WorldWideScience

Sample records for enzyme kinetic performance

  1. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  2. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    Science.gov (United States)

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  3. A stochastic model of enzyme kinetics

    Science.gov (United States)

    Stefanini, Marianne; Newman, Timothy; McKane, Alan

    2003-10-01

    Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.

  4. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  5. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  6. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  7. Kinetics of enzyme action: essential principles for drug hunters

    National Research Council Canada - National Science Library

    Stein, Ross L

    2011-01-01

    ... field. Beginning with the most basic principles pertaining to simple, one-substrate enzyme reactions and their inhibitors, and progressing to a thorough treatment of two-substrate enzymes, Kinetics of Enzyme Action...

  8. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  10. Stochastic theory of interfacial enzyme kinetics: A kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Das, Biswajit; Gangopadhyay, Gautam

    2012-01-01

    Graphical abstract: Stochastic theory of interfacial enzyme kinetics is formulated. Numerical results of macroscopic phenomenon of lag-burst kinetics is obtained by using a kinetic Monte Carlo approach to single enzyme activity. Highlights: ► An enzyme is attached with the fluid state phospholipid molecules on the Langmuir monolayer. ► Through the diffusion, the enzyme molecule reaches the gel–fluid interface. ► After hydrolysing a phospholipid molecule it predominantly leaves the surface in the lag phase. ► The enzyme is strictly attached to the surface with scooting mode of motion and the burst phase appears. - Abstract: In the spirit of Gillespie’s stochastic approach we have formulated a theory to explore the advancement of the interfacial enzyme kinetics at the single enzyme level which is ultimately utilized to obtain the ensemble average macroscopic feature, lag-burst kinetics. We have provided a theory of the transition from the lag phase to the burst phase kinetics by considering the gradual development of electrostatic interaction among the positively charged enzyme and negatively charged product molecules deposited on the phospholipid surface. It is shown that the different diffusion time scales of the enzyme over the fluid and product regions are responsible for the memory effect in the correlation of successive turnover events of the hopping mode in the single trajectory analysis which again is reflected on the non-Gaussian distribution of turnover times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.

  11. Current IUBMB recommendations on enzyme nomenclature and kinetics

    Directory of Open Access Journals (Sweden)

    Athel Cornish-Bowden

    2014-05-01

    Full Text Available The International Union of Biochemistry (IUB, now IUBMB prepared recommendations for describing the kinetic behaviour of enzymes in 1981. Despite the more than 30 years that have passed since these have not subsequently been revised, though in various respects they do not adequately cover current needs. The IUBMB is also responsible for recommendations on the naming and classification of enzymes. In contrast to the case of kinetics, these recommendations are kept continuously up to date.

  12. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase

    Science.gov (United States)

    Bassingthwaighte, James B.; Chinn, Tamara M.

    2013-01-01

    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  13. An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics

    DEFF Research Database (Denmark)

    Kari, Jeppe; Andersen, Morten; Borch, Kim

    2017-01-01

    Interfacial enzyme reactions are ubiquitous both in vivo and in technical applications, but analysis of their kinetics remains controversial. In particular, it is unclear whether conventional Michaelis–Menten theory, which requires a large excess of substrate, can be applied. Here, an extensive...... experimental study of the enzymatic hydrolysis of insoluble cellulose indeed showed that the conventional approach had a limited applicability. Instead we argue that, unlike bulk reactions, interfacial enzyme catalysis may reach a steady-state condition in the opposite experimental limit, where...... for kinetic analyses of interfacial enzyme reactions and that its analogy to established theory provides a bridge to the accumulated understanding of steady-state enzyme kinetics. Finally, we show that the ratio of parameters from conventional and inverted Michaelis–Menten analysis reveals the density...

  14. A century of enzyme kinetic analysis, 1913 to 2013.

    Science.gov (United States)

    Johnson, Kenneth A

    2013-09-02

    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Enzyme Kinetics? Elementary, my dear 3 -8 ...

    Indian Academy of Sciences (India)

    research interests are in the areas of protein- ... rate constant for the formation of products, k3 is significantly of some enzymes. ... tissue at different stages of development. .... represent the only values of Km and V max that satisfy all of the sets.

  16. Transition state theory for enzyme kinetics

    Science.gov (United States)

    Truhlar, Donald G.

    2015-01-01

    This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760

  17. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  18. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  19. Mesoscopic dynamics of diffusion-influenced enzyme kinetics

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-01

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  20. Enzyme activity and kinetics in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Duddridge, J E; Wainwright, M

    1982-01-01

    In determining the effects of heavy metals in microbial activity and litter degradation in river sediments, one approach is to determine the effects of these pollutants on sediment enzyme activity and synthesis. Methods to assay amylase, cellulase and urease activity in diverse river sediments are reported. Enzyme activity was low in non-amended sediments, but increased markedly when the appropriate substrate was added, paralleling both athropogenic and natural amendment. Linear relationships between enzyme activity, length of incubation, sample size and substrate concentration were established. Sediment enzyme activity generally obeyed Michaelis-Menton kinetics, but of the three enzymes, urease gave least significant correlation coefficients when the data for substrate concentration versus activity was applied to the Eadie-Hofstee transformation of the Michaelis-Menten equation. K/sub m/ and V/sub max/ for amylase, cellulase and urease in sediments are reported. (JMT)

  1. [Enzyme kinetic glucose determination by the glucose dehydrogenase method. Enzyme kinetic substrate determination using competitive inhibitors, II (author's transl)].

    Science.gov (United States)

    Müller-Matthesius, R

    1975-05-01

    The sensitivity of enzyme kinetic substrate determinations can be improved with the aid of competitive inhibitors. As an example, the determination of glucose dehydrogenase in the presence of potassium thiocyanate is described. The method has the advantage of rapid operation with satisfactory precision.

  2. Modeling physiological processes in plankton on enzyme kinetic principles

    Directory of Open Access Journals (Sweden)

    Ted Packard

    2004-04-01

    Full Text Available Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.

  3. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Kari, Jeppe; Borch, Kim

    2017-01-01

    of insoluble substrate. Perhaps for this reason, transient kinetics has rarely been reported for heterogeneous enzyme reactions. Here, we describe a quenched-flow system using peristaltic pumps and stirred substrate suspensions with a dead time below 100 ms. The general performance was verified by alkali...

  4. A Sensitive and Robust Enzyme Kinetic Experiment Using Microplates and Fluorogenic Ester Substrates

    Science.gov (United States)

    Johnson, R. Jeremy; Hoops, Geoffrey C.; Savas, Christopher J.; Kartje, Zachary; Lavis, Luke D.

    2015-01-01

    Enzyme kinetics measurements are a standard component of undergraduate biochemistry laboratories. The combination of serine hydrolases and fluorogenic enzyme substrates provides a rapid, sensitive, and general method for measuring enzyme kinetics in an undergraduate biochemistry laboratory. In this method, the kinetic activity of multiple protein…

  5. On enzyme kinetic parameters modification of gamma irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.S.; Ferdes, M.; Turcu, G.R.

    1993-01-01

    To elucidate the molecular mechanisms of gamma-ray action on biomolecules there were investigated the modifications in activity and other kinetic parameters for some enzymes irradiated in pure dry state at relative high doses. There were considered bacterial and fungal α-amylases, glucoamylase and Mucor sp. protease irradiated by a 60 Co gamma-ray source in the dose range 1.0-30.0 kGy, at different dose-rates between 0.5-2.0 kGy/h, at room temperature. Considering the enzyme inactivation in this dose range, the dose-effect relationships have an expected form and depend on the irradiation conditions but not significantly on the dose rate. The catalytic properties of enzymes were modified by irradiation. By usual methods it is evidenced a direct correlation between the enzymatic activities, Michaelis-Menten constant, K m , reaction velocities, v, and the irradiation dose. These experimental findings can support a self-consistent theoretical approach on biophysical radiation action on biological active molecules like enzymes. At the same time, some enzyme behaviour to irradiation could be considered like a good biological indicator of radiation response. (Author) 4 Figs., 19 Refs

  6. Enzyme Kinetics Experiment with the Multienzyme Complex Viscozyme L and Two Substrates for the Accurate Determination of Michaelian Parameters

    Science.gov (United States)

    Guerra, Nelson Pérez

    2017-01-01

    A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…

  7. Evaluation method for the drying performance of enzyme containing formulations

    DEFF Research Database (Denmark)

    Sloth, Jakob; Bach, P.; Jensen, Anker Degn

    2008-01-01

    A method is presented for fast and cheap evaluation of the performance of enzyme containing formulations in terms of preserving the highest enzyme activity during spray drying. The method is based on modeling the kinetics of the thermal inactivation reaction which occurs during the drying process....... Relevant kinetic parameters are determined from differential scanning calorimeter (DSC) experiments and the model is used to simulate the severity of the inactivation reaction for temperatures and moisture levels relevant for spray drying. After conducting experiments and subsequent simulations...... for a number of different formulations it may be deduced which formulation performs best. This is illustrated by a formulation design study where 4 different enzyme containing formulations are evaluated. The method is validated by comparison to pilot scale spray dryer experiments....

  8. Proteomic analyses for profiling regulated proteins/enzymes by Fucus vesiculosus fucoidan in B16 melanoma cells: A combination of enzyme kinetics functional study.

    Science.gov (United States)

    Wang, Zhi-Jiang; Zheng, Li; Yang, Jun-Mo; Kang, Yani; Park, Yong-Doo

    2018-06-01

    Fucoidans are complex sulfated polysaccharides that have a wide range of biological activities. Previously, we reported the various effects of Fucus vesiculosus fucoidan on tyrosinase and B16 melanoma cells. In this study, to identify fucoidan-targeted proteins in B16 melanoma cells, we performed a proteomics study and integrated enzyme kinetics. We detected 19 candidate proteins dysregulated by fucoidan treatment. Among the probed proteins, the enzyme kinetics of two candidate enzymes, namely lactate dehydrogenase (LDH) as an upregulated protein and superoxide dismutase (SOD) as a downregulated enzyme, were determined. The enzyme kinetics results showed that Fucus vesiculosus fucoidan significantly inhibited LDH catalytic function while it did not affect SOD activity even at a high dose, while only slightly decreased activity (up to 10%) at a low dose. Based on our previous and present observations, fucoidan could inhibit B16 melanoma cells growth via regulating proteins/enzymes expression levels such as LDH and SOD known as cell survival biomarkers. Interestingly, both expression level and enzyme catalytic activity of LDH were regulated by fucoidan, which could directly induce the apoptotic effect on B16 melanoma cells along with SOD downregulation. This study highlights how combining proteomics with enzyme kinetics can yield valuable insights into fucoidan targets. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Kinetic memory based on the enzyme-limited competition.

    Science.gov (United States)

    Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2014-08-01

    Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability memory scheme, we propose "kinetic memory" for epigenetic cellular memory, in which memory is stored as a slow-relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In particular, applications for long-term potentiation are discussed

  10. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    Science.gov (United States)

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Measurement of Enzyme Kinetics by Use of a Blood Glucometer: Hydrolysis of Sucrose and Lactose

    Science.gov (United States)

    Heinzerling, Peter; Schrader, Frank; Schanze, Sascha

    2012-01-01

    An alternative analytical method for measuring the kinetic parameters of the enzymes invertase and lactase is described. Invertase hydrolyzes sucrose to glucose and fructose and lactase hydrolyzes lactose to glucose and galactose. In most enzyme kinetics studies, photometric methods or test strips are used to quantify the derivates of the…

  12. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    Science.gov (United States)

    Flurkey, William H.; Inlow, Jennifer K.

    2017-01-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  13. A Hands-On Classroom Simulation to Demonstrate Concepts in Enzyme Kinetics

    Science.gov (United States)

    Junker, Matthew

    2010-01-01

    A classroom exercise is described to introduce enzyme kinetics in an undergraduate biochemistry or chemistry course. The exercise is a simulation in which a student acts as an enzyme that "catalyzes" the unscrewing of a nut from a bolt. With other students assisting, the student enzyme carries out reactions with bolt-nut substrates under different…

  14. Enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis

    NARCIS (Netherlands)

    Bokma, Evert; Barends, Thomas; Terwisscha van Scheltinga, Anke C.; Dijkstra, Bauke W.; Beintema, Jaap J.

    2000-01-01

    The enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis, were studied in detail with a new enzyme assay. In this assay, the enzyme reaction products were derivatized by reductive coupling to a chromophore, Products mere separated by HPLC and the amount of product was

  15. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  16. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  17. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  18. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  19. Automated Determination of Oxygen-Dependent Enzyme Kinetics in a Tube-in-Tube Flow Reactor.

    Science.gov (United States)

    Ringborg, Rolf H; Toftgaard Pedersen, Asbjørn; Woodley, John M

    2017-09-08

    Enzyme-mediated oxidation is of particular interest to synthetic organic chemists. However, the implementation of such systems demands knowledge of enzyme kinetics. Conventionally collecting kinetic data for biocatalytic oxidations is fraught with difficulties such as low oxygen solubility in water and limited oxygen supply. Here, we present a novel method for the collection of such kinetic data using a pressurized tube-in-tube reactor, operated in the low-dispersed flow regime to generate time-series data, with minimal material consumption. Experimental development and validation of the instrument revealed not only the high degree of accuracy of the kinetic data obtained, but also the necessity of making measurements in this way to enable the accurate evaluation of high K MO enzyme systems. For the first time, this paves the way to integrate kinetic data into the protein engineering cycle.

  20. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    Science.gov (United States)

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  1. Automated Determination of Oxygen-Dependent Enzyme Kinetics in a Tube-in-Tube Flow Reactor

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Pedersen, Asbjørn Toftgaard; Woodley, John

    2017-01-01

    revealed not only the high degree of accuracy of the kinetic data obtained, but also the necessity of making measurements in this way to enable the accurate evaluation of high KMO enzyme systems. For the first time, this paves the way to integrate kinetic data into the protein engineering cycle....

  2. SigrafW: An Easy-to-Use Program for Fitting Enzyme Kinetic Data

    Science.gov (United States)

    Leone, Francisco Assis; Baranauskas, Jose Augusto; Furriel, Rosa Prazeres Melo; Borin, Ivana Aparecida

    2005-01-01

    SigrafW is Windows-compatible software developed using the Microsoft[R] Visual Basic Studio program that uses the simplified Hill equation for fitting kinetic data from allosteric and Michaelian enzymes. SigrafW uses a modified Fibonacci search to calculate maximal velocity (V), the Hill coefficient (n), and the enzyme-substrate apparent…

  3. More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics

    Science.gov (United States)

    Lechner, Joseph H.

    2011-01-01

    Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)

  4. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  5. Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry.

    Science.gov (United States)

    Hansen, Lee D; Transtrum, Mark K; Quinn, Colette; Demarse, Neil

    2016-05-01

    Isothermal calorimetry allows monitoring of reaction rates via direct measurement of the rate of heat produced by the reaction. Calorimetry is one of very few techniques that can be used to measure rates without taking a derivative of the primary data. Because heat is a universal indicator of chemical reactions, calorimetry can be used to measure kinetics in opaque solutions, suspensions, and multiple phase systems and does not require chemical labeling. The only significant limitation of calorimetry for kinetic measurements is that the time constant of the reaction must be greater than the time constant of the calorimeter which can range from a few seconds to a few minutes. Calorimetry has the unique ability to provide both kinetic and thermodynamic data. This article describes the calorimetric methodology for determining reaction kinetics and reviews examples from recent literature that demonstrate applications of titration calorimetry to determine kinetics of enzyme-catalyzed and ligand binding reactions. A complete model for the temperature dependence of enzyme activity is presented. A previous method commonly used for blank corrections in determinations of equilibrium constants and enthalpy changes for binding reactions is shown to be subject to significant systematic error. Methods for determination of the kinetics of enzyme-catalyzed reactions and for simultaneous determination of thermodynamics and kinetics of ligand binding reactions are reviewed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Kinetics based reaction optimization of enzyme catalysed reduction of formaldehyde to methanol with synchronous cofactor regeneration

    DEFF Research Database (Denmark)

    Marpani, Fauziah Binti; Sárossy, Zsuzsa; Pinelo, Manuel

    2017-01-01

    regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO2 to CH3 OH, with kinetically synchronous enzymatic cofactor...... regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization...... experiments were conducted to verify the kinetically modelled results. Repetitive reaction cycles were shown to enhance the yield of CH3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes...

  7. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.

    Science.gov (United States)

    Brown, Katherine A; Song, Qing; Mulder, David W; King, Paul W

    2014-10-28

    Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (kET) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to k(ET) values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (ΔGET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that k(ET) and H2 production for CdTe-CaI complexes are not strictly controlled by ΔG(ET) and that other factors must be considered.

  8. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.

    Science.gov (United States)

    Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda

    2014-01-01

    Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.

  9. Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment.

    Directory of Open Access Journals (Sweden)

    Kelath Murali Manoj

    Full Text Available Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP, uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the "steady state kinetics" of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of "the product of interest" in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of "substrate concentration at maximum observed rate". The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes.

  10. Simulation of the kinetics of enzymic hydrolysis of starch in standard apparatus used in alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Rovinskii, L A; Yarovenko, V L

    1977-01-01

    A mathematical model is described for kinetics of enzymic hydrolysis of starch in standard apparatus used in alcohol fermentation. The apparatus with uniform mixing and displacement was highly superior compared with other apparatuses. Differences of temperature with the apparatus significantly affects the rate of starch hydrolysis compared with constant temperature.

  11. The renneting of milk : a kinetic study of the enzymic and aggregation reactions

    NARCIS (Netherlands)

    Hooydonk, van A.C.M.

    1987-01-01

    The rennet-induced clotting of milk was studied under various conditions. The kinetics of the enzymic and aggregation reactions was analysed separately and, where possible, related to the physico-chemical properties of the casein micelle and its environment.

    The effects of important

  12. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory...

  13. Enzyme allocation problems in kinetic metabolic networks: Optimal solutions are elementary flux modes

    Czech Academy of Sciences Publication Activity Database

    Müller, Stefan; Regensburger, G.; Steuer, Ralf

    2014-01-01

    Roč. 347, APR 2014 (2014), s. 182-190 ISSN 0022-5193 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : metabolic optimization * enzyme kinetics * oriented matroid * elementary vector * conformal sum Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.116, year: 2014

  14. Kinetics of Single-Enzyme Reactions on Vesicles: Role of Substrate Aggregation

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2015-03-01

    Enzymatic reactions occurring in vivo on lipid membranes can be influenced by various factors including macromolecular crowding in general and substrate aggregation in particular. In academic studies, the role of these factors can experimentally be clarified by tracking single-enzyme kinetics occurring on individual lipid vesicles. To extend the conceptual basis for such experiments, we analyze herein the corresponding kinetics mathematically with emphasis on the role of substrate aggregation. In general, the aggregation may occur on different length scales. Small aggregates may e.g. contain a few proteins or peptides while large aggregates may be mesoscopic as in the case of lipid domains which can be formed in the membranes composed of different lipids. We present a kinetic model describing comprehensively the effect of aggregation of the former type on the dependence of the reaction rate on substrate membrane concentration. The results obtained with physically reasonable parameters indicate that the aggregation-related deviations from the conventional Michaelis-Menten kinetics may be appreciable. Special Issue Comments: This theoretical article is focused on single-enzyme reactions occurring in parallel with substrate aggregation on individual vesicles. This subject is related to a few Special Issue articles concerning enzyme dynamics6,7 and function8 and mathematical aspects of stochastic kinetics.9

  15. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  16. Kinetics and spatial distribution of enzymes of carbon, nitrogen and phosphorus cycles in earthworm biopores

    Science.gov (United States)

    Hoang Thi Thu, Duyen; Razavi, Bahar S.

    2016-04-01

    Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil

  17. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.

    Science.gov (United States)

    Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S

    2017-12-01

    Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.

  18. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.

    Science.gov (United States)

    Bezerra, Rui M F; Fraga, Irene; Dias, Albino A

    2013-01-01

    Enzyme kinetic parameters are usually determined from initial rates nevertheless, laboratory instruments only measure substrate or product concentration versus reaction time (progress curves). To overcome this problem we present a methodology which uses integrated models based on Michaelis-Menten equation. The most severe practical limitation of progress curve analysis occurs when the enzyme shows a loss of activity under the chosen assay conditions. To avoid this problem it is possible to work with the same experimental points utilized for initial rates determination. This methodology is illustrated by the use of integrated kinetic equations with the well-known reaction catalyzed by alkaline phosphatase enzyme. In this work nonlinear regression was performed with the Solver supplement (Microsoft Office Excel). It is easy to work with and track graphically the convergence of SSE (sum of square errors). The diagnosis of enzyme inhibition was performed according to Akaike information criterion. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    Science.gov (United States)

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  20. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    Science.gov (United States)

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  1. A Numerical Procedure for Model Identifiability Analysis Applied to Enzyme Kinetics

    DEFF Research Database (Denmark)

    Daele, Timothy, Van; Van Hoey, Stijn; Gernaey, Krist

    2015-01-01

    The proper calibration of models describing enzyme kinetics can be quite challenging. In the literature, different procedures are available to calibrate these enzymatic models in an efficient way. However, in most cases the model structure is already decided on prior to the actual calibration...... and Pronzato (1997) and which can be easily set up for any type of model. In this paper the proposed approach is applied to the forward reaction rate of the enzyme kinetics proposed by Shin and Kim(1998). Structural identifiability analysis showed that no local structural model problems were occurring......) identifiability problems. By using the presented approach it is possible to detect potential identifiability problems and avoid pointless calibration (and experimental!) effort....

  2. Empirical evaluation of a virtual laboratory approach to teach lactate dehydrogenase enzyme kinetics.

    Science.gov (United States)

    Booth, Christine; Cheluvappa, Rajkumar; Bellinson, Zack; Maguire, Danni; Zimitat, Craig; Abraham, Joyce; Eri, Rajaraman

    2016-06-01

    Personalised instruction is increasingly recognised as crucial for efficacious learning today. Our seminal work delineates and elaborates on the principles, development and implementation of a specially-designed adaptive, virtual laboratory. We strived to teach laboratory skills associated with lactate dehydrogenase (LDH) enzyme kinetics to 2nd-year biochemistry students using our adaptive learning platform. Pertinent specific aims were to:(1)design/implement a web-based lesson to teach lactate dehydrogenase(LDH) enzyme kinetics to 2nd-year biochemistry students(2)determine its efficacious in improving students' comprehension of enzyme kinetics(3)assess their perception of its usefulness/manageability(vLab versus Conventional Tutorial). Our tools were designed using HTML5 technology. We hosted the program on an adaptive e-learning platform (AeLP). Provisions were made to interactively impart informed laboratory skills associated with measuring LDH enzyme kinetics. A series of e-learning methods were created. Tutorials were generated for interactive teaching and assessment. The learning outcomes herein were on par with that from a conventional classroom tutorial. Student feedback showed that the majority of students found the vLab learning experience "valuable"; and the vLab format/interface "well-designed". However, there were a few technical issues with the 1st roll-out of the platform. Our pioneering effort resulted in productive learning with the vLab, with parity with that from a conventional tutorial. Our contingent discussion emphasises not only the cornerstone advantages, but also the shortcomings of the AeLP method utilised. We conclude with an astute analysis of possible extensions and applications of our methodology.

  3. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays.

    Science.gov (United States)

    Jung, Se-Hui; Kong, Deok-Hoon; Park, Seoung-Woo; Kim, Young-Myeong; Ha, Kwon-Soo

    2012-08-21

    Peptide arrays have emerged as a key technology for drug discovery, diagnosis, and cell biology. Despite the promise of these arrays, applications of peptide arrays to quantitative analysis of enzyme kinetics have been limited due to the difficulty in obtaining quantitative information of enzymatic reaction products. In this study, we developed a new approach for the quantitative kinetics analysis of proteases using fluorescence-conjugated peptide arrays, a surface concentration-based assay with solid-phase peptide standards using dry-off measurements, and compared it with an applied concentration-based assay. For fabrication of the peptide arrays, substrate peptides of cMMP-3, caspase-3, caspase-9, and calpain-1 were functionalized with TAMRA and cysteine, and were immobilized onto amine-functionalized arrays using a heterobifunctional linker, N-[γ-maleimidobutyloxy]succinimide ester. The proteolytic activities of the four enzymes were quantitatively analyzed by calculating changes induced by enzymatic reactions in the concentrations of peptides bound to array surfaces. In addition, this assay was successfully applied for calculating the Michaelis constant (K(m,surf)) for the four enzymes. Thus, this new assay has a strong potential for use in the quantitative evaluation of proteases, and for drug discovery through kinetics studies including the determination of K(m) and V(max).

  4. Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis-Menten Constant Using the Lambert-W Function

    Science.gov (United States)

    Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.

    2015-01-01

    Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…

  5. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    Science.gov (United States)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  6. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene.

    Science.gov (United States)

    Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan

    2015-11-24

    Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.

  7. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    Science.gov (United States)

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  8. An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.

    Science.gov (United States)

    Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S

    2016-06-01

    We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.

  9. Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria.

    Science.gov (United States)

    Moreadith, R W; Lehninger, A L

    1984-05-25

    The purification and kinetic characterization of an NAD(P)+-malic enzyme from 22aH mouse hepatoma mitochondria are described. The enzyme was purified 328-fold with a final yield of 51% and specific activity of 38.1 units/mg of protein by employing DEAE-cellulose chromatography and an ATP affinity column. Sephadex G-200 chromatography yielded a native Mr = 240,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major subunit with Mr = 61,000, suggesting a tetrameric structure, and also showed that the preparation contained less than 10% polypeptide impurities. Use of the ATP affinity column required the presence of MnCl2 and fumarate (an allosteric activator) in the elution buffers. In the absence of fumarate, the Michaelis constants for malate, NAD+, and NADP+ were 3.6 mM, 55 microM, and 72 microM, respectively; in the presence of fumarate (2 mM), the constants were 0.34 mM, 9 microM, and 13 microM, respectively. ATP was shown to be an allosteric inhibitor, competitive with malate. However, the inhibition by ATP displayed hyperbolic competitive kinetics with a KI (ATP) of 80 microM (minus fumarate) and 0.5 mM (plus 2 mM fumarate). The allosteric properties of the enzyme are integrated into a rationale for its specific role in the pathways of malate and glutamate oxidation in tumor mitochondria.

  10. Enzyme Kinetics By Directly Imaging A Porous Silicon Microfluidic Reactor Using Desorption/Ionization on Silicon Mass Spectrometry

    NARCIS (Netherlands)

    Nichols, K.P.F.; Azoz, Seyla; Gardeniers, Johannes G.E.

    2008-01-01

    Enzyme kinetics were obtained in a porous silicon microfluidic channel by combining an enzyme and substrate droplet, allowing them to react and deposit a small amount of residue on the channel walls, and then analyzing this residue by directly ionizing the channel walls using a matrix assisted laser

  11. Determination Of Enzyme Kinetic Parameters on Sago Starch Hydrolysis By Linearized Graphical Methods

    International Nuclear Information System (INIS)

    Lai, L.W.; Teo, C.L.; Suzana Wahidin; Mohamad Suffian Mohamad Annuar

    2014-01-01

    Amyloglucosidase (E.C. 3.2.1.3) from Aspergillus niger was used to hydrolyze the sago (Metro xylon sagu) starch into reducing sugars. The experiment was conducted at constant temperature, 55 degree Celsius; pH, 4.5 and enzyme amount, 0.2 U/ ml, respectively. In this investigation, the substrate concentration was varied ranging from 1.0 - 7.0 g/ L. The obtained data were then fixed into linearized plots namely Lineweaver-Burk and Langmuir models to calculate enzyme kinetic parameters, K m and V max . Both of the K m and V max (mM, mol/min) values from each plot were: Lineweaver-Burk (26.53, 3.31) and Langmuir (13.52, 2.35). Among the linearized models, K m and V max values acquired from Langmuir plot was chosen. (author)

  12. Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac-1-phenylethanol

    Directory of Open Access Journals (Sweden)

    Bäckvall Jan-E

    2007-12-01

    Full Text Available Abstract The scale-up of the ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR of (rac-1-phenylethanol (2 is addressed. The immobilized lipase Candida antarctica lipase B (CALB was employed for the resolution, which shows high enantioselectivity in the transesterification. The ruthenium catalyst used, (η 5-C5Ph5RuCl(CO2 1, was shown to possess very high reactivity in the "in situ" redox racemization of 1-phenylethanol (2 in the presence of the immobilized enzyme, and could be used in 0.05 mol% with high efficiency. Commercially available isopropenyl acetate was employed as acylating agent in the lipase-catalyzed transesterifications, which makes the purification of the product very easy. In a successful large-scale DKR of 2, with 0.05 mol% of 1, (R-1-phenylethanol acetate (3 was obtained in 159 g (97% yield in excellent enantiomeric excess (99.8% ee.

  13. Enzyme kinetics and identification of the rate-limiting step of enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard; Xu, Cheng; Sørensen, Jens

    2012-01-01

    This study investigated the kinetics of multi-enzymatic degradation of soluble wheat arabinoxylan by monitoring the release of xylose and arabinose during designed treatments with mono-component enzymes at different substrate concentrations. The results of different combinations of α...... α-l-arabinofuranosidases catalyze liberation of arabinose residues linked 1→3 to singly (AFAn) or doubly (AFBa) substituted xyloses in arabinoxylan, respectively. When added to arabinoxylan at equimolar levels, the AFBa enzyme catalyzed the release of more arabinose, i.e. had a higher rate constant...... than AFAn, but with respect to the xylose release, AFAn – as expected – exhibited a better synergistic effect than AFBa with β-xylosidase. This synergistic effect with AFAn was estimated to increase the number of β-xylosidase catalyzed cuts from ∼3 (with β-xylosidase alone) to ∼7 in each arabinoxylan...

  14. [Enzyme kinetic analysis of Oncomelania hupensis exposed to active ingredient of Buddleja lindleyana (AIBL)].

    Science.gov (United States)

    Bang-Xing, Han; Jun, Chen

    2016-07-01

    To analyze the enzyme kinetics of active ingredient of Buddleja lindleyana (AIBL) against Oncomelania hupensis , the intermediate host of Schistosoma japonicum . O . hupensis snails were placed in 1 000 ml of 3.55 mg/L AIBL solution for 24, 48 h and 72 h, respectively, and the enzyme kinetics of alanine aminotransferase (GPT) was determined by Reitman-Frankel assay, lactate dehydrogenase (LDH) by the chemical inhibition lactic acid substrate method, alkaline phosphatase (AKP) by the disodium phenyl phosphate colorimetric method, acetylcholine esterase (AChE) and malate dehydrogenas (MDH) by ELISA, and succinate dehydrogenase (SDH) by the phenazine methyl sulfate reaction method (PMS) in the soft tissues of O. hupensis before and after AIBL treatment. Following exposure to 3.55 mg/L AIBL solution for 24 h, the GPT, LDH, and AKP activities significantly improved in the soft tissues of O. hupensis , while the SDH and MDH activities were significantly lowered in the head-foot and liver. However, AIBL treatment did not cause significant effect on AChE activity in O. hupensis . AIBL causes significant damages to O. hupensis liver and can efficiently act on anaerobic and aerobic respiration loci, which will hinder energy metabolism, and cause inadequate energy supply in cells used for normal secretion, eventually leading to O. hupensis death.

  15. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    Science.gov (United States)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and

  16. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  17. Deduction of kinetic mechanism in multisubstrate enzyme reactions from tritium isotope effects. Application to dopamine beta-hydroxylase

    International Nuclear Information System (INIS)

    Klinman, J.P.; Humphries, H.; Voet, J.G.

    1980-01-01

    Primary tritium isotope effects have been measured for the hydroxylation of [2-3H] dopamine catalyzed by dopamine beta-hydroxylase. Experimental values vary from 8.8 +/- 1.4 at 0.02 mM oxygen to 4.1 +/- 0.6 at 1.0 mM oxygen. It is shown that the observed dependence of the isotope effect on oxygen concentration provides unequivocal evidence for a kinetically significant dissociation of both dopamine and oxygen from enzyme, ternary complex. This approach, which is applicable to any multisubstrate enzyme characterized by detectable kinetic isotope effects, provides an alternate to classical methods for the elucidation of kinetic order in enzyme-catalyzed reactions

  18. Performance of neutron kinetics models for ADS transient analyses

    International Nuclear Information System (INIS)

    Rineiski, A.; Maschek, W.; Rimpault, G.

    2002-01-01

    Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One

  19. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump.

    Science.gov (United States)

    Cao, Yuansheng; Gong, Zongping; Quan, H T

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012)] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013)], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.

  20. Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump

    Science.gov (United States)

    Cao, Yuansheng; Gong, Zongping; Quan, H. T.

    2015-06-01

    Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012), 10.1073/pnas.1204263109] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013), 10.1103/PhysRevLett.111.030602], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.

  1. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  2. Interactions of nitrite with catalase: Enzyme activity and reaction kinetics studies.

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2017-06-01

    Catalase, a heme enzyme, which catalyzes decomposition of hydrogen peroxide to water and molecular oxygen, is one of the main enzymes of the antioxidant defense system of the cell. Nitrite, used as a food preservative has long been regarded as a harmful compound due to its ability to form carcinogenic nitrosamines. Recently, much evidence has been presented that nitrite plays a protective role as a nitric oxide donor under hypoxic conditions. In this work the effect of nitrite on the catalytic reactions of catalase was studied. Catalase was inhibited by nitrite, and this process was pH-dependent. IC 50 values varied from about 1μM at pH5.0 to about 150μM of nitrite at pH7.4. The presence of chloride significantly enhanced nitrite-induced catalase inhibition, in agreement with earlier observations. The kinetics of the reactions of nitrite with ferric catalase, its redox intermediate, Compound I, and catalase inactive form, Compound II, was also studied. Possible mechanisms of nitrite-induced catalase inhibition are analyzed and the biological consequences of the reactions of catalase with nitrite are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Rapid Determination of Enzyme Kinetics from Fluorescence: Overcoming the Inner Filter Effect

    Science.gov (United States)

    Palmier, Mark O.; Van Doren, Steven R.

    2007-01-01

    Fluorescence change is convenient for monitoring enzyme kinetics. Unfortunately, it looses linearity as the absorbance of the fluorescent substrate increases with concentration. When the sum of absorbance at excitation and emission wavelengths exceeds 0.08, this inner filtering effect (IFE) alters apparent initial velocities, Km, and kcat. The IFE distortion of apparent initial velocities can be corrected without doing fluorophore dilution assays. Using the substrate’s extinction coefficients at excitation and emission wavelengths, the inner filter effect can be modeled during curve fitting for more accurate Michaelis-Menten parameters. A faster and simpler approach is to derive kcat and Km from progress curves. Strategies to obtain reliable and reproducible estimates of kcat and Km from only two or three progress curves are illustrated using matrix metalloproteinase-12 and alkaline phosphatase. Accurate estimates of concentration of enzyme active sites and specificity constant kcat/Km (from one progress curve with [S] ≪ Km) confer accuracy, freedom of choices of [S], and robustness to kcat and Km globally fitted to a few progress curves. The economies of the progress curve approach make accurate kcat and Km more accessible from fluorescence measurements. PMID:17706587

  4. Photoperiodism and enzyme rhythms: Kinetic characteristics of the photoperiodic induction of Crassulacean acid metabolism.

    Science.gov (United States)

    Brulfert, J; Guerrier, D; Queiroz, O

    1975-01-01

    The effect of photoperiod on Crassulacean acid metabolism (CAM) in Kalanchoe blossfeldiana Poellniz, cv. Tom Thumb, has characteristics similar to its effect on flowering in this plant (although these two phenomena are not causally related). The photoperiodic control of CAM is based on (a) dependance on phytochrome, (b) an endogenous circadian rhythm of sensitivity to photoperiodic signals, (c) a balance between specific positive (increase in enzyme capacity) and negative (inhibitory substances) effects of the photoperiod. Variations in malate content, capacity of phosphoenolpyruvate (PEP) carboxylase, and capacity of CAM inhibitors in young leaves were measured under photoperiodic conditions noninductive for CAM and after transfer into photoperiodic conditions inductive for CAM. Essential characteristics of the photoperiodic induction of CAM are: 1) lag time for malate accumulation; 2) after-effect of the inductive photoperiod on the malate accumulation, on the increase in PEP carboxylase capacity, and on the decrease in the level of long-day produced inhibitors; final levels of malate, enzyme capacity and inhibitor are proportional to the number of inductive day-night cycles; 3) cireadian rhythm in PEP carboxylase capacity with a fixed phase under noninductive photoperiods and a continuously shifting phase under inductive photoperiods, after complex advancing and delaying transients. Kinetic similarities indicate that photoperiodic control of different physiological functions, namely, CAM and flowering, may be achieved through similar mechanisms. Preliminary results with species of Bryophyllum and Sedum support this hypothesis. Phase relationships suggest different degrees of coupling between endogenous enzymic rhythm and photoperiod, depending on whether the plants are under long days or short days.

  5. Development of an LC-MS based enzyme activity assay for MurC: application to evaluation of inhibitors and kinetic analysis.

    Science.gov (United States)

    Deng, Gejing; Gu, Rong-Fang; Marmor, Stephen; Fisher, Stewart L; Jahic, Haris; Sanyal, Gautam

    2004-06-29

    An enzyme activity assay, based on mass spectrometric (MS) detection of specific reaction product following HPLC separation, has been developed to evaluate pharmaceutical hits identified from primary high throughput screening (HTS) against target enzyme Escherichia coli UDP-N-acetyl-muramyl-L-alanine ligase (MurC), an essential enzyme in the bacterial peptidoglycan biosynthetic pathway, and to study the kinetics of the enzyme. A comparative analysis of this new liquid chromatographic-MS (LC-MS) based assay with a conventional spectrophotometric Malachite Green (MG) assay, which detects phosphate produced in the reaction, was performed. The results demonstrated that the LC-MS assay, which determines specific ligase activity of MurC, offers several advantages including a lower background (0.2% versus 26%), higher sensitivity (> or = 10 fold), lower limit of quantitation (LOQ) (0.02 microM versus 1 microM) and wider linear dynamic range (> or = 4 fold) than the MG assay. Good precision for the LC-MS assay was demonstrated by the low intraday and interday coefficient of variation (CV) values (3 and 6%, respectively). The LC-MS assay, free of the artifacts often seen in the Malachite Green assay, offers a valuable secondary assay for hit evaluation in which the false positives from the primary high throughput screening can be eliminated. In addition, the applicability of this assay to the study of enzyme kinetics has also been demonstrated. Copyright 2004 Elsevier B.V.

  6. The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study.

    Science.gov (United States)

    Schnell, Santiago; Chappell, Michael J; Evans, Neil D; Roussel, Marc R

    2006-01-01

    A theoretical analysis of the distinguishability problem of two rival models of the single enzyme-single substrate reaction, the Michaelis-Menten and Henri mechanisms, is presented. We also outline a general approach for analysing the structural indistinguishability between two mechanisms. The approach involves constructing, if possible, a smooth mapping between the two candidate models. Evans et al. [N.D. Evans, M.J. Chappell, M.J. Chapman, K.R. Godfrey, Structural indistinguishability between uncontrolled (autonomous) nonlinear analytic systems, Automatica 40 (2004) 1947-1953] have shown that if, in addition, either of the mechanisms satisfies a particular criterion then such a transformation always exists when the models are indistinguishable from their experimentally observable outputs. The approach is applied to the single enzyme-single substrate reaction mechanism. In principle, mechanisms can be distinguished using this analysis, but we show that our ability to distinguish mechanistic models depends both on the precise measurements made, and on our knowledge of the system prior to performing the kinetics experiments.

