca

    2014-01-01

    The aim of this work is the development of a microfluidic immunosensor for the immobilization of cancer cells and their separation from healthy cells by using "in situ" microfluidic biofunctionalization protocols. These protocols allow to link antibodies on microfluidic device surfaces and can be...

  6. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, H.

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two

  7. New microfluidic platform for life sciences in South Africa

    CSIR Research Space (South Africa)

    Hugo, S

    2012-10-01

    Full Text Available : Components of the lab-on-a disc platform: microfluidic device and control and testing system Microfluidic device The microfluidic discs are made from polycarbonate and pressure sensitive adhesive (PSA) layers. The channels and chambers of the device...

  8. Mapping of enzyme kinetics on a microfluidic device

    NARCIS (Netherlands)

    Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, Johannes G.E.

    2016-01-01

    A microfluidic platform or “microfluidic mapper” is demonstrated, which in a single experiment performs 36 parallel biochemical reactions with 36 different combinations of two reagents in stepwise concentration gradients. The volume used in each individual reaction was 36 nl. With the microfluidic

  9. Valve Concepts for Microfluidic Cell Handling

    Directory of Open Access Journals (Sweden)

    M. Grabowski

    2010-01-01

    Full Text Available In this paper we present various pneumatically actuated microfluidic valves to enable user-defined fluid management within a microfluidic chip. To identify a feasible valve design, certain valve concepts are simulated in ANSYS to investigate the pressure dependent opening and closing characteristics of each design. The results are verified in a series of tests. Both the microfluidic layer and the pneumatic layer are realized by means of soft-lithographic techniques. In this way, a network of channels is fabricated in photoresist as a molding master. By casting these masters with PDMS (polydimethylsiloxane we get polymeric replicas containing the channel network. After a plasma-enhanced bonding process, the two layers are irreversibly bonded to each other. The bonding is tight for pressures up to 2 bar. The valves are integrated into a microfluidic cell handling system that is designed to manipulate cells in the presence of a liquid reagent (e.g. PEG – polyethylene glycol, for cell fusion. For this purpose a user-defined fluid management system is developed. The first test series with human cell lines show that the microfluidic chip is suitable for accumulating cells within a reaction chamber, where they can be flushed by a liquid medium.

  10. Mechanically activated artificial cell by using microfluidics.

    Science.gov (United States)

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-09-09

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  11. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  12. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL; McMahon, Matthew [Appalachian State University

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  13. Electrowetting dynamics of microfluidic actuation.

    Science.gov (United States)

    Wang, K-L; Jones, T B

    2005-04-26

    When voltage is suddenly applied to vertical, parallel dielectric-coated electrodes dipped into a liquid with finite conductivity, the liquid responds by rising up to reach a new hydrostatic equilibrium height. On the microfluidic scale, the dominating mechanism impeding this electromechanically induced actuation appears to be a dynamic friction force that is directly proportional to the velocity of the contact line moving along the solid surface. This mechanism has its origin in the molecular dynamics of the liquid coming into contact with the solid surface. A simple reduced-order model for the rising column of liquid is used to quantify the magnitude of this frictional effect by providing estimates for the contact line friction coefficient. Above some critical threshold of voltage, the electromechanical force is clamped, presumably by the same mechanism responsible for contact angle saturation and previously reported static height-of-rise limits. The important distinction for the dynamic case is that the onset of the saturation effect is delayed in time until the column has risen more than about halfway to its static equilibrium height.

  14. Compact dynamic microfluidic iris array

    Science.gov (United States)

    Kimmle, Christina; Doering, Christoph; Steuer, Anna; Fouckhardt, Henning

    2011-09-01

    A dynamic microfluidic iris is realized. Light attenuation is achieved by absorption of an opaque liquid (e.g. black ink). The adjustment of the iris diameter is achieved by fluid displacement via a transparent elastomer (silicone) half-sphere. This silicone calotte is hydraulically pressed against a polymethylmethacrylate (PMMA) substrate as the bottom window, such that the opaque liquid is squeezed away, this way opening the iris. With this approach a dynamic range of more than 60 dB can be achieved with response times in the ms to s regime. The design allows the realization of a single iris as well as an iris array. So far the master for the molded silicone structure was fabricated by precision mechanics. The aperture diameter was changed continuously from 0 to 8 mm for a single iris and 0 to 4 mm in case of a 3 x 3 iris array. Moreover, an iris array was combined with a PMMA lens array into a compact module, the distance of both arrays equaling the focal length of the lenses. This way e.g. spatial frequency filter arrays can be realized. The possibility to extend the iris array concept to an array with many elements is demonstrated. Such arrays could be applied e.g. in light-field cameras.

  15. Fabrication of microfluidic integrated biosensor

    Science.gov (United States)

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    An event of miniaturizing for sensor systems to carry out biological diagnostics are gaining wade spread acceptance. The system may contain several different sensor units for the detection of specific analyte, the analyte to be detected might be any kind of biological molecules (DNA, mRNA or proteins) or chemical substances. In most cases, the detection is based on receptor-ligand binding like DNA hybridization or antibody-antigen interaction, achieving this on a nanostructure. DNA or protein must be attached to certain locations within the structure. Critical for this is to have a robust binding chemistry to the surface in the microstructure. Here we successfully designed and fabricated microfluidics element for passive fluid delivery into polysilicon Nanowire sensing domain, we further demonstrated a very simple and effective way of integrating the two devices to give full functionalities of laboratory on a single chip. The sensing element was successfully surface modified and tested on real biomedical clinical sample for evaluation and validation.

  16. Droplet Microfluidics for Virus Discovery

    Science.gov (United States)

    Rotem, Assaf; Cockrell, Shelley; Guo, Mira; Pipas, James; Weitz, David

    2012-02-01

    The ability to detect, isolate, and characterize an infectious agent is important for diagnosing and curing infectious diseases. Detecting new viral diseases is a challenge because the number of virus particles is often low and/or localized to a small subset of cells. Even if a new virus is detected, it is difficult to isolate it from clinical or environmental samples where multiple viruses are present each with very different properties. Isolation is crucial for whole genome sequencing because reconstructing a genome from fragments of many different genomes is practically impossible. We present a Droplet Microfluidics platform that can detect, isolate and sequence single viral genomes from complex samples containing mixtures of many viruses. We use metagenomic information about the sample of mixed viruses to select a short genomic sequence whose genome we are interested in characterizing. We then encapsulate single virions from the same sample in picoliter volume droplets and screen for successful PCR amplification of the sequence of interest. The selected drops are pooled and their contents sequenced to reconstruct the genome of interest. This method provides a general tool for detecting, isolating and sequencing genetic elements in clinical and environmental samples.

  17. Particle Image Velocimetry for Microfluidics

    Science.gov (United States)

    Meinhart, Carl; Chiu, Richard; Santiago, Juan

    1997-11-01

    A micro PIV system is being developed to measure velocity vectors with spatial resolutions of the order of several microns. Advancements in microfabrication technologies have facilitated the development of many new microfluidic devices. These devices present new and challenging fluid problems at the micro-scale, which are not present at the macro-scale. In general, analysis of fluid problems at the micron-scale have often been limited to measuring only bulk properties of the flow field. Lanzillotto et al. (1996) have used x-ray tomography to obtain whole-field velocity measurements in 500 - 1000 micron diameter tubes. They report velocity-vector spacings of roughly 40 microns. The current research is an attempt to extend the super-resolution PIV technique of Keane et al. (1995), to address fluid mechanics problems in microfabricated devices. Here, 50 - 200 nm diameter particles are imaged using an epi-fluorescent microscope and a scientific-grade CCD camera. Particles are illuminated by a continuously emitting Mercury arc lamp or by a pulsed Nd:YAG laser. The spatial resolution of optical techniques are fundamentally limited by the diffraction of light. We will discuss the ultimate spatial and temporal resolution limits of PIV for micro-flows, and report recent experimental.

  18. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  19. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  20. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    Science.gov (United States)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  1. Design and Testing of Digital Microfluidic Biochips

    CERN Document Server

    Zhao, Yang

    2013-01-01

    This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  

  2. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    . A second practical challenge users face stems from the peripheral equipment, e.g. pumps, required to drive microfluidic devices. This equipment is often costly and bulky and results in limitations and restrictions on microfluidic device operation, such as the number of channels or devices which can...... be actuated or microscopic observation. To address the above issues interconnection and pumping solutions were developed. Methods for creating multiple, aligned, parallel and planar interconnections well suited to microscopy are described. Both reusable, non‐integrated, and permanent, integrated...... interconnection solutions are presented. The construction of twelve and eight channel miniaturized, mechanically actuated peristaltic pumps is also described. The small footprint of the pumps allows their placement adjacent to microfluidic devices and on microscope stages. The reusable, non...

  3. Molecular Imaging Probe Development using Microfluidics

    Science.gov (United States)

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  4. 3D-printed microfluidic automation.

    Science.gov (United States)

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.

  5. Temperature Sensing in Modular Microfluidic Architectures

    Directory of Open Access Journals (Sweden)

    Krisna C. Bhargava

    2016-01-01

    Full Text Available A discrete microfluidic element with integrated thermal sensor was fabricated and demonstrated as an effective probe for process monitoring and prototyping. Elements were constructed using stereolithography and market-available glass-bodied thermistors within the modular, standardized framework of previous discrete microfluidic elements demonstrated in the literature. Flow rate-dependent response due to sensor self-heating and microchannel heating and cooling was characterized and shown to be linear in typical laboratory conditions. An acid-base neutralization reaction was performed in a continuous flow setting to demonstrate applicability in process management: the ratio of solution flow rates was varied to locate the equivalence point in a titration, closely matching expected results. This element potentially enables complex, three-dimensional microfluidic architectures with real-time temperature feedback and flow rate sensing, without application specificity or restriction to planar channel routing formats.

  6. Recent Advancements towards Full-Systems Microfluidics

    Directory of Open Access Journals (Sweden)

    Amine Miled

    2017-07-01

    Full Text Available Microfluidics is quickly becoming a key technology in an expanding range of fields, such as medical sciences, biosensing, bioactuation, chemical synthesis, and more. This is helping its transformation from a promising R&D tool to commercially viable technology. Fuelling this expansion is the intensified focus on automation and enhanced functionality through integration of complex electrical control, mechanical properties, in situ sensing and flow control. Here we highlight recent contributions to the Sensors Special Issue series called “Microfluidics-Based Microsystem Integration Research” under the following categories: (i Device fabrication to support complex functionality; (ii New methods for flow control and mixing; (iii Towards routine analysis and point of care applications; (iv In situ characterization; and (v Plug and play microfluidics.

  7. A self-triggered picoinjector in microfluidics

    Directory of Open Access Journals (Sweden)

    Yiming Yang

    2016-12-01

    Full Text Available Droplet-based microfluidics has recently emerged as a potential platform for studies of single-cell, directed evolution, and genetic sequencing. In droplet-based microfluidics, adding reagents into drops is one of the most important functions. In this paper, we develop a new self-triggered picoinjector to add controlled volumes of reagent into droplets at kilohertz rates. In the picoinjector, the reagent injecting is triggered by the coming droplet itself, without needing a droplet detection module. Meanwhile, the dosing volume can be precisely controlled. These features make the system more practical and reliable. We expect the new picoinjector will find important applications of droplet-based microfluidics in automated biological assay, directed evolution, enzyme assay, and so on.

  8. A self-triggered picoinjector in microfluidics

    Science.gov (United States)

    Yang, Yiming; Liu, Songsheng; Jia, Chunping; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong; Zhou, Hongbo

    2016-12-01

    Droplet-based microfluidics has recently emerged as a potential platform for studies of single-cell, directed evolution, and genetic sequencing. In droplet-based microfluidics, adding reagents into drops is one of the most important functions. In this paper, we develop a new self-triggered picoinjector to add controlled volumes of reagent into droplets at kilohertz rates. In the picoinjector, the reagent injecting is triggered by the coming droplet itself, without needing a droplet detection module. Meanwhile, the dosing volume can be precisely controlled. These features make the system more practical and reliable. We expect the new picoinjector will find important applications of droplet-based microfluidics in automated biological assay, directed evolution, enzyme assay, and so on.

