Qian, Hong; Xie, X Sunney
2006-07-01
Enzyme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have identical nonexponential distributions: Theta + (t)=Theta_(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+) and backward (p-) cycles, kBT ln(p+/p-) is shown to be the chemical driving force of the NESS, Delta mu. More interestingly, the moment generating function of the stochastic number of substrate cycle v(t), , follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When lambda=delta mu/kBT, we obtain the Jarzynski-Hatano-Sasa-type equality identical with 1 for all t, where v Delta mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force in situ from turnover data via single-molecule enzymology.
Tryon, E; Kuby, S A
1984-01-01
From a study of the steady-state kinetics (at pH 7.6, 30 degrees C) of the reduction of cytochrome c, a 'ping-pong' mechanism may be postulated for the crystalline NADPH-cytochrome c reductase from ale yeast, Saccharomyces cerevisiae [1], a result derivable from a three-substrate ordered system with a rapid equilibrium random sequence in substrates, NADPH and FAD, followed by reactions of the third substrate, Cyt C3+. On this basis, estimates for the kinetic parameters were made together with the inhibitor dissociation constants for NADP+ (competitive with respect to NADPH as variable substrate, but noncompetitive with respect to cytochrome c3+ as the variable substrate). A noncompetitive type of inhibition was also found for cytochrome c2+ with NADPH as variable substrate, in confirmation of the proposed mechanism. With 2,6-dichloroindophenol as the acceptor, in place of cytochrome c3+, a value for KNADPH could be estimated which agreed with that estimated above, with cytochrome c3+ as the acceptor, again, in confirmation of the postulated mechanism. The reactions with molecular O2 catalyzed by the enzyme with NADPH as the reductant have been studied polarographically, and its Km for O2 estimated to be about 0.15 mmol/l at pH 7.6, 25 degrees C. The product of the reaction appears to be H2O2, which acts as a noncompetitive inhibitor for NADPH (Ki = 0.5 mmol/l), and tentatively an enzyme ternary complex containing oxygen and FADoh (semiquinone of FAD) may be assumed to be the kinetically important intermediate, which may be postulated to be in quasi-equilibrium with an enzyme ternary complex containing Oo2 (superoxide) and FAD.
Wang, Aiying; Huang, Yanting; Taunk, Prakash; Magnin, David R; Ghosh, Krishnendu; Robertson, James G
2003-10-15
Using available commercial robotics and instrumentation, we developed a fully automated and rigorous steady state enzyme kinetic assay for dipeptidyl peptidase IV (DPP IV; E.C. 3.4.14.5). The automated assay was validated with isoleucyl thiazolidide, a potent inhibitor of DPP IV with K(is)=110nM. Signal window analysis indicated that the assay had a 98% probability of detecting an inhibitor yielding 15% inhibition, with a predicted false positive rate of 0.13%. A mechanistic inhibition version of the automated assay was validated with isoleucyl 4-cyanothiazolidide, a very potent inhibitor of DPP IV. Isoleucyl 4-cyanothiazolidide was a competitive inhibitor of purified porcine DPP IV with K(is)=1 nM. Similar K(is) values were obtained for purified rat DPP IV and for DPP IV activity in human plasma from normal and diabetic donors. The pH dependence of K(is) for isoleucyl 4-cyanothiazolidide yielded a bell-shaped profile, with pK(a)=5.0 and pK(b)=7.6. To date, over 100,000 data points have been generated in profiling targeted compound libraries and in the analysis of tight-binding inhibitors of DPP IV. The data also show that robotic analysis is capable of producing full mechanistic inhibition analysis in a timely fashion to support drug discovery.
Vrzheshch, P V
2015-01-01
Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.
Energy Technology Data Exchange (ETDEWEB)
Chen, C.Y.; Harris, B.G.; Cook, P.F.
1988-01-12
Isotope partitioning studies beginning with E-(/sup 14/C)NAD, E-(/sup 14/C) malate, E-(/sup 14/C) NAD-Mg/sup 2 +/, and E-Mg-(/sup 14/C)malate suggest a steady-state random mechanism for the NAD-malic enzyme. Isotope trapping beginning with E-(/sup 14/C)NAD and with varying concentrations of Mg/sup 2 +/ and malate in the chase solution indicates that Mg/sup 2 +/ is added in rapid equilibrium and must be added prior to malate for productive ternary complex formation. Equal percentage trapping from E-(/sup 14/C)NAD-Mg and E-Mg-(/sup 14/C) malate indicates the mechanism is steady-state random with equal off-rates for NAD and malate from E-NAD-Mg-malate. The off-rates for both do not change significantly in the ternary E-Mg-malate and E-NAD-Mg complexes, nor does the off-rate change for NAD from E-NAD. No trapping of malate was obtained from E-(/sup 14/C) malate, suggesting that this complex is nonproductive. A quantitative analysis of the data allows an estimation of values for a number of the rate constants along the reaction pathway.
Bol, E.; Broers, N.J.; Hagen, W.R.
2007-01-01
Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus is a homotetrameric protein with one tungstodipterin and one [4Fe–4S] cubane per 69-kDa subunit. The enzyme kinetics have been studied under steady-state conditions at 80 °C and pre-steady state conditions at 50 °C, in the latter case
Lolkema, Juke S.; Hoeve-Duurkens, Ria H. ten; Robillard, George T.
1993-01-01
The kinetics of mannitol phosphorylation catalyzed by enzyme IImtl of the bacterial P-enolpyruvate-dependent phosphotransferase system are described for three different physical conditions of the enzyme, (i) embedded in the membrane of inside-out (ISO) oriented vesicles, (ii) solubilized and assayed
Bol, E.; Broers, N.J.; Hagen, W.R.
2007-01-01
Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus is a homotetrameric protein with onetungstodipterin and one [4Fe–4S] cubane per 69-kDa subunit. The enzyme kinetics have been studied understeady-state conditions at 80 C and pre-steady state conditions at 50 C, in the latter case via
Nichols, K.P.F.; Gardeniers, Johannes G.E.
2007-01-01
A digital microfluidic system based on electrowetting has been developed to facilitate the investigation of pre-steady-state reaction kinetics using rapid quenching and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The device consists of individually
Bajkowski, A S; Frankfater, A
1983-02-10
Cathepsin B from bovine spleen was shown to catalyze transacylation reactions between esters of N-substituted amino acids and nucleophiles. These reactions appeared to proceed through an intermediate between cathepsin B and the acyl portion of the substrate. Of the various nucleophiles tested, dipeptides were found to be the most effective acyl group acceptors. A method was devised for calculating the acylation and deacylation rate constants from increases in the maximum velocity of disappearance of the substrate with increasing concentrations of the nucleophile. The values for the second order rate constants for the reaction of the acyl-enzyme with the nucleophile, k4, were found to depend on the identity of the dipeptide, while the first order rate constants for formation and hydrolysis of the acyl-enzyme, k2 and k3, were dipeptide-independent. With N alpha-benzyloxycarbonyl-L-lysine p-nitrophenyl ester at pH 6.5, k2 and k3 were found to be 360 s-1 and 6.6 s-1, respectively, indicating that the deacylation step was rate-determining for the hydrolysis of this substrate. In contrast, dipeptide nucleophiles did not significantly accelerate the cathepsin B-catalyzed cleavage of either the p-nitroanilide or the 2-naphthylamide of N alpha-benzoylarginine, suggesting that the hydrolysis of these amide substrates was acylation rate-limiting. These findings support the suggestion that cathepsin B is mechanistically similar to the cysteine proteinase papain.
Qian, Hong; Bishop, Lisa M
2010-09-20
We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a "punctuated equilibrium" manner.
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism
Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.
2010-01-01
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840
Kosman, Daniel J.
2009-01-01
The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…
LOLKEMA, JS; TENHOEVEDUURKENS, RH; ROBILLARD, GT
1993-01-01
The kinetics of mannitol phosphorylation catalyzed by enzyme II(mtl) of the bacterial P-enolpyruvate-dependent phosphotransferase system are described for three different physical conditions of the enzyme, (i) embedded in the membrane of inside-out (ISO) oriented vesicles, (ii) solubilized and
Zhai, Xiang; Meek, Thomas D
2018-01-16
Cruzain, an important drug target for Chagas disease, is a member of Clan CA of the cysteine proteases. Understanding the catalytic mechanism of cruzain is vital to the design of new inhibitors. To this end, we have performed pH-rate profiles for substrates and affinity agents, and have determined solvent kinetic isotope effects in pre-steady-state and steady-state modes using three substrates: Cbz-Phe-Arg-AMC, Cbz-Arg-Arg-AMC and Cbz-Arg-Ala-AMC. The pH-rate profile of kcat/Km for Cbz-Arg-Arg-AMC indicated groups of pK1 = 6.6 (unprotonated) and pK2 ~ 9.6 (protonated) required for catalysis. The temperature dependence of the group of pK = 6.2 - 6.6 exhibited a values of Hion = 8.4 kcal/mol, typical of histidine. The pH-rate profile of inactivation by iodoacetamide confirmed that the catalytic cysteine possesses a pKa of 9.8. Normal solvent kinetic isotope effects were observed for both D2Okcat = 1.6 - 2.1 and D2Okcat/Km = 1.1 - 1.4 for all three substrates. Pre-steady-state kinetics revealed exponential bursts of AMC production for Cbz-Phe-Arg-AMC and Cbz-Arg-Arg-AMC, but not for Cbz-Arg-Ala-AMC. The overall solvent isotope effect on k¬cat is attributable to the solvent isotope effect on the deacylation step. Our results suggest that cruzain is unique among papain-like cysteine proteases in that the catalytic cysteine and histidine are neutral in charge in the free enzyme. The generation of the active thiolate of the catalytic cysteine is likely proceeded (and possibly triggered) by a ligand-induced conformational change, which could bring the catalytic dyad to close proximity in order to effect proton transfer.
Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A
DEFF Research Database (Denmark)
Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil
2012-01-01
complex, processive hydrolysis, and dissociation, respectively. These kinetic parameters elucidate limiting factors in the cellulolytic process. We concluded, for example, that Cel7A cleaves about four glycosidic bonds/s during processive hydrolysis. However, the results suggest that stalling...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...
New Methods for Processing and Quantifying VO2 Kinetics to Steady State: VO2 Onset Kinetics
McNulty, Craig R.; Robergs, Robert A.
2017-01-01
Current methods of oxygen uptake (VO2) kinetics data handling may be too simplistic for the complex physiology involved in the underlying physiological processes. Therefore, the aim of this study was to quantify the VO2 kinetics to steady state across the full range of sub-ventilatory threshold work rates, with a particular focus on the VO2 onset kinetics. Ten healthy, moderately trained males participated in five bouts of cycling. Each bout involved 10 min at a percentage of the subject's ventilation threshold (30, 45, 60, 75, 90%) from unloaded cycling. The VO2 kinetics was quantified using the conventional mono-exponential time constant (tau, τ), as well as the new methods for VO2 onset kinetics. Compared to linear modeling, non-linear modeling caused a deterioration of goodness of fit (main effect, p kinetics were also improved using a modified application of the mono-exponential model (main effect, p kinetics data is similar across all subjects and absolute exercise intensities, and thereby independent of subject fitness and τ. This could indicate that there are no functional limitations between subjects during this onset phase, with limitations occurring for the latter transition to steady state. Finally, the continuing use of mono-exponential modeling could mask important underlying physiology of more instantaneous VO2 responses to steady state. Consequently, further research should be conducted on this new approach to VO2 onset kinetics. PMID:29018361
Tan, Yikun; Rivera, Jimmy G Lafontaine; Contador, Carolina A; Asenjo, Juan A; Liao, James C
2011-01-01
Dynamic models of metabolism are instrumental for gaining insight and predicting possible outcomes of perturbations. Current approaches start from the selection of lumped enzyme kinetics and determine the parameters within a large parametric space. However, kinetic parameters are often unknown and obtaining these parameters requires detailed characterization of enzyme kinetics. In many cases, only steady-state fluxes are measured or estimated, but these data have not been utilized to construct dynamic models. Here, we extend the previously developed Ensemble Modeling methodology by allowing various kinetic rate expressions and employing a more efficient solution method for steady states. We show that anchoring the dynamic models to the same flux reduces the allowable parameter space significantly such that sampling of high dimensional kinetic parameters becomes meaningful. The methodology enables examination of the properties of the model's structure, including multiple steady states. Screening of models based on limited steady-state fluxes or metabolite profiles reduces the parameter space further and the remaining models become increasingly predictive. We use both succinate overproduction and central carbon metabolism in Escherichia coli as examples to demonstrate these results. Published by Elsevier Inc.
DEFF Research Database (Denmark)
Nielsen, Jonas Willum
Glycosidases are widespread in nature, where they perform a diverse range of functions. The glycoside hydrolase (GH) family 38, α-mannosidase II enzymes play a crucial role in mammalian cells, in the maturation of N-glycosylated proteins in the Golgi apparatus and in catabolism in cytosol...... been identified in various enzymes, often based on crystal structures, and only few have been characterized in terms of structure-function relationship. Together SBS1 and SBS2 of barley α-amylase isozyme 1 probably represent the two most extensively studied SBSs. SBS2, largely governed by Tyr380, has...... been shown to be important for AMY1 adhesion to starch granules, but seems to play no significant role in the degradation of oligosaccharides, and only a minor role in the degradation of amylose. In Manuscript 2, a steady state kinetic analysis of amylopectin depolymerization by AMY1 and the SBS2...
A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157.
Preugschat, Frank; Carter, Luke H; Boros, Eric E; Porter, David J T; Stewart, Eugene L; Shewchuk, Lisa M
2014-12-15
hCD157 catalyzes the hydrolysis of nicotinamide riboside (NR) and nicotinic acid riboside (NAR). The release of nicotinamide or nicotinic acid from NR or NAR was confirmed by spectrophotometric, HPLC and NMR analyses. hCD157 is inactivated by a mechanism-based inhibitor, 2'-deoxy-2'-fluoro-nicotinamide arabinoside (fNR). Modification of the enzyme during the catalytic cycle by NR, NAR, or fNR increased the intrinsic protein fluorescence by approximately 50%. Pre-steady state and steady state data were used to derive a minimal kinetic scheme for the hydrolysis of NR. After initial complex formation a reversible step (360 and 30s(-1)) is followed by a slow irreversible step (0.1s(-1)) that defined the rate limiting step, or kcat. The calculated KMapp value for NR in the hydrolytic reaction is 6nM. The values of the kinetic constants suggest that one biological function of cell-surface hCD157 is to bind and slowly hydrolyze NR, possibly converting it to a ligand-activated receptor. Differences in substrate preference between hCD157 and hCD38 were rationalized through a comparison of the crystal structures of the two proteins. This comparison identified several residues in hCD157 (F108 and F173) that can potentially hinder the binding of dinucleotide substrates (NAD+). Copyright © 2014 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL; Mayes, Melanie [ORNL
2013-01-01
We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.
A steady-state kinetic analysis of the prolyl-4-hydroxylase mechanism.
Soskel, N T; Kuby, S A
1981-01-01
Published kinetic data by Kivirikko, et al. on the prolyl-4-hydroxylase reaction have been re-evaluated using the overall steady-state velocity equation in the forward and reverse directions for an ordered ter ter kinetic mechanism. Qualitatively, the published data for prolyl-4-hydroxylase appear to fit the predicted patterns for this kinetic mechanism. More kinetic data are needed to confirm these results and to quantitate the kinetic parameters but, tentatively, the order of substrate addition would appear to be alpha-ketoglutarate, oxygen, and peptide; and the order of product release would be hydroxylated peptide (or collagen), carbon dioxide, and succinate.
Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions
Jin, Xiao
2016-01-01
Nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but much less investigated under non-isothermal conditions. However, once the heat exchange between subsystems is rather slow, the isothermal assumption of the whole system meets great challenge, which is indeed the case inside many kinds of living organisms. Here we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics, in the master-equation models, to the situation in which the temperatures of subsystems can be far from uniform. We first obtain a new thermodynamic relation between the chemical reaction rates and thermodynamic potentials under such a non-isothermal circumstances, which immediately implies simply applying the isothermal transition-state rate formula for each chemical reaction in terms of only the reactants' temperature, is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction-rate formulas which not only obey the new ...
Directory of Open Access Journals (Sweden)
van Gulik Walter M
2006-12-01
Full Text Available Abstract Background Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (disfunctioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog format have been proposed as a suitable alternative with fewer parameters. Results In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC simulations. Conclusion The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only
The total quasi-steady-state approximation for fully competitive enzyme reactions
DEFF Research Database (Denmark)
Pedersen, Morten Gram; Bersani, A.M.; Bersani, E.
2007-01-01
The validity of the Michaelis-Menten-Briggs-Haldane approximation for single enzyme reactions has recently been improved by the formalism of the total quasi-steady-state approximation. This approach is here extended to fully competitive systems, and a criterion for its validity is provided. We show...... that it extends the Michaelis-Menten-Briggs-Haldane approximation for such systems for a wide range of parameters very convincingly, and investigate special cases. It is demonstrated that our method is at least roughly valid in the case of identical affinities. The results presented should be useful for numerical...
Peroxidase-catalyzed oxidation of capsaicinoids: steady-state and transient-state kinetic studies.
Goodwin, Douglas C; Hertwig, Kristen M
2003-09-01
Capsaicinoids are the pungent compounds in Capsicum fruits (i.e., "hot" peppers). Peroxidases catalyze capsaicinoid oxidation and may play a central role in their metabolism. However, key kinetic aspects of peroxidase-catalyzed capsaicinoid oxidation remain unresolved. Using transient-state methods, we evaluated horseradish peroxidase compound I and II reduction by two prominent capsaicinoids (25 degrees C, pH 7.0). We determined rate constants approaching 2 x 10(7) and 5 x 10(5)M(-1)s(-1) for compound I and compound II reduction, respectively. We also determined k(app) values for steady-state capsaicinoid oxidation approaching 8 x 10(5)M(-1)s(-1) (25 degrees C, pH 7.0). Accounting for stoichiometry, these are in excellent agreement with constants for compound II reduction, suggesting that this reaction governs capsaicinoid-dependent peroxidase turnover. Ascorbate rapidly reduced capsaicinoid radicals, assisting in the determination of the kinetic constants reported. Because ascorbate accumulates in Capsicum fruits, it may also be an important determinant for capsaicinoid content and preservation in Capsicum fruits and related products.
Perez-Benito, Joaquin F.
2017-01-01
The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…
Relaxation, multiplicity of steady states, and autooscillations in kinetics of catalytic reactions
Energy Technology Data Exchange (ETDEWEB)
Kol`tsov, N.I.; Fedotov, V.Kh.; Alekseev, B.V. [Chuvash State Univ., Chuvashia (Russian Federation)
1995-01-01
A review of the authors` recent findings of researche into steady-state and non-steady-state catalytic reactions is given. The method for the estimation of relaxation times for particular reaction classes is generalized. Basic critical phenomena, such as the multiplicity of steady states, are discussed in terms of the structures of reaction schemes. Mechanisms of simplest catalytic oscillators are systematized. The results outlined in this paper are shown to reflect close relations between relaxation characteristics and complex critical phenomena, which are peculiar to catalytic reactions. The discussion is held within the framework of the mass action law.
DEFF Research Database (Denmark)
Nielsen, M K; Eriksen, P B; Fenger, M
1983-01-01
Ten healthy volunteers received two sustained-release preparations as a single and multiple dose regimen in an open crossover study. Plasma theophylline concentrations were measured by an enzyme immunoassay. The limited fluctuation of the theophylline levels at steady state, with twice daily...... theophylline concentration....
The total quasi-steady-state approximation for complex enzyme reactions
DEFF Research Database (Denmark)
Pedersen, Morten Gram; Bersani, A. M.; Bersani, E.
2008-01-01
Biochemistry in general and enzyme kinetics in particular have been heavily influenced by the model of biochemical reactions known as Michaelis-Menten kinetics. Assuming that the complex concentration is approximately constant after a short transient phase leads to the usual Michaelis-Menten (MM...... excellent fitting to the solutions of the full system, better than the sQSSA and the single reaction tQSSA. Finally, we discuss the need for a correct model formulation when doing "reverse engineering". which aims at finding unknown parameters by fitting the model to experimentally obtained data. We show...... both high and low enzyme concentrations, has been introduced in the last two decades. We extend the tQSSA to more complex reaction schemes, like fully competitive reactions, double phosphorylation, Goldbeter-Koshland switch and we show that for a very large range of parameters our tQSSA provides...
Pelarigo, Jailton Gregório; Machado, Leandro; Fernandes, Ricardo Jorge; Greco, Camila Coelho; Vilas-Boas, João Paulo
2017-01-01
The purpose of this study was to examine the oxygen uptake ([Formula: see text]) kinetics and the energy systems' contribution at 97.5, 100 and 102.5% of the maximal lactate steady state (MLSS) swimming intensity. Ten elite female swimmers performed three-to-five 30 min submaximal constant swimming bouts at imposed paces for the determination of the swimming velocity (v) at 100%MLSS based on a 7 x 200 m intermittent incremental protocol until voluntary exhaustion to find the v associated at the individual anaerobic threshold. [Formula: see text] kinetics (cardiodynamic, primary and slow component phases) and the aerobic and anaerobic energy contributions were assessed during the continuous exercises, which the former was studied for the beginning and second phase of exercise. Subjects showed similar time delay (TD) (mean = 11.5-14.3 s) and time constant (τp) (mean = 13.8-16.3 s) as a function of v, but reduced amplitude of the primary component for 97.5% (35.7 ± 7.3 mL.kg.min-1) compared to 100 and 102.5%MLSS (41.0 ± 7.0 and 41.3 ± 5.4 mL.kg.min-1, respectively), and τp decreased (mean = 9.6-10.8 s) during the second phase of exercise. Despite the slow component did not occur for all swimmers at all swim intensities, when observed it tended to increase as a function of v. Moreover, the total energy contribution was almost exclusively aerobic (98-99%) at 97.5, 100 and 102.5%MLSS. We suggest that well-trained endurance swimmers with a fast TD and τp values may be able to adjust faster the physiological requirements to minimize the amplitude of the slow component appearance, parameter associated with the fatigue delay and increase in exhaustion time during performance, however, these fast adjustments were not able to control the progressive fatigue occurred slightly above MLSS, and most of swimmers reached exhaustion before 30min swam.
Garcia, Jane Bernadette Denise M.; Esguerra, Jose Perico H.
2017-08-01
An approximate but closed-form expression for a Poisson-like steady state wealth distribution in a kinetic model of gambling was formulated from a finite number of its moments, which were generated from a βa,b(x) exchange distribution. The obtained steady-state wealth distributions have tails which are qualitatively similar to those observed in actual wealth distributions.
Jerga, Agoston; Raychaudhuri, Aniruddha; Tipton, Peter A
2006-01-17
Alginate is a major constituent of mature biofilms produced by Pseudomonas aeruginosa. The penultimate step in the biosynthesis of alginate is the conversion of some beta-D-mannuronate residues in the polymeric substrate polymannuronan to alpha-L-guluronate residues in a reaction catalyzed by C5-mannuronan epimerase. Specificity studies conducted with size-fractionated oligomannuronates revealed that the minimal substrate contained nine monosaccharide residues. The maximum velocity of the reaction increased from 0.0018 to 0.0218 s(-1) as the substrate size increased from 10 to 20 residues, and no additional increase in kcat was observed for substrates up to 100 residues in length. The Km decreased from 80 microM for a substrate containing fewer than 15 residues to 4 microM for a substrate containing more than 100 residues. In contrast to C5-mannuronan epimerases that have been characterized in other bacterial species, P. aeruginosa C5-mannuronan epimerase does not require Ca2+ for activity, and the Ca2+-alginate complex is not a substrate for the enzyme. Analysis of the purified, active enzyme by inductively coupled plasma-emission spectroscopy revealed that no metals were present in the protein. The pH dependence of the kinetic parameters revealed that three residues on the enzyme which all have a pKa of approximately 7.6 must be protonated for catalysis to occur. The composition of the polymeric product of the epimerase reaction was analyzed by 1H NMR spectroscopy, which revealed that tracts of adjacent guluronate residues were readily formed. The reaction reached an apparent equilibrium when the guluronate composition of the polymer was 75%.
Jerga, Agoston; Raychaudhuri, Aniruddha; Tipton, Peter A.
2008-01-01
Alginate is a major constituent of mature biofilms produced by Pseudomonas aeruginosa. The penultimate step in the biosynthesis of alginate is the conversion of some β-D-mannuronate residues in the polymeric substrate polymannuronan to α-L-guluronate residues in a reaction catalyzed by C5-mannuronan epimerase. Specificity studies conducted with size-fractionated oligomannuronates revealed that the minimal substrate contained 9 monosaccharide residues. The maximum velocity of the reaction increased from 0.0018 s−1 to 0.0218 s−1 as the substrate size increased from 10 to 20 residues, and no additional increase in kcat was observed for substrates up to 100 residues in length. The Km decreased from 80 μM for substrate containing fewer than 15 residues to 4 μM for substrate containing over 100 residues. In contrast to C5-mannuronan epimerases that have been characterized in other bacterial species, P. aeruginosa C5-mannuronan epimerase does not require Ca2+ for activity, and the Ca2+-alginate complex is not a substrate for the enzyme. Analysis of purified, active enzyme by inductively coupled plasma-emission spectroscopy revealed that no metals were present in the protein. The pH dependence of the kinetic parameters revealed that 3 residues on the enzyme which all have a pKa of about 7.6 must be protonated for catalysis to occur. The composition of the polymeric product of the epimerase reaction was analyzed by 1H-NMR spectroscopy, which revealed that tracts of adjacent guluronate residues were readily formed. The reaction reached an apparent equilibrium when the guluronate composition of the polymer was 75%. PMID:16401084
Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates
Energy Technology Data Exchange (ETDEWEB)
Hozé, Nathanaël; Holcman, David
2014-01-24
The kinetics of aggregation for particles of various sizes depends on their diffusive arrival and fusion at a specific nucleation site. We present here a mean-field approximation and a stochastic jump model for aggregates at equilibrium. This approach is an alternative to the classical Smoluchowski equations that do not have a close form and are not solvable in general. We analyze these mean-field equations and obtain the kinetics of a cluster formation. Our approach provides a simplified theoretical framework to study the kinetics of viral capsid formation, such as HIV from the self-assembly of the structural proteins Gag.
Zaranyika, Mark F; Dzomba, Pamhidzai; Kugara, Jameson
2015-01-01
The aim of the present work was to establish the kinetics for the degradation of doxycycline in the aquatic environment with a view to arriving at a kinetic model that can be used to predict the persistence of antibiotic with confidence. The degradation of doxycycline in both water and sediment phases of aquatic microcosm experiments, as well as in distilled water control experiments, was studied over a period of 90 days. An initial 21% loss due to adsorption by the sediment was observed in the microcosm experiment soon after charging. Biphasic zero-order linear rates of degradation, attributed to microbial degradation of the free and sediment or colloidal particle-adsorbed antibiotic, were observed for both water phase (2.3 × 10(-2) and 4.5 × 10(-3) μgg(-1) day(-1)) and sediment phase (7.9 × 10(-3) and 1.5 × 10(-3) μgg(-1) day(-1)) of the microcosm experiment. The covered distilled water control experiment exhibited a monophasic zero-order linear rate (1.9 × 10(-3) μgg(-1) day(-1)) attributed to hydrolysis, while the distilled water experiment exposed to natural light exhibited biphasic liner rates attributed to a combination of hydrolysis and photolysis (2.9 × 10(-3) μgg(-1) day(-1)) and to microbial degradation (9.8 × 10(-3) μgg(-1) day(-1)). A kinetic model that takes into account hydrolysis, photolysis, microbial degradation as well as sorption/desorption by colloidal and sediment particles is presented to account for the observed zero-order kinetics. The implications of the observed kinetics on the persistence of doxycycline in the aquatic environment are discussed.
Chen, C M; Gettes, L S; Katzung, B G
1975-07-01
We studied the effects of quinidine and lidocaine on the steady-state relationship between membrane potential and the maximum rate of rise of the action potential, (dV/dt)max, and on the recovery kinetics of (dV/dt)max in guinea pig papillary muscles. The steady-state relationships were determined in fibers stimulated at 0.2/sec and depolarized with KCl. Recovery kinetics were determined at various resting membrane potentials by assessing (dV/dt)max in progressively earlier premature action potentials. Lidocaine caused a dose-dependent decrease in (dV/dt)max, shifted the curve defining the steady-state relationship along the voltage axis in the direction of more negative potentials, and slowed the recovery kinetics of (dV/dt)max. Quinidine caused a dose-dependent decrease in (dV/dt)max but did not alter the shape of the curves defining either the steady-state relationship or the recovery kinetics of (dV/dt)max. Both drugs depressed membrane responsiveness as determined in premature action potentials originating from incompletely repolarized fibers. Our study indicates that the mechanisms whereby quinidine and lidocaine influence (dV/dt)max are different. It is possible that this difference may underlie some of the differences in the clinical effects of these two drugs.
Yao, Chung-Tay; Lai, Ching-Long; Hsieh, Hsiu-Shan; Chi, Chin-Wen; Yin, Shih-Jiun
2010-09-01
Alcohol dehydrogenase (ADH) catalyzes oxidation of ingested ethanol to acetaldehyde, the first step in hepatic metabolism. The purpose of this study was to establish an ex vivo rat liver perfusion system under defined and verified steady states with respect to the metabolites and the metabolic rates, and to quantitatively correlate the observed rates with simulations based on the kinetic mechanism-based rate equations of rat liver ADH. Class I ADH1 was isolated from male Sprague-Dawley rats and characterized by steady-state kinetics in the Krebs-Ringer perfusion buffer with supplements. Nonrecirculating liver perfusion with constant input of ethanol at near physiological hepatic blood flow rate was performed in situ. Ethanol and the related metabolites acetaldehyde, acetate, lactate, and pyruvate in perfusates were determined. Results of the initial velocity, product, and dead-end inhibition studies showed that rat ADH1 conformed to the Theorell-Chance Ordered Bi Bi mechanism. Steady-state metabolism of ethanol in the perfused liver maintained up to 3h as evidenced by the steady-state levels of ethanol and metabolites in the effluent, and the steady-state ethanol disappearance rates and acetate production rates. The changes of the metabolic rates were qualitatively and in general quantitatively correlated to the results from simulations with the kinetic rate equations of ADH1 under a wide range of ethanol, in the presence of competitive inhibitor 4-methylpyrazole and of uncompetitive inhibitor isobutyramide. Preliminary flux control analysis estimated that apparent C(ADH)(J) in the perfused liver may approximate 0.7 at constant infusion with 1-2 mM ethanol, suggesting that ADH plays a major but not the exclusive role in governing hepatic ethanol metabolism. The reported steady-state rat liver perfusion system may potentially be applicable to other drug or drug-ethanol interaction studies. Copyright © 2010 Elsevier Inc. All rights reserved.
Kuby, S A; Fleming, G; Alber, T; Richardson, D; Takenaka, H; Hamada, M
1991-01-01
A study of the steady-state kinetics of the crystalline brewer's yeast (Saccharomyces carlsbergensis) nucleoside diphosphokinase, with the magnesium complexes of the adenine and thymidine nucleotides as reactants, has led to a postulated kinetic mechanism which proceeds through a substituted enzyme. This agrees with the earlier conclusions of Garces and Cleland [Biochemistry 1969; 8:633-640] who characterized a reaction between the magnesium complexes of the adenine and uridine nucleotides. An advantage of using thymidine nucleotides as reactants is that they permit accurate, rapid and continuous assays of the enzymatic activity in coupled-enzymatic tests. Through measurements of the initial velocities and product inhibition studies, the Michaelis constants, maximum velocities, and inhibition constants could be evaluated for the individual substrates. Competitive substrate inhibition was encountered at relatively high substrate concentrations, which also permitted an evaluation of their ability to act as 'dead-end' inhibitors. The Michaelis constants for the 3'-azido-3'-deoxythymidine (AzT) analogues were also evaluated and, although these values were only somewhat higher than those of their natural substrates, the Km's for the adenine nucleotides as paired substrates were lower and the Vmax's were drastically reduced. The pharmacological implications of these observations are touched upon and extrapolated to the cases where therapeutic doses of AzT may be employed.
DEFF Research Database (Denmark)
Wedel, Stig; Lues, Dan
1984-01-01
The steady-state multiplicity features of an adiabatic fixed bed reactor were Investigated experimentally by the methanation of either CO or CO2 as test reactions. No more than two stable steady states were found at any operating conditions. The Langmuir-Hinshelwood kinetics of these reactions...... caused the conversion along the lower branch to decrease with increasing feed concentration. The experimental results have been explained and simulated by a one-dimensional two-phase model which accounts for axial dispersion as well as inter- and intraphase transport resistances. The surface describing...
Fundamentals of enzyme kinetics.
Seibert, Eleanore; Tracy, Timothy S
2014-01-01
This chapter provides a general introduction to the kinetics of enzyme-catalyzed reactions, with a focus on drug-metabolizing enzymes. A prerequisite to understanding enzyme kinetics is having a clear grasp of the meanings of "enzyme" and "catalysis." Catalysts are reagents that can increase the rate of a chemical reaction without being consumed in the reaction. Enzymes are proteins that form a subset of catalysts. These concepts are further explored below.
Macnamara, Shev; Bersani, Alberto M; Burrage, Kevin; Sidje, Roger B
2008-09-07
Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis-Menten enzyme kinetics, double phosphorylation, the Goldbeter-Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.
Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika; Hofbauer, Stefan; Battistuzzi, Gianantonio; Furtmüller, Paul G; Obinger, Christian
2017-03-17
Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H 2 O 2 -mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika
2017-01-01
Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV. PMID:28154175
Grima, R
2010-07-21
Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the
Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model
Directory of Open Access Journals (Sweden)
João M N Duarte
2009-10-01
Full Text Available Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (Gbrain as function of plasma glucose (Gplasma can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant Kt, apparent maximum rate constant Tmax, glucose consumption rate CMRglc, and the iso-inhibition constant Kii that suggests Gbrain as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where Gbrain was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by Kt ranging from 1.5 to 3.5 mM, Tmax/CMRglc from 4.6 to 5.6, and Kii from 51 to 149 mM. It was noteworthy that Kt was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by Gbrain, predicting that Gbrain eventually approaches a maximum concentration. However, since Kii largely exceeds Gplasma, iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.
Lele, Tanmay P; Ingber, Donald E
2006-03-01
Fluorescence recovery after photobleaching (FRAP) analyses of binding and unbinding of molecules that interact with insoluble scaffolds, such as the cytoskeleton and nuclear matrix, in living cells commonly assume that this process is at equilibrium over the time scale of fluorescence recovery. This assumption breaks down for relatively fast intracellular processes like focal adhesion assembly at the leading edge of a migrating cell, or changes of transcriptional activation in the nucleus, that can occur in a matter of a few minutes. In this paper, we formulate a mathematical model that permits FRAP to be used to determine kinetic rate constants of molecules that interact with insoluble cellular structures under non-steady state conditions. We show that unlike steady state FRAP, fluorescence recovery time scales under these unsteady conditions are determined not only by unbinding rates, but also by the overall assembly and disassembly dynamics of the structural scaffold which supports these binding interactions. Experimental data from FRAP analysis and quantification of scaffold assembly dynamics may be combined and used with our mathematical model to estimate kinetic rate constants, as well as the apparent rate constant of scaffold assembly and disassembly.
Directory of Open Access Journals (Sweden)
Seif Mohaddecy, R.
2014-05-01
Full Text Available Due to the demand for high octane gasoline as a transportation fuel, the catalytic naphtha reformer has become one of the most important processes in petroleum refineries. In this research, the steady-state modelling of a catalytic fixed-bed naphtha reforming process to predict the momentous output variables was studied. These variables were octane number, yield, hydrogen purity, and temperature of all reforming reactors. To do such a task, an industrial scale semi-regenerative catalytic naphtha reforming unit was studied and modelled. In addition, to evaluate the developed model, the predicted variables i.e. outlet temperatures of reactors, research octane number, yield of gasoline and hydrogen purity were compared against actual data. The results showed that there is a close mapping between the actual and predicted variables, and the mean relative absolute deviation of the mentioned process variables were 0.38 %, 0.52 %, 0.54 %, 0.32 %, 4.8 % and 3.2 %, respectively.
Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido
2011-01-28
Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.
Directory of Open Access Journals (Sweden)
Rajesh Ramaswamy
2011-01-01
Full Text Available Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM or fluorescence-correlation spectroscopy (FCS to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.
Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika; Hofbauer, Stefan; Battistuzzi, Gianantonio; Furtm?ller, Paul G.; Obinger, Christian
2017-01-01
Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-l...
Johnson, M S; Kuby, S A
1986-02-15
A study of the steady-state kinetics of NADH(NADPH)-cytochrome c reductase (FMN-containing) from ale yeast (M. S. Johnson and S. A. Kuby (1985) J. Biol. Chem. 260, 12341-12350) has led to a postulated three-substrate random-ordered hybrid mechanism, where NAD(P)H and FMN add randomly and very likely in a steady-state fashion, followed by an ordered addition of cytochrome c. Kinetic parameters have been derived from this mechanism. Arrhenius plots showed large differences between NADH and NADPH, as the substrate-reductant. Menadione accelerated cytochrome c reduction and also O2 uptake, but vitamin K1 and coenzyme Q10 were ineffective as electron mediators, possibly as a result of their insolubility. With NADPH as the substrate-reductant, the order of the rate of reduction of electron acceptors was ferricyanide greater than DCIP greater than cytochrome c greater than oxygen; with menadione, the specificity sequence was cytochrome c greater than ferricyanide greater than DCIP greater than oxygen. With NADH, the order was ferricyanide greater than cytochrome c greater than oxygen greater than DCIP, which changed to cytochrome c greater than ferricyanide greater than oxygen greater than DCIP on addition of menadione. Cytochrome b5 was also reduced in the absence of oxygen. No transhydrogenase activity was observed, but the reduced thionicotinamide analogs of NADH and NADPH acted as substrates. Superoxide dismutase inhibited cytochrome c reduction in air by 50%, but O2-. was not necessary for cytochrome c reduction, as evidenced by the increase in rate in the absence of O2. The product of the reaction with oxygen appeared to be H2O2.
DEFF Research Database (Denmark)
Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine
2000-01-01
the apparent cooperativity of Pi activation. At unsaturating Pi concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with Pi directs the subsequent ordered binding of Mg2+ and substrates via a fast pathway, whereas...... saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...... varying Pi at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing Pi concentrations. Results from ADP inhibition of Pi activation suggest that these effectors compete for binding to a common regulatory site....
Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations
Härdin, Hanna M.; Zagaris, Antonios; Krab, Klaas; Westerhoff, Hans V.