  7. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III Reaction Intermediate Models of Peroxidase Enzymes

    Directory of Open Access Journals (Sweden)

    Samuel Hernández Anzaldo

    2016-06-01

    Full Text Available The spectroscopic and kinetic characterization of two intermediates from the H2O2 oxidation of three dimethyl ester [(proto, (meso, (deuteroporphyrinato (picdien]Fe(III complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III quantum mixed spin (qms ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1–3 + guaiacol + H2O2 → oxidation guaiacol products. The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III and H2O2, resulting in only two types of kinetics that were developed during the first 0–4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III family with the ligand picdien [N,N’-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, 1H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  8. Effects of supplemental microbial phytase enzyme on performance ...

    African Journals Online (AJOL)

    This experiment was conducted to investigate the effects of supplemental phytase in a corn-wheatsoybean meal basal diet on phosphorus (P) digestibility and performance of broiler chicks. 378 one-day old broiler chicks (Ross 308) were allocated to 3×3 factorial arrangements with three levels of phytase enzyme (0, 500 ...

  9. The alteration of intracellular enzymes. III. The effect of temperature on the kinetics of altered and unaltered yeast catalase.

    Science.gov (United States)

    FRASER, M J; KAPLAN, J G

    1955-03-20

    1. The very large increase in catalase activity (Euler effect) which follows treatment of yeast cells with CHCl(3), UV and n-propanol is accompanied by highly significant changes in kinetic properties. With respect to the enzymatic decomposition of H(2)O(2), the thermodynamic constants of the activation process micro, DeltaHdouble dagger, DeltaSdouble dagger, DeltaFdouble dagger, decrease, following treatment of the intracellular enzyme, by 4.5 kcal., 4.5 kcal., 10.1 e.u. and 1.7 kcal., respectively, all these differences being significant at the 1 per cent level. 2. Similar differences exist between the untreated, intracellular enzyme on the one hand, and the extracted yeast and crystalline beef liver catalases on the other. Significant differences in these thermodynamic constants do not exist among the treated intracellular, extracted yeast, and crystalline liver catalases. 3. These data provide unequivocal confirmation of the phenomenon of enzyme alteration reported previously, and confirm previous evidence that the extracted and crystalline enzymes have also undergone enzyme alteration and have properties which are identical with, or very similar to, those of the catalase altered in situ. 4. With respect to the process of heat destruction of catalase, the greatly diminished stability to heat of the altered enzymes, previously reported, has been confirmed. The thermodynamic constants of activation of this process have likewise changed following alteration, in the case of micro, DeltaHdouble dagger, and DeltaSdouble dagger an increase of 20.6 kcal., 20.6 kcal., and 70 e.u., respectively, and of DeltaFdouble dagger a decrease of 2.8 kcal. 5. All these data have been shown to be consistent with, and in some cases predictable from, the interfacial hypothesis, which states that the unaltered catalase exists within the cell adsorbed to some interface, in a partially, but reversibly, unfolded configuration of relatively low specificity; enzyme alteration consists, in

  10. Drying characteristic, enzyme inactivation and browning pigmentation kinetics of controlled humidity-convective drying of banana slices

    Science.gov (United States)

    Sarpong, Frederick; Yu, Xiaojie; Zhou, Cunshan; Oteng-Darko, Patricia; Amenorfe, Leticia Peace; Wu, Bengang; Bai, Junwen; Ma, Haile

    2018-04-01

    Investigating the kinetics of enzyme activities and browning indexes in food are very essential in understanding the enzyme inactivation and browning pigmentation reaction during drying processing. In order to understand and predict accurately the enzyme inactivation and browning pigmentation of banana slices using Relative Humidity (RH)-convective hot air dryer aided by ultrasound (US) pretreatment, this study was conducted. Drying was carried out with 20 kHz frequency of US-pretreatment using three durations (10 20 and 30 min) and RH (10 20 and 30%) conditions at 70 °C and 2.0 m/s air velocity. The kinetic study of both enzyme inactivation and browning pigmentation results were compared to their relevance of fit in terms of coefficient of correlation (R2), the root mean square error (RMSE) and the reduced chi-square (χ 2). First order and second-order polynomial kinetic model fitted well for enzyme inactivation and browning indexes respectively. Both enzymes inactivation kinetics and enzymatic browning index (EBI) declined significantly (p drying time in all drying conditions and rate of decrease intensified in longer US-pretreatment duration and lower RH conditions. However, shorter US-pretreatment duration and higher RH conditions reduced the non- enzymatic browning index (NBI) significantly. Again, longer US-pretreatment duration and lower RH shortened the drying time but adversely created more microspores from the micrograph study. Longer US pretreatment and lower RH decrease significantly (p < 0.05) the L* and b* values whereas the a* values was increased.

  11. Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods.

    Science.gov (United States)

    Pereira, Félix Monteiro; Oliveira, Samuel Conceição

    2016-11-01

    In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.

  12. Computer controlled automated assay for comprehensive studies of enzyme kinetic parameters.

    Directory of Open Access Journals (Sweden)

    Felix Bonowski

    Full Text Available Stability and biological activity of proteins is highly dependent on their physicochemical environment. The development of realistic models of biological systems necessitates quantitative information on the response to changes of external conditions like pH, salinity and concentrations of substrates and allosteric modulators. Changes in just a few variable parameters rapidly lead to large numbers of experimental conditions, which go beyond the experimental capacity of most research groups. We implemented a computer-aided experimenting framework ("robot lab assistant" that allows us to parameterize abstract, human-readable descriptions of micro-plate based experiments with variable parameters and execute them on a conventional 8 channel liquid handling robot fitted with a sensitive plate reader. A set of newly developed R-packages translates the instructions into machine commands, executes them, collects the data and processes it without user-interaction. By combining script-driven experimental planning, execution and data-analysis, our system can react to experimental outcomes autonomously, allowing outcome-based iterative experimental strategies. The framework was applied in a response-surface model based iterative optimization of buffer conditions and investigation of substrate, allosteric effector, pH and salt dependent activity profiles of pyruvate kinase (PYK. A diprotic model of enzyme kinetics was used to model the combined effects of changing pH and substrate concentrations. The 8 parameters of the model could be estimated from a single two-hour experiment using nonlinear least-squares regression. The model with the estimated parameters successfully predicted pH and PEP dependence of initial reaction rates, while the PEP concentration dependent shift of optimal pH could only be reproduced with a set of manually tweaked parameters. Differences between model-predictions and experimental observations at low pH suggest additional protonation

  13. Performance of broilers fed enzyme-supplemented tigernut ...

    African Journals Online (AJOL)

    A feeding trial was set up to study the effects of replacing maize with tigernut meal (TGN) at 0, 33.33, 66.67 and 100 per cent levels, with 0.10 per cent enzyme supplementation of all levels, on performance characteristics and carcass yield in broiler chicken for 8 weeks (56 days). A total of 200 Anak-2000 breed of broilers ...

  14. VO2 kinetics and performance in soccer players after intense training and inactivity

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Krustrup, Peter; Gunnarsson, Thomas P.

    2011-01-01

    18 elite soccer players were, for a two-week period, assigned to a high intensity training group (HI, n=7) performing 10 training sessions mainly consisting of aerobic high intensity training (8×2 min) and speed endurance training (10-12×30-s sprints) or a training cessation group (TC, n=11......PURPOSE:: To examine the effects of a short-term period with intensified training or training cessation of trained soccer players on VO2 kinetics at 75% maximal aerobic speed (MAS), oxidative enzymes and performance in repeated high intensity exercise. METHODS:: After the last match of the season......) that refrained from training. RESULTS:: For TC, VO2 kinetics became slower (P...

  15. Solution of non-steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics

    Science.gov (United States)

    Senthamarai, R.; Jana Ranjani, R.

    2018-04-01

    In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.

  16. Performance of non-conventional factorization approaches for neutron kinetics

    International Nuclear Information System (INIS)

    Bulla, S.; Nervo, M.

    2013-01-01

    The use of factorization techniques provides a interesting option for the simulation of the time-dependent behavior of nuclear systems with a reduced computational effort. While point kinetics neglects all spatial and spectral effects, quasi-statics and multipoint kinetics allow to produce results with a higher accuracy for transients involving relevant modifications of the neutron distribution. However, in some conditions these methods can not work efficiently. In this paper, we discuss some possible alternative formulations for the factorization process for neutron kinetics, leading to mathematical models of reduced complications that can allow an accurate simulation of transients involving spatial and spectral effects. The performance of these innovative approaches are compared to standard techniques for some test cases, showing the benefits and shortcomings of the method proposed. (authors)

  17. Joint kinetic determinants of starting block performance in athletic sprinting.

    Science.gov (United States)

    Brazil, Adam; Exell, Timothy; Wilson, Cassie; Willwacher, Steffen; Bezodis, Ian N; Irwin, Gareth

    2018-07-01

    The aim of this study was to explore the relationships between lower limb joint kinetics, external force production and starting block performance (normalised average horizontal power, NAHP). Seventeen male sprinters (100 m PB, 10.67 ± 0.32 s) performed maximal block starts from instrumented starting blocks (1000 Hz) whilst 3D kinematics (250 Hz) were also recorded during the block phase. Ankle, knee and hip resultant joint moment and power were calculated at the rear and front leg using inverse dynamics. Average horizontal force applied to the front (r = 0.46) and rear (r = 0.44) block explained 86% of the variance in NAHP. At the joint level, many "very likely" to "almost certain" relationships (r = 0.57 to 0.83) were found between joint kinetic data and the magnitude of horizontal force applied to each block although stepwise multiple regression revealed that 55% of the variance in NAHP was accounted for by rear ankle moment, front hip moment and front knee power. The current study provides novel insight into starting block performance and the relationships between lower limb joint kinetic and external kinetic data that can help inform physical and technical training practices for this skill.

  18. Evaluation of reaction mechanisms and the kinetic parameters for the transesterification of castor oil by liquid enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    of the transesterification of castor oil with methanol using the enzyme Eversa® Transform as catalyst were investigated. Reactions were carried out for 8 hours at 35 °C with: an alcohol-to-oil molar ratio equal to 6:1, a 5 wt% of liquid enzyme solution and addition of 5 wt% of water by weight of castor oil. From...... methanolysis rates of glycerides obtained, indicated that transesterification dominates over hydrolysis. The mechanism among the four models proposed that gave the best fit could be simplified, eliminating the kinetic parameters with negligible effects on the reaction rates. This model was able to fit...

  19. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar

    2016-04-01

    Ross-308 broiler chickens were allocated randomly to 3 treatments with 5 replicates using a CRD statistical design. Treatments were included control, barley and barley+ enzyme. The experimental diets were formulated to have similar contents of crude protein, metabolizable energy, total non-starch polysaccharides (NSP. Results and Discussion According to the results, effect of barley with or without enzyme on growth performance at starter, grower and the entire period and also on carcass characteristics, pancreas enzyme activity and measures of ileal acidity and viscosity at the age of 42 were significant (P

  20. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  1. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    Science.gov (United States)

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  2. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme.

    Science.gov (United States)

    Larmuth, Kate M; Masuyer, Geoffrey; Douglas, Ross G; Schwager, Sylva L; Acharya, K Ravi; Sturrock, Edward D

    2016-03-01

    Angiotensin-1-converting enzyme (ACE), a zinc metallopeptidase, consists of two homologous catalytic domains (N and C) with different substrate specificities. Here we report kinetic parameters of five different forms of human ACE with various amyloid beta (Aβ) substrates together with high resolution crystal structures of the N-domain in complex with Aβ fragments. For the physiological Aβ(1-16) peptide, a novel ACE cleavage site was found at His14-Gln15. Furthermore, Aβ(1-16) was preferentially cleaved by the individual N-domain; however, the presence of an inactive C-domain in full-length somatic ACE (sACE) greatly reduced enzyme activity and affected apparent selectivity. Two fluorogenic substrates, Aβ(4-10)Q and Aβ(4-10)Y, underwent endoproteolytic cleavage at the Asp7-Ser8 bond with all ACE constructs showing greater catalytic efficiency for Aβ(4-10)Y. Surprisingly, in contrast to Aβ(1-16) and Aβ(4-10)Q, sACE showed positive domain cooperativity and the double C-domain (CC-sACE) construct no cooperativity towards Aβ(4-10)Y. The structures of the Aβ peptide-ACE complexes revealed a common mode of peptide binding for both domains which principally targets the C-terminal P2' position to the S2' pocket and recognizes the main chain of the P1' peptide. It is likely that N-domain selectivity for the amyloid peptide is conferred through the N-domain specific S2' residue Thr358. Additionally, the N-domain can accommodate larger substrates through movement of the N-terminal helices, as suggested by the disorder of the hinge region in the crystal structures. Our findings are important for the design of domain selective inhibitors as the differences in domain selectivity are more pronounced with the truncated domains compared to the more physiological full-length forms. The atomic coordinates and structure factors for N-domain ACE with Aβ peptides 4-10 (5AM8), 10-16 (5AM9), 1-16 (5AMA), 35-42 (5AMB) and (4-10)Y (5AMC) complexes have been deposited in the

  3. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  4. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    Science.gov (United States)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  5. Drift-kinetic Alfven modes in high performance tokamaks

    International Nuclear Information System (INIS)

    Jaun, A.; Fasoli, A.F.; Testa, D.; Vaclavik, J.; Villard, L.

    2001-01-01

    The stability of fast-particle driven Alfven eigenmodes is modeled in high performance tokamaks, successively with a conventional shear, an optimized shear and a tight aspect ratio plasma. A large bulk pressure yields global kinetic Alfven eigenmodes that are stabilized by mode conversion in the presence of a divertor. This suggests how conventional reactor scenarii could withstand significant pressure gradients from the fusion products. A large safety factor in the core q 0 >2.5 in deeply shear reversed configurations and a relatively large bulk ion Larmor radius in a low magnetic field can trigger global drift-kinetic Alfven eigenmodes that are unstable in high performance JET, NSTX and ITER plasmas. (author)

  6. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1.

    Science.gov (United States)

    Zhou, Jin; Tracy, Timothy S; Remmel, Rory P

    2010-11-01

    Bilirubin, an end product of heme catabolism, is primarily eliminated via glucuronic acid conjugation by UGT1A1. Impaired bilirubin conjugation, caused by inhibition of UGT1A1, can result in clinical consequences, including jaundice and kernicterus. Thus, evaluation of the ability of new drug candidates to inhibit UGT1A1-catalyzed bilirubin glucuronidation in vitro has become common practice. However, the instability of bilirubin and its glucuronides presents substantial technical challenges to conduct in vitro bilirubin glucuronidation assays. Furthermore, because bilirubin can be diglucuronidated through a sequential reaction, establishment of initial rate conditions can be problematic. To address these issues, a robust high-performance liquid chromatography assay to measure both bilirubin mono- and diglucuronide conjugates was developed, and the incubation conditions for bilirubin glucuronidation by human embryonic kidney 293-expressed UGT1A1 were carefully characterized. Our results indicated that bilirubin glucuronidation should be assessed at very low protein concentrations (0.05 mg/ml protein) and over a short incubation time (5 min) to assure initial rate conditions. Under these conditions, bilirubin total glucuronide formation exhibited a hyperbolic (Michaelis-Menten) kinetic profile with a K(m) of ∼0.2 μM. In addition, under these initial rate conditions, the relative proportions between the total monoglucuronide and the diglucuronide product were constant across the range of bilirubin concentration evaluated (0.05-2 μM), with the monoglucuronide being the predominant species (∼70%). In conclusion, establishment of appropriate incubation conditions (i.e., very low protein concentrations and short incubation times) is necessary to properly characterize the kinetics of bilirubin glucuronidation in a recombinant UGT1A1 system.

  7. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    Directory of Open Access Journals (Sweden)

    Karatzos Sergios

    2012-08-01

    Full Text Available Abstract Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs, still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl, 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl, 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU yields (% cellulose mass in starting bagasse from the recovered solids rank as: [C2mim]OAc(83% > >[C2mim]Cl(53% = [C4mim]Cl(53%. Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography. Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin

  8. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  9. [Treatment of surface burns with proteolytic enzymes: mathematic description of lysis kinetics].

    Science.gov (United States)

    Domogatskaia, A S; Domogatskiĭ, S P; Ruuge, E K

    2003-01-01

    The lysis of necrotic tissue by a proteolytic enzyme applied to the surface of a burn wound was studied. A mathematical model was proposed, which describes changes in the thickness of necrotic tissue as a function of the proteolytic activity of the enzyme. The model takes into account the inward-directed diffusion of the enzyme, the counterflow of interstitial fluid (exudates) containing specific inhibitors, and the extracellular matrix proteolysis. It was shown in terms of the quasi-stationary approach that the thickness of the necrotic tissue layer decreases exponentially with time; i.e., the lysis slows down as the thickness of the necrotic tissue layer decreases. The dependence of the characteristic time of this decrease on enzyme concentration was obtained. It was shown that, at high enzyme concentrations (more than 5 mg/ml), the entire time of lysis (after the establishment of quasi-stationary equilibrium) is inversely proportional to the concentration of the enzyme.

  10. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. [Molecular-kinetic parameters of thiamine enzymes and the mechanism of antivitamin action of hydroxythiamine in animal organisms].

    Science.gov (United States)

    Ostrovskiĭ KuM; Voskoboev, A I; Gorenshtenĭn, B I; Dosta, G A

    1979-09-01

    The molecula-kinetic parameters (Km, Ki) of three thiamine enzymes, e. g. thiamine pyrophosphokinase (EC 2.7.6.2), pyruvate dehydrogenase (EC 1.2.4.1) and transketolase (EC 2.2.1.1) with respect to the effects of the thiamine antimetabolite hydroxythiamine in the whole animal organism have been compared. It has been shown that only the first two enzymes, which interact competitively with the vitamin, antivitamin or their pyrophosphate ethers, obey the kinetic parameters obtained for the purified enzymes in vitro. The anticoenzymic effect of hydroxythiamine pyrophosphate with respect to transketolase is not observed in vivo at maximal concentration of the anticoenzyme in tissues due to the absence of competitive interactions with thiamine pyrophosphate. The incorporation of the true and false coenzymes into transketolase occurs only during de novo transketolase synthesis (the apoform is absent in tissues, with the exception of erythrocytes) and proceeds slowly with a half-life time equal to 24--30 hrs. After a single injection of hydroxythiamine at a large dose (70--400 mg/kg) the maximal inhibition of the transketolase activity in tissues (liver, heart, kidney, muscle, spleen, lungs adrenal grands) manifests itself by the 48th--72nd hour, when the concentration of free hydroxythiamine and its pyrophosphate is minimal and the whole anticoenzyme is tightly bound to the protein, forming the false holoenzyme. The use of hydroxythiamine for inhibition of pyruvate dehydrogenase or transketolase in animal organism is discussed.

  12. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  13. Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context

    NARCIS (Netherlands)

    Pillay, Ché S.; Hofmeyr, Jan Hendrik S; Olivier, Brett G.; Snoep, Jacky L.; Rohwer, Johann M.

    2009-01-01

    Systems biology approaches, such as kinetic modelling, could provide valuable insights into how thioredoxins, glutaredoxins and peroxiredoxins (here collectively called redoxins), and the systems that reduce these molecules are regulated. However, it is not clear whether redoxins should be described

  14. Polyol specificity of recombinant Arabidopsis thaliana sorbitol dehydrogenase studied by enzyme kinetics and in silico modeling

    Directory of Open Access Journals (Sweden)

    María Francisca eAguayo

    2015-02-01

    Full Text Available Polyols are enzymatically-produced plant compounds which can act as compatible solutes during periods of abiotic stress. NAD+-dependent SORBITOL DEHYDROGENASE (SDH, E.C. 1.1.1.14 from Arabidopsis thaliana L. (AtSDH is capable of oxidizing several polyols including sorbitol, ribitol and xylitol. In the present study, enzymatic assays using recombinant AtSDH demonstrated a higher specificity constant for xylitol compared to sorbitol and ribitol, all of which are C2 (S and C4 (R polyols. Enzyme activity was reduced by preincubation with ethylenediaminetetraacetic acid (EDTA, indicating a requirement for zinc ions. In humans, it has been proposed that sorbitol becomes part of a pentahedric coordination sphere of the catalytic zinc during the reaction mechanism. In order to determine the validity of this pentahedric coordination model in a plant SDH, homology modeling and Molecular Dynamics simulations of AtSDH ternary complexes with the three polyols were performed using crystal structures of human and Bemisia argentifolii (Genn. (Hemiptera: Aleyrodidae SDHs as scaffolds. The results indicate that the differences in interaction with structural water molecules correlate very well with the observed enzymatic parameters, validate the proposed pentahedric coordination of the catalytic zinc ion in a plant SDH, and provide an explanation for why AtSDH shows a preference for polyols with a chirality of C2 (S and C4 (R.

  15. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  16. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  17. Approaching a Conceptual Understanding of Enzyme Kinetics and Inhibition: Development of an Active Learning Inquiry Activity for Prehealth and Nonscience Majors

    Science.gov (United States)

    House, Chloe; Meades, Glen; Linenberger, Kimberly J.

    2016-01-01

    Presented is a guided inquiry activity designed to be conducted with prenursing students using an analogous system to help develop a conceptual understanding of factors impacting enzyme kinetics and the various types of enzyme inhibition. Pre- and postconceptual understanding evaluations and effectiveness of implementation surveys were given to…

  18. Purification of PON1 from human serum and assessment of enzyme kinetics against metal toxicity.

    Science.gov (United States)

    Ekinci, Deniz; Beydemir, Sükrü

    2010-06-01

    Paraoxonase-1 (PON1) is an organophosphate hydrolyser enzyme which has also antioxidant properties in metabolism. Due to its crucial functions, inhibition of the enzyme is undesirable and very dangerous. PON1 enzyme activity should not be altered in any case. Inhibitory investigations of this enzyme are therefore important and useful. Metal toxicology of enzymes has become popular in the recent years. Here, we report the in vitro inhibitory effects of some metal ions, including Pb(+2), Cr(+2), Fe(+2), and Zn(+2), on the activity of human serum PON1 (hPON1; EC 3.1.8.1.). For this purpose, we purified the enzyme from human serum and analyzed the alterations in the enzyme activity in the presence of metal ions. The results show that metal ions exhibit inhibitory effects on hPON1 at low concentrations with IC (50) values ranging from 0.838 to 7.410 mM. Metal ions showed different inhibition mechanisms: lead and iron were competitive, chrome was noncompetitive, and zinc was uncompetitive. Lead was determined to be the most effective inhibitor.

  19. Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization

    Directory of Open Access Journals (Sweden)

    Edwin D. Morales-Álvarez

    2017-01-01

    Full Text Available Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1 laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.

  20. Fibrolytic enzyme and ammonia application effects on the nutritive value, intake, and digestion kinetics of bermudagrass hay in beef cattle.

    Science.gov (United States)

    Romero, J J; Zarate, M A; Queiroz, O C M; Han, J H; Shin, J H; Staples, C R; Brown, W F; Adesogan, A T

    2013-09-01

    The objectives were to compare the effect of exogenous fibrolytic enzyme (Biocellulase A20) or anhydrous ammonia (4% DM) treatment on the nutritive value, voluntary intake, and digestion kinetics of bermudagrass (Cynodon dactylon cultivar Coastal) hay harvested after 2 maturities (5- and 13-wk regrowths). Six individually housed, ruminally cannulated Brangus steers (BW 325 ± 10 kg) were used in an experiment with a 6 × 6 Latin square design with a 3 (additives) × 2 (maturities) factorial arrangement of treatments. Each period consisted of 14 d of adaptation and 7, 4, 1, 1, and 4 d for measuring in vivo digestibility, in situ degradability, no measurements, rumen liquid fermentation and passage indices, and rate of solid passage, respectively. Steers were fed hay for ad libitum intake and supplemented with sugarcane molasses and distillers grain (supplement total of 2.88 kg DM/d). Enzyme did not affect the nutritional composition of hay but ammonia treatment decreased hay NDF, hemicellulose, and ADL concentrations and increased the CP concentration particularly for the mature lignified 13-wk hay. The enzyme increased NDF and hemicellulose digestibility of the 5-wk hay but decreased those of the 13-wk hay. Ammoniation decreased intake of hay but increased digestibility of DM, OM, NDF, hemicellulose, ADF, and cellulose and increased the ruminal in situ soluble and potentially digestible fractions and the rate of DM degradation of the 13-wk hay. Also, ammoniation increased the concentrations of ruminal NH3, total VFA, acetate, and butyrate but enzyme treatment did not. Neither enzyme addition nor ammoniation affected rate of liquid and solid passage. In conclusion, ammoniation decreased the concentration of most fiber fractions, decreased the intake of hays, and increased their CP concentration, in vivo digestibility, and in situ degradability at both maturities whereas enzyme application increased fiber digestibility of the 5-wk hay but decreased it in the case of

  1. Single lipid vesicle assay for characterizing single-enzyme kinetics of phospholipid hydrolysis in a complex biological fluid.

    Science.gov (United States)

    Tabaei, Seyed R; Rabe, Michael; Zetterberg, Henrik; Zhdanov, Vladimir P; Höök, Fredrik

    2013-09-25

    Imaging of individual lipid vesicles is used to track single-enzyme kinetics of phospholipid hydrolysis. The method is employed to quantify the catalytic activity of phospholipase A2 (PLA2) in both pure and complex biological fluids. The measurements are demonstrated to offer a subpicomolar limit of detection (LOD) of human secretory PLA2 (sPLA2) in up to 1000-fold-diluted cerebrospinal fluid (CSF). An additional new feature provided by the single-enzyme sensitivity is that information about both relative concentration variations of active sPLA2 in CSF and the specific enzymatic activity can be simultaneously obtained. When CSF samples from healthy controls and individuals diagnosed with Alzheimer's disease (AD) are analyzed, the specific enzymatic activity is found to be preserved within 7% in the different CSF samples whereas the enzyme concentration differs by up to 56%. This suggests that the previously reported difference in PLA2 activity in CSF samples from healthy and AD individuals originates from differences in the PLA2 expression level rather than from the enzyme activity. Conventional ensemble averaging methods used to probe sPLA2 activity do not allow one to obtain such information. Together with an improvement in the LOD of at least 1 order of magnitude compared to that of conventional assays, this suggests that the method will become useful in furthering our understanding of the role of PLA2 in health and disease and in detecting the pharmacodynamic effects of PLA2-targeting drug candidates.

  2. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus.

    OpenAIRE

    Vogt, R G; Riddiford, L M; Prestwich, G D

    1985-01-01

    Behavioral and electrophysiological evidence has suggested that sex pheromone is rapidly inactivated within the sensory hairs soon after initiation of the action-potential spike. We report the isolation and characterization of a sex-pheromone-degrading enzyme from the sensory hairs of the silkmoth Antheraea polyphemus. In the presence of this enzyme at physiological concentration, the pheromone [(6E,11Z)-hexadecadienyl acetate] has an estimated half-life of 15 msec. Our findings suggest a mol...

  3. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.

    Science.gov (United States)

    Moruno-Dávila, M A; Garrido-del Solo, C; García-Moreno, M; Havsteen, B H; Garcia-Sevilla, F; Garcia-Cánovas, F; Varón, R

    2001-02-01

    The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.

  4. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper

    2011-01-01

    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular...... weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased...

  5. NREL Discovers Enzyme Domains that Dramatically Improve Performance | News

    Science.gov (United States)

    of genomics data to find better enzymes, based on their genetic sequence alone. "In 10 years, it on these enzymes that can be targeted via genetic engineering to help break down cellulose faster to Decker, "At the time, tools for genetic engineering in Trichoderma were very limited, but we

  6. Influence of the metal ion on the enzyme activity and kinetics of PepA from Lactobacillus delbrueckii.

    Science.gov (United States)

    Ewert, Jacob; Glück, Claudia; Strasdeit, Henry; Fischer, Lutz; Stressler, Timo

    2018-03-01

    The aminopeptidase A (PepA; EC 3.4.11.7) belongs to the group of metallopeptidases with two bound metal ions per subunit (M1M2(PepA)) and is specific for the cleavage of N-terminal glutamic (Glu) and aspartic acid (Asp) and, in low amounts, serine (Ser) residues. Our group recently characterized the first PepA from a Lactobacillus strain. However, the characterization was performed using synthetic para-nitroaniline substrates and not original peptide substrates, as was done in the current study. Prior to the characterization using original peptide substrates, the PepA purified was converted to its inactive apo-form and eight different metal ions were tested to restore its activity. It was found that five of the metal ions were able to reactivate apo-PepA: Co 2+ , Cu 2+ , Mn 2+ , Ni 2+ and Zn 2+ . Interestingly, depending on the metal ion used for reactivation, the activity and the pH and temperature profile differed. Exemplarily, MnMn(PepA), NiNi(PepA) and ZnZn(PepA) had an activity optimum using MES buffer (50mM, pH 6.0) and 60°C, whereas the activity optimum changed to Na/K-phosphate-buffer (50mM, pH 7.0) and 55°C for CuCu(PepA). However, more important than the changes in optimum pH and temperature, the kinetic properties of PepA were affected by the metal ion used. While all PepA variants could release N-terminal Glu or Asp, only CoCo(PepA), NiNi(PepA) and CuCu(PepA) could release Ser from the particular peptide substrate. In addition, it was found that the enzyme efficiency (V max /K M ) and catalytic mechanism (positive cooperative binding (Hill coefficent; n), substrate inhibition (K IS )) were influenced by the metal ion. Exemplarily, a high cooperativity (n>2),K IS value >20mM and preference for N-terminal Glu were detected for CuCu(PepA). In summary, the results suggested that an exchange of the metal ion can be used for tailoring the properties of PepA for specific hydrolysis requirements. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  8. Kinetic and structural evidences on human prolidase pathological mutants suggest strategies for enzyme functional rescue.

    Directory of Open Access Journals (Sweden)

    Roberta Besio

    Full Text Available Prolidase is the only human enzyme responsible for the digestion of iminodipeptides containing proline or hydroxyproline at their C-terminal end, being a key player in extracellular matrix remodeling. Prolidase deficiency (PD is an intractable loss of function disease, characterized by mutations in the prolidase gene. The exact causes of activity impairment in mutant prolidase are still unknown. We generated three recombinant prolidase forms, hRecProl-231delY, hRecProl-E412K and hRecProl-G448R, reproducing three mutations identified in homozygous PD patients. The enzymes showed very low catalytic efficiency, thermal instability and changes in protein conformation. No variation of Mn(II cofactor affinity was detected for hRecProl-E412K; a compromised ability to bind the cofactor was found in hRecProl-231delY and Mn(II was totally absent in hRecProl-G448R. Furthermore, local structure perturbations for all three mutants were predicted by in silico analysis. Our biochemical investigation of the three causative alleles identified in perturbed folding/instability, and in consequent partial prolidase degradation, the main reasons for enzyme inactivity. Based on the above considerations we were able to rescue part of the prolidase activity in patients' fibroblasts through the induction of Heath Shock Proteins expression, hinting at new promising avenues for PD treatment.

  9. Application of A Microfluidic Tool for the Determination of Enzyme Kinetics

    DEFF Research Database (Denmark)

    Ringborg, Rolf H.

    thermodynamics, inhibition and stability. It is a difficult task to assess where the current bottle neck is for a desired process. Moreover, it cannot be expected that a single solution to the limitations can be found and rather an integrated solution of all of the problems should be the future aim. All...... alreadyexist and can be found in common text books. These models do however require mutant specific data and must be collected with the target reaction. In this thesis a novel way of collecting kinetic data is created, this is carried out by combining existing technology and enables the analysis of aqueous...

  10. Optimizing electrode-attached redox-peptide systems for kinetic characterization of protease action on immobilized substrates. Observation of dissimilar behavior of trypsin and thrombin enzymes.

    Science.gov (United States)

    Anne, Agnès; Chovin, Arnaud; Demaille, Christophe

    2012-06-12

    In this work, we experimentally address the issue of optimizing gold electrode attached ferrocene (Fc)-peptide systems for kinetic measurements of protease action. Considering human α-thrombin and bovine trypsin as proteases of interest, we show that the recurring problem of incomplete cleavage of the peptide layer by these enzymes can be solved by using ultraflat template-stripped gold, instead of polished polycrystalline gold, as the Fc-peptide bearing electrode material. We describe how these fragile surfaces can be mounted in a rotating disk configuration so that enzyme mass transfer no longer limits the overall measured cleavage kinetics. Finally, we demonstrate that, once the system has been optimized, in situ real-time cyclic voltammetry monitoring of the protease action can yield high-quality kinetic data, showing no sign of interfering effects. The cleavage progress curves then closely match the Langmuirian variation expected for a kinetically controlled surface process. Global fit of the progress curves yield accurate values of the peptide cleavage rate for both trypsin and thrombin. It is shown that, whereas trypsin action on the surface-attached peptide closely follows Michaelis-Menten kinetics, thrombin displays a specific and unexpected behavior characterized by a nearly enzyme-concentration-independent cleavage rate in the subnanomolar enzyme concentration range. The reason for this behavior has still to be clarified, but its occurrence may limit the sensitivity of thrombin sensors based on Fc-peptide layers.

  11. Enzyme kinetics in acoustically levitated droplets of supercooled water: a novel approach to cryoenzymology.

    Science.gov (United States)

    Weis, David D; Nardozzi, Jonathan D

    2005-04-15

    The rate of the alkaline phosphatase-catalyzed hydrolysis of 4-methylumbelliferone phosphate was measured in acoustically levitated droplets of aqueous tris (50 mM) at pH 8.5 at 22 +/- 2 degrees C and in supercooled solution at -6 +/- 2 degrees C. At 22 degrees C, the rate of product formation was in excellent agreement with the rate observed in bulk solution in a cuvette, indicating that the acoustic levitation process does not alter the enzyme activity. The rate of the reaction decreased 6-fold in supercooled solution at -6 +/- 2 degrees C. The acoustic levitator apparatus is described in detail.

  12. Reproductive performance of female goats fed life-enzyme ...

    African Journals Online (AJOL)

    Direct-fed-microbes (DFM) (life-enzyme) was prepared in a traditional setting using Zymomonas mobilis (bacteria from palm sap) to ferment sawdust. The result revealed an improvement in the nutrient content of the sawdust and its feed values (protein, fibre etc.), and the feed usage efficiency. The reproductive ...

  13. Performance response and egg qualities of laying birds fed enzyme ...

    African Journals Online (AJOL)

    Theperformance response and egg qualities o laying birds fed enzyme supplemented PKC diets asreplacement for maize was investigated wth 210, 20 week old layng pullets of Dominant Black strain at the Teaching and Research Farm of the Delta State University, Asaba Campus, Nigeria. The birds which ust come into ...

  14. Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling.

    Science.gov (United States)

    Huang, Yu-Ming M; Huber, Gary A; Wang, Nuo; Minteer, Shelley D; McCammon, J Andrew

    2018-02-01

    Malate dehydrogenase (MDH) and citrate synthase (CS) are two pacemaking enzymes involved in the tricarboxylic acid (TCA) cycle. Oxaloacetate (OAA) molecules are the intermediate substrates that are transferred from the MDH to CS to carry out sequential catalysis. It is known that, to achieve a high flux of intermediate transport and reduce the probability of substrate leaking, a MDH-CS metabolon forms to enhance the OAA substrate channeling. In this study, we aim to understand the OAA channeling within possible MDH-CS metabolons that have different structural orientations in their complexes. Three MDH-CS metabolons from native bovine, wild-type porcine, and recombinant sources, published in recent work, were selected to calculate OAA transfer efficiency by Brownian dynamics (BD) simulations and to study, through electrostatic potential calculations, a possible role of charges that drive the substrate channeling. Our results show that an electrostatic channel is formed in the metabolons of native bovine and recombinant porcine enzymes, which guides the oppositely charged OAA molecules passing through the channel and enhances the transfer efficiency. However, the channeling probability in a suggested wild-type porcine metabolon conformation is reduced due to an extended diffusion length between the MDH and CS active sites, implying that the corresponding arrangements of MDH and CS result in the decrease of electrostatic steering between substrates and protein surface and then reduce the substrate transfer efficiency from one active site to another. © 2017 The Protein Society.

  15. Analysis of residuals from enzyme kinetic and protein folding experiments in the presence of correlated experimental noise.

    Science.gov (United States)

    Kuzmic, Petr; Lorenz, Thorsten; Reinstein, Jochen

    2009-12-01

    Experimental data from continuous enzyme assays or protein folding experiments often contain hundreds, or even thousands, of densely spaced data points. When the sampling interval is extremely short, the experimental data points might not be statistically independent. The resulting neighborhood correlation invalidates important theoretical assumptions of nonlinear regression analysis. As a consequence, certain goodness-of-fit criteria, such as the runs-of-signs test and the autocorrelation function, might indicate a systematic lack of fit even if the experiment does agree very well with the underlying theoretical model. A solution to this problem is to analyze only a subset of the residuals of fit, such that any excessive neighborhood correlation is eliminated. Substrate kinetics of the HIV protease and the unfolding kinetics of UMP/CMP kinase, a globular protein from Dictyostelium discoideum, serve as two illustrative examples. A suitable data-reduction algorithm has been incorporated into software DYNAFIT [P. Kuzmic, Anal. Biochem. 237 (1996) 260-273], freely available to all academic researchers from http://www.biokin.com.

  16. Acetazolamide Inhibits the Level of Tyrosinase and Melanin: An Enzyme Kinetic, In Vitro, In Vivo, and In Silico Studies.

    Science.gov (United States)

    Abbas, Qamar; Raza, Hussain; Hassan, Mubashir; Phull, Abdul Rehman; Kim, Song Ja; Seo, Sung-Yum

    2017-09-01

    Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti-melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC 50 7.895 ± 0.24 μm) against tyrosinase as compared to the standard drug kojic acid (IC 50 16.84 ± 0.64 μm) and kinetic analyses showed that ACZ is a non-competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l-DOPA. Western blot results showed that ACZ significantly (P melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes.

    Science.gov (United States)

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D

    2015-12-15

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Effect of morin on pharmacokinetics of piracetam in rats, in vitro enzyme kinetics and metabolic stability assay using rapid UPLC method.