  9. Recent Advancements towards Full-System Microfluidics.

    Science.gov (United States)

    Miled, Amine; Greener, Jesse

    2017-07-25

    Microfluidics is quickly becoming a key technology in an expanding range of fields, such as medical sciences, biosensing, bioactuation, chemical synthesis, and more. This is helping its transformation from a promising R&D tool to commercially viable technology. Fuelling this expansion is the intensified focus on automation and enhanced functionality through integration of complex electrical control, mechanical properties, in situ sensing and flow control. Here we highlight recent contributions to the Sensors Special Issue series called "Microfluidics-Based Microsystem Integration Research" under the following categories: (i) Device fabrication to support complex functionality; (ii) New methods for flow control and mixing; (iii) Towards routine analysis and point of care applications; (iv) In situ characterization; and (v) Plug and play microfluidics.

  10. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.

    Science.gov (United States)

    Kumar, Suresh

    2013-12-01

    Burning fossil-fuels to meet the global energy requirements by human being has intensified the concerns of increasing concentrations of greenhouse gases. Therefore, serious efforts are required to develop nonfossil-based renewable energy sources. Plants are more efficient in utilizing solar energy to convert it into biomass which can be used as feedstocks for biofuel production. Hence with the increasing demands of energy and the needs of cost-effective, sustainable production of fuels, it has become necessary to switch over to plant biomass as a renewable source of energy. Biofuels derived from more sustainable biological materials such as lignocellulosic plant residues, considered as second generation biofuels, are more dependable. However, there are technical challenges such as pretreatment and hydrolysis of lignocellulosic biomass to convert it into fermentable sugars. Plant genetic engineering has already proven its potential in modifying cell wall composition of plants for enhancing the efficiency of biofuel production. Interest and potential in the area are very much evident from the growing number of patents in the recent years on the subject. In this review, recent trends in genetic engineering of energy crops for biofuel production have been introduced, and strategies for the future developments have been discussed.

  11. Preparation of nanoparticles by continuous-flow microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, Andreas, E-mail: andreas.jahn@nist.gov; Reiner, Joseph E.; Vreeland, Wyatt N. [National Institute of Standards and Technology (United States); DeVoe, Don L. [University of Maryland (United States); Locascio, Laurie E.; Gaitan, Michael [National Institute of Standards and Technology (United States)

    2008-08-15

    We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

  12. Liquid biofuels from blue biomass; Macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Kadar, Z.; Jensen, Annette Eva; Bangsoe Nielsen, H.; Ejbye Schmidt, J.

    2011-05-15

    Marine (blue) biomasses, such as macroalgaes, represent a huge unexploited amount of biomass. With their various chemical compositions, macroalgaes can be a potential substrate for food, feed, biomaterials, pharmaceuticals, health care products and also for bioenergy. Algae use seawater as a growth medium, light as energy source and they capture CO{sub 2} for the synthesis of new organic material, thus can grow on non-agricultural land, without increasing food prices, or using fresh water. Due to all these advantages in addition to very high biomass yield with high carbohydrate content, macroalgaes can be the well suited candidates as feedstock for biofuel production in the future. The aim of our studies is to examine the possibility producing liquid biofuel (ethanol and butanol) from macroalgaes. (Author)

  13. Microalgae for Biofuels and Animal Feeds

    Directory of Open Access Journals (Sweden)

    John Benemann

    2013-11-01

    Full Text Available The potential of microalgae biomass production for low-cost commodities—biofuels and animal feeds—using sunlight and CO2 is reviewed. Microalgae are currently cultivated in relatively small-scale systems, mainly for high value human nutritional products. For commodities, production costs must be decreased by an order of magnitude, and high productivity algal strains must be developed that can be stably cultivated in large open ponds and harvested by low-cost processes. For animal feeds, the algal biomass must be high in digestible protein and long-chain omega-3 fatty acids that can substitute for fish meal and fish oils. Biofuels will require a high content of vegetable oils (preferably triglycerides, hydrocarbons or fermentable carbohydrates. Many different cultivation systems, algal species, harvesting methods, and biomass processing technologies are being developed worldwide. However, only raceway-type open pond systems are suitable for the production of low-cost commodities.

  14. Engineering algae for biohydrogen and biofuel production.

    Science.gov (United States)

    Beer, Laura L; Boyd, Eric S; Peters, John W; Posewitz, Matthew C

    2009-06-01

    There is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression. Collectively, the progress that has been realized in these areas is rapidly advancing our ability to genetically optimize the production of targeted biofuels.

  15. Cyanofuels: biofuels from cyanobacteria. Reality and perspectives.

    Science.gov (United States)

    Sarsekeyeva, Fariza; Zayadan, Bolatkhan K; Usserbaeva, Aizhan; Bedbenov, Vladimir S; Sinetova, Maria A; Los, Dmitry A

    2015-08-01

    Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth's oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels-biofuels produced from cyanobacterial biomass.

  16. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  17. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  18. Climate changes, biofuels and the sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Zidansek, Aleksander; Blinc, Robert [Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Jeglic, Anton [Faculty of Electrical Engineering, University of Ljubljana (Slovenia); Kabashi, Skender; Bekteshi, Sadik [Faculty of Mathematical and Natural Sciences, University of Prishtina, Kosovo (RS); Slaus, Ivo [Ruder Boskovic Institute, Bijenicka 54, Zagreb (Croatia)

    2009-08-15

    Climate change is one of the most dangerous problems of the contemporary world. We can either adapt to the corresponding changes or try to reduce their impact by significantly reducing fossil fuel burning. A hydrogen-based economy using energy from biomass, solar, wind and other renewable sources and/or nuclear energy seems to be a viable alternative. Here we analyse the possibilities of the biofuels to replace fossil fuels and their potential to contribute to hydrogen economy. (author)

  19. Pretreatment techniques for biofuels and biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen (ed.) [Chinese Academy of Sciences, Kunming, YN (China). Xishuangbanna Tropical Botonical Garden

    2013-02-01

    The first book focused on pretreatment techniques for biofuels contributed by the world's leading experts. Extensively covers the different types of biomass, various pretreatment approaches and methods that show the subsequent production of biofuels and chemicals. In addition to traditional pretreatment methods, novel techniques are also introduced and discussed. An accessible reference work for students, researchers, academicians and industrialists in biorefineries. This book includes 19 chapters contributed by the world's leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids. This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries.

  20. Integrated Microfluidic Sensor System with Magnetostrictive Resonators

    KAUST Repository

    Liang, Cai

    2011-12-08

    The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (.mu.TAS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.

  1. Recent Advances in Applications of Droplet Microfluidics

    Directory of Open Access Journals (Sweden)

    Wei-Lung Chou

    2015-09-01

    Full Text Available Droplet-based microfluidics is a colloidal and interfacial system that has rapidly progressed in the past decade because of the advantages of low fabrication costs, small sample volumes, reduced analysis durations, high-throughput analysis with exceptional sensitivity, enhanced operational flexibility, and facile automation. This technology has emerged as a new tool for many recently used applications in molecular detection, imaging, drug delivery, diagnostics, cell biology and other fields. Herein, we review recent applications of droplet microfluidics proposed since 2013.

  2. Diffusion dynamics in microfluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  3. From Single Microparticles to Microfluidic Emulsification

    DEFF Research Database (Denmark)

    Kinoshita, K.; Ortiz, Elisa Parra; Hussein, Abdirazak

    2016-01-01

    The micropipette manipulation technique is capable of making fundamental single particle measurements and analyses. This information is critical for establishing processing parameters in systems such as microfluidics and homogenization. To demonstrate what can be achieved at the single particle......) micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres...

  4. New Insights in Polymer-Biofuels Interaction

    Directory of Open Access Journals (Sweden)

    Richaud Emmanuel

    2015-02-01

    Full Text Available This paper deals with polymer-fuel interaction focusing on specific effects of biofuels on polyethylene (PE in automotive applications. The practical objective is to develop a predictable approach for durability of polyethylene tanks in contact of ethanol based or biofuel based fuels. In the case of ethanol, the main consequence on PE durability is a reduction of the rate of stabilizer extraction; this latter phenomenon can be modeled by first order kinetics with a rate constant that obeys the Arrhenius equation. Concerning biodiesels, the study was focused on soy and rapeseed methyl ester which were compared to methyl oleate and methyl linoleate used as model compounds. Here, PE-fuel interactions can be described as well as physical interaction, linked to the oil penetration into the polymer, as chemical interaction linked to an eventual co-oxidation of PE and oil. Both aspects were investigated. Concerning biofuel transport in PE, it appeared that the oil diffusivity depends only of temperature and oil molar mass. Some aspects of the temperature dependence of the oil solubility in PE are discussed. About chemical interaction between oil and PE, it was put in evidence that unsaturated fatty esters promote and accelerate PE oxidation. A co-oxidation kinetic model was proposed to describe this process.

  5. Estimating Nitrogen Load Resulting from Biofuel Mandates

    Directory of Open Access Journals (Sweden)

    Mohammad Alshawaf

    2016-05-01

    Full Text Available The Energy Policy Act of 2005 and the Energy Independence and Security Act (EISA of 2007 were enacted to reduce the U.S. dependency on foreign oil by increasing the use of biofuels. The increased demand for biofuels from corn and soybeans could result in an increase of nitrogen flux if not managed properly. The objectives of this study are to estimate nitrogen flux from energy crop production and to identify the catchment areas with high nitrogen flux. The results show that biofuel production can result in an increase of nitrogen flux to the northern Gulf of Mexico from 270 to 1742 thousand metric tons. Using all cellulosic (hay ethanol or biodiesel to meet the 2022 mandate is expected to reduce nitrogen flux; however, it requires approximately 25% more land when compared to other scenarios. Producing ethanol from switchgrass rather than hay results in three-times more nitrogen flux, but requires 43% less land. Using corn ethanol for 2022 mandates is expected to have double the nitrogen flux when compared to the EISA-specified 2022 scenario; however, it will require less land area. Shifting the U.S. energy supply from foreign oil to the Midwest cannot occur without economic and environmental impacts, which could potentially lead to more eutrophication and hypoxia.

  6. Application of Electroporation Technique in Biofuel Processing

    Directory of Open Access Journals (Sweden)

    Yousuf Abu

    2017-01-01

    Full Text Available Biofuels production is mostly oriented with fermentation process, which requires fermentable sugar as nutrient for microbial growth. Lignocellulosic biomass (LCB represents the most attractive, low-cost feedstock for biofuel production, it is now arousing great interest. The cellulose that is embedded in the lignin matrix has an insoluble, highly-crystalline structure, so it is difficult to hydrolyze into fermentable sugar or cell protein. On the other hand, microbial lipid has been studying as substitute of plant oils or animal fat to produce biodiesel. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae investing minimum energy.Electroporation (EP of LCB results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. EP is required to alter the size and structure of the biomass, to reduce the cellulose crystallinity, and increase their porosity as well as chemical composition, so that the hydrolysis of the carbohydrate fraction to monomeric sugars can be achieved rapidly and with greater yields. Furthermore, EP has a great potential to disrupt the microbial cell walls within few seconds to bring out the intracellular materials (lipid to the solution. Therefore, this study aims to describe the challenges and prospect of application of EP technique in biofuels processing.

  7. Plant biotechnology for lignocellulosic biofuel production.

    Science.gov (United States)

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. A viable technology to generate third-generation biofuel

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving; Nigam, Poonam Singh

    2011-01-01

    First generation biofuels are commercialized at large as the production technologies are well developed. However, to grow the raw materials, there is a great need to compromise with food security, which made first generation biofuels not so much promising. The second generation of biofuels does...... not have direct competition with food but requires several energy intensive processes to produce them and also increase the land use change, which reduces its environmental and economical feasibility. The third generation biofuels production avoids issues with first and second generation biofuels, viz...... of organic waste and carbon dioxide in flue gases for the production of biomass further increases the sustainability of third generation biofuels, as it does minimize greenhouse gases emission and disposal problems....