2009-01-01
Much of enzyme kinetics builds on simplifications enabled by the quasi-steady-state approximation and is highly useful when the concentration of the enzyme is much lower than that of its substrate. However, in vivo, this condition is often violated. In the present study, we show that, under
Ganesan, Singaravelu; Elangovan, Masilamani; Periasamy, Ammasi
2001-04-01
Photodynamic Therapy has emerged as a new modality in the treatment of various nonmalignant and malignant diseases. It involves the systemic administration of tumor specific photo-sensitizers with the subsequent application of visible light. This combination causes the generation of cytotoxic species, which damage sensitive targets, producing cell injury and tumor destruction. Although, photofrin is the only photosensitizer currently approved for PDT and tumor detection, its concomitant cutaneous photosensitization poses a significant problem. Hence, δ-aminoleuvulinic acid (δ-ALA) a precursor for the endogenous production of Protoporphyrin IX, through heme biosynthesis pathway, has gained significant importance in the Photodynamic Therapy. Though δ-ALA is present naturally in the cells, exogenous δ-ALA helps to synthesis more of PpIX in the tumor cells, as the fast growing tumor cells take up the administered δ-ALA more than the normal cells. Based on these facts, many invasive studies have been reported on the kinetics of δ-ALA at cellular level by chemical extraction of PpIX from the cells. In the present study we have studied the kinetics of δ-ALA induced PpIX fluorescence from Hela cells by perchloric/Methanol extraction method. However, the amount of PpIX synthesized in the cells at different point of incubation time by noninvasive methods has not been reported. Hence we have also used a noninvasive technique of measuring the kinetics δ-ALA induced PPIX fluorescence from Hela, an epithelial cell derived from human cervical cancer by both single photon (steady state) and multi photon excitation. From the studies it is observed that the δ-ALA induced PpIX is more at 2 hours incubation time for 2 mM of δ-ALA concentration. Further, it is observed that with steady state fluorescence imaging method, the excitation light itself cause the Photodynamic damage, due to the prolonged exposure of the cells than in multi photon excitation, leading to the rounding
Redman, A. C.; Pogorelov, N. V.; Heerikhuisen, J.; Kim, T. K.
2016-12-01
Because of the Voyager interstellar mission, solar wind (SW) interaction with the local interstellar medium (LISM) represents a natural laboratory for the investigation of colliding streams of partially ionized plasma. It has been known for a long time that charge exchange between ions and neutral H atoms plays a major role in this interaction. Since the mean free path of charge exchange may be as large as 50 AU, kinetic treatment of the neutral atom transport becomes an important ingredient of any SW-LISM interaction model. We use an MHD-kinetic model implemented in our in-house Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) to analyze the plasma and magnetic field distributions in the heliosphere and in the LISM beyond it. Simulations are performed using an adaptive mesh refinement technique for a set of the LISM parameters that are believed to be the best choice from the viewpoint of fitting measurement from different data sets. To specify the SW parameters, we used OMNI data averaged over an approximately 5-year period from 2010 to 2015. While this model does not include time-dependence of the SW, it allows us to make analyze the dependence of the velocity distribution at Voyager 2 and magnetic field in the LISM at Voyager 1 and arrive at important conclusions regarding the possibility of reproducing measurements with steady-state models. In particular, it is shown that the transverse velocity component at V2 is not reproduced well for any set of LISM properties. On the other hand, the boundary conditions with the magnetic field strength of about 3 microG are in agreement with Voyager 1 observations. We also demonstrate that the heliospheric magnetic field calculated in the inner heliosheath assuming a unipolar field substantially overestimates Voyager observations. This means that there should exist some mechanism to dissipate magnetic field immediately behind the termination shock.
Extracellular enzyme kinetics scale with resource availability
Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.
2014-01-01
Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.
Energy Technology Data Exchange (ETDEWEB)
Kong, C.T.; Cook, P.F.
1988-06-28
Isotope partitioning beginning with the binary E.MgATP and E.N-acetyl-Leu-Arg-Arg-Ala-Ser-Leu-Gly (Ser-peptide) complexes indicates that the kinetic mechanism for the adenosine 3',5'-monophosphate dependent protein kinase is steady-state random. A total of 100% of the initial radioactive E.MgATP complex is trapped as phospho-Ser-peptide at infinite Ser-peptide concentration at both low and high concentration of uncomplexed Mg2+, suggesting that the off-rate of MgATP from the E.MgATP.Ser-peptide complex is slow relative to the catalytic steps. Km for Ser-peptide in the trapping reaction decreases from 17 microM at low Mg2+ to 2 microM at high Mg2+, indicating that Mg2+ decreases the off-rate for MgATP from the E.MgATP complex. A total of 100% of the radioactive E.Ser-peptide complex is trapped as phospho-Ser-peptide at low Mg2+, but only 40% is trapped at high Mg2+ in the presence of an infinite concentration of MgATP, suggesting that the off-rate for Ser-peptide from the central complex is much less than catalysis at low but not at high Mg2+. In support of this finding, the Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly (Ala-peptide) increases from 0.27 mM at low Mg2+ to 2.4 mM at high Mg2+. No trapping was observed at either high or low Mg2+ for the E.MgADP complex up to a phospho-Ser-peptide concentration of 5 mM. Thus, it is likely that in the slow-reaction direction the kinetic mechanism is rapid equilibrium.
Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno
2004-01-01
The apparent catalytic constant (k(cat)) of artichoke (Cynara scolymus L.) peroxidase (AKPC) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) increased 130-fold in the presence of calcium ions (Ca2+) but the affinity (K(m)) of the enzyme for ABTS was 500 times lower than for Ca2+-free AKPC. AKPC is known to exhibit an equilibrium between 6-aquo hexa-coordinate and penta-coordinate forms of the haem iron that is modulated by Ca2+ and affects compound I formation. Measurements of the Ca2+ dissociation constant (K(D)) were complicated by the water-association/dissociation equilibrium yielding a global value more than 1000 times too high. The value for the Ca2+ binding step alone has now been determined to be K(D) approximately 10 nM. AKPC-Ca2+ was more resistant to inactivation by hydrogen peroxide (H(2)O(2)) and exhibited increased catalase activity. An analysis of the complex H(2)O(2) concentration dependent kinetics of Ca2+-free AKPC is presented.
Czech Academy of Sciences Publication Activity Database
Archelas, A.; Zhao, W.; Faure, B.; Iacazio, G.; Kotík, Michael
2016-01-01
Roč. 591, FEB 2016 (2016), s. 66-75 ISSN 0003-9861 Institutional support: RVO:61388971 Keywords : Catalytic mechanism * Epoxide hydrolase * Electrophilic catalysis Subject RIV: CE - Biochemistry Impact factor: 3.165, year: 2016
Kuby, S A; Roy, R N
1976-05-04
A systematic study has been made of the pH- and temperature-dependency of the steady-state kinetic parameters of the stabilized two-subunit enzyme species of glucose-6-phosphate dehydrogenase, in the absence of superimposed association-dissociation reactions. The Vmax(app) data obtained in several buffers between pH 5 and 10 and at 18-32 degrees C lead to the postulate that at least two sets of protonic equilibria may govern the catalysis (one near pH 5.7 AT 25 DEGREES C and another near pH 9.2); furthermore, two pathways for product formation (i.e., two Vmax's) appear to be required to explain the biphasic nature of the log Vmax(app) vs. pH curves, with Vmax(basic) greater than Vmax(acidic + neutral). Of the several buffers explored, either a uniform degree of interaction or a minimal degree of buffer species interaction could be assessed from the enthalpy changes associated with the derived values for ionization constants attributed to the protonic equilibria in the enzyme-substrates ternary complexes for the case of Tris-acetate-EDTA buffers, at constant ionic strength. With the selection of this buffer at 0.1 (T/2) and at 25 and 32 degrees C, a self-consistent kinetic mechanism has emerged which allows for the random binding of the two fully ionized substrates to the enzyme via two major pathways, and product formation by both E-A--B- and HE-A--B-. As before (Kuby et al. Arch. Biochem, Biophys. 165, 153-178, 1974), a quasi-equilibrium is presumed, with rate-limiting steps (k + 5 and k + 5') at the interconversion of the ternary complexes. Values for the two sets of protonic equilibria defined by this mechanism (viz., pKk, pKH2 for the first ionizations, and pKk', pKH' for the second) could then be estimated. From their numerical values (e.g., at 25 degrees C: pKK = 5.7 PKH2 = 5.2; and pKK' = 9.1, PKH' = 8.2) and from the values for delta H degrees ioniz (e.g., delta H degrees pKK APPROXIMATELY 5.1 KCAL/MOL; DELTA H degrees pKK' APPROXIMATELY 11 KCAL/MOL), A
Steady states in conformal theories
CERN. Geneva
2015-01-01
A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.
ENZYPLOTW: A USEFUL TOOL TO CALCULATE ENZYME KINETIC PARAMETERS
Directory of Open Access Journals (Sweden)
F.A Leone
2006-07-01
Full Text Available Assays of enzyme activity are among the most frequently employed procedures in biochemistry. They are used to estimate the amount of a given enzyme in a cell or tissue, to quantify kinetic parameters or to investigate a catalytic mechanism. The purpose of enzyme kinetics obtained under steady-state conditions is to estimate KM and VM values by fitting initial rate (v and substrate concentration (S values to the Michaelis-Menten equation, permitting a convenient graphical representation and an accurate estimation of KM and VM. However, there is no ideal assay for any particular enzyme and, since the assay of enzyme activity is essentially a kinetic measurement, various pitfalls await the unwary investigator. Despite difficulties consequent to intrinsic enzyme properties, kinetic parameters can be estimated accurately when steady-state conditions (<10% variation in substrate concentration during activity assay and initial rate measurements (catalytic enzyme concentration are guaranteed.EnzyplotW is an application developed for use on any Intel-based computer running Windows 98 or later, and uses a non-linear regression method to fit steady-state kinetic data for Michaelian enzymes. EnzyplotW can be employed not only for educational purposes but also in routine laboratory work, and includes three important features: teaching students how to obtain and recognize sound data for the best estimation of kinetic parameter values; aid the investigator at the bench in gauging the limitations of the various equivalent plots of the Michaelis-Menten equation used to estimate KM and VM; and allow the student to manipulate the mathematical formula of the corresponding plot to comprehend the qualitative and quantitative issues that govern the relationship between substrate
Steady-State Process Modelling
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches...... illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....
Extracting enzyme processivity from kinetic assays
Energy Technology Data Exchange (ETDEWEB)
Barel, Itay; Brown, Frank L. H. [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Reich, Norbert O. [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)
2015-12-14
A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g., sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme’s processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.
Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George
2014-01-01
A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…
Monitoring enzyme kinetic behavior of enzyme-quantum dot bioconjugates
Claussen, Jonathan C.; Walper, Scott A.; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.
2014-05-01
Luminescent semiconductor nanocrystals or quantum dots (QDs) hold tremendous promise for in vivo biosensing, cellular imaging, theranostics, and smart molecular sensing probes due to their small size and favorable photonic properties such as resistance to photobleaching, size-tunable PL, and large effective Stokes shifts. Herein, we demonstrate how QD-based bioconjugates can be used to enhance enzyme kinetics. Enzyme-substrate kinetics are analyzed for solutions containing both alkaline phosphatase enzymes and QDs with enzyme-to- QD molar ratios of 2, 12, and 24 as well as for a solution containing the same concentration of enzymes but without QDs. The enzyme kinetic paramters Vmax, KM, and Kcat/KM are extracted from the enzyme progress curves via the Lineweaver-Burk plot. Results demonstrate an approximate increase in enzyme efficiency of 5 - 8% for enzymes immobilized on the QD versus free in solution without QD immobilization.
Valero, E; Varón, R; García-Carmona, F
1991-01-01
A kinetic study of the irreversible inhibition of an enzyme by an inhibitor that is depleted in the medium by its reaction with the product of enzymic analysis was made. The model is illustrated by the study of the inhibition of catecholase activity of polyphenol oxidase by L-cysteine. The inhibition is characterized by an initial lag period followed by a concomitant decrease in enzymic activity expressed when the steady state is reached, both kinetic parameters being modulated by enzyme, substrate and inhibitor concentrations. There is no analytical solution to the non-linear differential-equation system that describes the kinetics of the reaction, and so computer simulations of this dynamic behaviour are presented. The results obtained show that the system here studied presents kinetic co-operativity for a target enzyme that follows the simple Michaelis-Menten mechanism in its action on the substrate. PMID:1908225
DEFF Research Database (Denmark)
Siggaard, Julie; Johansson, Eva; Vognsen, Tina Reinholdt
2009-01-01
reduced dUTPase activity. In the Structure of E145Q in complex with diphosphate, the diphosphate occupied the same position as the beta- and gamma-phosphoryls of the nucleotide analogue in the E145A complex. The C-terminal region that is unresolved in the apo-form of the enzyme was ordered in both...... complexes and closed over the active site by interacting with the phosphate backbone of the nucleotide or with the diphosphate. A magnesium ion was readily observed to complex with all three phosphoryls in the nucleotide complex or with the diphosphate. A water molecule that is likely to be involved...
Directory of Open Access Journals (Sweden)
Sadeep Medhasi
2016-12-01
Full Text Available The present study sought to investigate the genetic variants in drug metabolizing enzyme and transporter (DMET genes associated with steady-state plasma concentrations of risperidone among Thai autism spectrum disorder (ASD patients. ASD patients taking risperidone for at least one month were enrolled for this pharmacogenomic study. Genotyping profile was obtained using Affymetrix DMET Plus array interrogating 1931 variants in 231 genes. Steady-state plasma risperidone and 9-hydroxyrisperidone were measured using liquid chromatography/tandem mass spectrometry (LC-MS/MS assay. The final analysis included 483 markers for 167 genes. Six variants, ABCB11 (c.3084A>G, c.*420A>G, c.*368G>A, and c.*236G>A and ADH7 (c.690G>A and c.-5360G>A, were found to be associated with plasma concentrations of risperidone. 9-Hydroxyrisperidone and the total active-moiety levels were associated with six gene variants, SCLO1B1 (c.-11187G>A and c.521T>C, SLCO1B3 (c.334G>T, c.699A>G, and c.1557G>A, and SLC7A5 c.*438C>G. Polymorphisms in UGT2B4 c.*448A>G and CYP2D6 (c.1661G>C, c.4180G>C, and c.-2178G>A showed considerable but not significant associations with metabolic ratio. This pharmacogenomic study identifies new genetic variants of DMET genes in monitoring risperidone therapy.
The evolution of enzyme kinetic power.
Keleti, T.; Welch, G. R.
1984-01-01
Evolution of the kinetic potential of enzyme reactions is discussed. Quantitative assessment of the evolution of enzyme action has usually focused on optimization of the parametric ratio kcat./Km, which is the apparent second-order rate constant for the reaction of free substrate with free enzyme to give product. We propose that the general form kcat.[E]T/Km (where [E]T is total enzyme concentration), which is designated the 'kinetic power', is the real measure of kinetic/catalytic potential ...
Directory of Open Access Journals (Sweden)
Karen van Eunen
Full Text Available A decade ago, a team of biochemists including two of us, modeled yeast glycolysis and showed that one of the most studied biochemical pathways could not be quite understood in terms of the kinetic properties of the constituent enzymes as measured in cell extract. Moreover, when the same model was later applied to different experimental steady-state conditions, it often exhibited unrestrained metabolite accumulation.Here we resolve this issue by showing that the results of such ab initio modeling are improved substantially by (i including appropriate allosteric regulation and (ii measuring the enzyme kinetic parameters under conditions that resemble the intracellular environment. The following modifications proved crucial: (i implementation of allosteric regulation of hexokinase and pyruvate kinase, (ii implementation of V(max values measured under conditions that resembled the yeast cytosol, and (iii redetermination of the kinetic parameters of glyceraldehyde-3-phosphate dehydrogenase under physiological conditions.Model predictions and experiments were compared under five different conditions of yeast growth and starvation. When either the original model was used (which lacked important allosteric regulation, or the enzyme parameters were measured under conditions that were, as usual, optimal for high enzyme activity, fructose 1,6-bisphosphate and some other glycolytic intermediates tended to accumulate to unrealistically high concentrations. Combining all adjustments yielded an accurate correspondence between model and experiments for all five steady-state and dynamic conditions. This enhances our understanding of in vivo metabolism in terms of in vitro biochemistry.
van Eunen, Karen; Kiewiet, José A. L.; Westerhoff, Hans V.; Bakker, Barbara M.
2012-01-01
A decade ago, a team of biochemists including two of us, modeled yeast glycolysis and showed that one of the most studied biochemical pathways could not be quite understood in terms of the kinetic properties of the constituent enzymes as measured in cell extract. Moreover, when the same model was later applied to different experimental steady-state conditions, it often exhibited unrestrained metabolite accumulation. Here we resolve this issue by showing that the results of such ab initio modeling are improved substantially by (i) including appropriate allosteric regulation and (ii) measuring the enzyme kinetic parameters under conditions that resemble the intracellular environment. The following modifications proved crucial: (i) implementation of allosteric regulation of hexokinase and pyruvate kinase, (ii) implementation of Vmax values measured under conditions that resembled the yeast cytosol, and (iii) redetermination of the kinetic parameters of glyceraldehyde-3-phosphate dehydrogenase under physiological conditions. Model predictions and experiments were compared under five different conditions of yeast growth and starvation. When either the original model was used (which lacked important allosteric regulation), or the enzyme parameters were measured under conditions that were, as usual, optimal for high enzyme activity, fructose 1,6-bisphosphate and some other glycolytic intermediates tended to accumulate to unrealistically high concentrations. Combining all adjustments yielded an accurate correspondence between model and experiments for all five steady-state and dynamic conditions. This enhances our understanding of in vivo metabolism in terms of in vitro biochemistry. PMID:22570597
Dietz, Nikolaus; Bachmann, Klaus J.
1995-01-01
This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.
Steady state and a general scale law of deformation
Huang, Yan
2017-07-01
Steady state deformation has been characterized based on the experimental results for dilute single-phase aluminium alloys. It was found that although characteristic properties such as flow stress and grain size remained constant with time, a continuous loss of grain boundaries occurred as an essential feature at steady state. A physical model, which takes into account the activity of grain boundary dislocations, was developed to describe the kinetics of steady state deformation. According to this model, the steady state as a function of strain rate and temperature defines the limit of the conventional grain size and strength relationship, i.e., the Hall-Petch relation holds when the grain size is larger than that at the steady state, and an inverse Hall-Petch relation takes over if grain size is smaller than the steady state value. The transition between the two relationships relating grain size and strength is a phenomenon that depends on deformation conditions, rather than an intrinsic property as generally perceived. A general scale law of deformation is established accordingly.
Padma, S; Hariharan, G
2016-06-01
In this paper, we have developed an efficient wavelet based approximation method to biofilm model under steady state arising in enzyme kinetics. Chebyshev wavelet based approximation method is successfully introduced in solving nonlinear steady state biofilm reaction model. To the best of our knowledge, until now there is no rigorous wavelet based solution has been addressed for the proposed model. Analytical solutions for substrate concentration have been derived for all values of the parameters δ and SL. The power of the manageable method is confirmed. Some numerical examples are presented to demonstrate the validity and applicability of the wavelet method. Moreover the use of Chebyshev wavelets is found to be simple, efficient, flexible, convenient, small computation costs and computationally attractive.
Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.
Park, Seong Jun; Song, Sanggeun; Jeong, In-Chun; Koh, Hye Ran; Kim, Ji-Hyun; Sung, Jaeyoung
2017-07-06
Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.
A Comprehensive Enzyme Kinetic Exercise for Biochemistry
Barton, Janice S.
2011-01-01
This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…
Enzyme Kinetics? Elementary, my dear
Indian Academy of Sciences (India)
Suppose that, in the absence of an enzyme, the. Desirazu N Rao is at the. Department of. Biochemistry, Indian. Institute of Science,. Bangalore. His main research interests are in the ateas of protein-DNA interactions using restriction enzymes as model systems and in. DNA methylation. 1 When a carbon atom has four.
Role of Diffusion in the Kinetics of Reversible Enzyme-catalyzed Reactions
Energy Technology Data Exchange (ETDEWEB)
Szabo, Attila [National Institute of Digestive and Kidney Diseases, Maryland (United States); Zhou, Huan Xiang [Florida State University, Florida (United States)
2012-03-15
The accurate expression for the steady-state velocity of an irreversible enzyme-catalyzed reaction obtained by Shin and co-workers (J. Chem. Phys. 2001, 115, 1455) is generalized to allow for the rebinding of the product. The amplitude of the power-law (t{sup -1/2}) relaxation of the free- and bound-enzyme concentrations to steady-state values is expressed in terms of the steady-state velocity and the intrinsic (chemical) rate constants. This result is conjectured to be exact, even though our expression for the steady-state velocity in terms of microscopic parameters is only approximate
Modified kinetics of enzymes interacting with nanoparticles
Díaz, Sebastián. A.; Breger, Joyce C.; Malanoski, Anthony; Claussen, Jonathan C.; Walper, Scott A.; Ancona, Mario G.; Brown, Carl W.; Stewart, Michael H.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.
2015-08-01
Enzymes are important players in multiple applications, be it bioremediation, biosynthesis, or as reporters. The business of catalysis and inhibition of enzymes is a multibillion dollar industry and understanding the kinetics of commercial enzymes can have a large impact on how these systems are optimized. Recent advances in nanotechnology have opened up the field of nanoparticle (NP) and enzyme conjugates and two principal architectures for NP conjugate systems have been developed. In the first example the enzyme is bound to the NP in a persistent manner, here we find that key factors such as directed enzyme conjugation allow for enhanced kinetics. Through controlled comparative experiments we begin to tease out specific mechanisms that may account for the enhancement. The second system is based on dynamic interactions of the enzymes with the NP. The enzyme substrate is bound to the NP and the enzyme is free in solution. Here again we find that there are many variables , such as substrate positioning and NP selection, that modify the kinetics.
Fast Estimation of Plant Steady State, with Application to Static RTO
Rodrigues, Diogo; Amrhein, Michael; Billeter, Julien; Bonvin, Dominique
2016-01-01
In the operation of continuous processes, many tasks require the knowledge of plant steady state at various operating points. This is for example the case in the context of kinetic modeling, response surface modeling and real-time optimization. If the computational techniques are in principle straightforward, the time needed to reach steady state represents the main limiting factor. This work proposes a novel way of speeding up the estimation of plant steady state through...
Astumian, R D
2018-01-11
In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.
Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou
2015-07-01
Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.
Tricot, C; Nguyen, V T; Stalon, V
1993-08-01
The substitution of alanine for glutamate at position 105 (E105A) of the allosteric ornithine carbamoyltransferase (OTCase) of Pseudomonas aeruginosa abolishes the carbamoylphosphate (CP) cooperativity observed in the wild-type enzyme. A kinetic analysis of [E105A]OTCase was performed in order to determine the mechanism of the reaction. The results of initial velocity and inhibition studies are consistent with an ordered mechanism with CP as the first substrate to add to the enzyme. In addition, similar studies have been made using the wild-type enzyme in the presence of the activator, phosphate. The results are similar to those obtained with [E105A]OTCase indicating that the residue E105 is critical for the allosteric transition of the wild-type enzyme. The activities of the wild-type allosteric OTCase and of [E105A]OTCase have been studied in the pH range 5.8-8.2 in the absence and in the presence of positive and negative effectors. The sigmoid saturation of OTCases by CP has been analyzed according to the Hill equation. At low pH values, CP cooperativity is low in the wild-type enzyme but cooperativity and [S]CP0.5 values increase markedly with pH. For [E105A]OTCase, the saturation by CP is hyperbolic at all pH values; in this modified enzyme, the presence of spermidine, an allosteric inhibitor of the wild-type enzyme, results in an inhibition which induces CP cooperativity. Thus, the ionization of the residue E105 apparently results in a conformational change in the wild-type enzyme which modifies the catalytic site. Since the [E105A] enzyme retains the heterotropic effects of the wild-type enzyme, other structural features are required for the allosteric transition in the wild-type catabolic OTCase.
A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution.
Olsen, Johan P; Kari, Jeppe; Borch, Kim; Westh, Peter
2017-10-01
Even though many enzyme processes occur at the interface of an insoluble substrate, these reactions are generally much less studied than homogenous enzyme reactions in the aqueous bulk. Interfacial (or heterogeneous) enzyme reactions involve several reaction steps, and the established experimental approach to elucidate multi-step reactions is transient (or pre steady-state) kinetics. A key requirement for pre steady-state measurements is good time resolution, and while this has been amply achieved in different commercial instruments, they are generally not applicable to precipitating suspensions of insoluble substrate. Perhaps for this reason, transient kinetics has rarely been reported for heterogeneous enzyme reactions. Here, we describe a quenched-flow system using peristaltic pumps and stirred substrate suspensions with a dead time below 100ms. The general performance was verified by alkali catalyzed hydrolysis of 2,4-dinitrophenyl acetate (DNPA), and the applicability to heterogeneous reactions was documented by two cellulases (Cel7A and Cel7B) acting on suspensions of microcrystalline cellulose (Avicel) at different loads up to 15g/l. The results showed distinctive differences between the two enzymes. In particular, we found that endo-lytic Cel7B combined very quickly with the substrate and reached the maximal activity within the dead-time of the instrument. Conversely, exo-lytic Cel7A showed a much slower initiation with maximal activity after 5-8s and a 10-fold lower turnover. We suggest that the instrument may provide an important tool in attempts to elucidate the mechanism of cellulases and other enzymes' action on insoluble substrate. Copyright © 2017 Elsevier Inc. All rights reserved.
Non-Markovianity-assisted steady state entanglement.
Huelga, Susana F; Rivas, Ángel; Plenio, Martin B
2012-04-20
We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.
Enzyme Kinetics? Elementary, my dear 3 -8 ...
Indian Academy of Sciences (India)
Elementary, my dear. 2. The Analysis and Significance of Kinetic Parameters. Desirazu N. Rao is at the. Department of. Biochemistry, Indian. Institute of Science,. Bangalore. His main research interests are in the areas of protein-DNA interactions using restriction enzymes as model systems, and in. DNA methylation.
Enzyme kinetic characterization of protein tyrosine phosphatases
DEFF Research Database (Denmark)
Peters, Günther H.J.; Branner, S.; Møller, K. B.
2003-01-01
Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...
Baldo, Marcello; Grassi, Antonio; Raudino, Antonio
1990-10-01
In this paper we extend a previous model [M. Baldo, A. Grassi, and A. Raudino, J. Chem. Phys. 91, 4658 (1989)] describing the orientational effects in diffusion-controlled enzyme (or membrane surface) reactions. The present generalization takes into account the reactants internal motions involving the interconversion between configurational states, one of them being much more reactive than the others. The problem leads to a system of rotational-translational diffusion equations (RT-DEs) coupled through the interconversion reactions between the conformers. For sake of simplicity, we have restricted the analysis to the case of only two conformational states. The steady-state RT-DE with the proper boundary conditions has been solved by an exact analytical procedure, leading to a set of linear algebraic equations which have been numerically solved. The model allows one to calculate the kinetic constants of the enzyme reactions as a function of available experimental parameters, such as the rotational and translational diffusion coefficients, the reactant's orientational constraints and the rates of interconversion between its different conformations. The numerical results show a monotonous but very nonlinear increasing of the enzyme kinetic constant on raising either the rotational diffusion constant or the interconversion rate between the P+ and P- reactant's conformations. Well-defined regions where the influence of the above parameters on the enzyme kinetics reaches a maximum have been identified.
Directory of Open Access Journals (Sweden)
Kelath Murali Manoj
Full Text Available Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP, uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the "steady state kinetics" of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of "the product of interest" in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of "substrate concentration at maximum observed rate". The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes.
Steady-State Creep of Asphalt Concrete
Directory of Open Access Journals (Sweden)
Alibai Iskakbayev
2017-02-01
Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.
A steady state theory for processive cellulases
DEFF Research Database (Denmark)
Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil
2013-01-01
coefficient’, which represents the probability of the enzyme dissociating from the substrate strand before completing n sequential catalytic steps, where n is the mean processivity number measured experimentally. Typical processive cellulases have high substrate affinity, and therefore this probability is low....... This has significant kinetic implications, for example the maximal specific rate (Vmax/E0) for processive cellulases is much lower than the catalytic rate constant (kcat). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases....
Development of steady state magnetic sensor
Energy Technology Data Exchange (ETDEWEB)
Hara, Shigemitsu; Nakayama, Takahide [Hitachi Ltd., Tokyo (Japan); Nagashima, Akira; Kasai, Satoshi
1998-12-01
A prototype of new mechanical sensor based on the steady state electromagnetic force (J x B force) measurement has been developed and tested. The mechanical force sensor is a new type of the magnetic sensor which is available for frequencies smaller than 0.1 Hz. The prototype of the mechanical sensor has been examined, and the following results were obtained; (1) A signal was proportional to simulated force in the load cell tests. (2) A signal drift concerning the temperature was reproducible over the range of the ITER environment. (3) A signal was proportional to the magnetic field in the steady state magnetic field measurement tests. (4) A load cell linearity error did not increase significantly after irradiation of 7.2 x 10{sup 6} Gy. These results indicate that the mechanical sensor will provide the practical feasibility in the long time magnetic field measurement. (author)
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
Steady state modeling of desiccant wheels
DEFF Research Database (Denmark)
Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl
2014-01-01
Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...... systems. A steady state two-dimensional model is formulated and implemented aiming to obtain good accuracy and short computational times. Comparison with experimental data from the literature shows that the model reproduces the physical behavior of desiccant wheels. Mass diffusion in the desiccant should...
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
Raz, O.; Subaşı, Y.; Jarzynski, C.
2016-04-01
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.
Pre-steady state of reaction of nucleoside diphosphate kinase with anti-HIV nucleotides.
Schneider, B; Xu, Y W; Sellam, O; Sarfati, R; Janin, J; Veron, M; Deville-Bonne, D
1998-05-08
The pre-steady-state reaction of Dictyostelium nucleoside diphosphate (NDP) kinase with dideoxynucleotide triphosphates (ddNTP) and AZT triphosphate was studied by quenching of protein fluorescence after manual mixing or by stopped flow. The fluorescence signal, which is correlated with the phosphorylation state of the catalytic histidine in the enzyme active site, decreases upon ddNTP addition according to a monoexponential time course. The pseudo-first order rate constant was determined for different concentrations of the various ddNTPs and was found to be saturable. The data are compatible with a two-step reaction scheme, where fast association of the enzyme with the dideoxynucleotide is followed by a rate-limiting phosphorylation step. The rate constants and dissociation equilibrium constants determined for each dideoxynucleotide were correlated with the steady-state kinetic parameters measured in the enzymatic assay in the presence of the two substrates. It is shown that ddNTPs and AZT triphosphate are poor substrates for NDP kinase with a rate of phosphate transfer of 0.02 to 3.5 s-1 and a KS of 1-5 mM. The equilibrium dissociation constants for ADP, GDP, ddADP, and ddGDP were also determined by fluorescence titration of a mutant F64W NDP kinase, where the introduction of a tryptophan at the nucleotide binding site provides a direct spectroscopic probe. The lack of the 3'-OH in ddNTP causes a 10-fold increase in KD. Contrary to "natural" NTPs, NDP kinase discriminates between various ddNTPs, with ddGTP the more efficient and ddCTP the least efficient substrate within a range of 100 in kcat values.
Modeling steady-state methanogenic degradation of phenols in groundwater
Bekins, Barbara A.; Godsy, E. Michael; Goerlitz, Donald F.
1993-01-01
Field and microcosm observations of methanogenic phenolic compound degradation indicate that Monod kinetics governs the substrate disappearance but overestimates the observed biomass. In this paper we present modeling results from an ongoing multidisciplinary study of methanogenic biodegradation of phenolic compounds in a sand and gravel aquifer contaminated by chemicals and wastes used in wood treatment. Field disappearance rates of four phenols match those determined in batch microcosm studies previously performed by E.M. Godsy and coworkers. The degradation process appears to be at steady-state because even after a sustained influx over several decades, the contaminants still are disappearing in transport downgradient. The existence of a steady-state degradation profile of each substrate together with a low biomass density in the aquifer indicate that the bacteria population is exhibiting no net growth. This may be due to the oligotrophic nature of the biomass population in which utilization and growth are approximately independent of concentration for most of the concentration range. Thus a constant growth rate should exist over much of the contaminated area which may in turn be balanced by an unusually high decay or maintenance rate due to hostile conditions or predation.
Magnetic sensor for steady state tokamak
Energy Technology Data Exchange (ETDEWEB)
Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1996-06-01
A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).
Progress towards Steady State on NSTX
Energy Technology Data Exchange (ETDEWEB)
D.A. Gates; C. Kessel; J. Menard; G. Taylor; J.R. Wilson; plus 94 co-authors
2005-01-24
In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal {beta} and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on the National Spherical Torus Experiment (NSTX) has been raised from {kappa} {approx} 2.1 to {kappa} {approx} 2.6--approximately a 25% increase. This increase in elongation has lead to a doubling increase in the toroidal {beta} for long-pulse discharges. The increase in {beta} is associated with an increase in plasma current at nearly fixed poloidal {beta}, which enables higher {beta}{sub t} with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of 1 MA has been sustained for 1 second. Data is presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption during and to delay the onset of MHD instabilities. A modeled integrated scenario, which has 100% non-inductive current drive with very high toroidal {beta}, will also be presented. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity ({delta} {approx} 0.8) at elevated elongation ({kappa} {approx} 2.5). The other main requirement for steady state on NSTX is the ability to drive a fraction of the total plasma current with radio-frequency waves. The results of High Harmonic Fast Wave heating and current drive studies as well as electron Bernstein Wave emission studies will be presented.
Directory of Open Access Journals (Sweden)
Loghambal Shunmugham
2013-01-01
Full Text Available A mathematical model of modified enzyme-membrane electrode for steady-state condition is discussed. This model contains a nonlinear term related to enzyme kinetics reaction mechanism. The thickness dependence of an amperometric biosensor is presented both analytically and numerically where the biological layer is immobilized between a solid substrate and permeable electrode. The analytical expressions pertaining to the concentration of species and normalized current are obtained using the Adomian decomposition method (ADM. Simple and approximate polynomial expressions of concentrations of an oxidized mediator, substrate, and reduced mediator are derived for all possible values of parameters ϕO2 (Thiele modulus, BO (normalized surface concentration of oxidized mediator, and BS (normalized surface concentration of substrate. A comparison of the analytical approximation and numerical simulation is also presented. A good agreement between theoretical predictions and numerical results is observed.
Cannon, William R.; Baker, Scott E.
2017-10-01
Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.
From steady-state to synchronized yeast glycolytic oscilations II: model validation.
du Preez, F.B.; van Niekerk, D.D.; Snoep, J.L.
2012-01-01
In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast
Enzyme inactivation kinetics: Coupled effects of temperature and moisture content
Perdana, J.A.; Fox, M.B.; Schutyser, M.A.I.; Boom, R.M.
2012-01-01
Enzymes are often dried for stability reasons and to facilitate handling. However, they are often susceptible to inactivation during drying. It is generally known that temperature and moisturecontent influence the enzymeinactivation kinetics. However, the coupledeffect of both variables on
Enzyme kinetics in drug metabolism: fundamentals and applications.
Nagar, Swati; Argikar, Upendra A; Tweedie, Donald J
2014-01-01
Enzymes are protein catalysts that lower the energy barrier for a reaction and speed the rate of a chemical change. The kinetics of reactions catalyzed by enzymes, as well as several mechanisms underlying the kinetics, have been comprehensively studied and written in textbooks (1, 2). The importance of quantitative evaluation of enzymatic processes has been recognized in many fields of study, including biochemistry, molecular biology, and pharmaceutical sciences to name a few. In pharmaceutical sciences, the applications of enzyme kinetics range from hit finding efforts for new chemical entities on a pharmacological target to concentration effect relationships to large-scale biosynthesis. The study of the science of drug metabolism has two principal concepts-rate and extent. While understanding disposition pathways and identification of metabolites provides an insight into the extent of metabolism, kinetics of depletion of substrates (endogenous or exogenous) and formation of metabolites deals with the rate of metabolism. The current textbook specifically focuses on kinetics of drug-metabolizing enzymes, detailing specific enzyme classes, and discusses kinetics as they apply to drug transporters. This textbook also outlines additional factors that contribute to the kinetics of reactions catalyzed by these proteins such as variability in isoforms (pharmacogenomics) and experimental factors including key concepts such as alterations of substrate concentrations due to binding. Applications of these approaches in predicting kinetic parameters and alternative approaches for enzymes (systems biology) and transporters are also discussed. The final section focuses on real-life examples (case studies) to try and exemplify the applications of enzyme kinetic principles. This chapter provides a brief overview outlining some key concepts within each of the sections and the chapters within this textbook.
Current IUBMB recommendations on enzyme nomenclature and kinetics
Directory of Open Access Journals (Sweden)
Athel Cornish-Bowden
2014-05-01
Full Text Available The International Union of Biochemistry (IUB, now IUBMB prepared recommendations for describing the kinetic behaviour of enzymes in 1981. Despite the more than 30 years that have passed since these have not subsequently been revised, though in various respects they do not adequately cover current needs. The IUBMB is also responsible for recommendations on the naming and classification of enzymes. In contrast to the case of kinetics, these recommendations are kept continuously up to date.
Maximal lactate steady state in Judo.
de Azevedo, Paulo Henrique Silva Marques; Pithon-Curi, Tania; Zagatto, Alessandro Moura; Oliveira, João; Perez, Sérgio
2014-04-01
the purpose of this study was to verify the validity of respiratory compensation threshold (RCT) measured during a new single judo specific incremental test (JSIT) for aerobic demand evaluation. to test the validity of the new test, the JSIT was compared with Maximal Lactate Steady State (MLSS), which is the gold standard procedure for aerobic demand measuring. Eight well-trained male competitive judo players (24.3 ± 7.9 years; height of 169.3 ± 6.7cm; fat mass of 12.7 ± 3.9%) performed a maximal incremental specific test for judo to assess the RCT and performed on 30-minute MLSS test, where both tests were performed mimicking the UchiKomi drills. the intensity at RCT measured on JSIT was not significantly different compared to MLSS (p=0.40). In addition, it was observed high and significant correlation between MLSS and RCT (r=0.90, p=0.002), as well as a high agreement. RCT measured during JSIT is a valid procedure to measure the aerobic demand, respecting the ecological validity of Judo.
Steady-state creep in the mantle
Directory of Open Access Journals (Sweden)
G. RANALLI
1977-06-01
Full Text Available SUMMARY - The creep equations for steady-state flow of olivine at high
pressure and temperature are compared in an attempt to elucidate the rheological
behaviour of the mantle. Results are presented in terms of applied deformation
maps and curves of effective viscosity v depth.