    Science.gov (United States)

    Sahu, Kapendra; Shaharyar, Mohammad; Siddiqui, Anees A

    2013-07-01

    The aim of this study was to investigate the effect of Morin on the pharmacokinetics of Piracetam in rats, in vitro enzyme kinetics and metabolic stability (high throughput) studies using human liver microsomes in UPLC. For pharmacokinetics studies, male Wistar rats were pretreated with Morin (10 mg/kg) for one week and on the last day, a single dose of Piracetam (50 mg/kg) was given orally. In another group, both Morin and Piracetam were co-administered to evaluate the acute effect of Morin on Piracetam. The control group received oral distilled water for one week and administered with Piracetam on the last day. As Morin is an inhibitor of P- Glycoprotein (P-gp) and CYP 3A, it was anticipated to improve the bioavailability of Piracetam. Amazingly, relative to control, the areas under the concentration time curve and peak plasma concentration of Piracetam were 1.50- and 1.45-fold, respectively, greater in the Morin-pretreated group. However, co-administration of Morin had no significant effect on these parameters. Apart from the aforementioned merits, the results of this study are further confirmed by clinical trials; Piracetam dosages should be adjusted to avoid potential drug interaction when Piracetam is used clinically in combination with Morin and Morin-containing dietary supplements. The in vitro enzyme kinetics were performed to determined km, Vmax & CLins . The in vitro metabolic stability executed for the estimation of metabolic rate constant and half-life of Piracetam. These studies also extrapolate to in vivo intrinsic hepatic clearance (Clint, in vivo ) from in vitro intrinsic hepatic clearance (CLint, in vitro ). Copyright © 2012 John Wiley & Sons, Ltd.

  19. The relative importance of kinetic mechanisms and variable enzyme abundances for the regulation of hepatic glucose metabolism--insights from mathematical modeling.

    Science.gov (United States)

    Bulik, Sascha; Holzhütter, Hermann-Georg; Berndt, Nikolaus

    2016-03-02

    Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.

  20. KID - an algorithm for fast and efficient text mining used to automatically generate a database containing kinetic information of enzymes

    Directory of Open Access Journals (Sweden)

    Schomburg Dietmar

    2010-07-01

    Full Text Available Abstract Background The amount of available biological information is rapidly increasing and the focus of biological research has moved from single components to networks and even larger projects aiming at the analysis, modelling and simulation of biological networks as well as large scale comparison of cellular properties. It is therefore essential that biological knowledge is easily accessible. However, most information is contained in the written literature in an unstructured way, so that methods for the systematic extraction of knowledge directly from the primary literature have to be deployed. Description Here we present a text mining algorithm for the extraction of kinetic information such as KM, Ki, kcat etc. as well as associated information such as enzyme names, EC numbers, ligands, organisms, localisations, pH and temperatures. Using this rule- and dictionary-based approach, it was possible to extract 514,394 kinetic parameters of 13 categories (KM, Ki, kcat, kcat/KM, Vmax, IC50, S0.5, Kd, Ka, t1/2, pI, nH, specific activity, Vmax/KM from about 17 million PubMed abstracts and combine them with other data in the abstract. A manual verification of approx. 1,000 randomly chosen results yielded a recall between 51% and 84% and a precision ranging from 55% to 96%, depending of the category searched. The results were stored in a database and are available as "KID the KInetic Database" via the internet. Conclusions The presented algorithm delivers a considerable amount of information and therefore may aid to accelerate the research and the automated analysis required for today's systems biology approaches. The database obtained by analysing PubMed abstracts may be a valuable help in the field of chemical and biological kinetics. It is completely based upon text mining and therefore complements manually curated databases. The database is available at http://kid.tu-bs.de. The source code of the algorithm is provided under the GNU General Public

  1. Enzyme kinetics, inhibitors, mutagenesis and electron paramagnetic resonance analysis of dual-affinity nitrate reductase in unicellular N(2)-fixing cyanobacterium Cyanothece sp. PCC 8801.

    Science.gov (United States)

    Wang, Tung-Hei; Chen, Yung-Han; Huang, Jine-Yung; Liu, Kang-Cheng; Ke, Shyue-Chu; Chu, Hsiu-An

    2011-11-01

    The assimilatory nitrate reductase (NarB) of N(2)-fixing cyanobacterium Cyanothece sp. PCC 8801 is a monomeric enzyme with dual affinity for substrate nitrate. We purified the recombinant NarB of Cyanothece sp. PCC 8801 and further investigated it by enzyme kinetics analysis, site-directed mutagenesis, inhibitor kinetics analysis, and electron paramagnetic resonance (EPR) spectroscopy. The NarB showed 2 kinetic regimes at pH 10.5 or 8 and electron-donor conditions methyl viologen or ferredoxin (Fd). Fd-dependent NR assay revealed NarB with very high affinity for nitrate (K(m)1, ∼1μM; K(m)2, ∼270μM). Metal analysis and EPR results showed that NarB contains a Mo cofactor and a [4Fe-4S] cluster. In addition, the R352A mutation on the proposed nitrate-binding site of NarB greatly altered both high- and low-affinity kinetic components. Furthermore, the effect of azide on the NarB of Cyanothece sp. PCC 8801 was more complex than that on the NarB of Synechococcus sp. PCC 7942 with its single kinetic regime. With 1mM azide, the kinetics of the wild-type NarB was transformed from 2 kinetic regimes to hyperbolic kinetics, and its activity was enhanced significantly under medium nitrate concentrations. Moreover, EPR results also suggested a structural difference between the two NarBs. Taken together, our results show that the NarB of Cyanothece sp. PCC 8801 contains only a single Mo-catalytic center, and we rule out that the enzyme has 2 independent, distinct catalytic sites. In addition, the NarB of Cyanothece sp. PCC 8801 may have a regulatory nitrate-binding site. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    Science.gov (United States)

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  3. Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance.

    Science.gov (United States)

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2012-11-01

    Enzyme additives are believed to improve septic tank performance by increasing the hydrolysis and digestion rates and maintaining a healthy microbial population. Previous studies reported mixed results on the effectiveness of enzymes on mesophilic and thermophilic digestion, and it is not clear whether enzymes would be effective under septic tank conditions where there is no heating or mixing, quantities of enzymes added are small, and they can be washed out quickly. In this study, batch reactors and continuous-flow reactors designed and operated as septic tanks were used to evaluate whether enzymatic treatment would increase the hydrolysis and digestion rates in primary sludge. Total solids, volatile solids, total suspended solids, total and soluble chemical oxygen demand, concentrations of protein, carbohydrate, ammonia and volatile acids in sludge and effluent samples were measured to determine the differences in digestion rates in the presence and absence of enzymes. Overall, no significant improvement was observed in enzyme-treated reactors compared with the control reactors.

  4. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow

    Science.gov (United States)

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-01

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  5. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism.

    Science.gov (United States)

    Rogers, Zoe; Hiruy, Hiwot; Pasipanodya, Jotam G; Mbowane, Chris; Adamson, John; Ngotho, Lihle; Karim, Farina; Jeena, Prakash; Bishai, William; Gumbo, Tawanda

    2016-09-01

    N-acetyltransferase 2 (NAT2) catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (V max ) and affinity (K m ) in children 0-10years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS), to identify factors predicting NAT2 V max and K m by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both V max and K m and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥5.3years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm. Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.

  6. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism

    Directory of Open Access Journals (Sweden)

    Zoe Rogers

    2016-09-01

    Full Text Available N-acetyltransferase 2 (NAT2 catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (Vmax and affinity (Km in children 0–10 years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS, to identify factors predicting NAT2 Vmax and Km by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both Vmax and Km and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥5.3 years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm.

  7. A Chimeric LysK-Lysostaphin Fusion Enzyme Lysing Staphylococcus aureus Cells: a Study of Both Kinetics of Inactivation and Specifics of Interaction with Anionic Polymers.

    Science.gov (United States)

    Filatova, Lyubov Y; Donovan, David M; Ishnazarova, Nadiya T; Foster-Frey, Juli A; Becker, Stephen C; Pugachev, Vladimir G; Balabushevich, Nadezda G; Dmitrieva, Natalia F; Klyachko, Natalia L

    2016-10-01

    A staphylolytic fusion protein (chimeric enzyme K-L) was created, harboring three unique lytic activities composed of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of chimeric enzyme K-L was investigated. As a protein antimicrobial, with potential antigenic properties, the biophysical effect of including chimeric enzyme K-L in anionic polymer matrices that might help reduce the immunogenicity of the enzyme was tested. Chimeric enzyme K-L reveals a high lytic activity under the following optimal ( opt ) conditions: pH opt 6.0-10.0, t opt 20-30 °C, NaCl opt 400-800 mM. At the working temperature of 37 °C, chimeric enzyme K-L is inactivated by a monomolecular mechanism and possesses a high half-inactivation time of 12.7 ± 3.0 h. At storage temperatures of 22 and 4 °C, a complex mechanism (combination of monomolecular and bimolecular mechanisms) is involved in the chimeric enzyme K-L inactivation. The optimal storage conditions under which the enzyme retains 100 % activity after 140 days of incubation (4 °C, the enzyme concentration of 0.8 mg/mL, pH 6.0 or 7.5) were established. Chimeric enzyme K-L is included in complexes with block-copolymers of poly-L-glutamic acid and polyethylene glycol, while the enzyme activity and stability are retained, thus suggesting methods to improve the application of this fusion as an effective antimicrobial agent.

  8. Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002.

    Science.gov (United States)

    Goltsov, Alexey; Tashkandi, Ghassan; Langdon, Simon P; Harrison, David J; Bown, James L

    2017-01-15

    The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC 50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC 50 on ATP concentration that allows prediction of the IC 50 at different ATP concentrations in enzyme and cellular assays. Comparison of drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K

  9. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    Science.gov (United States)

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  10. Effects of exogenous tannase enzyme on growth performance ...

    African Journals Online (AJOL)

    An experiment was conducted to study the effects of dietary addition of tannase to feed of chicks including grape pomace (GP) on growth performance, antioxidant status, immune response, blood parameters, gut morphology, intestinal microflora, liver function, and histopathological responses. The experimental diets were i) ...

  11. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L.

    2013-01-01

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  12. Development of ultrasonically levitated drops as microreactors for study of enzyme kinetics and potential as a universal portable analysis system

    Science.gov (United States)

    Scheeline, A.; Pierre, Z.; Field, C. R.; Ginsberg, M. D.

    2009-05-01

    Development of microfluidics has focused on carrying out chemical synthesis and analysis in ever-smaller volumes of solution. In most cases, flow systems are made of either quartz, glass, or an easily moldable polymer such as polydimethylsiloxane (Whitesides 2006). As the system shrinks, the ratio of surface area to volume increases. For studies of either free radical chemistry or protein chemistry, this is undesirable. Proteins stick to surfaces, biofilms grow on surfaces, and radicals annihilate on walls (Lewis et al. 2006). Thus, under those circumstances where small amounts of reactants must be employed, typical microfluidic systems are incompatible with the chemistry one wishes to study. We have developed an alternative approach. We use ultrasonically levitated microliter drops as well mixed microreactors. Depending on whether capillaries (to form the drop) and electrochemical sensors are in contact with the drop or whether there are no contacting solids, the ratio of solid surface area to volume is low or zero. The only interface seen by reactants is a liquid/air interface (or, more generally, liquid/gas, as any gas may be used to support the drop). While drop levitation has been reported since at least the 1940's, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fabricated the lowest power levitator in the literature (Field; Scheeline 2007). The low consumption aspects of ordinary microfluidics combine with a contact-free determination cell (the levitated drop) that ensures against cross-contamination, minimizes the likelihood of biofilm formation, and is robust to changes in temperature and humidity (Lide 1992). We report kinetics measurements in levitated drops and explain how outgrowths of these accomplishments will lead to portable chemistry/biology laboratories well suited to detection of a wide range of chemical and biological agents in the asymmetric battlefield environment.

  13. Hollow fiber adsorbents for CO2 capture: Kinetic sorption performance

    KAUST Repository

    Lively, Ryan P.

    2011-07-01

    We describe a CO 2 capture platform based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall for post-combustion CO 2 capture. These fibers are intended for use in a rapid temperature swing adsorption (RTSA) process. The RTSA system utilizes the hollow fiber morphology by flowing cooling water on the bore-side of the fibers during sorption to prevent temperature rise associated with the sorption enthalpy. Steam or hot water is flowed through the bores during desorption to desorb CO 2 rapidly. To minimize material transfer between the bore and the fiber wall, a dense Neoprene ® lumen layer is cast on the bore-side of the fiber wall. In this paper, the key sorption step and associated kinetic resistances for the uncooled fibers are examined and evaluated for this portion of the RTSA process. Chopped fibers in a packed bed, as well as fibers assembled into a parallel flow module, have been tested in a simulated flue gas stream. Kinetic limitations in the hollow fiber modules are largely overcome by increasing the superficial gas velocity and the fiber packing in the module-indicating that film diffusion is the controlling mass transfer limitation in the fiber system. The un-cooled fiber modules lose apparent capacity as superficial velocities are increased, likely indicating non-isothermal operation, whereas the actively-cooled fibers in the packed bed maintain apparent capacity at all flowrates studied. © 2011 Elsevier B.V.

  14. Modifications Caused by Enzyme-Retting and Their Effect on Composite Performance

    Directory of Open Access Journals (Sweden)

    Jonn A. Foulk

    2011-01-01

    Full Text Available Bethune seed flax was collected from Canada with seed removed using a stripper header and straw pulled and left in field for several weeks. Unretted straw was decorticated providing a coarse fiber bundle feedstock for enzyme treatments. Enzyme treatments using a bacterial pectinolytic enzyme with lyase activity were conducted in lab-scale reactors. Four fiber specimens were created: no retting, minimal retting, moderate retting, and full retting. Fiber characterization tests: strength, elongation, diameter, metal content, wax content, and pH were conducted with significant differences between fibers. Thermosetting vinyl ester resin was used to produce composite panels via vacuum-assisted infusion. Composite performance was evaluated using fiber bundle pull-out, tensile, impact, and interlaminar shear tests. Composite tests indicate that composite panels are largely unchanged among fiber samples. Variation in composite performance might not be realized due to poor interfacial bonding being of larger impact than the more subtle changes incurred by the enzyme treatment.

  15. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids

    Science.gov (United States)

    Rocchitta, Gaia; Spanu, Angela; Babudieri, Sergio; Latte, Gavinella; Madeddu, Giordano; Galleri, Grazia; Nuvoli, Susanna; Bagella, Paola; Demartis, Maria Ilaria; Fiore, Vito; Manetti, Roberto; Serra, Pier Andrea

    2016-01-01

    Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented. PMID:27249001

  16. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    International Nuclear Information System (INIS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-01-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  17. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    Science.gov (United States)

    Leong, Sze Ying; Oey, Indrawati

    2014-03-01

    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effect of Different Levels of Extruded Soybean and Avizyme Enzyme on Broiler Performance

    Directory of Open Access Journals (Sweden)

    H Nasiri Mogadam

    2012-01-01

    Full Text Available An experiment was conducted to examine the effect of different levels of extruded soybean and enzyme on broiler performance. In a completely randomized design with 2×3 factorial arrangement, 480 one day-old, Ross broiler chickens were divided into 40 groups, 12 chicks per pen. Treatments were consisting of combination of four levels of extruded soybean (0.0, 5.0, 10.0 and 15.0 % and two levels of enzyme (0.0 and 500 g per ton. Different levels of extruded soybean and enzyme had no significant effect on blood factors such as cholesterol, triglyceride and the weight of liver and heart. The usage of extruded soybean and enzyme showed significantly higher weight gain and better feed conversion (p

  19. A reduced chemical kinetic model for the analytical investigations on the oxidation kinetics and performance characteristics of diesel fuel

    International Nuclear Information System (INIS)

    Selvaraj, N.; Manoj Kumar, C.V.; Babu, M.S.

    2010-01-01

    A detailed study of the combustion of diesel fuel has been conducted analytically using a kinetic scheme with 767 elementary reactions and 158 species. A program has been developed in MATLAB for the analysis of ignition delay, performance, soot formation and emission characteristics of diesel fuel. Nitrogen is considered as the diluent and its percentage is assumed as 79%. The criteria used for the determination of ignition delay time are based on OH concentration to reach a value of 1x10 -9 . A brief review of diesel combustion and soot formation is given. (author)

  20. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation.

    Science.gov (United States)

    Romero, J J; Macias, E G; Ma, Z X; Martins, R M; Staples, C R; Beauchemin, K A; Adesogan, A T

    2016-05-01

    The objective of this experiment was to examine effects of adding 2 exogenous fibrolytic enzymes (EFE) to the total mixed ration (TMR) on the performance of lactating dairy cows (experiment 1) and the kinetics of ruminal degradation of the diet (experiment 2). Twelve EFE had been screened in a series of in vitro assays that identified the most potent EFE and their optimal doses for increasing the digestibility of bermudagrass. In experiment 1, 66 Holstein cows (21±5 d in milk) were grouped by previous milk production and parity (45 multiparous and 21 primiparous) and assigned randomly to 1 of the following 3 treatments: (1) control (CON, untreated), (2) Xylanase Plus [2A, 1mL/kg of TMR dry matter (DM); Dyadic International, Jupiter, FL], and (3) a 75:25 (vol/vol) mixture of Cellulase Plus and Xylanase Plus EFE (3A, 3.4mL/kg of TMR DM; Dyadic International). The EFE were sprayed twice daily onto a TMR (10% bermudagrass silage, 35% corn silage, 5% alfalfa-orchardgrass hay mixture, and 50% concentrates; DM basis) and fed for a 14-d training and covariate period and a 70-d measurement period. Experiment 2 aimed to examine the in situ DM ruminal degradability and ruminal fermentation measurements of the diets fed in experiment 1. Three ruminally fistulated lactating Holstein cows were assigned to the diets. The experiment had a 3×3 Latin square design with 23-d periods. In experiment 1, application of 2A increased intakes (kg/d) of DM (23.5 vs. 22.6), organic matter (21.9 vs. 20.9), and crude protein (3.9 vs. 3.7) and tended to increase yields (kg/d) of fat-corrected milk (41.8 vs. 40.7) and milk fat (1.48 vs. 1.44). In particular, 2A increased milk yield (kg/d) during wk 3 (41.2 vs. 39.8, tendency), 6 (41.9 vs. 40.1), and 7 (42.1 vs. 40.4), whereas 3A increased milk yield (kg/d) during wk 6 (41.5 vs. 40.1, tendency), 8 (41.8 vs. 40.0), and 9 (40.9 vs. 39.5, tendency). In experiment 2, EFE treatment did not affect ruminal DM degradation kinetics or ruminal pH, ammonia

  1. Kinetic characterization of glucose aerodehydrogenase from Aspergillus niger EMS-150-F after optimizing the dose of mutagen for enhanced production of enzyme

    Directory of Open Access Journals (Sweden)

    Huma Umbreen

    2013-12-01

    Full Text Available In the present study enhanced production of glucose aerodehydrogenase from Aspergillus niger has been achieved after optimizing the dose of chemical mutagen ethyl methane sulfonate (EMS that has not been reported earlier. Different doses of mutagen were applied and a strain was developed basing upon the best production. The selected strain Aspergillus niger EMS-150-F was optimized for nutrient requirements in order to produce enzyme through fermentation and the results showed the best yield at 2% corn steep liquor (CSL, 36 hours fermentation time, pH 5, 30°C temperature, 0.3% KH2PO4, 0.3% urea and 0.06% CaCO3. The enzyme was then purified and resulted in 57.88 fold purification with 52.12% recovery. On kinetic characterization, the enzyme showed optimum activity at pH 6 and temperature 30°C. The Michaelis-Menton constants (Km, Vmax, Kcat and Kcat/Km were 20 mM, 45.87 U mL-1, 1118.81 s-1 and 55.94 s-1 mM-1, respectively. The enzyme was found to be thermaly stable and the enthalpy and free energy showed an increase with increase in temperature and ΔS* was highly negative proving the enzyme from A. niger EMS-150-F resistant to temperature and showing a very little disorderliness.

  2. An artificial-intelligence technique for qualitatively deriving enzyme kinetic mechanisms from initial-velocity measurements and its application to hexokinase.

    Science.gov (United States)

    Garfinkel, L; Cohen, D M; Soo, V W; Garfinkel, D; Kulikowski, C A

    1989-01-01

    We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength). PMID:2690819

  3. Effect of Alchornea cordifolia leaf meal inclusion and enzyme supplementation on performance and digestibility of rabbits

    Directory of Open Access Journals (Sweden)

    S.O. Ayodele

    2016-09-01

    Full Text Available A feeding trial was conducted to study the performance, digestibility and health status of weaner rabbits fed diets including Alchornea cordifolia leaf meal (ALM: 18% crude protein [CP] and 12.9% crude fibre and supplemented with a multi-enzyme additive (cellulase, xylanase, β-glucanase, α-amylase, protease, lipase. Six experimental diets were arranged factorially: 3 levels of ALM (0, 5 and 10% substituting palm kernel cake: 16.3% CP and 39.1% neutral detergent fibre combined with 2 levels of enzyme supplementation (0 and 0.35 g/kg. One hundred and eighty healthy, 5-wk-old weaner rabbits of cross-breeds were randomly allotted to 6 dietary treatments (30 rabbits/treatment, 3 rabbits/replicate. Growth rate was not affected (P>0.05 by the main factors (exogenous enzyme and ALM inclusion and their interactions (13.5 g/d on av.. Daily feed intake and feed conversion ratio decreased (P=0.01 with the ALM inclusion by 8%, but did not affect faecal digestibility. However, enzyme supplementation improved crude protein and crude fibre digestibility (P<0.001 by 6%. In conclusion, ALM inclusion and enzyme supplementation had no adverse effect on the performance and digestibility of rabbits.

  4. Mechanism and activation for allosteric adenosine 5'-monophosphate nucleosidase. Kinetic alpha-deuterium isotope effects for the enzyme-catalyzed hydrolysis of adenosine 5'-monophosphate and nicotinamide mononucleotide

    International Nuclear Information System (INIS)

    Skoog, M.T.

    1986-01-01

    The kinetic alpha-deuterium isotope effect on Vmax/Km for hydrolysis of NMN catalyzed by AMP nucleosidase at saturating concentrations of the allosteric activator MgATP2- is kH/kD = 1.155 +/- 0.012. This value is close to that reported previously for the nonenzymatic hydrolysis of nucleosides of related structure, suggesting that the full intrinsic isotope effect for enzymatic NMN hydrolysis is expressed under these conditions; that is, bond-changing reactions are largely or completely rate-determining and the transition state has marked oxocarbonium ion character. The kinetic alpha-deuterium isotope effect for this reaction is unchanged when deuterium oxide replaces water as solvent, corroborating this conclusion. Furthermore, this isotope effect is independent of pH over the range 6.95-9.25, for which values of Vmax/Km change by a factor of 90, suggesting that the isotope-sensitive and pH-sensitive steps for AMP-nucleosidase-catalyzed NMN hydrolysis are the same. Values of kH/kD for AMP nucleosidase-catalyzed hydrolysis of NMN decrease with decreasing saturation of enzyme with MgATP2- and reach unity when the enzyme is less than half-saturated with this activator. This requires that the rate-determining step changes from cleavage of the covalent C-N bond to one which is isotope-independent. In contrast to the case for NMN hydrolysis, AMP nucleosidase-catalyzed hydrolysis of AMP at saturating concentrations of MgATP2- shows a kinetic alpha-deuterium isotope effect of unity. Thus, covalent bond-changing reactions are largely or completely rate-determining for hydrolysis of a poor substrate, NMN, but make little or no contribution to rate-determining step for hydrolysis of a good substrate, AMP, by maximally activated enzyme. This behavior has several precedents

  5. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    International Nuclear Information System (INIS)

    Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, K.I.; Narang, H.; Krishna, M.

    2008-01-01

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of γ-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K m and V max values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H 2 O 2 and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  6. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Kunwar, A; Mishra, B; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India); Narang, H; Krishna, M [Radiation Biology and Health Sciences Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-01-15

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of {gamma}-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K{sub m} and V{sub max} values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H{sub 2}O{sub 2} and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  7. Ultra-performance liquid chromatography-tandem mass spectrometry-based multiplex enzyme assay for six enzymes associated with hereditary hemolytic anemia.

    Science.gov (United States)

    Park, Chul Min; Lee, Kyunghoon; Jun, Sun-Hee; Song, Sang Hoon; Song, Junghan

    2017-08-15

    Deficiencies in erythrocyte metabolic enzymes are associated with hereditary hemolytic anemia. Here, we report the development of a novel multiplex enzyme assay for six major enzymes, namely glucose-6-phosphate dehydrogenase, pyruvate kinase, pyrimidine 5'-nucleotidase, hexokinase, triosephosphate isomerase, and adenosine deaminase, deficiencies in which are implicated in erythrocyte enzymopathies. To overcome the drawbacks of traditional spectrophotometric enzyme assays, the present assay was based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The products of the six enzymes were directly measured by using ion pairing UPLC-MS/MS, and the precision, linearity, ion suppression, optimal sample amounts, and incubation times were evaluated. Eighty-three normal individuals and 13 patients with suspected enzymopathy were analyzed. The UPLC running time was within 5min. No ion suppression was observed at the retention time for the products or internal standards. We selected an optimal dilution factor and incubation time for each enzyme system. The intra- and inter-assay imprecision values (CVs) were 2.5-12.1% and 2.9-14.3%, respectively. The linearity of each system was good, with R 2 values >0.97. Patient samples showed consistently lower enzyme activities than those from normal individuals. The present ion paring UPLC-MS/MS assay enables facile and reproducible multiplex evaluation of the activity of enzymes implicated in enzymopathy-associated hemolytic anemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    Full Text Available Three hundred one-day-old male broiler chickens (Ross-308 were fed corn-soybean basal diets containing non-starch polysaccharide (NSP enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI and average daily gain (ADG were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05. Feed-to-gain ratio (FGR was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05. Apparent digestibility of crude protein (ADCP was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05. Cholecystokinin (CCK level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05, but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05, respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05. However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05. The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05. Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  9. The Effects of Enzyme Complex on Performance, Intestinal Health and Nutrient Digestibility of Weaned Pigs

    Directory of Open Access Journals (Sweden)

    J. Q. Yi

    2013-08-01

    Full Text Available Two experiments were conducted to evaluate the effect of supplementing a corn-soybean meal-based diet with an enzyme complex containing amylase, protease and xylanase on the performance, intestinal health, apparent ileal digestibility of amino acids and nutrient digestibility of weaned pigs. In Exp. 1, 108 piglets weaned at 28 d of age were fed one of three diets containing 0 (control, 100, or 150 ppm enzyme complex for 4 wks, based on a two-phase feeding program namely 1 to 7 d (phase 1 and 8 to 28 d (phase 2. At the end of the experiment, six pigs from the control group and the group supplemented with 150 ppm enzyme complex were chosen to collect digesta samples from intestine to measure viscosity and pH in the stomach, ileum, and cecum, as well as volatile fatty acid concentrations and composition of the microflora in the cecum and colon. There were linear increases (p<0.01 in weight gain, gain: feed ratio and digestibility of gross energy with the increasing dose rate of enzyme supplementation during the whole experiment. Supplementation with enzyme complex increased the digesta viscosity in the stomach (p<0.05 and significantly increased (p<0.01 the concentrations of acetic, propionic and butyric acid in the cecum and colon. Enzyme supplementation also significantly increased the population of Lactobacilli (p<0.01 in the cecum and decreased the population of E. coli (p<0.05 in the colon. In Exp. 2, six crossbred barrows (initial body weight: 18.26±1.21 kg, fitted with a simple T-cannula at the distal ileum, were assigned to three dietary treatments according to a replicated 3×3 Latin Square design. The experimental diets were the same as the diets used in phase 2 in Exp. 1. Apparent ileal digestibility of isoleucine (p<0.01, valine (p<0.05 and aspartic acid (p<0.05 linearly increased with the increasing dose rate of enzyme supplementation. In conclusion, supplementation of the diet with an enzyme complex containing amylase, protease and

  10. Ruminant Nutrition Symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes.

    Science.gov (United States)

    Adesogan, A T; Ma, Z X; Romero, J J; Arriola, K G

    2014-04-01

    This paper aimed to summarize published responses to treatment of cattle diets with exogenous fibrolytic enzymes (EFE), to discuss reasons for variable EFE efficacy in animal trials, to recommend strategies for improving enzyme testing and EFE efficacy in ruminant diets, and to identify proteomic differences between effective and ineffective EFE. A meta-analysis of 20 dairy cow studies with 30 experiments revealed that only a few increased lactational performance and the response was inconsistent. This variability is attributable to several enzyme, feed, animal, and management factors that were discussed in this paper. The variability reflects our limited understanding of the synergistic and sequential interactions between exogenous glycosyl hydrolases, autochthonous ruminal microbes, and endogenous fibrolytic enzymes that are necessary to optimize ruminal fiber digestion. An added complication is that many of the standard methods of assaying EFE activities may over- or underestimate their potential effects because they are based on pure substrate saccharification and do not simulate ruminal conditions. Our recent evaluation of 18 commercial EFE showed that 78 and 83% of them exhibited optimal endoglucanase and xylanase activities, respectively, at 50 °C, and 77 and 61% had optimal activities at pH 4 to 5, respectively, indicating that most would likely act suboptimally in the rumen. Of the many fibrolytic activities that act synergistically to degrade forage fiber, the few usually assayed, typically endoglucanase and xylanase, cannot hydrolyze the recalcitrant phenolic acid-lignin linkages that are the main constraints to ruminal fiber degradation. These factors highlight the futility of random addition of EFE to diets. This paper discusses reasons for the variable animal responses to dietary addition of fibrolytic enzymes, advances explanations for the inconsistency, suggests a strategy to improve enzyme efficacy in ruminant diets, and describes differences

  11. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  12. Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry)

    NARCIS (Netherlands)

    Botman, Dennis; Tigchelaar, Wikky; van Noorden, Cornelis J. F.

    2014-01-01

    Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)(+) to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we

  13. The purification and steady-state kinetic behaviour of rabbit heart mitochondrial NAD(P)+ malic enzyme.

    OpenAIRE

    Davisson, V J; Schulz, A R

    1985-01-01

    The mitochondrial NAD(P)+ malic enzyme [EC 1.1.1.39, L-malate:NAD+ oxidoreductase (decarboxylating)] was purified from rabbit heart to a specific activity of 7 units (mumol/min)/mg at 23 degrees C. A study of the reductive carboxylation reaction indicates that this enzymic reaction is reversible. The rate of the reductive carboxylation reaction appears to be completely inhibited at an NADH concentration of 0.92 mM. A substrate saturation curve of this reaction with NADH as the varied substrat...

  14. Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    2017-01-01

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: the primary amine monoethanolamine (MEA), the sterically hindered primary amine 2-amino-2-methyl-1-propanol (AMP), the tertiary amine N......-methyl-diethanolamine (MDEA) and the carbonate salt solution K2CO3 were compared in concentrations from 5 to 50 wt% in a temperature range of 298–328 K with and without enzyme. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined...

  15. Unchanged content of oxidative enzymes in fast-twitch muscle fibers and V˙O2 kinetics after intensified training in trained cyclists

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Gunnarsson, Thomas Gunnar Petursson; Thomassen, Martin

    2015-01-01

    perturbation during INT. Pulmonary V˙O2 kinetics was determined in eight trained male cyclists (V˙O2-max: 59 ± 4 (means ± SD) mL min(-1) kg(-1)) during MOD (205 ± 12 W ~65% V˙O2-max) and INT (286 ± 17 W ~85% V˙O2-max) exercise before and after a 7-week HIT period (30-sec sprints and 4-min intervals) with a 50...... DW(-1) min(-1)) of CS (56 ± 8 post-HIT vs. 59 ± 10 pre-HIT), HAD (27 ± 6 vs. 29 ± 3) and PFK (340 ± 69 vs. 318 ± 105) and the capillary to fiber ratio (2.30 ± 0.16 vs. 2.38 ± 0.20) was unaltered following HIT. V˙O2 kinetics was unchanged with HIT and the speed of the primary response did not differ...... of oxidative enzymes in fast-twitch fibers, and did not change V˙O2 kinetics....

  16. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    Science.gov (United States)

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  17. Performance characteristics of bioassay, radioenzymatic assay, homogeneous enzyme immunoassay, and high-performance liquid chromatographic determination of serum gentamicin

    International Nuclear Information System (INIS)

    Delaney, C.J.; Opheim, K.E.; Smith, A.L.; Plorde, J.J.

    1982-01-01

    We compared the accuracy, precision, and between-method error of the microbiological assay, the radioenzymatic assay, the homogeneous enzyme immunoassay, and the high-performance liquid chromatographic assay for the quantitation of gentamicin in serum. Precision and accuracy were evaluated by reference samples prepared to contain 0.0 to 32.7 micrograms of gentamicin per ml. Correlations between the methods utilized patient sera with gentamicin concentrations ranging from 0.6 to 13.3 micrograms/ml. All methods were reliable within acceptable limits for routine clinical use; intermethod correlation coefficients exceeded 0.96. Relative to the microbiological assay, the alternative methods offer the advantage of rapid analysis. The elapsed times for acquiring data on a set of 10 specimens under routine operating conditions were 0.5 h by the enzyme immunoassay, 4 h by the radioenzymatic assay, 5 h by the high-performance liquid chromatographic assay, and 10 h by the microbiological assay

  18. Prediction of interindividual variation in drug plasma levels in vivo from individual enzyme kinetic data and physiologically based pharmacokinetic modeling

    NARCIS (Netherlands)

    Bogaards, J.J.P.; Hissink, E.M.; Briggs, M.; Weaver, R.; Jochemsen, R.; Jackson, P.; Bertrand, M.; Bladeren, P. van

    2000-01-01

    A strategy is presented to predict interindividual variation in drug plasma levels in vivo by the use of physiologically based pharmacokinetic modeling and human in vitro metabolic parameters, obtained through the combined use of microsomes containing single cytochrome P450 enzymes and a human liver

  19. Red Seaweed Enzyme-Catalyzed Bromination of Bromophenol Red: An Inquiry-Based Kinetics Laboratory Experiment for Undergraduates

    Science.gov (United States)

    Jittam, Piyachat; Boonsiri, Patcharee; Promptmas, Chamras; Sriwattanarothai, Namkang; Archavarungson, Nattinee; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Haloperoxidase enzymes are of interest for basic and applied bioscientists because of their increasing importance in pharmaceutical industry and environmental cleanups. In a guided inquiry-based laboratory experiment for life-science, agricultural science, and health science undergraduates, the bromoperoxidase from a red seaweed was used to…

  20. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.

    Science.gov (United States)

    Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

    2014-02-01

    Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Inhibitory and enzyme-kinetic investigation of chelerythrine and lupeol isolated from Zanthoxylum rhoifolium against krait snake venom acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mustaq, E-mail: mushtaq213@yahoo.com [University of Science and Technology, Bannu, (Pakistan). Department of Biotechnology; Weber, Andrea D.; Zanon, Graciane; Tavares, Luciana de C.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F., E-mail: ademirfariasm@gmail.com [Universidade Federal de Santa Maria, RS (Brazil). Dept. de Quimica

    2014-01-15

    The in vitro activity of chelerythrine and lupeol, two metabolites isolated from Zanthoxylum rhoifolium were studied against the venom of the snake Bungarus sindanus (Elapidae). The venom, which is highly toxic to humans, consists mainly by the enzyme acetylcholinesterase (AChE). Both compounds showed activity against the venom, and the alkaloid chelerythrine presented higher activity than did triterpene lupeol. (author)

  2. Effect of Cereal Type and Enzyme Addition on Performance, Pancreatic Enzyme Activity, Intestinal Microflora and Gut Morphology of Broilers

    Directory of Open Access Journals (Sweden)

    Kalantar M

    2016-06-01

    Full Text Available The effects of grain and carbohydrase enzyme supplementation were investigated on digestive physiology of chickens. A total of 625 one-day-old chicks (Ross 308 were randomly assigned to five treatments in a completely randomized design. Treatments included two different types of grains (wheat, and barley with or without a multi-carbohydrase supplement. A corn-based diet was also considered to serve as a control. Feeding barley-based diet with multi-carbohydrase led to higher feed intake (P < 0.01 than those fed corn- and wheat-based diets. Birds fed on barley and wheat diets had lower weight gain despite a higher feed conversion ratio (P < 0.01. Total count and number of different type of bacteria including Gram-negative, E. coli, and Clostridia increased after feeding wheat and barley but the number of Lactobacilli and Bifidobacteria decreased (P < 0.01. Feeding barley and wheat diets reduced villus height in different parts of the small intestine when compared to those fed on a corn diet. However, enzyme supplementation of barley and wheat diets improved weight gain and feed conversion ratio and resulted in reduced number of E. coli and Clostridia and increased number of Lactobacilli and Bifidobacteria, and also restored the negative effects on intestinal villi height (P < 0.01. The activities of pancreatic α-amylase and lipase were (P < 0.01 increased in chickens fed wheat and barley diets when compared to the control fed on a corn diet. Enzyme supplementation reduced the activities of pancreatic α-amylase and lipase (P < 0.01. In conclusion, various dietary non-starch polysaccharides without enzyme supplementation have an adverse effect on digesta viscosity, ileal microflora, villi morphology, and pancreatic enzyme activity.

  3. Effects of Maize Source and Complex Enzymes on Performance and Nutrient Utilization of Broilers

    Directory of Open Access Journals (Sweden)

    Defu Tang

    2014-12-01

    Full Text Available The objective of this study was to investigate the effect of maize source and complex enzymes containing amylase, xylanase and protease on performance and nutrient utilization of broilers. The experiment was a 4×3 factorial design with diets containing four source maize samples (M1, M2, M3, and M4 and without or with two kinds of complex enzyme A (Axtra XAP and B (Avizyme 1502. Nine hundred and sixty day old Arbor Acres broiler chicks were used in the trial (12 treatments with 8 replicate pens of 10 chicks. Birds fed M1 diet had better body weight gain (BWG and lower feed/gain ratio compared with those fed M3 diet and M4 diet (p0.05, respectively. The fresh feces output was significantly decreased by the addition of enzyme B (p<0.05. Maize source affects the nutrients digestibility and performance of broilers, and a combination of amylase, xylanase and protease is effective in improving the growth profiles of broilers fed maize-soybean-rapeseed-cotton mixed diets.

  4. Synergistic Enhancement of Enzyme Performance and Resilience via Orthogonal Peptide-Protein Chemistry Enabled Multilayer Construction.

    Science.gov (United States)

    Zhang, Xue-Jian; Wang, Xiao-Wei; Sun, Jiaxing; Su, Chao; Yang, Shuguang; Zhang, Wen-Bin

    2018-05-16

    Protein immobilization is critical to utilize their unique functions in diverse applications. Herein, we report that orthogonal peptide-protein chemistry enabled multilayer construction can facilitate the incorporation of various folded structural domains, including calmodulin in different states, affibody and dihydrofolate reductase (DHFR). An extended conformation is found to be the most advantageous for steady film growth. The resulting protein thin films exhibit sensitive and selective responsive behaviors to bio-signals (Ca2+, TFP, NADPH, etc.) and fully maintain the catalytic activity of DHFR. The approach is applicable to different substrates such as hydrophobic gold and hydrophilic silica microparticles. The DHFR enzyme can be immobilized onto silica microparticles with tunable amounts. The multi-layer set-up exhibits a synergistic enhancement of DHFR activity with increasing number of bilayers and also makes the embedded DHFR more resilient to lyophilization. Therefore, this is a convenient and versatile method for protein immobilization with potential benefits of synergistic enhancement in enzyme performance and resilience.