  9. Biofuels and Their Production Through Different Catalytic Routes

    Directory of Open Access Journals (Sweden)

    S. Biswas

    2017-04-01

    Full Text Available This paper presents a review of the literature available on biofuels production through different chemical catalytic routes. Biofuels are promising alternative to the fast-depleting fossil fuel and oil reserves. In consideration of the existing environmental issues, such as greenhouse effect and global warming, researchers are now interested in biofuels production from biomass. Biofuels are produced from renewable and sustainable bioresources, which are available globally in the form of residual agricultural biomass and wastes. However, the biofuels production process through chemical transformation could be very expensive and uneconomical for large-scale commercial supply. Hence, there is a continuous need for improvisation on the research on this topic. This review broadly describes the different types of biofuels and the processes for their production through catalytic routes.

  10. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  11. Biofuels: stakes, perspectives and researches; Biocarburants: enjeux, perspectives et recherches

    Energy Technology Data Exchange (ETDEWEB)

    Appert, O.; Ballerin, D.; Montagne, X.

    2004-07-01

    The French institute of petroleum (IFP) is a major intervener of the biofuels sector, from the production to the end-use in engines. In this press conference, the IFP takes stock of the technological, environmental and economical stakes of today and future biofuel production processes and of their impact on transports. This document gathers 2 presentations dealing with: IFP's research strategy on biofuels (transparencies: context; today's processes: ethanol, ETBE, bio-diesel; tomorrows processes: biomass to liquid; perspectives), bio-diesel fuel: the Axens process selected by Diester Industrie company for its Sete site project of bio-diesel production unit. The researches carried out at the IFP on biofuels and biomass are summarized in an appendix: advantage and drawbacks of biofuels, the ethanol fuel industry, the bio-diesel industry, biomass to liquid fuels, French coordinated research program, statistical data of biofuel consumption in France, Spain and Germany. (J.S.)

  12. Biomass, biogas and biofuels; Biomasse, biogaz et biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Colonna, P. [Institut National de Recherches Agronomique (INRA), 45 - Ardon-Orleans (France)

    2011-05-15

    This article reviews the different ways to produce biofuels. It appears that there are 3 generations of biofuels. The first generation was based on the use of the energetic reserves of the plants for instance sugar from beetroot or starch from cereals or oil from oleaginous plants. The second generation is based on a more complete use of the plant, the main constituents of the plant: cellulose and lignin are turned into energy. The third generation of biofuels relies on the use of energy plants and algae. The second generation of biofuels reduces drastically the competition between an alimentary use and a non-alimentary use of plants. In 2008 the production of biofuels reached 43 Mtep which represents only 2% of all the energy used in the transport sector. The international agency for energy expects that the production of biofuels would be multiplied by a factor 6 (even 10 if inciting measures are taken) by 2030. (A.C.)

  13. Engineering microbes for tolerance to next-generation biofuels

    Directory of Open Access Journals (Sweden)

    Dunlop Mary J

    2011-09-01

    Full Text Available Abstract A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.

  14. Reassessing Escherichia coli as a cell factory for biofuel production.

    Science.gov (United States)

    Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won

    2017-06-01

    Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microfluidic Apps for off-the-shelf instruments.

    Science.gov (United States)

    Mark, Daniel; von Stetten, Felix; Zengerle, Roland

    2012-07-21

    Within the last decade a huge increase in research activity in microfluidics could be observed. However, despite several commercial success stories, microfluidic chips are still not sold in high numbers in mass markets so far. Here we promote a new concept that could be an alternative approach to commercialization: designing microfluidic chips for existing off-the-shelf instruments. Such "Microfluidic Apps" could significantly lower market entry barriers and provide many advantages: developers of microfluidic chips make use of existing equipment or platforms and do not have to develop instruments from scratch; end-users can profit from microfluidics without the need to invest in new equipment; instrument manufacturers benefit from an expanded customer base due to the new applications that can be implemented in their instruments. Microfluidic Apps could be considered as low-cost disposables which can easily be distributed globally via web-shops. Therefore they could be a door-opener for high-volume mass markets.

  16. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic operations

    CSIR Research Space (South Africa)

    Hugo, S

    2013-10-01

    Full Text Available particularly attractive solution for implementing microfluidic operations, as pumps, valves and other fluidic operations can be achieved primarily using centrifugal forces, with only a small motor required to power the system. Numerous devices can...

  17. Microfluidics' great promise for Biology - Microfluidics as a new engine for the molecular sciences

    KAUST Repository

    Kodzius, Rimantas

    2010-06-04

    History of the Life Sciences Origins of life Discoveries and instrumentation The power of genetic variation Diagnostics based on DNA/ protein variation Genomic scanning providers DNA sequencing companies Microfluidics story Commercial products available P

  18. Development & Characterization of Multifunctional Microfluidic Materials

    Science.gov (United States)

    Ucar, Ahmet Burak

    The field of microfluidics has been mostly investigated for miniaturized lab on a chip devices for analytical and clinical applications. However, there is an emerging class of "smart" microfluidic materials, combining microfluidics with soft polymers to yield new functionalities. The best inspiration for such materials found in nature is skin, whose functions are maintained and controlled by a vascular "microfluidic" network. We report here the development and characterization of a few new classes of microfluidic materials. First, we introduced microfluidic materials that can change their stiffness on demand. These materials were based on an engineered microchannel network embedded into a matrix of polydimethylsiloxane (PDMS), whose channels were filled with a liquid photoresist (SU- 8). The elastomer filled with the photoresist was initially soft. The materials were shaped into a desired geometry and then exposed to UV-light. Once photocured, the material preserved the defined shape and it could be bent, twisted or stretched with a very high recoverable strain. As soon as the external force was removed the material returned back to its predefined shape. Thus, the polymerized SU-8 acted as the 'endoskeleton' of the microfluidic network, which drastically increased the composite's elastic and bending moduli. Second, we demonstrated a class of simple and versatile soft microfluidic materials that can be turned optically transparent or colored on demand. These materials were made in the form of flexible sheets containing a microchannel network embedded in PDMS, similar to the photocurable materials. However, this time the channels were filled with a glycerolwater mixture, whose refractive index was matched with that of the PDMS matrix. By pumping such dye solutions into the channel network and consecutively replacing the medium, we showed that we can control the material's color and light transmittance in the visible and near-infrared regions, which can be used for

  19. Creating a Collection of Microalgae for use in Biofuels Research

    Science.gov (United States)

    2008-06-25

    Dr. J. Polle – Brooklyn College of CUNY -1- Final Report for the Project: CREATING A COLLECTION OF MICROALGAE FOR USE IN BIOFUELS RESEARCH...For both direct and metabolic engineering approaches to improved biofuels production, it is vital to isolate a large variety of microalgae for...create a culture collection as a resource of diverse microalgae for biofuels research. To this end, from about 50 different habitats novel microalgae

  20. The Navy Biofuel Initiative Under the Defense Production Act

    Science.gov (United States)

    2012-06-22

    Renewable Fuel Standard (RFS), by Brent D. Yacobucci. For more information on algae -based biofuel , a commonly mentioned source of potential bio-jet fuel, see...ethanol (e.g., algae - based biofuel , biomass-based diesel, cellulosic ethanol).59 There are three principal federal agencies involved with advanced...RFS): Overview and Issues, by Randy Schnepf and Brent D. Yacobucci. For more information on algae - based biofuels , see CRS Report R42122, Algae’s

  1. Assessing the Economic, Environmental and Social Sustainability of Biofuel Policies

    OpenAIRE

    Mela, Giulio

    2013-01-01

    Biofuels started to raise interest almost 40 years ago, when the Arab oil embargo pushed oil prices up and therefore spurred the research towards new forms of energy. Nevertheless, biofuel production has not really taken off until recently, when the combination of high oil prices, concern about greenhouse gas emissions, and the progressive reduction of oil reserves induced many countries across the world to implement policies encouraging biofuels production. At the beginning of the 2000s, ...

  2. Limitation of Biofuel Production in Europe from the Forest Market

    Science.gov (United States)

    Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg

    2013-04-01

    The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.

  3. Advanced biofuels: Future perspectives from an expert elicitation survey

    OpenAIRE

    Fiorese, Giulia; Catenacci, Michela; Verdolini, Elena; Bosetti, Valentina

    2012-01-01

    This paper illustrates the main results of an expert elicitation survey on advanced (second and third generation) biofuel technologies. The survey focuses on eliciting probabilistic information on the future costs of advanced biofuels and on the potential role of RD&D (Research, Development and Demonstration) efforts in reducing these costs and in supporting the deployment of biofuels in OECD and non-OECD countries. Fifteen leading experts from different EU member states provide insights on t...

  4. 2016 National Algal Biofuels Technology Review Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  5. Synthetic Fuels and Biofuels: Questionable Replacements for Petroleum

    Science.gov (United States)

    2008-12-31

    Stability of Petroleum and Fischer-Tropsch Derived Fuels and Soy- Biofuel Blends. Fuel Gravimetric Solids in mg/100 mL fuel 100 mL Petroleum...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--08-9168 Synthetic Fuels and Biofuels : Questionable Replacements for Petroleum...18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Synthetic Fuels and Biofuels : Questionable Replacements for Petroleum Heather D. Willauer, George W

  6. Ghana's biofuels policy: challenges and the way forward

    OpenAIRE

    Edward Antwi, Edem Cudjoe Bensah, David Ato Quansah, Richard Arthur, Julius Ahiekpor

    2010-01-01

    Liquid biofuels have come up strongly as possible substitute to conventional fossils fuels and woodfuels apparently because of its perceived environmental benefit, sustainability and recent hikes in petroleum fuel prices. These have led most countries to include biofuels in their energy mix to mitigate climate change effect caused by petroleum fuels and also to ensure energy security. Ghana as a developing country has also identified the potential of biofuels in her energy mix by setting some...

  7. Biofuel Production: Considerations for USACE Civil Works Business Lines

    Science.gov (United States)

    2014-12-01

    ER D C/ CE RL T R- 14 -3 2 USACE Institute of Water Resources Global Change Sustainability Program Biofuel Production Considerations... Biofuel Production Considerations for USACE Civil Works Business Lines Natalie R. Myers and Dick L. Gebhart Construction Engineering Research...that include the production of 36 billion gallons of biofuels by 2022, with 21 billion gallons from non-corn sources. To meet the congressionally

  8. Optimal Localization of Biofuel Production on a European Scale

    OpenAIRE

    Wetterlund, Elisabeth

    2010-01-01

    Second generation biofuels use non-food lignocellulosic feedstock, for example waste or forest residues, and have in general lower environmental impact than first generation biofuels. In order to reach the 2020 target of 10% renewable energy in transport it will likely be necessary to have a share of at least 3% second generation fuels in the EU fuel mix. However, second generation biofuel production plants will typically need to be very large which puts significant demand on the supply chain...

  9. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    OpenAIRE

    Jian Chen; Chengcheng Xue; Yang Zhao; Deyong Chen; Min-Hsien Wu; Junbo Wang

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance ...

  10. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  11. [Progress in synthesis technologies and application of aviation biofuels].

    Science.gov (United States)

    Sun, Xiaoying; Liu, Xiang; Zhao, Xuebing; Yang, Ming; Liu, Dehua

    2013-03-01

    Development of aviation biofuels has attracted great attention worldwide because that the shortage of fossil resources has become more and more serious. In the present paper, the development background, synthesis technologies, current application status and existing problems of aviation biofuels were reviewed. Several preparation routes of aviation biofuels were described, including Fischer-Tropsch process, catalytic hydrogenation and catalytic cracking of bio-oil. The status of flight tests and commercial operation were also introduced. Finally the problems for development and application of aviation biofuels were stated, and some accommodation were proposed.