In the upper mantle, the transition stress between dislocation and diffusion
creep is between 10 to 102 bar (as orders of magnitude for grain sizes from
0.01 to 1 cm. The asthenosphere under continents is deeper, and has higher
viscosity, than under oceans. Predominance of one creep mechanism above the
others depends on grain size, strain rate, and volume fraction of melt; the
rheological response can be different for different geodynamic processes.
In the lower mantle, on the other hand, dislocation creep is predominant
at all realistic grain sizes and strain rates. If the effective viscosity has to be only
slightly higher than in the upper mantle, as some interpretations of glacioisostatic
rebound suggest, then the activation volume cannot be larger than
11 cm3 mole^1.
Steady State Vapor Bubble in Pool Boiling.
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C
2016-02-03
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.
Fluctuations When Driving Between Nonequilibrium Steady States
Riechers, Paul M.; Crutchfield, James P.
2017-08-01
Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for
Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik
2015-01-01
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The
Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase
Bassingthwaighte, James B.; Chinn, Tamara M.
2013-01-01
Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…
Imaging enzyme kinetics at atomic resolution
Spence, John; Lattman, Eaton
2016-01-01
Serial crystallography at a synchrotron has been used to obtain time-resolved atomic resolution density maps of enzyme catalysis in copper nitrite reductase. Similar XFEL studies, intended to out-run radiation damage, will also soon appear.
Indicators for suicide substrate inactivation: A kinetic investigation
Indian Academy of Sciences (India)
Suicide substrate kinetic pathway and a proposed set of indicators, some theoretical and a few practical ones, that can decisively conclude enzyme inactivation are considered. Steady-state approximation is assumed not only when a catalytic amount of enzyme is used but also for any substrate-enzyme ratio. In each ...
Enzyme Kinetics: The Use of Amylose Azure.
Cusimano, Vincent J.
1978-01-01
Amylose azure can be used as a chromogenic substrate for alpha-amylase in studying the effects of temperature and pH enzyme action. This is a model system which students can use to measure the energy of activation using the Arrhenius plot. (Author/BB)
Transition state theory for enzyme kinetics
Truhlar, Donald G.
2015-01-01
This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760
Energy Technology Data Exchange (ETDEWEB)
Gong, C.S.; Chang, M.
1981-02-01
There are three basic enzymes (e.g., endoglucanase (C/sub x/), exoglucanase (C/sub 1/) and cellobiase) comprising the majority of extracellular cellulase enzymes produced by the cellulolytic mycelial fungi, Trichoderma reesei, and other cellulolytic microorganisms. The enzymes exhibited different mode of actions in respect to the hydrolysis of cellulose and cellulose derived oligosaccharides. In combination, these enzymes complimented each other to hydrolyze cellulose to its basic constituent, glucose. The kinetics of cellobiase were developed on the basis of applying the pseudo-steady state assumption to hydrolyze cellobiose to glucose. The results indicated that cellobiase was subjected to end-product inhibition by glucose. The kinetic modeling of exoglucanase (C/sub 1/) with respect to cellodextrins was studied. Both glucose and cellobiose were found to be inhibitors of this enzyme with cellobiose being a stronger inhibitor than glucose. Similarly, endoglucanase (C/sub x/) is subject to end-product inhibition by glucose. Crystallinity of the cellulose affects the rate of hydrolysis by cellulases. Hence, the changes in crystallinity of cellulose in relation to chemical pretreatment and enzyme hydrolysis was compared. The study of cellulase biosynthesis resulted in the conclusion that exo- and endo-glucanases are co-induced while cellobiase is synthesized independent of the other two enzymes. The multiplicity of cellulase enzymes are the end results of post-translational modification during and/or after the secretion of enzymes into growth environment.
Enzyme kinetics: the whole picture reveals hidden meanings.
Pinto, Maria F; Estevinho, Berta N; Crespo, Rosa; Rocha, Fernando A; Damas, Ana M; Martins, Pedro M
2015-06-01
The methodology adopted by Michaelis and Menten in 1913 is still routinely used to characterize the catalytic power and selectivity of enzymes. These kinetic measurements must be performed soon after the purified enzyme is mixed with a large excess of substrate. Other time scales and solution compositions are no less physiologically relevant, but fall outside the range of applicability of the classical formalism. Here we show that the complete picture of an enzyme's mode of function is critically obscured by the limited scope of conventional kinetic analysis, even in the simplest case of a single active site without inhibition. This picture is now unveiled in a mathematically closed form that remains valid over the reaction time for all combinations of enzyme/substrate concentrations and rate constants. Algebraic simplicity is maintained in the new formalism when stationary reaction phases are considered. By achieving this century-old objective, the otherwise hidden role of the reversible binding step is revealed and atypical kinetic profiles are explained. Most singular kinetic behaviors are identified in a critical region of conditions that coincide with typical cell conditions. Because it is not covered by the Michaelis-Menten model, the critical region has been missed until now by low- and high-throughput screenings of new drugs. New possibilities are therefore raised for novel and once-promising inhibitors to therapeutically target enzymes. © 2015 FEBS.
Mechanism of Non-Steady State Dissolution of Goethite in the Presence of Siderophores
Reichard, P. U.; Kretzschmar, R.; Kraemer, S. M.
2003-12-01
Iron is an essential micronutrient for almost all known organisms. Bacteria, fungi, and graminaceous plants are capable of exuding siderophores as part of an iron acquisition strategy. The production of these strong iron chelating ligands is induced by iron limited conditions. Grasses under iron stress, for example, exude phytosiderophores into the rhizosphere in a special diurnal rhythm (Roemheld and Marschner 1986). A few hours after sunrise the exudation starts, culminates around noon and is shut down again until about 4 hours after noon. The phytosiderophores diffuse into the rhizosphere (Marschner et al. 1986) and are passively back transported to the plants by advective flow induced by high transpiration around noon. Despite a fairly short residence time of the phytosiderophores in the rhizosphere, it is a very effective strategy for iron acquisition. To investigate the effect of such pulse inputs of siderophores on iron acquisition, we studied the dissolution mechanism of goethite (alpha-FeOOH), a mineral phase common in soils, under non-steady state conditions. In consideration of the chemical complexity of the rhizosphere, we also investigated the effect of other organic ligands commonly found in the rhizosphere (e. g. oxalate) on the dissolution kinetics. The dissolution experiments were conducted in batch reactors with a constant goethite solids concentration of 2.5 g/l, an ionic strength of 0.01 M, a pH of 6 and 100 microM oxalate. To induce non-steady state conditions, 3 mM phytosiderophores were added to a batch after the goethite-oxalate suspension reacted for a certain time period. Before the siderophore was added to the goethite-oxalate suspension, no dissolution of iron was observed. But, with the addition of the siderophore, a high rate was observed for the iron mobilization under these non-steady state conditions that subsequently was followed by a slow steady state dissolution rate. The results of these non-steady state experiments are very
Statistical mechanics of steady state traffic flow
Šurda, A.
2008-04-01
Statistical mechanics of a small system of cars on a single-lane road is developed. A discrete particle hopping model, not characterized by a kinetic equation, but by the conditional probabilities of car velocities depending on the distance and velocity of the car ahead, is used. Distribution of car velocities for various densities of a group of cars is derived as well as the probabilities of density fluctuations. For cars with high braking ability, free-flow and congested phases are found. Platoons of cars are formed for a system of cars with inefficient brakes. Indications for a first-order phase transition between free-flow and congested phase are presented.
Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.
Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C
2017-01-01
The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.
Enzyme Kinetics and the Michaelis-Menten Equation
Biaglow, Andrew; Erickson, Keith; McMurran, Shawnee
2010-01-01
The concepts presented in this article represent the cornerstone of classical mathematical biology. The central problem of the article relates to enzyme kinetics, which is a biochemical system. However, the theoretical underpinnings that lead to the formation of systems of time-dependent ordinary differential equations have been applied widely to…
Transient and steady state photoelectronic analysis in TlInSe{sub 2} crystals
Energy Technology Data Exchange (ETDEWEB)
Qasrawi, A.F., E-mail: aqasrawi@atilim.edu.tr [Group of Physics, Faculty of Engineering, Atilim University, 06836 Ankara (Turkey); Department of Physics, Arab-American University, Jenin, West Bank, Palestine (Country Unknown); Gasanly, N.M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)
2011-08-15
Highlights: {yields} The steady state and time dependent photoconductivity kinetics of the TlInSe{sub 2} crystals are investigated in the temperature region of 100-350 K. {yields} The photocurrent of the sample exhibited linear, sublinear, and supralinear recombination mechanisms, at, above and below 160 K, respectively. {yields} Steady state photoconductivity revealed two recombination centres located at 234 and 94 meV. {yields} The transient photoconductivity is limited by a trapping center located at 173 meV. {yields} The capture coefficient of the trap for holes was determined as 3.11 x 10{sup -22} cm{sup -2}. -- Abstract: The temperature and illumination effects on the transient and steady state photoconductivities of TlInSe{sub 2} crystals have been studied. Namely, two recombination centres located at 234 and at 94 meV and one trap center located at 173 meV were determined from the temperature-dependent steady state and transient photoconductivities, respectively. The illumination dependence of photoconductivity indicated the domination of sublinear and supralinear recombination mechanisms above and below 160 K, respectively. The change in the recombination mechanism is attributed to the exchange of roles between the linear recombination at the surface and trapping centres in the crystal, which become dominant as temperature decreases. The transient photoconductivity measurement allowed the determination of the capture coefficient of traps for holes as 3.11 x 10{sup -22} cm{sup -2}.
Stabilizing unstable steady states using extended time-delay autosynchronization.
Chang, Austin; Bienfang, Joshua C.; Hall, G. Martin; Gardner, Jeff R.; Gauthier, Daniel J.
1998-12-01
We describe a method for stabilizing unstable steady states in nonlinear dynamical systems using a form of extended time-delay autosynchronization. Specifically, stabilization is achieved by applying a feedback signal generated by high-pass-filtering in real time the dynamical state of the system to an accessible system parameter or variables. Our technique is easy to implement, does not require knowledge of the unstable steady state coordinates in phase space, automatically tracks changes in the system parameters, and is more robust to broadband noise than previous schemes. We demonstrate the controller's efficacy by stabilizing unstable steady states in an electronic circuit exhibiting low-dimensional temporal chaos. The simplicity and robustness of the scheme suggests that it is ideally suited for stabilizing unstable steady states in ultra-high-speed systems. (c) 1998 American Institute of Physics.
Steady-state leaching of tritiated water from silica gel
DEFF Research Database (Denmark)
Das, H.A.; Hou, Xiaolin
2009-01-01
Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....
Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation
Directory of Open Access Journals (Sweden)
Maja Marasović
2017-01-01
Full Text Available Accurate estimation of essential enzyme kinetic parameters, such as Km and Vmax, is very important in modern biology. To this date, linearization of kinetic equations is still widely established practice for determining these parameters in chemical and enzyme catalysis. Although simplicity of linear optimization is alluring, these methods have certain pitfalls due to which they more often then not result in misleading estimation of enzyme parameters. In order to obtain more accurate predictions of parameter values, the use of nonlinear least-squares fitting techniques is recommended. However, when there are outliers present in the data, these techniques become unreliable. This paper proposes the use of a robust nonlinear regression estimator based on modified Tukey’s biweight function that can provide more resilient results in the presence of outliers and/or influential observations. Real and synthetic kinetic data have been used to test our approach. Monte Carlo simulations are performed to illustrate the efficacy and the robustness of the biweight estimator in comparison with the standard linearization methods and the ordinary least-squares nonlinear regression. We then apply this method to experimental data for the tyrosinase enzyme (EC 1.14.18.1 extracted from Solanum tuberosum, Agaricus bisporus, and Pleurotus ostreatus. The results on both artificial and experimental data clearly show that the proposed robust estimator can be successfully employed to determine accurate values of Km and Vmax.
Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics
DEFF Research Database (Denmark)
Tsai, Chien Tai
, the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore....... Ionic liquid had been reported to be able to dissolve lignocellulose. However, as our knowledge, in all published researches, the concentration of lignocellulose in ionic liquid were low (5~10%). Besides, pretreatment time were long (from 1 hr to 1 day). Based on the hypothesis that the amount of ionic...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...
Modeling physiological processes in plankton on enzyme kinetic principles
Directory of Open Access Journals (Sweden)
Ted Packard
2004-04-01
Full Text Available Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.
Konopel'ko, N. A.; Shakhov, E. M.
2017-10-01
A kinetic equation (S-model) is used to solve the nonstationary problem of a monatomic rarefied gas flowing from a tank of infinite capacity into a vacuum through a long plane channel. Initially, the gas is at rest and is separated from the vacuum by a barrier. The temperature of the channel walls is kept constant. The flow is found to evolve to a steady state. The time required for reaching a steady state is examined depending on the channel length and the degree of gas rarefaction. The kinetic equation is solved numerically by applying a conservative explicit finite-difference scheme that is firstorder accurate in time and second-order accurate in space. An approximate law is proposed for the asymptotic behavior of the solution at long times when the evolution to a steady state becomes a diffusion process.
A queueing approach to multi-site enzyme kinetics
Hochendoner, Philip; Ogle, Curtis; Mather, William H.
2014-01-01
Multi-site enzymes, defined as where multiple substrate molecules can bind simultaneously to the same enzyme molecule, play a key role in a number of biological networks, with the Escherichia coli protease ClpXP a well-studied example. These enzymes can form a low latency ‘waiting line’ of substrate to the enzyme's catalytic core, such that the enzyme molecule can continue to collect substrate even when the catalytic core is occupied. To understand multi-site enzyme kinetics, we study a discrete stochastic model that includes a single catalytic core fed by a fixed number of substrate binding sites. A natural queueing systems analogy is found to provide substantial insight into the dynamics of the model. From this, we derive exact results for the probability distribution of the enzyme configuration and for the distribution of substrate departure times in the case of identical but distinguishable classes of substrate molecules. Comments are also provided for the case when different classes of substrate molecules are not processed identically. PMID:24904740
Square Root Variations of Reciprocal Graphing of Enzyme Kinetic Data.
Stutts, P; Fridovich, I
1965-07-23
A variation of the Lineweaver and Burk graph, in which the reciprocal of the square root of the initial reaction velocity is plotted as a function of the reciprocal of the substrate concentration, has been described in the literature and has subsequently been used as the basis of proposals of reaction mechanisms. The utility of this treatment of enzyme kinetic data is examined and has been found to be limited.
Jeong, In-Chun; Song, Sanggeun; Kim, Daehyun; Park, Seong Jun; Kim, Ji-Hyun; Sung, Jaeyoung
2017-09-01
It is well known in enzyme kinetics that the Michaelis-Menten (MM) equation is applicable only to enzymes in the steady state. We show that the result obtained in the previous work [Phys. Rev. Lett. 107, 218301 (2011)] is inconsistent with the MM equation, not because the authors considered the enzyme system at mesoscopic concentrations but because they considered the enzyme system in the non-stationary state. The substrate concentration dependence of the mean turnover time is, in fact, consistent with the MM equation in the steady state, regardless of the number of enzymes in the system.
A Sensitive and Robust Enzyme Kinetic Experiment Using Microplates and Fluorogenic Ester Substrates
Johnson, R. Jeremy; Hoops, Geoffrey C.; Savas, Christopher J.; Kartje, Zachary; Lavis, Luke D.
2015-01-01
Enzyme kinetics measurements are a standard component of undergraduate biochemistry laboratories. The combination of serine hydrolases and fluorogenic enzyme substrates provides a rapid, sensitive, and general method for measuring enzyme kinetics in an undergraduate biochemistry laboratory. In this method, the kinetic activity of multiple protein…
Enzyme hydrolysis kinetics of micro-grinded maize straws.
Hu, Jianjun; Jing, Yanyan; Zhang, Quanguo; Guo, Jie; Lee, Duu-Jong
2017-09-01
This study applied micro-grinding to disintegrate the maize straws and then use the micro-grinded straws of particle sizes particle size 53-61, 80-96 or 150-180μm, for subsequent enzyme hydrolysis tests. The reducing sugar productivity was increased with reducing particle size. A kinetic model considering product inhibition was developed as follows t=aln[S]0[S]0-[P]+b[P], where S, P and t are the substrate, enzyme and hydrolysis time, respectively, and a and b are fitting parameters. The initial substrate concentration is proportional to the total exposed surface area. Additionally, the mechanical grinding can increase the biomass affinity for enzyme attack, suggesting the enhanced local action of shearing on the fiber matrix surfaces. The enhanced hydrolysis efficiency of the micro-grinded straws is welcomed by the subsequent refinery steps. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficient steady-state solver for hierarchical quantum master equations.
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-07-28
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.
Fractality in nonequilibrium steady states of quasiperiodic systems
Varma, Vipin Kerala; de Mulatier, Clélia; Žnidarič, Marko
2017-09-01
We investigate the nonequilibrium response of quasiperiodic systems to boundary driving. In particular, we focus on the Aubry-André-Harper model at its metal-insulator transition and the diagonal Fibonacci model. We find that opening the system at the boundaries provides a viable experimental technique to probe its underlying fractality, which is reflected in the fractal spatial dependence of simple observables (such as magnetization) in the nonequilibrium steady state. We also find that the dynamics in the nonequilibrium steady state depends on the length of the chain chosen: generic length chains harbour qualitatively slower transport (different scaling exponent) than Fibonacci length chains, which is in turn slower than in the closed system. We conjecture that such fractal nonequilibrium steady states should arise in generic driven critical systems that have fractal properties.
Nuclear quantum effects and kinetic isotope effects in enzyme reactions.
Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas
2015-09-15
Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.
Grunwald, Sandra K.; Krueger, Katherine J.
2008-01-01
Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…
A simple steady-state model for carry-over of aflatoxins from feed to cow's milk.
Eijkeren, Jan C H van; Bakker, Martine I; Zeilmaker, Marco J
2006-01-01
A simple steady-state model is derived from two kinetic one-compartment models for the disposition of aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1) in the lactating cow. The model relates daily intake of AFB1 in feed of dairy cattle and the cow's lactation status to resulting concentrations of AFM1 in
Non-equilibrium steady state in the hydro regime
Energy Technology Data Exchange (ETDEWEB)
Pourhasan, Razieh [Science Institute, University of Iceland,Dunhaga 5, 107 Reykjavik (Iceland)
2016-02-01
We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P=P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.
Steady-state propagation of interface corner crack
DEFF Research Database (Denmark)
Veluri, Badrinath; Jensen, Henrik Myhre
2013-01-01
Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... field (crack tip) solutions based on the J-integral. The adopted two-dimensional numerical approach for the calculation of fracture mechanical properties was compared with three-dimensional models for quarter-circular and straight sided crack front shapes. A quantitative approach was formulated based...... for propagation and the angle of intersection of the crack front with the free edge....
Electric machines steady state, transients, and design with Matlab
Boldea, Ion
2009-01-01
Part I: Steady StateIntroductionElectric Energy and Electric MachinesBasic Types of Transformers and Electric MachinesLosses and EfficiencyPhysical Limitations and RatingsNameplate RatingsMethods of AnalysisState of the Art and Perspective Electric TransformersAC Coil with Magnetic Core and Transformer Principles Magnetic Materials in EMs and Their LossesElectric Conductors and Their Skin EffectsComponents of Single- and 3-Phase TransformersFlux Linkages and Inductances of Single-Phase TransformersCircuit Equations of Single-Phase Transformers With Core LossesSteady State and Equivalent Circui
Principle of Entropy Maximization for Nonequilibrium Steady States
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
2002-01-01
has a maximum in a steady state with regard to some thermodynamic variables, the matrix of the Onsager phenomenological coefficients becomes diagonal. The theorem requires consistent rules of the coordinate transformations in the non-equilibrium thermodynamics. Such rules are formulated. The results......The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...
Emergence of advance waves in a steady-state universe
Energy Technology Data Exchange (ETDEWEB)
Hobart, R.H.
1979-10-01
In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.
Statistical Discrimination of Steady State Shift Damage Localization Metrics
DEFF Research Database (Denmark)
Bull, Thomas; Markvart, Morten Kusk; Sekjær, Claus
2017-01-01
When inspecting a linear structure subjected to spatially invariant, repeatable excitation, the recently proposed steady state shift damage localization (S3DL) method offers damage localization by mapping a postulated damage pattern to the damage-induced change in the steady state response...... with a cantilevered residential-sized wind turbine blade, which is exposed to a harmonic input and with the output taken as accelerations captured along the blade edges. Damage is manifested as a stiffness change and the damage localization interrogation will be carried out accordingly....
Combined Steady-State and Dynamic Heat Exchanger Experiment
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Practical error analysis of the quasi-steady-state approximation ...
African Journals Online (AJOL)
The Quasi-Steady-State Approximation (QSSA) is a method of getting approximate solutions to differential equations, developed heuristically in biochemistry early this century. It can produce acceptable and important results even when formal analytic and numerical procedures fail. It has become associated with singular ...
The effectiveness of the Auditory Steady State Response in ...
African Journals Online (AJOL)
This paper aims to provide a review of the emerging Auditory Steady State Response in light of existing procedures for diagnosis of hearing loss in infants. Determining the type, degree, and configuration of hearing loss in infants is a challenge requiring sophisticated electrophysiological equipment of which Auditory ...
Haematological values in sickle cell anaemia in steady state and ...
African Journals Online (AJOL)
occlusive crisis in Benin City, Nigeria. ... Annals of African Medicine ... Method: A prospective study of 200 patients (81.3%) in steady state, 46 patients (18.7%) during vaso-occlusive crisis (VOC) and 84 control subjects seen between August 2001 ...
Classical orbital paramagnetism in non-equilibrium steady state
Indian Academy of Sciences (India)
58
Abstract. We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital ...
Stabilizing the border steady-state solution of two interacting ...
African Journals Online (AJOL)
In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...
Dark Entangled Steady States of Interacting Rydberg Atoms
DEFF Research Database (Denmark)
Dasari, Durga; Mølmer, Klaus
2013-01-01
their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...
Steady States of the Parametric Rotator and Pendulum
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Exact results on the steady state of a hopping model
Zhang, M. Q.
1987-03-01
A hopping model described by Katz, Lebowitz, and Spohn [J. Stat. Phys. 34, 497 (1983)] and by Valles and Marro [J. Stat. Phys. 43, 441 (1986)] is studied analytically for small lattice systems. The dependence of the nonequilibrium steady state on various parameters and transition rate functions is obtained exactly. The results are compared with simulations on large systems.
Correlates of Steady-State Haematocrit and Hepatosplenomegaly in ...
African Journals Online (AJOL)
Backgroup: Sickle cell disease is a common genetic disorder in Nigeria. Objectives: To determine the steady state haematocrit, liver size and spleen size in children with sickle cell disease and the factors that influence them. Methods: This was a retrospective study of children with sickle cell disorders who attended the ...
Pereira, Félix Monteiro; Oliveira, Samuel Conceição
2016-11-01
In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.
Bonnes, Lars; Charrier, Daniel; Läuchli, Andreas M.
2014-09-01
We study a dissipative Bose-Hubbard chain subject to an engineered bath using a superoperator approach based on matrix product operators. The dissipation is engineered to stabilize a Bose-Einstein condensate wave function in its steady state. We then characterize the steady state emerging from the interplay between incompatible Hamiltonian and dissipative dynamics. While it is expected that interactions lead to this competition, even the kinetic energy in an open boundary condition setup competes with the dissipation, leading to a nontrivial steady state. We also present results for the transient dynamics and probe the relaxation time revealing the closing of the dissipative gap in the thermodynamic limit.
Optimal control of metabolic networks with saturable enzyme kinetics.
Oyarzuun, D A
2011-03-01
This note addresses the optimal control of non-linear metabolic networks by means of time-dependent enzyme synthesis rates. The authors consider networks with general topologies described by a control-affine dynamical system coupled with a linear model for enzyme synthesis and degradation. The problem formulation accounts for transitions between two metabolic equilibria, which typically arise in metabolic adaptations to environmental changes, and the minimisation of a quadratic functional that weights the cost/benefit relation between the transcriptional effort required for enzyme synthesis and the transition to the new phenotype. Using a linear time-variant approximation of the non-linear dynamics, the problem is recast as a sequence of linear-quadratic problems, the solution of which involves a sequence of differential Lyapunov equations. The authors provide conditions for convergence to an approximate solution of the original problem, which are naturally satisfied by a wide class of models for saturable enzyme kinetics. As a case study the authors use the method to examine the robustness of an optimal just-in-time gene expression pattern with respect to heterogeneity in the biosynthetic costs of individual proteins.
A Logic for Checking the Probabilistic Steady-State Properties of Reaction Networks.
Picard, Vincent; Siegel, Anne; Bourdon, Jérémie
2017-08-01
Designing probabilistic reaction models and determining their stochastic kinetic parameters are major issues in systems biology. To assist in the construction of reaction network models, we introduce a logic that allows one to express asymptotic properties about the steady-state stochastic dynamics of a reaction network. Basically, the formulas can express properties on expectancies, variances, and covariances. If a formula encoding for experimental observations on the system is not satisfiable, then the reaction network model can be rejected. We demonstrate that deciding the satisfiability of a formula is NP-hard, but we provide a decision method based on solving systems of polynomial constraints. We illustrate our method on a toy example.
de la Cruz, Roberto; Spill, Fabian; Alarcón, Tomás
2015-01-01
We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under1 quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the Chemical Master Equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provide the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually-inhibitory proteins and a gene regulatory circui...
Steady State Dynamic Operating Behavior of Universal Motor
Directory of Open Access Journals (Sweden)
Muhammad Khan Burdi
2015-01-01
Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known
Non-equilibrium steady states in supramolecular polymerization
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.
2017-06-01
Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.
Extending Molecular Theory to Steady-State Diffusing Systems
Energy Technology Data Exchange (ETDEWEB)
FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.
1999-10-22
Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.
Theoretical analysis of steady state operating forces in control valves
Directory of Open Access Journals (Sweden)
Basavaraj Hubballi
2018-01-01
Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.
Dhatt, Sharmistha
2016-01-01
Reliability of kinetic parameters are crucial in understanding enzyme kinetics within cellular system. The present study suggests a few cautions that need introspection for estimation of parameters like K(M), V(max) and K(I) using Lineweaver-Burk plots. The quality of IC(50) too needs a thorough reinvestigation because of its direct link with K(I) and K(M) values. Inhibition kinetics under both steady-state and non-steady-state conditions are studied and errors in estimated parameters are compared against actual values to settle the question of their adequacy.
Steady State Stokes Flow Interpolation for Fluid Control
DEFF Research Database (Denmark)
Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert
2012-01-01
— suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures...... the rotational components and is suitable for controlling liquid animations where tangential motion is pronounced, such as in a breaking wave...
Agricultural pollutant penetration and steady state in thick aquifers.
Kraft, G J; Browne, B A; Devita, W M; Mechenich, D J
2008-01-01
The leakage of pollutants from agricultural lands to aquifers has increased greatly, driven by increasing fertilizer and pesticide use. Because this increase is recent, ground water pollutant concentrations, loads, and exports may also be increasing as pollutants penetrate more deeply into aquifers. We established in an aquifer profile a ground water recharge and pollutant leakage chronology in an agricultural landscape where 30 m of till blankets a 57-m thick sandstone aquifer. Pollutant concentrations increased from older ground water (1963) at the aquifer base to younger ground water (1985) at its top, a signal of increasing pollutant leakage. Nitrate-N increased from 0.9 to 13.2 mg/L, implying that leakage increased from 1.9 to 16.5 kg/ha/year. Nitrate load and export could increase from 130% to 230% before reaching a steady state in 20 to 40 years. Chloride increases were similar. Pesticide residues alachlor ethane sulfonic acid (ESA), metolachlor ESA, and atrazine residues partially penetrated the aquifer profile. Their concentration-age-date patterns exhibited an initial increase and then a leveling corresponding to the timing of product adoption and leveling of demand. Unlike NO(3), projecting pesticide residue steady states is complicated by the phasing in and out of pesticide products over time; for example, neither alachlor nor atrazine is currently used in the area, and newer products, which have not had time to transit to the aquifer, have been adopted. The circumstances that resulted in the lack of a pollutant steady state are not rare; thus, the lack of steady states in agricultural region aquifers may not be uncommon.
Directory of Open Access Journals (Sweden)
Pavithra Sivasamy
Full Text Available A mathematical model of biotransformation of D-methionine into L-methionine in the cascade of the enzymes such as, D-amino acid oxidase (D-AAO, L-phenylalanine dehydrogenase (L-PheDH and formate dehydrogenase (FDH is discussed. The model is based on a system of coupled nonlinear reaction equations under non steady-state conditions for biochemical reactions occurring in the batch reactor that describes the substrate and product concentration within the catalyst. Simple analytical expressions for the concentration of substrate and product have been derived for all values of reaction parameters using the new homotopy perturbation method (NHPM. Enzyme reaction rate in terms of concentration and kinetic parameters are also reported. The analytical results are also compared with experimental and numerical ones and a good agreement is obtained. The graphical procedure for estimating the kinetic parameters is also reported.
Cavitation modeling for steady-state CFD simulations
Hanimann, L.; Mangani, L.; Casartelli, E.; Widmer, M.
2016-11-01
Cavitation in hydraulic turbomachines is an important phenomenon to be considered for performance predictions. Correct analysis of the cavitation onset and its effect on the flow field while diminishing the pressure level need therefore to be investigated. Even if cavitation often appears as an unsteady phenomenon, the capability to compute it in a steady state formulation for the design and assessment phase in the product development process is very useful for the engineer. In the present paper the development and corresponding application of a steady state CFD solver is presented, based on the open source toolbox OpenFOAM®. In the first part a review of different cavitation models is presented. Adopting the mixture-type cavitation approach, various models are investigated and developed in a steady state CFD RANS solver. Particular attention is given to the coupling between cavitation and turbulence models as well as on the underlying numerical procedure, especially the integration in the pressure- correction step of pressure-based solvers, which plays an important role in the stability of the procedure. The performance of the proposed model is initially assessed on simple cases available in the open literature. In a second step results for different applications are presented, ranging from airfoils to pumps.
SBWR Model for Steady-State and Transient Analysis
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2008-01-01
Full Text Available This paper presents a model of a simplified boiling water reactor (SBWR to analyze the steady-state and transient behavior. The SBWR model is based on approximations of lumped and distributed parameters to consider neutronics and natural circulation processes. The main components of the model are vessel dome, downcomer, lower plenum, core (channel and fuel, upper plenum, pressure, and level controls. Further consideration of the model is the natural circulation path in the internal circuit of the reactor, which governs the safety performance of the SBWR. To demonstrate the applicability of the model, the predictions were compared with plant data, manufacturer_s predictions, and RELAP5 under steady-state and transient conditions of a typical BWR. In steady-state conditions, the profiles of the main variables of the SBWR core such as superficial velocity, void fraction, temperatures, and convective heat transfer coefficient are presented and analyzed. The transient behavior of SBWR was analyzed during the closure of all main steam line isolation valves (MSIVs. Our results in this transient show that the cooling system due to natural circulation in the SBWR is around 70% of the rated core flow. According to the results shown here, one of the main conclusions of this work is that the simplified model could be very helpful in the licensing process.
Extracting Steady State Components from Synchrophasor Data Using Kalman Filters
Directory of Open Access Journals (Sweden)
Farhan Mahmood
2016-04-01
Full Text Available Data from phasor measurement units (PMUs may be exploited to provide steady state information to the applications which require it. As PMU measurements may contain errors and missing data, the paper presents the application of a Kalman Filter technique for real-time data processing. PMU data captures the power system’s response at different time-scales, which are generated by different types of power system events; the presented Kalman Filter methods have been applied to extract the steady state components of PMU measurements that can be fed to steady state applications. Two KF-based methods have been proposed, i.e., a windowing-based KF method and “the modified KF”. Both methods are capable of reducing noise, compensating for missing data and filtering outliers from input PMU signals. A comparison of proposed methods has been carried out using the PMU data generated from a hardware-in-the-loop (HIL experimental setup. In addition, a performance analysis of the proposed methods is performed using an evaluation metric.
Ideal MHD Stability of ITER Steady State Scenarios with ITBs
Energy Technology Data Exchange (ETDEWEB)
F.M. Poli, C.E. Kessel, S. Jardin, J. Manickam, M. Chance, J. Chen
2011-07-27
One of ITER goals is to demonstrate feasibility of continuous operations using non-inductive current drive. Two main candidates have been identified for advanced operations: the long duration, high neutron fluency hybrid scenario and the steady state scenario, both operating at a plasma current lower than the reference ELMy scenario [1][2] to minimize the required current drive. The steady state scenario targets plasmas with current 7-10 MA in the flat-top, 50% of which will be provided by the self-generated, pressure-driven bootstrap current. It has been estimated that, in order to obtain a fusion gain Q > 5 at a current of 9 MA, it should be ΒN > 2.5 and H > 1.5 [3]. This implies the presence of an Internal Transport Barrier (ITB). This work discusses how the stability of steady state scenarios with ITBs is affected by the external heating sources and by perturbations of the equilibrium profiles.
Progress and prospect of true steady state operation with RF
Jacquinot, Jean
2017-10-01
Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.
Kinetic mechanism of putrescine oxidase from Rhodococcus erythropolis
Kopacz, Malgorzata; Heuts, Dominic P. H. M.; Fraaije, Marco W.
2014-01-01
Putrescine oxidase from Rhodococcus erythropolis (PuO) is a flavin-containing amine oxidase from the monoamine oxidase family that performs oxidative deamination of aliphatic diamines. In this study we report pre-steady-state kinetic analyses of the enzyme with the use of single-and double-mixing
Sensitivity and specificity of auditory steady-state response testing
Directory of Open Access Journals (Sweden)
Camila Maia Rabelo
2011-01-01
Full Text Available INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady-state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady-state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz. The difference between auditory steady-state response-estimated thresholds and behavioral thresholds (audiometric evaluation was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady-state response-estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS lesions has shown that individuals with CANS lesions present a greater difference between ASSR-estimated thresholds and actual behavioral thresholds; ASSR-estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR-estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady-state
Mapping of Enzyme Kinetics on a Microfluidic Device.
Directory of Open Access Journals (Sweden)
Hoon Suk Rho
Full Text Available A microfluidic platform or "microfluidic mapper" is demonstrated, which in a single experiment performs 36 parallel biochemical reactions with 36 different combinations of two reagents in stepwise concentration gradients. The volume used in each individual reaction was 36 nl. With the microfluidic mapper, we obtained a 3D enzyme reaction plot of horseradish peroxidase (HRP with Amplex Red (AR and hydrogen peroxide (H2O2, for concentration ranges of 11.7 μM to 100.0 μM and 11.1 μM to 66.7 μM for AR and H2O2, respectively. This system and methodology could be used as a fast analytical tool to evaluate various chemical and biochemical reactions especially where two or more reagents interact with each other. The generation of dual concentration gradients in the present format has many advantages such as parallelization of reactions in a nanoliter-scale volume and the real-time monitoring of processes leading to quick concentration gradients. The microfluidic mapper could be applied to various problems in analytical chemistry such as revealing of binding kinetics, and optimization of reaction kinetics.
The multispecies modeling of the premixed, laminar steady-state ozone flame
Heimerl, J. M.; Coffee, T. P.
1980-01-01
Species dependent kinetic, transport and thermodynamic coefficients were employed in a one dimensional model of the premixed, laminar, steady state ozone flame. Convenient expressions for these coefficients are reported. They are based on independent measurements, no arbitrary parameters are used. The governing equations are solved using a relaxation technique and the partial differential equation package, PDECOL. Species and temperature profiles and the burning velocities are found over the range of initial ozone mole fraction of 0.25 to 1.00. The computed burning velocities are no more than 30% greater than the measurements of Streng and Grosses. Comparison with the computed results of Warnatz shows agreement within + or - 12%, even though quite different expressions for some of the kinetic coefficients were used. These differences are most obvious in the atomic oxygen and temperature profiles at an initial ozone mole fraction of unity.
The requirements of a next step large steady state tokamak
Janeschitz, G.; Barabaschi, P.; Federici, G.; Ioki, K.; Ladd, P.; Mukhovatov, V.; Sugihara, M.; Tivey, R.; ITER-JCT; Home Team
2000-06-01
After a decision by the ITER parties to investigate the possibility of designing a reduced cost version of ITER several possible machine layouts with different aspect ratios were studied. Relatively early in this process it became clear that there is no significant cost difference between different aspect ratios and that there is a maximum realistically possible aspect ratio for a machine with 6 m major radius and rather high plasma shaping. Following this study a machine with an intermediate aspect ratio (3.1) called the ITER Fusion Energy Advanced Tokamak (ITER FEAT) was chosen as the basis for the outline design of a reduced cost ITER. Several potential steady state scenarios can be investigated in ITER FEAT, i.e. monotonic or reversed shear at full or reduced minor radius. In addition, so-called hybrid discharges, are feasible where a mixture of inductive and non-inductive current drive as well as bootstrap current allows long pulse discharges of the order of 2500 s. The βN values and H factors required for these discharges are in the same range as those observed on present machines, which provides confidence that such discharges can be studied in ITER FEAT. However, due to uncertainties in physics knowledge, for example the current drive efficiency off-axis, it is impossible at present to generate a completely self-consistent scenario taking all boundary conditions, for example engineering or heating system constraints, into account. In addition, all of these regimes have a potential problem with divertor operation compatibility (low edge density) and with helium exhaust which has to be addressed in existing experiments. For the engineering design of the in-vessel components and for the balance of the plant there is practically no difference between inductive (500 s) and steady state operation. However, the choice of heating systems and the distribution of power between them will be strongly influenced by the envisaged steady state scenarios.
Relaxation versus adiabatic quantum steady-state preparation
Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo
2017-04-01
Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.
On the minimum circulating power of steady state tokamaks
Energy Technology Data Exchange (ETDEWEB)
Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.
1995-07-01
Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author).
Steady State Analysis of Stochastic Systems with Multiple Time Delays
Xu, W.; Sun, C. Y.; Zhang, H. Q.
In this paper, attention is focused on the steady state analysis of a class of nonlinear dynamic systems with multi-delayed feedbacks driven by multiplicative correlated Gaussian white noises. The Fokker-Planck equations for delayed variables are at first derived by Novikov's theorem. Then, under small delay assumption, the approximate stationary solutions are obtained by the probability density approach. As a special case, the effects of multidelay feedbacks and the correlated additive and multiplicative Gaussian white noises on the response of a bistable system are considered. It is shown that the obtained analytical results are in good agreement with experimental results in Monte Carlo simulations.