  5. Synthesis, enzyme inhibitory kinetics mechanism and computational study of N-(4-methoxyphenethyl-N-(substituted-4-methylbenzenesulfonamides as novel therapeutic agents for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Muhammad Athar Abbasi

    2018-06-01

    Full Text Available The present study comprises the synthesis of a new series of sulfonamides derived from 4-methoxyphenethylamine (1. The synthesis was initiated by the reaction of 1 with 4-methylbenzenesulfonyl chloride (2 in aqueous sodium carbonate solution at pH 9 to yield N-(4-methoxyphenethyl-4-methylbenzensulfonamide (3.This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides, (4a–j, using N,N-dimethylformamide (DMF as solvent and LiH as activator to produce a series of new N-(4-methoxyphenethyl-N-(substituted-4-methylbenzenesulfonamides (5a–j. The structural characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. The elemental analysis data was also coherent with spectral data of these molecules. The inhibitory effects on acetylcholinesterase and DPPH were evaluated and it was observed that N-(4-Methoxyphenethyl-4-methyl-N-(2-propylbenzensulfonamide (5c showed acetylcholinesterase inhibitory activity 0.075 ± 0.001 (IC50 0.075 ± 0.001 µM comparable to Neostigmine methylsulfate (IC50 2.038 ± 0.039 µM.The docking studies of synthesized ligands 5a–j were also carried out against acetylcholinesterase (PDBID 4PQE to compare the binding affinities with IC50 values. The kinetic mechanism analyzed by Lineweaver-Burk plots demonstrated that compound (5c inhibits the acetylcholinesterase competitively to form an enzyme inhibitor complex. The inhibition constants Ki calculated from Dixon plots for compound (5c is 2.5 µM. It was also found from kinetic analysis that derivative 5c irreversible enzyme inhibitor complex. It is proposed on the basis of our investigation that title compound 5c may serve as lead structure for the design of more potent acetylcholinesterase inhibitors.

  6. KINETICS OF MODULATORY ROLE OF Cyperus esculentus L. ON THE SPECIFIC ACTIVITY OF KEY CARBOHYDRATE METABOLIZING ENZYMES.

    Science.gov (United States)

    Sabiu, Saheed; Ajani, Emmanuel Oladipo; Sunmonu, Taofik Olatunde; Ashafa, Anofi Omotayo Tom

    2017-01-01

    The continuous search for new lead compounds as viable inhibitors of specific enzymes linked to carbohydrate metabolism has intensified. Cyperus esculentus L. is one of the therapeutically implicated botanicals against several degenerative diseases including diabetes mellitus. This study evaluated the antioxidant and mechanism(s) of inhibitory potential of aqueous extract of C. esculentus on α-amylase and α-glucosidase in vitro . The extract was investigated for its radical scavenging and hypoglycaemic potentials using standard experimental procedures. Lineweaver-Burke plot was used to predict the manner in which the enzymes were inhibited. The data obtained revealed that the extract moderately and potently inhibited the specific activities of α -amylase and α -glucosidase, respectively. The inhibition was concentration-related with respective IC 50 values of 5.19 and 0.78 mg/mL relative to that of the control (3.72 and 3.55 mg/mL). The extract also significantly scavenged free radicals and the effects elicited could be ascribed to its phytoconstituents. The respective competitive and non-competitive mode of action of the extract is due to its inhibitory potentials on the activities of α -amylase and α -glucosidase. Going forward, in addition to completely characterize the exact compound(s) responsible for the elicited activity in this study, pertinent attention will be given to the in vivo evaluation of the identified constituents.

  7. Dose-Dependent Change in Elimination Kinetics of Ethanol due to Shift of Dominant Metabolizing Enzyme from ADH 1 (Class I to ADH 3 (Class III in Mouse

    Directory of Open Access Journals (Sweden)

    Takeshi Haseba

    2012-01-01

    Full Text Available ADH 1 and ADH 3 are major two ADH isozymes in the liver, which participate in systemic alcohol metabolism, mainly distributing in parenchymal and in sinusoidal endothelial cells of the liver, respectively. We investigated how these two ADHs contribute to the elimination kinetics of blood ethanol by administering ethanol to mice at various doses, and by measuring liver ADH activity and liver contents of both ADHs. The normalized AUC (AUC/dose showed a concave increase with an increase in ethanol dose, inversely correlating with β. CLT (dose/AUC linearly correlated with liver ADH activity and also with both the ADH-1 and -3 contents (mg/kg B.W.. When ADH-1 activity was calculated by multiplying ADH-1 content by its Vmax⁡/mg (4.0 and normalized by the ratio of liver ADH activity of each ethanol dose to that of the control, the theoretical ADH-1 activity decreased dose-dependently, correlating with β. On the other hand, the theoretical ADH-3 activity, which was calculated by subtracting ADH-1 activity from liver ADH activity and normalized, increased dose-dependently, correlating with the normalized AUC. These results suggested that the elimination kinetics of blood ethanol in mice was dose-dependently changed, accompanied by a shift of the dominant metabolizing enzyme from ADH 1 to ADH 3.

  8. Misconceptions regarding basic thermodynamics and enzyme kinetics have led to erroneous conclusions regarding the metabolic importance of lactate dehydrogenase isoenzyme expression.

    Science.gov (United States)

    Bak, Lasse K; Schousboe, Arne

    2017-11-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate involving the coenzyme NAD + . Part of the foundation for the proposed shuttling of lactate from astrocytes to neurons during brain activation is the differential distribution of LDH isoenzymes between the two cell types. In this short review, we outline the basic kinetic properties of the LDH isoenzymes expressed in neurons and astrocytes, and argue that the distribution of LDH isoenzymes does not in any way govern directional flow of lactate between the two cellular compartments. The two main points are as follows. First, in line with the general concept of chemical catalysis, enzymes do not influence the thermodynamic equilibrium of a chemical reaction but merely the speed at which equilibrium is obtained. Thus, differential distribution of LDH isoenzymes with different kinetic parameters does not predict which cells are producing and which are consuming lactate. Second, the thermodynamic equilibrium of the reaction is toward the reduced substrate (i.e., lactate), which is reflected in the concentrations measured in brain tissue, suggesting that the reaction is at near-equilibrium at steady state. To conclude, the cellular distribution of LDH isoenzymes is of little if any consequence in determining any directional flow of lactate between neurons and astrocytes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. A Kinetic Model Explains Why Shorter and Less Affine Enzyme-recruiting Oligonucleotides Can Be More Potent

    Directory of Open Access Journals (Sweden)

    Lykke Pedersen

    2014-01-01

    Full Text Available Antisense oligonucleotides complementary to RNA targets promise generality and ease of drug design. The first systemically administered antisense drug was recently approved for treatment and others are in clinical development. Chemical modifications that increase the hybridization affinity of oligonucleotides are reasoned to confer higher potency, i.e., modified oligonucleotides can be dosed at lower concentrations to achieve the same effect. Surprisingly, shorter and less affine oligonucleotides sometimes display increased potency. To explain this apparent contradiction, increased uptake or decreased propensity to form structures have been suggested as possible mechanisms. Here, we provide an alternative explanation that invokes only the kinetics behind oligonucleotide-mediated cleavage of RNA targets. A model based on the law of mass action predicts, and experiments support, the existence of an optimal binding affinity. Exaggerated affinity, and not length per se, is detrimental to potency. This finding clarifies how to optimally apply high-affinity modifications in the discovery of potent antisense oligonucleotide drugs.

  10. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  11. EFFECTS OF EXOGENOUS ENZYMES ON NUTRIENTS DIGESTIBILITY AND GROWTH PERFORMANCE IN SHEEP AND GOATS

    Directory of Open Access Journals (Sweden)

    Abdel-Fattah Z.M. Salem

    2011-07-01

    Full Text Available Six crossbred sheep (32.00±0.603 kg BW and 6 Baladi goats (18.00±0.703 kg BW were used in 2×2 factorial design to evaluate the effect of exogenous enzymes of ZADO® (i.e., ENZ and on digestibility and growth performance. Animals were fed on wheat straw ad libitum and restricted amount of commercial concentrate with (+ENZ or without (-ENZ 10 g/animal/day of ZADO to cover 120% of their maintenance requirements. Nutrients digestibilities were increased (P

  12. Probe colorimeter for quantitating enzyme-linked immunosorbent assays and other colorimetric assays performed with microplates.

    Science.gov (United States)

    Ackerman, S B; Kelley, E A

    1983-03-01

    The performance of a fiberoptic probe colorimeter (model PC800; Brinkmann Instruments, Inc., Westbury, N.Y.) for quantitating enzymatic or colorimetric assays in 96-well microtiter plates was compared with the performances of a spectrophotometer (model 240; Gilford Instrument Laboratories, Inc., Oberlin, Ohio) and a commercially available enzyme immunoassay reader (model MR590; Dynatech Laboratories, Inc., Alexandria, Va.). Alkaline phosphatase-p-nitrophenyl phosphate in 3 M NaOH was used as the chromophore source. Six types of plates were evaluated for use with the probe colorimeter; they generated reproducibility values (100% coefficient of variation) ranging from 91 to 98% when one individual made 24 independent measurements on the same dilution of chromophore on each plate. Eleven individuals each performed 24 measurements with the colorimeter on either a visually light (absorbance of 0.10 at 420 nm) or a dark (absorbance of 0.80 at 420 nm) dilution of chromophore; reproducibilities averaged 87% for the light dilution and 97% for the dark dilution. When one individual measured the same chromophore sample at least 20 times in the colorimeter, in the spectrophotometer or in the enzyme immunoassay reader, reproducibility for each instrument was greater than 99%. Measurements of a dilution series of chromophore in a fixed volume indicated that the optical responses of each instrument were linear in a range of 0.05 to 1.10 absorbance units.

  13. Real-time investigation of human topoisomerase I reaction kinetics using an optical sensor: a fast method for drug screening and determination of active enzyme concentrations

    Science.gov (United States)

    Kristoffersen, Emil L.; Jørgensen, Line A.; Franch, Oskar; Etzerodt, Michael; Frøhlich, Rikke; Bjergbæk, Lotte; Stougaard, Magnus; Ho, Yi-Ping; Knudsen, Birgitta R.

    2015-05-01

    Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives. These drugs convert the hTopI activity into a cellular poison, and hence the cytotoxic effects of camptothecin derivatives correlate with the hTopI activity. Therefore, fast and reliable techniques for high throughput measurements of hTopI activity are of high clinical interest. Here we demonstrate potential applications of a fluorophore-quencher based DNA sensor designed for measurement of hTopI cleavage-ligation activities, which are the catalytic steps affected by camptothecin. The kinetic analysis of the hTopI reaction with the DNA sensor exhibits a characteristic burst profile. This is the result of a two-step ping-pong reaction mechanism, where a fast first reaction, the one creating the signal, is followed by a slower second reaction necessary for completion of the catalytic cycle. Hence, the burst profile holds information about two reactions in the enzymatic mechanism. Moreover, it allows the amount of active enzyme in the reaction to be determined. The presented results pave the way for future high throughput drug screening and the potential of measuring active hTopI concentrations in clinical samples for individualized treatment.Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using

  14. ²H kinetic isotope effects and pH dependence of catalysis as mechanistic probes of rat monoamine oxidase A: comparisons with the human enzyme.

    Science.gov (United States)

    Wang, Jin; Edmondson, Dale E

    2011-09-06

    Monoamine oxidase A (MAO A) is a mitochondrial outer membrane-bound flavoenzyme important in the regulation of serotonin and dopamine levels. Because the rat is extensively used as an animal model in drug studies, it is important to understand how rat MAO A behaves in comparison with the more extensively studied human enzyme. For many reversible inhibitors, rat MAO A exhibits K(i) values similar to those of human MAO A. The pH profile of k(cat) for rat MAO A shows a pK(a) of 8.2 ± 0.1 for the benzylamine ES complex and pK(a) values of 7.5 ± 0.1 and 7.6 ± 0.1 for the ES complexes with p-CF(3)-(1)H- and p-CF(3)-(2)H-benzylamine, respectively. In contrast to the human enzyme, the rat enzyme exhibits a single pK(a) value (8.3 ± 0.1) with k(cat)/K(m) for benzylamine versus pH and pK(a) values of 7.8 ± 0.1 and 8.1 ± 0.2 for the ascending limbs, respectively, of k(cat)/K(m) versus pH profiles for p-CF(3)-(1)H- and p-CF(3)-(2)H-benzylamine and 9.3 ± 0.1 and 9.1 ± 0.2 for the descending limbs, respectively. The oxidation of para-substituted benzylamine substrate analogues by rat MAO A has large deuterium kinetic isotope effects on k(cat) and on k(cat)/K(m). These effects are pH-independent and range from 7 to 14, demonstrating a rate-limiting α-C-H bond cleavage step in catalysis. Quantitative structure-activity correlations of log k(cat) with the electronic substituent parameter (σ) at pH 7.5 and 9.0 show a dominant contribution with positive ρ values (1.2-1.3) and a pH-independent negative contribution from the steric term. Quantitative structure-activity relationship analysis of the binding affinities of the para-substituted benzylamine analogues for rat MAO A shows an increased van der Waals volume (V(w)) increases the affinity of the deprotonated amine for the enzyme. These results demonstrate that rat MAO A exhibits functional properties similar but not identical with those of the human enzyme and provide additional support for C-H bond cleavage via a polar

  15. Real-time investigation of human topoisomerase I reaction kinetics using an optical sensor: a fast method for drug screening and determination of active enzyme concentrations.

    Science.gov (United States)

    Kristoffersen, Emil L; Jørgensen, Line A; Franch, Oskar; Etzerodt, Michael; Frøhlich, Rikke; Bjergbæk, Lotte; Stougaard, Magnus; Ho, Yi-Ping; Knudsen, Birgitta R

    2015-06-07

    Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives. These drugs convert the hTopI activity into a cellular poison, and hence the cytotoxic effects of camptothecin derivatives correlate with the hTopI activity. Therefore, fast and reliable techniques for high throughput measurements of hTopI activity are of high clinical interest. Here we demonstrate potential applications of a fluorophore-quencher based DNA sensor designed for measurement of hTopI cleavage-ligation activities, which are the catalytic steps affected by camptothecin. The kinetic analysis of the hTopI reaction with the DNA sensor exhibits a characteristic burst profile. This is the result of a two-step ping-pong reaction mechanism, where a fast first reaction, the one creating the signal, is followed by a slower second reaction necessary for completion of the catalytic cycle. Hence, the burst profile holds information about two reactions in the enzymatic mechanism. Moreover, it allows the amount of active enzyme in the reaction to be determined. The presented results pave the way for future high throughput drug screening and the potential of measuring active hTopI concentrations in clinical samples for individualized treatment.

  16. Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry).

    Science.gov (United States)

    Botman, Dennis; Tigchelaar, Wikky; Van Noorden, Cornelis J F

    2014-11-01

    Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)(+) to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we assessed the effects of various glutamate concentrations in combination with either the coenzyme NAD(+) or NADP(+) on GDH activity in mouse liver cryostat sections using metabolic mapping. NAD(+)-dependent GDH V(max) was 2.5-fold higher than NADP(+)-dependent V(max), whereas the K(m) was similar, 1.92 mM versus 1.66 mM, when NAD(+) or NADP(+) was used, respectively. With either coenzyme, V(max) was determined at 10 mM glutamate and substrate inhibition was observed at higher glutamate concentrations with a K(i) of 12.2 and 3.95 for NAD(+) and NADP(+) used as coenzyme, respectively. NAD(+)- and NADP(+)-dependent GDH activities were examined in various mouse tissues. GDH activity was highest in liver and much lower in other tissues. In all tissues, the highest activity was found when NAD(+) was used as a coenzyme. In conclusion, GDH activity in mice is highest in the liver with NAD(+) as a coenzyme and highest GDH activity was determined at a glutamate concentration of 10 mM. © The Author(s) 2014.

  17. Isotope partitioning for NAD-malic enzyme from Ascaris suum confirms a steady-state random kinetic mechanism

    International Nuclear Information System (INIS)

    Chen, C.Y.; Harris, B.G.; Cook, P.F.

    1988-01-01

    Isotope partitioning studies beginning with E-[ 14 C]NAD, E-[ 14 C] malate, E-[ 14 C] NAD-Mg 2+ , and E-Mg-[ 14 C]malate suggest a steady-state random mechanism for the NAD-malic enzyme. Isotope trapping beginning with E-[ 14 C]NAD and with varying concentrations of Mg 2+ and malate in the chase solution indicates that Mg 2+ is added in rapid equilibrium and must be added prior to malate for productive ternary complex formation. Equal percentage trapping from E-[ 14 C]NAD-Mg and E-Mg-[ 14 C] malate indicates the mechanism is steady-state random with equal off-rates for NAD and malate from E-NAD-Mg-malate. The off-rates for both do not change significantly in the ternary E-Mg-malate and E-NAD-Mg complexes, nor does the off-rate change for NAD from E-NAD. No trapping of malate was obtained from E-[ 14 C] malate, suggesting that this complex is nonproductive. A quantitative analysis of the data allows an estimation of values for a number of the rate constants along the reaction pathway

  18. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen

    2015-01-01

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2, was subjected to crystallographic, kinetic and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5...

  19. Segmented Forefoot Plate in Basketball Footwear: Does it Influence Performance and Foot Joint Kinematics and Kinetics?

    Science.gov (United States)

    Lam, Wing-Kai; Lee, Winson Chiu-Chun; Lee, Wei Min; Ma, Christina Zong-Hao; Kong, Pui Wah

    2018-02-01

    This study examined the effects of shoes' segmented forefoot stiffness on athletic performance and ankle and metatarsophalangeal joint kinematics and kinetics in basketball movements. Seventeen university basketball players performed running vertical jumps and 5-m sprints at maximum effort with 3 basketball shoes of various forefoot plate conditions (medial plate, medial + lateral plates, and no-plate control). One-way repeated measures ANOVAs were used to examine the differences in athletic performance, joint kinematics, and joint kinetics among the 3 footwear conditions (α = .05). Results indicated that participants wearing medial + lateral plates shoes demonstrated 2.9% higher jump height than those wearing control shoes (P = .02), but there was no significant differences between medial plate and control shoes (P > .05). Medial plate shoes produced greater maximum plantar flexion velocity than the medial + lateral plates shoes (P jumping, but not sprinting performances. The use of a medial plate alone, although induced greater plantar flexion velocity at the metatarsophalangeal joint during sprinting, was not effective in improving jump heights or sprint times.

  20. Influence of oxygen uptake kinetics on physical performance in youth soccer.

    Science.gov (United States)

    Doncaster, Greg; Marwood, Simon; Iga, John; Unnithan, Viswanath

    2016-09-01

    To examine the relationship between oxygen uptake kinetics (VO2 kinetics) and physical measures associated with soccer match play, within a group of highly trained youth soccer players. Seventeen highly trained youth soccer players (age: 13.3 ± 0.4 year, self-assessed Tanner stage: 3 ± 1) volunteered for the study. Players initially completed an incremental treadmill protocol to exhaustion, to establish gaseous exchange threshold (GET) and VO2max (59.1 ± 5.4 mL kg(-1) min(-1)). On subsequent visits, players completed a step transition protocol from rest-moderate-intensity exercise, followed by an immediate transition, and from moderate- to severe-intensity exercise (moderate: 95 % GET, severe: 60 %∆), during which VO2 kinetics were determined. Physical soccer-based performance was assessed using a maximal Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) and via GPS-derived measures of physical soccer performance during soccer match play, three 2 × 20 min, 11 v 11 matches, to gain measures of physical performance during soccer match play. Partial correlations revealed significant inverse relationships between the unloaded-to-moderate transition time constant (tau) and: Yo-Yo IR1 performance (r = -0.58, P = 0.02) and GPS variables [total distance (TD): r = -0.64, P = 0.007, high-speed running (HSR): r = -0.64, P = 0.008 and high-speed running efforts (HSReff): r = -0.66, P = 0.005]. Measures of VO2 kinetics are related to physical measures associated with soccer match play and could potentially be used to distinguish between those of superior physical performance, within a group of highly trained youth soccer players.

  1. Effects of treating sorghum wet distillers grains with solubles with fibrolytic enzymes on nutrient digestibility and performance in finishing beef steers

    Science.gov (United States)

    Two experiments were conducted to determine the effects of treating sorghum WDG with solubles (SWDG) with an enzyme, or enzyme-buffer combination on diet digestibility and feedlot performance. Experimental treatments are; 1) untreated SWDG (control), 2) addition of an enzyme complex to SWDG (enzyme...

  2. Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection

    Science.gov (United States)

    Sari, A. P.; Rachim, A.; Nurlely, Fauzia, V.

    2017-07-01

    The recent issue in the world is the long exposure of formaldehyde which is can increase the risk of human health, therefore, that is very important to develop a device and method that can be optimized to detect the formaldehyde elements accurately, have a long lifetime and can be fabricated and produced in large quantities. A new and simple prepared optical biosensor for detection of formaldehyde in aqueous solutions using alcohol oxidase (AOX) enzyme was successfully fabricated. The poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membranes containing chromoionophore ETH5294 were used for immobilization of alcohol oxidase enzyme (AOX). Biosensor response was based on the colour change of chromoionophore as a result of enzymatic oxidation of formaldehyde and correlated with the detection concentration of formaldehyde. The performance of biosensor parameters were measured through the optical absorption value using UV-Vis spectrophotometer including the repeatability, reproducibility, selectivity and lifetime. The results showed that the prepared biosensor has good repeatability (RSD = 1.9 %) and good reproducibility (RSD = 2.1 %). The biosensor was selective formaldehyde with no disturbance by methanol, ethanol, and acetaldehyde, and also stable before 49 days and decrease by 41.77 % after 49 days.

  3. Cu₂O-Au nanocomposites for enzyme-free glucose sensing with enhanced performances.

    Science.gov (United States)

    Hu, Qiyan; Wang, Fenyun; Fang, Zhen; Liu, Xiaowang

    2012-06-15

    A facile method for the synthesis of Cu(2)O-Au nanocomposites has been reported by injecting Cu(2)O nanocubes into Au precursor directly with the assistance of ultrasound radiation at room temperature. The ultrasound radiation is not a necessary requirement but can make the distribution of Au nanoparticles more homogenous. The formation of Cu(2)O-Au nanocomposites is attributed to following two reasons. The first one is the difference in the reduction potential between Cu(2+)/Cu(2)O and AuCl(4)(-)/Au, which can also be considered as the driving force for the redox reaction. The other one is the low lattice mismatch between (200) planes of Cu(2)O and (200) facets of Au, which is favorable for the formation of heterostructure. The electrochemical investigation demonstrates that the performances of Cu(2)O nanocubes in enzyme-free glucose sensing have been improved significantly after the decoration of Au nanoparticles which may be derived from the polarization effect provided by Au nanoparticles. As-prepared Cu(2)O-Au nanocomposites have great potential in enzyme-free glucose sensing. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effect of Enzyme Supplementation and Irradiation of Barley on Broiler Chicks Performance

    International Nuclear Information System (INIS)

    Farag, D.H.M.; Abd El-Hakeim, N.F.

    1999-01-01

    The experiments were conducted to study the influence of irradiation treatment at dose levels of 0.20 and 60 kGy on barley beta-glucan and the effect of enzyme supplementation and irradiation of barley on broiler chicks performance. The amount of total and water-soluble beta-glucan in raw barley was 36 kg -1 , respectively. The effect of irradiation treatment on total beta-glucan was insignificant while the level of soluble beta-glucan was increased with increasing the dose levels of irradiation. The effect of irradiation treatment and enzyme supplementation of barley diets on growth and conversion performance of broiler chicks indicated that birds fed raw barley diet had lower body weight, body weight gain and feed conversion than those fed control diet throughout the experimental period. Irradiation of barley at dose of 20 kGy did not affect the chick performance (feed consumption, weight gain feed-gain ratio) that received the B 20 diet from 7 to 21 days of age, but when bird maintained on B 20 diet from 7 28 days of age, only feed-gain ratio was improved by 14.4%. The results indicate that there was a significant effect of irradiation of barley at 60 kGy (B 60) on feed -gain ratio of chicks when were fed B 60 diet from 7 to 21 days of age. The corresponding improvement in feed-gain ratio was 16.4%. When birds were fed B 60 diet from 7-28 days of age, the improvement in body weight and feed-gain ratio was 25.5 and 19.6%, respectively

  5. Sensitivity analysis in oxidation ditch modelling: the effect of variations in stoichiometric, kinetic and operating parameters on the performance indices

    NARCIS (Netherlands)

    Abusam, A.A.A.; Keesman, K.J.; Straten, van G.; Spanjers, H.; Meinema, K.

    2001-01-01

    This paper demonstrates the application of the factorial sensitivity analysis methodology in studying the influence of variations in stoichiometric, kinetic and operating parameters on the performance indices of an oxidation ditch simulation model (benchmark). Factorial sensitivity analysis

  6. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    International Nuclear Information System (INIS)

    Mitala, J.J.; Michael, A.C.

    2006-01-01

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  7. Mechanistic studies on β-ketoacyl thiolase from Zoogloea ramigera: Identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes

    International Nuclear Information System (INIS)

    Thompson, S.; Mayerl, F.; Walsh, C.T.; Peoples, O.P.; Masamune, S.; Sinskey, A.J.

    1989-01-01

    Thiolase proceeds via covalent catalysis involving an acetyl-S-enzyme. The active-site thiol nucleophile is identified as Cys 89 by acetylation with [ 14 C]acetyl-CoA, rapid denaturation, tryptic digestion, and sequencing of the labeled peptide. The native acetyl enzyme is labile to hydrolytic decomposition with t 1/2 of 2 min at pH 7, 25 degree C. Cys 89 has been converted to the alternate nucleophile Ser 89 by mutagenesis and the C89S enzyme overproduced, purified, and assessed for activity. The Ser 89 enzyme retains 1% of the V max of the Cys 89 enzyme in the direction of acetoacetyl-CoA thiolytic cleavage and 0.05% of the V max in the condensation of two acetyl-CoA molecules. A covalent acetyl-O-enzyme intermediate is detected on incubation with [ 14 C]acetyl-CoA and isolation of the labeled Ser 89 -containing tryptic peptide. Comparisons of the Cys 89 and Ser 89 enzymes have been made for kinetic and thermodynamic stability of the acetyl enzyme intermediates both by isolation and by analysis of [ 32 P]CoASH/acetyl-CoA partial reactions and for rate-limiting steps in catalysis with trideuterioacetyl-CoA

  8. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  9. Diagnostic performances of serum liver enzymes and cytokines in non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Hakan Turkon

    2015-03-01

    Full Text Available Objective:Non-alcoholic fatty liver disease (NAFLD is affecting people worldwide with increasing prevalence. Non-invasive tests are required for both diagnosis and staging of the disease. We aimed to evaluate diagnostic accuracy of routine liver enzymes and cytokines in NAFLD. Methods:A total of 88 cases, aged between 20 and 62 years, were included in the study. Serum ALT, AST, GGT, triglyceride, TNF-alpha, IL-6 and IL-8 were measured in 40 patients with NAFLD and in 48 healthy control patients with similar BMI and demographic characteristics. Diagnostic performances of serum biomarkers for diagnosis of NAFLD were evaluated with ROC analysis. Results:ALT and AST showed good diagnostic performance in predicting patients with NAFLD in the overall group (AUC=0.817; 95% CI[0.721-0.913], AUC=0.815;95% CI[0.718-0.911] respectively but in obese subjects ALT and AST showed poor performance (AUC=0.659;95% CI[0.478-0.841], AUC=0.680; 95% CI[0.498-0.861] respectively. Among cytokines TNF-alpha showed best performance in the diagnosis of NAFLD in both overall group and obese subjects (AUC=0.892; 95% CI[0.824- 0.959], AUC=0.858; 95% CI[0.739-0.977] respectively. The optimal cut off value for TNF-alpha was 10.65pg/ml with a sensitivity of 75% and a specificity of 93% in the overall group. IL-6 and IL-8 showed poor performance. Conclusion: TNF-alpha may be a good parameter for predicting patients with NAFLD. J Clin Exp Invest 2015;6 (1: 16-20

  10. Kinetic Hydration Heat Modeling for High-Performance Concrete Containing Limestone Powder

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone powder is increasingly used in producing high-performance concrete in the modern concrete industry. Limestone powder blended concrete has many advantages, such as increasing the early-age strength, reducing the setting time, improving the workability, and reducing the heat of hydration. This study presents a kinetic model for modeling the hydration heat of limestone blended concrete. First, an improved hydration model is proposed which considers the dilution effect and nucleation effect due to limestone powder addition. A degree of hydration is calculated using this improved hydration model. Second, hydration heat is calculated using the degree of hydration. The effects of water to binder ratio and limestone replacement ratio on hydration heat are clarified. Third, the temperature history and temperature distribution of hardening limestone blended concrete are calculated by combining hydration model with finite element method. The analysis results generally agree with experimental results of high-performance concrete with various mixing proportions.

  11. Efficient immobilization of AGE and NAL enzymes onto functional amino resin as recyclable and high-performance biocatalyst.

    Science.gov (United States)

    Cheng, Jian; Zhuang, Wei; Tang, Chenglun; Chen, Yong; Wu, Jinglan; Guo, Ting; Ying, Hanjie

    2017-03-01

    N-Acetylglucosamine-2-epimerase (AGE) and N-acetylneuraminic acid lyase (NAL) were immobilized for synthesis of N-acetylneuraminic acid (Neu5Ac) on three resins: Amberzyme oxirane resin (AOR), poly (styrene-co-DVB)-Br resin (PBR) and amino resin (AR). The loading capacity and immobilized enzyme activity showed that AR was the best carrier. Three methods of glutaraldehyde cross-linking were tested and simultaneous cross-linking and immobilization was demonstrated to be the best method. The functional properties of immobilized AGE and NAL were studied and compared to those of the free enzyme. The highest enzyme activities of free and immobilized AGE were obtained in 0.1 M potassium phosphate buffer at pH 7.5 and a temperature of 37 °C. Comparatively, the highest NAL activities were at pH 8.5. Meanwhile, an increase in K m (from 1.14 to 1.31 mg·mL -1 for AGE and from 1.05 to 1.25 mg·mL -1 for NAL) and a decrease in V max (from 177.53 to 106.37 µg·min -1 mL -1 for AGE and from 126.41 to 95.96 µg·min -1 mL -1 for NAL) were recorded after immobilization. The AR-glutaraldehyde-enzyme system exhibited better thermal stability than the free enzyme, and retained 72% of its initial activity even after eight repeated runs. The apparent activation energy (E a ) of the free and immobilized AGE (NAL) was 117.14 kJ·mol -1 (124.21 kJ·mol -1 ) and 78.45 kJ·mol -1 (66.64 kJ·mol -1 ), respectively, implying that the catalytic efficiency of the immobilized enzyme was restricted by mass-transfer rather than kinetic limit. Subsequently, Neu5Ac production from GlcNAc using immobilized enzymes in one reactor was carried out resulting 101.45 g·L -1 of Neu5Ac and the highest conversion ratio of 82%. This method of enzyme immobilization may have a promising future for Neu5Ac production in industry.

  12. Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments.

    Science.gov (United States)

    Grand-Guillaume Perrenoud, Alexandre; Hamman, Chris; Goel, Meenakshi; Veuthey, Jean-Luc; Guillarme, Davy; Fekete, Szabolcs

    2013-11-01

    Recently, there has been a renewed interest in supercritical fluid chromatography (SFC), due to the introduction of state-of-the-art instruments and dedicated columns packed with small particles. However, the achievable kinetic performance and practical possibilities of such modern SFC instruments and columns has not been described in details until now. The goal of the present contribution was to provide some information about the optimal column dimensions (i.e. length, diameter and particle size) suitable for such state-of the-art systems, with respect to extra-column band broadening and system upper pressure limit. In addition, the reliability of the kinetic plot methodology, successfully applied in RPLC, was also evaluated under SFC conditions. Taking into account the system variance, measured at ∼85μL(2), on modern SFC instruments, a column of 3mm I.D. was ideally suited for the current technology, as the loss in efficiency remained reasonable (i.e. less than 10% decrease for k>6). Conversely, these systems struggle with 2.1mm I.D. columns (55% loss in N for k=5). Regarding particle size, columns packed with 5μm particles provided unexpectedly high minimum reduced plate height values (hmin=3.0-3.4), while the 3.5 and 1.7μm packing provided lower reduced plate heights hmin=2.2-2.4 and hmin=2.7-3.2, respectively. Considering the system upper pressure limit, it appears that columns packed with 1.7μm particles give the lowest analysis time for efficiencies up to 40,000-60,000 plates, if the mobile phase composition is in the range of 2-19% MeOH. The 3.5μm particles were attractive for higher efficiencies, particularly when the modifier percentage was above 20%, while 5μm was never kinetically relevant with modern SFC instruments, due to an obvious limitation in terms of upper flow rate value. The present work also confirms that the kinetic plot methodology could be successfully applied to SFC, without the need for isopycnic measurements, as the difference

  13. Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode

    International Nuclear Information System (INIS)

    Peng, Xiang; Li, Wan; Wang, Lei; Hu, Liangsheng; Jin, Weihong; Gao, Ang; Zhang, Xuming; Huo, Kaifu; Chu, Paul K.

    2016-01-01

    Vanadium nitride (VN) is promising in lithium ion battery (LIB) anode due to its high energy density, chemical stability, and corrosion resistivity. Herein, porous VN nanosheets are synthesized hydrothermally followed by an ammonia treatment. The porous nanosheets offer a large interfacial area between the electrode and electrolyte as well as short Li + diffusion path and consequently, the VN nanosheets electrode has high capacity and rate capability as an anode in LIB. The VN anode delivers a high reversible capacity of 455 mAh g −1 at a current density of 100 mA g −1 and it remains at 341 mAh g −1 when the current density is increased to 1 A g −1 . The charge transfer and Li + diffusion kinetics during the lithiation process is studied systematically. A highly stable SEI film is formed during the initial discharging-charging cycles to achieve a long cycle life and sustained capacity at a high level for 250 discharging-charging cycles without deterioration. This work demonstrates the preparation of high-performance LIB anode materials by a simple method and elucidates the lithiation kinetics.

  14. Rye Bran Modified with Cell Wall-Degrading Enzymes Influences the Kinetics of Plant Lignans but Not of Enterolignans in Multicatheterized Pigs.

    Science.gov (United States)

    Bolvig, Anne K; Nørskov, Natalja P; van Vliet, Sophie; Foldager, Leslie; Curtasu, Mihai V; Hedemann, Mette S; Sørensen, Jens F; Lærke, Helle N; Bach Knudsen, Knud E

    2017-12-01

    Background: Whole-grain intake is associated with a lower risk of chronic Western-style diseases, possibly brought about by the high concentration of phytochemicals, among them plant lignans (PLs), in the grains. Objective: We studied whether treatment of rye bran with cell wall-degrading enzymes changed the solubility and kinetics of PLs in multicatheterized pigs. Methods: Ten female Duroc × Danish Landrace × Yorkshire pigs (60.3 ± 2.3 kg at surgery) fitted with permanent catheters were included in an incomplete crossover study. The pigs were fed 2 experimental diets for 1-7 d. The diets were rich in PLs and based on nontreated lignan-rich [LR; lignan concentration: 20.2 mg dry matter (DM)/kg] or enzymatically treated lignan-rich (ENZLR; lignan concentration: 27.8 mg DM/kg) rye bran. Plasma concentrations of PLs and enterolignans were quantified with the use of targeted LC-tandem mass spectrometry. Data were log transformed and analyzed with mixed-effects, 1-compartment, and asymptotic regression models. Results: The availability of PLs was 38% greater in ENZLR than in LR, and the soluble fraction of PLs was 49% in ENZLR compared with 35% in LR diets. PLs appeared in the circulation 30 min after intake of both the ENZLR and LR diets. Postprandially, consumption of ENZLR resulted in a 4-times-greater ( P concentration compared with LR. The area under the curve (AUC) measured 0-360 min after ENZLR intake was ∼2 times higher than after LR intake. A 1-compartment model could describe the postprandial increase in plasma concentration after ENZLR intake, whereas an asymptotic regression model described the plasma concentrations after LR intake. Despite increased available and soluble PLs, ENZLR did not increase plasma enterolignans. Conclusion: The modification of rye bran with cell wall-degrading enzymes resulted in significantly greater plasma concentrations of PLs and the 4-h AUC, particularly syringaresinol, in multicatheterized pigs. © 2017 American Society

  15. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  16. A fast-start pacing strategy speeds pulmonary oxygen uptake kinetics and improves supramaximal running performance.

    Directory of Open Access Journals (Sweden)

    Tiago Turnes

    Full Text Available The focus of the present study was to investigate the effects of a fast-start pacing strategy on running performance and pulmonary oxygen uptake (VO2 kinetics at the upper boundary of the severe-intensity domain. Eleven active male participants (28±10 years, 70±5 kg, 176±6 cm, 57±4 mL/kg/min visited the laboratory for a series of tests that were performed until exhaustion: 1 an incremental test; 2 three laboratory test sessions performed at 95, 100 and 110% of the maximal aerobic speed; 3 two to four constant speed tests for the determination of the highest constant speed (HS that still allowed achieving maximal oxygen uptake; and 4 an exercise based on the HS using a higher initial speed followed by a subsequent decrease. To predict equalized performance values for the constant pace, the relationship between time and distance/speed through log-log modelling was used. When a fast-start was utilized, subjects were able to cover a greater distance in a performance of similar duration in comparison with a constant-pace performance (constant pace: 670 m±22%; fast-start: 683 m±22%; P = 0.029; subjects also demonstrated a higher exercise tolerance at a similar average speed when compared with constant-pace performance (constant pace: 114 s±30%; fast-start: 125 s±26%; P = 0.037. Moreover, the mean VO2 response time was reduced after a fast start (constant pace: 22.2 s±28%; fast-start: 19.3 s±29%; P = 0.025. In conclusion, middle-distance running performances with a duration of 2-3 min are improved and VO2 response time is faster when a fast-start is adopted.

  17. Development of high-performance functional materials for enzyme immobilization by the use of ionizing radiation

    International Nuclear Information System (INIS)

    SALIM, R.D.M.

    2013-01-01

    Isomerization of glucose to fructose was carried out using Glucose isomerase (GI) that immobilized by entrapment into Poly (acrylic acid) P (AA) and Poly (acrylic acid-co- 2-Acrylamido 2- methyl Propane sulfonic acid) P (AA-co-AMPS) polymer networks, the enzyme carriers were prepared by radiation induced co-polymerization in presence of (Methylene- bis acrylamide) (MBAA) as a crosslinking agent. Effects of immobilization conditions such as irradiation dose, methylene bis acrylamide concentration, comonomer composition, and amount of GI were investigated. The influence of reaction conditions on the activity of immobilized GI were studied, the optimum ph value of reaction solution is 7.5 and reaction temperature is 65 degree C. The immobilized GI into P (AA-co-AMPS) and P (AA) polymer networks retained 81% and 69%,respectively, of its initial activity after recycled for 15 times while it retained 87% and 71% ,respectively ,of its initial activity after stored at 4 degree C for 48 days , The Km values of free and immobilized GI onto P(AA-co-AMPS) and onto P(AA) matrices were found to be 34, 29.2 , 14.5 mg/ml respectively while the Vmax Values calculated to be 3.87 ,1.6,0.79 mg/ml.min, respectively, Therefore , the bio conversion of glucose to fructose can be successfully performed by GI entrapped into P (AA-co-AMPS) hydrogel .