  12. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  13. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  14. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  15. Public attitudes toward political and technological options for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Delshad, Ashlie B.; Raymond, Leigh; Sawicki, Vanessa; Wegener, Duane T. [Purdue University, 100 N. University St., West Lafayette, IN 47907-2098 (United States)

    2010-07-15

    This paper explores detailed public attitudes regarding the expanding range of biofuels technologies and policy options. Subjects from 34 in-depth focus groups in central Indiana were fairly knowledgeable about biofuels technologies, but uninformed about biofuels policies despite being from a state where biofuels are a salient political issue. A narrow majority was supportive of biofuels in general, but expressed greater enthusiasm about 'second generation' biofuels. Subject beliefs about biofuels' economic and environmental impacts were most important in shaping these opinions, rather than concerns about energy independence or other issues. In terms of policy options, subjects were most supportive of an alternative fuels standard and least supportive of a fixed subsidy and a cap and trade policy. In contrast to arguments about technologies, participants primarily framed their attitudes toward policies in terms of fairness. Although discussion did not substantially change aggregate preferences for most policies, it did increase support significantly for at least one policy proposal - a variable subsidy for ethanol. It is particularly noteworthy that subjects generally did not support the most common biofuel technology - corn-based ethanol - or the most prominent biofuels policy option - the fixed subsidy - despite residing in a state hosting a strong corn industry and staunch political advocates for both positions. (author)

  16. Reversing methanogenesis to capture methane for liquid biofuel precursors

    National Research Council Canada - National Science Library

    Soo, Valerie W C; McAnulty, Michael J; Tripathi, Arti; Zhu, Fayin; Zhang, Limin; Hatzakis, Emmanuel; Smith, Philip B; Agrawal, Saumya; Nazem-Bokaee, Hadi; Gopalakrishnan, Saratram; Salis, Howard M; Ferry, James G; Maranas, Costas D; Patterson, Andrew D; Wood, Thomas K

    2016-01-01

    Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuel...

  17. Biofuel co-product uses for pavement geo-materials stabilization : final report, April 2010.

    Science.gov (United States)

    2010-04-01

    The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant : biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin deriv...

  18. Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation.

    Science.gov (United States)

    Heeres, Arjan S; Schroën, Karin; Heijnen, Joseph J; van der Wielen, Luuk A M; Cuellar, Maria C

    2015-08-01

    Developments in synthetic biology enabled the microbial production of long chain hydrocarbons, which can be used as advanced biofuels in aviation or transportation. Currently, these fuels are not economically competitive due to their production costs. The current process offers room for improvement: by utilizing lignocellulosic feedstock, increasing microbial yields, and using cheaper process technology. Gravity separation is an example of the latter, for which droplet growth by coalescence is crucial. The aim of this study was to study the effect of fermentation broth components on droplet coalescence. Droplet coalescence was measured using two setups: a microfluidic chip and regular laboratory scale stirred vessel (2 L). Some fermentation broth components had a large impact on droplet coalescence. Especially components present in hydrolysed cellulosic biomass and mannoproteins from the yeast cell wall retard coalescence. To achieve a technically feasible gravity separation that can be integrated with the fermentation, the negative effects of these components on coalescence should be minimized. This could be achieved by redesign of the fermentation medium or adjusting the fermentation conditions, aiming to minimize the release of surface active components by the microorganisms. This way, another step can be made towards economically feasible advanced biofuel production. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  19. Microfluidic desalination techniques and their potential applications

    NARCIS (Netherlands)

    Roelofs, Susan Helena; van den Berg, Albert; Odijk, Mathieu

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination

  20. Differential white cell count by centrifugal microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  1. Porous Microfluidic Devices - Fabrication adn Applications

    NARCIS (Netherlands)

    de Jong, J.; Geerken, M.J.; Lammertink, Rob G.H.; Wessling, Matthias

    2007-01-01

    The major part of microfluidic devices nowadays consists of a dense material that defines the fluidic structure. A generic fabrication method enabling the production of completely porous micro devices with user-defined channel networks is developed. The channel walls can be used as a (selective)

  2. Integrated microfluidic biochips for DNA microarray analysis.

    Science.gov (United States)

    Liu, Robin Hui; Dill, Kilian; Fuji, H Sho; McShea, Andy

    2006-03-01

    A fully integrated and self-contained microfluidic biochip device has been developed to automate the fluidic handling steps required to perform a gene expression study of the human leukemia cell line (K-562). The device consists of a DNA microarray semiconductor chip with 12,000 features and a microfluidic cartridge that consists of microfluidic pumps, mixers, valves, fluid channels and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. A single-color transcriptional analysis of K-562 cells with a series of calibration controls (spiked-in controls) was performed to characterize this new platform with regard to sensitivity, specificity and dynamic range. The device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than 3 orders of magnitude. Experiments also demonstrated that chip-to-chip variability was low, indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis.

  3. Inventions Utilizing Microfluidics and Colloidal Particles

    Science.gov (United States)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  4. Microfluidic manipulation with artificial/bioinspired cilia

    NARCIS (Netherlands)

    den Toonder, Jaap M. J.; Onck, Patrick R.

    A recent development, inspired by nature, is the use of 'artificial cilia' to create pumping and/or mixing in microfluidic devices. Cilia are small hairs that can be found in biology and are used for (fluid) actuation and sensing. Microscopic actuators resembling cilia, actuated to move under the

  5. Microfluidics with ultrasound-driven bubbles

    NARCIS (Netherlands)

    Marmottant, P.; Marmottant, P.G.M.; Raven, J.P.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Hilgenfeldt, Sascha; Hilgenfeldt, S.

    2006-01-01

    Microstreaming from oscillating bubbles is known to induce vigorous vortex flow. Here we show how to harness the power of bubble streaming in an experiment to achieve directed transport flow of high velocity, allowing design and manufacture of microfluidic MEMS devices. By combining oscillating

  6. Review of Recent Metamaterial Microfluidic Sensors.

    Science.gov (United States)

    Salim, Ahmed; Lim, Sungjoon

    2018-01-15

    Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  7. Droplet Manipulations in Two Phase Flow Microfluidics

    NARCIS (Netherlands)

    Pit, Arjen; Duits, Michael H.G.; Mugele, Friedrich Gunther

    2015-01-01

    Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of

  8. Biodegradable Microfluidic Scaffolds for Vascular Tissue Engineering

    Science.gov (United States)

    2005-01-01

    bonding multiple microfluidic layers. Introduction Overcoming the problems of nutrient transport is critical in the design of tissue engineering...an intrinsic vascular network within these scaffolds. More specifically, the application of microfabrication and BioMEMS technology has been focused

  9. A Centrifugal Microfluidic Platform Using SLM Extraction

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Burger, Robert; Emnéus, Jenny

    2016-01-01

    Here we present a pump-less microfluidic pla>orm which performs sample clean-up and enrichment in a single step, by integraAng Supported Liquid Membrane (SLM) extracAon. Our pla>orm offers a simple, yet very efficient, method for achieving sample pre-treatment and enrichment of rare analytes...

  10. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bioanalysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  11. Recent Advances in Magnetic Microfluidic Biosensors

    Directory of Open Access Journals (Sweden)

    Ioanna Giouroudi

    2017-07-01

    Full Text Available The development of portable biosening devices for the detection of biological entities such as biomolecules, pathogens, and cells has become extremely significant over the past years. Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale. The miniaturization process was made possible with the birth of microfluidics, a technology that could confine, manipulate, and mix very small volumes of liquids on devices integrated on standard silicon technology chips. Such devices are then directly translating the presence of these entities into an electronic signal that can be read out with a portable instrumentation. For the aforementioned tasks, the use of magnetic markers (magnetic particles—MPs—functionalized with ligands in combination with the application of magnetic fields is being strongly investigated by research groups worldwide. The greatest merits of using magnetic fields are that they can be applied either externally or from integrated microconductors and they can be well-tuned by adjusting the applied current on the microconductors. Moreover, the magnetic markers can be manipulated inside microfluidic channels by high gradient magnetic fields that can in turn be detected by magnetic sensors. All the above make this technology an ideal candidate for the development of such microfluidic biosensors. In this review, focus is given only to very recent advances in biosensors that use microfluidics in combination with magnetic sensors and magnetic markers/nanoparticles.

  12. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  13. Ceramic microfluidic monoliths by ice templating

    NARCIS (Netherlands)

    Zheng, Jumeng; Salamon, David; Lefferts, Leonardus; Wessling, Matthias; Winnubst, Aloysius J.A.

    2010-01-01

    Meso/macro-porous alumina microfluidic monoliths were fabricated by an ice-templating (or freeze-casting) technique. A (green) compact with sufficient strength is obtained after controlled freezing and simple drying under ambient conditions by starting with an aqueous suspension of a mixture of

  14. Particle manipulation methods in droplet microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2017-11-30

    This Feature article describes the different particle manipulation techniques available in the droplet microfluidics tool-box to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  15. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Jing Dai

    2016-10-01

    Full Text Available The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing.

  16. DNA and microfluidics: Building molecular electronics systems

    Energy Technology Data Exchange (ETDEWEB)

    Ye Yun [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ont., L5L 1C6 (Canada); Chen Lu [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ont., L5L 1C6 (Canada); Liu Xuezhu [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ont., L5L 1C6 (Canada); Krull, Ulrich J. [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ont., L5L 1C6 (Canada)]. E-mail: ukrull@utm.utoronto.ca

    2006-05-24

    The development of molecular electronics using DNA molecules as the building blocks and using microfluidics to build nanowire arrays is reviewed. Applications of DNA conductivity to build sensors and nanowire arrays, and DNA conjugation with other nanostructures, offers an exciting opportunity to build extremely small analytical devices that are suitable for single-molecule detection and also target screening.

  17. Understanding cell passage through constricted microfluidic channels

    Science.gov (United States)

    Cartas-Ayala, Marco A.; Karnik, Rohit

    2012-11-01

    Recently, several microfluidic platforms have been proposed to characterize cells based on their behaviour during cell passage through constricted channels. Variables like transit time have been analyzed in disease states like sickle cell anemia, malaria and sepsis. Nevertheless, it is hard to make direct comparisons between different platforms and cell types. We present experimental results of the relationship between solid deformable particle properties, i.e. stiffness and relative particle size, and flow properties, i.e. particle's velocity. We measured the hydrodynamic variables during the flow of HL-60 cells, a white myeloid cell type, in narrow microfluidic square channels using a microfluidic differential manometer. We measured the flow force required to move cells of different sizes through microchannels and quantified friction forces opposing cell passage. We determined the non-dimensional parameters that influence the flow of cells and we used them to obtain a non dimensional expression that can be used to predict the forces needed to drive cells through microchannels. We found that the friction force needed to flow HL-60 through a microfluidic channel is the sum of two parts. The first part is a static friction force that is proportional to the force needed to keep the force compressed. The second part is a factor that is proportional to the cell velocity, hence a dynamic term, and slightly sensitive to the compressive force. We thank CONACYT (Mexican Science and Technology Council) for supporting this project, grant 205899.

  18. Design of microfluidic bioreactors using topology optimization

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Bruus, Henrik

    2007-01-01

    We address the design of optimal reactors for supporting biological cultures using the method of topology optimization. For some years this method have been used to design various optimal microfluidic devices.1-4 We apply this method to distribute optimally biologic cultures within a flow...

  19. Mixing in polymeric microfluidic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H. (University of Colorado at Boulder, Boulder, CO); Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  20. Digital microfluidic operations on micro-electrode dot array architecture.

    Science.gov (United States)

    Wang, G; Teng, D; Fan, S-K

    2011-12-01

    As digital microfluidics-based biochips find more applications, their complexity is expected to increase significantly owing to the trend of multiple and concurrent assays on the chip. There is a pressing need to deliver a top-down design methodology that the biochip designer can leverage the same level of computer-aided design support as the semi-conductor industry now does. Moreover, as microelectronics fabrication technology is scaling up and integrated device performance is improving, it is expected that these microfluidic biochips will be integrated with microelectronic components in next-generation system-on-chip designs. This study presents the analysis and experiments of digital microfluidic operations on a novel electrowetting-on-dielectric-based 'micro-electrode dot array architecture' that fosters a development path for hierarchical top-down design approach for digital microfluidics. The proposed architecture allows dynamic configurations and activations of identical basic microfluidic unit called 'micro-electrode cells' to design microfluidic components, layouts, routing, microfluidic operations and applications of the biochip hierarchically. Fundamental microfluidic operations have been successfully performed by the architecture. In addition, this novel architecture demonstrates a number of advantages and flexibilities over the conventional digital microfluidics in performing advanced microfluidic operations.