Steady-state grain growth in UO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Galinari, C.M.; Lameiras, F.S. [CDTN/CNEN, Belo Horizonte (Brazil)
1998-06-05
The authors have observed steady-state grain growth in sintered UO{sub 2} pellets of nuclear purity at 2,003 K under H{sub 2}. The behavior of the grain size distribution at different instants is consistent with the grain growth model proposed by one of the authors. The total number of grains was estimated using the Saltykov`s method, and the evolution is in accordance with the model proposed by Rhines and Craig. The parabolic growth law was observed for the mean intercept length with n = 0.4.
Cluster sizes in interleaved silent steady state (ISSS) imaging.
Akrofi, Kwaku; Sutton, Bradley P; Ouyang, Cheng; Husain, Fatima T
2011-01-01
The effect of increasing the number of scans in the "cluster" of an interleaved silent steady state (ISSS) fMRI imaging scheme from 1 to 2, and then to 3 was examined by a fixed-effects analysis of an auditory short-term memory task with four subjects. Compared to a cluster size of 1, a cluster of 2 scans improved sensitivity at detecting brain activity and statistical power, while a cluster of 3 scans further improved statistical power but seemed not to improve sensitivity beyond that achieved with a cluster of 2 scans. The findings reveal that cluster size is a vital parameter for an ISSS imaging scheme.
Quantum reciprocity conjecture for the non-equilibrium steady state
Energy Technology Data Exchange (ETDEWEB)
Coleman, P; Mao, W [Center for Materials Theory, Rutgers University, Piscataway, NJ 08854 (United States)
2004-05-26
A consideration of the lack of history dependence in the non-equilibrium steady state of a quantum system leads us to conjecture that in such a system there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analogue of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot. (letter to the editor)
Non-Equilibrium Steady States of the XY Chain
Aschbacher, W H
2002-01-01
We study the non-equilibrium statistical mechanics of the two-sided XY chain. We start from an initial state in which the left and right part of the lattice {x|xM}, are at inverse temperatures beta_L and beta_R. Using a simple scattering theoretic analysis, we construct the unique non-equilibrium steady state (NESS). This state depends on beta_L and beta_R, but not on the choice of the decoupling parameter M. We prove that in the non-equilibrium case, beta_L \
Quantum-classical correspondence in steady states of nonadiabatic systems
Energy Technology Data Exchange (ETDEWEB)
Fujii, Mikiya; Yamashita, Koichi [Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); CREST, JST, Tokyo 113-8656 (Japan)
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students
Flurkey, William H.; Inlow, Jennifer K.
2017-01-01
An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…
Measurement of Enzyme Kinetics by Use of a Blood Glucometer: Hydrolysis of Sucrose and Lactose
Heinzerling, Peter; Schrader, Frank; Schanze, Sascha
2012-01-01
An alternative analytical method for measuring the kinetic parameters of the enzymes invertase and lactase is described. Invertase hydrolyzes sucrose to glucose and fructose and lactase hydrolyzes lactose to glucose and galactose. In most enzyme kinetics studies, photometric methods or test strips are used to quantify the derivates of the…
Classical Orbital Paramagnetism in Non-equilibrium Steady State
Deshpande, Avinash A.; Kumar, N.
2017-09-01
We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.
Dispersive and steady-state recombination in organic disordered semiconductors
Hofacker, Andreas; Neher, Dieter
2017-12-01
Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multiple-trapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed.
Transient and steady-state selection in the striatal microcircuit
Directory of Open Access Journals (Sweden)
Adam eTomkins
2014-01-01
Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.
Steady states of the parametric rotator and pendulum
Energy Technology Data Exchange (ETDEWEB)
Bouzas, Antonio O, E-mail: abouzas@fis.mda.cinvestav.m [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)
2010-11-15
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the damped, nonlinear equation of motion of the parametric rotator and pendulum perturbatively for small parametric excitation and damping, although our perturbative approach can be extended to other regimes as well. Our treatment involves only ordinary second-order differential equations with constant coefficients, and provides numerically accurate perturbative solutions in terms of elementary functions. Some of the steady-state rotation and oscillation modes studied here have not been discussed in the previous literature. Other well-known ones, such as parametric resonance and the inverted pendulum, are extended to elliptic parametric excitation tilted with respect to gravity. The results presented here should be accessible to advanced undergraduates, and of interest to graduate students and specialists in the field of nonlinear mechanics.
Steady-state flow properties of amorphous materials
Jadhao, Vikram; O'Connor, Thomas; Robbins, Mark
2015-03-01
Molecular dynamics (MD) simulations are used to investigate the steady-state shear flow curves of a standard glass model: the bidisperse Lennard-Jones system. For a wide range of temperatures in the neighborhood of the glass transition temperature Tg predicted by the mode coupling theory, we compute the steady-state shear stress and viscosity as a function of the shear rate γ ˙. At temperatures near and above Tg, the stress crosses over from linear Newtonian behavior at low rates to power law shear-thinning at high rates. As T decreases below Tg, the stress shows a plateau, becoming nearly rate-independent at low γ ˙. There is a weak increase in stress that is consistent with Eyring theory for activated flow of a solid. We find that when the strain rate is reduced to extremely low values, Newtonian behavior appears once more. Insights gained from these simulations are applied to the computation of flow curves of a well-established boundary lubricant: squalane. In the elastohydrodynamic regime, squalane responds like a glassy solid with an Eyring-like response, but at low rates it has a relatively small Newtonian viscosity. Supported by the Army Research Laboratory under Grant W911NF-12-2-0022.
Steady state in a gas of inelastic rough spheres heated by a uniform stochastic force
Energy Technology Data Exchange (ETDEWEB)
Vega Reyes, Francisco, E-mail: fvega@unex.es; Santos, Andrés, E-mail: andres@unex.es [Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06071 Badajoz (Spain)
2015-11-15
We study here the steady state attained in a granular gas of inelastic rough spheres that is subject to a spatially uniform random volume force. The stochastic force has the form of the so-called white noise and acts by adding impulse to the particle translational velocities. We work out an analytical solution of the corresponding velocity distribution function from a Sonine polynomial expansion that displays energy non-equipartition between the translational and rotational modes, translational and rotational kurtoses, and translational-rotational velocity correlations. By comparison with a numerical solution of the Boltzmann kinetic equation (by means of the direct simulation Monte Carlo method), we show that our analytical solution provides a good description that is quantitatively very accurate in certain ranges of inelasticity and roughness. We also find three important features that make the forced granular gas steady state very different from the homogeneous cooling state (attained by an unforced granular gas). First, the marginal velocity distributions are always close to a Maxwellian. Second, there is a continuous transition to the purely smooth limit (where the effects of particle rotations are ignored). And third, the angular translational-rotational velocity correlations show a preference for a quasiperpendicular mutual orientation (which is called “lifted-tennis-ball” behavior)
A mathematical model of liver metabolism: from steady state to dynamic
Energy Technology Data Exchange (ETDEWEB)
Calvetti, D; Kuceyeski, A [Case Western Reserve University, Department of Mathematics, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Somersalo, E [Helsinki University of Technology, Institute of Mathematics, P. O. Box 1100, FIN-02015 HUT (Finland)], E-mail: daniela.calvetti@case.edu, E-mail: amy.kuceyeski@case.edu, E-mail: erkki.somersalo@hut.fi
2008-07-15
The increase in Type 2 diabetes and other metabolic disorders has led to an intense focus on the areas of research related to metabolism. Because the liver is essential in regulating metabolite concentrations that maintain life, it is especially important to have good knowledge of the functions within this organ. In silico mathematical models that can adequately describe metabolite concentrations, flux and transport rates in the liver in vivo can be a useful predictive tool. Fully dynamic models, which contain expressions for Michaelis-Menten reaction kinetics can be utilized to investigate different metabolic states, for example exercise, fed or starved state. In this paper we describe a two compartment (blood and tissue) spatially lumped liver metabolism model. First, we use Bayesian Flux Balance Analysis (BFBA) to estimate the values of flux and transport rates at steady state, which agree closely with values from the literature. These values are then used to find a set of Michaelis-Menten parameters and initial concentrations which identify a dynamic model that can be used for exploring different metabolic states. In particular, we investigate the effect of doubling the concentration of lactate entering the system via the hepatic artery and portal vein. This change in lactate concentration forces the system to a new steady state, where glucose production is increased.
Fractional Parker equation for the transport of cosmic rays: steady-state solutions
Zimbardo, G.; Perri, S.; Effenberger, F.; Fichtner, H.
2017-10-01
Context. The acceleration and transport of energetic particles in astrophysical plasmas can be described by the so-called Parker equation, which is a kinetic equation comprising diffusion terms both in coordinate space and in momentum space. In the past years, it has been found that energetic particle transport in space can be anomalous, for instance, superdiffusive rather than normal diffusive. This requires a revision of the basic transport equation for such circumstances. Aims: Here, we extend the Parker equation to the case of anomalous diffusion by means of fractional derivatives that generalize the usual second-order spatial diffusion operator. Methods: We introduce the left and right Caputo fractional derivatives in space. These derivatives are one of the tools used to describe anomalous transport. We consider the case of steady-state solutions upstream and downstream of a planar shock. Results: We obtain an estimate of the particle acceleration time at shocks in the case of superdiffusion. An analytical solution of the steady-state fractional Parker equation is given by the Mittag-Leffler functions, which correspond to a power-law profile for the energetic particle intensity far upstream of the shock, in agreement with the results obtained from a probabilistic approach to superdiffusion. These functions also correspond to a stretched exponential close upstream of the shock. Conclusions: These results can help to model more precisely the measured fluxes of energetic particles that are accelerated at both interplanetary shocks and supernova remnant shocks.
Xu, Lu; Choi, Sunju; Xie, Yusu; Sze, Ji Ying
2015-09-01
Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior.
Directory of Open Access Journals (Sweden)
Lu Xu
2015-09-01
Full Text Available Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior.
Steady-State Clozapine and Norclozapine Pharmacokinetics in Maori and European Patients.
Menkes, David B; Glue, Paul; Gale, Christopher; Lam, Frederic; Hung, Cheung-Tak; Hung, Noelyn
2017-12-13
Clozapine is the most effective drug for treatment-resistant schizophrenia, but its use is limited by toxicity. Because ethnicity has been reported to affect clozapine metabolism, we compared its steady state pharmacokinetics in New Zealand Maori and European patients. Clozapine and norclozapine steady state bioavailability was assessed over 24h under fasting and fed conditions in 12 Maori and 16 European patients treated for chronic psychotic illnesses with stable once-daily clozapine doses. Plasma clozapine and norclozapine concentrations were assessed using liquid chromatography with tandem mass spectrometry; pharmacokinetic parameters were calculated using standard non-compartmental methods, and compared using unpaired t-tests. Mean pharmacokinetic parameters (AUC, Cmax and Cmin) for clozapine and norclozapine were virtually identical in Maori and European subjects, under both fed and fasted conditions. Clozapine bioavailability does not vary between Maori and European patients, and thus does not need to be considered in prescribing decisions. Additional studies are needed to identify if there are differences between Maori and European populations for drugs metabolized by other enzyme pathways. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States
Komatsu, Teruhisa S.
2010-01-01
We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.
Analysis of steady-state ductile crack growth
DEFF Research Database (Denmark)
Niordson, Christian
1999-01-01
The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....... the material undergoes in welding. The elastic properties, on the other hand, are insensitive to the termic cycle, and are therefore essentially the same in the weld and in the base material. The material is described by $J_2$-flow theory, and the analysis is performed by using a numerical algorithm, in which...
An Adsorption Equilibria Model for Steady State Analysis
Ismail, Azhar Bin
2016-02-29
The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.
Optimal operation of Petlyuk distillation: Steady-state behavior
Directory of Open Access Journals (Sweden)
Ivar J. Halvorsen
2001-07-01
Full Text Available The "Petlyuk" or "dividing-wall" or "fully thermally coupled" distillation column is an interesting alternative to the conventional cascaded binary columns for separation of multi-component mixtures. However, the industrial use has been limited, and difficulties in operation have been reported as one reason. With three product compositions controlled, the system has two degrees of freedom left for on-line optimization. We show that the steady-state optimal solution surface is quite narrow, and depends strongly on disturbances and design parameters. Thus it seems difficult to achieve the potential energy savings compared to conventional approaches without a good control strategy. We discuss candidate variables which may be used as feedback variables in order to keep the column operation close to optimal in a "self-optimizing" control scheme.
Steady-State Chemotactic Response in E. coli
Kafri, Yariv
2007-01-01
The bacterium E. coli maneuvers itself to regions with high chemoattractant concentrations by performing two stereotypical moves: `runs', in which it moves in near straight lines, and `tumbles', in which it does not advance but changes direction randomly. The duration of each move is stochastic and depends upon the chemoattractant concentration experienced in the recent past. We relate this stochastic behavior to the steady-state density of a bacterium population, and we derive the latter as a function of chemoattractant concentration. In contrast to earlier treatments, here we account for the effects of temporal correlations and variable tumbling durations. A range of behaviors obtains, that depends subtly upon several aspects of the system - memory, correlation, and tumbling stochasticity in particular.
Creep stresses in a spherical shell under steady state temperature
Verma, Gaurav; Rana, Puneet
2017-10-01
The paper investigates the problem of creep of a spherical structure under the influence of steady state temperature. The problem of creep in spherical shell is solved by using the concept of generalized strain measures and transition hypothesis given by Seth. The problem has reduced to non-linear differential equation for creep transition. This paper deals with the non-linear behaviour of spherical shell under thermal condition. The spherical shell structures are easily vulnerable to creep, shrinkage and thermal effects; a thorough understanding of their time-dependent behaviour has been fully established. The paper aims to provide thermal creep analysis to enhance the effective design and long life of shells, and a theoretical model is developed for calculating creep stresses and strains in a spherical shell with purpose. Results obtained for the problem are depicted graphically.
Fast Prediction Method for Steady-State Heat Convection
Wáng, Yì
2012-03-14
A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Lewis Steady-State Heat Pipe Code Architecture
Mi, Ye; Tower, Leonard K.
2013-01-01
NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given
Liquid-liquid separation using steady-state bed coalescer
Directory of Open Access Journals (Sweden)
Šećerov-Sokolović Radmila M.
2016-01-01
Full Text Available This paper presents a literature review on the current understanding of liquid-liquid separation that is immensely widespread in practice, highlighting the steady-state bed coalescer being a good solution in various engineering application. Generally, the fibre bed coalescence has proven to be very effective separation method in the industry. Due to the complexity of bed coalescence phenomenon coalescer design and sizing procedure relies on experimental test. This review provides a research overview of the key phenomena essential for the efficient bed coalescence, such as mechanisms of droplet coalescence and emulsion flow through the fibre bed. In addition to this provides an overview of the current knowledge about coalescer´s design properties and variables such as: fluid velocity, fluid flow orientation/flow mode, fibre bed geometry, and bed length. [[Projekat Ministarstva nauke Republike Srbije, br. 172022
Manifest and Subtle Cyclic Behavior in Nonequilibrium Steady States
Zia, R K P; Mandal, Dibyendu; Fox-Kemper, Baylor
2016-01-01
Many interesting phenomena in nature are described by stochastic processes with irreversible dynamics. To model these phenomena, we focus on a master equation or a Fokker-Planck equation with rates which violate detailed balance. When the system settles in a stationary state, it will be a nonequilibrium steady state (NESS), with time independent probability distribution as well as persistent probability current loops. The observable consequences of the latter are explored. In particular, cyclic behavior of some form must be present: some are prominent and manifest, while others are more obscure and subtle. We present a theoretical framework to analyze such properties, introducing the notion of "probability angular momentum" and its distribution. Using several examples, we illustrate the manifest and subtle categories and how best to distinguish between them. These techniques can be applied to reveal the NESS nature of a wide range of systems in a large variety of areas. We illustrate with one application: var...
Enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis
Bokma, Evert; Barends, Thomas; Terwisscha van Scheltinga, Anke C.; Dijkstra, Bauke W.; Beintema, Jaap J.
2000-01-01
The enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis, were studied in detail with a new enzyme assay. In this assay, the enzyme reaction products were derivatized by reductive coupling to a chromophore, Products mere separated by HPLC and the amount of product was
A Hands-On Classroom Simulation to Demonstrate Concepts in Enzyme Kinetics
Junker, Matthew
2010-01-01
A classroom exercise is described to introduce enzyme kinetics in an undergraduate biochemistry or chemistry course. The exercise is a simulation in which a student acts as an enzyme that "catalyzes" the unscrewing of a nut from a bolt. With other students assisting, the student enzyme carries out reactions with bolt-nut substrates under different…
An introduction to the formulation of steady-state transport through molecular junctions
Energy Technology Data Exchange (ETDEWEB)
Peskin, Uri, E-mail: tx.technion@ac.i [Schulich Faculty of Chemistry and the Lise Meitner Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)
2010-08-14
A basic theoretical introduction is given for the phenomenon of electronic transport through molecular junctions. The electrode-molecule-electrode system is represented using a model Hamiltonian framework based on separation between the molecular and the electrode single-particle subspaces, using projection operators. The Landauer formulation of the steady-state current through the junction is introduced and the transmission function is derived from basic single-particle quantum scattering theory. Detailed implementations to a generic tight-binding model demonstrate the typical characteristics of the transmission function, and resonant transport through discrete quantum molecular states is analysed in detail. An alternative formulation based on the time-dependent Liouville-von Neumann equation leads to a quantum kinetic representation of the current in terms of rate constants for electron hopping between the molecule and the electrodes. The generalization of this approach to inelastic transport is discussed. (phd tutorial)
Jung, Won; Yang, Seongeun; Sung, Jaeyoung
2010-08-05
We report a robust quadratic relation between the inverse substrate concentration and the second moment, , of the catalytic turnover time distribution for enzyme reactions. The results hold irrespective of the mechanism and dynamics of the enzyme reaction and suggest a novel single molecule experimental analysis that provides information about reaction processes of the enzyme-substrate complex and ergodicity of the enzyme reaction system, which is beyond the reach of the conventional analysis for the mean reaction time, . It turns out that - 2(2) is linear in inverse substrate concentration for an ergodic homogeneous enzyme system given that the enzyme substrate encounter is a simple rate process, and its value at the high substrate concentration limit provides direct information about if any non-Poisson reaction process of the enzyme-substrate complex. For a nonergodic heterogeneous reaction system, the corresponding quantity becomes a quadratic function of the inverse substrate concentration. This leads us to suggest an ergodicity measure for single enzyme reaction systems. We obtain a simple analytic expression of the randomness parameter for the single catalytic turnover time, which could provide a quantitative explanation about the previously reported randomness data of the beta-galactosidase enzyme. In obtaining the results, we introduce novel chemical kinetics applicable to a non-Poisson reaction network with arbitrary connectivity, as a generalization of the conventional chemical kinetics.
Critical Concavity of a Drainage Basin for Steady-State
Byun, Jongmin; Paik, Kyungrock
2015-04-01
Longitudinal profiles of natural streams are known to show concave forms. Saying A as drainage area, channel gradient S can be expressed as the power-law, S≈A-θ (Flint, 1974), which is one of the scale-invariant features of drainage basin. According to literature, θ of most natural streams falls into a narrow range (0.4 natural drainage basins?' To answer above questions, we analytically derive θ for a steady-state drainage basin following Lane's equilibrium (Lane, 1955) throughout the corridor and named this specific case as the 'critical concavity'. In the derivation, sediment transport capacity is estimated by unit stream power model (Yang, 1976), yielding a power function of upstream area. Stability of channel at a local point occurs when incoming flux equals outgoing flux at the point. Therefore, given the drainage at steady-state where all channel beds are stable, the exponent of the power function should be zero. From this, we can determine the critical concavity. Considering ranges of variables associated in this derivation, critical concavity cannot be resolved as a single definite value, rather a range of critical concavity is suggested. This range well agrees with the widely reported range of θ (0.4 natural streams. In this theoretical study, inter-relationships between power-laws such as hydraulic geometry (Leopold and Maddock, 1953), dominant discharge-drainage area (Knighton et al., 1999), and concavity, are coupled into the power-law framework of stream power sediment transport model. This allows us to explore close relationships between their power-law exponents: their relative roles and sensitivity. Detailed analysis and implications will be presented. References Flint, J. J., 1974, Stream gradient as a function of order, magnitude, and discharge, Water Resources Research, 10, 969-973. Knighton, A. D., 1999, Downstream variation in stream power, Geomorphology, 29, 293-306. Lane, E. W., 1955, The importance of fluvial morphology in hydraulic
Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies
Directory of Open Access Journals (Sweden)
Supaporn Kradtap Hartwell
2012-01-01
Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.
Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity
Directory of Open Access Journals (Sweden)
Pedro Figueiredo, Rafael Nazario, Marisa Sousa, Jailton Gregório Pelarigo, João Paulo Vilas-Boas, Ricardo Fernandes
2014-09-01
Full Text Available The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS. Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA, allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%: stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation. However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity.
Steady-State Thermoelastic Analytical Solutions for Insulated Pipelines
Directory of Open Access Journals (Sweden)
M. Fraldi
2016-01-01
Full Text Available A steady-state thermoelastic analytical solution for a multilayer hollow cylinder, composed of an arbitrary number of phases and subject to both radial pressure and temperature gradient, is presented. By assuming each phase to be homogeneous and thermally isotropic and by varying the mechanical and thermal constitutive parameters, a sensitivity analysis has been performed with the aim of finally applying the study to the mechanical behaviour of an industrial pipeline composed of three phases (steel, insulating coating, and polyethylene under the action of the above-mentioned load conditions. By making reference to a classical Hencky-von Mises criterion, the stress profiles along the thickness of the layers have been carried out, also localizing the onset of plasticity as a function of the temperature variations, material properties, and geometrical features characterizing the composite structure of interest. At the end, some numerical results of practical interest in the engineering applications have been specialized to three different insulated coating materials (expanded polyurethane, laminate glass, and syntactic foam, to highlight the cases in which thermal properties and loads can significantly interfere with the mechanical response in pipes, in terms of stresses, in this way suggesting possible strategies for avoiding unexpected failure and supporting the optimal structural design of these systems.
Attentional modulation of auditory steady-state responses.
Directory of Open Access Journals (Sweden)
Yatin Mahajan
Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.
Attentional modulation of auditory steady-state responses.
Mahajan, Yatin; Davis, Chris; Kim, Jeesun
2014-01-01
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.
Development of the ITER Advanced Steady State and Hybrid Scenarios
Energy Technology Data Exchange (ETDEWEB)
C.E. Kessel, D. Campbell, T. Casper, Y. Gribov, and J. Snipes
2010-09-24
Full discharge simulations are performed to examine the plasma current rampup, flattop and rampdown phases self-consistently with the poloidal field (PF) coils and their limitations, plasma transport evolution, and heating/current drive (H/CD) sources. Steady state scenarios are found that obtain 100% non-inductive current with Ip = 7.3-10.0 MA, βN ~ 2.5 for H98 = 1.6, Q’s range from 3 to 6, n/nGr = 0.75-1.0, and NB, IC, EC, and LH source have been examined. The scenarios remain within CS/PF coil limits by advancing the pre-magnetization by 40 Wb. Hybrid scenarios have been identified with 35-40% non-inductive current for Ip = 12.5 MA, H98 ~ 1.25, with q(0) reaching 1 at or after the end of rampup. The equilibrium operating space for the hybrid shows a large range of scenarios can be accommodated, and access 925-1300 s flattop burn durations.
Ising game: Nonequilibrium steady states of resource-allocation systems
Xin, C.; Yang, G.; Huang, J. P.
2017-04-01
Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.
Classical quasi-steady state reduction-A mathematical characterization
Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva
2017-04-01
We discuss parameter dependent polynomial ordinary differential equations that model chemical reaction networks. By classical quasi-steady state (QSS) reduction we understand the following familiar (heuristically motivated) mathematical procedure: Set the rate of change for certain (a priori chosen) variables equal to zero and use the resulting algebraic equations to obtain a system of smaller dimension for the remaining variables. This procedure will generally be valid only for certain parameter ranges. We start by showing that the reduction is accurate if and only if the corresponding parameter is what we call a QSS parameter value, and that the reduction is approximately accurate if and only if the corresponding parameter is close to a QSS parameter value. The QSS parameter values can be characterized by polynomial equations and inequations, hence parameter ranges for which QSS reduction is valid are accessible in an algorithmic manner. A defining characteristic of a QSS parameter value is that the algebraic variety defined by the QSS relations is invariant for the differential equation. A closer investigation of the associated systems shows the existence of further invariant sets; here singular perturbations enter the picture in a natural manner. We compare QSS reduction and singular perturbation reduction, and show that, while they do not agree in general, they do, up to lowest order in a small parameter, for a quite large and relevant class of examples. This observation, in turn, allows the computation of QSS reductions even in cases where an explicit resolution of the polynomial equations is not possible.
A theory of nonequilibrium steady states in quantum chaotic systems
Wang, Pei
2017-09-01
Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system whose density matrix follows a unitary evolution, there exist initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix \\hat ρ of these states displays a universal structure. Suppose that \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketα and \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketβ are different eigenstates of the Hamiltonian with energies E_α and E_β , respectively. \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ behaves as a random number which has zero mean. In thermodynamic limit, the variance of \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ is a smooth function of ≤ft\\vert E_α-E_β\\right\\vert , scaling as 1/≤ft\\vert E_α-E_β\\right\\vert 2 in the limit ≤ft\\vert E_α-E_β\\right\\vert \\to 0 . If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis indicates the eigenstate thermalization hypothesis (ETH) for current operators in a bipartite system.
Attentional Modulation of Auditory Steady-State Responses
Mahajan, Yatin; Davis, Chris; Kim, Jeesun
2014-01-01
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021
Glaucoma affects steady state VEP contrast thresholds before psychophysics.
Vaegan; Rahman, Anmar M A; Sanderson, Gordon F
2008-07-01
Frequency doubling technology (FDT) is a recent psychophysical test for glaucoma. It measures the contrast threshold to low spatial frequency, high temporal frequency sinusoidal luminance profile bars. We wanted to confirm, with stricter controls, Vaegan and Hollow's report that contrast thresholds of steady state visual evoked potentials (ssVEPs) to a stimulus resembling the central field of the FDT test was more sensitive to glaucoma than the subjective threshold to the same stimulus and to start to optimize the technique. A double masked trial using 57 eyes of 42 subjects. Both thresholds were estimated by modified binary search. In psychophysical testing, subjects were given a two alternative forced choice task. In ssVEP testing a significant signal in any one of eight channels was deemed to be a detection. In some subjects electrode positions were compared, both eyes were tested, tests were repeated to estimate reliability, stimulus frequencies were varied or full contrast functions were obtained. Thresholds and percent abnormal increased as a function of glaucoma severity for ssVEPs but not for psychophysics. Both threshold measures were reliable. Interocular correlations were low. SsVEP amplitude against contrast functions had similar thresholds to those found by modified binary search. The data was too irregular for individual thresholds to be estimated from a fitted exponential. Amplitudes were greatest at 7 to 10 Hz, psychophysical thresholds at 18.29 Hz, when formal controls were used, as they had in a less controlled previous study at 7.14 Hz.
Lithium surface operating under steady-state power load
Energy Technology Data Exchange (ETDEWEB)
Khripunov, B.I. E-mail: boris@nfi.kiae.ru; Petrov, V.B.; Shapkin, V.V.; Antonov, N.V.; Pleshakov, A.S.; Rupyshev, A.S.; Prokhorov, D.Yu.; Evtikhin, V.A.; Lyublinsky, I.E.; Vertkov, V.V
2003-04-01
A liquid lithium surface is considered for application in divertor of a fusion tokamak-reactor. Lithium surface has been realized in experimental mock-ups and its operation has been demonstrated under high power load at reactor relevant heat fluxes. Lithium targets have been developed on the basis of capillary pore structures. A vertical working surface was investigated under steady-state electron beam. The range of power loads 1-50 MW/m{sup 2} was covered by the studies. Long-duration experiments were performed on thermally stabilized targets at 1-10 MW/m{sup 2}. Evaporation was shown to be efficient mechanism of power removal and a high lithium mass loss rate was measured. Operation of the facility with plasma at 0.2 g/s of lithium flow was shown. The problem of lithium balance in divertor and SOL is discussed. Pumping of lithium is possible by solid and liquid metal wall structures in reactor conditions in the divertor channel.
The physiology of submaximal exercise: The steady state concept.
Ferretti, Guido; Fagoni, Nazzareno; Taboni, Anna; Bruseghini, Paolo; Vinetti, Giovanni
2017-12-01
The steady state concept implies that the oxygen flow is invariant and equal at each level along the respiratory system. The same is the case with the carbon dioxide flow. This condition has several physiological consequences, which are analysed. First, we briefly discuss the mechanical efficiency of exercise and the energy cost of human locomotion, as well as the roles played by aerodynamic work and frictional work. Then we analyse the equations describing the oxygen flow in lungs and in blood, the effects of ventilation and of the ventilation - perfusion inequality, and the interaction between diffusion and perfusion in the lungs. The cardiovascular responses sustaining gas flow increase in blood are finally presented. An equation linking ventilation, circulation and metabolism is developed, on the hypothesis of constant oxygen flow in mixed venous blood. This equation tells that, if the pulmonary respiratory quotient stays invariant, any increase in metabolic rate is matched by a proportional increase in ventilation, but by a less than proportional increase in cardiac output. Copyright © 2017 Elsevier B.V. All rights reserved.
Flavour fields in steady state: stress tensor and free energy
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Avik; Kundu, Arnab [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata- 700064 (India); Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York, 14853 (United States)
2016-02-16
The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS{sub d+1}-background, for d=2,4, and is related to conformal anomaly. For the special case of d=2, the universal factor has a striking resemblance to the well-known heat current formula in (1+1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d=6.
Steady state quantum discord for circularly accelerated atoms
Energy Technology Data Exchange (ETDEWEB)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.
Quasi-steady state aerodynamics of the cheetah tail.
Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily
2016-08-15
During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.
Quasi-steady state aerodynamics of the cheetah tail
Directory of Open Access Journals (Sweden)
Amir Patel
2016-08-01
Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.
Zheng, Jianqiu; Doskey, Paul V
2015-02-17
An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.
Wu, Zeng-Qiang; Liu, Jun-Jun; Li, Jin-Yi; Xu, Dan; Xia, Xing-Hua
2017-11-07
Electrochemical biosensors based on enzymatic reaction have been applied into a wide range of fields. As the trend continues to grow, these biosensors are approaching to the limit imposed by physics and chemistry. To further improve the performance of the biosensors, the interplay of mass transport and enzymatic reaction kinetics, especially in the enzyme cascade systems, should be considered at the design of biosensors. Herein, we propose a simple approach to the studying on the influence of mass transport and enzyme molecules motion on the kinetics of enzyme cascade reactions. β-galactosidase (β-Gal) and glucose oxidase (GOx) of the enzyme cascade reaction are precisely immobilized onto the disk and ring electrodes of rotating ring disk electrode (RRDE) via covalent attachment method, respectively. At a low rotating speed (<600 rpm), the convective transport promotes the enzyme cascade reaction. When the rotating speed is higher than 600 rpm, the cascade reaction develops into kinetics controlled. Further increase of the rotating speed results in slow decline in reaction rate possibly due to the production inhibition effect. In addition, the conformation change of the enzyme at higher centrifugal forces on enzyme activity should be considered. This study would shine lights on the effect of convective force on regulation of kinetics of enzyme cascade reaction, offering an ideal platform for studying other enzyme cascade reactions and providing fundamentals to design high performance of biosensors, biofuel cells and bioelectronics.
Emergence of Dynamic Cooperativity in the Stochastic Kinetics of Fluctuating Enzymes
Kumar, Ashutosh; Nandi, Mintu; Dua, Arti
2016-01-01
Dynamic cooperativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic cooperativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative cooperativity. For fewer enzymes, dynamic cooperativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, how...
Pu recycling in a full Th-MOX PWR core. Part I: Steady state analysis
Energy Technology Data Exchange (ETDEWEB)
Fridman, E., E-mail: e.fridman@fzd.d [Institute of Safety Research, Forschungszentrum Dresden-Rossendorf, POB 51 01 19, Dresden 01314 (Germany); Kliem, S. [Institute of Safety Research, Forschungszentrum Dresden-Rossendorf, POB 51 01 19, Dresden 01314 (Germany)
2011-01-15
Research highlights: Detailed 3D 100% Th-MOX PWR core design is developed. Pu incineration increased by a factor of 2 as compared to a full MOX PWR core. The core controllability under steady state conditions is demonstrated. - Abstract: Current practice of Pu recycling in existing Light Water Reactors (LWRs) in the form of U-Pu mixed oxide fuel (MOX) is not efficient due to continuous Pu production from U-238. The use of Th-Pu mixed oxide (TOX) fuel will considerably improve Pu consumption rates because virtually no new Pu is generated from thorium. In this study, the feasibility of Pu recycling in a typical pressurized water reactor (PWR) fully loaded with TOX fuel is investigated. Detailed 3-dimensional 100% TOX and 100% MOX PWR core designs are developed. The full MOX core is considered for comparison purposes. The design stages included determination of Pu loading required to achieve 18-month fuel cycle assuming three-batch fuel management scheme, selection of poison materials, development of the core loading pattern, optimization of burnable poison loadings, evaluation of critical boron concentration requirements, estimation of reactivity coefficients, core kinetic parameters, and shutdown margin. The performance of the MOX and TOX cores under steady-state condition and during selected reactivity initiated accidents (RIAs) is compared with that of the actual uranium oxide (UOX) PWR core. Part I of this paper describes the full TOX and MOX PWR core designs and reports the results of steady state analysis. The TOX core requires a slightly higher initial Pu loading than the MOX core to achieve the target fuel cycle length. However, the TOX core exhibits superior Pu incineration capabilities. The significantly degraded worth of control materials in Pu cores is partially addressed by the use of enriched soluble boron and B{sub 4}C as a control rod absorbing material. Wet annular burnable absorber (WABA) rods are used to flatten radial power distribution. The
Zhang, Rumin; Wong, Kenny
2017-01-01
Enzymes are the macromolecular catalysts of many living processes and represent a sizable proportion of all druggable biological targets. Enzymology has been practiced just over a century during which much progress has been made in both the identification of new enzymes and the development of novel methodologies for enzyme kinetics. Areas covered: This review aims to address several key practical aspects in enzyme kinetics in reference to translational drug discovery research. The authors first define what constitutes a high performance enzyme kinetic assay. The authors then review the best practices for turnover, activation and inhibition kinetics to derive critical parameters guiding drug discovery. Notably, the authors recommend global progress curve analysis of dose/time dependence employing an integrated Michaelis-Menten equation and global curve fitting of dose/dose dependence. Expert opinion: The authors believe that in vivo enzyme and substrate abundance and their dynamics, binding modality, drug binding kinetics and enzyme's position in metabolic networks should be assessed to gauge the translational impact on drug efficacy and safety. Integrating these factors in a systems biology and systems pharmacology model should facilitate translational drug discovery.
ENZYME KINETICS FOR SYSTEMS BIOLOGY : WHEN, WHY AND HOW
Adamczyk, Malgorzata; van Eunen, Karen; Bakker, Barbara M.; Westerhoff, Hans V.; Jameson, D; Verma, M; Westerhoff, HV
2011-01-01
In vitro enzymatic assays of cell-free extracts offer an opportunity to assess in vivo enzyme concentrations. If performed under conditions that resemble the conditions in vivo, they may also reveal some of the capacities and properties of the same enzymes in vivo; we shall call this the ex vivo
Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems
Wang, Qi; Song, Yang; Shao, Lingjie
2017-02-01
Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey-predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction-advection-diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling-Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the 2× 2 prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.
Directory of Open Access Journals (Sweden)
Ruben Perez-Carrasco
2016-10-01
Full Text Available During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can
Werner, R. Marshall; Johnson, Austin
2017-01-01
Understanding how to perform an enzyme assay is a critical learning skill in the undergraduate biochemistry curriculum. Students in biochemistry typically have been exposed to the use of NMR spectroscopy as a tool to determine chemical structure, but rarely are they exposed to the utility of NMR to evaluate enzyme kinetics. Furthermore, coverage…
Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya
2005-05-01
The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.
Bieri, Oliver
2011-02-01
Conceptually, the only flaw in the standard steady-state free precession theory is the assumption of quasi-instantaneous radio-frequency pulses, and 10-20% signal deviations from theory are observed for common balanced steady-state free precession protocols. This discrepancy in the steady-state signal can be resolved by a simple T(2) substitution taking into account reduced transverse relaxation effects during finite radio-frequency excitation. However, finite radio-frequency effects may also affect the transient phase of balanced steady-state free precession, its contrast or its spin-echo nature and thereby have an adverse effect on common steady-state free precession magnetization preparation methods. As a result, an in-depth understanding of finite radio-frequency effects is not only of fundamental theoretical interest but also has direct practical implications. In this article, an analytical solution for balanced steady-state free precession with finite radio-frequency pulses is derived for the transient phase (under ideal conditions) and in the steady state demonstrating that balanced steady-state free precession key features are preserved but revealing an unexpected dependency of finite radio-frequency effects on relaxation times for the transient decay. Finally, the mathematical framework reveals that finite radio-frequency theory can be understood as a generalization of alternating repetition time and fluctuating equilibrium steady-state free precession sequence schemes. Copyright © 2010 Wiley-Liss, Inc.
Phencyclidine Disrupts the Auditory Steady State Response in Rats.
Directory of Open Access Journals (Sweden)
Emma Leishman
Full Text Available The Auditory Steady-State Response (ASSR in the electroencephalogram (EEG is usually reduced in schizophrenia (SZ, particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP, produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP and Phase Locking Factor (PLF. In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg, following two weeks of subchronic, continuous administration (5 mg/kg/day, and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.
Phencyclidine Disrupts the Auditory Steady State Response in Rats.
Leishman, Emma; O'Donnell, Brian F; Millward, James B; Vohs, Jenifer L; Rass, Olga; Krishnan, Giri P; Bolbecker, Amanda R; Morzorati, Sandra L
2015-01-01
The Auditory Steady-State Response (ASSR) in the electroencephalogram (EEG) is usually reduced in schizophrenia (SZ), particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR) hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP), produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP) and Phase Locking Factor (PLF). In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg) on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg), following two weeks of subchronic, continuous administration (5 mg/kg/day), and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz) ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.