  18. PERFORMANCE OF LAYER HEN FED FERMENTED Jatropha Curcas L. MEAL SUPPLEMENTED WITH CELLULASE AND PHYTASE ENZYME

    Directory of Open Access Journals (Sweden)

    S. Sumiati

    2014-10-01

    Full Text Available The objective of the experiment was to study the effect of feeding fermented Jatropha curcas L.meal (JCM supplemented with cellulase and phytase on the performances of ISA-Brown laying henaged 25-30 weeks. The Jatropha curcas meal was fermented using Rizhopus oligosporus. In this study200 laying hens were used and distributed to 5 treatments and 4 replications in Completely RandomizedDesign. The diet treatments were: R0 = control diet (without JCM, R1; diet contained fermented JCM7.5%, R2; diet contained fermented JCM 7.5% + celullase 200 g/ton, R3; diet contained fermented JCM7.5% + phytase 200 g/ton and R4; diet contained fermented JCM 7.5% + cellulase 200 g/ton + phytase200 g/ton. The parameters observed were feed consumption, hen day egg production, egg massproduction, egg weight and feed conversion ratio. The results showed that feeding fermented JCM 7.5%,both enzyme supplemented as well as unsupplemented significantly decreased (P<0.05 the feedconsumption, hen day egg and egg mass production. However, the treatments did not influence the eggweight. Supplementation of cellulase (R2 or phytase (R3 improved the feed conversion ratio with thevalue as same as the R0 diet.

  19. Enzyme Kinetics and Molecular Docking Studies on Cytochrome 2B6, 2C19, 2E1, and 3A4 Activities by Sauchinone

    Directory of Open Access Journals (Sweden)

    Eun Chae Gong

    2018-03-01

    Full Text Available Sauchinone, an active lignan isolated from the aerial parts of Saururus chinensis (Saururaceae, exhibits anti-inflammatory, anti-obesity, anti-hyperglycemic, and anti-hepatic steatosis effects. As herb–drug interaction (HDI through cytochrome P450s (CYPs-mediated metabolism limits clinical application of herbs and drugs in combination, this study sought to explore the enzyme kinetics of sauchinone towards CYP inhibition in in vitro human liver microsomes (HLMs and in vivo mice studies and computational molecular docking analysis. In in vitro HLMs, sauchinone reversibly inhibited CYP2B6, 2C19, 2E1, and 3A4 activities in non-competitive modes, showing inhibition constant (Ki values of 14.3, 16.8, 41.7, and 6.84 μM, respectively. Also, sauchinone time-dependently inhibited CYP2B6, 2E1 and 3A4 activities in vitro HLMs. Molecular docking study showed that sauchinone could be bound to a few key amino acid residues in the active site of CYP2B6, 2C19, 2E1, and 3A4. When sibutramine, clopidogrel, or chlorzoxazone was co-administered with sauchinone to mice, the systemic exposure of each drug was increased compared to that without sauchinone, because sauchinone reduced the metabolic clearance of each drug. In conclusion, when sauchinone was co-treated with drugs metabolized via CYP2B6, 2C19, 2E1, or 3A4, sauchinone–drug interactions occurred because sauchinone inhibited the CYP-mediated metabolic activities.

  20. Effects of Enzyme Treated Palm Kernel Expeller on Metabolizable Energy, Growth Performance, Villus Height and Digesta Viscosity in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    P. Saenphoom

    2013-04-01

    Full Text Available This study examined whether pre-treating palm kernel expeller (PKE with exogenous enzyme would degrade its fiber content; thus improving its metabolizable energy (ME, growth performance, villus height and digesta viscosity in broiler chickens fed diets containing PKE. Our results showed that enzyme treatment decreased (p0.05 among treatment groups in the finisher period, ADG of chickens in the control (PKE-free diet was higher (p0.05 FCR. The intestinal villus height and crypt depth (duodenum, jejunum and ileum were not different (p>0.05 among treatments except for duodenal crypt depth. The villus height and crypt depth of birds in enzyme treated PKE diets were higher (p0.05 among treatments. Results of this study suggest that exogenous enzyme is effective in hydrolyzing the fiber (hemicellulose and cellulose component and improved the ME values of PKE, however, the above positive effects were not reflected in the growth performance in broiler chickens fed the enzyme treated PKE compared to those received raw PKE. The results suggest that PKE can be included up to 5% in the grower diet and 20% in the finisher diet without any significant negative effect on FCR in broiler chickens.

  1. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters

    International Nuclear Information System (INIS)

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-01-01

    Highlights: • Sensing material can be comprehensively optimized by using gravimetric cantilever. • Kinetic-thermodynamic model parameters are quantitatively extracted by experiment • Sensing-material performance is synergistically optimized by extracted parameters. - Abstract: A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat −ΔH°, adsorption/desorption rate constants K a and K d , active-site number per unit mass N′ and surface coverage θ, can be quantitatively extracted according to physical–chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N′, the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate −ΔH°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high −ΔH° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of −ΔH°, K a , K d , N′ and θ, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among

  2. Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies

    Directory of Open Access Journals (Sweden)

    S. Sathian

    2014-06-01

    Full Text Available In this work, sequential batch reactor (SBR was employed for the treatment of textile dye wastewater. The performance of four white rot fungi (WRF viz. Coriolus versicolor, Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was evaluated in pure and mixed combinations in terms of decolorization. From the results it was found that the combination of Pleurotus floridanus, Ganoderma lucidum and Trametes pubescens was best and they were used in the SBR. The process parameters like air flow rate, sludge retention time (SRT and cycle period were optimized using response surface methodology (RSM. At these optimized conditions, treatment of textile dye wastewater was carried out at various initial dye wastewater concentration and hydraulic retention time. The performance of SBR was analyzed in terms of decolorization, COD reduction and sludge volume index (SVI. From the results it was found that a maximum decolorization and COD reduction of 71.3% and 79.4%, respectively, was achieved in the SBR at an organic loading rate of 0.165 KgCOD/m3 d. The sludge volume index (SVI was found to be low in the range of 90–103 mL/g. The kinetic study was carried out using a first order based model and the degradation follows the first order system.

  3. Influence of fungal morphology on the performance of industrial fermentation processes for enzyme production

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra

    Production of industrial enzymes is usually carried out as submerged aerobic fermentations. Filamentous microorganisms are widely used as hosts in these processes due to multiple advantages. Nevertheless, they also present major drawbacks, due to the unavoidable oxygen transfer limitations...... in this work, along with its correlation to viscosity and other process variables. Considerable research work has been conducted through the years to study fungal morphology and its relation to productivity. However, the work reported in the literature lacks relevant industrial data. In this work, a platform...... was developed which was able to produce high enzyme titers in comparison with what has been reported thus far in fed-batch fermentation using a soluble inducer (lactose). Different nitrogen sources were compared, and it was found that soy meal allowed for higher enzyme titers compared to what has been reported...

  4. Combining Microbial Enzyme Kinetics Models with Light Use Efficiency Models to Predict CO2 and CH4 Ecosystem Exchange from Flooded and Drained Peatland Systems

    Science.gov (United States)

    Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.

    2014-12-01

    Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE

  5. Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance.

    Directory of Open Access Journals (Sweden)

    Alexander G Bulakhov

    Full Text Available Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO displaying a synergism with cellulases.Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL, and eglIV, encoding LPMO (formerly endoglucanase IV from Trichoderma reesei (TrLPMO, were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter. Content of the heterologous AnBGL in the secreted multienzyme cocktails (hBGL1, hBGL2 and hBGL3 varied from 4 to 10% of the total protein, while the content of TrLPMO in the hLPMO sample was ~3%. The glucose yields in 48-h hydrolysis of Avicel and milled aspen wood by the hBGL1, hBGL2 and hBGL3 preparations increased by up to 99 and 80%, respectively, relative to control enzyme preparations without the heterologous AnBGL (at protein loading 5 mg/g substrate for all enzyme samples. The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10-43%; however, in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations. The highest product yield in hydrolysis of aspen wood was obtained when the hBGL2 and hLPMO preparations were used at the ratio 1:1.The enzyme preparations produced by recombinant P. verruculosum strains, expressing the heterologous AnBGL or TrLPMO under the control of the gla1 gene promoter in a starch-containing medium, proved to be more effective in hydrolysis of a lignocellulosic substrate than control enzyme preparations without the heterologous enzymes. The enzyme composition containing both AnBGL and TrLPMO demonstrated the highest performance in lignocellulose hydrolysis, providing a background for developing a fungal strain capable

  6. JUMP KINETIC DETERMINANTS OF SPRINT ACCELERATION PERFORMANCE FROM STARTING BLOCKS IN MALE SPRINTERS

    Directory of Open Access Journals (Sweden)

    Peter S. Maulder

    2006-06-01

    Full Text Available The purpose of this research was to identify the jump kinetic determinants of sprint acceleration performance from a block start. Ten male (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42} track sprinters at a national and regional competitive level performed 10 m sprints from a block start. Anthropometric dimensions along with squat jump (SJ, countermovement jump (CMJ, continuous straight legged jump (SLJ, single leg hop for distance, and single leg triple hop for distance measures of power were also tested. Stepwise multiple regression analysis identified CMJ average power (W/kg as a predictor of 10 m sprint performance from a block start (r = 0.79, r2 = 0.63, p<0.01, SEE = 0.04 (s, %SEE = 2.0. Pearson correlation analysis revealed CMJ force and power (r = -0.70 to -0.79; p = 0.011 - 0.035 and SJ power (r = -0.72 to -0.73; p = 0.026 - 0.028 generating capabilities to be strongly related to sprint performance. Further linear regression analysis predicted an increase in CMJ average and peak take-off power of 1 W/kg (3% & 1.5% respectively to both result in a decrease of 0.01 s (0.5% in 10 m sprint performance. Further, an increase in SJ average and peak take-off power of 1 W/kg (3.5% & 1.5% respectively was predicted to result in a 0.01 s (0.5% reduction in 10 m sprint time. The results of this study seem to suggest that the ability to generate power both elastically during a CMJ and concentrically during a SJ to be good indicators of predicting sprint performance over 10 m from a block start

  7. Kinetic and kinematic differences between squats performed with and without elastic bands.

    Science.gov (United States)

    Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M

    2010-01-01

    The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.

  8. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  9. Fundamental Performance Improvement of Microwave Kinetic Inductance Detectors for UVOIR Astrophysics

    Science.gov (United States)

    Mazin, Benjamin

    Ultraviolet, Optical, and near-Infrared Microwave Kinetic Inductance Detectors (UVOIR MKIDs) are one of the most powerful new technologies to emerge out of the NASA APRA detectors program in the last decade. This proposal seeks to build on previous APRA grants to drastically improve the performance of UVOIR MKIDs. Like an X-ray microcalorimeter ultraviolet, optical, and near-IR (UVOIR) MKIDs are cryogenic detectors capable of detecting single photons and measuring their energy without filters or gratings. Our team has created this technology from the ground up, and fielded a 2024-pixel UVOIR MKID array on five separate observing runs at 5-m class telescopes. With 34 observing nights successfully completed and two astronomy papers published using MKID data (the first astronomy papers published using MKID data at any wavelength), UVOIR MKIDs are at TRL 5-6 for ground-based astronomy, and TRL 3 for space-based astronomy. The outstanding potential of these detectors was recognized in the recent NASA long term vision, "Enduring Quests, Daring Visions'', which recognized on page 88 that MKIDs have tremendous potential for future NASA UVOIR space missions, especially for finding Earth twins around nearby stars: "..microwave kinetic inductance detectors (MKIDs) would be a game-changing capability..''. Current UVOIR MKIDs feature array sizes in the 10-30 kpix range, energy resolution R=16 at 254 nm, ~70% pixel yield, and quantum efficiency that goes from 70% in the UV to 25% in the near-IR. These arrays, fabricated out of Titanium Nitride (TiN) on a high resistivity silicon substrate, are fully functional for ground-based science. However, our current MKIDs are far away from their theoretical limits, especially in yield (70% vs. 100%) and energy resolution (R=10 vs. R=100 at 400 nm). The yield is of especially urgent concern as missing pixels make accurate photometry difficult, especially for rapidly time variable sources like compact binaries that we have been studying

  10. Effects of oxygen delivery, dietary nitrate, intensified training and prior exercise on oxygen uptake kinetics and performance in humans

    DEFF Research Database (Denmark)

    Christensen, Peter Møller

    benefits from supplementing with nitrate to improve exercise efficiency and performance in endurance trained subjects. Furthermore it appears difficult to improve VO2 kinetics with intensified training in trained athletes; however intense exercise can amplify the VO2 response during subsequent high......In response to an increase in the metabolic demand the oxygen uptake (VO2) increases in an exponential fashion in exercising muscles and stabilizes after 1-2 min eventually reaching a plateau or steady state where the energy demand is matched by the l vel of VO2. VO2 kinetics describes the distinct...... phases of the VO2 response at the onset of exercise. Fast VO2 kinetics are considered to be beneficial in intense endurance sports with competitions lasting ~2-8 min, whereas low VO2 at steady state (high efficiency) is considered beneficial especially in events of longer duration. To improve...

  11. Effect of using the Matrix Values for NSP-degrading enzymes on performance, water intake, litter moisture and jejunal digesta viscosity of broilers fed barley-based diet

    Directory of Open Access Journals (Sweden)

    Seyed Adel Moftakharzadeh

    2017-02-01

    Full Text Available In this study, we have evaluated the effect of three multi-enzymes nutrient matrix values and compared the results with that fed barley and the corn diets without enzyme. In entire period, addition of all enzymes to the barley-based diet significantly (p 0.05. Litter moisture and water to feed ratio at 15, 25, and 33 days of age significantly decreased by addition of all enzymes (p < 0.05. In conclusion, considering nutrient matrix values for all used enzymes improved performance of broilers and can be used in formulating diets commercial broiler diets based on barley.

  12. Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Du, Dan [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticides and Chemical Biology; Bi, Cuixia [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Xia, Haibing [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Feng, Shuo [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; Richland; USA; Lin, Yuehe [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA

    2017-01-01

    Kinetically controlled synthesis of AuPtxbi-metallic hydrogels/aerogels was efficiently achieved for the first timeviatuning the reaction temperature or adding a surfactant.

  13. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system.

    Science.gov (United States)

    Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D

    2014-03-06

    The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.

  14. A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows.

    Science.gov (United States)

    Arriola, Kathy G; Oliveira, Andre S; Ma, Zhengxin X; Lean, Ian J; Giurcanu, Mihai C; Adesogan, Adegbola T

    2017-06-01

    The aim of this study was to use meta-analytical methods to estimate effects of adding exogenous fibrolytic enzymes (EFE) to dairy cow diets on their performance and to determine which factors affect the response. Fifteen studies with 17 experiments and 36 observations met the study selection criteria for inclusion in the meta-analysis. The effects were compared by using random-effect models to examine the raw mean difference (RMD) and standardized mean difference between EFE and control treatments after both were weighted with the inverse of the study variances. Heterogeneity sources evaluated by meta-regression included experimental duration, EFE type and application rate, form (liquid or solid), and method (application to the forage, concentrate, or total mixed ration). Only the cellulase-xylanase (C-X) enzymes had a substantial number of observations (n = 13 studies). Application of EFE, overall, did not affect dry matter intake, feed efficiency but tended to increase total-tract dry matter digestibility and neutral detergent fiber digestibility (NDFD) by relatively small amounts (1.36 and 2.30%, respectively, or 50%) was detected for total-tract dry matter digestibility and NDFD. Milk production responses were higher for the C-X enzymes (RMD = 1.04 kg/d; 95% confidence interval: 0.33 to 1.74), but were still only moderate, about 0.35 standardized mean difference. A 24% numerical increase in the RMD resulting from examining only C-X enzymes instead of all enzymes (RMD = 1.04 vs. 0.83 kg/d) suggests that had more studies met the inclusion criteria, the C-X enzymes would have statistically increased the milk response relative to that for all enzymes. Increasing the EFE application rate had no effect on performance measures. Application of EFE to the total mixed ration improved only milk protein concentration, and application to the forage or concentrate had no effect. Applying EFE tended to increase dry matter digestibility and NDFD and increased milk yield by

  15. Effect of exogenous fibrolytic enzymes on performance and blood profile in early and mid-lactation Holstein cows

    Directory of Open Access Journals (Sweden)

    Anja Peters

    2015-09-01

    Full Text Available The supplementation of exogenous fibrolytic enzymes (EFE to dairy cows diets could be a strategy to improve fiber degradation in the rumen which is especially important for the early lactating cows characterized by a high milk energy output and an insufficient energy intake. The objective of this study was to examine the effects of a fibrolytic enzyme product (Roxazyme G2 Liquid, 3.8 and 3.9 mL/kg total mixed ration [TMR] DM supplemented to a TMR on production performance and blood parameters of dairy cows during early (trial 1 and mid-lactation (trail 2. In addition, rumination activity was measured in trial 2. The nutrient digestibility of the experimental TMR was obtained by using wethers. In the digestibility trial, EFE was supplemented at a rate of 4.4 mL/kg Roxazyme G2 Liquid TMR-DM. The TMR contained 60% forage and 40% concentrate (DM basis. Twenty eight 50 ± 16 days in milk (DIM and twenty six 136 ± 26 DIM Holstein cows were used in two 8-wk completely randomized trails, stratified by parity and milk yield level. One milliliter of the enzyme product contained primarily cellulase and xylanase activities (8,000 units endo-1,4-ß glucanase, 18,000 units endo-1,3(4-ß glucanase and 26,000 units 1,4-ß xylanase. No differences in digestibility of DM, OM, CP, NDF and ADF were observed (P > 0.05 between the control and the EFE supplemented TMR. Addition of EFE to the TMR fed to early (trial 1 and mid-lactation cows (trial 2 did not affect daily dry matter intake (DMI, milk yield, 4% fat-corrected milk, energy-corrected milk (ECM, concentration of milk fat, protein, fat-protein-quotients, somatic cell score, energy balance, and gross feed efficiency of early and mid-lactation cows (P > 0.05. Mid-lactation cows (trial 2 fed with TMR enzyme showed a tendency of a slightly higher ECM yield (P = 0.09. The tested blood parameters were not affected by treatment in trials 1 and 2 (P > 0.05. Exogenous fibrolytic enzymes supplementation did not alter

  16. Performance and Serum Hepatic Enzymes of Hy-Line W-36 Laying Hens Intoxicated with Dietary Carbon Tetrachloride

    Directory of Open Access Journals (Sweden)

    Hadavi A

    2015-12-01

    Full Text Available An experiment was conducted to study the effects of carbon tetrachloride (CCl4 on post-peak performance and serum enzymes of Hy-Line W-36 laying hens from 32-36 weeks of age. The experiment was carried out with a total of 192 laying hens in a completely randomized block design. During the experiment laying hens were allocated to 4 groups consisted of T1 no CCl4 as control diet, T2, T3 and T4 control diet supplemented with 1, 3 and 5 mL CCl4/100 g diet, respectively. Each experimental group was divided into 6 blocks of 8 hens each. Egg production, cracked egg percentage and feed intake were recorded weekly. Blood samples were taken from wing veins of hens at the middle and end of the experiment to measure serum hepatic enzymes of alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase. Data showed that in comparison with the control group, the inclusion of CCl4 to the diets had no significant effect on performance parameters. However, by increasing the level of CCl4, egg production was linearly decreased and feed intake was linearly increased (P < 0.05. The effect of CCl4 on cracked eggs was significant and this effect was linearly increased (P < 0.05. Dietary supplementation of 3 and 5 mL CCl4 elevated the serum concentration of hepatic enzymes of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, linearly (P < 0.0001. In conclusion, the dietary supplementation of CCl4 has the ability to decrease the performance and egg quality. CCl4 is also a potent hepatic toxicity inducer and may damage liver hepatocytes. Therefore, the level of 3 mL CCl4 was assigned as the one had the maximum negative effect on serum hepatic enzymes concentration (maximum liver damage alongside the minimum negative effect on laying hen performance for further studies.

  17. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  18. Kinetic studies of the acylation of pig muscle–d-glyceraldehyde 3-phosphate dehydrogenase by 1,3-diphosphoglycerate and of proton uptake and release in the overall enzyme mechanism

    Science.gov (United States)

    Harrigan, P. J.; Trentham, D. R.

    1973-01-01

    In the presence of NAD+ the acylation by 1,3-diphosphoglycerate of the four active sites of pig muscle d-glyceraldehyde 3-phosphate dehydrogenase can be monitored at 365nm by the disappearance of the absorption band present in the binary complex of NAD+ and the enzyme. A non-specific salt effect decreased the acylation rate 25-fold when the ionic strength was increased from 0.10 to 1.0. This caused acylation to be the rate-limiting process in the enzyme-catalysed reductive dephosphorylation of 1,3-diphosphoglycerate at high ionic strength at pH8. The salt effect permitted investigation of the acylation over a wide range of conditions. Variation of pH from 5.4 to 8.6 produced at most a two-fold change in the acylation rate. One proton was taken up per site acylated at pH8.0. By using a chromophoric H+ indicator the rate of proton uptake could be monitored during the acylation and was also almost invariant in the pH range 5.5–8.5. Transient kinetic studies of the overall enzyme-catalysed reaction indicated that acylation was the process involving proton uptake at pH8.0. The enzyme mechanism is discussed in the light of these results. PMID:4360248

  19. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  20. Performance of the coupled thermalhydraulics/neutron kinetics code R/P/C on workstation clusters and multiprocessor systems

    International Nuclear Information System (INIS)

    Hammer, C.; Paffrath, M.; Boeer, R.; Finnemann, H.; Jackson, C.J.

    1996-01-01

    The light water reactor core simulation code PANBOX has been coupled with the transient analysis code RELAP5 for the purpose of performing plant safety analyses with a three-dimensional (3-D) neutron kinetics model. The system has been parallelized to improve the computational efficiency. The paper describes the features of this system with emphasis on performance aspects. Performance results are given for different types of parallelization, i. e. for using an automatic parallelizing compiler, using the portable PVM platform on a workstation cluster, using PVM on a shared memory multiprocessor, and for using machine dependent interfaces. (author)

  1. Theoretical comparison of performance using transfer functions for reactivity meters based on inverse kinetic method and simple feedback method

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro; Tashiro, Shoichi; Tojo, Masayuki

    2017-01-01

    The performance of two digital reactivity meters, one based on the conventional inverse kinetic method and the other one based on simple feedback theory, are compared analytically using their respective transfer functions. The latter one is proposed by one of the authors. It has been shown that the performance of the two reactivity meters become almost identical when proper system parameters are selected for each reactivity meter. A new correlation between the system parameters of the two reactivity meters is found. With this correlation, filter designers can easily determine the system parameters for the respective reactivity meters to obtain identical performance. (author)

  2. A chimeric LysK-lysostaphin fusion enzyme lysing Staphylococcus aureus cells: a study of both kinetics of inactivation and specifics of interaction with anionic polymers

    Science.gov (United States)

    A staphylolytic fusion protein (K-L) was created, harboring three unique lytic activities comprised of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of K-L...

  3. Effect of dietary genistein on growth performance, digestive enzyme activity, and body composition of Nile tilapia Oreochromis niloticus

    Science.gov (United States)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2015-01-01

    An 8-week feeding experiment was performed to evaluate the effect of dietary genistein on growth performance, body composition, and digestive enzymes activity of juvenile Nile tilapia ( Oreochromis niloticus). Four isonitrogenous and isoenergetic diets were formulated containing four graded supplements of genistein: 0, 30, 300, and 3 000 μg/g. Each diet was randomly assigned in triplicate to tanks stocked with 15 juvenile tilapia (10.47±1.24 g). The results show that 30 and 300 μg/g dietary genistein had no significant effect on growth performance of Nile tilapia, but the higher level of genistein (3 000 μg/g) significantly depressed the final body weight and specific growth rate. There was no significant difference in survival rate, feed intake, feed efficiency ratio or whole body composition among all dietary treatments. An assay of digestive enzymes showed that the diet containing 3 000 μg/ggenistein decreased stomach and hepatopancreas protease activity, and amylase activity in the liver and intestine, while a dietary level of 300 μg/g genistein depressed stomach protease and intestine amylase activities. However, no significant difference in stomach amylase activity was found among dietary treatments. Overall, the results of the present study indicate that a high level of dietary genistein (3 000 μg/g, or above) would significantly reduce the growth of Nile tilapia, partly because of its inhibitory effect on the activity of major digestive enzymes. Accordingly, the detrimental effects of genistein, as found in soybean products, should not be ignored when applied as an alternative ingredient source in aquaculture.

  4. Isometric Mid-Thigh Pull Performance Is Associated With Athletic Performance And Sprinting Kinetics In Division I Men And Women's Basketball Players.

    Science.gov (United States)

    Townsend, Jeremy R; Bender, David; Vantrease, William; Hudy, John; Huet, Kevin; Williamson, Cassie; Bechke, Emily; Serafini, Paul; Mangine, Gerald T

    2017-07-31

    To examine the relationships between isometric mid-thigh pull (IMTP) force, athletic performance measures, and sprint kinetics in Division I men's and women's basketball players. Twenty-three (male = 8, female = 15) division 1 basketball players completed a maximal 20-m sprint trial while tethered to a device which provided kinetic feedback (peak and average sprinting power, velocity and force). Additionally, one repetition-maximal (1RM) front squat, 1RM hang clean, vertical jump height, and agility (pro-agility and lane agility) tests were performed. Rate of force development (RFD) at 50ms, 100ms, 150ms, 200ms and 250ms of IMTP, as well as peak force (PF) were also collected. Pearson product-moment correlation analysis was used to examine the relationships between these measures. Significant (p training.

  5. Task-specific kinetic finger tremor affects the performance of carrom players.

    Science.gov (United States)

    Kahathuduwa, Chanaka N; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Priyadarshana, Rajeewa; Dissanayake, Arunika L; Perera, Christine

    2016-01-01

    We aimed to determine the effect of task-specific kinetic finger tremor, as indexed by surface electromyography (EMG), on the accuracy of a carrom stroke. Surface EMG of extensor digitorum communis muscle of the playing arm was recorded during rest, isometric contraction and stroke execution in 17 male carrom players with clinically observed finger tremor and 18 skill- and age-matched controls. Log-transformed power spectral densities (LogPSDs) of surface EMG activity (signifying tremor severity) at a 1-s pre-execution period correlated with angular error of the stroke. LogPSDs in 4-10 Hz range were higher in players with tremor than controls during pre-execution (P kinetic finger tremor in carrom players. This finger tremor during the immediate pre-execution phase appears to be a significant determinant of stroke accuracy.

  6. Adsorptioin performance of modified nkalagu bentonite in dye removal: kinetics, equilibrium, thermodynamics and structureal properties of the modified samples

    International Nuclear Information System (INIS)

    Ajemba, R.O.

    2015-01-01

    The adsorption performance of modified Nkalagu bentonite in removing Congo red (CR) from solution was investigated. The raw bentonite was modified by three different physicochemical methods: thermal activation (TA), acid activation (AA), and combined acid and thermal activation (ATA). The Congo red adsorption increased with increase in contact time, initial dye concentration, adsorbent dosage, temperature, and pH change. The results of the kinetics analysis of the adsorption data revealed that adsorption follows pseudo second-order kinetics. Analysis of the equilibrium data showed that Langmuir isotherm provided a better fit to the data. Evaluation of the thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. The results from this study suggest that a combination of thermal and acid activation is an effective modification method to improve adsorption capacity of bentonite and makes the bentonite as low-cost adsorbent for removal of water pollutants. (author)

  7. Enzimas exógenas em dietas de frangos de corte: desempenho Exogenous enzymes in broilers fed diets: performance

    Directory of Open Access Journals (Sweden)

    Nei André Arruda Barbosa

    2012-08-01

    Full Text Available O experimento foi conduzido para avaliar a eficiência de enzimas exógenas em dietas sobre o desempenho de frangos de corte. Um total de 1440 pintos de corte machos (Cobb 500® foram distribuídos em um delineamento inteiramente casualizado em esquema fatorial 2x2 (duas dietas com diferentes densidades nutricionais; com e sem a adição enzimática com 8 repetições de 45 aves em cada unidade experimental. As dietas com diferentes densidades nutricionais foram: controle positivo (níveis normais e um controle negativo (com redução de 4,3 e 4,5% de energia metabolizável; 16,7 e 17,7% de cálcio e 35 e 42,7% de fósforo, nas fases inicial e de crescimento, respectivamente. A suplementação enzimática consistiu da combinação das enzimas fitase (100g t-1 e amilase, xilanase e protease (500g t-1. Foi avaliado o desempenho das aves nas fases de 1 a 21 e 1 a 42 dias de idade. Na fase total de criação, as aves alimentadas com a dieta controle negativo com adição enzimática tiveram consumo de ração (5,97%, peso médio (8,47%, ganho de peso (8,64% e conversão alimentar (2,92% melhores (P0,05 ao grupo alimentado com a dieta controle positivo com ou sem enzima. A adição de enzimas exógenas em dieta de frangos de corte com redução de energia metabolizável, cálcio e fósforo, proporciona um consumo de ração, peso vivo médio e ganho de peso similar a uma dieta com níveis nutricionais adequados.The experiment was conducted to evaluate the effect of enzyme efficiency in diets with and without nutrient reduction on the performance of broilers. Thousand and hundred forty male broiler chicks (Cobb 500® were distributed in a completely randomized design with 4 treatments in a factorial 2x2 (two diets with different nutrient densities, with and without enzyme with 8 replications of 45 birds. The diets were: positive control (normal and a negative control (with a reduction of 4.3% and 4.5% of metabolizable energy, 16.7% and 17.7% of

  8. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower propo...

  9. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot.

    Science.gov (United States)

    Jeong, Daniel; Anagnostopoulos, Petros V; Roldan-Alzate, Alejandro; Srinivasan, Shardha; Schiebler, Mark L; Wieben, Oliver; François, Christopher J

    2015-05-01

    Ventricular kinetic energy measurements may provide a novel imaging biomarker of declining ventricular efficiency in patients with repaired tetralogy of Fallot. Our purpose was to assess differences in ventricular kinetic energy with 4-dimensional flow magnetic resonance imaging between patients with repaired tetralogy of Fallot and healthy volunteers. Cardiac magnetic resonance, including 4-dimensional flow magnetic resonance imaging, was performed at rest in 10 subjects with repaired tetralogy of Fallot and 9 healthy volunteers using clinical 1.5T and 3T magnetic resonance imaging scanners. Right and left ventricular kinetic energy (KERV and KELV), main pulmonary artery flow (QMPA), and aortic flow (QAO) were quantified using 4-dimensional flow magnetic resonance imaging data. Right and left ventricular size and function were measured using standard cardiac magnetic resonance techniques. Differences in peak systolic KERV and KELV in addition to the QMPA/KERV and QAO/KELV ratios between groups were assessed. Kinetic energy indices were compared with conventional cardiac magnetic resonance parameters. Peak systolic KERV and KELV were higher in patients with repaired tetralogy of Fallot (6.06 ± 2.27 mJ and 3.55 ± 2.12 mJ, respectively) than in healthy volunteers (5.47 ± 2.52 mJ and 2.48 ± 0.75 mJ, respectively), but were not statistically significant (P = .65 and P = .47, respectively). The QMPA/KERV and QAO/KELV ratios were lower in patients with repaired tetralogy of Fallot (7.53 ± 5.37 mL/[cycle mJ] and 9.65 ± 6.61 mL/[cycle mJ], respectively) than in healthy volunteers (19.33 ± 18.52 mL/[cycle mJ] and 35.98 ± 7.66 mL/[cycle mJ], respectively; P tetralogy of Fallot. Quantification of ventricular kinetic energy in patients with repaired tetralogy of Fallot is a new observation. Future studies are needed to determine whether changes in ventricular kinetic energy can provide earlier evidence of ventricular dysfunction and guide future medical and

  10. Drying of liquid food droplets : enzyme inactivation and multicomponent diffusion

    NARCIS (Netherlands)

    Meerdink, G.

    1993-01-01

    In this thesis the drying of liquid food droplets is studied from three different points of view: drying kinetics, enzyme inactivation and multicomponent diffusion. Mathematical models are developed and validated experimentally.

    Drying experiments are performed with suspended

  11. Angiotensin I - Converting Enzyme (ACE) gene polymorphism in relation to physical performance, cognition and survival

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Gaist, David; Bathum, Lise

    2003-01-01

    Studies of younger individuals have suggested an association between ACE genotype and physical and cognitive performance. Using a longitudinal study of elderly twins we studied the association between ACE genotype and physical and cognitive functioning and survival in old age.......Studies of younger individuals have suggested an association between ACE genotype and physical and cognitive performance. Using a longitudinal study of elderly twins we studied the association between ACE genotype and physical and cognitive functioning and survival in old age....

  12. Closed-kinetic chain upper-body training improves throwing performance of NCAA Division I softball players.

    Science.gov (United States)

    Prokopy, Max P; Ingersoll, Christopher D; Nordenschild, Edwin; Katch, Frank I; Gaesser, Glenn A; Weltman, Arthur

    2008-11-01

    Closed-kinetic chain resistance training (CKCRT) of the lower body is superior to open-kinetic chain resistance training (OKCRT) to improve performance parameters (e.g., vertical jump), but the effects of upper-body CKCRT on throwing performance remain unknown. This study compared shoulder strength, power, and throwing velocity changes in athletes training the upper body exclusively with either CKCRT (using a system of ropes and slings) or OKCRT. Fourteen female National Collegiate Athletic Association Division I softball player volunteers were blocked and randomly placed into two groups: CKCRT and OKCRT. Blocking ensured the same number of veteran players and rookies in each training group. Training occurred three times weekly for 12 weeks during the team's supervised off-season program. Olympic, lower-body, core training, and upper-body intensity and volume in OKCRT and CKCRT were equalized between groups. Criterion variables pre- and posttraining included throwing velocity, bench press one-repetition maximum (1RM), dynamic single-leg balance, and isokinetic peak torque and power (PWR) (at 180 degrees x s(-1)) for shoulder flexion, extension, internal rotation, and external rotation (ER). The CKCRT group significantly improved throwing velocity by 2.0 mph (3.4%, p performance. Strength coaches can incorporate upper-body CKCRT without sacrificing gains in maximal strength or performance criteria associated with an athletic open-chain movement such as throwing.

  13. Evaluation of the performance of MP4-based procedures for a wide range of thermochemical and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Li-Juan; Wan, Wenchao; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    2016-11-30

    We evaluate the performance of standard and modified MPn procedures for a wide set of thermochemical and kinetic properties, including atomization energies, structural isomerization energies, conformational energies, and reaction barrier heights. The reference data are obtained at the CCSD(T)/CBS level by means of the Wn thermochemical protocols. We find that none of the MPn-based procedures show acceptable performance for the challenging W4-11 and BH76 databases. For the other thermochemical/kinetic databases, the MP2.5 and MP3.5 procedures provide the most attractive accuracy-to-computational cost ratios. The MP2.5 procedure results in a weighted-total-root-mean-square deviation (WTRMSD) of 3.4 kJ/mol, whilst the computationally more expensive MP3.5 procedure results in a WTRMSD of 1.9 kJ/mol (the same WTRMSD obtained for the CCSD(T) method in conjunction with a triple-zeta basis set). We also assess the performance of the computationally economical CCSD(T)/CBS(MP2) method, which provides the best overall performance for all the considered databases, including W4-11 and BH76.

  14. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance.

    Science.gov (United States)

    Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man

    2015-01-01

    Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.

  15. Kinetic characterization of glucose aerodehydrogenase from Aspergillus niger EMS-150-F after optimizing the dose of mutagen for enhanced production of enzyme

    OpenAIRE

    Umbreen, Huma; Zia, Muhammad Anjum; Rasul, Samreen

    2013-01-01

    In the present study enhanced production of glucose aerodehydrogenase from Aspergillus niger has been achieved after optimizing the dose of chemical mutagen ethyl methane sulfonate (EMS) that has not been reported earlier. Different doses of mutagen were applied and a strain was developed basing upon the best production. The selected strain Aspergillus niger EMS-150-F was optimized for nutrient requirements in order to produce enzyme through fermentation and the results showed the best yield ...

  16. Performance analysis and acceleration of explicit integration for large kinetic networks using batched GPU computations

    Energy Technology Data Exchange (ETDEWEB)

    Shyles, Daniel [University of Tennessee (UT); Dongarra, Jack J. [University of Tennessee, Knoxville (UTK); Guidry, Mike W. [ORNL; Tomov, Stanimire Z. [ORNL; Billings, Jay Jay [ORNL; Brock, Benjamin A. [ORNL; Haidar Ahmad, Azzam A. [ORNL

    2016-09-01

    Abstract—We demonstrate the systematic implementation of recently-developed fast explicit kinetic integration algorithms that solve efficiently N coupled ordinary differential equations (subject to initial conditions) on modern GPUs. We take representative test cases (Type Ia supernova explosions) and demonstrate two or more orders of magnitude increase in efficiency for solving such systems (of realistic thermonuclear networks coupled to fluid dynamics). This implies that important coupled, multiphysics problems in various scientific and technical disciplines that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible. As examples of such applications we present the computational techniques developed for our ongoing deployment of these new methods on modern GPU accelerators. We show that similarly to many other scientific applications, ranging from national security to medical advances, the computation can be split into many independent computational tasks, each of relatively small-size. As the size of each individual task does not provide sufficient parallelism for the underlying hardware, especially for accelerators, these tasks must be computed concurrently as a single routine, that we call batched routine, in order to saturate the hardware with enough work.

  17. Influence of Guava by-Product, Enzyme Supplementation and Gamma Irradiation on Performance and Digestive Utilization of Fattening Rabbits

    International Nuclear Information System (INIS)

    Mekkawy, S.H.; El-Faramawy, A.A.; Zakaria, S. M.

    2000-01-01

    A total number of 32 New Zealand white rabbits weighing about 850 g were used to study the influence of guava by-product (GBP)on growth, feed consumption, feed efficiency, carcass dressing percentage, blood parameters and digestive efficiency. Four diets were formulated to provide about 17% crude fiber (CF). Control diet, diet with 16% (GBP), diet with the same percent of (GBP) supplemented with enzyme supplement and the last one also the same with the third diet in addition to treatment by gamma irradiation (3 kGy). The results indicated that there were no significant differences (P<0.05) between the experimental groups and control in growth, feed consumption, feed efficiency and carcass dressing percentage. Blood parameters (total protein, albumin, globulin, total lipids, and alkaline phosphatase) were within normal range through out the groups. Apparent digestibility coefficient of nutrients ( OM, CP, CF, EE and NFE) were significantly higher in rabbits fed the diet of (GBP) and enzyme supplementation. Our data indicate that (GBP) can replace 16% of alfalfa hay without decreasing growth performance of rabbits

  18. Electrochemical kinetic performances of electroplating Co–Ni on La–Mg–Ni-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Tao, Yang; Ke, Dandan; Ma, Yufei [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Han, Shumin, E-mail: hanshm@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The Co–Ni composite coating was prepared by electroplating. • The alloy treated at 10 mA/cm{sup 2} has superior kinetic performances. • The Co–Ni layer accelerates the charge transfer rate on the surface of the alloy. - Abstract: Electroplating Co–Ni treatment was applied to the surface of the La{sub 0.75}Mg{sub 0.25}Ni{sub 3.48} alloy electrodes in order to improve the electrochemical and kinetic performances. The Scanning electron microscope-Energy dispersive spectroscopy and X-ray diffraction results showed that the electrodes were plated with a homogeneous Co–Ni alloy film. The alloy coating significantly improved the high rate dischargeability of the alloy electrode, and the HRD value increased to 57.5% at discharge current density 1875 mA/g after the Co–Ni-coating. The exchange current density I{sub 0}, the limiting current density I{sub L} and the oxidation peak current also increased for the coated alloy. The improvement of overall electrode performances was attributed to an enhancement in electro-catalytic activity and conductivity at the alloy surface, owing to the precipitation of the Co–Ni layer.