  1. Unintended Environmental Consequences of a Global Biofuels Program

    Science.gov (United States)

    Kicklighter, D. W.; Gurgel, A. C.; Melillo, J. M.; Reilly, J.; Cronin, T. W.; Felzer, B. S.; Paltsev, S.; Schlosser, C. A.; Sokolov, A. P.

    2008-12-01

    Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but little research has been done on the consequences of an aggressive global biofuels program with advanced technologies using cellulosic feedstocks. Using a simulation modeling approach, we explore two scenarios for cellulosic biofuels production and find that with either one, biofuels could make a substantial contribution to meeting global-scale energy needs in the future, but with significant unintended environmental consequences. If forests are cleared to grow cellulosic biofuels crops, we estimate that about 105 Pg C would be released to the atmosphere as carbon dioxide and would cancel any greenhouse-gas savings from the substitution of biofuels for fossil fuels during the first half of the 21st century. Alternatively, if most cellulosic biofuels are grown on previously cleared land or land cleared of low-stature natural vegetation, we estimate that up to 30 Pg C would still be released to the atmosphere before a net greenhouse gas benefit from a global biofuels program is realized about the middle of the 21st century. With either alternative, we expect most of the world's cellulosic biofuels crops (14 to 15 million km2) to be grown on the relatively inexpensive but productive lands of the sub-tropics and tropics, with negative impacts on the biodiversity of these regions. Cellulosic biofuels may yet serve as a crucial wedge in the solution to the climate change problem, but must be deployed with caution so as not to jeopardize biodiversity, compromise ecosystems services, or undermine climate policy.

  2. Recent Inventions and Trends in Algal Biofuels Research.

    Science.gov (United States)

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  3. Better greenhouse gas emissions accounting for biofuels : A key to biofuels sustainability

    NARCIS (Netherlands)

    Peeters, Marjan; Yue, Taotao

    2016-01-01

    Biofuels are promoted by governments as a replacement for fossil fuels in the transport sector. However, according to current scientific evidence, their use does not necessarily significantly reduce greenhouse gas emissions. This article examines issues related to the regulation of biofuels’

  4. Policies for second generation biofuels: current status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Haakan; Greaker, Mads; Potter, Emily

    2011-07-01

    Current state-of-the-art knowledge concludes that green house gas (GHG) emissions must be controlled and reduced within the next 30-40 years. The transport sector contributes almost a fifth of the current global emissions, and its share is likely to increase in the future. The US and a number of European countries have therefore introduced various support schemes for research and development (RandD) of low emission fuels that can potentially replace the current fossil fuels. One such alternative is biofuels. The advantage of biofuels are that it is easy to introduce into the transport sector. On the other hand, recent research papers question whether the supply of feedstock is sufficient, and to what extent biofuels lead to GHG emission reductions. This report reviews the current status of second generation biofuels. Second generation biofuels are made from cellulose, which according to our survey of the literature, is in more abundant supply than the first generation biofuels feedstocks. Furthermore, it seems to have the potential to reduce GHG emissions from the transport sector without leading to devastating land use changes, which recent critique has held against first generation biofuels. Given that governments have decided to support RandD of low emission fuels, we ask the following questions: Should second generation biofuels receive RandD support to the same extent as other low emission fuels like hydrogen? How should support schemes for second generation biofuels be designed? Second generation biofuels can be divided according to the production process into thermo-chemical and bio-chemical. With respect to the thermo-chemical process the potential for cost reductions seems to be low. On the other hand, ethanol made from cellulose using the biochemical conversion process is far from a ripe technology. Expert reports point to several potential technological breakthroughs which may reduce costs substantially. Hence, cellulosic ethanol, should receive direct

  5. Value Added Products from Renewable Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Paul [Univ. of Nebraska, Lincoln, NE (United States)

    2014-07-31

    Cellulosic ethanol is an emerging biofuel that will make strong contributions to American domestic energy needs. In the US midwest the standard method for pretreatment of biomass uses hot acid to deconstruct lignocellulose. While other methods work, they are not in common use. Therefore it is necessary to work within this context to achieve process improvements and reductions in biofuel cost. Technology underlying this process could supplement and even replace commodity enzymes with engineered microbes to convert biomass-derived lignocellulose feedstocks into biofuels and valueadded chemicals. The approach that was used here was based on consolidated bioprocessing. Thermoacidophilic microbes belonging to the Domain Archaea were evaluated and modfied to promote deconvolution and saccharification of lignocellulose. Biomass pretreatment (hot acid) was combined with fermentation using an extremely thermoacidophilic microbial platform. The identity and fate of released sugars was controlled using metabolic blocks combined with added biochemical traits where needed. LC/MS analysis supported through the newly established Nebraska Bioenergy Facility provided general support for bioenergy researchers at the University of Nebraska. The primary project strategy was to use microbes that naturally flourish in hot acid (thermoacidophiles) with conventional biomass pretreatment that uses hot acid. The specific objectives were: to screen thermoacidophilic taxa for the ability to deconvolute lignocellulose and depolymerize associated carbohydrates; evaluate and respond to formation of “inhibitors” that arose during incubation of lignocellulose under heated acidic conditions; identify and engineer “sugar flux channeling and catabolic blocks” that redirect metabolic pathways to maximize sugar concentrations; expand the hydrolytic capacity of extremely thermoacidophilic microbes through the addition of deconvolution traits; and establish the Nebraska Bioenergy Facility (NBF

  6. Cyanobacteria as a platform for biofuel production

    Directory of Open Access Journals (Sweden)

    Nicole E Nozzi

    2013-09-01

    Full Text Available Cyanobacteria have great potential as a platform for biofuel production because of their fast growth, ability to fix carbon dioxide gas, and their genetic tractability. Furthermore they do not require fermentable sugars or arable land for growth and so competition with cropland would be greatly reduced. In this perspective we discuss the challenges and areas for improvement most pertinent for advancing cyanobacterial fuel production, including: improving genetic parts, carbon fixation, metabolic flux, nutrient requirements on a large scale, and photosynthetic efficiency using natural light.

  7. 2016 National Algal Biofuels Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bioenergy Technologies Office, Washington, DC (United States); Wolfe, Alexis [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); English, Christine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bioenergy Technologies Office, Washington, DC (United States); Ruddick, Colleen [BCS, Incorporated, Washington, DC (United States); Lambert, Devinn [Bioenergy Technologies Office, Washington, DC (United States)

    2016-06-01

    The Bioenergy Technologies Office (BETO) of the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, is committed to advancing the vision of a viable, sustainable domestic biomass industry that produces renewable biofuels, bioproducts, and biopower; enhances U.S. energy security; reduces our dependence on fossil fuels; provides environmental benefits; and creates economic opportunities across the nation. BETO’s goals are driven by various federal policies and laws, including the Energy Independence and Security Act of 2007 (EISA). To accomplish its goals, BETO has undertaken a diverse portfolio of research, development, and demonstration (RD&D) activities, in partnership with national laboratories, academia, and industry.

  8. Production of biofuels obtained from microalgae

    OpenAIRE

    Luis Carlos Fernández-Linares; Jorge Montiel Montoya; Aarón Millán Oropeza; Jesús Agustín Badillo Corona

    2012-01-01

    A review of the situation of bio-fuels in the world, mainly of biodiesel is made. A comparison among the different raw materials for the synthesis of biodiesel is done and it is emphasized in the production of biodiesel from microalgae. The different fresh and salt water micro-algae in its lipid content and productivity are compared. A review of the process of biosynthesis of lipids in microalgae and how to improve the production of lipids in microalgae is shown. It is discussed the importanc...

  9. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    Energy Technology Data Exchange (ETDEWEB)

    Selfa, Theresa L; Goe, Richard; Kulcsar, Laszlo; Middendorf, Gerad; Bain, Carmen

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A multi-method or mixed method research methodology was employed for each case study.

  10. Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Van Grinsven, A.; Croezen, H. [CE Delft, Delft (Netherlands); Verbeek, R.; Van Mensch, P.; Patuleia, A. [TNO, Delft, (Netherlands)

    2013-07-15

    This handbook on biofuels provides a comprehensive overview of different types of biofuels, and the technical options that exist to market the biofuels volumes expected to be consumed in the EU Member States in 2020. The study concludes that by fully utilizing the current blending limits of biodiesel (FAME) in diesel (B7) and bioethanol in petrol (E10) up to 7.9% share of biofuels in the EU transport sector can be technically reached by 2020. Increasing use of advanced biofuels, particularly blending of fungible fuels into diesel (eg. HVO and BTL) and the use of higher ethanol blends in compatible vehicles (e.g. E20), can play an important role. Also, the increased use of biomethane (in particular bio-CNG) and higher blends of biodiesel (FAME) can contribute. However, it is essential for both governments and industry to decide within 1 or 2 years on the way ahead and take necessary actions covering both, the fuels and the vehicles, to ensure their effective and timely implementation. Even though a range of technical options exist, many of these require considerable time and effort to implement and reach their potential. Large scale implementation of the options beyond current blending limits requires new, targeted policy measures, in many cases complemented by new fuel and vehicle standards, adaptation of engines and fuel distribution, etc. Marketing policies for these vehicles, fuels and blends are also likely to become much more important than in the current situation. Each Member State may develop its own strategy tailored to its market and policy objectives, but the EU should play a crucial facilitating role in these developments.

  11. The Need for Governance by Experimentation : The Case of Biofuels

    NARCIS (Netherlands)

    Asveld, L.

    2016-01-01

    The policies of the European Union concerning the development of biofuels can be termed a lock-in. Biofuels were initially hailed as a green, sustainability technology. However evidence to the contrary quickly emerged. The European Commission proposed to alter its policies to accommodate for these

  12. Sustainability of biofuels and bioproducts: socio-economic impact assessment

    NARCIS (Netherlands)

    Rutz, D.; van Eijck, J.A.J.|info:eu-repo/dai/nl/297954296; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    Many countries worldwide are increasingly engaging in the promotion of biomass production for industrial uses such as biofuels and bioproducts (chemicals, bioplastics, etc.). Until today, mainly biofuels were supported by European policies, but support for bioproducts is still lacking behind. Thus,

  13. Potentials for Sustainable Commercial Biofuels Production in Nigeria

    African Journals Online (AJOL)

    Biofuel production has since shifted from the sole practice of the West, EU and a few other developed countries to being accepted globally. Many more countries have continued to enact appropriate legislations or formulate policy instruments that serve as the regulatory framework for biofuels production within their ...

  14. Research and Development Potentials in Biofuel Production in Nigeria

    African Journals Online (AJOL)

    Apart from its contribution to poverty reduction, it is the very diversity of biofuel that provides potential of a win-win development path for the environment, social and economic development, and energy security. It is in the light of this that this paper examines the research and development potentials in ethanol and biofuel in ...

  15. Socio-economic impact of biofuel feedstock production on local ...

    African Journals Online (AJOL)

    Ghana Journal of Geography Vol. 5, 2013. Socio-economic impact of biofuel feedstock production on local livelihoods in Ghana. Acheampong ...... The local social and environmental impacts of biofuel feedstock expansion: A synthesis of case studies from Asia, Africa and Latin America. CIFOR Infobriefs, No. 34,. December ...

  16. Recent developments on biofuels production from microalgae and macroalgae

    DEFF Research Database (Denmark)

    Kumar, Kanhaiya; Ghosh, Supratim; Angelidaki, Irini

    2016-01-01

    Biofuels from algae are considered as promising alternatives of conventional fossil fuels, as they can eliminate most of the environmental problems. The present study focuses on all the possible avenues of biofuels production through biochemical and thermochemical conversion methods in one place...

  17. Transport biofuels - a life-cycle assessment approach

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil

  18. Decarbonising the Swedish transport sector with electricity or biofuels

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Bo Bramstoft; Skytte, Klaus

    2016-01-01

    , this paper develops two alternative scenarios for the transport sector by 2050 – an Electric Vehicles Scenario (EVS) which include a high percentage of electric vehicles and a BIOfuel Scenario (BIOS) with a high percentage of biofuels. The scenario results are compared to the Carbon Neutral Scenario (CNS...

  19. Socio-economic impact of biofuel feedstock production on local ...

    African Journals Online (AJOL)

    local communities and people in Ghana, focusing on land grabbing and alienation, impact on food production and security, and impact on employment and income generation. Even though the biofuel industry in Ghana is still in its early stages of development, the paper reveals that commercial biofuel production impacts ...