The study of candidate materials in steady state plasma
Energy Technology Data Exchange (ETDEWEB)
Khripunov, B.I. [Inst. of Nuclear Fusion, Russian Research Center ``Kurchatov Inst.``, Moscow (Russian Federation); Shapkin, V.V. [Inst. of Nuclear Fusion, Russian Research Center ``Kurchatov Inst.``, Moscow (Russian Federation); Petrov, V.B. [Inst. of Nuclear Fusion, Russian Research Center ``Kurchatov Inst.``, Moscow (Russian Federation); Antonov, N.V. [Inst. of Nuclear Fusion, Russian Research Center ``Kurchatov Inst.``, Moscow (Russian Federation)
1995-12-31
The choice of the materials for the ITER and future reactors first wall till now is restricted to three basic elements - carbon, beryllium, tungsten. New materials are being developed on this basis for plasma facing components. Here carbon based materials and tungsten are investigated under steady state plasma in the linear simulator LENTA. Erosion and hydrogen isotope retention are of the most interest in this study. High flux deuterium plasma is produced in beam-plasma discharge (20 kW): ion flux 10{sup 17}-10{sup 19} ion/cm{sup 2}s, electron temperature 15-30 eV, electron density up to 10{sup 13}cm{sup -3}. Ion fluence {approx}10{sup 22}ion/cm{sup 2} is achieved in several hours expositions. Bombarding ion energy is in the interval from several hundreds eV to {approx}20 eV, it can be controlled by bias voltage; this range covers the threshold values for physical sputtering and is actually of great interest. Experiments have been performed with RG-Ti, VPG, CFC Russian graphites and American POCO at 1100C. Erosion of graphites is found to be fluence dependent for values <10{sup 21}ion/cm{sup 2} and is almost constant at 10{sup 21}-10{sup 22}ion/cm{sup 2}. The erosion yield was 0.06-0.08 for all these graphites. Very low deuterium retention in RG-Ti was found. High tungsten erosion was observed in the experiments with samples biasing in the range 0-(-100)V just below the threshold value for physical sputtering by deuterium ions. (orig.).
A steady-state model of the lunar ejecta cloud
Christou, Apostolos
2014-05-01
Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.
Mulukutla, Bhanu Chandra; Yongky, Andrew; Grimm, Simon; Daoutidis, Prodromos; Hu, Wei-Shou
2015-01-01
Cultured mammalian cells exhibit elevated glycolysis flux and high lactate production. In the industrial bioprocesses for biotherapeutic protein production, glucose is supplemented to the culture medium to sustain continued cell growth resulting in the accumulation of lactate to high levels. In such fed-batch cultures, sometimes a metabolic shift from a state of high glycolysis flux and high lactate production to a state of low glycolysis flux and low lactate production or even lactate consumption is observed. While in other cases with very similar culture conditions, the same cell line and medium, cells continue to produce lactate. A metabolic shift to lactate consumption has been correlated to the productivity of the process. Cultures that exhibited the metabolic shift to lactate consumption had higher titers than those which didn't. However, the cues that trigger the metabolic shift to lactate consumption state (or low lactate production state) are yet to be identified. Metabolic control of cells is tightly linked to growth control through signaling pathways such as the AKT pathway. We have previously shown that the glycolysis of proliferating cells can exhibit bistability with well-segregated high flux and low flux states. Low lactate production (or lactate consumption) is possible only at a low glycolysis flux state. In this study, we use mathematical modeling to demonstrate that lactate inhibition together with AKT regulation on glycolysis enzymes can profoundly influence the bistable behavior, resulting in a complex steady-state topology. The transition from the high flux state to the low flux state can only occur in certain regions of the steady state topology, and therefore the metabolic fate of the cells depends on their metabolic trajectory encountering the region that allows such a metabolic state switch. Insights from such switch behavior present us with new means to control the metabolism of mammalian cells in fed-batch cultures.
More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics
Lechner, Joseph H.
2011-01-01
Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)
Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation.
Cha, Tae-Gon; Pan, Jing; Chen, Haorong; Robinson, Heather N; Li, Xiang; Mao, Chengde; Choi, Jong Hyun
2015-07-29
Dynamic DNA enzyme-based walkers complete their stepwise movements along the prescribed track through a series of reactions, including hybridization, enzymatic cleavage, and strand displacement; however, their overall translocation kinetics is not well understood. Here, we perform mechanistic studies to elucidate several key parameters that govern the kinetics and processivity of DNA enzyme-based walkers. These parameters include DNA enzyme core type and structure, upper and lower recognition arm lengths, and divalent metal cation species and concentration. A theoretical model is developed within the framework of single-molecule kinetics to describe overall translocation kinetics as well as each reaction step. A better understanding of kinetics and design parameters enables us to demonstrate a walker movement near 5 μm at an average speed of ∼1 nm s(-1). We also show that the translocation kinetics of DNA walkers can be effectively controlled by external light stimuli using photoisomerizable azobenzene moieties. A 2-fold increase in the cleavage reaction is observed when the hairpin stems of enzyme catalytic cores are open under UV irradiation. This study provides general design guidelines to construct highly processive, autonomous DNA walker systems and to regulate their translocation kinetics, which would facilitate the development of functional DNA walkers.
Directory of Open Access Journals (Sweden)
Novikov V.Yu.
2015-03-01
Full Text Available Kinetic laws of enzyme hydrolyze for Atlantic cod tissues have been studied. Enzyme specimen produced from hepatopancreas of Kamchatka crab Paralithodes camtschatica was used for carrying out hydrolyzes (proteolysis. A new method of protein hydrolyzate production based on multiple enzyme injection (over equal time intervals into a reactive system has been worked out. It has been shown that this method assures increase of maximum degree of hydrolyze. A kinetic model describing the mechanism for enzyme hydrolysis of fish protein in the proposed technology has been developed. The model is based on the existence of easily and hardly hydrolyzed protein fractions. In the frame of the obtained kinetic model, the second-order constants of intermediate stage rates of proteolysis have been calculated. The content of free amino acids increases 2-fold, and dispersity of aqueous dispersions increases for the hydrolysates obtained in the multiple injection process in comparison with hydrolysate obtained in a traditional single-stage process
From steady-state to synchronized yeast glycolytic oscillations I: model construction.
du Preez, Franco B; van Niekerk, David D; Kooi, Bob; Rohwer, Johann M; Snoep, Jacky L
2012-08-01
An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptations to the original model were required for realistic simulation of experimental data for limit-cycle oscillations. The greatest changes were required for parameter values for the phosphofructokinase reaction. The importance of ATP for the oscillatory mechanism and NAD(H) for inter-and intra-cellular communications and synchronization was evident in the optimization steps and simulation experiments. In an accompanying paper [du Preez F et al. (2012) FEBS J279, 2823-2836], we validate the model for a wide variety of experiments on oscillatory yeast cells. The results are important for re-use of detailed kinetic models in modular modeling approaches and for approaches such as that used in the Silicon Cell initiative. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. © 2012 The Authors Journal compilation © 2012 FEBS.
An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory
Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.
2010-01-01
An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…
Specific determination of maximal lactate steady state in soccer players.
Loures, João P; Chamari, Karim; Ferreira, Eliel C; Campos, Eduardo Z; Zagatto, Alessandro M; Milioni, Fabio; da Silva, Adelino S R; Papoti, Marcelo
2015-01-01
The aim of this study was to establish the validity of the anaerobic threshold (AT) determined on the soccer-specific Hoff circuit (ATHoff) to predict the maximal lactate steady-state exercise intensity (MLSSHoff) with the ball. Sixteen soccer players (age: 16.0 ± 0.5 years; body mass: 63.7 ± 9.0 kg; and height: 169.4 ± 5.3 cm) were submitted to 5 progressive efforts (7.0-11.0 km·h) with ball dribbling. Thereafter, 11 players were submitted to 3 efforts of 30 minutes at 100, 105, and 110% of ATHoff. The ATHoff corresponded to the speed relative to 3.5 mmol·L lactate concentration. The speed relative to 4.0 mmol·L was assumed to be ATHoff4.0, and the ATHoffBI was determined through bisegmented adjustment. For comparisons, Student's t-test, intraclass correlation coefficient (ICC), and Bland and Altman analyses were used. For reproducibility, ICC, typical error, and coefficient of variation were used. No significant difference was found between AT test and retest determined using different methods. A positive correlation was observed between ATHoff and ATHoff4.0. The MLSSHoff (10.6 ± 1.3 km·h) was significantly different compared with ATHoff (10.2 ± 1.2 km·h) and ATHoffBI (9.5 ± 0.4 km·h) but did not show any difference from LAnHoff4.0 (10.7 ± 1.4 km·h). The MLSSHoff presented high ICCs with ATHoff and ATHoff4.0 (ICC = 0.94; and ICC = 0.89; p ≤ 0.05, respectively), without significant correlation with ATHoffBI. The results suggest that AT determined on the Hoff circuit is reproducible and capable of predicting MLSS. The ATHoff4.0 was the method that presented a better approximation to MLSS. Therefore, it is possible to assess submaximal physiological variables through a specific circuit performed with the ball in young soccer players.
Determining Steady-state Tissue Residues for Invertebrates in Contaminated Sediment
2010-05-01
ER D C/ EL T R -1 0 -2 Dredging Operations and Environmental Research Program Determining Steady-state Tissue Residues for Invertebrates ...2010 Determining Steady-state Tissue Residues for Invertebrates in Contaminated Sediment Alan J. Kennedy, Guilherme R. Lotufo, Jeffery A. Steevens...involves quantification of compounds in tissues via laboratory bioaccumulation exposures of benthic invertebrates . However, the standard 28-day expo
The steady state of a particle in a vibrating box and possible ...
Indian Academy of Sciences (India)
In particular, the parameter range is found in which the particle oscillates between the walls in steady state as if the wall was static and it is showed that for these parameter ranges the particle settles to this steady state for all initial conditions. It is proposed that this phenomenon can be used to bunch charged particles in ...
40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.
2010-07-01
... Exhaust Test Procedures § 86.1362-2007 Steady-state testing with a ramped-modal cycle. This section... testing the engine on a dynamometer with the following ramped-modal duty cycle to determine whether it... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a ramped...
Parzen, Benjamin
1992-01-01
The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.
Spatially resolved fluorescence lifetime mapping of enzyme kinetics in living cells.
Ramanujan, V K; Jo, J A; Cantu, G; Herman, B A
2008-06-01
Traditional cuvette-based enzyme studies lack spatial information and do not allow real-time monitoring of the effects of modulating enzyme functions in vivo. In order to probe the realistic timescales of steric modifications in enzyme-substrate complexes and functional binding-unbinding kinetics in living cells without losing spatial information, it is imperative to develop sensitive imaging strategies that can report enzyme kinetics in real time over a wide dynamic range of timescales. Here we present a multi-photon excitation-based, ultra-fast photon detection using a streak camera and Laguerre expansion-based fast deconvolution approach for achieving high spatio-temporal resolution in monitoring real-time enzyme kinetics in single cells. In particular, we report spatially resolved, nanosecond-scale fluorescence dynamics associated with binding-unbinding kinetics of endogenous metabolic co-factor nicotinamide adenine dinucleotide with enzymes in intact living cells. By monitoring real-time kinetics of NAD(P)H-enzyme kinetics in primary hepatocytes isolated from young and aged mouse models, we observed that the mechanism of inhibition of mitochondrial respiration at complex I site is mediated by redistribution of free and protein-bound nicotinamide adenine dinucleotide pools and that this equilibrium redistribution is affected by age-related modifications in mitochondrial function. We describe unique advantages of Laguerre deconvolution algorithm in comparison with conventional lifetime analysis approaches. Non-invasive monitoring of metabolic dysfunctions in intact animal models is an attractive strategy for gaining insight into the dynamics of tissue metabolism in health and in various metabolic syndromes such as cancer, diabetes and aging-induced metabolic dysfunctions. Besides the example demonstrated above, we envisage that the proposed method can find applications in a variety of other situations where intensity-based approaches fall short owing to
A steady-state target calculation method based on "point" model for integrating processes.
Pang, Qiang; Zou, Tao; Zhang, Yanyan; Cong, Qiumei
2015-05-01
Aiming to eliminate the influences of model uncertainty on the steady-state target calculation for integrating processes, this paper presented an optimization method based on "point" model and a method determining whether or not there is a feasible solution of steady-state target. The optimization method resolves the steady-state optimization problem of integrating processes under the framework of two-stage structure, which builds a simple "point" model for the steady-state prediction, and compensates the error between "point" model and real process in each sampling interval. Simulation results illustrate that the outputs of integrating variables can be restricted within the constraints, and the calculation errors between actual outputs and optimal set-points are small, which indicate that the steady-state prediction model can predict the future outputs of integrating variables accurately. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A steady state model for anaerobic digestion of sewage sludges ...
African Journals Online (AJOL)
... model for anaerobic digestion of sewage sludge is developed that comprises three sequential parts – a kinetic part from which the % COD removal and methane production are determined for a given retention time; a stoichiometry part from which the gas composition (or partial pressure of CO,sub>2), ammonia released ...
Kinetics of binding of fluorescent ligands to enzymes with engineered access tunnels.
Kaushik, Shubhangi; Prokop, Zbynek; Damborsky, Jiri; Chaloupkova, Radka
2017-01-01
Molecular recognition mechanisms and kinetics of binding of ligands to buried active sites via access tunnels are not well understood. Fluorescence polarization enables rapid and non-destructive real-time quantification of the association between small fluorescent ligands and large biomolecules. In this study, we describe analysis of binding kinetics of fluorescent ligands resembling linear halogenated alkanes to haloalkane dehalogenases. Dehalogenases possess buried active sites connected to the surrounding solvent by access tunnels. Modification of these tunnels by mutagenesis has emerged as a novel strategy to tailor the enzyme properties. We demonstrate that the fluorescence polarization method can sense differences in binding kinetics originating from even single mutations introduced to the tunnels. The results show, strikingly, that the rate constant of the dehalogenase variants varied across seven orders of magnitude, and the type of ligand used strongly affected the binding kinetics of the enzyme. Furthermore, fluorescence polarization could be applied to cell-free extracts instead of purified proteins, extending the method's application to medium-throughput screening of enzyme variant libraries generated in directed evolution experiments. The method can also provide in-depth kinetic information about the rate-determining step in binding kinetics and reveals the bottlenecks of enzyme accessibility. Assuming availability of appropriate fluorescent ligand, the method could be applied for analysis of accessibility of tunnels and buried active sites of enzymes forming a covalent alkyl-enzyme intermediate during their catalytic cycle, such as α/β-hydrolases containing > 100 000 protein sequences based on the Pfam database. © 2016 Federation of European Biochemical Societies.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
2016-08-29
biochemical reactions , can be effectively mimicked by a constrained periodic driving. DOI: 10.1103/PhysRevX.6.021022 Subject Areas: Statistical...error rates in biochemical reactions such as protein synthesis. The system in kinetic proofreading is described by a discrete-state continuous-time... concentrations are constantly maintained out of equilibrium. Such a coupling modifies the Arrhenius rates : Denoting the rate matrix now by R (as it is not
Effect of patulin on the kinetic properties of the enzyme aldolase studied in rat liver.
Sakthisekaran, D; Shanmugasundaram, E R
1990-01-01
The toxic nature of the secondary metabolite has been studied in rats. Changes in the concentration of a few key enzymes in carbohydrate metabolism have also been studied. In this, liver aldolase concentration was found to be significantly lowered. Since aldolase is one of the important bifunctional enzymes of glycolysis, it has been isolated and purified and studied on its kinetic properties were made. The kinetic studies did not show any significant variations in the properties of liver aldolase of normal and patulin treated animals. These results suggest that most probably, patulin toxicosis inhibits the biosynthesis of liver aldolase.
Universal Bound on the Fano Factor in Enzyme Kinetics
Barato, Andre C
2015-01-01
The Fano factor, an observable quantifying fluctuations of product generation by a single enzyme, can reveal information about the underlying reaction scheme. A lower bound on this Fano factor that depends on the thermodynamic affinity driving the transformation from substrate to product constrains the number of intermediate states of an enzymatic cycle. So far, this bound has been proven only for a unicyclic network of states. We show that the bound can be extended to arbitrary multicyclic networks, with the Fano factor constraining the largest value of the effective length, which is the ratio between the number of states and the number of products, among all cycles.
Steady state performance of copper impregnated Ni/PTFE gas diffusion electrode in alkaline fuel cell
Energy Technology Data Exchange (ETDEWEB)
Al-Saleh, M.A.; Gultekin, S.; Al-Zakri, A.S.; Khan, A.A.A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Chemical Engineering
1996-12-31
The steady-state polarization measurements on a Raney nickel gas diffusion electrode impregnated with copper oxide were carried out in a half-cell setup with 25% KOH electrolyte solution. Pure hydrogen gas was used at a pressure of 1.2 bars in the temperature range of 25-75{sup o}C. The results were compared with almost the same electrode without copper. There was an improvement in the performance of the electrode impregnated with about 8 wt% Cu. This improvement is much more pronounced at higher temperatures and higher current densities. The spherical Raney catalyst grain model was used to determine the kinetic parameters such as exchange current density (i{sub o}) and charge transfer coefficient ({alpha}) for the electrode. The values found for the exchange current densities at various temperatures were 6.6 x 10{sup -6} -3.1 x 10{sup -4} mA cm{sup -2} and for the charge transfer coefficient was about 0.6. The exchange current density followed an exponential relation with temperature. The apparent activation energy for the electrode reaction at zero mV overvoltage was found to be lower (28 kJ mol{sup -1}) than that reported in the literature (32 kJ mol{sup -1}). The higher values for the exchange current densities and lower values for the activation energies are indication of better performance of the electrode used in this study. (Author)
Decomposition of toluene in a steady-state atmospheric-pressure glow discharge
Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.
2013-02-01
Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.
From steady-state to synchronized yeast glycolytic oscillations II: model validation.
du Preez, Franco B; van Niekerk, David D; Snoep, Jacky L
2012-08-01
In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis. In addition to its description of the oscillations of glycolytic intermediates in intact cells and the rapid synchronization observed when mixing out-of-phase oscillatory cell populations (see accompanying paper), the model was able to predict the Hopf bifurcation diagram with glucose as the bifurcation parameter (and one of the bifurcation points with cyanide as the bifurcation parameter), the glucose- and acetaldehyde-driven forced oscillations, glucose and acetaldehyde quenching, and cell-free extract oscillations (including complex oscillations and mixed-mode oscillations). Thus, the model was compliant, at least qualitatively, with the majority of available experimental data for glycolytic oscillations in yeast. To our knowledge, this is the first time that a model for yeast glycolysis has been tested against such a wide variety of independent data sets. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. © 2012 The Authors Journal compilation © 2012 FEBS.
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.
2017-09-01
We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.
Kinetics of soil enzyme activities under different ecosystems: An index of soil quality
Directory of Open Access Journals (Sweden)
Monty Kujur
2014-03-01
Full Text Available Soil microbial activity plays an important role in regulating biotransformation, nutrient cycling and hence the microbiological processes are at the center of many ecological functions. The kinetic parameters (Vmax and KmMichaelis constant of different enzymes (amylase, invertase, protease, urease, and dehydrogenase were determined in order to assess the metabolic response of soil. The maximum reaction velocity (Vmax represents a maximum rate of activity when all enzymes are saturated, which markedly increased in forest soil as compared to fresh mine spoil due to the gradual accumulation of soil organic matter. Smaller Km value was estimated in forest soil (FS as compared to fresh mine spoil (FMS, suggesting the greater affinity of soil enzymes for substrate in FS. The catalytic efficiency (Vmax /Km reflects an impression on microbial community composition with a change in soil enzymes. These enzyme characters (activities and kinetic parameters have greater significance as early and sensitive indicators of the changes in soil properties induced by different management systems. These parameters (Vmax and Km can be useful markers to assess changes in microbial activity of soil, since they represent quantity and affinity of enzymes respectively. The metabolic index (dehydrogenase activity/organic carbon (OC was found to be correlated with Vmax of dehydrogenase (r = 0.953; p < 0.01 and OC (r = 0.880; p < 0.01. Principal component analysis was able to discriminate seven different soil samples into seven independent clusters based on their enzyme activities and kinetic parameters. Indeed, the study revealed the importance of kinetics study of soil enzymes, which can be considered valid parameters to monitor the evolution of microbiological activity in soil, and hence an index of soil quality.
Measurement and Modelling of Tearing Mode Stability for Steady-State Plasmas in DIII-D
Energy Technology Data Exchange (ETDEWEB)
Turco, F; Luce, T; Ferron, J; Petty, C; Politzer, P; Turnbull, A; Brennan, D; Murakami, M; LoDestro, L; Pearlstein, L; Casper, T; Jayakumar, R; Holcomb, C
2009-06-23
High-beta, quasi-steady state scenarios represent a fundamental step towards the performance required for future fusion reactors. In DIII-D steady-state scenario discharges, the normalized beta {beta}{sub N} {triple_bond} {beta}(%) {center_dot} a(m) {center_dot} B{sub T}(T)/I{sub p}(MA) (where {beta} is the ratio of the plasma pressure to the magnetic field pressure, {alpha} the plasma minor radius, B{sub T} the toroidal magnetic field and I{sub p} the plasma current) exceeds the no-wall ideal kink beta limit. The performance of this scenario is limited by the onset of an n = 1 tearing mode, which appears on the resistive evolution time-scale (1-2 s) at constant pressure and causes both a loss of confinement and a radial redistribution of the current density from which the available current drive sources cannot recover. It is routinely observed that the injection of electron cyclotron current drive (ECCD), with a broad deposition localized around {rho} {approx} 0.35, can prevent the mode from appearing. It must be noted that this is not a case of a direct stabilization due to the interaction with the mode's rational surface. These variations of the scenario are illustrated in Fig. 1, where the total injected power [neutral beam injection (NBI) and ECCD], {beta}{sub N} and the n = 1 magnetic perturbation at the outer wall are shown. In case (a), the onset of the n = 1 mode is observed when the EC power is not present or if it is stopped before the end of the high {beta} phase, whereas in case (b) the difference is pointed out between broad and narrow current deposition (with the narrow deposition case becoming unstable). The current density profile evolution and the MHD modes of several sets of significant discharges with and without ECCD (at different locations) have been analyzed, using motional Stark effect (MSE) spectroscopy measurements for the former and edge magnetic probes measurements, toroidal rotation profiles and fast electron cyclotron emission
DEFF Research Database (Denmark)
Lassen, N A
1992-01-01
by administering the tracer alone. The pair of tracer studies, the one without and the other with infusion of cold ligand, allows calculation of the cold ligand's equilibrium dissociation constant Kd. In the special case when tracer and cold ligands are chemically identical, then Bmax can also be calculated. Two...... different modes of tracer administration can be used. If the tracer is also infused at a constant rate for a long time, then the occupancy of receptor sites by the cold ligand can be calculated by measuring the equilibrium tracer concentrations in brain and plasma. If the tracer is administered......The approaches hitherto used for measuring the kinetic constants Kd and Bmax of neuroreceptors in vivo all violate the steady state of the system. This complicates the kinetic analysis as approximations must be made, introducing errors of unknown magnitude. The present study presents the theory...
Appreciating Formal Similarities in the Kinetics of Homogeneous, Heterogeneous, and Enzyme Catalysis
Ashby, Michael T.
2007-01-01
Because interest in catalysts is widespread, the kinetics of catalytic reactions have been investigated by widely diverse groups of individuals, including chemists, engineers, and biologists. This has lead to redundancy in theories, particularly with regard to the topics of homogeneous, heterogeneous, and enzyme catalysis. From a pedagogical…
The renneting of milk : a kinetic study of the enzymic and aggregation reactions
Hooydonk, van A.C.M.
1987-01-01
The rennet-induced clotting of milk was studied under various conditions. The kinetics of the enzymic and aggregation reactions was analysed separately and, where possible, related to the physico-chemical properties of the casein micelle and its environment.
The effects of important
Heterogeneity of kinetic parameters of enzymes in situ in rat liver lobules
van Noorden, C. J.; Jonges, G. N.
1995-01-01
In the present review, metabolic compartmentation in liver lobules is discussed as being dynamic and more complex than thus far assumed on the basis of numbers of mRNA or protein molecules or the capacity (zero-order activity) of enzymes. Isoenzyme distribution patterns and local kinetic parameters
van Eunen, Karen; Kiewiet, Jose A. L.; Westerhoff, Hans V.; Bakker, Barbara M.
2012-01-01
A decade ago, a team of biochemists including two of us, modeled yeast glycolysis and showed that one of the most studied biochemical pathways could not be quite understood in terms of the kinetic properties of the constituent enzymes as measured in cell extract. Moreover, when the same model was
van Eunen, K.; Kiewiet, J.A.L.; Westerhoff, H.V.; Bakker, B.M.
2012-01-01
A decade ago, a team of biochemists including two of us, modeled yeast glycolysis and showed that one of the most studied biochemical pathways could not be quite understood in terms of the kinetic properties of the constituent enzymes as measured in cell extract. Moreover, when the same model was
Development and Evaluation of an Adaptive Digital Module on Enzyme Kinetics
Seters, van J.R.; Lanfermeijer, F.; Schaaf, van der H.; Ossevoort, M.A.; Goedhart, M.J.; Tramper, J.
2009-01-01
An adaptive module on basic enzyme kinetics was developed for first- and second-year university students. The module offers more assignments to students who have less knowledge of the theory than to more advanced students. The aim of the research was to investigate what influence students’
A twin study of the trough plasma steady-state concentration of metformin
DEFF Research Database (Denmark)
Stage, Tore B; Damkier, Per; Pedersen, Rasmus S
2015-01-01
OBJECTIVE: The aim of this study was to determine the intrapair similarity in trough steady-state plasma concentrations of metformin in monozygotic and dizygotic twin pairs. METHODS: We included 16 twin pairs (eight monozygotic and eight dizygotic twin pairs) for this study after contacting 524...... twin pairs. They were dosed with metformin to steady state (1 g twice daily) for 6 days and on day 7, the trough concentration of metformin was determined 12 h after the last dose. RESULTS: There was no strong intrapair similarity in trough steady-state plasma concentrations of metformin in either...... dizygotic or monozygotic twin pairs. CONCLUSION: The trough steady-state plasma concentration of metformin does not appear to be tightly genetically regulated. The interpretation of this finding is limited by the small sample size....
Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods
National Research Council Canada - National Science Library
DeSpirito, James; Silton, Sidra I; Weinacht, Paul
2008-01-01
The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...
Prediction of elemental creep. [steady state and cyclic data from regression analysis
Davis, J. W.; Rummler, D. R.
1975-01-01
Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.
Lunin, Andrei; Grudiev, Alexej
2011-01-01
Analytical solutions are derived for transient and steady state gradient distributions in the travelling wave accelerating structures with arbitrary variation of parameters over the structure length. The results of both the unloaded and beam loaded cases are presented.
DEFF Research Database (Denmark)
Lei, Frede; Olsson, Lisbeth; Jørgensen, Sten Bay
2004-01-01
stepwise changed or a rampwise increased ethanol setpoint, i.e., an accelero-productostat. The transient responses from chemostat and productostat experiments were interpreted using a simple metabolic flux model. In a productostat it was possible to obtain oxido-reductive steady states at dilution rates...... of dilution rates where steady-state multiplicity can be obtained differs depending on the operation mode and that this dilution rate multiplicity range may appear larger in a productostat than in a chemostat. A more narrow multiplicity range, however, was obtained when the productostat was operated...... far below D-crit due to a strong repression of the respiratory system. However, these steady states could not be obtained in a chemostat, since a dilution rate shift-down from an oxido-reductive steady state led to a derepression of the respiratory system. It can therefore be concluded that the range...
Research on Steady States of Fuzzy Cognitive Map and its Application in Three-Rivers Ecosystem
Directory of Open Access Journals (Sweden)
Zhen Peng
2016-01-01
Full Text Available Fuzzy Cognitive Map (FCM offers many advantages such intuitive knowledge representation and fast numerical reasoning ability, etc. It suits modeling and decision-making of dynamic systems. With the aims to effectively help to analyze and control system sustainable evolution, the paper defines the steady states of fixed point and limited cycle of a FCM modeling system. Accordingly, the rules of steady states of the FCM model and the factors influencing the steady states are presented and proved. The Three-Rivers represents a system including population, ecological environment, social development and their relationships. Based on the relationships, the Three-Rivers ecosystem is modeled by FCM and the Three-Rivers ecosystemsustainable evolutionis analyzed bythe rules of the steady states of FCM.
Action-at-a-distance electrodynamics in quasi-steady-state cosmology
Indian Academy of Sciences (India)
-state model and demonstrates that it admits full retarded and not advanced solution. Thus, quasi-steady-state cosmology (QSSC) satisfies this necessary condition for a correct cosmological model, based on action-at-a-distance formulation.
Rowan, D J
2013-07-01
Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any
Phase Space Analysis of a Gravitationally-Induced, Steady-State Nonequilibrium
Energy Technology Data Exchange (ETDEWEB)
Sheehan, D.P.; Tobe, R. [Univ. of San Diego, CA (United States). Dept. of Physics; Glick, J.; Langton, J.A.; Gagliardi, M. [Univ. of San Diego, CA (United States). Dept. of Mathematics and Computer Science; Duncan, T. [Portland State Univ., OR (United States). Center for Science Ed.
2002-04-01
Recently a new type of pressure gradient was introduced, a gravitationally-induced, dynamically-maintained, steady-state pressure gradient (GDSPG). In this paper, three dimensional numerical test particle simulations detail its phase space structure. These verify the underlying physical mechanism originally hypothesized for its operation and support key assumptions upon which it is based. The GDSPG appears to be a member of a more general class of steady-state nonequilibrium systems that arise under extreme thermodynamic conditions.
Steady-state particle tracking in the object-oriented regional groundwater model ZOOMQ3D
Jackson, C.R.
2002-01-01
This report describes the development of a steady-state particle tracking code for use in conjunction with the object-oriented regional groundwater flow model, ZOOMQ3D (Jackson, 2001). Like the flow model, the particle tracking software, ZOOPT, is written using an object-oriented approach to promote its extensibility and flexibility. ZOOPT enables the definition of steady-state pathlines in three dimensions. Particles can be tracked in both the forward and reverse directions en...
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder
2017-03-09
Magnetic Reynold’s number COMSOL 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 21 19a...steady-state condition. The steady state analysis was conducted using COMSOL . Once a transient analysis reaches equilibrium, the response should match...Approved for public release; distribution is unlimited. UNCLASSIFIED 3 The finite element package of COMSOL Multiphysics was used to expand the
Classical memoryless noise-induced maximally discordant mixed separable steady states
Energy Technology Data Exchange (ETDEWEB)
Altintas, Ferdi; Kurt, Arzu [Department of Physics, Abant Izzet Baysal University, Bolu, 14280 (Turkey); Eryigit, Resul, E-mail: resul@ibu.edu.tr [Department of Physics, Abant Izzet Baysal University, Bolu, 14280 (Turkey)
2012-12-03
We have investigated the dynamics of quantum discord and entanglement for two qubits subject to independent global transverse and/or longitudinal memoryless noisy classical fields. Global transverse and/or longitudinal random fields are found to drive the system to maximally discordant mixed separable steady states for suitable initial conditions. Moreover, two independent noises in the system are found to enhance both the steady state randomness and quantum discord in the absence of entanglement for some initial states.
Galanakis, Charis M; Patsioura, Anna; Gekas, Vassilis
2015-01-01
Modeling is an important tool in the food industry since it is able to simplify explanation of phenomena and optimize processes that cover a broad field from manufacture to byproducts treatment. The goal of the current article is to explore the development of enzyme kinetic models and their evolution over the last decades. For this reason, corresponding simulations were classified in deterministic, empirical, and stochastic models, prior investigating limitations, corrections, and industrial applications in each case. The ultimate goal is to provide an answer to a major problem: how can we develop an intermediate complexity model that achieves satisfactorily representation of the main phenomena with a limited number of parameters?
Energy Technology Data Exchange (ETDEWEB)
Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School
2017-09-28
The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates
Hoang Thi Thu, Duyen; Razavi, Bahar S.
2016-04-01
Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil
Quasi-steady state conditions in heterogeneous aquifers during pumping tests
Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau
2017-08-01
Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the
Directory of Open Access Journals (Sweden)
Fakunle EE
2012-05-01
Full Text Available Eyitayo Emmanuel Fakunle,1 Kapoona Iwara Ibiang Eteng,2 Wuraola Adebola Shokunbi21Department of Pathology, King Edward VII Memorial Hospital, Bermuda; 2Department of Hematology, University College Hospital, Ibadan, NigeriaObjective: To determine the presence of ongoing thrombosis by measuring the D-D dimer levels in bone pain crises (BPCs and in the steady state of patients with sickle cell disease, comparing these levels with those in individuals with normal hemoglobin (HbAA in southwest Nigeria.Study design, patients, and methods: The study design involved 38 patients with homozygous sickle cell anemia (HbSS and 78 adults with the HbAA phenotype, seen at the Hematology Day Care and Accident and Emergency units of the University College Hospital, Ibadan, Nigeria. The TintElize kit was used to quantitatively determine human D-D dimer levels in the plasma with enzyme immunoassay.Results: The mean D-D dimer level measured of the 78 individuals with HbAA was 73.59 ng/mL. The mean D-D dimer level of the patients with HbSS during BPCs was 4002.40 ng/mL, while the mean level in the same patients in the steady state measured 6 weeks after their BPCs, with no other painful crisis episode before the sample was collected, was 1320.00 ng/mL.Conclusion: This study demonstrated a significant increase in the D-D dimer levels of patients with HbSS in the steady state, when compared with those of individuals with HbAA of the same age and sex distribution. There was also an approximate threefold increase in the D-D dimer levels in the same patients with HbSS during BPCs. This confirms the activation of coagulation and fibrinolytic systems in patients with HbSS in the steady state, which is further escalated during BPCs. A multicenter study on the use of anticoagulants in BPCs in patients with sickle cell disease is required.Keywords: anticoagulant, dimer, sickle cell disease, BPC, Nigeria, chronic hemolytic anemia
Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S
2017-12-01
Enzymatic reduction of carbon dioxide (CO2 ) to methanol (CH3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO2 to CH3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH3 OH, a TTN of 160 and BPR of 24 μmol CH3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.
Goodridge, A G
1978-06-01
Synthesis of malic enzyme was rapidly and markedly stimulated by the addition of triiodothyronine to chick embryo liver cells in culture. Alpha-Amanitin, an inhibitor of DNA-dependent RNA polymerase II, blocked induction. The kinetics of induction and de-induction of malic enzyme synthesis suggested that the most stable event in triiodothyronine induction had a half-life of 18 to 20 h. However, malic enzyme synthesis decayed with a half-life of 2,4 h when transcription was inhibited with alpha-amanitin. Thus a long-lived event in thyroid hormone stimulation of malic enzyme synthesis occurred prior to transcription of a specific messenger RNA (mRNA), presumably malic enzyme mRNA. Malic enzyme synthesis decayed with a half-life of about 2 h when glucagon was added to pre-induced liver cells. The similarity of decay rates after inhibition of transcription with alpha-amanitin or inhibition of malic enzyme synthesis by glucagon suggests that glucagon may inhibit the transcription or processing of a specific mRNA required for malic enzyme synthesis.
Directory of Open Access Journals (Sweden)
Garima Srivastava
Full Text Available β-Amylase finds application in food and pharmaceutical industries. Functionalized graphene sheets were customised as a matrix for covalent immobilization of Fenugreek β-amylase using glutaraldehyde as a cross-linker. The factors affecting the process were optimized using Response Surface Methodology based Box-Behnken design of experiment which resulted in 84% immobilization efficiency. Scanning and Transmission Electron Microscopy (SEM, TEM and Fourier Tansform Infrared (FTIR spectroscopy were employed for the purpose of characterization of attachment of enzyme on the graphene. The enzyme kinetic studies were carried out for obtaining best catalytic performance and enhanced reusability. Optimum temperature remained unchanged, whereas optimum pH showed shift towards acidic range for immobilized enzyme. Increase in thermal stability of immobilized enzyme and non-toxic nature of functionalized graphene can be exploited for production of maltose in food and pharmaceutical industries.
DEFF Research Database (Denmark)
Marpani, Fauziah Binti; Sárossy, Zsuzsa; Pinelo, Manuel
2017-01-01
Enzymatic reduction of carbon dioxide (CO2 ) to methanol (CH3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced...... experiments were conducted to verify the kinetically modelled results. Repetitive reaction cycles were shown to enhance the yield of CH3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes...
Schomburg, Ida; Chang, Antje; Placzek, Sandra; Söhngen, Carola; Rother, Michael; Lang, Maren; Munaretto, Cornelia; Ulas, Susanne; Stelzer, Michael; Grote, Andreas; Scheer, Maurice; Schomburg, Dietmar
2013-01-01
The BRENDA (BRaunschweig ENzyme DAtabase) enzyme portal (http://www.brenda-enzymes.org) is the main information system of functional biochemical and molecular enzyme data and provides access to seven interconnected databases. BRENDA contains 2.7 million manually annotated data on enzyme occurrence, function, kinetics and molecular properties. Each entry is connected to a reference and the source organism. Enzyme ligands are stored with their structures and can be accessed via their names, synonyms or via a structure search. FRENDA (Full Reference ENzyme DAta) and AMENDA (Automatic Mining of ENzyme DAta) are based on text mining methods and represent a complete survey of PubMed abstracts with information on enzymes in different organisms, tissues or organelles. The supplemental database DRENDA provides more than 910 000 new EC number-disease relations in more than 510 000 references from automatic search and a classification of enzyme-disease-related information. KENDA (Kinetic ENzyme DAta), a new amendment extracts and displays kinetic values from PubMed abstracts. The integration of the EnzymeDetector offers an automatic comparison, evaluation and prediction of enzyme function annotations for prokaryotic genomes. The biochemical reaction database BKM-react contains non-redundant enzyme-catalysed and spontaneous reactions and was developed to facilitate and accelerate the construction of biochemical models.
Steady-state modeling of reactive distillation columns - doi: 10.4025/actascitechnol.v34i1.9535
Directory of Open Access Journals (Sweden)
Vilmar Steffen
2011-11-01
Full Text Available An algorithm for the solution of the mathematical model featuring reactive distillation process in steady-state columns is analyzed. It has been presumed that each stage’s outlet streams in the model were in phase equilibrium conditions and that chemical kinetics was described by a reaction rate model. Within the context of the developed algorithm a procedure to solve a set of equations in a sequential form and a methodology to produce the initial estimates was defined. Broyden’s method was employed to solve the equations that model the chemical reactions. Algorithm was evaluated by study cases of 2-pentene metathesis and MTBE synthesis. The simulation results were close to results available in the literature and the proposed algorithm proved to be efficient since in both cases the convergence towards a solution was found.
Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P
2015-12-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.
Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions.
Prabhu, Rupal; Altman, Elliot; Eiteman, Mark A
2012-12-01
The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii.