  19. Performance evaluation of enzyme immunoassay for voriconazole therapeutic drug monitoring with automated clinical chemistry analyzers

    Directory of Open Access Journals (Sweden)

    Yongbum Jeon

    2017-08-01

    Full Text Available Objective: Voriconazole is a triazole antifungal developed for the treatment of fungal infectious disease, and the clinical utility of its therapeutic drug monitoring has been evaluated. Recently, a new assay for analyzing the serum voriconazole concentration with an automated clinical chemistry analyzer was developed. We evaluated the performance of the new assay based on standardized protocols. Methods: The analytical performance of the assay was evaluated according to its precision, trueness by recovery, limit of quantitation, linearity, and correlation with results from liquid chromatography-tandem mass spectrometry (LC-MS/MS. The evaluation was performed with the same protocol on two different routine chemistry analyzers. All evaluations were performed according to CLSI Guidelines EP15, EP17, EP6, and EP9 [1–4]. Results: Coefficients of variation for within-run and between-day imprecision were 3.2–5.1% and 1.5–3.0%, respectively, on the two different analyzers for pooled serum samples. The recovery rates were in the range of 95.4–102.2%. The limit of blank was 0.0049 μg/mL, and the limit of detection of the samples was 0.0266–0.0376 μg/mL. The percent recovery at three LoQ levels were 67.9–74.6% for 0.50 μg/mL, 75.5–80.2% for 0.60 μg/mL, and 89.9–96.6% for 0.70 μg/mL. A linear relationship was demonstrated between 0.5 μg/mL and 16.0 μg/mL (R2=0.9995–0.9998. The assay correlated well with LC-MS/MS results (R2=0.9739–0.9828. Conclusions: The assay showed acceptable precision, trueness, linearity, and limit of quantification, and correlated well with LC-MS/MS. Therefore, its analytical performance is satisfactory for monitoring the drug concentration of voriconazole. Keywords: Voriconazole, Antifungal agents, Therapeutic drug monitoring

  20. Performance evaluation of enzyme immunoassay for voriconazole therapeutic drug monitoring with automated clinical chemistry analyzers.

    Science.gov (United States)

    Jeon, Yongbum; Han, Minje; Han, Eun Young; Lee, Kyunghoon; Song, Junghan; Song, Sang Hoon

    2017-08-01

    Voriconazole is a triazole antifungal developed for the treatment of fungal infectious disease, and the clinical utility of its therapeutic drug monitoring has been evaluated. Recently, a new assay for analyzing the serum voriconazole concentration with an automated clinical chemistry analyzer was developed. We evaluated the performance of the new assay based on standardized protocols. The analytical performance of the assay was evaluated according to its precision, trueness by recovery, limit of quantitation, linearity, and correlation with results from liquid chromatography-tandem mass spectrometry (LC-MS/MS). The evaluation was performed with the same protocol on two different routine chemistry analyzers. All evaluations were performed according to CLSI Guidelines EP15, EP17, EP6, and EP9 [1-4]. Coefficients of variation for within-run and between-day imprecision were 3.2-5.1% and 1.5-3.0%, respectively, on the two different analyzers for pooled serum samples. The recovery rates were in the range of 95.4-102.2%. The limit of blank was 0.0049 μg/mL, and the limit of detection of the samples was 0.0266-0.0376 μg/mL. The percent recovery at three LoQ levels were 67.9-74.6% for 0.50 μg/mL, 75.5-80.2% for 0.60 μg/mL, and 89.9-96.6% for 0.70 μg/mL. A linear relationship was demonstrated between 0.5 μg/mL and 16.0 μg/mL ( R 2 =0.9995-0.9998). The assay correlated well with LC-MS/MS results ( R 2 =0.9739-0.9828). The assay showed acceptable precision, trueness, linearity, and limit of quantification, and correlated well with LC-MS/MS. Therefore, its analytical performance is satisfactory for monitoring the drug concentration of voriconazole.

  1. Kinetic start-up performance of two large treatment plants for nutrient removal

    DEFF Research Database (Denmark)

    Haarbo, A.; Harremoës, Poul; Thirsing, C.

    2001-01-01

    In 1987 an action plan was passed in the Danish Parliament demanding a considerable reduction of the discharge of nutrients to the aquatic environment in Denmark. Consequently, the two largest wastewater treatment plants in the Copenhagen area had to be upgraded to include nutrient removal....... For more than 8 years an extensive effort has been made to determine an optimum solution for this upgrading from a technical and financial point of view. The work included six years of comprehensive pilot plant investigations with the aim of thoroughly studying and interpreting the kinetics...... of the processes involved. The investigations revealed valuable information particularly concerning limitations of the nitrification process. Consequently, the investigations contributed to an expectation of no unforeseen problems during the implementation of the upgraded plants. This paper presents the results...

  2. Performance of the periodic pulse technique--4. Periodic pulse reaction kinetics of oxidative dehydrogenation of isobutyraldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Ii, M.; Murakami, Y.

    1980-07-01

    The periodic pulse method was used to study the reaction mechanism and kinetics of the oxidative dehydrogenation of isobutyraldehyde (IBA) by following the formation rates of methacrolein (MA), carbon monoxide and dioxide (CO/sub x/), and other products (P) as a function of pulse widths and reactant partial pressures at 350/sup 0/C over a 2:3 antimony oxide/molybdenum trioxide catalyst. The results were consistent with a mechanism according to which IBA reacts with oxygen retained by the catalyst to form MA, causing reduction of the catalyst. The IBA also adsorbed on the surface as an oxygenated species which either reacted with gas-phase oxygen to form CO/sub x/ or desorbed as an oxygenated P. The reduced catalyst surface was reoxidized by oxygen adsorption. Implications of catalyst tailoring for increased MA yields by improving the redox mechanism and inhibiting the surface reactions, are discussed.

  3. Data on kinetic, energy and emission performance of biodiesel from waste frying oil

    Directory of Open Access Journals (Sweden)

    Silverio Catureba da Silva Filho

    2018-06-01

    Full Text Available The data presented in this article are related to the research article “Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city” (Silva Filho et al., 2018 [1]. This article presents the variation of the concentration of waste frying oil (WFO with the reaction time and temperature during the transesterification of WTOs collected in the residences and restaurants of the city of São Paulo. Then, the biodiesel samples were mixed with the S-10 diesel oil in order to obtain the B10, B20, B30, B40, B50, B75 and B100 blends, which were tested in a diesel engine and their power, fuel consumption and gas emissions (CO, CO2 and SO2 have been measured to verify their greenhouse effect and energy efficiency. Keywords: Biodiesel, Kinetic curves, Greenhouse gas emission, Energy efficiency

  4. Evaluation of silage-fed biogas process performance using microbiological and kinetic methods

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Aa

    1996-10-01

    In this study, different kinetic and microbiological methods were used to evaluate the growth and activity of key groups of bacteria degrading ley silage in one-phase and two-phase biogas processes. Emphasis was placed on studying the dynamic behaviour of different trophic groups resulting from the initiation of liquid recirculation in the processes. The microbiological methods included microscopy and most probable number (MPN) counts with different substrates. The kinetic methods included measurements of specific methanogenic activity (SMA) with acetate and H{sub 2}/CO{sub 2} as substrates, batch assays with trace element additions and measurement of conversion rates of mannitol and lactate in the digesters. In general, the initiation of liquid recirculation at first promoted the growth and/or activity of several trophic groups of bacteria, such as butyrate and propionate degraders and acetotrophic and hydrogenotrophic methanogens in the liquefaction/acidogenesis reactors of the two-phase processes. This was probably mainly due to the increased pH. However, after some time of liquid recirculation, an inhibition of some bacterial groups occurred, such as propionate degraders and methanogens in the methanogenic reactors of two-phase processes. This was probably due to increased concentrations of salts and free ammonia. The batch assays proved to be valuable tools in process optimization by the addition of trace elements. Here, the addition of cobalt significantly increased methane production from acetate. In this study, a more comprehensive understanding of the process behaviour in response to the initiation of liquid recirculation was achieved which could not have been obtained by only monitoring routine parameters such as pH, methane production and concentrations of organic acids and salts. 120 refs, 4 figs, 1 tab

  5. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.

    Science.gov (United States)

    Wille, Georg; Ritter, Michaela; Weiss, Manfred S; König, Stephan; Mäntele, Werner; Hübner, Gerhard

    2005-04-05

    In pyruvate oxidase (POX) from Lactobacillus plantarum, valine 265 participates in binding the cofactor FAD and is responsible for the strained conformation of its isoalloxazine moiety that is visible in the crystal structure of POX. The contrasting effects of the conservative amino acid exchange V265A on the enzyme's catalytic properties, cofactor affinity, and protein structure were investigated. The most prominent effect of the exchange was observed in the 2.2 A crystal structure of the mutant POX. While the overall structures of the wild-type and the variant are similar, flavin binding in particular is clearly different. Local disorder at the isoalloxazine binding site prevents modeling of the complete FAD cofactor and two protein loops of the binding site. Only the ADP moiety shows well-defined electron density, indicating an "anchor" function for this part of the molecule. This notion is corroborated by competition experiments where ADP was used to displace FAD from the variant enzyme. Despite the fact that the affinity of FAD binding in the variant is reduced, the catalytic properties are very similar to the wild-type, and the redox potential of the bound flavin is the same for both proteins. The rate of electron transfer toward the flavin during turnover is reduced to one-third compared to the wild-type, but k(cat) remains unchanged. Redox-triggered FTIR difference spectroscopy of free FAD shows the nu(C(10a)=N(1)) band at 1548 cm(-)(1). In POX-V265A, this band is found at 1538 cm(-)(1) and thus shifted less strongly than in wild-type POX where it is found at 1534 cm(-)(1). Taking these observations together, the conservative exchange V265A in POX has a surprisingly small effect on the catalytic properties of the enzyme, whereas the effect on the three-dimensional structure is rather big.

  6. Evaluation of biofilm performance as a protective barrier against biocorrosion using an enzyme electrode.

    Science.gov (United States)

    Soleimani, S; Ormeci, B; Isgor, O B; Papavinasam, S

    2011-01-01

    Sulfide is known to be an important factor in microbiologically influenced corrosion (MIC) of metals and concrete deterioration in wastewater treatment structures and sewer pipelines. A sulfide biosensor was used to determine the effectiveness of Escherichia coli DH5 alpha biofilm as a protective barrier against MIC. The biofilm was shown to be effective in protecting surfaces from sulfide and helping to reduce MIC using amperometric measurements. The results also indicated that the growth conditions of E. coli DH5 alpha may have an impact on the performance of the biofilm as a sulfide barrier. The simple method provided in this work enables the comparison of several microbial biofilms and selection of the ones with potential to prevent MIC in a relatively short time.

  7. Effects of Lipotropic Products on Productive Performance, Liver Lipid and Enzymes Activity in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Khosravinia H

    2015-12-01

    Full Text Available In a 42-d experiment, 576 one-day-old Vencobb 308 broiler chicks were used to investigate the effects of lecithin extract (0.5 g/kg, choline chloride 60% (1 g/kg and Bio choline (1 g/kg in diets of moderate and high energy in a 4 × 2 factorial arrangement on performance and certain physiological traits in broiler chickens. The inclusion of Bio choline and lecithin extract in the diet significantly increased average daily gain and improved feed conversion ratio  in overall (1 to 42 d period (P < 0.05. Performance efficiency index was improved in the birds fed with Bio choline compared to those fed control diet. Broilers fed diets containing Bio choline and lecithin extract had less abdominal fat percentage than those fed choline chloride or control diet. Regardless of dietary energy level, supplementation of diet with Bio choline, choline chloride and lecithin extract significantly decreased liver lipid concentration (P < 0.05. Aspartate aminotransferase activity increased in the serum of broilers fed high energy diets while it was decreased in the birds received diets containing choline chloride. Lipotropic compounds decreased serum aspartate aminotransferase activity in the birds fed on high energy diets. The addition of Bio choline and lecithin extract to diet significantly decreased serum γ–glutamyltransferase activity (P < 0.05. Results of the present study revealed that dietary supplementation of commercial lipotropic compounds could remove potential detrimental effects from high energy diets through reducing liver fat and maintaining liver health.

  8. Soybean hull and enzyme inclusion effects on diet digestibility and growth performance in beef steers consuming corn-based diets.

    Science.gov (United States)

    Russell, J R; Sexten, W J; Kerley, M S

    2016-06-01

    A beef feedlot study was conducted to determine the effects of increasing soybean hull (SH) inclusion and enzyme addition on diet digestibility and animal performance. The hypothesis was SH inclusion and enzyme addition would increase fiber digestibility with no negative effect on animal performance. Eight treatments (TRT) were arranged in a 4 × 2 factorial using four diets and two enzyme (ENZ) inclusion rates. The diets were composed primarily of whole shell corn (WSC) with 0%, 7%, 14%, or 28% SH replacing corn. The ENZ was a commercial proprietary mix of , and (Cattlemace, R&D Life Sciences, Menomonie, WI) included in the diets at 0% (S0, S7, S14, S28) or 0.045% DM basis (S0e, S7e, S14e, S28e). Eighty steers (287 ± 31 kg, SD) were stratified by weight and blocked into pens with 1 heavy and 1 light pen per TRT (2 pen/TRT, 5 steers/pen). Steers were fed for 70 d with titanium dioxide included in the diets for the final 15 d. Fecal samples were collected on d 70 to determine diet digestibility. Diets were balanced for AA and RDP requirement based on available ME. Individual DMI was measured using a GrowSafe system. Diet, ENZ, and diet × ENZ effects were analyzed using the MIXED procedure of SAS. Initial BW was applied as a covariate for final BW (FBW), and DMI was included as a covariate for all digestibility measures. The diet × ENZ interaction had no effect on FBW, ADG, DMI, or any digestibility measure ( ≥ 0.11). Steers fed ENZ tended to have greater FBW ( = 0.09) and had numerically greater ADG than steers not fed ENZ. Diet influenced DMI ( digestibility ( ≥ 0.2). Diet had an effect on NDF and ADF digestibility ( ≤ 0.04) which decreased as SH inclusion increased. The addition of ENZ tended to decrease NDF digestibility ( = 0.08) but had no effect on ADF digestibility ( = 0.8). Fiber digestibility in WSC diets did not improve with SH inclusion or ENZ addition but steers fed diets with 14% to 28% of WSC replaced by SH and the addition of 0.045% ENZ

  9. Effects of exogenous inosine monophosphate on growth performance, flavor compounds, enzyme activity, and gene expression of muscle tissues in chicken.

    Science.gov (United States)

    Yan, Junshu; Liu, Peifeng; Xu, Liangmei; Huan, Hailin; Zhou, Weiren; Xu, Xiaoming; Shi, Zhendan

    2018-04-01

    The goal of this experiment was to examine effects of diets supplemented with exogenous inosine monophosphate (IMP) on the growth performance, flavor compounds, enzyme activity and gene expression of chicken. A total of 1,500 healthy, 1-day-old male 3-yellow chickens were used for a 52-d experimental period. Individuals were randomly divided into 5 groups (group I, II, III, IV, V) with 6 replicates per group, and fed a basal diet supplemented with 0.0, 0.05, 0.1, 0.2, and 0.3% IMP, respectively. There was no significant response to the increasing dietary IMP level in average daily feed intake (ADFI), average daily gain (ADG), and feed:gain ratio (F/G) (P ≥ 0.05). IMP content of the breast and thigh muscle showed an exponential and linear response to the increasing dietary IMP level (P exogenous IMP was fed. There were significant effects of IMP level in diet on free amino acids (FAA) (exponential, linear and quadratic effect, P exogenous IMP was fed. Dietary IMP supplementation had a quadratic effect on 5΄-NT and the alkaline phosphatase (ALP) enzyme activity in the breast muscle (P exogenous IMP group had the highest (AMPD1) gene expression of the breast muscle and ATIC gene expression of the thigh muscle. These results indicate that dietary IMP did not affect the growth performance of chicken, the diet with 0.2 to 0.3% exogenous IMP is optimal to improve the meat flavor quality in chicken.

  10. Effects of dietary supplementation of resveratrol on performance, egg quality, yolk cholesterol and antioxidant enzyme activity of laying hens.

    Science.gov (United States)

    Feng, Z H; Gong, J G; Zhao, G X; Lin, X; Liu, Y C; Ma, K W

    2017-10-01

    1. This experiment was conducted to evaluate the effects of dietary supplementation of resveratrol on laying performance, egg quality, egg yolk cholesterol and antioxidant enzyme activities of laying hens. 2. A total of 360 Beijing PINK-1 laying hens (60 weeks old) were randomly distributed among five dietary treatments, each of which included 6 replicates of 12 hens. Dietary treatments were basal diet supplemented with 0 (control), 0.5, 1.0, 2.0 and 4.0 g/kg diet resveratrol. The study lasted for 9 weeks including 1 week of adaptation and 8 weeks of the main experimental period. 3. The results indicated that dietary resveratrol significantly improved feed conversion ratios during 5-8 weeks and 1-8 weeks of the trial. Increasing dietary concentrations of the resveratrol linearly improved Haugh unit and albumen height of eggs. 4. The content of total cholesterol (TC), total triglyceride (TG), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C) in serum and cholesterol in yolk was significantly decreased by dietary resveratrol, and there were significant linear correlations between these indexes and resveratrol supplemental levels. 5. Dietary resveratrol supplementation significantly improved serum Glutathione peroxidase (GSH-Px) enzyme activity and decreased serum malondialdehyde (MDA) content in groups with 2.0 and 4.0 g/kg resveratrol as compared to the control, respectively. However, supplementation of resveratrol did not affect the activity of serum superoxide dismutase (SOD). 6. It is concluded that resveratrol supplementation has a positive effect on performance, lipid-related traits and antioxidant activity of laying hens.

  11. Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics.

    Science.gov (United States)

    Haataja, Tatu J K; Koski, M Kristian; Hiltunen, J Kalervo; Glumoff, Tuomo

    2011-05-01

    All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.

  12. Core-Shell Al-Polytetrafluoroethylene (PTFE) Configurations to Enhance Reaction Kinetics and Energy Performance for Nanoenergetic Materials.

    Science.gov (United States)

    Wang, Jun; Qiao, Zhiqiang; Yang, Yuntao; Shen, Jinpeng; Long, Zhang; Li, Zhaoqian; Cui, Xudong; Yang, Guangcheng

    2016-01-04

    The energy performance of solid energetic materials (Al, Mg, etc.) is typically restricted by a natural passivation layer and the diffusion-limited kinetics between the oxidizer and the metal. In this work, we use polytetrafluoroethylene (PTFE) as the fluorine carrier and the shielding layer to construct a new type of nano-Al based fuels. The PTFE shell not only prevents nano-Al layers from oxidation, but also assists in enhancing the reaction kinetics, greatly improving the stability and reactivity of fuels. An in situ chemical vapor deposition combined with the electrical explosion of wires (EEW) method is used to fabricate core-shell nanostructures. Studies show that by controlling the stoichiometric ratio of the precursors, the morphology of the PTFE shell and the energy performance can be easily tuned. The resultant composites exhibit superior energy output characters than that of their physically mixed Al/PTFE counterparts. This synthetic strategy might provide a general approach to prepare other high-energy fuels (Mg, Si). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Evaluation of the Performance of Two Kinds of Anti-TP Enzyme-Linked Immunosorbent Assay].

    Science.gov (United States)

    Gao, Nan; Huang, Li-Qin; Wang, Rui; Jia, Jun-Jie; Wu, Shuo; Zhang, Jing; Ge, Hong-Wei

    2018-06-01

    To evaluate the accuracy and precision of 2 kinds of anti-treponema pallidum (anti-TP) ELISA reagents in our laboratory for detecting the anti-TP in voluntary blood donors, so as to provide the data support for use of ELISA reagents after introduction of chemiluminescene immunoassay (CLIA). The route detection of anti-TP was performed by using 2 kinds of ELISA reagents, then 546 responsive positive samples detected by anti-TP ELISA were collected, and the infections status of samples confirmed by treponema pallidum particle agglutination (TPPA) test was identified. The confirmed results of responsive samples detected by 2 kinds of anti-TP ELISA reagents were compared, the accuracy of 2 kinds of anti-TP ELISA reagents was analyzed by drawing ROC and comparing area under curve (AUC), and precision of 2 kinds of anti-TP ELISA reagents was compared by statistical analysis of quality control data from 7.1 2016 to 6.30 2017. There were no statistical difference in confirmed positive rate of responsive samples and weak positive samples between 2 kinds of anti-TP ELISA reagents. The responsive samples detected by 2 kinds of anti-TP ELISA reagents accounted for 85.53%(467/546) of all responsive samples, the positive rate confirmed by TPPA test was 82.87%. 44 responsive samples detected by anti-TP ELISA reagent A and 35 responsive samples detected by anti-TP ELISA reagent B were confirmed to be negative by TPPA test. Comparison of AUC showed that the accuracy of 2 kinds of anti-TP ELISA reagents was more high, the difference between 2 reagents was not statistically significant. The coefficient of variation (CV) of anti-TP ELISA reagent A and B was 14.98% and 18.04% respectively, which met the precision requirement of ELISA test. The accuracy and precision of 2 kinds of anti-TP ELISA reagents used in our laboratory are similar, and using any one of anti-TP ELISA reagents all can satisfy the requirements of blood screening.

  14. Kinetic evaluation and process performance of a fixed film bioreactor removing phthalic acid and dimethyl phthalate.

    Science.gov (United States)

    Pirsaheb, Meghdad; Mesdaghinia, Ali-Reza; Shahtaheri, Seyed Jamaleddin; Zinatizadeh, Ali Akbar

    2009-08-15

    Phthalate esters are toxic organic contaminants which can enter into the environment through various industrial processes. In this study, a 6-liter fixed film bioreactor was used to examine biodegradation of phthalic acid (PA) and dimethyl phthalate (DMP) in synthetic wastewater. Effect on the process of two operating factors, namely hydraulic retention time (HRT) (at four levels ranging between 6 and 48 h) and initial phthalate concentrations (at six levels ranging from 10mg to 500 mg/l), was investigated. The process was stable at all operating conditions, except for the condition with influent PA and DMP of 500 mg/l and HRT of 6h. More than 95% removal efficiency was achieved for the conditions with HRT longer than 10h. Remarkable amount of DMP (398 mg/kg of sludge) was adsorbed on the biomass due to its higher hydrophobicity compared to PA (171 mg/kg). The kinetic parameters (mu(m,)K(s), Y and K(d)) were determined and compared for both substrates, PA and DMP.

  15. Kinematic-Kinetic-Rigidity Evaluation of a Six Axis Robot Performing a Task

    Directory of Open Access Journals (Sweden)

    H. Karagulle

    2012-11-01

    Full Text Available Six axis serial robots of different sizes are widely used for pick and place, welding and various other operations in industry. Developments in mechatronics, which is the synergistic integration of mechanism, electronics and computer control to achieve a functional system, offer effective solutions for the design of such robots. The integrated analysis of robots is usually used in the design stage. In this study, it is offered that the integrated analysis of robots can also be used at the application stage. SolidWorks, CosmosMotion and ABAQUS programs are used with an integrated approach. Integration software (IS is developed in Visual Basic by using the application programming interface (API capabilities of these programs. An ABB-IRB1400 industrial robot is considered for the study. Different trajectories are considered. Each task is first evaluated by a kinematic analysis. If the task is out of the workspace, then the task is cancelled. This evaluation can also be done by robot programs like Robot Studio. It is proposed that the task must be evaluated by considering the limits for velocities, motor actuation torques, reaction forces, natural frequencies, displacements and stresses due to the flexibility. The evaluation is done using kinematic, kinetic and rigidity evaluation charts. The approach given in this work can be used for the optimal usage of robots.

  16. EFFECT OF DIETARY SUPPLEMENTATION OF NON-STARCH POLYSACCHARIDE DEGRADING ENZYMES ON GROWTH PERFORMANCE OF BROILER CHICKS

    Directory of Open Access Journals (Sweden)

    M. A. Nadeem, M. I. Anjum, A. G. Khan and A. Azim

    2005-10-01

    Full Text Available An experiment was conducted to study the performance and carcass parameters of broilers chicks fed diets with and without supplementing non-starch polysaccharide degrading enzymes (NSPDE at the rate of 0.5 g/kg diet. A total of 300 day-old broiler chicks were randomly divided into 12 sets (replicates each comprising 25 chicks and three sets per treatment group, reared on deep litter from 1-42 days post-hatch. Group A was fed diets without NSPDE supplementation, while group B was fed diets supplemented with NSPDE (0.5 g/kg. Group C was fed diets containing 50 kcal/kg less metabolizable energy (ME without NSPDE and group D was fed diets having 50 kcal/kg less ME with NSPDE (0.5 g/kg supplementation. Feed and water were provided ad libitum. Feed intake and feed conversion ratio (FCR from 1-28 days and 1-42 days was significantly (p<0.05 improved in chicks fed NSPDE supplemented diets (groups B and D compared to non-supplemented diets (groups A and C. However, during 29-42 days of growing period enzymes supplementation did not influence feed intake and FCR. Body weight gain, dressing percentage and relative weights of heart, gizzard and shank at 42 days of age was found to be non-significantly different among all groups. However, liver weight reduced significantly (p<0.05 in NSPDE supplemented groups. The study suggested that NSPDE supplementation was beneficial in enhancing feed utilization during the starter phase, while its effects on weight gain, dressing percentage and weights of organs, except liver weight, were found to be non-significant.

  17. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  18. Sorption performance of activated nkaliki clay in removing chromium (vi) ion from aqueous solution: kinetics, isotherm, and thermodynamic studies

    International Nuclear Information System (INIS)

    Ajemba, R.O.; Ugonabo, V.I.; Okafor, V.N.

    2017-01-01

    Bentonite from Nkaliki was modified by acid activation using different concentrations of sulphuric acid. The physicochemical properties of the raw and modified samples were analyzed. The sorption performance of the modified and raw bentonite was studied in the removal of chromium (VI) ion from aqueous solution. Effect of key process parameters on the adsorption process was studied. Results of the physicochemical analyses showed that the acid activation altered the structural arrangements of the bentonite. The surface area and adsorption capacity increased from 37.6m/sup 2//g to 74m/sup 2//g and 45 to 98%, respectively, after activating with 6mol/l of H/sub 2/SO/sub 4/. The chromium (VI) ion adsorption increased with increase in process parameters studied. The kinetics analysis of the adsorption data follows the pseudo second-order kinetics, while equilibrium analysis conformed to the Langmuir isotherm. The thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. This study shows that modified Nkaliki bentonite could be used for wastewater treatment. (author)

  19. Determination of Glutamic Acid Decarboxylase (GAD65 in Pancreatic Islets and Its In Vitro and In Vivo Degradation Kinetics in Serum Using a Highly Sensitive Enzyme Immunoassay

    Directory of Open Access Journals (Sweden)

    Michael Schlosser

    2008-01-01

    Full Text Available Glutamic acid decarboxylase GAD65 autoantibodies (GADA are an established marker for autoimmune diabetes. Recently, the autoantigen GAD65 itself was proposed as biomarker of beta-cell loss for prediction of autoimmune diabetes and graft rejection after islet transplantation. Therefore, the GAD65 content in pancreatic islets of different species and its serum degradation kinetics were examined in this study using a sensitive immunoassay. GAD65 was found in quantities of 78 (human, 43.7 (LEW.1A rat and 37.4 (BB/OK rat ng per 1,000 islets, respectively, but not in mouse islets. The in vitro half-life of porcine GAD65 and human recombinant GAD65 ranged from 1.27 to 2.35 hours at 37°C in human serum, plasma and blood, and was unaffected by presence of GAD65 autoantibodies. After injecting 2,000 ng recombinant human GAD65 into LEW.1A rats, the in vivo half-life was 2.77 hours. GAD65 was undetectable after 24 hours in these animals, and for up to 48 hours following diabetes induction by streptozotocin in LEW.1A rats. Estimated from these data, at least 13 islets in rat and 1,875 in human must be simultaneously destroyed to detect GAD65 in circulation. These results should be taken into consideration in further studies aimed at examining the diagnostic relevance of GAD65.

  20. The Effect of Olive Cake, with or Without Enzymes Supplementation, on Growth Performance, Carcass Characteristics, Lymphoid Organs and Lipid Metabolism of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    MA Al-Harthi

    Full Text Available ABSTRACT An experiment was carried out to investigate the effect of using olive cake (OC in broiler diets, when it is supplemented with multi-enzymes or phytase enzyme. The OC was included in isocaloric, isonitorgneous diets at 5 and 10% levels and fed to broilers from 1-28 days of age. Experimental diets were fed with or without either of the two enzymes: galzym or phytase. This resulted in 3 OC levels (0, 5, 10% × 3 enzyme supplementations (no enzyme, galzym enzyme, phytase enzyme. This included nine treatments, and each treatment was replicated eight times with seven broiler chickens each. Feed intake, feed conversion ratio, body weight gain, survival rate, dressing, inner and immune organ´s weights (compared to live body weight; and blood lipids constituents were investigated. According to the findings in this study, it could be concluded that OC is a valuable ingredient and might be included in the broiler diet up to 10% without galzym or phytase enzyme addition. Also, further studies should investigate the possibility of using higher ratios of it or mixed with another by-product in poultry diets; as a very cheap by-product. Moreover, these studies can be associated with suitable additives at different concentrations that might help to increase the utilization of olive cake or at least to keep performance equal to the control. On the other hand, it is worthwhile to follow the positive effect of phytase enzyme on cholesterol and very low density lipoprotein (VLDL concentrations, which may relate it´s use with chicken´s health.

  1. Combined pressure and cosolvent effects on enzyme activity - a high-pressure stopped-flow kinetic study on α-chymotrypsin.

    Science.gov (United States)

    Luong, Trung Quan; Winter, Roland

    2015-09-21

    We investigated the combined effects of cosolvents and pressure on the hydrolysis of a model peptide catalysed by α-chymotrypsin. The enzymatic activity was measured in the pressure range from 0.1 to 200 MPa using a high-pressure stopped-flow systems with 10 ms time resolution. A kosmotropic (trimethalymine-N-oxide, TMAO) and chaotropic (urea) cosolvent and mixtures thereof were used as cosolvents. High pressure enhances the hydrolysis rate as a consequence of a negative activation volume, ΔV(#), which, depending on the cosolvent system, amounts to -2 to -4 mL mol(-1). A more negative activation volume can be explained by a smaller compression of the ES complex relative to the transition state. Kinetic constants, such as kcat and the Michaelis constant KM, were determined for all solution conditions as a function of pressure. With increasing pressure, kcat increases by about 35% and its pressure dependence by a factor of 1.9 upon addition of 2 M urea, whereas 1 M TMAO has no significant effect on kcat and its pressure dependence. Similarly, KM increases upon addition of urea 6-fold. Addition of TMAO compensates the urea-effect on kcat and KM to some extent. The maximum rate of the enzymatic reaction increases with increasing pressure in all solutions except in the TMAO : urea 1 : 2 mixture, where, remarkably, pressure is found to have no effect on the rate of the enzymatic reaction anymore. Our data clearly show that compatible solutes can easily override deleterious effects of harsh environmental conditions, such as high hydrostatic pressures in the 100 MPa range, which is the maximum pressure encountered in the deep biosphere on Earth.

  2. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Sajeena Beevi, B.; Madhu, G.; Sahoo, Deepak Kumar

    2015-01-01

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day −1 . • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day −1

  3. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com [Department of Chemical Engineering, Govt. Engineering College, Thrissur, Kerala 680 009 (India); Madhu, G., E-mail: profmadhugopal@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India); Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  4. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    Science.gov (United States)

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  5. Digestibility, productive performance, and egg quality of laying hens as affected by dried cassava pulp replacement with corn and enzyme supplementation.

    Science.gov (United States)

    Khempaka, Sutisa; Maliwan, Prapot; Okrathok, Supattra; Molee, Wittawat

    2018-02-24

    Two experiments were conducted to investigate the potential use of dried cassava pulp (DCP) supplemented with enzymes as an alternative feed ingredient in laying hen diets. In experiment 1, 45 laying hens (Isa Brown) aged 45 weeks were placed in individual cages to measure nutrient digestibility for 10 days. Nine dietary treatments were control and DCP as a replacement for corn at 20, 25, 30, and 35% supplemented with mixed enzymes (cellulase, glucanase, and xylanase) at 0.10 and 0.15%. Results showed that the use of DCP at 20-35% added with mixed enzymes had no negative effects on dry matter digestibility, while organic matter digestibility and nitrogen retention decreased with increased DCP up to 30-35% in diets. Both enzyme levels (0.10 and 0.15%) showed similar results on nutrient digestibility and retention. In experiment 2, a total of 336 laying hens aged 32 weeks were randomly allocated to seven dietary treatments (control and DCP-substituted diets at 20, 25, and 30%) supplemented with mixed enzymes (0.10 and 0.15%). Diets incorporated with 20-30% of DCP and supplemented with mixed enzymes at both levels had no significant effects on egg production, egg weight, feed intake, egg mass, feed conversion ratio, protein efficiency ratio, or egg quality, except for egg yolk color being decreased with an increase of DCP in diets (P digestibility, productive performance, or egg quality.

  6. Treatment of selected pharmaceuticals by ferrate(VI): performance, kinetic studies and identification of oxidation products.

    Science.gov (United States)

    Zhou, Zhengwei; Jiang, Jia-Qian

    2015-03-15

    The performance of ferrate(VI) in treating sulfamethoxazole (SMX), diclofenac (DCF), carbamazepine (CBZ) and bezafibrate (BZF) in test solutions containing the four compounds was investigated. A series of jar-test experiments was performed on a bench-scale at pH 6-9 and at a ferrate(VI) dose of 1-5 mg Fe/L. The results suggested that ferrate(VI) can effectively remove SMX, DCF and CBZ from the test solutions, with greater than 80% removal under optimum conditions. However, the removal efficiency of BZF was very low, less than 25% under the studied conditions. Increasing the dose of ferrate(VI) improved the treatment performance, while the influence of solution pH on ferrate(VI) performance varied among the different target compounds. Ferrate(VI) demonstrated the highest reactivity with SMX at pH 8 and pH 9 (20 °C), with apparent second-order rate constants of 360±17 M(-1) s(-1) and 1.26±0.02 M(-1) s(-1), respectively. However, BZF showed the lowest removal by ferrate(VI) with the smallest rate constants (less than 0.5 M(-1) s(-1)) at pH 8 and pH 9. Furthermore, a number of oxidation products (OPs) of SMX, DCF and CBZ during ferrate(VI) oxidation were detected by liquid chromatography and mass spectrometry (LC-MS), and their degradation pathways were tentatively proposed. No OPs of BZF were detected during ferrate(VI) oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    Science.gov (United States)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  8. Effects of Enzyme Complex Supplementation to a Paddy-based Diet on Performance and Nutrient Digestibility of Meat-type Ducks

    Directory of Open Access Journals (Sweden)

    P. Kang

    2013-02-01

    Full Text Available Paddy rice is rarely used as a feed because of its high fiber content. In this study, two experiments were conducted to study the effects of supplementing an enzyme complex consisting of xylanase, beta-glucanase and cellulase, to paddy-based diets on the performance and nutrient digestibility in meat-type ducks. In the both experiments, meat-type ducks (Cherry Valley were randomly assigned to four treatments. Treatment 1 was a basal diet of corn-soybean; treatment 2 was a basal diet of corn-paddy-soybean; treatment 3, had enzyme complex added to the corn-paddy-soybean basal diet at levels of 0.5 g/kg diet; and treatment 4, had enzyme complex added to the corn-paddy-soybean diet at levels of 1.0 g/kg diet. The results showed that the enzyme complex increased the ADG, and decreased the ADFI and F/G significantly (p0.05. The outcome of this research indicates that the application of enzyme complex made up of xylanase, beta-glucanase, and cellulase, in the corn-paddy-soybean diet, can improve performance and nutrition digestibility in meat-type ducks.

  9. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  10. Effect of corn replacement with graded levels of wheat screening and enzyme supplementation on performance, blood lipids, viscosity and jejunal histomorphology of finisher broilers

    Energy Technology Data Exchange (ETDEWEB)

    Mazhari, M.; Golian, A.; Kermanshahi, H.

    2015-07-01

    An experiment was carried out to study the effect of corn replacement with five levels of wheat screening (0, 150, 300, 450 and 600 g/kg of diet) with (0.5 g/kg of diet) or without xylanase-glucanase enzyme on performance, blood lipids, viscosity and jejunal histomorphology of finisher broilers (25-42 days of age). Five hundred day-old Ross-308 male broiler chicks were fed by a standard commercial diet up to 24 days of age, then randomly assigned to 10 diets. Each diet was fed to five groups of ten chicks each. There was not significant differences in body weight gain (BWG), feed intake, and feed conversion ratio of birds fed with different levels of wheat screening (WS), whereas enzyme increased (p<0.05) BWG. Different levels of WS and enzyme did not have a significant effect on relative weights of carcass, breast, thigh, and abdominal fat of broilers. Relative weights of gizzard, pancreas, small and large intestine, and relative length of jejunum and jejunal and ileal viscosity were increased (p<0.05) by WS, while were decreased (p<0.05) by enzyme. The serum cholesterol level decreased (p<0.05) by increasing levels of WS. Jejunal histomorphological observations showed (p<0.05) shorter and thicker villus and lower crypt depth by increasing levels of WS, while addition of enzyme to the diets, affected (p<0.05) reversely to these parameters. The results showed that the addition of wheat screening up to an inclusion level of 600 g/kg of diet had no adverse effect on broiler performance in the finisher (25-42 d) phases whereas decreased serum cholesterol levels, increased viscosity and villus atrophy. The dietary administration of exogenous enzyme improved performance parameters and decreased viscosity and villus atrophy of broiler jejunum. (Author)

  11. Kinetics of transfemoral amputees with osseointegrated fixation performing common activities of daily living.

    Science.gov (United States)

    Lee, Winson C C; Frossard, Laurent A; Hagberg, Kerstin; Haggstrom, Eva; Brånemark, Rickard; Evans, John H; Pearcy, Mark J

    2007-07-01

    Direct anchorage of a lower-limb prosthesis to the bone through an implanted fixation (osseointegration) has been suggested as an excellent alternative for amputees experiencing complications from use of a conventional socket-type prosthesis. However, an attempt needs to be made to optimize the mechanical design of the fixation and refine the rehabilitation program. Understanding the load applied on the fixation is a crucial step towards this goal. The load applied on the osseointegrated fixation of nine transfemoral amputees was measured using a load transducer, when the amputees performed activities which included straight-line level walking, ascending and descending stairs and a ramp as well as walking around a circle. Force and moment patterns along each gait cycle, magnitudes and time of occurrence of the local extrema of the load, as well as impulses were analysed. Managing a ramp and stairs, and walking around a circle did not produce a significant increase (P>0.05) in load compared to straight-line level walking. The patterns of the moment about the medio-lateral axis were different among the six activities which may reflect the different strategies used in controlling the prosthetic knee joint. This study increases the understanding of biomechanics of bone-anchored osseointegrated prostheses. The loading data provided will be useful in designing the osseointegrated fixation to increase the fatigue life and to refine the rehabilitation protocol.