  20. The South's outlook for sustainable forest bioenergy and biofuels production

    Science.gov (United States)

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  1. A strategic assessment of biofuels development in the Western States

    Science.gov (United States)

    Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle

    2009-01-01

    The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...

  2. Reconciling biofuels, sustainability and commodities demand. Pitfalls and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Uslu, A.; Bole, T.; Londo, M. [ECN Policy Studies, Petten (Netherlands); Pelkmans, L. [VITO, Mol (Belgium); Berndes, G. [Chalmers University, Gothenburg (Sweden); Prieler, S.; Fischer, G. [International Institute for Applied Systems Analysis IIASA, Laxenburg (Austria); Cueste Cabal, H. [CIEMAT, Madrid (Spain)

    2010-06-15

    Increasing fossil fuel prices, energy security considerations and environmental concerns, particularly concerning climate change, have motivated countries to explore alternative energy sources including biofuels. Global demand for biofuels has been rising rapidly due to biofuel support policies established in many countries. However, proposed strong links between biofuels demand and recent years' high food commodity prices, and notions that increasing biofuels production might bring about serious negative environmental impacts, in particularly associated with the land use change to biofuel crops, have shifted public enthusiasm about biofuels. In this context, the ELOBIO project aims at shedding further light to these aspects of biofuel expansion by collecting and reviewing the available data, and also developing strategies to decrease negative effects of biofuels while enabling their positive contribution to climate change, security of supply and rural development. ELOBIO considers aspects associated with both 1st and 2nd generation biofuels, hence analyses effects on both agricultural commodity markets and lignocellulosic markets. This project, funded by the Intelligent Energy Europe programme, consists of a review of current experiences with biofuels and other renewable energy policies and their impacts on other markets, iterative stakeholder-supported development of low-disturbing biofuels policies, model supported assessment of these policies' impacts on food, feed and lignocellulosic markets, and finally an assessment of the effects of selected optimal policies on biofuels costs and potentials. Results of the ELOBIO study show that rapid biofuel deployment without careful monitoring of consequences and implementation of mitigating measures risks leading to negative consequences. Implementing ambitious global biofuel targets for 2020, based on current 1st generation technologies, can push international agricultural commodity prices upwards and

  3. Burning water: The water footprint of biofuel-based transport

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2010-01-01

    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims to replace 10 percent of total transport fuels by biofuels by 2020. This study calculates the water footprint (WF) of different transport modes using bio-ethanol, biodiesel or

  4. Biofuels for road transport: A seed to wheel perspective

    NARCIS (Netherlands)

    Reijnders, L.; Huijbregts, M.A.J.

    2009-01-01

    This book provides a review of the history, the current status and the impact of biofuels used in road transport, across the full ‘seed-to-wheel’ life cycle of these fuels. Successive chapters cover many issues relevant to the current debate on biofuels, such as cost, competition with food

  5. Implications of Using Corn Stalks as a Biofuel Source

    Energy Technology Data Exchange (ETDEWEB)

    wilhelm,w; hatfield,j; riedell,w; follett,r; johnson,j; baker,j

    2004-03-17

    Removing crop residue from the soil surface for use as a biofuel or biofuel feedstock raises questions about long-term soil quality; it may increase erosion , decrease infiltration, and reduce the soil organic carbon content, and may reduce future crop yield.

  6. Microfluidics as a tool for C. elegans research.

    Science.gov (United States)

    San-Miguel, Adriana; Lu, Hang

    2013-01-01

    Microfluidics has emerged as a set of powerful tools that have greatly advanced some areas of biological research, including research using C. elegans. The use of microfluidics has enabled many experiments that are otherwise impossible with conventional methods. Today there are many examples that demonstrate the main advantages of using microfluidics for C. elegans research, achieving precise environmental conditions and facilitating worm handling. Examples range from behavioral analysis under precise chemical or odor stimulation, locomotion studies in well-defined structural surroundings, and even long-term culture on chip. Moreover, microfluidics has enabled coupling worm handling and imaging thus facilitating genetic screens, optogenetic studies, and laser ablation experiments. In this article, we review some of the applications of microfluidics for C. elegans research and provide guides for the design, fabrication, and use of microfluidic devices for C. elegans research studies. PMID:24065448

  7. Livelihood implications of biofuel crop production: Implications for governance

    DEFF Research Database (Denmark)

    Hunsberger, Carol; Bolwig, Simon; Corbera, Esteve

    2014-01-01

    While much attention has focused on the climate change mitigation potential of biofuels, research from the social sciences increasingly highlights the social and livelihood impacts of their expanded production. Policy and governance measures aimed at improving the social effects of biofuels have...... proliferated but questions remain about their effectiveness across the value chain. This paper performs three tasks building on emerging insights from social science research on the deployment of biofuel crops. First, we identify livelihood dimensions that are particularly likely to be affected...... by their cultivation in the global South – income, food security, access to land-based resources, and social assets – revealing that distributional effects are crucial to evaluating the outcomes of biofuel production across these dimensions. Second, we ask how well selected biofuel governance mechanisms address...

  8. Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence

    Directory of Open Access Journals (Sweden)

    Phillip Steele

    2011-10-01

    Full Text Available The growing interest in US biofuels has been motivated by two primary national policy goals, (1 to reduce carbon emissions and (2 to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  9. Segregated Debate on Biofuels in Ghana? Options for Policymaking

    DEFF Research Database (Denmark)

    Ackom, Emmanuel; Poulsen, Emma

    2016-01-01

    Biofuels has been an increasingly debated issue since the beginning of this century. Some scholars emphasize the risks of biofuels on livelihood in Ghana; while others argue positively for the rural development and energy security potential of biofuels. These serve as the rationale of this study...... in the scholarly and grey literature published recently by using the search terms „biofuel‟ and „Ghana‟. The findings show a major skepticism - optimism divide in the biofuel discourse and its potential to improve livelihoods in Ghana. This study attempts to describe this dispute by quantifying different scholars......‟ position on a scale from pessimist to optimist. This is not meant to be reductionist or over simplistic, but rather the work we have done provide an illustrative perspective and overview of the scholarly divisions and gaps. Findings suggest that the biofuel discussions would benefit greatly from less...

  10. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  11. Integrated microfluidic platforms for investigating neuronal networks

    Science.gov (United States)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  12. Using microfluidics to study programmed cell death: A new approach

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    This project focuses on applying microfluidic tissue culture for electrochemical or optical measurements during programmed cell death (PCD) in barley aleurone layer to increase understanding of the underlying mechanisms of PCD in plants. Microfluidic tissue culture enables in vitro experiments...... a double-fluorescent probe-system also used by Fath et al5. Future challenges include integrating both these systems into a microfluidic device for plant tissue culture....

  13. Tetra-Responsive Grafted Hydrogels for Flow Control in Microfluidics

    OpenAIRE

    Gräfe, David

    2017-01-01

    Microfluidics covers the science of manipulating small quantities of fluids using microscale devices with great potential in analysis, multiplexing, automation and high-throughput screening. Compared to conventional systems, microfluidics benefits from miniaturization resulting in shortened time of experiments, decreased sample and reagent consumptions as well as reduced overall costs. For microfluidic devices where further weight and cost reduction is additionally required, stimuli-responsiv...

  14. A microfluidic gas damper for stabilizing gas pressure in portable microfluidic systems.

    Science.gov (United States)

    Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Ni, Zhonghua

    2016-09-01

    Pressure fluctuations, which invariably occur in microfluidic systems, usually result in the unstable fluid delivery in microfluidic channels. In this work, a novel microfluidic gas damper is proposed and applied for providing stable fluid-driving pressures. Then, a pressure-driven flow setup is constructed to investigate the gas damping characteristics of our damper. Since the pressure-driven flow setup functions as a resistor-capacitor low-pass filter, the damper significantly decreases the amplitude of the input pressures via self-regulating its pneumatic resistance. In addition, the gas volume and pressure frequency are found to have direct effects on the pressure fluctuations. The practical application of the gas damper is examined through a portable pressure-driven system, which consists of an air blower, a gas damper, and a centrifuge tube. By periodically pressing the air blower, precise flow rates with low throughput (∼9.64  μ l min -1 ) and high throughput (∼1367.15  μ l min -1 ) are successfully delivered. Future integration of our microfluidic gas damper with miniaturized pressure generators (e.g., peristaltic or pressure-driven micropumps) can fully exploit the potential of the gas damper for low-cost, portable microfluidics where stable pressures or flow rates are required.

  15. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI to observations in microfluidics.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.

  16. Transitioning to sustainable use of biofuel in Australia★

    Directory of Open Access Journals (Sweden)

    Sasongko Nugroho Adi

    2017-01-01

    Full Text Available Biofuel is identified as one of the key renewable energy sources for sustainable development, and can potentially replace fossil-based fuels. Anticipating the competition between food and energy security, the Australian Government is intensively exploring other biofuel resources. There have been numerous research projects in Australia using the second and third generation model based on different feedstocks including lignocellulosic and microalgae. Such projects have been successfully demonstrated but are yet to be commercially viable. Moreover, transition pathways to realize the potential benefits of these value chains are not well understood. This preliminary study tried to provide an alternative framework and proposes future long-term transport biofuel pathways in Australia which can be seen as a solution for a post-carbon society. The study is targeted to outline the milestone of the Australian biofuel industry and its roadmap into the future. An investigation has been carried out on biofuel status and barrier, technology development, market and the chronology of biofuel related policies in Australia to understand the current situation and possibilities to develop further strategies, while also providing an insight into the consequences of producing biofuel for transportation. Several methods have been proposed to introduce the transition into a post-carbon society. Seven scenarios were divided, covering the roadmap of first, second and third generation of biofuel, alternative transportation modes such as electric vehicles (EVs and fuel cell vehicles (FCVs and the elimination of the fossil fuel running vehicles within a time frame of 20 years. The utilization of biofuel can be seen as a short to medium mode for transition into a green transportation society. Our investigation also showed that microalgae gave a better ecological footprint which offers the strongest potential for future Australian biofuel industry and aviation. Meanwhile, EVs

  17. Different paths towards sustainable biofuels? : a comparative study of the International, EU, and Chinese regulation of the sustainability of biofuels

    NARCIS (Netherlands)

    Yue, Taotao

    2016-01-01

    Biofuels are promoted as a type of renewable energy from biomass that replaces fossil fuels in transportation, in an attempt to achieve the three-fold objectives of energy security, rural development, and GHG emission reductions. However, the increased consumption and production of biofuels have

  18. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  19. Microalgae and biofuels: a promising partnership?

    Science.gov (United States)

    Malcata, F Xavier

    2011-11-01

    Microalgae have much higher lipid yields than those of agricultural oleaginosous crops, and they do not compromise arable land. Despite this, current microalga-based processes suffer from several constraints pertaining to the biocatalyst and the bioreactor, which hamper technologically and economically feasible scale-up. Here, we briefly review recent active research and development efforts worldwide, and discuss the most relevant shortcomings of microalgal biofuels. This review goes one step further relative to related studies, because it tackles otherwise scarcely mentioned issues - for example, heterotrophic versus autotrophic metabolism, alkane versus glyceride synthesis, conduction versus bubbling of CO(2), and excretion versus accumulation of lipids. Besides promising solutions that have been hypothesized and arise from multidisciplinary approaches, we also consider less conventional ones. Microalgae and biofuels hold indeed a promising partnership, but a fully competitive technology is not expected to be available before the end of this decade, because the need for one order of magnitude increase in productivity requires development of novel apparatuses and transformed cells. Copyright © 2011. Published by Elsevier Ltd.