Feasibility study for improved steady-state initialization algorithms for the RELAP5 computer code
Energy Technology Data Exchange (ETDEWEB)
Paulsen, M.P.; Peterson, C.E.; Katsma, K.R. (Computer Simulation and Analysis, Inc., Idaho Falls, ID (United States))
1993-04-01
A design for a new steady-state initialization method is presented that represents an improvement over the current method used in RELAP5. Current initialization methods for RELAP5 solve the transient fluidflow balance equations simulating a transient to achieve steady-state conditions. Because the transient solution is used, the initial conditions may change from the desired values requiring the use of controllers and long transient running times to obtain steady-state conditions for system problems. The new initialization method allows the user to fix thermal-hydraulic values in volumes and junctions where the conditions are best known and have the code compute the initial conditions in other areas of the system. The steady-state balance equations and solution methods are presented. The constitutive, component, and specialpurpose models are reviewed with respect to modifications required for the new steady-state initialization method. The requirements for user input are defined and the feasibility of the method is demonstrated with a testbed code by initializing some simple channel problems. The initialization of the sample problems using, the old and the new methods are compared.
The Markov process admits a consistent steady-state thermodynamic formalism
Peng, Liangrong; Zhu, Yi; Hong, Liu
2018-01-01
The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.
A two-step iterative method for evolving nonlinear acoustic systems to a steady-state
Watson, Willie R.; Myers, Michael K.
1990-01-01
A new approach for evolving two-dimensional nonlinear acoustic systems with flow to a steady state is presented. The approach is a two-step iterative method which is tested on a benchmark acoustic problem for which an exact analytical solution is available. Results are also calculated for a nonlinear acoustic problem for which an exact analytical solution is not known. Results indicate that the two-step method represents a powerful, efficient, and stable method for evolving two-dimensional acoustic systems to a steady state, and that the method is applicable to any number of spatial dimensions and to other hyperbolic systems. It is noted that for the benchmark problem only a single iteration on the method is required when the transient and steady-state field are of the same order of magnitude; however, four iterations are required when the steady-state field is several orders of magnitude smaller than the transient field. This method requires six iterations before achieving a steady state for the nonlinear test problem.
Booth, Christine; Cheluvappa, Rajkumar; Bellinson, Zack; Maguire, Danni; Zimitat, Craig; Abraham, Joyce; Eri, Rajaraman
2016-06-01
Personalised instruction is increasingly recognised as crucial for efficacious learning today. Our seminal work delineates and elaborates on the principles, development and implementation of a specially-designed adaptive, virtual laboratory. We strived to teach laboratory skills associated with lactate dehydrogenase (LDH) enzyme kinetics to 2nd-year biochemistry students using our adaptive learning platform. Pertinent specific aims were to:(1)design/implement a web-based lesson to teach lactate dehydrogenase(LDH) enzyme kinetics to 2nd-year biochemistry students(2)determine its efficacious in improving students' comprehension of enzyme kinetics(3)assess their perception of its usefulness/manageability(vLab versus Conventional Tutorial). Our tools were designed using HTML5 technology. We hosted the program on an adaptive e-learning platform (AeLP). Provisions were made to interactively impart informed laboratory skills associated with measuring LDH enzyme kinetics. A series of e-learning methods were created. Tutorials were generated for interactive teaching and assessment. The learning outcomes herein were on par with that from a conventional classroom tutorial. Student feedback showed that the majority of students found the vLab learning experience "valuable"; and the vLab format/interface "well-designed". However, there were a few technical issues with the 1st roll-out of the platform. Our pioneering effort resulted in productive learning with the vLab, with parity with that from a conventional tutorial. Our contingent discussion emphasises not only the cornerstone advantages, but also the shortcomings of the AeLP method utilised. We conclude with an astute analysis of possible extensions and applications of our methodology.
Duval, Jérôme F L; Qian, Shizhi
2009-11-19
A theory is presented for metal speciation dynamics in a swarm of soft, spherical core-hell colloidal ligand particles under steady-state laminar flow condition. Mass transfer and subsequent complexation of metal species within the reactive, permeable particle shell are governed by the interplay between (i) convective-diffusion of free metal ions M within and around the shell where ligands L are distributed, and (ii) kinetics of ML complex formation/dissociation in the shell. The local concentrations of metal M and complex ML are determined by the convective-diffusion equations with appropriate chemical source term and full account of radial and angular concentration polarization contributions. The steady-state flow field is determined from the solution of Navier-tokes equation including convective acceleration term for the fluid external to the particle, and from Brinkman equation for the internal fluid flow. The confined location of ligands within the particle shell leads to ML formation/dissociation rate constants (denoted as ka* and kd*, respectively) that differ significantly from their counterparts (ka and kd) defined for homogeneous ligand distribution throughout the solution. The relationship between ka,d* and ka,d is derived from the numerical evaluation of the spatial, time-dependent distributions of free and bound metal within and/or outside the particle. The dramatic dependence of ka,d* on hydrodynamic particle softness, Péclet number, soft surface layer thickness, and particle radius are analyzed in the steady-state nonequilibrium chemical regime within the context of dynamic features for colloidal complexes. The analysis covers the limiting cases of hydrodynamically impermeable, hard particles where binding sites are located at the very surface of the particle core (e.g., functionalized latex colloids) and free draining, polymeric ligand particles devoid of a hard core (e.g., porous gel particles). The formalism further applies to any values of the
Directory of Open Access Journals (Sweden)
Michael E.G. Lyons
2003-01-01
Full Text Available A detailed kinetic analysis of the pertinent physical processes underlying the operation of enzyme electrodes immobilized within alkane thiol self assembled monolayers is developed. These electrodes utilize a soluble mediator, which partitions into the monolayer, regenerates the active catalytic form of the enzyme and is re-oxidized at the underlying support electrode surface giving rise to a current which reflects kinetic events at the enzyme surface. Both the enzyme/substrate and enzyme mediator kinetics have been quantified fully in terms of a ping-pong mechanism for the former and Michaelis-Menten kinetics for the latter. The effect of substrate and mediator diffusion in solution have also been specifically considered and the latter processes have been shown to result in a complex expression for the reaction flux. Four limiting kinetic cases have been enumerated and simple expressions for the reaction flux in each of these rate limiting situations have been developed. Kinetic case diagrams have been presented as an aid to mechanistic diagnosis. The complicating effects of diffusive loss of reduced mediator from the enzyme layer have also been examined and the relation between the observed flux corresponding to reduced mediator oxidation at the support electrode and the substrate reaction flux in the enzyme layer have been quantified in terms of an efficiency factor. Results extracted from recently published practical realizations of immobilized monolayer enzyme systems have been discussed in the context of the proposed model analysis.
Current Control in ITER Steady State Plasmas With Neutral Beam Steering
Energy Technology Data Exchange (ETDEWEB)
R.V. Budny
2009-09-10
Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.
DEFF Research Database (Denmark)
Wagner, Manfred H.; Kheirandish, Saeid; Hassager, Ole
2005-01-01
starts at elongation rates larger than the inverse reptation time, and the steady-state elongational viscosities decrease with increasing elongation rate according to a power law with a power-law index of approximately - 1 / 2 instead of - 1 as predicted by the original Doi-Edwards tube model. Marrucci...... show that the transient and steady-state elongational viscosities of the nearly monodisperse polystyrene melts can be modeled quantitatively by assuming affine chain deformation balanced by the interchain pressure term of Marrucci and Ianniruberto. The interchain pressure is governed by a tube diameter...... relaxation time tau(a), which is found to be larger than the Rouse time tau(R) of the chain, and which is the only parameter of the model. For monodisperse polystyrene melts of sufficient low molar mass, tau(a), is larger than the reptation time, and a maximum in the steady-state elongational viscosity...
Adiabatic Evolution of an Open Quantum System in its Instantaneous Steady State
Li, Dongxiao; Wu, Songlin; Shen, Hongzhi; Yi, Xuexi
2017-11-01
In this paper, we derive an adiabatic condition for an quantum system subject to environment. The adiabaticity defined here dicates that the open quantum system prepared initially in its steady state would adiabatically follow its instantaneous steady state. We find that if the driving on the open system does not induce transition between the eigenstates of the instantaneous steady state, the open system can evolve adiabatically. In order to examine the validity of the adiabatic condition, a two-band model is exemplified. The results show that the topological quantum phase transition presented in the two-band model is caused by the competition between the effect of decay and the spoiling of the adiabaticity. The geometric phase is also calculated and discussed when the adiabatic condition is satisfied.
DEFF Research Database (Denmark)
Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen
2016-01-01
AIM: Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy...... volunteers to quantify the effect of 4-day treatment of paracetamol on the metabolism of steady-state lamotrigine. METHODS: Twelve healthy, male volunteers participated in an open-label, sequential interaction study. Lamotrigine was titrated to steady state (100 mg daily) over 36 days, and blood and urine...... sampling was performed in a non-randomised order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance...
DEFF Research Database (Denmark)
Ramzan, Naveed; Faheem, Muhammad; Gani, Rafiqul
2010-01-01
A packed reactive distillation column producing ethyl tert-butyl ether from tert-butyl alcohol and ethanol was simulated for detection of multiple steady states using Aspen Plus®. A rate-based approach was used to make the simulation model more realistic. A base-case was first developed and fine......-tuned to fit experimental data. Sensitivity analyses were then performed for reboiler duty and distillate molar flow as continuation parameters to trace the respective bifurcation curves in the region of multiplicity. The results show output multiplicity at three distinct steady states at high reboiler duties....... Input multiplicities were detected at high reflux ratios. Temperature and composition profiles of the solution branches were analyzed to identify the stable and desirable steady state. The optimum operating point was determined to be at a reboiler duty of 0.38 kW and a reflux ratio of 5–7. These results...
Capitalist Diversity and De-growth Trajectories to Steady-state Economies
DEFF Research Database (Denmark)
Buch-Hansen, Hubert
2014-01-01
Growth-critical scholarship has done much to both expose the environmentally unsustainable nature of the capitalist growth-economies of the overdeveloped part of the world and to develop an alternative vision of a degrowth transition leading to a steady-state economy. However, this scholarship...... on capitalist diversity and institutional change. On the basis of a typology of different models of capitalism, the article suggests that if de-growth transitions took place they would take different forms and lead to a variety of types of steady-state economies (SSEs). To illustrate this point, three ideal...... is ascribed to capitalist diversity and the nature of institutional change in the growth-critical literature. Against this background, the purpose of the present article is to make the “concrete utopia” of de-growth scholars and steady-state economists more specific by utilising insights from scholarship...
Coherent Quantum Dynamics in Steady-State Manifolds of Strongly Dissipative Systems
Zanardi, Paolo; Campos Venuti, Lorenzo
2014-12-01
Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.
Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation
Directory of Open Access Journals (Sweden)
Denis J. Evans
2013-04-01
Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.
Morozova, E.; Kulikova, V.; Yashin, D.; Anufrieva, N.; Anisimova, N.; Revtovich, S.; Kotlov, M.; Belyi, Y.; Pokrovsky, V.; Demidkina, T.
2013-01-01
The steady-state kinetic parameters of pyridoxal 5?-phosphate-dependent recombinant methionine ? -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in ?- and ?-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the ?-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-his...
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
Transient brain activity explains the spectral content of steady-state visual evoked potentials.
Gaume, Antoine; Vialatte, François; Dreyfus, Gérard
2014-01-01
Steady-state visual evoked potentials (SSVEPs) are widely used in the design of brain-computer interfaces (BCIs). A lot of effort has therefore been devoted to find a fast and reliable way to detect SSVEPs. We study the link between transient and steady-state VEPs and show that it is possible to predict the spectral content of a subject's SSVEPs by simulating trains of transient VEPs. This could lead to a better understanding of evoked potentials as well as to better performances of SSVEP-based BCIs, by providing a tool to improve SSVEP detection algorithms.
Potential multiple steady-states in the long-term carbon cycle
Tennenbaum, Stephen; Berezovskaya, Faina; Schwartzman, David
2013-01-01
In our modeling of the long-term carbon cycle we find potential multiple steady-states in Phanerozoic climates. We include the effects of biotic enhancement of weathering on land, organic carbon burial, oxidation of reduced organic carbon in terrestrial sediments and the variation of biotic productivity with temperature, finding a second stable steady-state appearing between 20 and 50 oC. The very warm early Triassic climate as well as an oceanic anoxic event in the late Cretaceous may be the...
DEFF Research Database (Denmark)
Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann
2008-01-01
The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar......, and allowing (albeit by use of empirical linear-viscoelastic shift factors to correct the linear-viscoelastic predictions) for a quantitative description of the transient and steady-state elongational viscosities of the bidisperse polystyrene blends....
Immediate Analysis of Periodic Steady States in Switched DC-DC Converters via SPICE
Directory of Open Access Journals (Sweden)
D. Biolek
2012-04-01
Full Text Available The method of immediate analysis of periodic steady states in switched DC-DC converters operating in the continuous current mode is described. The initial conditions, which correspond to the periodic steady state, are found in the first step. They are used consequently for the conventional transient analysis. A special SPICE model of the converter finds automatically these initial conditions, which are then available within the transient analysis. The method works both for the well-known behavioral models of switched converters and also for models which employ complex nonlinear SPICE models of semiconductor switches.
Steady-State Numerical Modeling of Size Effects in Wire Drawing
DEFF Research Database (Denmark)
Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof
2016-01-01
Wire drawing processes at micron scale receive increased interest as micro wires are increasingly required in micro electrical components. At the micron scale, size effects become important and have to be taken into consideration. The goal is to optimize the semi-cone angle of the tool in terms...... of drawing force. The present study employs a steady-state modelling technique that omits the transient regime, thus creating a basis for comprehensive parameter studies. The steady-state procedure is based on the streamline integration method presented by Dean and Hutchinson [1]. This approach allows...
Steady-state kinetics and dynamics of morphine in cancer patients
DEFF Research Database (Denmark)
Christrup, Lona Louring; Sjøgren, P; Jensen, N H
1999-01-01
Eighteen patients suffering from chronic pain due to cancer completed a balanced, double-blind, double-dummy, two period cross-over trial comparing the pharmacokinetics (PK) and pharmacodynamics (PD) of morphine and its metabolites, morphine-3-glucuronide and morphine-6-glucuronide, after...... to analgesia and side effects, and there was no difference in the patients' overall impression of the two treatments. More important, there was no difference between the Tmax and the time to peak sedation after administration of IR tablets (P = 0.63). However, due to the relatively small number of patients...... administration of morphine given as controlled-release (CR) tablets (every 12 h) and immediate-release (IR) tablets (every 6 h). The same total daily dose of morphine was given in both study periods. Patients received both test formulations for 4 days and on the final day of each period, peripheral venous blood...
Wang, Jack P.; Naik, Punith P.; Chen, Hsi-Chuan; Shi, Rui; Lin, Chien-Yuan; Liu, Jie; Shuford, Christopher M.; Li, Quanzi; Sun, Ying-Hsuan; Tunlaya-Anukit, Sermsawat; Williams, Cranos M.; Muddiman, David C.; Ducoste, Joel J.; Sederoff, Ronald R.; Chiang, Vincent L.
2014-01-01
We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants. PMID:24619611
Directory of Open Access Journals (Sweden)
Juwairia Obaid
2017-02-01
Full Text Available This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2 emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
Spear, Tyler J; Stromp, Tori A; Leung, Steve W; Vandsburger, Moriel H
2017-11-01
Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time. To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions. Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening. For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences ( P cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.
Guerra, Nelson Pérez
2017-01-01
A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…
A quasi-steady state shrinking core model of "whole tree" combustion
African Journals Online (AJOL)
A quasi-steady state shrinking core model of "whole tree" combustion. A. Ouédraogo, JC Mulligan, JG Cleland. Abstract. (J. de la Recherche Scientifique de l'Université de Lomé, 2000, 4(2): 199-208). Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African ...
Energy Technology Data Exchange (ETDEWEB)
HU, T.A.
2000-04-27
This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.
VANEDE, CJ; BOLLEN, AM; BEENACKERS, AACM
A reaction engineering model for the degradation of an inhibitory substrate by a steady-state biofilm is presented. The model describes both the metabolic rate controlling behavior of this substrate in the biofilm and the effect of diffusion limitation caused by an arbitrary substrate on the active
Real-time dynamic hydraulic model for water distribution networks: steady state modelling
CSIR Research Space (South Africa)
Osman, Mohammad S
2016-09-01
Full Text Available steady state hydraulic model that will be used within a real-time dynamic hydraulic model (DHM). The Council for Scientific and Industrial Research (CSIR) water distribution network (WDN) is used as a pilot study for this purpose. A hydraulic analysis...
Steady-state and transient performance of HVDC link based 3-level ...
African Journals Online (AJOL)
Steady-state and transient performance of HVDC link based 3-level VSC supplying a passive load. ... The transient performance is explored by examining the VSC_HVDC response to external AC faults. Finally, the models ... Keywords: HVDC- voltage source converter (VSC) - IGBT- SPWM- Control design - passive load.
Comparative analysis of steady state heat transfer in a TBC and ...
Indian Academy of Sciences (India)
In the present work, a functionally graded model of an air-cooled turbine blade with airfoil geometry conforming to the NACA0012 is developed which is then used in a ﬁnite element algorithm to obtain a non-linear steady state solution to the heat equation for the blade under convection and radiation boundary conditions.
Steady State Shift Damage Localization in a Residential-Sized Wind Turbine Blade
DEFF Research Database (Denmark)
Markvart, Morten Kusk; Sekjær, Claus; Bull, Thomas
2017-01-01
This paper presents an experimental damage localization study, in which the recently proposed steady state shift damage localization (S3DL) method is tested in the context of a residential-sized wind turbine blade. The S3DL method constitutes a model-based damage localization scheme, whose method...
Effect of stacking fault energy on steady-state creep rate of face ...
African Journals Online (AJOL)
Continuum elastic theory was used to establish the relationships between the force of interaction required to constrict dislocation partials, energy of constriction and climb velocity of the constricted thermal jogs, in order to examine the effect of stacking fault energy (SFE) on steady state creep rate of face centered cubic ...
Steady state drift vortices in plasmas with shear flow in equilibrium
DEFF Research Database (Denmark)
Chakrabarti, N.
1999-01-01
The Hasegawa-Mima equation in the presence of sheared poloidal flow is solved for two-dimensional steady state vortex. It is shown that when the phase velocity of the vortex is the same as the diamagnetic drift velocity, an exact solution in the form of counter-rotating vortices may appear...
Coagulation profile of children with sickle cell anemia in steady state ...
African Journals Online (AJOL)
Background: Sickle cell anemia is associated with a hypercoagulable state that may lead to alterations in a coagulation profile. Measurements of coagulation factors are known to have some predictive value for clinical outcome. Objectives: To determine the coagulation profile of children with SCA in steady state and crisis ...
Einstein's steady-state theory: an abandoned model of the cosmos
O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon
2014-09-01
We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.
Estimation of steady-state culture characteristics during acceleration-stats with yeasts
Sluis, van der C.; Westerink, B.H.; Dijkstal, M.M.; Castelein, S.J.; Boxtel, van A.J.B.; Tramper, J.; Wijffels, R.H.
2001-01-01
Steady-state culture characteristics are usually determined in chemostat cultivations, which are very time-consuming. In contrast, acceleration-stat (A-stat) cultivations in which the dilution rate is continuously changed with a constant acceleration rate are not so time-consuming, especially at
40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.
2010-07-01
... Exhaust Test Procedures § 86.1362-2010 Steady-state testing with a ramped-modal cycle. This section... testing the engine on a dynamometer with the following ramped-modal duty cycle to determine whether it...-modal test with a warmed-up engine. If the ramped-modal test follows directly after testing over the...
Thermodynamics and stability of non-equilibrium steady states in open systems
Bulíček, Miroslav; Málek, Josef; Průša, Vít
2017-01-01
Thermodynamical arguments are known to be useful in the construction of physically motivated Lyapunov functionals for nonlinear stability analysis of spatially homogeneous equilibrium steady states in thermodynamically isolated systems. Unfortunately, the limitation to thermodynamically isolated systems is essential, and standard arguments are not applicable even for some very simple thermodynamically open systems. On the other hand, the nonlinear stability of thermodynamically open systems i...
Experimental study of vaporization effect on steady state and dynamic behavior of catalytic pellets
Kulikov, A.V.; Kuzin, N.A.; Shigarov, A.B.; Kirillov, V.A.; Westerterp, K.R.; Kronberg, Alexandre E.
2001-01-01
The impact of the combined evaporation of the liquid phase and reaction on single catalyst pellet performance has been studied experimentally. The exothermic, catalyzed hydrogenation of α-methylstyrene (AMS) to cumene has been employed as a model reaction. Steady state and dynamic experiments have
Quasi-steady state thermal performances of a solar air heater with ...
African Journals Online (AJOL)
Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...
Steady-State PMU Compliance Test under C37.118.1a-2014
DEFF Research Database (Denmark)
Ghiga, Radu; Wu, Qiuwei; Martin, Kenneth E.
2016-01-01
This paper presents a flexible testing method and the steady-state compliance of PMUs under the C37.118.1a amendment. The work is focused on the changes made to the standard for the harmonic rejection and out-of-band interference tests for which the ROCOF Error limits have been suspended. The paper...
A Steady State Visually Evoked Potential Investigation of Memory and Ageing
Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard
2009-01-01
Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…
Energy Technology Data Exchange (ETDEWEB)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Walkway Length Determination for Steady State Walking in Young and Older Adults
Macfarlane, Pamela A.; Looney, Marilyn A.
2008-01-01
The primary purpose of this study was to determine acceleration (AC) and deceleration (DC) distances that would accommodate young and older adults walking at their preferred and fast speeds. A secondary purpose was to determine the minimal walkway length needed to record six steady state (SS) steps (three full gait cycles) for younger and older…
Energy Technology Data Exchange (ETDEWEB)
Yamura, Masayuki; Hirai, Toshinori; Kitajima, Mika; Hayashida, Yoshiko; Ikushima, Ichiro; Yamashita, Yasuyuki [Graduate School of Medical Sciences, Kumamoto University, Department of Diagnostic Radiology, Kumamoto (Japan); Korogi, Yukunori [University of Occupational and Environmental Health, School of Medicine, Department of Radiology, Kitakyushu (Japan); Endo, Fumio [Kumamoto University, Department of Pediatrics,Graduate School of Medical Sciences, Kumamoto (Japan)
2005-03-01
Hypothalamic hamartomas are relatively rare, non-neoplastic congenital malformations. With conventional MR images alone, small hypothalamic hamartomas may be difficult to diagnose because of artifacts from cerebrospinal fluid. We present the usefulness of three-dimensional constructive interference in steady state sequence for evaluating small hypothalamic hamartomas in three pediatric patients. (orig.)
Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems
Directory of Open Access Journals (Sweden)
J. Dobes
2012-04-01
Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.
Energy Technology Data Exchange (ETDEWEB)
HU, T.A.
2005-10-27
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Calculation of the rate of coagulation of hydrophobic colloids in the non-steady state
Roebersen, G.J.; Wiersema, P.H.
1974-01-01
In accurate coagulation measurements, the observed coagulation rate should be extrapolated to time zero to find the rate of formation of doublets from singlet particles. In the theoretical calculation of coagulation rates, generally a steady state is assumed. At the onset of coagulation, however, a
Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins
Ingersoll, Christine M.; Strollo, Christen M.
2007-01-01
The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.
Molecular Control of Steady-State Dendritic Cell Maturation and Immune Homeostasis
Hammer, Gianna Elena; Ma, Averil
2014-01-01
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation—the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease. PMID:23330953
Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.
Limestone Powders Yielding and Steady State Resistance under shearing with different testers
Shi, Hao; Luding, Stefan; Magnanimo, Vanessa
2016-01-01
We study the effect of both particle size and shear testers on the failure (yielding) and the steady state shear strength of granular materials. Physical experiments are carried out on four fine limestone powders using a geotechnical direct shear tester and the standard Schulze ring shear tester to
Kobayashi, Ryo; Otomo, Shinya; Shiba, Yusuke; Ebinuma, Keiichi; Sudoh, Toshiaki
2016-01-01
According to a recent study and meta-analysis, trough levels of >10 μg/mL teicoplanin (TEIC) may be acceptable for the treatment of uncomplicated infection, but no method of TEIC personalized medicine has been established. Vancomycin (VCM) and TEIC are glycopeptide antibiotic agents effective against methicillin-resistance Staphyloccocus aureus. This study aimed to establish TEIC personalized medicine at a steady state calculated by VCM pharmacokinetic parameters. Bayesian forecasting and population mean methods were employed to estimate individual total VCM clearance (CL) using existing population pharmacokinetics (PPK) parameter, and the differences between the CL calculated by these two methods were defined as ΔCL. Serum drug concentration data for patients treated with TEIC were collected at a steady state concentration (>96 h post infusion). There was a significant relationship between the prediction error of TEIC trough level and ΔCL. The relation between ΔCL and TEIC trough concentration at steady state was used to develop the following equation to determine the maintenance dose: TEIC (μg/mL)=1.1119X-6.124ΔCL+3.9164 (X is defined as TEIC trough concentration calculated from the PPK parameter). The results of this study indicated that it is possible to improve the prediction error of TEIC trough concentration at a steady state for patients who have received VCM therapy.
Ching, Wai-Ki; Zhang, Shuqin; Ng, Michael K; Akutsu, Tatsuya
2007-06-15
Probabilistic Boolean networks (PBNs) have been proposed to model genetic regulatory interactions. The steady-state probability distribution of a PBN gives important information about the captured genetic network. The computation of the steady-state probability distribution usually includes construction of the transition probability matrix and computation of the steady-state probability distribution. The size of the transition probability matrix is 2(n)-by-2(n) where n is the number of genes in the genetic network. Therefore, the computational costs of these two steps are very expensive and it is essential to develop a fast approximation method. In this article, we propose an approximation method for computing the steady-state probability distribution of a PBN based on neglecting some Boolean networks (BNs) with very small probabilities during the construction of the transition probability matrix. An error analysis of this approximation method is given and theoretical result on the distribution of BNs in a PBN with at most two Boolean functions for one gene is also presented. These give a foundation and support for the approximation method. Numerical experiments based on a genetic network are given to demonstrate the efficiency of the proposed method.
Analysis of Plasticity, Fracture and Friction in Steady State Plate Cutting
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1996-01-01
A closed form solution to the problem of steady state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new kinema...
Variational Principle for Non-Equilibrium Steady States of the XX Model
Matsui, T
2003-01-01
We show that non-equilibrium steady states of the one dimensional exactly solved XY model can be characterized by the variational principle of free energy of a long range interaction and that they cannot be a KMS state for any C$^*$-dynamical system.
Incorporation of wind generation to the Mexican power grid: Steady state analysis
Energy Technology Data Exchange (ETDEWEB)
Tovar, J.H.; Guardado, J.L.; Cisneros, F. [Inst. Tecnologico de Morelia (Mexico); Cadenas, R.; Lopez, S. [Comision Federal de Electricidad, Morelia (Mexico)
1997-09-01
This paper describes a steady state analysis related with the incorporation of large amounts of eolic generation into the Mexican power system. An equivalent node is used to represent individual eolic generators in the wind farm. Possible overloads, losses, voltage and reactive profiles and estimated severe contingencies are analyzed. Finally, the conclusions of this study are presented.
Algorithm for determining two-periodic steady-states in AC machines directly in time domain
Directory of Open Access Journals (Sweden)
Sobczyk Tadeusz J.
2016-09-01
Full Text Available This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the two-periodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.
TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP
The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...
König, R; Baldzuhn, J; Biedermann, C; Burhenn, R; Bozhenkov, S; Cardella, A; Endler, M; Hartfuss, H-J; Hathiramani, D; Hildebrandt, D; Hirsch, M; Jakubowski, M; Kocsis, G; Kornejev, P; Krychowiak, M; Laqua, H P; Laux, M; Oosterbeek, J W; Pasch, E; Richert, T; Schneider, W; Sunn-Pedersen, T; Thomsen, H; Weller, A; Werner, A; Wolf, R; Zhang, D; Zoletnik, S
2012-10-01
The critical issues in the development of diagnostics, which need to work robust and reliable under quasi-steady state conditions for the discharge durations of 30 min and which cannot be maintained throughout the one week duration of each operation phase of the Wendelstein 7-X stellarator, are being discussed.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
Bosch, H. S.; R C Wolf,; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Brauer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodie, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; Konig, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kuhner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stabler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, C.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K. P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupinski, L.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; von Eeten, P.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Funfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; Regana, J. M. G.; Geiger, J.; Geissler, S.; Greuner, H.; Grahl, M.; Gross, S.; Grosman, A.; Grote, H.; Grulke, O.; R. Jaspers,; Szabo, V.
2013-01-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate
New quasi-steady-state and partial-equilibrium methods for integrating chemically reacting systems
Mott, David Ray
1999-11-01
We present new quasi-steady-state (QSS) and partial- equilibrium (PE) methods for integrating systems of ordinary differential equations (ODEs) that arise from chemical reactions. These methods were developed for use in process-split reacting-flow simulations. The new QSS integrator is a second-order predictor- corrector method that is A-stable for linear equations. The method is accurate regardless of the timescales of the individual ODEs in the system and works well for problems typical of hydrocarbon combustion. The method has very low start-up costs, making it ideal for process- split reacting-flow simulations which require the solution of an initial-value problem in each computational cell in the flowfield for every global timestep. For problems of extreme stiffness, PE tools can be used in combination with the QSS integrator. PE methods remove the fastest reactions in the mechanism from the kinetic integration when their effects can be calculated using algebraic equilibrium constraints. Conservation constraints are used to write an ODE for the reaction's progress variable. The solution of this equation provides a new method for identifying reactions in equilibrium. A systematic method for finding a set of conserved scalars for an arbitrary group of reactions is presented, and this method is used to eliminate reactions that produce redundant equilibrium constraints. Since the equilibrium reactions must compensate for changes in the system that disturb their equilibrium, the equilibrium source terms are not forced identically to zero. Equilibrium is imposed by driving these source terms to the average value required to compensate for the perturbations caused by the other processes. Integration results for a cesium-air mechanism, a hydrogen-air mechanism, and a thermonuclear mechanism used in astrophysics are presented. One-dimensional flame and detonation results are presented for a single-step hydrogen mechanism and the thermonuclear mechanism, respectively
On the Steady-State System Size Distribution for a Discrete-Time Geo/G/1 Repairable Queue
Directory of Open Access Journals (Sweden)
Renbin Liu
2014-01-01
Full Text Available This paper studies a discrete-time N-policy Geo/G/1 queueing system with feedback and repairable server. With a probabilistic analysis method and renewal process theory, the steady-state system size distribution is derived. Further, the steady-state system size distribution derived in this work is extremely suitable for numerical calculations. Numerical example illustrates the important application of steady-state system size distribution in system capacity design for a network access proxy system.
The steady-state force-Ca2+ relationship in intact lobster (Homarus americanus) cardiac muscle.
Shinozaki, T; Wilkens, J L; Yazawa, T; Cavey, M J; ter Keurs, H E D J
2004-07-01
The heart of the decapod crustacean is activated by regular impulse bursts from the cardiac ganglion. The cardiac pump function depends on ganglionic burst frequency, burst duration, and burst impulse frequency. Here, we activated isolated lobster cardiac ostial muscle (Orbicularis ostii muscle, OOM) by stimulus trains in vitro in order to characterize the response of the contractile apparatus to [Ca2+]i. We employed stimulus trains that generate a steady state between the [Ca2+]i and force in order to estimate the Ca2+ sensitivity of myofilaments. Force and [Ca2+]i transients were simultaneously recorded using a silicon strain gauge and the fluorescence of iontophoretically microinjected fura-2 salt. We examined the effects of tetanus duration (TD), the interval between trains, and 6 microM cyclopiazonic acid, an inhibitor of the SR Ca2+ pump, on the steady-state force-[Ca2+]i relationship. The instantaneous force-[Ca2+]i relationships appeared sigmoidal (EC50 and Hill coefficient, 98.8+/-32.7 nM and 2.47+/-0.20, mean +/- SD, respectively), as did the curves superimposed after 500 ms following the start of stimulation, indicating that the force-[Ca2+]i relationship had reached a steady state at that time. Also, the maximum activated force (Fmax) was estimated using the steady-state force-[Ca2+]i relationship. Prolonged stimulus trains, decreasing the interval between recurrent trains from 5 to 2.5 s, and cyclopiazonic acid each increased the measured EC50 without changing Fmax. The EC50 correlated strongly with averaged [Ca2+]i over time. We conclude that the steady-state force-[Ca2+]i relationships in the OOM indicate cooperation between force generation and Ca2+ binding by the myofilaments. Our data also suggest the existence of a novel Ca2+-dependent mechanism which reduces Ca2+ sensitivity and accelerates relaxation of lobster cardiac muscle myofilaments.
Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum.
Shoemark, Deborah K; Cliff, Matthew J; Sessions, Richard B; Clarke, Anthony R
2007-06-01
The lactate dehydrogenase enzyme from Plasmodium falciparum (PfLDH) is a target for antimalarial compounds owing to structural and functional differences from the human isozymes. The plasmodial enzyme possesses a five-residue insertion in the substrate-specificity loop and exhibits less marked substrate inhibition than its mammalian counterparts. Here we provide a comprehensive kinetic analysis of the enzyme by steady-state and transient kinetic methods. The mechanism deduced by product inhibition studies proves that PfLDH shares a common mechanism with the human LDHs, that of an ordered sequential bireactant system with coenzyme binding first. Transient kinetic analysis reveals that the major rate-limiting step is the closure of the substrate-specificity loop prior to hydride transfer, in line with other LDHs. The five-residue insertion in this loop markedly increases substrate specificity compared with the human muscle and heart isoforms.
Application of A Microfluidic Tool for the Determination of Enzyme Kinetics
DEFF Research Database (Denmark)
Ringborg, Rolf H.
alreadyexist and can be found in common text books. These models do however require mutant specific data and must be collected with the target reaction. In this thesis a novel way of collecting kinetic data is created, this is carried out by combining existing technology and enables the analysis of aqueous...... of producing chiral amines. These amines are important as building blocks for pharmaceuticals and agrochemicals. A promising enzyme has been found, but it has been a problem to assess its performance and give process development direction. Common limitations are substrate and product solubility, unfavourable...
Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac-1-phenylethanol
Directory of Open Access Journals (Sweden)
Bäckvall Jan-E
2007-12-01
Full Text Available Abstract The scale-up of the ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR of (rac-1-phenylethanol (2 is addressed. The immobilized lipase Candida antarctica lipase B (CALB was employed for the resolution, which shows high enantioselectivity in the transesterification. The ruthenium catalyst used, (η 5-C5Ph5RuCl(CO2 1, was shown to possess very high reactivity in the "in situ" redox racemization of 1-phenylethanol (2 in the presence of the immobilized enzyme, and could be used in 0.05 mol% with high efficiency. Commercially available isopropenyl acetate was employed as acylating agent in the lipase-catalyzed transesterifications, which makes the purification of the product very easy. In a successful large-scale DKR of 2, with 0.05 mol% of 1, (R-1-phenylethanol acetate (3 was obtained in 159 g (97% yield in excellent enantiomeric excess (99.8% ee.
Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills
Amida, N.; Supriyanti, F. M. T.; Liliasari
2017-02-01
This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of average of 0.77. Four indicators classified in the high category are direct observation, causality, symbolic language, and mathematical modeling with the value of 0,73 0,70; 0,96; dan 0,85. Meanwhile, indicator of concepts formation in the medium category with a value of 0.62
Bang-Xing, Han; Jun, Chen
2016-07-01
To analyze the enzyme kinetics of active ingredient of Buddleja lindleyana (AIBL) against Oncomelania hupensis , the intermediate host of Schistosoma japonicum . O . hupensis snails were placed in 1 000 ml of 3.55 mg/L AIBL solution for 24, 48 h and 72 h, respectively, and the enzyme kinetics of alanine aminotransferase (GPT) was determined by Reitman-Frankel assay, lactate dehydrogenase (LDH) by the chemical inhibition lactic acid substrate method, alkaline phosphatase (AKP) by the disodium phenyl phosphate colorimetric method, acetylcholine esterase (AChE) and malate dehydrogenas (MDH) by ELISA, and succinate dehydrogenase (SDH) by the phenazine methyl sulfate reaction method (PMS) in the soft tissues of O. hupensis before and after AIBL treatment. Following exposure to 3.55 mg/L AIBL solution for 24 h, the GPT, LDH, and AKP activities significantly improved in the soft tissues of O. hupensis , while the SDH and MDH activities were significantly lowered in the head-foot and liver. However, AIBL treatment did not cause significant effect on AChE activity in O. hupensis . AIBL causes significant damages to O. hupensis liver and can efficiently act on anaerobic and aerobic respiration loci, which will hinder energy metabolism, and cause inadequate energy supply in cells used for normal secretion, eventually leading to O. hupensis death.
Kinetic resolution of chiral amines with omega-transaminase using an enzyme-membrane reactor.
Shin, J S; Kim, B G; Liese, A; Wandrey, C
2001-05-05
A kinetic resolution process for the production of chiral amines was developed using an enzyme-membrane reactor (EMR) and a hollow-fiber membrane contactor with (S)-specific omega-transaminases (omega-TA) from Vibrio fluvialis JS17 and Bacillus thuringiensis JS64. The substrate solution containing racemic amine and pyruvate was recirculated through the EMR and inhibitory ketone product was selectively extracted by the membrane contactor until enantiomeric excess of (R)-amine exceeded 95%. Using the reactor set-up with flat membrane reactor (10-mL working volume), kinetic resolutions of alpha-methylbenzylamine (alpha-MBA) and 1-aminotetralin (200 mM, 50 mL) were carried out. During the operation, concentration of ketone product, i.e., acetophenone or alpha-tetralone, in a substrate reservoir was maintained below 0.1 mM, suggesting efficient removal of the inhibitory ketone by the membrane contactor. After 47 and 32.5 h of operation using 5 U/mL of enzyme, 98.0 and 95.5% ee of (R)-alpha-MBA and (R)-1-aminotetralin were obtained at 49.5 and 48.8% of conversion, respectively. A hollow-fiber membrane reactor (39-mL working volume) was used for a preparative-scale kinetic resolution of 1-aminotetralin (200 mM, 1 L). After 133 h of operation, enantiomeric excess reached 95.6% and 14.3 g of (R)-1-aminotetralin was recovered (97.4% of yield). Mathematical modeling of the EMR process including the membrane contactor was performed to evaluate the effect of residence time. The simulation results suggest that residence time should be short to maintain the concentration of the ketone product in EMR sufficiently low so as to decrease conversion per cycle and, in turn, reduce the inhibition of the omega-TA activity. Copyright 2001 John Wiley & Sons, Inc.
Gurney-Champion, Oliver J.; Nederveen, Aart J.; Klaassen, Remy; Engelbrecht, Marc R.; Bel, Arjan; van Laarhoven, Hanneke W. M.; Stoker, Jaap; Goncalves, Sonia I.