  12. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance

    Science.gov (United States)

    Omlin, Teye; Langevin, Karolanne

    2014-01-01

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg−1·min−1. This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  13. Accuracy of W' Recovery Kinetics in High Performance Cyclists - Modelling Intermittent Work Capacity.

    Science.gov (United States)

    Bartram, Jason C; Thewlis, Dominic; Martin, David T; Norton, Kevin I

    2017-10-16

    With knowledge of an individual's critical power (CP) and W' the SKIBA 2 model provides a framework with which to track W' balance during intermittent high intensity work bouts. There are fears the time constant controlling the recovery rate of W' (τ W' ) may require refinement to enable effective use in an elite population. Four elite endurance cyclists completed an array of intermittent exercise protocols to volitional exhaustion. Each protocol lasted approximately 3.5-6 minutes and featured a range of recovery intensities, set in relation to athlete's CPs (DCP). Using the framework of the SKIBA 2 model, the τ W ' values were modified for each protocol to achieve an accurate W' at volitional exhaustion. Modified τ W ' values were compared to equivalent SKIBA 2 τ W ' values to assess the difference in recovery rates for this population. Plotting modified τ W ' values against DCP showed the adjusted relationship between work-rate and recovery-rate. Comparing modified τ W' values against the SKIBA 2 τ W' values showed a negative bias of 112±46s (mean±95%CL), suggesting athlete's recovered W' faster than predicted by SKIBA 2 (p=0.0001). The modified τ W' to DCP relationship was best described by a power function: τ W' =2287.2∗D CP -0.688 (R 2 = 0.433). The current SKIBA 2 model is not appropriate for use in elite cyclists as it under predicts the recovery rate of W'. The modified τ W' equation presented will require validation, but appears more appropriate for high performance athletes. Individual τ W' relationships may be necessary in order to maximise the model's validity.

  14. Effects of carbohydrase enzyme supplementation on performance, eggshell quality, and bone parameters of laying hens fed on maize- and wheat-based diets.

    Science.gov (United States)

    Olgun, Osman; Altay, Y; Yildiz, Alp O

    2018-04-01

    1. This study was conducted to determine the effects of enzyme supplementation of maize/wheat-based diets on the performance, egg quality, and serum and bone parameters of laying hens. 2. During the 12-week experimental period, a total of 72 laying hens aged 52 weeks were randomly distributed among 6 experimental groups. Each experimental group contained 4 replicates, each with three birds. The experiment was a randomised design consisting of a 3 × 2 factorial arrangement, with three levels of wheat substitution and two levels of enzyme (xylanase: 1500.00 U/kg, β-glucanase: 100 000 U/kg, cellulase: 1 000 000 U/kg, α-amylase: 160 000 U/kg) inclusion in the diet. Wheat replaced 0, 50, or 100% of maize with or without 1.0 g/kg enzyme supplementation in iso-nitrogenous and iso-caloric experimental diets. 3. Body weight, egg production, egg weight, egg mass, eggshell thickness, and the feed conversion ratio were adversely affected by the wheat-based diet. The eggshell quality parameters decreased with enzyme supplementation to the diet. 4. Wheat-based diets adversely affected calcium and phosphorus concentrations in the tibia, but the addition of the enzymes to the wheat-based diet prevented the negative effects of wheat-based diets on tibia mineralisation in laying hens. The wheat-based diets tended to reduce plasma mineral contents, and the addition of enzymes tended to affect plasma minerals and biomechanical properties of the tibia positively in laying hens. 5. These results indicate that wheat-based diets in aged laying hens adversely affected the mineral metabolism compared with maize-based diets, and the negative effects of wheat on bone mineralisation can be prevented by enzyme supplementation to the diets in laying hens.

  15. Qualitative performance comparison of reactivity estimation between the extended Kalman filter technique and the inverse point kinetic method

    International Nuclear Information System (INIS)

    Shimazu, Y.; Rooijen, W.F.G. van

    2014-01-01

    Highlights: • Estimation of the reactivity of nuclear reactor based on neutron flux measurements. • Comparison of the traditional method, and the new approach based on Extended Kalman Filtering (EKF). • Estimation accuracy depends on filter parameters, the selection of which is described in this paper. • The EKF algorithm is preferred if the signal to noise ratio is low (low flux situation). • The accuracy of the EKF depends on the ratio of the filter coefficients. - Abstract: The Extended Kalman Filtering (EKF) technique has been applied for estimation of subcriticality with a good noise filtering and accuracy. The Inverse Point Kinetic (IPK) method has also been widely used for reactivity estimation. The important parameters for the EKF estimation are the process noise covariance, and the measurement noise covariance. However the optimal selection is quite difficult. On the other hand, there is only one parameter in the IPK method, namely the time constant for the first order delay filter. Thus, the selection of this parameter is quite easy. Thus, it is required to give certain idea for the selection of which method should be selected and how to select the required parameters. From this point of view, a qualitative performance comparison is carried out

  16. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion.

    Science.gov (United States)

    Zhao, Chen; Yan, Hu; Liu, Yan; Huang, Yan; Zhang, Ruihong; Chen, Chang; Liu, Guangqing

    2016-06-01

    Huge amounts of fruit residues are produced and abandoned annually. The high moisture and organic contents of these residues makes them a big problem to the environment. Conversely, they are a potential resource to the world. Anaerobic digestion is a good way to utilize these organic wastes. In this study, the biomethane conversion performances of a large number of fruit residues were determined and compared using batch anaerobic digestion, a reliable and easily accessible method. The results showed that some fruit residues containing high contents of lipids and carbohydrates, such as loquat peels and rambutan seeds, were well fit for anaerobic digestion. Contrarily, residues with high lignin content were strongly recommended not to be used as a single substrate for methane production. Multiple linear regression model was adopted to simulate the correlation between the organic component of these fruit residues and their experimental methane yield, through which the experimental methane yield could probably be predicted for any other fruit residues. Four kinetic models were used to predict the batch anaerobic digestion process of different fruit residues. It was shown that the modified Gompertz and Cone models were better fit for the fruit residues compared to the first-order and Fitzhugh models. The first findings of this study could provide useful reference and guidance for future studies regarding the applications and potential utilization of fruit residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Palmito de pupunha (Bactris gasipaes Kunth. composição mineral e cinética de enzimas oxidativas Heart of palm (Bactris gasipaes Kunth.: mineral composition and kinetics of oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Nathália Ottoboni Galdino

    2008-09-01

    Full Text Available A análise da presença de enzimas oxidativas como a peroxidase (POD e a polifenoloxidase (PPO e o controle da atividade destas enzimas são importantes na preservação e no processamento de alimentos. Este trabalho teve por objetivo determinar a atividade enzimática da polifenoloxidase (PPO e da peroxidase (POD do palmito de pupunha, bem como avaliar o comportamento destas enzimas frente ao tratamento térmico e assim calcular a cinética de inativação térmica das mesmas para suas porções termorresistente e termolábil. Para a extração de peroxidase (POD e polifenoloxidase (PPO de palmito, utilizou-se solução tampão fosfato de sódio 100 mM com diferentes pHs (5,5; 6,0; 6,5 e 7,0. O melhor pH de extração da POD foi 5,5 e da PPO, 6,5. Estes extratos foram tratados em diferentes temperaturas (65, 70, 75 e 80 °C por períodos de 1 a 10 minutos. A POD e a PPO sofreram um decréscimo de 70 e 80%, respectivamente, em relação às suas atividades iniciais. As energias de ativação, nas temperaturas estudadas, para a porção termolábil e termorresistente da peroxidase foram 154,0 e 153,0 kJ.mol-1, respectivamente, enquanto que para a polifenoloxidase foram 26,3 e 27,0 kJ.mol-1, respectivamente. Resultados apresentaram valores que estão dentro da faixa de energia de ativação reportada para o processo de inativação térmica de enzimas.Analysis of oxidative enzymes such as peroxidase (POD and polyphenoloxidase (PPO and the control of the activity of these enzymes are important in food preservation and also in food processing. The aim of this work was to determine polyphenoloxidase (PPO and peroxidase (POD enzymatic activity in heart of palm, as well as to evaluate enzyme behavior during thermal treatment, determining the kinetics of thermal inactivation of the heat resistant and heat labile portions. For the extraction of peroxidase (POD and polyphenoloxidase (PPO from the heart of palm solution, 100 mM sodium phosphate buffer with

  18. Effect of wheat cultivar and enzyme addition to broiler chicken diets on nutrient digestibility, performance, and apparent metabolizable energy content.

    NARCIS (Netherlands)

    Gutierrez del Alamo Oms, A.; Verstegen, M.W.A.; Hartog, den L.A.; Villamide, M.J.

    2008-01-01

    A total of 5,000 one-day-old male broiler chickens were assigned to 8 different treatments in a 4 x 2 factorial design. Four wheat cultivars (Amiro, Guadalupe, Isengrain, and Horzal) and 2 levels (0 or 1 kg/t of feed) of an enzyme cocktail (Avizyme 1300, xylanase, 2,500 U/kg and protease, 800 U/kg)

  19. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  20. Time-resolved imaging of contrast kinetics does not improve performance of follow-up MRA of embolized intracranial aneurysms.

    Science.gov (United States)

    Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-07-01

    The use of contrast media and the time-resolved imaging of contrast kinetics (TRICKS) technique have some theoretical advantages over time-of-flight magnetic resonance angiography (TOF-MRA) in the follow-up of intracranial aneurysms after endovascular treatment. We prospectively compared the diagnostic performance of TRICKS and TOF-MRA with digital subtracted angiography (DSA) in the assessment of occlusion of embolized aneurysms. Seventy-two consecutive patients with 72 aneurysms were examined 3 months after embolization. Test characteristics of TOF-MRA and TRICKS were calculated for the detection of residual flow. The results of quantification of flow were compared with weighted kappa. Intraobserver and interobserver reproducibility was determined. The sensitivity of TOF-MRA was 85% (95% CI, 65-96%) and of TRICKS, 89% (95% CI, 70-97%). The specificity of both methods was 91% (95% CI, 79-98%). The accuracy of the flow quantification ranged from 0.76 (TOF-MRA) to 0.83 (TRICKS). There was no significant difference between the methods in the area under the ROC curve regarding both the detection and the quantification of flow. Intraobserver reproducibility was very good with both techniques (kappa, 0.86-0.89). The interobserver reproducibility was moderate for TOF-MRA and very good for TRICKS (kappa, 0.74-0.80). In this study, TOF-MRA and TRICKS presented similar diagnostic performance; therefore, the use of time-resolved contrast-enhanced MRA is not justified in the follow-up of embolized aneurysms.

  1. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  2. The effect of dietary faba bean and non-starch polysaccharide degrading enzymes on the growth performance and gut physiology of young turkeys.

    Science.gov (United States)

    Mikulski, D; Juskiewicz, J; Przybylska-Gornowicz, B; Sosnowska, E; Slominski, B A; Jankowski, J; Zdunczyk, Z

    2017-12-01

    The aim of this study was to investigate the effect of dietary replacement of soya bean meal (SBM) with faba bean (FB) and a blend of non-starch polysaccharide (NSP) degrading enzymes on the gastrointestinal function, growth performance and welfare of young turkeys (1 to 56 days of age). An experiment with a 2×2 factorial design was performed to compare the efficacy of four diets: a SBM-based diet and a diet containing FB, with and without enzyme supplementation (C, FB, CE and FBE, respectively). In comparison with groups C, higher dry matter content and lower viscosity of the small intestinal digesta were noted in groups FB. The content of short-chain fatty acids (SCFAs) in the small intestinal digesta was higher in groups FB, but SCFA concentrations in the caecal digesta were comparable in groups C and FB. In comparison with control groups, similar BW gains, higher feed conversion ratio (FCR), higher dry matter content of excreta and milder symptoms of footpad dermatitis (FPD) were noted in groups FB. Enzyme supplementation increased the concentrations of acetate, butyrate and total SCFAs, but it did not increase the SCFA pool in the caecal digesta. The enzymatic preparation significantly improved FCR, reduced excreta hydration and the severity of FPD in turkeys. It can be concluded that in comparison with the SBM-based diet, the diet containing 30% of FB enables to achieve comparable BW gains accompanied by lower feed efficiency during the first 8 weeks of rearing. Non-starch polysaccharide-degrading enzymes can be used to improve the nutritional value of diets for young turkeys, but more desirable results of enzyme supplementation were noted in the SBM-based diet than in the FB-based diet.

  3. Silica Sol-Gel Entrapment of the Enzyme Chloro peroxidase

    International Nuclear Information System (INIS)

    Le, T.; Chan, S.; Ebaid, B.; Sommerhalter, M.

    2015-01-01

    The enzyme chloro peroxidase (CPO) was immobilized in silica sol-gel beads prepared from tetramethoxysilane. The average pore diameter of the silica host structure (∼3 nm) was smaller than the globular CPO diameter (∼6 nm) and the enzyme remained entrapped after sol-gel maturation. The catalytic performance of the entrapped enzyme was assessed via the pyrogallol peroxidation reaction. Sol-gel beads loaded with 4 μg CPO per mL sol solution reached 9-12% relative activity compared to free CPO in solution. Enzyme kinetic analysis revealed a decrease in K_cat but no changes in K_M or K_I . Product release or enzyme damage might thus limit catalytic performance. Yet circular dichroism and visible absorption spectra of transparent CPO sol-gel sheets did not indicate enzyme damage. Activity decline due to methanol exposure was shown to be reversible in solution. To improve catalytic performance the sol-gel protocol was modified. The incorporation of 5, 20, or 40% methyltrimethoxysilane resulted in more brittle sol-gel beads but the catalytic performance increased to 14% relative to free CPO in solution. The use of more acidic casting buffers (ph 4.5 or 5.5 instead of 6.5) resulted in a more porous silica host reaching up to 18% relative activity

  4. Influence of a direct-fed microbial and xylanase enzyme on the dietary energy uptake efficiency and performance of broiler chickens.

    Science.gov (United States)

    Murugesan, Ganapathi Raj; Persia, Michael E

    2015-09-01

    Efficacy of a multi-strain direct-fed microbial product (PoultryStar(®) ME; PS) and a xylanase enzyme product on the dietary energy utilization efficiency and resulting performance in broiler chickens was evaluated. Apart from performance parameters, cecal and serum metabolites and activities of hepatic enzymes involved in energy metabolism were also determined. Ross 308 chicks were fed one of four experimental diets [control (CON), CON + PS, CON + xylanase and CON + PS + xylanase] using a 2 × 2 factorial arrangement from 1-21 days of age. Cecal proportions of propionate and butyrate, as well as total short-chain fatty acid concentration were increased (P energy uptake and hepatic energy retention. The combination additively increased the FCR, suggesting involvement of synergistic modes of actions. © 2014 Society of Chemical Industry.

  5. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  6. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  7. Identification of Performance Problems in a Commercial Human Immunodeficiency Virus Type 1 Enzyme Immunoassay by Multiuser External Quality Control Monitoring and Real-Time Data Analysis▿ †

    OpenAIRE

    Kim, J.; Swantee, C.; Lee, B.; Gunning, H.; Chow, A.; Sidaway, F.; Sherlock, C.; Garceau, R.; Dimech, W.; Malloch, L.

    2009-01-01

    In June 2005, a pilot program was implemented in Canadian laboratories to monitor the performance of the Abbott human immunodeficiency virus types 1 and 2 (HIV-1/2) gO enzyme immunoassay (EIA). Two different external quality control (QC) reagents and a “real-time” software analysis program were evaluated. In November 2005, higher-than-expected calibrator rate values in these kits were first reported at the Ontario Ministry of Health (Etobicoke), followed by the Alberta Provincial Public Healt...

  8. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  9. An efficient approach to bioconversion kinetic model generation based on automated microscale experimentation integrated with model driven experimental design

    DEFF Research Database (Denmark)

    Chen, B. H.; Micheletti, M.; Baganz, F.

    2009-01-01

    -erythrulose. Experiments were performed using automated microwell studies at the 150 or 800 mu L scale. The derived kinetic parameters were then verified in a second round of experiments where model predictions showed excellent agreement with experimental data obtained under conditions not included in the original......Reliable models of enzyme kinetics are required for the effective design of bioconversion processes. Kinetic expressions of the enzyme-catalysed reaction rate however, are frequently complex and establishing accurate values of kinetic parameters normally requires a large number of experiments....... These can be both time consuming and expensive when working with the types of non-natural chiral intermediates important in pharmaceutical syntheses. This paper presents ail automated microscale approach to the rapid and cost effective generation of reliable kinetic models useful for bioconversion process...

  10. Assessment of enzyme supplementation on growth performance and apparent nutrient digestibility in diets containing undecorticated sunflower seed meal in layer chicks.

    Science.gov (United States)

    Fafiolu, A O; Oduguwa, O O; Jegede, A V; Tukura, C C; Olarotimi, I D; Teniola, A A; Alabi, J O

    2015-08-01

    Six hundred and forty one-day-old layer chicks were used to investigate the effect of replacing soybean meal with undecorticated sunflower seed meal protein for protein at 0, 25, 50, and 75% levels. Diets were without enzyme supplementation or with enzyme supplementation with four replications of twenty birds. Growth performance and nutrient utilization were determined. Proximate composition of the undecorticated sunflower seed meal used revealed that undecorticated sunflower seed meal contained 925.9, 204.5, 336.2, 215.1, 52.0 and 192.2g/kg dry matter, crude protein, ether extract, crude fibre, ash and soluble carbohydrates, respectively. Results showed that the final weight of 484.4 g/bird was obtained for birds on 75% undecorticated sunflower seed meal diet, while the lowest value of 472.2g/bird was obtained for birds on 25% undecorticated sunflower seed meal diet. Weight gain per bird per day was not significantly (P > 0.05) affected as the level of undecorticated sunflower seed meal increased in the diets. Feed intake per bird per day increased (P meal inclusion in the diet. However, enzyme supplementation of the diets showed marked (P meal inclusion in the diet while crude protein digestibility progressively reduced (P meal increased in the diet. Ash digestibility values were, however, increased (P meal increased in the diets. Birds on enzyme-supplemented diets consistently showed superior (P meal in the diets of layer chicks showed a similar body weight gain/bird/day with the control. Undecorticated sunflower seed meal used in this study is a good source of crude protein, ether extract, and amino acids and had the potential to serve as feeding stuffs as replacement for soybeans. The nutritive value of undecorticated sunflower seed meal was improved for layer chicks with exogenous enzyme supplementation. © 2015 Poultry Science Association Inc.

  11. 21 CFR 862.2500 - Enzyme analyzer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...

  12. Dietary inclusion of raw faba bean instead of soybean meal and enzyme supplementation in laying hens: Effect on performance and egg quality

    Directory of Open Access Journals (Sweden)

    M.E. Abd El-Hack

    2017-02-01

    Full Text Available An experiment was conducted with 160 Hisex Brown laying hens to evaluate the effect of different inclusion levels of faba bean (FB and enzyme supplementation on productive performance and egg quality parameters. The experimental diets consisted of five levels of FB: 0% (control, 25%, 50%, 75% and 100%, substituting soybean meal (SBM, and two levels of enzyme supplementation (0 or 250 mg/kg. Each dietary treatment was assigned to four replicate groups and the experiment lasted 22 weeks. A positive relationship (P  0.05. The main effect of FB levels replacing for SBM affected (P < 0.05 yolk and shell percentages, yolk index, yolk to albumen ratio, shell thickness and egg shape index. It can be concluded that FB and enzyme supplementation could be included in hens diet at less than 50% instead of SBM to support egg productive performance, however higher raw FB levels negatively affected egg production indices and quality.

  13. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  14. Effect of feeding alfalfa hay or Tifton 85 bermudagrass haylage with or without a cellulase enzyme on performance of Holstein cows.

    Science.gov (United States)

    Bernard, J K; Castro, J J; Mullis, N A; Adesogan, A T; West, J W; Morantes, G

    2010-11-01

    Forty-four lactating Holstein cows (173±30 DIM, 42.5±6.8 kg of milk, 4.03±0.69% fat, 674±78 kg of body weight) were used in an 8-wk, completely randomized trial with a 2 × 2 factorial arrangement of treatments to determine the effect of forage source and supplemental cellulase enzyme on performance. Treatments included 2 forage combinations (corn silage plus 12.2% dry matter, DM, from either alfalfa hay or Tifton 85 bermudagrass haylage) with or without a commercial cellulase enzyme applied to the total mixed ration at the rate of 4 g/head per day (Promote N.E.T.-L, Cargill Animal Nutrition, Minneapolis, MN). Experimental diets were formulated to provide similar concentrations of protein (16.5% of DM), energy (1.63 Mcal of net energy for lactation/kg of DM), and neutral detergent fiber (41.7% of DM) and were fed once daily as a total mixed ration behind Calan doors for ad libitum intake. The cellulase enzyme provided 1,200 cellulase units of activity/g of product and was applied to the total mixed ration and allowed to mix for 5min before feeding. Before beginning the trial, all cows were trained to use Calan (American Calan, Northwood, NH) doors and then fed the alfalfa hay-based diet for 2 wk. Data collected during wk 2 were used as a covariate in the statistical analysis. At the beginning of the 6-wk experimental period, cows were assigned randomly to 1 of the 4 experimental diets. No interactions were observed between forage and enzyme for any measures. Daily DM intake; milk yield; concentrations of milk fat, true protein, lactose, and solids not fat; energy-corrected milk yield; and dairy efficiency were not different among alfalfa or Tifton 85 bermudagrass rations with or without cellulase enzyme supplementation. The results of this trial indicate that Tifton 85 bermudagrass haylage can replace alfalfa hay in diets fed to high-producing, lactating dairy cows without depressing DM intake or milk yield when rations are balanced for NDF. Although

  15. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  16. Effect of intensified training on muscle ion kinetics, fatigue development and repeated short term performance in endurance trained cyclists

    DEFF Research Database (Denmark)

    Gunnarsson, Thomas Gunnar Petursson; Christensen, Peter Møller; Thomassen, Martin

    2013-01-01

    The effects of intensified training in combination with a reduced training volume on muscle ion kinetics, transporters and work capacity were examined. Eight well-trained cyclists replaced their regular training with speed-endurance training (12x30-s sprints) 2-3 times per wk and aerobic high...

  17. Effects of diets containing vegetable protein concentrates on performance and activity of digestive enzymes in silver catfish (Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Naglezi de Menezes Lovatto

    2014-02-01

    Full Text Available The purpose of study was to evaluate the effect of using protein concentrates crambe and sunflower meal in the diet of silver catfish juveniles, as substitute for animal protein source. A total of 300 silver catfish had been separate in 15 experimental units of 280 L, totaling five treatments with three replications. We evaluated two levels (25% and 50% replacement of the meat and bone meal by protein concentrates of crambe and sunflower meals. Evaluated growth parameters, biological index and digestive enzymes in fish. There was no statistical difference for mass (g and standard length (cm, but the fish diet CPFCr-25% had greater total length (cm. No difference in dry matter, crude protein and total protein deposited (calculated. However, there was a higher concentration of ash in the carcass of the animals fed the control diet and CPFCr-50% in relation to diet CPFG- 50%, in addition, higher levels of lipids in fish fed diet CPFG-50%. No significant differences for hepatosomatic index, digestive somatic index and intestinal quotient of animals subjected to different treatments. The activity of digestive enzymes trypsin and chymotrypsin did not change. There was increased activity of acid protease. The quantitative and qualitative increase in protein concentration from this fraction allows the use of bran protein concentrates crambe and sunflower as substitutes for animal protein source.

  18. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    Science.gov (United States)

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  19. ENZYMATIC KINETIC STUDY HYDROLASE FROM CITRUS

    Directory of Open Access Journals (Sweden)

    Israel Hernández

    2015-09-01

    Full Text Available In this paper the degrading activity of enzymes derived from orange peels (Citrus x sinensis, grapefruit (Citrus paradise and pineapple (Ananas comosus on the organic matter in wastewater is evaluated. This activity is measured indirectly by quantifying the biochemical oxygen demand (COD before and after degradation process based on a period of time using the HACH DR / 2010, and then the kinetic study was performed by the differential method and integral with the experimental data, obtaining a reaction order of 1 to pectinase (orange, and order 2 for bromelain (pineapple.

  20. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  1. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: An inter-species extrapolation approach

    International Nuclear Information System (INIS)

    Motwani, Hitesh V.; Törnqvist, Margareta

    2014-01-01

    1,3-Butadiene (BD) is a rodent and human carcinogen. In the cancer tests, mice have been much more susceptible than rats with regard to BD-induced carcinogenicity. The species-differences are dependent on metabolic formation/disappearance of the genotoxic BD epoxy-metabolites that lead to variations in the respective in vivo doses, i.e. “area under the concentration-time curve” (AUC). Differences in AUC of the most gentoxic BD epoxy-metabolite, diepoxybutane (DEB), are considered important with regard to cancer susceptibility. The present work describes: the application of cob(I)alamin for accurate measurements of in vitro enzyme kinetic parameters associated with BD epoxy-metabolites in human, mouse and rat; the use of published data on hemoglobin (Hb) adduct levels of BD epoxides from BD exposure studies on the three species to calculate the corresponding AUCs in blood; and a parallelogram approach for extrapolation of AUC of DEB based on the in vitro metabolism studies and adduct data from in vivo measurements. The predicted value of AUC of DEB for humans from the parallelogram approach was 0.078 nM · h for 1 ppm · h of BD exposure compared to 0.023 nM · h/ppm · h as calculated from Hb adduct levels observed in occupational exposure. The corresponding values in nM · h/ppm · h were for mice 41 vs. 38 and for rats 1.26 vs. 1.37 from the parallelogram approach vs. experimental exposures, respectively, showing a good agreement. This quantitative inter-species extrapolation approach will be further explored for the clarification of metabolic rates/pharmacokinetics and the AUC of other genotoxic electrophilic compounds/metabolites, and has a potential to reduce and refine animal experiments. - Highlights: • In vitro metabolism to in vivo dose extrapolation of butadiene metabolites was proposed. • A parallelogram approach was introduced to estimate dose (AUC) in humans and rodents. • AUC of diepoxybutane predicted in humans was 0.078 nM h/ppm h

  2. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: An inter-species extrapolation approach

    Energy Technology Data Exchange (ETDEWEB)

    Motwani, Hitesh V., E-mail: hitesh.motwani@mmk.su.se; Törnqvist, Margareta

    2014-12-15

    1,3-Butadiene (BD) is a rodent and human carcinogen. In the cancer tests, mice have been much more susceptible than rats with regard to BD-induced carcinogenicity. The species-differences are dependent on metabolic formation/disappearance of the genotoxic BD epoxy-metabolites that lead to variations in the respective in vivo doses, i.e. “area under the concentration-time curve” (AUC). Differences in AUC of the most gentoxic BD epoxy-metabolite, diepoxybutane (DEB), are considered important with regard to cancer susceptibility. The present work describes: the application of cob(I)alamin for accurate measurements of in vitro enzyme kinetic parameters associated with BD epoxy-metabolites in human, mouse and rat; the use of published data on hemoglobin (Hb) adduct levels of BD epoxides from BD exposure studies on the three species to calculate the corresponding AUCs in blood; and a parallelogram approach for extrapolation of AUC of DEB based on the in vitro metabolism studies and adduct data from in vivo measurements. The predicted value of AUC of DEB for humans from the parallelogram approach was 0.078 nM · h for 1 ppm · h of BD exposure compared to 0.023 nM · h/ppm · h as calculated from Hb adduct levels observed in occupational exposure. The corresponding values in nM · h/ppm · h were for mice 41 vs. 38 and for rats 1.26 vs. 1.37 from the parallelogram approach vs. experimental exposures, respectively, showing a good agreement. This quantitative inter-species extrapolation approach will be further explored for the clarification of metabolic rates/pharmacokinetics and the AUC of other genotoxic electrophilic compounds/metabolites, and has a potential to reduce and refine animal experiments. - Highlights: • In vitro metabolism to in vivo dose extrapolation of butadiene metabolites was proposed. • A parallelogram approach was introduced to estimate dose (AUC) in humans and rodents. • AUC of diepoxybutane predicted in humans was 0.078 nM h/ppm h

  3. Effects of Enzyme Supplementation on Productive Performance and Egg Quality of Laying Hens fed Diets Containing Graded Levels of Whole Date Waste

    Directory of Open Access Journals (Sweden)

    Torki M

    2014-12-01

    Full Text Available The objective of present study was to determine the effects of β-mannanase-based enzyme (Hemicell® on productive performance and egg quality in diets containing graded levels of Whole date waste (WDW fed to laying hens. A total of 336 Hy-line leghorn hens after production peak were randomly divided into 56 cages. Eight iso-energetic and iso-nitrogenous experimental diets in a 4 × 2 factorial arrangement including four levels of WDW (0, 10, 20 and 30% and 2 concentrations of supplemental β-mannanase (0 or 0.06 % were prepared. Each dietary treatment was fed to 7 cages (6 birds/cage from 32 to 38 wk of age. During the experiment, daily egg production, egg weight and feed intake were measured. At the 6th wk, egg quality traits were also recorded. The results showed that there was no interaction between WDW inclusion and enzyme supplementation on performance and egg traits. Dietary supplementation of WDW more than 10% significantly decreased egg production and egg mass compared to no WDW recipient hens (control diet during the entire experiment (P. Inclusion of 30% WDW to the diet, significantly increased overall feed conversion ratio compared to the control group (P. The treatment with 20 and 30% WDW also resulted in lower eggshell thickness as compared to 10% WDW (P. The dietary inclusion of 10% WDW also increased yolk index as compared to the control and 30% WDW groups (P. Enzyme supplementation had no significant effect on productive performance as well as egg quality characteristics. Based on the results of this experiment, it can be concluded that WDW could be included to laying hens diets up to 10% with no deleterious effects on performance and egg quality characteristics.

  4. Coordinate changes in photosynthesis, sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress

    International Nuclear Information System (INIS)

    Silva, Evandro N.; Ribeiro, Rafael V.; Ferreira-Silva, Sérgio L.; Vieira, Suyanne A.; Ponte, Luiz F.A.; Silveira, Joaquim A.G.

    2012-01-01

    The aim of this study was to assess the relationships between photosynthesis, sugars and photo-oxidative protection mechanisms in Jatropha curcas under drought stress. Leaf CO 2 assimilation rate (P N ) and instantaneous carboxylation efficiency decreased progressively as the water deficit increased. The sucrose and reducing sugar concentrations were negatively and highly correlated with photosynthesis indicating a modulation by negative feedback mechanism. The alternative electron sinks (ETR s '/P N ), relative excess of light energy (EXC) and non-photochemical quenching were strongly increased by drought, indicating effective mechanisms of energy excess dissipation. The photochemistry data indicate partial preservation of photosystem II integrity and function even under severe drought. EXC was positively correlated with superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities evidencing an effective role of these enzymes in the oxidative protection against excess of reactive oxygen species in chloroplasts. Leaf H 2 O 2 content and lipid peroxidation were inversely and highly correlated with catalase (CAT) activity indicating that drought-induced inhibition of this enzyme might have allowed oxidative damage. Our data suggest that drought triggers a coordinate down-regulation in photosynthesis through sucrose and reducing sugar accumulation and an energy excess dissipation at PSII level by non-photochemical mechanisms associate with enhancement in photorespiration, restricting photo-damages. In parallel, drought up-regulates SOD and APX activities avoiding accumulation of reactive oxygen species, while CAT activity is not able to avoid H 2 O 2 accumulation in drought-stressed J. curcas leaves. -- Highlights: ► Drought triggers a down-regulation in photosynthesis by sucrose and reducing sugar. ► Drought induces energy dissipation at PSII level and increase in photorespiration. ► Drought up-regulates SOD and APX activities avoiding accumulation of

  5. Kinetic mechanism and nucleotide specificity of NADH peroxidase

    International Nuclear Information System (INIS)

    Stoll, V.S.; Blanchard, J.S.

    1988-01-01

    NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between [ 14 C]NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols

  6. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  7. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  8. Kinetic performance comparison of fully and superficially porous particles with a particle size of 5 µm: intrinsic evaluation and application to the impurity analysis of griseofulvin.

    Science.gov (United States)

    Kahsay, Getu; Broeckhoven, Ken; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2014-05-01

    After the great commercial success of sub-3 µm superficially porous particles, vendors are now also starting to commercialize 5 µm superficially porous particles, as an alternative to their fully porous counterparts which are routinely used in pharmaceutical analysis. In this study, the performance of 5 µm superficially porous particles was compared to that of fully porous 5 µm particles in terms of efficiency, separation performance and loadability on a conventional HPLC instrument. Van Deemter and kinetic plots were first used to evaluate the efficiency and performance of both particle types using alkylphenones as a test mixture. The van Deemter and kinetic plots showed that the superficially porous particles provide a superior kinetic performance compared to the fully porous particles over the entire relevant range of separation conditions, when both support types were evaluated at the same operating pressure. The same observations were made both for isocratic and gradient analysis. The superior performance was further demonstrated for the separation of a pharmaceutical compound (griseofulvin) and its impurities, where a gain in analysis time of around 2 could be obtained using the superficially porous particles. Finally, both particle types were evaluated in terms of loadability by plotting the resolution of the active pharmaceutical ingredient and its closest impurity as a function of the signal-to-noise ratio obtained for the smallest impurity. It was demonstrated that the superficially porous particles show better separation performance for griseofulvin and its impurities without significantly compromising sensitivity due to loadability issues in comparison with their fully porous counterparts. Moreover these columns can be used on conventional equipment without modifications to obtain a significant improvement in analysis time. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Kinetic study for a stress testing of L,L-ethylenedicysteine by ultra-performance liquid chromatography/tandem mass spectrometry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaotao [Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Qiao Jinping, E-mail: Qiaojp920@gmail.co [Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Zhu Lin; Qiao Hongwen [Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Zhong Jianguo [National Institute for the Control of Pharmaceutical and Biological Products, Beijing 100050 (China)

    2010-12-15

    This study proposed a stress testing to study oxidative stability and estimate the potential shelf-life of L,L-ethylenedicysteine (L,L-EC) under normal storage temperature condition (20-25 {sup o}C). L,L-EC was detected as a function of time at four different temperatures by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS). The degradation of L,L-EC followed the first order kinetics, and the temperature-dependent kinetics was well described by the linear Arrhenius equation. The activation energy (E{sub a}) was calculated, and the shelf-life at 25 and 4 {sup o}C was predicted. The results are useful for the proper storage and quality evaluation of L,L-EC.

  10. Kinetic study for a stress testing of L,L-ethylenedicysteine by ultra-performance liquid chromatography/tandem mass spectrometry analysis

    International Nuclear Information System (INIS)

    Sun Xiaotao; Qiao Jinping; Zhu Lin; Qiao Hongwen; Zhong Jianguo

    2010-01-01

    This study proposed a stress testing to study oxidative stability and estimate the potential shelf-life of L,L-ethylenedicysteine (L,L-EC) under normal storage temperature condition (20-25 o C). L,L-EC was detected as a function of time at four different temperatures by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS). The degradation of L,L-EC followed the first order kinetics, and the temperature-dependent kinetics was well described by the linear Arrhenius equation. The activation energy (E a ) was calculated, and the shelf-life at 25 and 4 o C was predicted. The results are useful for the proper storage and quality evaluation of L,L-EC.

  11. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  12. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  13. Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification

    International Nuclear Information System (INIS)

    Su, Lijuan; Aga, Diana; Chandran, Kartik; Khunjar, Wendell O.

    2015-01-01

    Highlights: • We examined TOrC biotransformation kinetics in nitrifying and denitrifying reators. • TOrC biotransformation was linked to heterotrophic and autotrophic activity. • TOrC biotransformation rates were not sensitive to the initial TOrC concentration. • Readily biodegradable organic matter suppressed TOrC biotransformation rates. - Abstract: To predict TOrC fate in biological activated sludge systems, there is a need to accurately determine TOrC biodegradation kinetics in mixed microbial cultures. Short-term batch tests with salicylic acid, 17α-ethinylestradiol, nonylphenol, trimethoprim and carbamazepine were conducted with lab-scale activated sludge cultures in which the initial TOrC concentration (1 mg/L and 0.0005 mg/L) and readily biodegradable substrate concentrations were varied. The results indicate that pseudo-first order kinetic estimates of TOrC are not sensitive (p > 0.05) to the initial TOrC concentration as long as the initial TOrC concentration (S 0 ) to biomass (X 0 ) ratio (on COD basis) is below 2 × 10 −3 . The presence of readily biodegradable organic matter suppresses TOrC biotransformation rates under nitrifying and denitrifying conditions, and this impact can be adequately described using a reversible non-competitive inhibition equation. These results demonstrate the importance of closely mimicking parent reactor conditions in batch testing because biotransformation parameters are impacted by in-situ carbon loading and redox conditions

  14. Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lijuan; Aga, Diana [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Chandran, Kartik [Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027 (United States); Khunjar, Wendell O., E-mail: wkhunjar@hazenandsawyer.com [Hazen and Sawyer P.C., Fairfax, VA 22030 (United States)

    2015-01-23

    Highlights: • We examined TOrC biotransformation kinetics in nitrifying and denitrifying reators. • TOrC biotransformation was linked to heterotrophic and autotrophic activity. • TOrC biotransformation rates were not sensitive to the initial TOrC concentration. • Readily biodegradable organic matter suppressed TOrC biotransformation rates. - Abstract: To predict TOrC fate in biological activated sludge systems, there is a need to accurately determine TOrC biodegradation kinetics in mixed microbial cultures. Short-term batch tests with salicylic acid, 17α-ethinylestradiol, nonylphenol, trimethoprim and carbamazepine were conducted with lab-scale activated sludge cultures in which the initial TOrC concentration (1 mg/L and 0.0005 mg/L) and readily biodegradable substrate concentrations were varied. The results indicate that pseudo-first order kinetic estimates of TOrC are not sensitive (p > 0.05) to the initial TOrC concentration as long as the initial TOrC concentration (S{sub 0}) to biomass (X{sub 0}) ratio (on COD basis) is below 2 × 10{sup −3}. The presence of readily biodegradable organic matter suppresses TOrC biotransformation rates under nitrifying and denitrifying conditions, and this impact can be adequately described using a reversible non-competitive inhibition equation. These results demonstrate the importance of closely mimicking parent reactor conditions in batch testing because biotransformation parameters are impacted by in-situ carbon loading and redox conditions.