  20. Growing duckweed for biofuel production: a review.

    Science.gov (United States)

    Cui, W; Cheng, J J

    2015-01-01

    Duckweed can be utilised to produce ethanol, butanol and biogas, which are promising alternative energy sources to minimise dependence on limited crude oil and natural gas. The advantages of this aquatic plant include high rate of nutrient (nitrogen and phosphorus) uptake, high biomass yield and great potential as an alternative feedstock for the production of fuel ethanol, butanol and biogas. The objective of this article is to review the published research on growing duckweed for the production of the biofuels, especially starch enrichment in duckweed plants. There are mainly two processes affecting the accumulation of starch in duckweed biomass: photosynthesis for starch generation and metabolism-related starch consumption. The cost of stimulating photosynthesis is relatively high based on current technologies. Considerable research efforts have been made to inhibit starch degradation. Future research need in this area includes duckweed selection, optimisation of duckweed biomass production, enhancement of starch accumulation in duckweeds and use of duckweeds for production of various biofuels. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  2. Production of biofuels obtained from microalgae

    Directory of Open Access Journals (Sweden)

    Luis Carlos Fernández-Linares

    2012-09-01

    Full Text Available A review of the situation of bio-fuels in the world, mainly of biodiesel is made. A comparison among the different raw materials for the synthesis of biodiesel is done and it is emphasized in the production of biodiesel from microalgae. The different fresh and salt water micro-algae in its lipid content and productivity are compared. A review of the process of biosynthesis of lipids in microalgae and how to improve the production of lipids in microalgae is shown. It is discussed the importance of the genetic manipulation to highly lipid-producing microalgae (example: Botryrococuus braunni, Nannochloropsis sp, Noechlorisoleobundans and Nitschia sp.. A study of the advantages and disadvantages of the different systems of cultivation of microalgae is also made. Finally, it is shown a perspective of biofuels from microalgae. Among the main challenges to overcome to produce biodiesel from microalgae are: the cost of production of biomass, which involves the optimization of media, selection and manipulation of strains and photobioreactors design. The processof separation of biomass, the extraction of oils and by-products, the optimization of the process of transesterification, purification and use of by-products must also be considered.

  3. Algae Biofuel in the Nigerian Energy Context

    Science.gov (United States)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  4. Biorefinery of instant noodle waste to biofuels.

    Science.gov (United States)

    Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook

    2014-05-01

    Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Recent Advances and Future Perspectives on Microfluidic Liquid Handling

    Directory of Open Access Journals (Sweden)

    Nam-Trung Nguyen

    2017-06-01

    Full Text Available The interdisciplinary research field of microfluidics has the potential to revolutionize current technologies that require the handling of a small amount of fluid, a fast response, low costs and automation. Microfluidic platforms that handle small amounts of liquid have been categorised as continuous-flow microfluidics and digital microfluidics. The first part of this paper discusses the recent advances of the two main and opposing applications of liquid handling in continuous-flow microfluidics: mixing and separation. Mixing and separation are essential steps in most lab-on-a-chip platforms, as sample preparation and detection are required for a variety of biological and chemical assays. The second part discusses the various digital microfluidic strategies, based on droplets and liquid marbles, for the manipulation of discrete microdroplets. More advanced digital microfluidic devices combining electrowetting with other techniques are also introduced. The applications of the emerging field of liquid-marble-based digital microfluidics are also highlighted. Finally, future perspectives on microfluidic liquid handling are discussed.

  6. Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks

    National Research Council Canada - National Science Library

    Beskok, Ali; Bevan, Michael; Lagoudas, Dimitris; Ounaies, Zoubeida; Bahukudumbi, Pradipkumar; Everett, William

    2007-01-01

    This research addresses the tunable assembly of reversible colloidal structures within microfluidic networks to engineer multifunctional materials that exhibit a wide range of electrical properties...

  7. Novel Polymer Microfluidics Technology for In Situ Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a novel microfluidic device that combines rigid monolithic porous polymer based micro-capillary electrochromatography...

  8. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jack D. Law; Julia L. Tripp; Tara E. Smith; Veronica J. Rutledge; Troy G. Garn; John Svoboda; Larry Macaluso

    2014-02-01

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample system and identified system modifications to optimize performance.

  9. Soft tubular microfluidics for 2D and 3D applications

    Science.gov (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  10. Soft tubular microfluidics for 2D and 3D applications.

    Science.gov (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck

    2017-10-03

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  11. Rail transportation of biofuels; Jaernvaegstransport av biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Frosch, Martin; Thoren, Peter

    2010-05-15

    The project has had the task of describing how the rail transportation of biofuels can be increased. This has been made by analyzing the current conditions of five transmission terminals and five different CHP plants, henceforth called reference cases, and the prevailing conditions at their reception terminals. For each of the five reference cases several transport solutions have been created that take in consideration how these conditions affect the efficiency of the transport solutions for 23 different relations. The study will also show to what extent reduction of environmental impacts can be achieved with the rail transportation of biofuels as alternative to road transport. Three of the reference cases are in operation, one under construction and one in the development phase. To develop transportation solutions and identify potential catchment areas for biofuels a slightly higher resolution than what normally is analyzed in existing literature is required. Therefore, these analysis have been made for each of the relevant catchment areas with the help of forest assessment data, kNN-data, from the Swedish agricultural university (SLU), statistics of peat production from the Swedish geological survey (SGU) and the Forestry boards (Skogsstyrelsen) statistical yearbook of 2008. The calculations underlying the transport solutions are relating to the sustainability of each catchment area, constraints and opportunities at both the reception and transmission terminals, and the practical solutions for wagons, containers and number of possible weekly circulations. The target audience is the heating and CHP plants in Sweden, wishing to use rail transport of biofuels, regardless of available infrastructure since remote receiving terminals also can be used if needed. The results of the economical analysis for all possible relations are based on calculations with 20 wagons in each circulation. Due to topographic limitations and limited traction capacity all relations

  12. Microfluidic schemes using electrical and capillary forces

    Science.gov (United States)

    Jones, T. B.

    2008-12-01

    The laboratory-on-a-chip (LOC) and indeed virtually all the technology of microTAS (micro-total-analysis systems) rely upon some microfluidic subsystem to control, transport, and manipulate small liquid masses. The most promising of these subsystems use electrical forces, which have the advantages of voltage-based control and dominance over gravity and capillarity in the 10 to 103 micron diameter range. Gravity is usually ignorable on this scale, but the interactions of electrical and capillary forces are more complex. In particular, microstructures can be designed to exploit this interplay for the cases of electrowetting on dielectric-coated electrodes (EWOD) and liquid dielectrophoresis (DEP). The complementary nature of the two effects explains the operation of droplet-based microfluidic systems in general, and the so-called DEP droplet dispenser in particular.

  13. Microfluidics for electronic paper-like displays.

    Science.gov (United States)

    Shui, Lingling; Hayes, Robert A; Jin, Mingliang; Zhang, Xiao; Bai, Pengfei; van den Berg, Albert; Zhou, Guofu

    2014-07-21

    Displays are ubiquitous in modern life, and there is a growing need to develop active, full color, video-rate reflective displays that perform well in high-light conditions. The core of display technology is to generate or manipulate light in the visible wavelength. Colored fluids or fluids with particles can be used to tune the light intensity (greyscale) or wavelength (colors) of reflective displays by different actuation methods. Microfluidic technology plays an increasing role in fluidic manipulation in microscale devices used in display areas. In this article, we will review microfluidic technologies based on different actuation methods used for display applications: pressure-driven flow, electrophoresis, electroosmosis, electrowetting, magnetic-driven flow, and cell-actuation principles.

  14. Capacitive coupling synchronizes autonomous microfluidic oscillators.

    Science.gov (United States)

    Lesher-Perez, Sasha Cai; Zhang, Chao; Takayama, Shuichi

    2018-01-31

    Even identically-designed autonomous microfluidic oscillators have device-to-device oscillation variability that arises due to inconsistencies in fabrication, materials, and operation conditions. This work demonstrates, experimentally and theoretically, that with appropriate capacitive coupling these microfluidic oscillators can be synchronized. The size and characteristics of the capacitive coupling needed and the range of input flow rate differences that can be synchronized are also characterized. In addition to device-to-device variability, there is also within-device oscillation noise that arises. An additional advantage of coupling multiple fluidic oscillators together is that the oscillation noise decreases. The ability to synchronize multiple autonomous oscillators is also a first step towards enhancing their usefulness as tools for biochemical research applications where multiplicate experiments with identical temporal-stimulation conditions are required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Bonding PMMA microfluidics using commercial microwave ovens

    Science.gov (United States)

    Toossi, A.; Moghadas, H.; Daneshmand, M.; Sameoto, D.

    2015-08-01

    In this paper, a novel low-cost, rapid substrate-bonding technique is successfully applied to polymethyl methacrylate (PMMA) microfluidics bonding for the first time. This technique uses a thin intermediate metallic microwave susceptor layer at the interface of the bonding site (microchannels) which produces localized heating required for bonding during microwave irradiation. The metallic susceptor pattern is designed using a multiphysics simulation model developed in ANSYS Multiphysics software (high-frequency structural simulation (HFSS) coupled with ANSYS-Thermal). In our experiments, the required microwave energy for bonding is delivered using a relatively inexpensive, widely accessible commercial microwave oven. Using this technique, simple PMMA microfluidics prototypes are successfully bonded and sealed in less than 35 seconds with a minimum measured bond strength of 1.375 MPa.

  16. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  17. Microfluidic device for unidirectional axon growth

    Science.gov (United States)

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.

    2015-11-01

    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  18. Droplet Manipulations in Two Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Arjen M. Pit

    2015-11-01

    Full Text Available Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of new techniques, whose potential has not been fully realized. This review summarizes the currently existing techniques for manipulating droplets in two-phase flow microfluidics. Specifically, very recent developments like the use of acoustic waves, magnetic fields, surface energy wells, and electrostatic traps and rails are discussed. The physical principles are explained, and (potential advantages and drawbacks of different methods in the sense of versatility, flexibility, tunability and durability are discussed, where possible, per technique and per droplet operation: generation, transport, sorting, coalescence and splitting.

  19. 3D Printed Multimaterial Microfluidic Valve.

    Science.gov (United States)

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  20. Plasmonic nanoshell synthesis in microfluidic composite foams.

    Science.gov (United States)

    Duraiswamy, Suhanya; Khan, Saif A

    2010-09-08

    The availability of robust, scalable, and automated nanoparticle manufacturing processes is crucial for the viability of emerging nanotechnologies. Metallic nanoparticles of diverse shape and composition are commonly manufactured by solution-phase colloidal chemistry methods, where rapid reaction kinetics and physical processes such as mixing are inextricably coupled, and scale-up often poses insurmountable problems. Here we present the first continuous flow process to synthesize thin gold "nanoshells" and "nanoislands" on colloidal silica surfaces, which are nanoparticle motifs of considerable interest in plasmonics-based applications. We assemble an ordered, flowing composite foam lattice in a simple microfluidic device, where the lattice cells are alternately aqueous drops containing reagents for nanoparticle synthesis or gas bubbles. Microfluidic foam generation enables precisely controlled reagent dispensing and mixing, and the ordered foam structure facilitates compartmentalized nanoparticle growth. This is a general method for aqueous colloidal synthesis, enabling continuous, inherently digital, scalable, and automated production processes for plasmonic nanomaterials.

  1. Designing Polymeric Microfluidic Platforms for Biomedical Applications

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi

    Cytogenetics laboratories. During the course of this project, initially the suitability of the polymeric chip substrate was tested and a microfluidic device was developed for performing interphase FISH analysis. With this device, the key factors involved in chromosome spreading crucial to FISH analysis were...... further investigated. Based on the insights gained, a micro splashing device was designed to achieve well-spread chromosomes and a rapidly assembled microFISH device was presented for metaphase analysis. Further, a single polymeric microfluidic device was developed to semi-automate the FISH analysis. ii......) Culturing brain slices and monitoring the integration of neuronal stem cells upon cultured brain slices. These studies will aid to design novel therapeutic approaches for neurodegenerative disease. The aim of this project was to create a microfludic cell culture chamber and keep a brain slice alive...

  2. Nanoplasmonic and Microfluidic Devices for Biological Sensing

    KAUST Repository

    Perozziello, G.