2016-01-01
The aim was to investigate the value of optimized 3-dimensional alternating repetition time balanced steady-state free precession (ATR-SSFP), as an alternative to conventional segmented balanced steady-state free precession (bSSFP) with fat suppression prepulse (FS-bSSFP), in single breath-hold
DEFF Research Database (Denmark)
Griskova-Bulanova, Inga; Ruksenas, Osvaldas; Dapsys, Kastytis
2011-01-01
To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level.......To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level....
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.
Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings
Directory of Open Access Journals (Sweden)
C. Bhagat
2014-12-01
Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-12-01
We present a novel approach for solving steady-state stochastic partial differential equations in high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that accurate global solutions can be obtained with significantly reduced computational costs.
Steady-state and transient heat transfer through fins of complex geometry
Directory of Open Access Journals (Sweden)
Taler Dawid
2014-06-01
Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.
DEFF Research Database (Denmark)
Olsen, M H; Andersen, U B; Wachtell, K
1999-01-01
We wanted to investigate whether time to steady state was reached within 2 h of insulin infusion during isoglycemic hyperinsulinemic clamp, comparing the glucose uptake index (M/IG) with Bergman's insulin sensitivity index (Sip). We performed a 2-h oral glucose tolerance test and a 3-h isoglycemic...... hyperinsulinemic clamp in 26 young, healthy subjects and 43 elderly patients with unmedicated essential hypertension and left ventricular hypertrophy. The 3-h Sip correlated strongly with the 2-h M/IG in the patients (r = 0.88, p .... Because the 2-h M/IG correlated strongly with the 3-h Sip with relatively narrow limits of agreement, it is a good measure of insulin sensitivity. However, a 2-h clamp results in lower insulin sensitivity values in elderly, hypertensive patients due to the fact that steady state is not reached...
On the steady-state and the transient decay methods for the estimation of reverberation time.
Sum, K S; Pan, J
2002-12-01
The discrepancy between reverberation times of an enclosed sound field measured by the steady-state method and by the transient decay method is well-known. So far, no clear explanation has been obtained. In this paper, the steady-state bandlimited energy in an enclosure and bandlimited power flow into modally reactive boundaries are derived to describe the energy balance relationship and thus the reverberation time in a frequency band. This reverberation time is then compared to that obtained from the transient decay of the sound field based on the modal analysis. The comparison provides an understanding of the discrepancy mentioned above as well as the physical interpretations of the reverberation times estimated by both methods.
Analytical, steady-state model of gain saturation in channel electron multipliers
Giudicotti, L
2002-01-01
By using the transmission line modeling (TLM) technique we derive a simple model describing the saturation of the gain in channel electron multipliers and show that it generalizes and extends a previous steady-state model due to Shikhaliev. Then by introducing a physically consistent rational approximation of the non-linear gain equation we derive an exact, steady-state, analytical solution in which, contrary to other empirical assumptions about the functional dependence of the internal voltage are not required. The model is then used to simulate a multianode microchannel plate (MCP) photomultiplier, showing that the computed gain in saturated conditions is qualitatively in agreement with published experimental data. Finally, we discuss the general validity of our model, we suggest possible measurements and comment existing data relevant for its validation.
DEFF Research Database (Denmark)
Kwok, Kawai; Boccaccini, Dino; Persson, Åsa Helen
2016-01-01
The effective steady-state creep response of porous metals is studied by numerical homogenization and analytical modeling in this paper. The numerical homogenization is based on finite element models of three-dimensional microstructures directly reconstructed from tomographic images. The effects...... of model size, representativeness, and boundary conditions on the numerical results are investigated. Two analytical models for creep rate of porous bodies are derived by extending the Hashin-Shtrikman bound and the Ramakrishnan-Arunchalam model in linear elasticity to steady-state creep based on nonlinear...... homogenization. The numerical homogenization prediction and analytical models obtained in this work are compared against reported measurements and models. The relationship between creep rate and porosity computed by homogenization is found to be bounded by the Hodge-Dunand model and the Hashin-Shtrikman creep...
Energy Technology Data Exchange (ETDEWEB)
Caspary Toroker, Maytal [Schulich Faculty of Chemistry, Lise Meitner Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Peskin, Uri, E-mail: uri@tx.technion.ac.il [Schulich Faculty of Chemistry, Lise Meitner Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)
2010-05-12
A time-dependent approach for the calculation of steady-state currents through molecular junctions is presented. Using the close analogy between electronic currents and thermal reactive scattering rates, algorithms and methodologies originally developed for calculations of thermal reaction rates are utilized for electronic transport calculations. Resonant transport is considered in detail, in view of the dominant contribution of resonance states to the current in molecular junctions. The problem of long-time delays due to population of long-lived resonances is a challenge for most time-dependent calculation of steady-state currents, involving an infinite time-limit. A solution to this problem is presented by reformulating a flux-averaging method for the molecular junction scenario. The new formulation is implemented for commonly used simple tight binding models of molecular junctions, demonstrating its numerical advantages.
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone
Reynolds, Catriona A.; Menke, Hannah; Andrew, Matthew; Blunt, Martin J.; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term “dynamic connectivity,” using fast pore-scale X-ray imaging. We image the flow of N2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
Energy Technology Data Exchange (ETDEWEB)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-12-01
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.
Comparison of steady-state and transient CVS cycle emission of an automotive Stirling engine
Farrell, R. A.; Bolton, R. J.
1983-01-01
The Automotive Stirling Engine Development Program is to demonstrate a number of goals for a Stirling-powered vehicle. These goals are related to an achievement of specified maximum emission rates, a combined cycle fuel economy 30 percent better than a comparable internal-combustion engine-powered automobile, multifuel capability, competitive cost and reliability, and a meeting of Federal standards concerning noise and safety. The present investigation is concerned with efforts related to meeting the stringent emission goals. Attention is given to the initial development of a procedure for predicting transient CVS urban cycle gaseous emissions from steady-state engine data, taking into account the employment of the test data from the first-generation automotive Stirling engine. A large amount of steady-state data from three Mod I automotive Stirling engines were used to predict urban CVS cycle emissions for the Mod I Lerma vehicle.
On the steady-state and the transient decay methods for the estimation of reverberation time
Sum, K. S.; Pan, J.
2002-12-01
The discrepancy between reverberation times of an enclosed sound field measured by the steady-state method and by the transient decay method is well-known. So far, no clear explanation has been obtained. In this paper, the steady-state bandlimited energy in an enclosure and bandlimited power flow into modally reactive boundaries are derived to describe the energy balance relationship and thus the reverberation time in a frequency band. This reverberation time is then compared to that obtained from the transient decay of the sound field based on the modal analysis. The comparison provides an understanding of the discrepancy mentioned above as well as the physical interpretations of the reverberation times estimated by both methods.
Quantum transport in networks and photosynthetic complexes at the steady state.
Directory of Open Access Journals (Sweden)
Daniel Manzano
Full Text Available Recently, several works have analysed the efficiency of photosynthetic complexes in a transient scenario and how that efficiency is affected by environmental noise. Here, following a quantum master equation approach, we study the energy and excitation transport in fully connected networks both in general and in the particular case of the Fenna-Matthew-Olson complex. The analysis is carried out for the steady state of the system where the excitation energy is constantly "flowing" through the system. Steady state transport scenarios are particularly relevant if the evolution of the quantum system is not conditioned on the arrival of individual excitations. By adding dephasing to the system, we analyse the possibility of noise-enhancement of the quantum transport.
Dubbert, Maren; Kübert, Angelika; Cuntz, Matthias; Werner, Christiane
2015-04-01
Isotope techniques are widely applied in ecosystem studies. For example, isoflux models are used to separate soil evaporation from transpiration in ecosystems. These models often assume that plant transpiration occurs at isotopic steady state, i.e. that the transpired water shows the same isotopic signature as the source water. Yet, several studies found that transpiration did not occur at isotopic steady state, under both controlled and field conditions. Here we focused on identifying the internal and external factors which drive the isotopic signature of leaf transpiration. Using cavity ring-down spectroscopy (CRDS), the effect of both environmental variables and leaf physiological traits on δ18OT was investigated under controlled conditions. Six plant species with distinct leaf physiological traits were exposed to step changes in relative air humidity (RH), their response in δ18OT and gas exchange parameters and their leaf physiological traits were assessed. Moreover, two functionally distinct plant types (tree, i.e. Quercus suber, and grassland) of a semi-arid Mediterranean oak-woodland where observed under natural conditions throughout an entire growth period in the field. The species differed substantially in their leaf physiological traits and their turn-over times of leaf water. They could be grouped in species with fast (240 min.) turn-over times, mostly due to differences in stomatal conductance, leaf water content or a combination of both. Changes in RH caused an immediate response in δ18OT, which were similarly strong in all species, while leaf physiological traits affected the subsequent response in δ18OT. The turn-over time of leaf water determined the speed of return to the isotopic steady or a stable δ18OT value (Dubbert & Kübert et al., in prep.). Under natural conditions, changes in environmental conditions over the diurnal cycle had a huge impact on the diurnal development of δ18OT in both observed plant functional types. However, in
Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour
DEFF Research Database (Denmark)
Nielsen, Kim Lau
2012-01-01
The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems......, and predictions for the crack tip shielding ratio is brought forward. Included is a novel procedure for extracting information on the rate-independent toughness without approaching this numerically cumbersome limit....
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
On the relationship of steady states of continuous and discrete models arising from biology.
Veliz-Cuba, Alan; Arthur, Joseph; Hochstetler, Laura; Klomps, Victoria; Korpi, Erikka
2012-12-01
For many biological systems that have been modeled using continuous and discrete models, it has been shown that such models have similar dynamical properties. In this paper, we prove that this happens in more general cases. We show that under some conditions there is a bijection between the steady states of continuous and discrete models arising from biological systems. Our results also provide a novel method to analyze certain classes of nonlinear models using discrete mathematics.
Steady-State Noise Analysis of Spontaneous and Stimulated Brillouin Scattering in Optical Fibers
Jenkins, R. Brian; Sova, Raymond M.; Joseph, Richard I.
2007-03-01
In this paper, we present a steady-state theoretical and experimental analysis of the noise resulting from spontaneous and stimulated Brillouin scattering in an optical fiber. Wave equations are derived and solved that describe the evolution of the pump and Stokes waves along the fiber. Experiments and numerical results demonstrate the validity of the theory, either when a Stokes wave is launched at the end of the fiber or when the noise in the Stokes wave is spontaneously generated.
Restitution slope is principally determined by steady-state action potential duration.
Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James
2017-06-01
The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on
Infinite product expansion of the Fokker-Planck equation with steady-state solution.
Martin, R J; Craster, R V; Kearney, M J
2015-07-08
We present an analytical technique for solving Fokker-Planck equations that have a steady-state solution by representing the solution as an infinite product rather than, as usual, an infinite sum. This method has many advantages: automatically ensuring positivity of the resulting approximation, and by design exactly matching both the short- and long-term behaviour. The efficacy of the technique is demonstrated via comparisons with computations of typical examples.
Albrecht, K. F.; Soller, H.; Mühlbacher, L.; Komnik, A.
2013-12-01
We analyze the nonequilibrium dynamics and steady-state behavior of the two-terminal Anderson-Holstein model with a superconducting and a normal conducting lead. In the deep Kondo limit we develop an analytical description if no phonons are included and a rate equation approach when phonons are present. Both cases are compared with the numerically exact diagrammatic Monte Carlo method obtaining a good agreement. For small voltages we find a pronounced enhancement of phonon sidebands due to the SC DOS.
Characterization of the TRIGA Mark II reactor full-power steady state
Cammi, Antonio; Zanetti, Matteo; Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Magrotti, Giovanni; Prata, Michele; Salvini, Andrea
2015-01-01
In this work, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor of the University of Pavia is performed by coupling Monte Carlo (MC) simulation for neutronics with "Multiphysics" model for thermal-hydraulics. Neutronic analyses have been performed starting from a MC model of the entire reactor system, based on the MCNP5 code, that was already validated in fresh fuel and zero-power configuration (in which thermal effects are negligible) using the availabl...
Steady State Analysis of Hydrazine Catalytic Thrusters for Different Types of Catalysts
1976-01-15
AD-A023 231 STEADY STATE ANALYSIS OF HYDRAZINE CATALYTIC THRUSTERS FOR DIFFERENT TYPES OF CATALYSTS Antonio Crespo Instituto Nacional de Tecnica... ANALYSIS OF HYDRAZINE CATALYTIC -1 Jan 1975-30 June 1975 THRUSTERS FOR -DIFFERENT TYPES OF CATALYSTS 6. PERFORMING ORG. ftZPORT NU~n ER...ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK- AREA A WORK UNIT NUMBERS .INSTITUTO NACIONAL DE TECRICA AERO) ESPACIAL (INTA) 681308 PASEOPINTOR ROSALES
Stability of racemic and chiral steady states in open and closed chemical systems
Energy Technology Data Exchange (ETDEWEB)
Ribo, Josep M. [Departament de Quimica Organica, Universitat de Barcelona, c. Marti i Franques 1, Barcelona (Spain); Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es
2008-12-22
The stability properties of models of spontaneous mirror symmetry breaking in chemistry are characterized algebraically. The models considered here all derive either from the Frank model or from autocatalysis with limited enantioselectivity. Emphasis is given to identifying the critical parameter controlling the chiral symmetry breaking transition from racemic to chiral steady-state solutions. This parameter is identified in each case, and the constraints on the chemical rate constants determined from dynamic stability are derived.
Overview of EAST experiments on the development of high-performance steady-state scenario
Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2 > 1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5 × 1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n = 1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.
Chen, Xuhui; Pohl, Martin; Boettcher, Markus
2014-01-01
We study the acceleration, transport, and emission of particles in relativistic jets. Localized stochastic particle acceleration, spatial diffusion, and synchrotron as well as synchrotron self-Compton emission are considered in a leptonic model. To account for inhomogeneity, we use a 2D axi-symmetric cylindrical geometry for both relativistic electrons and magnetic field. In this first phase of our work, we focus on steady-state spectra that develop from a time-dependent model. We demonstrate...
Singh, Vivek Kumar; Ghosh, Indira
2013-09-02
The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system. This study demonstrates that both types of enzyme targets, one acting via flux reduction and the other by metabolite accumulation, exist in P. falciparum MEP pathway. These groups of targets can be exploited for independent anti-malarial drugs. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Zahra Ghobadi Nejad
2014-01-01
Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.
Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone
Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.
2017-01-01
To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.
Directory of Open Access Journals (Sweden)
Carl Foster, Courtney V. Farland, Flavia Guidotti, Michelle Harbin, Brianna Roberts, Jeff Schuette, Andrew Tuuri, Scott T. Doberstein, John P. Porcari
2015-12-01
Full Text Available High intensity interval training (HIIT has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly. Steady-state (n = 19 exercised (cycle ergometer 20 minutes at 90% of ventilatory threshold (VT. Tabata (n = 21 completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15 completed 13 sets of 30s (20 min @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05 increases in VO2max (+19, +18 and +18% and PPO (+17, +24 and +14% for each training group, as well as significant increases in peak (+8, + 9 and +5% & mean (+4, +7 and +6% power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05 than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05 across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults.
Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone
Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.
2017-04-01
To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ˜110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.
Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling
Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang
2017-12-01
Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.
Phase-field study of three-dimensional steady-state growth shapes in directional solidification
Gurevich, Sebastian; Karma, Alain; Plapp, Mathis; Trivedi, Rohit
2010-01-01
We use a quantitative phase-field approach to study directional solidification in various three-dimensional geometries for realistic parameters of a transparent binary alloy. The geometries are designed to study the steady-state growth of spatially extended hexagonal arrays, linear arrays in thin samples, and axisymmetric shapes constrained in a tube. As a basis to address issues of dynamical pattern selection, the phase-field simulations are specifically geared to identify ranges of primary spacings for the formation of the classically observed “fingers” (deep cells) with blunt tips and “needles” with parabolic tips. Three distinct growth regimes are identified that include a low-velocity regime with only fingers forming, a second intermediate-velocity regime characterized by coexistence of fingers and needles that exist on separate branches of steady-state growth solutions for small and large spacings, respectively, and a third high-velocity regime where those two branches merge into a single one. Along the latter, the growth shape changes continuously from fingerlike to needlelike with increasing spacing. These regimes are strongly influenced by crystalline anisotropy with the third regime extending to lower velocity for larger anisotropy. Remarkably, however, steady-state shapes and tip undercoolings are only weakly dependent on the growth geometry. Those results are used to test existing theories of directional finger growth as well as to interpret the hysteretic nature of the cell-to-dendrite transition.
Approximate P3 solution for the semi-infinite medium: steady state and time domain.
Wang, Xichang
2017-09-01
The steady-state solution of the Green's function obtained by the P3 equation in a semi-infinite medium is presented, the proposed solution is a diffusion-based model. Two time-domain solutions are established: one is the solution under extrapolation boundary condition, which we call the optical parameter method, and the other corresponds to the diffusion equation, which we call the double-diffusion coefficient method. The spatial-resolved reflectance and the time-resolved reflectance are calculated. The Monte Carlo simulation is used to verify the P3 equation. The results show that the P3 steady-state equation and the two time-domain equations are in good agreement with the Monte Carlo simulation. In the steady state, when the distance between the detector and the light source is less than several free paths, the P3 equation is more accurate than the diffusion equation. In other cases, the P3 model and the diffusion model have similar results. However, when the absorption coefficient is large, P3 is more accurate. In the time domain, the optical parameter method is more accurate, and the double-diffusion coefficient method is more consistent with the diffusion equation. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Arc plasma generator of atomic driver for steady-state negative ion source.
Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A
2014-02-01
The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.
Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems
Directory of Open Access Journals (Sweden)
Jiasen Jin
2016-07-01
Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.
Karim, Shahriar; Buzzard, Gregery T; Umulis, David M
2012-01-01
The Steady State (SS) probability distribution is an important quantity needed to characterize the steady state behavior of many stochastic biochemical networks. In this paper, we propose an efficient and accurate approach to calculating an approximate SS probability distribution from solution of the Chemical Master Equation (CME) under the assumption of the existence of a unique deterministic SS of the system. To find the approximate solution to the CME, a truncated state-space representation is used to reduce the state-space of the system and translate it to a finite dimension. The subsequent ill-posed eigenvalue problem of a linear system for the finite state-space can be converted to a well-posed system of linear equations and solved. The proposed strategy yields efficient and accurate estimation of noise in stochastic biochemical systems. To demonstrate the approach, we applied the method to characterize the noise behavior of a set of biochemical networks of ligand-receptor interactions for Bone Morphogenetic Protein (BMP) signaling. We found that recruitment of type II receptors during the receptor oligomerization by itself doesn't not tend to lower noise in receptor signaling, but regulation by a secreted co-factor may provide a substantial improvement in signaling relative to noise. The steady state probability approximation method shortened the time necessary to calculate the probability distributions compared to earlier approaches, such as Gillespie's Stochastic Simulation Algorithm (SSA) while maintaining high accuracy.
Steady-state and transient analysis of a squeeze film damper bearing for rotor stability
Barrett, L. E.; Gunter, E. J.
1975-01-01
A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.
Steady-State and Transient Boundary Element Methods for Coupled Heat Conduction
Kontinos, Dean A.
1997-01-01
Boundary element algorithms for the solution of steady-state and transient heat conduction are presented. The algorithms are designed for efficient coupling with computational fluid dynamic discretizations and feature piecewise linear elements with offset nodal points. The steady-state algorithm employs the fundamental solution approach; the integration kernels are computed analytically based on linear shape functions, linear elements, and variably offset nodal points. The analytic expressions for both singular and nonsingular integrands are presented. The transient algorithm employs the transient fundamental solution; the temporal integration is performed analytically and the nonsingular spatial integration is performed numerically using Gaussian quadrature. A series solution to the integration is derived for the instance of a singular integrand. The boundary-only character of the algorithm is maintained by integrating the influence coefficients from initial time. Numerical results are compared to analytical solutions to verify the current boundary element algorithms. The steady-state and transient algorithms are numerically shown to be second-order accurate in space and time, respectively.
Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James
2016-01-01
Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kinetic mechanism of putrescine oxidase from Rhodococcus erythropolis.
Kopacz, Malgorzata M; Heuts, Dominic P H M; Fraaije, Marco W
2014-10-01
Putrescine oxidase from Rhodococcus erythropolis (PuO) is a flavin-containing amine oxidase from the monoamine oxidase family that performs oxidative deamination of aliphatic diamines. In this study we report pre-steady-state kinetic analyses of the enzyme with the use of single- and double-mixing stopped-flow spectroscopy and putrescine as a substrate. During the fast and irreversible reductive half-reaction no radical intermediates were observed, suggesting a direct hydride transfer from the substrate to the FAD. The rate constant of flavin reoxidation depends on the ligand binding; when the imine product was bound to the enzyme the rate constant was higher than with free enzyme species. Similar results were obtained with product-mimicking ligands and this indicates that a ternary complex is formed during catalysis. The obtained kinetic data were used together with steady-state rate equations derived for ping-pong, ordered sequential and bifurcated mechanisms to explore which mechanism is operative. The integrated analysis revealed that PuO employs a bifurcated mechanism due to comparable rate constants of product release from the reduced enzyme and reoxidation of the reduced enzyme-product complex. © 2014 FEBS.
Advances in Kinetic Isotope Effect Measurement Techniques for Enzyme Mechanism Study
Directory of Open Access Journals (Sweden)
Hong Gu
2013-08-01
Full Text Available Kinetic isotope effects (KIEs are a very powerful tool for investigating enzyme mechanisms. Precision of measurement is the most important factor for KIE determinations, especially for small heavy atom KIEs. Internal competition is commonly used to measure small KIEs on V/K. Several methods, including such as liquid scintillation counting, mass spectrometry, nuclear magnetic resonance spectroscopy and polarimetry have been used to determine KIEs. In this paper, which does not aspire to be an exhaustive review, we briefly review different experimental approaches for the measurement of KIEs on enzymatic reaction with an emphasis on newer techniques employing mass spectrometry and nuclear magnetic resonance spectrometry as well as some corresponding examples.
Cao, Yuansheng; Gong, Zongping; Quan, H T
2015-06-01
Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012)] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013)], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.
Zikmanis, Peteris; Kampenusa, Inara
2012-08-06
The kinetic models of metabolic pathways represent a system of biochemical reactions in terms of metabolic fluxes and enzyme kinetics. Therefore, the apparent differences of metabolic fluxes might reflect distinctive kinetic characteristics, as well as sequence-dependent properties of the employed enzymes. This study aims to examine possible linkages between kinetic constants and the amino acid (AA) composition (AAC) for enzymes from the yeast Saccharomyces cerevisiae glycolytic pathway. The values of Michaelis-Menten constant (KM), turnover number (kcat), and specificity constant (ksp = kcat/KM) were taken from BRENDA (15, 17, and 16 values, respectively) and protein sequences of nine enzymes (HXK, GADH, PGK, PGM, ENO, PK, PDC, TIM, and PYC) from UniProtKB. The AAC and sequence properties were computed by ExPASy/ProtParam tool and data processed by conventional methods of multivariate statistics. Multiple linear regressions were found between the log-values of kcat (3 models, 85.74% yeast enzymes appear as closely related to the overall AAC of sequences.
Karlström, Mikael; Chiaraluce, Roberta; Giangiacomo, Laura; Steen, Ida Helene; Birkeland, Nils-Kåre; Ladenstein, Rudolf; Consalvi, Valerio
2010-03-01
The multi-domain enzyme isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix was studied by denaturant-induced unfolding. At pH 7.5, changes in circular dichroism ellipticity and intrinsic fluorescence showed a complex unfolding transition, whereas at pH 3.0, an apparently two-state and highly reversible unfolding occurred. Analytical ultracentrifugation revealed the dissociation from dimer to monomer at pH 3.0. The thermodynamic and kinetic stability were studied at pH 3.0 to explore the role of inter-domain interactions independently of inter-subunit interplay on the wild type and R211M, a mutant where a seven-membered inter-domain ionic network has been disrupted. The unfolding and folding transitions occurred at slightly different denaturant concentrations even after prolonged equilibration time. The difference between the folding and the unfolding profiles was decreased in the mutant R211M. The apparent Gibbs free energy decreased approximately 2 kcal/mol and the unfolding rate increased 4.3-fold in the mutant protein, corresponding to a decrease in activation free energy of unfolding of 0.86 kcal/mol. These results suggest that the inter-domain ionic network might be responsible for additional stabilization through a significant kinetic barrier in the unfolding pathway that could also explain the larger difference observed between the folding and unfolding transitions of the wild type.
Komasilovs, Vitalijs; Pentjuss, Agris; Elsts, Atis; Stalidzans, Egils
2017-09-28
The application of biologically and biochemically relevant constraints during the optimization of kinetic models reduces the impact of suggested changes in processes not included in the scope of the model. This increases the probability that the design suggested by model optimization can be carried out by an organism after implementation of design in vivo. A case study was carried out to determine the impact of total enzyme activity and homeostatic constraints on the objective function values and the following ranking of adjustable parameter combinations. The application of constraints on the model of sugar cane metabolism revealed that a homeostatic constraint caused heavier limitations of the objective function than a total enzyme activity constraint. Both constraints changed the ranking of adjustable parameter combinations: no "universal" constraint-independent top-ranked combinations were found. Therefore, when searching for the best subset of adjustable parameters, a full scan of their combinations is suggested for a small number of adjustable parameters, and evolutionary search strategies are suggested for a large number. Simultaneous application of both constraints is suggested. Copyright © 2017 Elsevier B.V. All rights reserved.
Enzyme kinetics of the human norovirus protease control virus polyprotein processing order.
May, Jared; Korba, Brent; Medvedev, Alexei; Viswanathan, Prasanth
2013-09-01
The human norovirus (NoV) polyprotein is cleaved into mature non-structural proteins by both mature NoV protease (Pro, NS6) and its un-cleaved precursor (ProPol, NS6-7). Processing order is well-established with 'early' and 'late' cleavages, but the governing enzymatic mechanisms are unknown. Enzyme kinetics of a GII Pro and ProPol were analyzed using synthetic peptides representing the five natural polyprotein cleavage sites. The relative efficiency of cleavage of the individual peptides was consistent with established polyprotein processing order, and primarily correlated with enzyme turnover (kcat). Enzymatic efficiencies (kcat/Km) of ProPol at all five sites were equivalent to, or greater than, that of Pro. Binding affinities (Km) for the two least efficiently cleaved sites (p20/VPg, VPg/Pro) were 2-4-fold higher than the other sites. This work further defines the role of ProPol in NoV polyprotein cleavage, and demonstrates that human norovirus polyprotein processing order is primarily an inherent property of enzymatic activity. © 2013 Published by Elsevier Inc.
DEFF Research Database (Denmark)
Guo, Xiaoqiang; Guerrero, Josep M.
2016-01-01
the steady-state error suppression with no need of additional complex control algorithms such as the synchronous reference frame transformation. Five alternative implementation methods are comparatively evaluated from the viewpoint of the steady-state and dynamic responses. Further, the theoretical analysis......Current regulation is crucial for operating single-phase grid-connected inverters. The challenge of the current controller is how to fast and precisely tracks the current with zero steady-state error. This paper proposes a novel feedback mechanism for the conventional PI controller. It allows...
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.
Directory of Open Access Journals (Sweden)
Jorge Fernandez-de-Cossio-Diaz
2017-11-01
Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.
Steady-State Diffusion of Water through Soft-Contact LensMaterials
Energy Technology Data Exchange (ETDEWEB)
Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.
2005-01-31
Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.
Sleep disturbances and health-related quality of life in adults with steady-state bronchiectasis.
Directory of Open Access Journals (Sweden)
Yonghua Gao
Full Text Available Sleep disturbances are common in patients with chronic lung diseases, but little is known about the prevalence in patients with bronchiectasis. A cross sectional study was conducted to investigate the prevalence and determinants associated with sleep disturbances, and the correlation between sleep disturbances and quality of life (QoL in adults with steady-state bronchiectasis.One hundred and forty-four bronchiectasis patients and eighty healthy subjects were enrolled. Sleep disturbances, daytime sleepiness, and QoL were measured by utilizing the Pittsburgh Sleep Quality Index (PSQI, Epworth Sleepiness Scale (ESS and St. George Respiratory Questionnaire (SGRQ, respectively. Demographic, clinical indices, radiology, spirometry, bacteriology, anxiety and depression were also assessed.Adults with steady-state bronchiectasis had a higher prevalence of sleep disturbances (PSQI>5 (57% vs. 29%, P<0.001, but not daytime sleepiness (ESS≥10 (32% vs. 30%, P = 0.76, compared with healthy subjects. In the multivariate model, determinants associated with sleep disturbances in bronchiectasis patients included depression (OR, 10.09; 95% CI, 3.46-29.37; P<0.001, nocturnal cough (OR, 1.89; 95% CI, 1.13-3.18; P = 0.016, aging (OR, 1.04; 95% CI, 1.01-1.07; P = 0.009 and increased 24-hour sputum volume (OR, 2.01; 95% CI, 1.22-3.33; P = 0.006. Patients with sleep disturbances had more significantly impaired QoL affecting all domains than those without. Only 6.2% of patients reported using a sleep medication at least weekly.In adults with steady-state bronchiectasis, sleep disturbances are more common than in healthy subjects and are related to poorer QoL. Determinants associated with sleep disturbances include depression, aging, nighttime cough and increased sputum volume. Assessment and intervention of sleep disturbances are warranted and may improve QoL.
Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search
Newby, Jay M.
2010-02-19
We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. © 2010 Society for Mathematical Biology.
Steady state creep of austenitic steel 16Cr-12Ni-2. 5Mo
Energy Technology Data Exchange (ETDEWEB)
Pahutova, M.; Cadek, J.; Cerny, V.
1983-01-01
The steady state creep of austenitic steel 16Cr-12Ni-2.5Mo was investigated by the isothermal test technique at a temperature interval of 873 to 1023 K and applied stress interval of 150 to 400 MPa. The activation energy of creep corrected for the temperature dependence of the Young modulus was found higher than the activation enthalpy of the lattice diffusion to which the self-diffusion of all the components of solid solution (Fe, Cr, Ni, Mo) contributes. The stress sensitivity parameter of the steady state creep rate reaches values as high as 12.5; in conformity with the activation energy of creep increasing with applied stress, the stress sensitivity parameter decreases with increasing temperature. The effective stress as measured by the strain transient dip test technique increases both with increasing applied stress and increasing temperature. The changes of structure in the course of creep were investigated by transmission electron microscopy and electron diffraction. It was found that the carbide M/sub 23/C/sub 6/ and the intermetallic phases chi and eta do not contribute to the creep resistivity of the steel under consideration neither directly, i.e., as obstacles to the dislocation glide, nor indirectly, i.e., by influencing the stability of dislocation substructure. Therefore, the idea of interaction creep strengthening has been accepted; this type of strengthening follows from an elastic interaction of Cr and Mo atoms with C atoms and an elastic interaction of Cr-C and Mo-C pairs with dislocations, though the values of the stress sensitivity parameter of steady state creep rate do not support this idea.
Venkiteshwaran, K; Milferstedt, K; Hamelin, J; Zitomer, D H
2016-11-01
Nine anaerobic digesters, each seeded with biomass from a different source, were operated identically and their quasi steady state function was compared. Subsequently, digesters were bioaugmented with a methanogenic culture previously shown to increase specific methanogenic activity. Before bioaugmentation, different seed biomass resulted in different quasi steady state function, with digesters clustering into three groups distinguished by methane (CH4) production. Digesters with similar functional performance contained similar archaeal communities based on clustering of Illumina sequence data of the V4V5 region of the 16S rRNA gene. High CH4 production correlated with neutral pH and high Methanosarcina abundance, whereas low CH4 production correlated to low pH as well as high Methanobacterium and DHVEG 6 family abundance. After bioaugmentation, CH4 production from the high CH4 producing digesters transiently increased by 11 ± 3% relative to non-bioaugmented controls (p bioaugmentation was correlated to increased relative abundance of Methanosaeta and Methaospirillum originating from the bioaugment culture. In conclusion, different anaerobic digester seed biomass can result in different quasi steady state CH4 production, SCOD removal, pH and effluent VFA concentration in the timeframe studied. The bioaugmentation employed can result in a period of increased methane production. Future research should address extending the period of increased CH4 production by employing pH and VFA control concomitant with bioaugmentation, developing improved bioaugments, or employing a membrane bioreactor to retain the bioaugment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blood flow patterns during incremental and steady-state aerobic exercise.
Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N
2017-05-30
Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, pexercise induced ESS might be increased in an intensity-dependent way and blood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.
Seeing the talker’s face supports executive processing of speech in steady state noise
Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary
2013-01-01
Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC) can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT; Mishra et al., 2013) along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition) and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity (WMC). Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills. PMID:24324411
Seeing the talker’s face supports executive processing of speech in steady state noise
Directory of Open Access Journals (Sweden)
Sushmit eMishra
2013-11-01
Full Text Available Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT, Mishra et al., 2013 along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity. Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.
George, David L.
2008-03-01
We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically, a simple solver for a system of m conservation laws uses m such discontinuities. We present a four wave solver for use with the the shallow water equations—a system of two equations in one dimension. The solver is based on a decomposition of an augmented solution vector—the depth, momentum as well as momentum flux and bottom surface. By decomposing these four variables into four waves the solver is endowed with several desirable properties simultaneously. This solver is well-balanced: it maintains a large class of steady states by the use of a properly defined steady state wave—a stationary jump discontinuity in the Riemann solution that acts as a source term. The form of this wave is introduced and described in detail. The solver also maintains depth non-negativity and extends naturally to Riemann problems with an initial dry state. These are important properties for applications with steady states and inundation, such as tsunami and flood modeling. Implementing the solver with LeVeque's wave propagation algorithm [R.J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys. 131 (1997) 327-335] is also described. Several numerical simulations are shown, including a test problem for tsunami modeling.
LHe Flow Regime/Pressure Drop for D0 Solenoid at Steady State Conditions
Energy Technology Data Exchange (ETDEWEB)
Rucinski, R.; /Fermilab
1993-03-03
This paper describes in a note taking format what was learned from several sources on two phase liquid helium flow regimes and pressure drops as applied to the D-Zero solenoid upgrade project. Calculations to estimate the steady state conditions for the D-Zero solenoid at 5, 10 and 15 g/s are also presented. For the lower flow rates a stratified type regime can be expected with a pressure drop less than 0.5 psi. For the higher flow rate a more homogeneous flow regime can be expected with a pressure drop between 0.4 to 1.5 psi.
Linear combination of auditory steady-state responses evoked by co-modulated tones
DEFF Research Database (Denmark)
Guérit, François; Marozeau, Jeremy; Epp, Bastian
2017-01-01
Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...
Multiple Steady-States in a Heat Integrated Distillation Column (HIDiC)
Kano, Manabu; Fukushima, Tomohiro; Makita, Hiroshi; Hasebe, Shinji
2007-01-01
A heat integrated distillation column (HIDiC) is a new and highly energy-efficient distillation process. In the present work, multiple steady-states in HIDiC are analyzed. In HIDiC, the pressure in the rectifying section is kept higher than that in the stripping section by using a compressor to enhance heat transfer from the rectifying section to the stripping section through the wall. Therefore, an energy balance, particularly the influence of the compressor, must be taken into account for t...
Scalable numerical approach for the steady-state ab initio laser theory
Esterhazy, S.; Liu, D.; Liertzer, M.; Cerjan, A.; Ge, L.; Makris, K. G.; Stone, A. D.; Melenk, J. M.; Johnson, S. G.; Rotter, S.
2014-08-01
We present an efficient and flexible method for solving the non-linear lasing equations of the steady-state ab initio laser theory. Our strategy is to solve the underlying system of partial differential equations directly, without the need of setting up a parametrized basis of constant flux states. We validate this approach in one-dimensional as well as in cylindrical systems, and demonstrate its scalability to full-vector three-dimensional calculations in photonic-crystal slabs. Our method paves the way for efficient and accurate simulations of microlasers which were previously inaccessible.
Bukov, Marin; Gopalakrishnan, Sarang; Knap, Michael; Demler, Eugene
2015-11-13
We explore prethermal Floquet steady states and instabilities of the weakly interacting two-dimensional Bose-Hubbard model subject to periodic driving. We develop a description of the nonequilibrium dynamics, at arbitrary drive strength and frequency, using a weak-coupling conserving approximation. We establish the regimes in which conventional (zero-momentum) and unconventional [(π,π)-momentum] condensates are stable on intermediate time scales. We find that condensate stability is enhanced by increasing the drive strength, because this decreases the bandwidth of quasiparticle excitations and thus impedes resonant absorption and heating. Our results are directly relevant to a number of current experiments with ultracold bosons.
The effect of time-dependent coupling on non-equilibrium steady states
DEFF Research Database (Denmark)
Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin
Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...
The effect of time-dependent coupling on non-equilibrium steady states
DEFF Research Database (Denmark)
Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.
2009-01-01
Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...
On a quantum phase transition in a steady state out of equilibrium
Aschbacher, Walter H.
2016-10-01
Within the rigorous axiomatic framework for the description of quantum mechanical systems with a large number of degrees of freedom, we show that the nonequilibrium steady state, constructed in the quasifree fermionic system corresponding to the isotropic XY chain in which a finite sample, coupled to two thermal reservoirs at different temperatures, is exposed to a local external magnetic field, is breaking translation invariance and exhibits a strictly positive entropy production rate. Moreover, we prove that there exists a second-order nonequilibrium quantum phase transition with respect to the strength of the magnetic field as soon as the system is truly out of equilibrium.
Quantum criticality out of equilibrium: steady state in a magnetic single-electron transistor.
Kirchner, Stefan; Si, Qimiao
2009-11-13
Quantum critical systems out of equilibrium are of extensive interest, but are difficult to study theoretically. We consider here the steady-state limit of a single-electron transistor with ferromagnetic leads. In equilibrium (i.e., bias voltage V = 0), this system features a continuous quantum phase transition with a critical destruction of the Kondo effect. We construct an exact quantum Boltzmann treatment in a dynamical large-N limit, and determine the universal scaling functions of both the nonlinear conductance and fluctuation-dissipation ratios. We also elucidate the decoherence properties as encoded in the local spin response.
Quantum phase transition in a far-from-equilibrium steady state of an XY spin chain.
Prosen, Tomaz; Pizorn, Iztok
2008-09-05
Using quantization in the Fock space of operators, we compute the nonequilibrium steady state in an open Heisenberg XY spin 1/2 chain of a finite but large size coupled to Markovian baths at its ends. Numerical and theoretical evidence is given for a far-from-equilibrium quantum phase transition with the spontaneous emergence of long-range order in spin-spin correlation functions, characterized by a transition from saturation to linear growth with the size of the entanglement entropy in operator space.