    2017-02-16

    In this chapter we report about recent advances on the development and application of 2D and 3D plasmonic nanostructures used for sensing of biological samples by Raman spectroscopy at unprecedented resolution of analysis. Besides, we explain how the integration of these nanodevices in a microfluidic apparatus can simplify the analysis of biological samples. In the first part we introduce and motivate the convenience of using nanoplasmonic enhancers and Raman spectroscopy for biological sensing, describing the phenomena and the current approaches to fabricate nanoplasmonic structures. In the second part, we explain how specific multi-element devices produce the optimal enhancement of the Raman scattering. We report cases where biological sensing of DNA was performed at few molecules level with nanometer spatial resolutions. Finally, we show an example of microfluidic device integrating plasmonic nanodevices to sort and drive biological samples, like living cells, towards the optical probe in order to obtain optimal conditions of analysis.

  3. Microfluidic Wheatstone bridge for rapid sample analysis.

    Science.gov (United States)

    Tanyeri, Melikhan; Ranka, Mikhil; Sittipolkul, Natawan; Schroeder, Charles M

    2011-12-21

    We developed a microfluidic analogue of the classic Wheatstone bridge circuit for automated, real-time sampling of solutions in a flow-through device format. We demonstrate precise control of flow rate and flow direction in the "bridge" microchannel using an on-chip membrane valve, which functions as an integrated "variable resistor". We implement an automated feedback control mechanism in order to dynamically adjust valve opening, thereby manipulating the pressure drop across the bridge and precisely controlling fluid flow in the bridge channel. At a critical valve opening, the flow in the bridge channel can be completely stopped by balancing the flow resistances in the Wheatstone bridge device, which facilitates rapid, on-demand fluid sampling in the bridge channel. In this article, we present the underlying mechanism for device operation and report key design parameters that determine device performance. Overall, the microfluidic Wheatstone bridge represents a new and versatile method for on-chip flow control and sample manipulation.

  4. Tuning Fluidic Resistance via Liquid Crystal Microfluidics

    Directory of Open Access Journals (Sweden)

    Anupam Sengupta

    2013-11-01

    Full Text Available Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling—typically absent in isotropic fluids—bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions—which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters—act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels.

  5. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  6. Fluid control structures in microfluidic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  7. Structural Optimization of non-Newtonian Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin

    2011-01-01

    We present results for topology optimization of a non-Newtonian rectifier described with a differential constitutive model. The results are novel in the sense that a differential constitutive model has not been combined with topology optimization previously. We find that it is necessary to apply ...... optimization of fluids. We test the method on a microfluidic rectifier and find solutions topologically different from experimentally realized designs....

  8. Biofunctionalization of PDMS-based microfluidic systems

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Bergoi Ibarlucea, Cesar Fernández-Sánchez, Stefanie Demming, Stephanus Büttgenbach & Andreu Llobera ### Abstract Three simple approaches for the selective immobilization of biomolecules on the surface of poly(dimethylsiloxane) (PDMS) microfluidic systems that do not require any specific instrumentation, are described and compared. They are based in the introduction of hydroxyl groups on the PDMS surface by direct adsorption of either polyethylene glycol (PEG) or polyvinyl...

  9. Fluid delivery manifolds and microfluidic systems

    Science.gov (United States)

    Renzi, Ronald F.; Sommer, Gregory J.; Singh, Anup K.; Hatch, Anson V.; Claudnic, Mark R.; Wang, Ying-Chih; Van de Vreugde, James L.

    2017-02-28

    Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.

  10. Fabrication of paper based microfluidic devices

    CSIR Research Space (South Africa)

    Govindasamy, K

    2012-07-01

    Full Text Available flow tests) which operate on a similar principal, are an example of point of care diagnostics. Paper based microfluidics aims to address the inherent inadequacies of standard lateral flow tests. This includes improving the sensitivity...@uj.ac.za). maintaining low cost and simplicity. Development of low cost diagnostics is vital for developing countries like South Africa, where rural communities lack access to basic health care and clean drinking water. These tests provide a rapid alternative...

  11. Microfluidics apparatus and methods for use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, John P.; Wiggins, Thomas; Ghosh, Madhushree; Bottomley, Lawrence A.; Seminara, Salvatore; Hu, Zhiyu; Seeley, Timothy; Kossek, Sebastian

    2005-08-09

    A microfluidics device includes a plurality of interaction cells and fluid control means including i) means for providing to the interaction cells a preparation fluid, and ii) means for providing to the interaction cells a sample fluid, wherein each interaction cell receives a different sample fluid. A plurality of microcantilevers may be disposed in each of the interaction cells, wherein each of the plurality of microcantilevers configured to deflect in response to an interaction involving a component of the sample fluid.

  12. Research highlights: microfluidically-fabricated materials.

    Science.gov (United States)

    Koh, Jaekyung; Wu, Chueh-Yu; Kittur, Harsha; Di Carlo, Dino

    2015-10-07

    Polymer particles with precise shapes or chemistries are finding unique uses in a variety of applications, including tissue engineering, drug delivery, barcoding, and diagnostic imaging. Microfluidic systems have been and are continuing to play a large role in enabling the precision synthesis of designer particles in a uniform manner. To expand the impact of these microfluidic-fabricated materials additional fundamental capabilities should still be developed. The capability to fabricate microparticles with complex three-dimensional shapes and increase the production rate of particles to an industrial scale will allow evaluation of shaped particles in a range of new applications to enhance biological, magnetic, optical, surface wetting, as well as other interfacial or mechanical properties of materials. Here we highlight work applying large collections of simple spherical microgels, with unique surface chemistry that allows in situ particle-particle annealing, to form microporous injectable scaffolds for accelerated tissue regeneration. We also report on two other techniques that are addressing the ability to create 3D-shaped microparticles by first sculpting a fluid precursor stream, and increasing the rate of production of particles using contact lithography to millions of particles per hour. The combination of these capabilities and the applications they will enable suggest a bright future for microfluidics in making the next materials.

  13. Microfab-less Microfluidic Capillary Electrophoresis Devices.

    Science.gov (United States)

    Segato, Thiago P; Bhakta, Samir A; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A; Jiao, Hong; Garcia, Carlos D

    2013-04-07

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C(4)D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 5(2)-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert.

  14. Microfluidics for High School Chemistry Students.

    Science.gov (United States)

    Hemling, Melissa; Crooks, John A; Oliver, Piercen M; Brenner, Katie; Gilbertson, Jennifer; Lisensky, George C; Weibel, Douglas B

    2014-01-14

    We present a laboratory experiment that introduces high school chemistry students to microfluidics while teaching fundamental properties of acid-base chemistry. The procedure enables students to create microfluidic systems using nonspecialized equipment that is available in high school classrooms and reagents that are safe, inexpensive, and commercially available. The experiment is designed to ignite creativity and confidence about experimental design in a high school chemistry class. This experiment requires a computer program (e.g., PowerPoint), Shrinky Dink film, a readily available silicone polymer, weak acids, bases, and a colorimetric pH indicator. Over the span of five 45-min class periods, teams of students design and prepare devices in which two different pH solutions mix in a predictable way to create five different pH solutions. Initial device designs are instructive but rarely optimal. During two additional half-class periods, students have the opportunity to use their initial observations to redesign their microfluidic systems to optimize the outcome. The experiment exposes students to cutting-edge science and the design process, and solidifies introductory chemistry concepts including laminar flow, neutralization of weak acids-bases, and polymers.

  15. Smartphones & microfluidics: marriage for the future.

    Science.gov (United States)

    Hárendarčíková, Lenka; Petr, Jan

    2018-02-27

    Smartphones have become widely recognized as a very interesting detection and controlling tool in microfluidics. They are portable devices with built-in cameras and internal microprocessors which carry out image processing. In this case, the external computers are not needed and phones can provide fast and accurate results. Moreover, the connectivity of smartphones gives the possibility to share and provide real-time results when needed, whether in health diagnostics, environmental monitoring, immunoassays or food safety. Undoubtedly, the marriage of smartphones and microfluidics has a brilliant future in building low-cost and easily operable systems for analysis in the field, realizing the idea of people's "smartlife". The aim of this review is to present and summarize the main advantages and disadvantages of the use of smartphones as well as to take a closer look at some novel achievements published during the last couple of years. In the next paragraphs, readers will find specific uses of a combination of smartphones and microfluidics such as water analysis, health analysis (virus and bacteria detection), and measurement of physical properties or smartphone liquid control in polymer devices. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Microfluidic biosensing systems using magnetic nanoparticles.

    Science.gov (United States)

    Giouroudi, Ioanna; Keplinger, Franz

    2013-09-09

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles.

  17. Manufacturable plastic microfluidic valves using thermal actuation.

    Science.gov (United States)

    Pitchaimani, Karthik; Sapp, Brian C; Winter, Adam; Gispanski, Austin; Nishida, Toshikazu; Hugh Fan, Z

    2009-11-07

    A low-cost, manufacturable, thermally actuated, plastic microfluidic valve has been developed. The valve contains an encapsulated, temperature-sensitive fluid, which expands, deflecting a thin elastomeric film into a fluidic channel to control fluid flow. The power input for thermal expansion of each microfluidic valve can be controlled using a printed circuit board (PCB)-based controller, which is suitable for mass production and large-scale integration. A plastic microfluidic device with such valves was fabricated using compression molding and thermal lamination. The operation of the valves was investigated by measuring a change in the microchannel's ionic conduction current mediated by the resistance variation corresponding to the deflection of the microvalve. Valve closing was also confirmed by the disappearance of fluorescence when a fluorescent solution was displaced in the valve region. Valve operation was characterized for heater power ranging from 36 mW to 80 mW. When the valve was actuating, the local channel temperature was 10 to 19 degrees C above the ambient temperature depending on the heater power used. Repetitive valve operations (up to 50 times) have been demonstrated with a flow resulting from a hydrostatic head. Valve operation was tested for a flow rate of 0.33-4.7 microL/min.

  18. Microfluidic extensional rheometry using stagnation point flow.

    Science.gov (United States)

    Haward, S J

    2016-07-01

    Characterization of the extensional rheometry of fluids with complex microstructures is of great relevance to the optimization of a wide range of industrial applications and for understanding various natural processes, biological functions, and diseases. However, quantitative measurement of the extensional properties of complex fluids has proven elusive to researchers, particularly in the case of low viscosity, weakly elastic fluids. For some time, microfluidic platforms have been recognized as having the potential to fill this gap and various approaches have been proposed. This review begins with a general discussion of extensional viscosity and the requirements of an extensional rheometer, before various types of extensional rheometers (particularly those of microfluidic design) are critically discussed. A specific focus is placed on microfluidic stagnation point extensional flows generated by cross-slot type devices, for which some important developments have been reported during the last 10 years. Additional emphasis is placed on measurements made on relevant biological fluids. Finally, the operating limits of the cross-slot extensional rheometer (chiefly imposed by the onset of elastic and inertial flow instabilities) are discussed.

  19. Logic control of microfluidics with smart colloid

    KAUST Repository

    Wang, Limu

    2010-01-01

    We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate. © The Royal Society of Chemistry 2010.

  20. Mobility-shift analysis with microfluidics chips.

    Science.gov (United States)

    Clark, Jarrod; Shevchuk, Taras; Swiderski, Piotr M; Dabur, Rajesh; Crocitto, Laura E; Buryanov, Yaroslav I; Smith, Steven S

    2003-09-01

    Electrophoretic mobility shift analysis (EMSA) is a well-characterized and widely used technique for the analysis of proten-DNA interaction and the analysis of transcription factor combinatorics. Currently implemented EMSA generally involves the time-consuming use of radiolabeled DNA and polyacrylamide gel electrophoresis. We are studying the bionanoscience of self-assembling supramolecular protein-nucleic nanostructures. We have undertaken these studies because they promise to enhance our understanding of assemblies formed during prebiotic evolution, provide tools for analysis of biological processes like DNA recombination, and may lead to the development of nanoscale biosensors designed for site-specific molecular targeting. During the course of that work, we noted that EMSA of these complex structures could be effectively implemented with microfluidics chips designed for the separation of DNA fragments. In this report we compare the two techniques and demonstrate that the microfluidics system is also capable of resolving complex mixtures produced by decorating DNA recombination intermediates with mixtures of DNA binding proteins. Moreover, the microfluidics chip system improves EMSA by permitting analysis with smaller samples, avoiding the use of radiolabeling, and reducing the time involved to a matter of minutes.