Chaos and optimal control of cancer self-remission and tumor system steady states
Energy Technology Data Exchange (ETDEWEB)
El-Gohary, Awad [Department of Mathematics, College of Science, Mansoura University, Mansoura 35516 (Egypt)], E-mail: aigohary@ksu.edu.sa
2008-09-15
This paper is devoted to study the problem of optimal control of cancer self-remission and tumor unstable steady-states. The stability analysis of the biologically feasible equilibrium states is presented using a local stability approach. The system appears exhibit a chaotic behavior for some ranges of the system parameters. The necessary optimal control inputs for the asymptotic stability of the positive equilibrium states and minimizes the require performance measure are obtained as nonlinear function of the system densities. Analysis and extensive numerical examples of the uncontrolled and controlled systems were carried out for various parameters values and different initial densities.
Collective effects in nanolasers: Steady-state characteristics and photon statistics
DEFF Research Database (Denmark)
André, Emil Cortes; Protsenko, I. E.; Mørk, Jesper
2017-01-01
In the traditional rate equation-approach to nanolasers, the active material is modelled as a collection of independent emitters [1], but in recent years it has become increasingly clear that radiative coupling of the emitters in the cavity can significantly change the characteristics of a (nano......)laser under certain conditions [2-5]. The collective effects arising as an emitter-emitter coupling are known to cause a reduction in the steady-state intensity for small values of the pump rate [2, 3], which means the effective jump at threshold becomes larger. As a result, the fraction β of spontaneous...
Parallel shooting methods for finding steady state solutions to engine simulation models
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik
2007-01-01
Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set...... as test case. A parallel speedup factor of 23 on 33 processors was achieved with multiple shooting. But fast transients at the beginnings of sub intervals caused significant overhead for the multiple shooting methods and limited the best speedup to 3.8 relative to the fastest sequential method: Single...... shooting with reduced dimension of the boundary value problem....
Steady-state numerical modeling of size effects in micron scale wire drawing
DEFF Research Database (Denmark)
Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof
2017-01-01
these effects for the wire drawing process. Focus will be on investigating the impact of size effects on the most favourable tool geometry (in terms of minimizing the drawing force) for various conditions between the wire/tool interface. The numerical analysis is based on a steady-state framework that enables....... This creates a need for a higher order plasticity theory to accurately predict the material behaviour across the multiple scales involved. The present study reveals that the contribution from an energetic (recoverable) length parameter is limited, while the corresponding dissipative contribution dominates...
Steady-state Lévy flights in a confined domain
Denisov, S. I.; Horsthemke, Werner; Hänggi, Peter
2008-06-01
We derive the generalized Fokker-Planck equation associated with a Langevin equation driven by arbitrary additive white noise. We apply our result to study the distribution of symmetric and asymmetric Lévy flights in an infinitely deep potential well. The fractional Fokker-Planck equation for Lévy flights is derived and solved analytically in the steady state. It is shown that Lévy flights are distributed according to the beta distribution, whose probability density becomes singular at the boundaries of the well. The origin of the preferred concentration of flying objects near the boundaries in nonequilibrium systems is clarified.
Investigation of component failure rates for pulsed versus steady state tokamak operation
Energy Technology Data Exchange (ETDEWEB)
Cadwallader, L.C.
1992-07-01
This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments.
Steady-State Crack Growth in Rate-Sensitive Single Crystals
DEFF Research Database (Denmark)
Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof
2016-01-01
The characteristics of the active plastic zone surrounding a crack growingin a single crystal (FCC, BCC, and HCP) at constant velocity is investigated for ModeI loading under plane strain assumptions. The framework builds upon a steady-state relation bringing the desired solution out in a frame...... the literature. The plastic zone is found to be smallest for the FCC structure andlargest for the HCP structure, which is also reected in the shielding ratio, where FCC crystals show the smallest shielding and HCP the largest shielding....
Output Regulation of Large-Scale Hydraulic Networks with Minimal Steady State Power Consumption
DEFF Research Database (Denmark)
Jensen, Tom Nørgaard; Wisniewski, Rafal; De Persis, Claudio
2014-01-01
An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact...... that the system is overactuated is exploited for minimizing the steady state electrical power consumption of the pumps in the system, while output regulation is maintained. The proposed control actions are decentralized in order to make changes in the structure of the hydraulic network easy to implement....
Steady State Analysis of a UPFC as Voltage Regulator for Optimal Position in the Transmission Line
Directory of Open Access Journals (Sweden)
S. Ali Al-Mawsawi
2003-06-01
Full Text Available It has recently been illustrated that the Unified Power Flow Controller (UPFC installation location plays an important role in effecting nonlinearly in the UPFC steady state performance of the system. A Pulse Width Modulation (PWM based on UPFC as a voltage regulator is modeled and analyzed to investigate the optimal position in the transmission line. From the study made in this paper, it is shown that the location of UPFC plays a significant part in effecting nonlinearly. It is also found from the simulation results that the distribution of the active and reactive power flows can be controlled by varying the modulation index of the device.
Asymptotics of steady states of a selection–mutation equation for small mutation rate
Calsina, Àngel
2013-12-01
We consider a selection-mutation equation for the density of individuals with respect to a continuous phenotypic evolutionary trait. We assume that the competition term for an individual with a given trait depends on the traits of all the other individuals, therefore giving an infinite-dimensional nonlinearity. Mutations are modelled by means of an integral operator. We prove existence of steady states and show that, when the mutation rate goes to zero, the asymptotic profile of the population is a Cauchy distribution. © Royal Society of Edinburgh 2013.
DEFF Research Database (Denmark)
Deng, Yu-Jia; Wiberg, Gustav Karl Henrik; Zana, Alessandro
2017-01-01
In this work, we have synthesized tetrahexahedral (THH) Pt nanoparticles (NPs) enclosed with {730} high-index facets using a one-step square wave potential procedure. The catalytic activity of the THH NPs toward the oxygen reduction reaction (ORR) is studied under both transient and steady......-state conditions. As a benchmark, the ORR activity is compared with those of polycrystalline Pt and a commercial Pt/C catalyst. The results show that, under transient conditions, the catalytic performance of the THH Pt NPs and Pt/C are approximately the same and about 2 times lower than that of polycrystalline Pt...
Sanders, G L; Routledge, P A; Ward, A; Davies, D M; Rawlins, M D
1979-01-01
1 Mean steady-state plasma concentrations of labetalol (labetalol Css) in 17 hypertensive patients undergoing chronic treatment with this drug, have been examined in relation to dose, fall in BP, and beta-blockade. 2 A significant relationship (rs = 0.81, P less than 0.001) was observed between labetalol Css and daily dose. 3 No correlation was found between labetalol Css and antihypertensive response. 4 In thirteen patients, there seemed to be significant relationship between labetalol Css and beta-blockade (rs = 0.72, P less than 0.005). In three patients, the degree of beta-blockade was disproportionate to the drug concentration. PMID:526396
New analytical solution for solving steady-state heat conduction problems with singularities
Directory of Open Access Journals (Sweden)
Laraqi Najib
2013-01-01
Full Text Available A problem of steady-state heat conduction which presents singularities is solved in this paper by using the conformal mapping method. The principle of this method is based on the Schwarz-Christoffel transformation. The considered problem is a semi-infinite medium with two different isothermal surfaces separated by an adiabatic annular disc. We show that the thermal resistance can be determined without solving the governing equations. We determine a simple and exact expression that provides the thermal resistance as a function of the ratio of annular disc radii.
Schokker, E.P.
1997-01-01
The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused
Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...
Alkema, WBL; de Vries, E; Floris, R; Janssen, DB
Penicillin acylase catalyses the hydrolysis and synthesis of semisynthetic beta-lactam antibiotics via formation of a covalent acyl-enzyme intermediate. The kinetic and mechanistic aspects of these reactions were studied. Stopped-flow experiments with the penicillin and ampicillin analogues
Current status and prospect of plasma control system for steady-state operation on QUEST
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, Makoto, E-mail: hasegawa@triam.kyushu-u.ac.jp; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Tokunaga, Kazutoshi; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki
2016-11-15
Highlights: • Overall configuration of plasma control system on QUEST are presented. • Multi core system and reflective memories are used for the real-time control. • Hall sensors are used for the identification of plasma current and its position. • Repetitive gas fueling with the feed-back control of Hα signal is implemented. - Abstract: The plasma control system (PCS) of QUEST is developed according to the progress of QUEST project. Since one of the critical goals of the project is to achieve the steady-state operation with high temperature vacuum vessel wall, the PCS is also required to have the capability to control the plasma for a long period. For the increase of the loads to processing power of the PCS, the PCS is decentralized with the use of reflective memories (RFMs). The PCS controls the plasma edge position with the real-time identification of plasma current and its position. This identification is done with not only flux loops but also hall sensors. The gas fueling method by piezo valve with monitoring the Hα signal filtered by a digital low-pass filter are proposed and suitable for the steady-state operation on QUEST. The present status and prospect of the PCS are presented with recent topics.
Gainer, Patrick A.; Aiken, William S., Jr.
1959-01-01
A method is presented for shortening the computations required to determine the steady-state span loading on flexible wings in subsonic flight. The method makes use of tables of downwash factors to find the necessary aerodynamic-influence coefficients for the application of lifting-line theory. Explicit matrix equations of equilibrium are converted into a matrix power series with a finite number of terms by utilizing certain characteristic properties of matrices. The number of terms in the series is determined by a trial-and-error process dependent upon the required accuracy of the solution. Spanwise distributions of angle of attack, airload, shear, bending moment, and pitching moment are readily obtained as functions of qm(sub R) where q denotes the dynamic pressure and mR denotes the lift-curve slope of a rigid wing. This method is intended primarily to make it practical to solve steady-state aeroelastic problems on the ordinary manually operated desk calculators, but the method is also readily adaptable to automatic computing equipment.
Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding.
Directory of Open Access Journals (Sweden)
Daniele De Martino
Full Text Available The uniform sampling of convex polytopes is an interesting computational problem with many applications in inference from linear constraints, but the performances of sampling algorithms can be affected by ill-conditioning. This is the case of inferring the feasible steady states in models of metabolic networks, since they can show heterogeneous time scales. In this work we focus on rounding procedures based on building an ellipsoid that closely matches the sampling space, that can be used to define an efficient hit-and-run (HR Markov Chain Monte Carlo. In this way the uniformity of the sampling of the convex space of interest is rigorously guaranteed, at odds with non markovian methods. We analyze and compare three rounding methods in order to sample the feasible steady states of metabolic networks of three models of growing size up to genomic scale. The first is based on principal component analysis (PCA, the second on linear programming (LP and finally we employ the Lovazs ellipsoid method (LEM. Our results show that a rounding procedure dramatically improves the performances of the HR in these inference problems and suggest that a combination of LEM or LP with a subsequent PCA perform the best. We finally compare the distributions of the HR with that of two heuristics based on the Artificially Centered hit-and-run (ACHR, gpSampler and optGpSampler. They show a good agreement with the results of the HR for the small network, while on genome scale models present inconsistencies.
Steady-state relative potency of aldosterone antagonists: spironolactone and prorenoate.
McInnes, G T; Shelton, J R; Harrison, I R
1981-05-01
The dose ratio approach was used to define the steady-state relative potency of the competitive mineralocorticoid antagonists prorenoate potassium and spironolactone in six healthy male subjects using fludrocortisone as mineralocorticoid agonist. Log fludrocortisone dose-response relationships in the presence or absence of antagonists did not differ from linearity and parallelism, supporting the theoretical basis of the method. Urinary sodium and plasma potassium responses appeared to behave according to the law of mass action, which made possible estimation of the potency of prorenoate relative to spironolactone on a weight basis-4.2:1 (95% C.L. 2.7-6.9:1) and 2.68:1 (95% C.L. 0.71-6.57:1, respectively. The steady-state relative potency for sodium excretion was greater than previously estimated after single doses. Mass action theory could not explain the urinary potassium and log 10 Na/K responses to repeated doses of spironolactone, precluding valid estimation of relative potency for these variables and suggesting that the latter response alone is an unreliable index of overall renal antimineralocorticoid activity.
Steady-state low thermal resistance characterization apparatus: The bulk thermal tester
Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas
2015-12-01
The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm2 K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.
Test-retest reliability of the 40 Hz EEG auditory steady-state response.
Directory of Open Access Journals (Sweden)
Kristina L McFadden
Full Text Available Auditory evoked steady-state responses are increasingly being used as a marker of brain function and dysfunction in various neuropsychiatric disorders, but research investigating the test-retest reliability of this response is lacking. The purpose of this study was to assess the consistency of the auditory steady-state response (ASSR across sessions. Furthermore, the current study aimed to investigate how the reliability of the ASSR is impacted by stimulus parameters and analysis method employed. The consistency of this response across two sessions spaced approximately 1 week apart was measured in nineteen healthy adults using electroencephalography (EEG. The ASSR was entrained by both 40 Hz amplitude-modulated white noise and click train stimuli. Correlations between sessions were assessed with two separate analytical techniques: a channel-level analysis across the whole-head array and b signal-space projection from auditory dipoles. Overall, the ASSR was significantly correlated between sessions 1 and 2 (p<0.05, multiple comparison corrected, suggesting adequate test-retest reliability of this response. The current study also suggests that measures of inter-trial phase coherence may be more reliable between sessions than measures of evoked power. Results were similar between the two analysis methods, but reliability varied depending on the presented stimulus, with click train stimuli producing more consistent responses than white noise stimuli.
Steady state RF facility for testing ITER ICRH RF contact component
Energy Technology Data Exchange (ETDEWEB)
Argouarch, A., E-mail: arnaud.argouarch@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bamber, R. [Euratom/CCFE Association, Culham Science Centre, Abingdon, Oxon, OX143DB (United Kingdom); Bernard, J.M.; Delaplanche, J.M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Durodié, F. [Laboratory for Plasmas Physics, 1000 Brussels (Belgium); Larroque, S.; Lecomte, P.; Lombard, G.; Hatchressian, J.C.; Mollard, P.; Mouyon, D.; Pagano, M.; Patterlini, J.C.; Rasio, S.; Soler, B.; Toulouse, L.; Thouvenin, D.; Verger, J.M.; Vigne, T.; Volpe, R. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)
2013-10-15
After the installation and commissioning of the TITAN [1,2], test facility, a key element – the T resonator – was assembled in order to facilitate testing components at high RF voltages and currents. This work is within the CEA roadmap for testing ITER ICRH components in a relevant environment. Several components of the future ITER ICRH antenna have been targeted. The embedded RF contact within the ITER ICRH antenna appeared as a critical component for antenna performance, requiring extensive R and D. Therefore, CEA has proposed and subsequently prepared a platform to test and validate the anticipated RF contact. A steady state resonator with active water cooling has been manufactured and assembled within the TITAN facility, including a hot pressurized water loop. The program consists of testing the contact at 2.25 kA and 62 MHz in steady state conditions. Sliding tests are also performed at high temperature and vacuum to understand component aging, including wear. The equipment installed is consistent with that required to test an ITER ICRH extensively.
Uterine metabolism of the pregnant rabbit under chronic steady-state conditions
Energy Technology Data Exchange (ETDEWEB)
Johnson, R.L.; Gilbert, M.; Block, S.M.; Battaglia, F.C.
1986-05-01
The study of uterine metabolism in pregnancy under chronic steady-state conditions has been confined to large mammals and, more recently, to the guinea pig. The pregnant rabbit is of interest because of its short gestation and large litter size. We developed an indirect approach involving retrograde catheterization of the uterine venous drainage, permitting measurement of both uterine metabolic quotients and uterine uptakes. Radioactive microspheres were used to measure blood flow. A large lactate and ammonia efflux from the uterus was found. In the fed state, ketogenic substrates were taken up in small amounts. However, during starvation a significant increase in ketoacid uptake was observed with a concurrent fall in acetate uptake. There was a large glucose/oxygen quotient across the uterus, but the glucose plus lactate/oxygen quotient was comparable to that found in the sheep and guinea pig (0.6 +/- 0.1). It is apparent that in all three species studied under chronic steady-state conditions (sheep, guinea pig, and rabbit) there is a large glucose uptake associated with a net lactate production, and fuels other than glucose and lactate must be used by the uterus.
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
Energy Technology Data Exchange (ETDEWEB)
Perez Polo, Manuel F. [Department of Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)]. E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia, UNED, C/Boyero 12-1A, Alicante 03007 (Spain)]. E-mail: ma_perez_m@hotmail.com
2007-07-15
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations.
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Energy Technology Data Exchange (ETDEWEB)
Doyon, Benjamin, E-mail: benjamin.doyon@kcl.ac.uk
2015-03-15
Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Camfield, D A; Scholey, A; Pipingas, A; Silberstein, R; Kras, M; Nolidin, K; Wesnes, K; Pase, M; Stough, C
2012-02-28
In a randomized, double-blind placebo controlled trial, 63 middle-aged volunteers aged between 40 and 65 years were administered a daily chocolate drink containing 250 mg or 500 mg cocoa flavanols versus a low cocoa flavanol (placebo) drink over a 30-day period. Participants were tested at baseline as well as at the end of the treatment period on a test of Spatial Working Memory. Steady State Probe Topography (SST) was used to assess neurocognitive changes associated with cocoa flavanol supplementation during the completion of the Spatial Working Memory task. SST is an electrophysiological technique which utilizes a 13 Hz diffuse visual flicker in order to generate a steady state visually evoked potential (SSVEP). Changes in the amplitude and phase of the SSVEP response after 30 days were compared between treatment groups. Behavioral measures of accuracy and reaction time were not found to be significantly different between treatment groups, while average SSVEP amplitude and phase differences at a number of posterior parietal and centro-frontal sites were found to be significantly different between groups during memory encoding, the working memory hold period and retrieval. In the absence of significant behavioral effects, these differences in brain activation can be interpreted as evidence of increased neural efficiency in spatial working memory function associated with chronic cocoa flavanol consumption. Copyright © 2011 Elsevier Inc. All rights reserved.
Peinado, A B; Filho, Dm Pessôa; Díaz, V; Benito, P J; Álvarez-Sánchez, M; Zapico, A G; Calderón, F J
2016-12-01
The aim was to determine whether the midpoint between ventilatory thresholds (MPVT) corresponds to maximal lactate steady state (MLSS). Twelve amateur cyclists (21.0 ± 2.6 years old; 72.2 ± 9.0 kg; 179.8 ± 7.5 cm) performed an incremental test (25 W·min-1) until exhaustion and several constant load tests of 30 minutes to determine MLSS, on different occasions. Using MLSS determination as the reference method, the agreement with five other parameters (MPVT; first and second ventilatory thresholds: VT1 and VT2; respiratory exchange ratio equal to 1: RER = 1.00; and Maximum) was analysed by the Bland-Altman method. The difference between workload at MLSS and VT1, VT2, RER=1.00 and Maximum was 31.1 ± 20.0, -86.0 ± 18.3, -63.6 ± 26.3 and -192.3 ± 48.6 W, respectively. MLSS was underestimated from VT1 and overestimated from VT2, RER = 1.00 and Maximum. The smallest difference (-27.5 ± 15.1 W) between workload at MLSS and MPVT was in better agreement than other analysed parameters of intensity in cycling. The main finding is that MPVT approached the workload at MLSS in amateur cyclists, and can be used to estimate maximal steady state.
Energy Technology Data Exchange (ETDEWEB)
Nichols, Todd Travis; Barnes, Charles Marshall; Lauerhass, Lance; Taylor, Dean Dalton
2001-06-01
The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from "road tests" that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.
Energy Technology Data Exchange (ETDEWEB)
Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.
2001-06-01
The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.
Steady state model and experiment for an oscillating grid turbulent two-layer stratified flow
Verso, Lilly; van Reeuwijk, Maarten; Liberzon, Alex
2017-10-01
Turbulence generated by an oscillating grid in a two-layer stably stratified system is a classical flow utilized to study various aspects of turbulence in presence of stratification without mean shear. This flow evolves in a quasisteady state, in which the layer thickness and density difference evolves in a quasisteady manner due to the large separation of timescales between the turbulence and the setup. We present an extension of the classical setup that enables full steady state conditions and in which the entrainment velocity can be prescribed separately from the Richardson number. We develop a theoretical box-model and show that the model is in good agreement with the experiments. The model allows to predict the transient response of the system for a variety of initial conditions and the imposed steady state. The new setup is necessary to obtain the steady position of the density interface, for example, when using advanced optical techniques to measure the small-scale features of turbulence near the interface.
Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers
DEFF Research Database (Denmark)
Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole
2015-01-01
PURPOSE: The aim of the study was to determine the steady-state pharmacokinetics of metformin in healthy volunteers with different numbers of reduced-function alleles in the organic cation transporter 1 gene (OCT1). METHODS: The study was conducted as part of a randomized cross-over trial. Thirty......-four healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9 with two reduced-function alleles) were included. In one of the study periods, they were titrated to steady-state with 1 g metformin twice daily. RESULTS: Neither AUC(0-12), C(max) nor Cl(renal) were...... statistically significantly affected by the number of reduced-function alleles (0, 1 or 2) in OCT1: (AUC(0-12): 0, 1, 2: 14, 13 and 14 h ng/L (P = 0.61)); (C(max): 0, 1, 2: 2192, 1934 and 2233 ng/mL, (P = 0.26)) and (Cl(renal): 0, 1, 2: 31, 28 and 30 L/h (P = 0.57)) CONCLUSIONS: In a cohort of healthy...
Macrophages: Key Regulators of Steady State and Demand-Adapted Hematopoiesis
McCabe, Amanda; MacNamara, Katherine C.
2016-01-01
Hematopoietic stem cell (HSC) function is required for balanced blood production throughout life, thus it is essential to understand the mechanisms regulating this highly dynamic process. Bone marrow-resident macrophages (Mϕs) have recently emerged as an important component of the HSC niche where they contribute to regulating HSC and progenitor cell (HSPC) mobilization and function. Here we review the role of Mϕs on immune cell production, HSPC pool size, and mobilization at steady state and under inflammatory conditions. Inflammation induces marked changes in hematopoiesis to restrict or promote generation of specific cell lineages, and this often has a negative impact on hematopoietic stem cell (HSC) function. Cytokines and growth factors induced during inflammation influence hematopoiesis by acting directly on HSPCs and/or by modulating niche cell function. We focus particular attention on the opposing effects of two key inflammatory proteins, interferon gamma (IFNγ) and granulocyte-colony stimulating factor (G-CSF), in regulating bone marrow-resident Mϕs and HSPCs. Mϕs are essential for tissue homeostasis, and here we highlight their emerging role as a central regulator of both steady state and demand-adapted hematopoiesis. PMID:26806720
Macrophages: Key regulators of steady-state and demand-adapted hematopoiesis.
McCabe, Amanda; MacNamara, Katherine C
2016-04-01
Hematopoietic stem cell (HSC) function is required for balanced blood production throughout life; it is thus essential to understand the mechanisms regulating this highly dynamic process. Bone marrow-resident macrophages (Mϕs) have recently emerged as an important component of the HSC niche, where they contribute to regulating HSC and progenitor cell (HSPC) mobilization and function. Here we review the role of macrophages (Mϕs) on immune cell production, HSPC pool size, and mobilization at steady state and under inflammatory conditions. Inflammation induces marked changes in hematopoiesis to restrict or promote generation of specific cell lineages, and this often has a negative impact on HSC function. Cytokines and growth factors induced during inflammation influence hematopoiesis by acting directly on HSPCs and/or by modulating niche cell function. We focus particular attention on the opposing effects of two key inflammatory proteins, interferon-γ and granulocyte-colony stimulating factor, in regulating bone marrow-resident macrophages (Mϕs) and HSPCs. Macrophages (Mϕs) are essential for tissue homeostasis, and here we highlight their emerging role as a central regulator of both steady-state and demand-adapted hematopoiesis. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Nunes, Luiza M.S. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Moraes, Tiago B. [Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13566-590 (Brazil); Barbosa, Lucio L. [Departamento de Química, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari 514, Vitória, Espírito Santo 29075-910 (Brazil); Mazo, Luiz H. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); and others
2014-11-19
Highlights: • Analysis of electrochemical reaction in situ by 13C NMR spectroscopy was demonstrated. • {sup 13}C NMR signals are obtained in few minutes, using steady-state free precession (SSFP) pulse sequence. • The analysis is performed in standard NMR spectrometer. • KBDM can be an alternative to Fourier Transform to process SSFP signal. - Abstract: All attempts to use in situ{sup 13}C NMR in spectroelectrochemical studies, using static cells and unlabeled substrates, have failed due to the very long average time (several hours). In this paper, we demonstrated that steady-state free precession (SSFP) pulse sequence can enhance signal to noise ratio and reduces the average time of {sup 13}C NMR signals by more than one order of magnitude. The results showed that each {sup 13}C NMR spectrum during the electrochemical reduction of 9-chloroanthracene, in a static cell, can be acquired in eleven minutes. This short averaging time allowed the analysis of the reaction every 30 min during 3 h. The phase and truncation anomalies present in SSFP spectra were minimized using Traff apodization function and Krylov basis diagonalization method (KBDM)
A high-density EEG investigation into steady state binaural beat stimulation.
Directory of Open Access Journals (Sweden)
Peter Goodin
Full Text Available Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz or Beta (16 Hz frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others.
Steady-state light-mechanical quantum steerable correlations in cavity optomechanics
Tan, Huatang; Deng, Wenwu; Wu, Qinglin; Li, Gaoxiang
2017-05-01
Einstein-Podolsky-Rosen (EPR) steering is a quantum nonlocal effect which is intrinsically distinct from Bell nonlocality and quantum entanglement. In this paper, we investigate in detail the properties of steady-state light-mechanical Gaussian steerable correlations in a generic cavity optomechanical system. When considering the steering between the intracavity field and the mechanical oscillator, we find that under blue-detuned driving, the steady-state steering via optomechanical parametric downconversion is present in only one direction and, moreover, the steering direction is determined merely by the relative dissipation strength of the cavity to the mechanics. Furthermore, when considering the steering between the cavity output field and the mechanical oscillator, we reveal that under red-detuned driving, strong steering can be achieved in the sideband-unresolved regime for a filtered output field with given central frequency and bandwidth. This steering with the output field can also be present in one way by adjusting the driving strength and exists up to the environment temperature T ≈10 K for the parameters close to those in the recent experiments. Finally, we show that the achieved strong light-mechanical correlations can be explored to realize macroscopic EPR steering of two distant optomechanical oscillators in the regime of unresolved sidebands via entanglement swapping.
Steady-state spin synchronization through the collective motion of trapped ions
Shankar, Athreya; Cooper, John; Bohnet, Justin; Bollinger, John; Holland, Murray
2017-04-01
Ultranarrow-linewidth atoms coupled to a lossy optical cavity mode synchronize, i.e. develop correlations, and exhibit steady-state superradiance when continuously repumped. This type of system displays rich collective physics and promises metrological applications. These features inspire us to investigate if a model inspired from cavity superradiance can generate analogous spin synchronization in a different platform that is one of the most robust and controllable experimental testbeds currently available: ion-trap systems. We design a system with a primary and secondary species of ions that share a common set of normal modes of vibration. In analogy to the lossy optical mode, we propose to use a lossy normal mode, obtained by sympathetic cooling with the secondary species of ions, to mediate spin synchronization in the primary species of ions. Our numerical study shows that spin-spin correlations develop, leading to a macroscopic collective spin in steady-state. We propose an experimental method based on Ramsey interferometry to detect signatures of this collective spin; we predict that correlations prolong the visibility of Ramsey fringes, and that population statistics at the end of the Ramsey sequence can be used to directly infer spin-spin correlations.
Directory of Open Access Journals (Sweden)
Berzan V.
2015-12-01
Full Text Available The low-voltage electrical distribution networks are characterized by ramified topology and spatial distribution of the consumers connected to the power supply. This leads to certain difficulties in calculation of such circuits even in the case of steady state mode, since even in stationary case a new separate problem must be solved each time. We have to mention that these difficulties are even more pronounced in the case of the circuit transient analysis. This paper proposes a generalized approach to calculation of steady-state and transient regimes in the branched distribution networks with RLC loads. To solve this problem we propose to use the mesh currents method, representation of the system of equations in matrix form and the Laplace transform. This gives the possibility to determine the characteristics of the current and voltage changes over time in the network and in the load. The difference between the obtained results and the known results, published in the open sources, is determined by the fact that the calculation of stationary and transient modes, is performed using the same calculations algorithm for both stationary and transient regimes.
Hamedi, H. R.
2014-09-01
The transient and steady-state dispersion and absorption properties of a three-subband asymmetric semiconductor quantum well system are investigated. In the steady-state regime, it is shown that by increasing the strength of Fano-interference as well as enhancement of energy splitting of two excited states the slope of dispersion changes from negative to positive which is corresponding to a switch between superluminal to subluminal light propagation. At the same time, the probe absorption reduces at telecommunication wavelength λ = 1550 nm. The influence of incoherent pumping fields on time-dependent susceptibility is then discussed. It is found that due to more transfer of population to the upper levels, increasing the rate of incoherent pump field leads to the reduction of probe absorption. In addition, it is realized that incoherent pumping has a major role in converting fast to slow propagation of light at long wavelength. We also introduce an extra controllability for the light pulse to be slow downed at Telecom wavelength just through the quantum interference arising from incoherent pumping fields. The obtained results may be practical in telecommunication applications.
Steady-state low thermal resistance characterization apparatus: The bulk thermal tester
Energy Technology Data Exchange (ETDEWEB)
Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas, E-mail: tbr@zurich.ibm.com [IBM Research—Zurich, 8803 Rüschlikon (Switzerland)
2015-12-15
The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm{sup 2} K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.
Steady-state low thermal resistance characterization apparatus: The bulk thermal tester.
Burg, Brian R; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas
2015-12-01
The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm(2) K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.
'Memory' and sustention of microdischarges in a steady-state DBD: volume plasma or surface charge?
Akishev, Yuri; Aponin, Gregory; Balakirev, Anton; Grushin, Mikhail; Karalnik, Vladimir; Petryakov, Alexander; Trushkin, Nikolay
2011-04-01
The results of a numerical study on the spatio-temporal behavior of transient microdischarges (MDs) in a steady-state dielectric barrier discharge (DBD) excited by a sinusoidal voltage are presented. MDs have a spatial 'memory'—every subsequent MD appears at exactly the same location occupied by the MD at the preceding half-period (HP). In the majority of cases each MD appears at its location only once during every HP. For such a case, the memory effect is not attributed to the residual surface charge deposited by the preceding MD but determined by the residual MD plasma column shunting the gap right up to the beginning of the next HP. In contrast to good memory in space, each individual MD has a large scatter with time in its appearance within every HP, i.e. there is no 'memory' concerning the phase of an applied voltage. This MD jittering within the period is attributed to the stochastic nature of partial surface breakdowns around the bases of the MD plasma column. Numerical calculations show that surface breakdown provides an MD current splash at every HP. Hence, in the steady-state DBD, the volume plasma is responsible for the existence of MD spatial 'memory' (i.e. where the MD appears), and the deposited surface charge is responsible for MD jittering in time (i.e. when the MD appears). Hot topic report presented at the 20th ESCAMPIG, 13-17 July 2010, Novi Sad, Serbia.
Effects of initial height on the steady-state persistence probability of linear growth models
Chanphana, R.; Chatraphorn, P.; Dasgupta, C.
2013-12-01
The effects of the initial height on the temporal persistence probability of steady-state height fluctuations in up-down symmetric linear models of surface growth are investigated. We study the (1+1)-dimensional Family model and the (1+1)- and (2+1)-dimensional larger curvature (LC) model. Both the Family and LC models have up-down symmetry, so the positive and negative persistence probabilities in the steady state, averaged over all values of the initial height h0, are equal to each other. However, these two probabilities are not equal if one considers a fixed nonzero value of h0. Plots of the positive persistence probability for negative initial height versus time exhibit power-law behavior if the magnitude of the initial height is larger than the interface width at saturation. By symmetry, the negative persistence probability for positive initial height also exhibits the same behavior. The persistence exponent that describes this power-law decay decreases as the magnitude of the initial height is increased. The dependence of the persistence probability on the initial height, the system size, and the discrete sampling time is found to exhibit scaling behavior.
Jacobs, Christian T; Kramer, Stephan C; Funke, Simon W
2016-01-01
Extracting the optimal amount of power from an array of tidal turbines requires an intricate understanding of tidal dynamics and the effects of turbine placement on the local and regional scale flow. Numerical models have contributed significantly towards this understanding, and more recently, adjoint-based modelling has been employed to optimise the positioning of the turbines in an array in an automated way and improve on simple, regular man-made configurations. Adjoint-based optimisation of high-resolution and ideally 3D transient models is generally a very computationally expensive problem. As a result, existing work on the adjoint optimisation of tidal turbine placement has been mostly limited to steady-state simulations in which very high, non-physical values of the background viscosity are required to ensure that a steady-state solution exists. However, such compromises may affect the reliability of the modelled turbines, their wakes and interactions, and thus bring into question the validity of the co...
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber
Directory of Open Access Journals (Sweden)
Singhal Mayank
2017-01-01
Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.
Single-dose and steady-state pharmacokinetics of fentanyl buccal tablet in healthy volunteers.
Darwish, Mona; Kirby, Mary; Robertson, Philmore; Hellriegel, Edward; Jiang, John G
2007-01-01
This study evaluated the single-dose and steady-state pharmacokinetics of fentanyl buccal tablet 400 microg in healthy adult volunteers. After receiving naltrexone 50 mg to block opioid receptor-mediated effects of fentanyl, subjects received fentanyl buccal tablet 400 microg on day 1, then every 6 hours from day 4 to day 9 (21 doses). Naltrexone 50 mg was administered every 12 hours throughout the study. Plasma fentanyl concentrations were determined for 72 hours after administration of fentanyl buccal tablet 400 microg on day 1 and the last dose of fentanyl buccal tablet 400 microg on day 9. Following single- and multiple-dose administration of fentanyl buccal tablet, the median time to maximum concentration (tmax) was 52.2 and 49.8 minutes, respectively. Peak plasma concentration of fentanyl (Cmax) was 0.88 ng/mL for the single-dose regimen and 1.77 ng/mL for the multiple-dose regimen. Steady state was reached within 5 days, consistent with the observed median half-life of approximately 22 hours following multiple doses. Observed accumulation of fentanyl after multiple doses of fentanyl buccal tablet was slightly greater than would be expected based on the single-dose data. This was attributed to the redistribution of fentanyl from a deep tissue compartment into the plasma. This study indicates that fentanyl buccal tablet has predictable pharmacokinetics following multiple-dose administration.
Modelling the Steady State of Sewage Networks as a Support Tool for Their Planning and Analysis
Directory of Open Access Journals (Sweden)
Grażyna Petriczek
2015-01-01
Full Text Available Fundamental questions connected with the modelling of communal sewage networks have been considered and formulas used to model the functioning of the basic network have been analyzed. The problem described concerns gravitational sewage networks divided by nodes into branches and sectors. Simulation of the steady state functioning of sewage networks is commonly carried out on the basis of nomograms in the form of charts, in which the relations between network parameters like channel diameters, flow rates, hydraulic slopes and flow velocities are described. In traditional design, the values of such parameters are simply read from such nomogram chart tables. Another way of simulating the functioning of a network is the use of professional software, like SWMM, that models sewage flows along the channels by means of differential equations de-scribing the movement of fluids. In both approaches, the user is a mechanical operator of a "black box" procedure. In this paper, another way of simulating the functioning of sewage net-works has been presented. Numerical solutions of nonlinear equations describing the physical phenomena of sewage flows are applied and explained. The presented algorithms were developed to model the steady state of a sewage network enabling a quick analysis of the network parameters and the possibility of fast, simple and comprehensible network modeling and design. (original abstract
Critical loads and steady-state chemistry for streams in the state of Maryland.
Sverdrup, H; Warfvinge, P; Rabenhorst, M; Janicki, A; Morgan, R; Bowman, M
1992-01-01
The critical loads to streams, steady-state stream chemistry and catchment chemical weathering rate in 73 catchments has been determined in the state of Maryland, USA. It was calculated with the PROFILE model from chemical limits for biological indicators, soil mineralogy, soil texture, annual average temperature, average soil moisture, net long-term uptake of base cations and nitrogen to the vegetation, annual precipitation and runoff and deposition of sulphur and nitrogen precursors of acid deposition. The results show a full range of critical loads from very low values in the sensitive catchments of western Maryland and the Coastal Plain on the Chesapeake Bay, to insensitive catchments in the Fredrick Valley and Ridge and the Piedmont plain. The critical loads will be used as an input to an integrated regional assessment of the quantitative sensitivity of streams to acid rain, and the assessment of regional stream alkalinity response to different abatement strategies. The mapping of steady-state stream chemistry indicates that streams in Maryland are still acidfying under the present deposition load. Land-use seems to play an important role in maintaining neutral pH in many of the streams of Maryland.
Mauldin, F W; Haider, M A; Loboa, E G; Behler, R H; Euliss, L E; Pfeiler, T W; Gallippi, C M
2008-07-01
Acoustic radiation force imaging methods distinguish tissue structure and composition by monitoring tissue responses to applied radiation force excitations. Although these responses are a complex, multidimensional function of the geometric and viscoelastic nature of tissue, simplified discrete biomechanical models offer meaningful insight to the physical phenomena that govern induced tissue motion. Applying Voigt and standard linear viscoelastic tissue models, we present a new radiation force technique - monitored steady-state excitation and recovery (MSSER) imaging - that tracks both steady-state displacement during prolonged force application and transient response following force cessation to estimate tissue mechanical properties such as elasticity and viscosity. In concert with shear wave elasticity imaging (SWEI) estimates for Young's modulus, MSSER methods are useful for estimating tissue mechanical properties independent of the applied force magnitude. We test our methods in gelatin phantoms and excised pig muscle, with confirmation through mechanical property measurement. Our results measured 10.6 kPa, 14.7 kPa, and 17.1 kPa (gelatin) and 122.4 kPa (pig muscle) with less than 10% error. This work demonstrates the feasibility of MSSER imaging and merits further efforts to incorporate relevant mechanical tissue models into the development of novel radiation force imaging techniques.
Energy Technology Data Exchange (ETDEWEB)
Park, Jae Young; Ekaputra, I. M. W.; Kim, Seon Jin [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeong (Korea, Republic of)
2015-12-15
A correlation between the transient regime and steady state regime on the creep crack growth (CCG) for Grade 91 steel, which is used as the structural material for the Gen-IV reactor systems, was investigated. A series of CCG tests were performed using 1/2' CT specimens under a constant applied load and at a constant temperature of 600 °C. The CCG rates for the transient and steady state regimes were obtained in terms of C* parameter. The transient CCG rate had a close correlation with the steady-state CCG rate, as the slope of the transient CCG data was very similar to that of the steady state data. The transient rate was slower by 5.6 times as compared to the steady state rate. It can be inferred that the steady state CCG rate, which is required for long-time tests, can be predicted from the transient CCG rate obtained from short-time tests.