  15. Effects of Immune Stress on Performance Parameters, Intestinal Enzyme Activity and mRNA Expression of Intestinal Transporters in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2012-05-01

    Full Text Available Immune stress is the loss of immune homeostasis caused by external forces. The purpose of this experiment was to investigate the effects of immune stress on the growth performance, small intestinal enzymes and peristalsis rate, and mRNA expression of nutrient transporters in broiler chickens. Four hundred and thirty-two 1-d-old broilers (Cobb500 were randomly assigned to four groups for treatment; each group included nine cages with 12 birds per cage. Group 1 = no vaccine (NV; Group 2 = conventional vaccine (CV; group 3 = lipopolysaccharide (LPS+conventional vaccine (LPS; group 4 = cyclophosphamide (CYP+conventional vaccine (CYP. The results demonstrated that immune stress by LPS and CYP reduced body weight gain (BWG, feed intake (FI, small intestine peristalsis rate and sIgA content in small intestinal digesta (p<0.05. However, the feed conversion ratio (FCR remained unchanged during the feeding period. LPS and CYP increased intestinal enzyme activity, relative expression of SGLT-1, CaBP-D28k and L-FABP mRNAs (p<0.05. LPS and CYP injection had a negative effect on the growth performance of healthy broiler chickens. The present study demonstrated that NV and CV could improve growth performance while enzyme activity in small intestine and relative expression of nutrient transporter mRNA of NV and CV were decreased in the conditions of a controlled rational feeding environment. It is generally recommended that broilers only need to be vaccinated for the diseases to which they might be exposed.

  16. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  17. A simple and fast kinetic assay for the determination of fructan exohydrolase activity in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Anna eGasperl

    2015-12-01

    Full Text Available Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP by fructan exohydrolases (FEHs to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

  18. Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues.

    Science.gov (United States)

    Diaz, Ana Belen; Blandino, Ana; Webb, Colin; Caro, Ildefonso

    2016-11-01

    A simple kinetic model, with only three fitting parameters, for several enzyme productions in Petri dishes by solid-state fermentation is proposed in this paper, which may be a valuable tool for simulation of this type of processes. Basically, the model is able to predict temporal fungal enzyme production by solid-state fermentation on complex substrates, maximum enzyme activity expected and time at which these maxima are reached. In this work, several fermentations in solid state were performed in Petri dishes, using four filamentous fungi grown on different agro-industrial residues, measuring xylanase, exo-polygalacturonase, cellulose and laccase activities over time. Regression coefficients after fitting experimental data to the proposed model turned out to be quite high in all cases. In fact, these results are very interesting considering, on the one hand, the simplicity of the model and, on the other hand, that enzyme activities correspond to different enzymes, produced by different fungi on different substrates.

  19. Enzyme Teaching by a Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2010-05-01

    Full Text Available Biochemistry learning demands skills to obtaining and interpreting the experimental data. In a classical model of teaching involve student’s hands-on participation. However this model is expensive, not safe and should be carried out in a short and limited time course. With utilization of educational software these disadvantages are overcome, since the virtual activity could be realized at free full access, and is a tool for individual study. The aim of the present work is to present educational software focused on a virtual for undergraduate student of biochemistry courses. The software development was performed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program applied on the subject salivary amylase. It was possible to present the basic methodologies for study of the kinetic of enzyme. The substrate (starch consumption was determinate by iodine reaction, while the products (reducing sugars formation was evaluated by cupper-alkaline reaction. The protocols of the virtual experiments are present verbally as well as a subtitle. A set of exercises are disposable, which allowed an auto evaluation and a review of the subject. The experimental treatment involved the presentation of this hypermedia for Nutrition and Dentistry/UFSC undergraduate students as a tool for better comprehension of the theme and promoted the understanding of the kinetic of enzyme.

  20. Heart rate kinetics during very heavy and severe exercise performed after dietary manipulation. DOI: 10.5007/1980-0037.2011v13n1p52

    Directory of Open Access Journals (Sweden)

    Carlos Rafaell Correia de Oliveira

    2011-12-01

    Full Text Available Little is known about heart rate (HR kinetics during exercise in the very heavy (VH and severe (SE intensity domains. The objective of this study was to describe mathematically the HR kinetics during exercise performed in these intensity domains and to compare the parameters derived from these models between situations of high (HCHO, low (LCHO and control (C carbohydrate availability. Twelve men performed three trials to exhaustion in the VH or SE domains after diet manipulation with HCHO, LCHO and C. The VH intensity was ΔLW75% (75% of the difference between VO2max and LL2 and SE was 115% of VO2max identified in a previous incremental test (20 W/3 min. HR responses were mathematically fitted by mono- and biexponential functions. In the VH domain, the residual sum of squares (RSS obtained with the biexponential model was significantly lower than that obtained with the monoexponential model (P 0.05. In the VH domain, there were no significant differences in biexponential parameters between the HCHO, LCHO and C conditions. In the SE domain, there were no significant differences in monoexponential parameters between the HCHO, LCHO and C conditions, although the time constant of the monoexponential model was significantly reduced in LCHO when compared to HCHO (51.5 ± 26.4 vs 65.4 ± 34.1 s; P < 0.05. The bi- and monoexponential mathematical models seem to be the best description of HR responses during exercise performed in the HV and SE intensity domains, respectively. In addition, carbohydrate availability only seems to affect HR kinetics during exercise performed at SE intensity.

  1. Heart rate kinetics during very heavy and severe exercise performed after dietary manipulation. DOI: 10.5007/1980-0037.2011v13n1p52

    Directory of Open Access Journals (Sweden)

    Maria Augusta Peduti Dal Molin Kiss

    2011-01-01

    Full Text Available Little is known about heart rate (HR kinetics during exercise in the very heavy (VH and severe (SE intensity domains. The objective of this study was to describe mathematically the HR kinetics during exercise performed in these intensity domains and to compare the parameters derived from these models between situations of high (HCHO, low (LCHO and control (C carbohydrate availability. Twelve men performed three trials to exhaustion in the VH or SE domains after diet manipulation with HCHO, LCHO and C. The VH intensity was ΔLW75% (75% of the difference between VO2max and LL2 and SE was 115% of VO2max identified in a previous incremental test (20 W/3 min. HR responses were mathematically fitted by mono- and biexponential functions. In the VH domain, the residual sum of squares (RSS obtained with the biexponential model was significantly lower than that obtained with the monoexponential model (P 0.05. In the VH domain, there were no significant differences in biexponential parameters between the HCHO, LCHO and C conditions. In the SE domain, there were no significant differences in monoexponential parameters between the HCHO, LCHO and C conditions, although the time constant of the monoexponential model was significantly reduced in LCHO when compared to HCHO (51.5 ± 26.4 vs 65.4 ± 34.1 s; P < 0.05. The bi- and monoexponential mathematical models seem to be the best description of HR responses during exercise performed in the HV and SE intensity domains, respectively. In addition, carbohydrate availability only seems to affect HR kinetics during exercise performed at SE intensity.

  2. Effect of different levels dietary vitamin C on growth performance, muscle composition, antioxidant and enzyme activity of freshwater prawn, Macrobrachium malcolmsonii

    Directory of Open Access Journals (Sweden)

    Annamalai Asaikkutti

    2016-05-01

    Full Text Available In the present study was conducted to examine the effects and interactions of dietary vitamin C levels on the growth performance, antioxidant ability, muscle composition and enzyme activity in freshwater prawn Macrobrachium malcolmsonii (M. malcolmsonii. Additional, the vitamins C was dietary supplemented for freshwater prawn M. malcolmsonii. The experimental basal diets were supplemented with M. malcolmsonii at the rates of 0 (control, 25, 50, 100, 200 and 400 mg/kg dry feed weight. The as-supplemented vitamin C was fed in M. malcolmsonii for a period of 90 days. In the present investigation revealed that prawns fed with diet supplemented with 25–100 mg/kg of vitamins C shows enhanced (P  0.05 in feed conversion ratio (FCR were observed in prawn fed different diets. Addition, prawns fed with 25–100 mg/kg of vitamins C supplemented diets achieved significant (P  0.05 alterations in prawns fed with 25–100 mg/kg of vitamin C supplemented diets. Therefore, the present study proposed that 100 mg/kg of vitamin C could be supplemented for flexible enhanced survival; growth, antioxidant defense system and production of M. malcolmsonii. Keywords: Macrobrachium malcolmsonii, Vitamin, Growth performance, Biochemical compositions, Antioxidant enzyme

  3. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Wang, Ji-hui; Zhao, Liu-qun; Liu, Jin-feng; Wang, Han; Xiao, Shan

    2015-04-01

    The effects of dietary addition of yeast Rhodotorula benthica (R. benthica) D30 which isolated from local sea mud at levels of 0 (control), 10(5), 10(6) and 10(7) CFU/g feed on the growth performance, digestive enzyme activity, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus were investigated. It was shown that dietary addition of R. benthica D30 significantly increased the growth rates of sea cucumbers (p  0.05). It was observed that adding R. benthica D30 could significantly decrease the cumulative mortality of sea cucumbers. The present study demonstrated that dietary addition of R. benthica D30 could increase growth performance and some digestive enzyme activities, improve immunity and disease resistance of A. japonicus. And the medium (10(6) CFU) and high (10(7) CFU) additional levels showed better effects. It suggests that yeast R. benthica D30 could be a good probiotic for aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of thermo-resistant non-starch polysaccharide degrading multi-enzyme on growth performance, meat quality, relative weights of body organs and blood profile in broiler chickens.

    Science.gov (United States)

    Mohammadi Gheisar, M; Hosseindoust, A; Kim, I H

    2016-06-01

    This research was conducted to study the performance and carcass parameters of broiler chickens fed diets supplemented with heat-treated non-starch polysaccharide degrading enzyme. A total of 432 one-day old Ross 308 broiler chickens were allocated to five treatments: (i) CON (basal diet), (ii) E1: CON + 0.05% multi-enzyme, (iii) E2: CON + 0.1% multi-enzyme, (iv) E3: CON + 0.05% thermo-resistant multi-enzyme and (v) E4: CON + 0.1% thermo-resistant multi-enzyme, each treatment consisted of six replications and 12 chickens in each replication. The chickens were housed in three floor battery cages during 28-day experimental period. On days 1-7, gain in body weight (BWG) improved by feeding the diets supplemented with thermo-resistant multi-enzyme. On days 7-21 and 1-28, chickens fed the diets containing thermo-resistant multi-enzyme showed improved (p thermo-resistant multi-enzyme affected the percentage of drip loss on d 1 (p thermo-resistant multi-enzyme did not affect the relative weights of organs but compared to CON group, relative weight of breast muscle increased and abdominal fat decreased (p thermo-resistant multi-enzyme showed higher (p thermo-resistant multi-enzyme improved performance of broiler chickens. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  5. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction.

    Science.gov (United States)

    Elshawadfy, Ashraf M; Keith, Brian J; Ee Ooi, H'Ng; Kinsman, Thomas; Heslop, Pauline; Connolly, Bernard A

    2014-01-01

    The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the "forked-point" (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the "forked-point" and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms.

  6. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.

    1983-01-01

    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  7. Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater

    Science.gov (United States)

    Wang, Tao; Cheng, Yongzhou; Chen, Xiaoyan; Liu, Zhaopu; Long, Xiaohua

    2017-01-01

    Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of different dietary additives [w/w: 2% small peptides, 0.01% probiotics ( Bacillus licheniformis) and 0.2% prebiotics (inulin)] on growth performance, digestive enzyme activities, and oxidative stress in juvenile Epinephelus coioides reared in artificial seawater of two salt concentrations (13.5 vs. 28.5). Weight gain rate was significantly higher in fish fed the diet supplemented with small peptides, B. licheniformis, inulin, or synbiotics than that in fish fed the basal diet; the greatest weight gain rate was found in fish fed the small peptide treatment [56.0% higher than basal diet]. Higher feed efficiency was detected in fish fed the diet supplemented with small peptides than that of fish in the other dietary treatments. Total protease activity in the stomach and intestines was highest in fish fed the small peptide-treated diet, whereas lipase activity was highest in those fed synbiotics (combination of Bacillus licheniformis and inulin) than that in fish fed the other treatments. Antioxidant enzyme (total superoxide dismutase and catalase) activities and hepatic malondialdehyde content were higher in fish receiving the dietary supplements and maintained in artificial seawater containing 13.5 salinity compared with those in the control (28.5). Hepatic catalase activity in grouper fed the diets with small peptides or synbiotics decreased significantly compared with that in control fish. Overall, the three types of additives improved growth rate of juvenile grouper and digestive enzymes activities to varying degrees but did not effectively improve antioxidant capacity under low-salinity stress conditions.

  8. Effect of Potential Probiotic Lactococcus lactis Subsp. lactis on Growth Performance, Intestinal Microbiota, Digestive Enzyme Activities, and Disease Resistance of Litopenaeus vannamei.

    Science.gov (United States)

    Adel, Milad; El-Sayed, Abdel-Fattah M; Yeganeh, Sakineh; Dadar, Maryam; Giri, Sib Sankar

    2017-06-01

    The aims of this study were to evaluate the effects of Lactococcus lactis subsp. lactis on the growth, intestinal microbiota, digestive enzyme activity, and disease resistance of Litopenaeus vannamei. Diets containing four different concentrations of L. lactis (0 [basal diet], 10 6 , 10 7 , and 10 8  CFU g -1 ) were fed to white shrimps L. vannamei (average weight 5.89 ± 0.36 g) for 8 weeks. At the end of the feeding trial, shrimps were immersed in Caspian Seawater (10.8 ppt) contaminated with 10 6  CFU ml -1 pathogenic V. anguillarum for 2 h. Results revealed that growth rate, survival, and body protein level were increased with dietary supplementation of L. lactis. The activities of digestive enzymes (cellulose, lipase, amylase, and protease) were significantly higher in the groups fed with diets containing 10 7 or 10 8  CFU g -1 L. lactis than those in the control. The Lactobacillus and Bacillus counts were higher (P lactis-supplemented diets. In addition, higher level of L. lactis supplementation decreased the Vibrio counts. Moreover, L. vannamei fed diet supplemented with 10 8  CFU g -1 of L. lactis exhibited significantly the highest hematocyte count and post-challenge survival rate (79.2 %). Collectively, these results suggest that dietary supplementation of L. lactis subsp. lactis at 10 8  CFU g -1 can promote growth performance, digestive enzyme activity, and disease resistance of L. vannamei.

  9. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  10. Application of HPLC to study the kinetics of a branched bi-enzyme system consisting of hypoxanthine-guanine phosphoribosyltransferase and xanthine oxidase--an important biochemical system to evaluate the efficiency of the anticancer drug 6-mercaptopurine in ALL cell line.

    Science.gov (United States)

    Kalra, Sukirti; Paul, Manash K; Balaram, Hemalatha; Mukhopadhyay, Anup Kumar

    2007-05-01

    The thiopurine antimetabolite 6-mercaptopurine (6MP) is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL). 6MP is mainly catabolized by both hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine oxidase (XOD) to form thioinosinic monophosphate (TIMP) (therapeutically active metabolite) and 6-thiouric acid (6TUA) (inactive metabolite), respectively. The activity of both the enzymes varies among ALL patients governing the active and the inactive metabolite profile within the immature lymphocytes. Therefore, an attempt was made to study the kinetic nature of the branched bi-enzyme system acting on 6MP and to quantitate TIMP and 6TUA formed when the two enzymes are present in equal and variable ratios. The quantification of the branched kinetics using spectrophotometric method presents problem due to the closely apposed lambda(max) of the substrates and products. Hence, employing an HPLC method, the quantification of the products was done with the progress of time. The limit of quantification (LOQ) of substrate was found to be 10nM and for products as 50 nM. The limit of detection (LOD) was found to be 1 nM for the substrate and the products. The method exhibited linearity in the range of 0.01-100 microM for 6MP and 0.05-100 microM for both 6TUA and TIMP. The amount of TIMP formed was higher than that of 6TUA in the bi-enzyme system when both the enzymes were present in equivalent enzymatic ratio. It was further found that enzymatic ratios play an important role in determining the amounts of TIMP and 6TUA. This method was further validated using actively growing T-ALL cell line (Jurkat) to study the branched kinetics, wherein it was observed that treatment of 50 microM 6MP led to the generation of 12 microM TIMP and 0.8 microM 6TUA in 6 h at 37 degrees C.

  11. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Laser irradiation of Mg-Al-Zn alloy: Reduced electrochemical kinetics and enhanced performance in simulated body fluid.

    Science.gov (United States)

    Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M

    2017-05-11

    As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.

  13. Comparison among performances of a ligase chain reaction-based assay and two enzyme immunoassays in detecting Chlamydia trachomatis in urine specimens from men with nongonococcal urethritis.

    Science.gov (United States)

    Deguchi, T; Yasuda, M; Uno, M; Tada, K; Iwata, H; Komeda, H; Maeda, S; Latila, V; Saito, I; Kawada, Y

    1996-01-01

    We evaluated the performances of a ligase chain reaction (LCR)-based assay and two enzyme immunoassays (Chlamydiazyme and IDEIA) in the detection of Chlamydia trachomatis in urine specimens. We compared the results of testing urine specimens by these assays with those of urethral swab culture by examining samples from 131 men with nongonococcal urethritis. Discrepant results were analyzed by testing urethral swab specimens for C. trachomatis by a PCR-based assay. After the resolution of discrepant results, the sensitivity of urethral swab culture was 85.3%, whereas those of the LCR assay, Chlamydiazyme, and IDEIA with urine specimens were 94.1, 82.4, and 94.1%, respectively. The LCR assay and IDEIA were more sensitive than was urethral swab culture. In addition, the LCR assay, with a sensitivity equal to that of IDEIA, was more specific. Overall, the LCR assay proved to be superior to the enzyme immunoassays in detecting C. trachomatis in urine specimens. Testing urine specimens by LCR assay should be a helpful alternative method for diagnosing C. trachomatis urethral infection in men with nongonococcal urethritis. PMID:8784574

  14. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  15. Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions

    NARCIS (Netherlands)

    Gool, van M.P.; Toth, K.; Schols, H.A.; Szakacs, G.; Gruppen, H.

    2012-01-01

    Filamentous fungi are a good source of hemicellulolytic enzymes for biomass degradation. Enzyme preparations were obtained as culture supernatants from 78 fungal isolates grown on wheat straw as carbon source. These enzyme preparations were utilized in the hydrolysis of insoluble wheat straw and

  16. Kinetic study of enzymatic hydrolysis of potato starch

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2004-01-01

    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis.Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98.Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  17. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    Science.gov (United States)

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  18. Application of dhurrin for kinetics and thermodynamic ...

    African Journals Online (AJOL)

    The entropy change (ΔS) increased with enzyme purity from 0.588 J/mol.deg. to 1.4625Jmol degree. The enthalpy change KJ/mol followed the same pattern whereby increases influenced by enzyme purity ranged from 1892 KJ/mol to 13104KJ/mol. Keywords: kinetics, thermodynamic, characterization, dhurrin, genetically ...

  19. Growth performance, digestive enzyme activity and immune response of Macrobrachium rosenbergii fed with probiotic Clostridium butyricum incorporated diets

    Directory of Open Access Journals (Sweden)

    Mohammad Saifuddin Sumon

    2018-01-01

    Full Text Available To determine antagonistic effect of Clostridium butyricum against Vibrio harveyi and its probiotic effect on growth performance, digestibility and immune response of fresh water prawn, Macrobrachium rosenbergii juveniles were examined following feeding with C. butyricum incorporated feed for 60 days. Significant reduction of V. harveyi growth was found at 8 hr and onward in in-vitro and at 10 days and onward in in-vivo challenge test. After rearing prawn with the bacteria in feed treatment for 60 days, body weight and growth rate of prawns was significantly higher (p  0.05 compared to control group. This study revealed that probiotic, C. butyricum incorporated diets were found to be beneficial for M. rosenbergii culture in terms of hindering the growth of pathogenic bacteria and increasing the growth, protease and amylase activities of prawn. Results from this study will be helpful to improve fresh water prawn farming.

  20. A high-performance liquid chromatography-based radiometric assay for sucrose-phosphate synthase and other UDP-glucose requiring enzymes

    International Nuclear Information System (INIS)

    Salvucci, M.E.; Crafts-Brandner, S.J.

    1991-01-01

    A method for product analysis that eliminates a problematic step in the radiometric sucrose-phosphate synthase assay is described. The method uses chromatography on a boronate-derivatized high-performance liquid chromatography column to separate the labeled product, [14C]sucrose phosphate, from unreacted uridine 5'-diphosphate-[14C]glucose (UDP-Glc). Direct separation of these compounds eliminates the need for treatment of the reaction mixtures with alkaline phosphatase, thereby avoiding the problem of high background caused by contaminating phosphodiesterase activity in alkaline phosphatase preparations. The method presented in this paper can be applied to many UDP-Glc requiring enzymes; here the authors show its use for determining the activities of sucrose-phosphate synthase, sucrose synthase, and uridine diphosphate-glucose pyrophosphorylase in plant extracts

  1. Effect of an Enzyme Blend on the Performance, Diet Metabolizability, Phosphorous Retention, and Bone Mineralization of Broilers Fed Diets Containing Defatted Rice Bran

    Directory of Open Access Journals (Sweden)

    ML Moraes

    2015-06-01

    Full Text Available An experiment was conducted to evaluate the effect of an enzyme blend (EB on the performance, diet metabolizability, phosphorus (P retention, and bone mineralization of broilers fed diets containing 10% defatted rice bran (DRB. In total, 432 one- to 38-d-old male Cobb broilers were evaluated according to a completely randomized experimental design in 3 x 2 factorial arrangement. Three diets were tested with two nutrient reductions (NR in the matrix (standard diet; NR I of 75 kcal/kg ME, 0.1% Ca and 0.1% available P; and NR II of 100 kcal/kg ME, 0.1% Ca and 0.1% available P with or without the addition of an EB (200 g/t. The coefficients of total tract apparent retention (CTTAR of the diets and P retention were determined by collecting excreta during two periods (14 to 17 and 28 to 31 d. As expected, birds fed the standard diet had higher BW, BW gain, and G:F compared to birds on the NR diets. The EB did not show any positive effects on CTTAR or on performance; however, birds fed the EB retained 6.58% more P from d 14 to 17 (p ≤ 0.07 and 8.55% from d 28 to 31 (p < 0.05. Tibiotarsus ash percentage also increased by 2.45% (p ≤ 0.06 on d 38. In diets containing 10% DRB, the enzyme blend showed biological activity improving P retention and tibiotarsus mineralization.

  2. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Zokaeifar, Hadi; Balcázar, José Luis; Saad, Che Roos; Kamarudin, Mohd Salleh; Sijam, Kamaruzaman; Arshad, Aziz; Nejat, Naghmeh

    2012-10-01

    We studied the effect of two probiotic Bacillus subtilis strains on the growth performance, digestive enzyme activity, immune gene expression and disease resistance of juvenile white shrimp (Litopenaeus vannamei). A mixture of two probiotic strains, L10 and G1 in equal proportions, was administered at two different doses 10(5) (BM5) and 10(8) (BM8) CFU g(-1) feed to shrimp for eight weeks. In comparison to untreated control group, final weight, weight gain and digestive enzyme activity were significantly greater in shrimp fed BM5 and BM8 diets. Significant differences for specific growth rate (SGR) and survival were recorded in shrimp fed BM8 diet as compared with the control; however, no significant differences were recorded for food conversion ratio (FCR) among all the experimental groups. Eight weeks after the start of the feeding period, shrimp were challenged with Vibrio harveyi. Statistical analysis revealed significant differences in shrimp survival between probiotic and control groups. Cumulative mortality of the control group was 63.3%, whereas cumulative mortality of the shrimp that had been given probiotics was 20.0% with BM8 and 33.3% with BM5. Subsequently, real-time PCR was employed to determine the mRNA levels of prophenoloxidase (proPO), peroxinectin (PE), lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) and serine protein (SP). The expression of all immune-related genes studied was significantly up-regulated (P growth performance and disease resistance through an enhanced immune response in shrimp. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs

    International Nuclear Information System (INIS)

    Rao, Riccardo; Peliti, Luca

    2015-01-01

    The high accuracy exhibited by biological information transcription processes is due to kinetic proofreading, i.e. by a mechanism which reduces the error rate of the information-handling process by driving it out of equilibrium. We provide a consistent thermodynamic description of enzyme-assisted assembly processes involving competing substrates, in a master equation framework. We introduce and evaluate a measure of the efficiency based on rigorous non-equilibrium inequalities. The performance of several proofreading models are thus analyzed and the related time, dissipation and efficiency versus error trade-offs exhibited for different discrimination regimes. We finally introduce and analyze in the same framework a simple model which takes into account correlations between consecutive enzyme-assisted assembly steps. This work highlights the relevance of the distinction between energetic and kinetic discrimination regimes in enzyme-substrate interactions. (paper)

  4. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    Science.gov (United States)

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network

  5. Exploring the performance of thin-film superconducting multilayers as kinetic inductance detectors for low-frequency detection

    Science.gov (United States)

    Zhao, Songyuan; Goldie, D. J.; Withington, S.; Thomas, C. N.

    2018-01-01

    We have solved numerically the diffusive Usadel equations that describe the spatially varying superconducting proximity effect in Ti-Al thin-film bi- and trilayers with thickness values that are suitable for kinetic inductance detectors (KIDs) to operate as photon detectors with detection thresholds in the frequency range of 50-90 GHz. Using Nam’s extension of the Mattis-Bardeen calculation of the superconductor complex conductivity, we show how to calculate the surface impedance for the spatially varying case, and hence the surface impedance quality factor. In addition, we calculate energy-and spatially-averaged quasiparticle lifetimes at temperatures well-below the transition temperature and compare to calculation in Al. Our results for the pair-breaking threshold demonstrate differences between bilayers and trilayers with the same total film thicknesses. We also predict high quality factors and long multilayer-averaged quasiparticle recombination times compared to thin-film Al. Our calculations give a route for designing KIDs to operate in this scientifically-important frequency regime.

  6. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production: Performance evaluation and kinetic analysis.

    Science.gov (United States)

    Yang, Guang; Wang, Jianlong

    2017-11-01

    The low C/N ratio and low carbohydrate content of sewage sludge limit its application for fermentative hydrogen production. In this study, perennial ryegrass was added as the co-substrate into sludge hydrogen fermentation with different mixing ratios for enhancing hydrogen production. The results showed that the highest hydrogen yield of 60mL/g-volatile solids (VS) added was achieved when sludge/perennial ryegrass ratio was 30:70, which was 5 times higher than that from sole sludge. The highest VS removal of 21.8% was also achieved when sludge/perennial ryegrass ratio was 30:70, whereas VS removal from sole sludge was only 0.7%. Meanwhile, the co-fermentation system simultaneously improved hydrogen production efficiency and organics utilization of ryegrass. Kinetic analysis showed that the Cone model fitted hydrogen evolution better than the modified Gompertz model. Furthermore, hydrogen yield and VS removal increased with the increase of dehydrogenase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  8. Influence of exogenous fibrolytic enzymes on in vitro and in sacco degradation of forages for ruminants

    Directory of Open Access Journals (Sweden)

    Lorenzo Carreón

    2010-02-01

    Full Text Available An in vitro assay was carried out to evaluate the effects of exogenous fibrolytic enzymes (1, 2, 3 and 4 g/kg DM powder preparation containing xylanase and cellulase from Aspergillus niger and Trichoderma viride on DM, NDF and ADF degradation of alfalfa hay, corn silage, corn stover, elephant grass, Guinea grass and oat straw. Kinetics data of in vitro degradations were analyzed. The potentially degradable fraction and degradation rate of NDF and ADF of alfalfa increased quadratically (P<0.05 as the inclusion level of enzyme increased up to 3 g. The others forages were not affected by the enzyme. An in sacco trail was performed using four Holstein steers fitted with ruminal cannulas to evaluate the effects of the exogenous fibrolytic enzymes (3 g/kg DM on DM, NDF and ADF degradation of alfalfa hay and corn stover. Kinetics data were also analyzed. The potentially degradable fraction degradation of NDF (62.0 vs 65.7% and ADF (52.8 vs 56.9%, of alfalfa hay were increased (P<0.05 by the exogenous fibrolytic enzymes, but no differences were found for corn stover. These results suggest that the enzymes increased in vitro and in sacco fibre degradation only for alfalfa hay.

  9. The Use of Angiotensin-I Converting Enzyme I/D Genetic Polymorphism as a Biomarker of Athletic Performance in Humans

    Directory of Open Access Journals (Sweden)

    Maria Fernanda De Mello Costa

    2012-10-01

    Full Text Available Angiotensin II is a key regulator of blood pressure and cardiovascular function in mammals. The conversion of angiotensin into its active form is carried out by Angiotensin I-Converting Enzyme (ACE. The measurement of ACE concentration in plasma or serum, its enzymatic activity, and the correlation between an insertion/deletion (I/D genetic polymorphism of the ACE gene have been investigated as possible indicators of superior athletic performance in humans. In this context, other indicators of superior adaptation to exercise resulting in better athletic performance (such as ventricular hypertrophy, VO2 max, and competition results were mostly used to study the association between ACE I/D polymorphism and improved performance. Despite the fact that the existing literature presents little consensus, there is sufficient scientific evidence to warrant further investigation on the usage of ACE activity and the I/D ACE gene polymorphism as biomarkers of superior athletic performance in humans of specific ethnicities or in athletes involved in certain sports. In this sense, a biomarker would be a substance or genetic component that could be measured to provide a degree of certainty, or an indication, of the presence of a certain trait or characteristic that would be beneficial to the athlete’s performance. Difficulties in interpreting and comparing the results of scientific research on the topic arise from dissimilar protocols and variation in study design. This review aims to investigate the current literature on the use of ACE I/D polymorphism as a biomarker of performance in humans through the comparison of scientific publications.

  10. Evaluation of Imbrasia belina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histological analysis and enzyme activity

    Directory of Open Access Journals (Sweden)

    Mmaditshaba M. Rapatsa

    2017-02-01

    Full Text Available The main objective of this study was to investigate mopane worm (Imbrasia belina as a protein source in the diet of Oreochromis mossambicus. One thousand five hundred O. mossambicus fingerlings (40 ± 2.5 g were fed five isonitrogenous, isolipidic and isoenergetic diets formulated to contain 30% crude protein and 20 MJ/kggross energy (dry matter basis for 51 days. Fifteen indoor rectangular concrete tanks (1.5 m3 connected to a recirculating system were used. Water temperature ranged between 27 and 29 °C. The diets were prepared by replacing fishmeal with mopane worm meal at 10%, 20%, 40% and 60%. The diets were coded D2, D3, D4 and D5 respectively. A control diet with no mopane worm meal was coded D1. The diets were fed to triplicate groups of O. mossambicus twice a day. Specific growth rate (SGR, Thermal-unit growth coefficient (TGC, protein efficiency ratio (PER and apparent digestibility coefficient (ADC increased with higher inclusion levels of mopane worm meal. Feed conversion ratio (FCR also improved with higher inclusion levels. However, the highest growth performance (SGR: 3.49%; FCR: 1.29 was recorded in fish fed the fishmeal based control diet. Protease, amylase and lipase activities were determined in the intestines. Both protease and amylase activity were significantly higher (P < 0.05 at high mopane worm inclusion levels. It is suggested that the high protein levels of the mopane worm diet elicited high protease activity. The health status of the fish was evaluated by examining the liver and intestine histology. There were no evident histological alterations of either liver or intestine as mopane worm meal inclusion levels increased. This showed that mopane worm meal may be a good candidate for the replacement of fishmeal in O. mossambicus diets. The highest profit index (1.67 was recorded in the 60% mopane worm inclusion level. The lowest profit index was in the control. More studies on mopane worm meal as a substitute

  11. Enzyme-linked immunosorbent assay and polymerase chain reaction performance using Mexican and Guatemalan discrete typing unit I strains of Trypanosoma cruzi.

    Science.gov (United States)

    Ballinas-Verdugo, Martha; Reyes, Pedro Antonio; Mejia-Dominguez, Ana; López, Ruth; Matta, Vivian; Monteón, Victor M

    2011-12-01

    Thirteen Trypanosoma cruzi isolates from different geographic regions of Mexico and Guatemala belonging to discrete typing unit (DTU) I and a reference CL-Brener (DTU VI) strain were used to perform enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). A panel of 57 Mexican serum samples of patients with chronic chagasic cardiopathy and asymptomatic infected subjects (blood bank donors) were used in this study. DNA from the above 14 T. cruzi strains were extracted and analyzed by PCR using different sets of primers designed from minicircle and satellite T. cruzi DNA. The chronic chagasic cardiopathy serum samples were easily recognized with ELISA regardless of the source of antigenic extract used, even with the CL-Brener TcVI, but positive serum samples from blood bank donors in some cases were not recognized by some Mexican antigenic extracts. On the other hand, PCR showed an excellent performance despite the set of primers used, since all Mexican and Guatemalan T. cruzi strains were correctly amplified. In general terms, Mexican, Guatemalan, and CL-Brener T. cruzi strains are equally good sources of antigen when using the ELISA test to detect Mexican serum samples. However, there are some strains with poor performance. The DTU I strains are easily detected using either kinetoplast or satellite DNA target designed from DTU VI strains.

  12. Prediction of Kinematic and Kinetic Performance in a Drop Vertical Jump with Individual Anthropometric Factors in Adolescent Female Athletes: Implications for Cadaveric Investigations

    Science.gov (United States)

    Bates, Nathaniel A.; Myer, Gregory D.; Hewett, Timothy E.

    2014-01-01

    Anterior cruciate ligament injuries are common, expensive to repair, and often debilitate athletic careers. Robotic manipulators have evaluated knee ligament biomechanics in cadaveric specimens, but face limitations such as accounting for variation in bony geometry between specimens that may influence dynamic motion pathways. This study examined individual anthropometric measures for significant linear relationships with in vivo kinematic and kinetic performance and determined their implications for robotic studies. Anthropometrics and 3D motion during a 31 cm drop vertical jump task were collected in high school female basketball players. Anthropometric measures demonstrated differential statistical significance in linear regression models relative to kinematic variables (P-range 0.20) relative to peak flexion moment, peak adduction moment, flexion moment range, abduction moment range, and internal rotation moment range. The current findings indicate that anthropometric measures are less associated with kinematics than with kinetics. Relative to the robotic manipulation of cadaveric limbs, the results do not support the need to normalize kinematic rotations relative to specimen dimensions. PMID:25266933

  13. Prediction of kinematic and kinetic performance in a drop vertical jump with individual anthropometric factors in adolescent female athletes: implications for cadaveric investigations.

    Science.gov (United States)

    Bates, Nathaniel A; Myer, Gregory D; Hewett, Timothy E

    2015-04-01

    Anterior cruciate ligament injuries are common, expensive to repair, and often debilitate athletic careers. Robotic manipulators have evaluated knee ligament biomechanics in cadaveric specimens, but face limitations such as accounting for variation in bony geometry between specimens that may influence dynamic motion pathways. This study examined individual anthropometric measures for significant linear relationships with in vivo kinematic and kinetic performance and determined their implications for robotic studies. Anthropometrics and 3D motion during a 31 cm drop vertical jump task were collected in high school female basketball players. Anthropometric measures demonstrated differential statistical significance in linear regression models relative to kinematic variables (p-range 0.20) relative to peak flexion moment, peak adduction moment, flexion moment range, abduction moment range, and internal rotation moment range. The current findings indicate that anthropometric measures are less associated with kinematics than with kinetics. Relative to the robotic manipulation of cadaveric limbs, the results do not support the need to normalize kinematic rotations relative to specimen dimensions.

  14. Pasture, multi-enzymes, benzoic acid and essential oils positively influence performance, intestinal organ weight and egg quality in free-range laying hens.

    Science.gov (United States)

    Iqbal, Z; Roberts, J; Perez-Maldonado, R A; Goodarzi Boroojeni, F; Swick, R A; Ruhnke, I

    2018-04-01

    1. The objective of this study was to investigate the effect of range type, multi-enzyme applications, and a combination of benzoic acid (BA) and essential oils (EO) on the productive performance, organ weight and egg quality of free-range laying hens. 2. Three hundred laying hens were evaluated for the short-term (6 weeks) and long-term (12 weeks) effects of range type (G = no pasture, P = pasture) and feed additives (T1 = control; T2 = betaglucanase/pectinase/protease; T3 = BA/EO). Body weight, feed intake (FI), feed conversion ratio (FCR), egg production (EP), digestive organ weight, and egg quality (EQ) were evaluated. Data were analysed using SPSS 2.2 in a 2×2×3 factorial arrangement. 3. Hens that ranged on pasture were significantly heavier (2043 g vs. 1996 g; p ranged on gravel. Hens fed T2 were significantly heavier (2050 g) compared to hens fed T1 (2005 g) or T3 (2008 g). Organ weights (gizzard, liver and pancreas) were significantly heavier in hens ranged on pasture (16.8 g/kg BW, 22.3 g/kg BW and 1.89 g/kg BW, respectively) compared to hens ranged on gravel (14.2 g/kg BW, 21.7 g/kg BW and 1.83 g/kg BW, respectively). Over time, body weight (1970-2070 g; p < 0.001) and egg weight (59.5-62.8 g; p < 0.001) increased, FI (123-120 g; p = 0.024) was reduced and FCR (2.36-2.10; p = 0.002) improved 4. In conclusion, hens housed on pasture and fed multi-enzyme supplemented diets had significantly heavier body weight and produced heavier eggs with darker yolk colour. Pasture intake and enzyme supplementation increased digestive organ weight significantly.

  15. Effects of dietary amylose/amylopectin ratio on growth performance, feed utilization, digestive enzymes, and postprandial metabolic responses in juvenile obscure puffer Takifugu obscurus.

    Science.gov (United States)

    Liu, Xiang-he; Ye, Chao-xia; Ye, Ji-dan; Shen, Bi-duan; Wang, Chun-yan; Wang, An-li

    2014-10-01

    other diets. Plasma glucose and triglyceride concentrations showed a significant difference at 2 and 4 h after a meal and varied between dietary treatments. According to regression analysis of weight gain against dietary AM/AP ratio, the optimum dietary AM/AP ratio for maximum growth of obscure puffer was 0.25. The present result indicates that dietary AM/AP ratio could affect growth performance and feed utilization, some plasma parameters, digestive enzyme as well as hepatic glucose metabolic enzyme activities in juvenile obscure puffer.

  16. Growth performance and antioxidant enzyme activities in rainbow trout (Oncorhynchus mykiss) juveniles fed diets supplemented with sage, mint and thyme oils.

    Science.gov (United States)

    Sönmez, Adem Yavuz; Bilen, Soner; Alak, Gonca; Hisar, Olcay; Yanık, Talat; Biswas, Gouranga

    2015-02-01

    This study evaluated effects of dietary supplementation of sage (Salvia officinalis), mint (Mentha spicata) and thyme (Thymus vulgaris) oils on growth performance, lipid peroxidation level (melondialdehyde, MDA) and liver antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; glucose-6-phosphate dehydrogenase, G6PD; glutathione reductase, GR; glutathione-S-transferase, GST and glutathione peroxidase, GPx) in rainbow trout (Oncorhynchus mykiss) juveniles. For this purpose, triplicate groups of rainbow trout were fed daily ad libitum with diets containing sage, mint and thyme oils at 500, 1,000 and 1,500 mg kg(-1) for 60 days. While weight gain percentage of fish fed the diets containing sage and thyme oils was significantly higher than the control group, that of fish fed mint oil was the lowest. Similarly, specific growth rate was found to be the highest in all groups of the sage and thyme oil feeding and the lowest in the mint groups. Moreover, feed conversion ratio was significantly higher in the mint oil administered groups. Survival rate was also significantly reduced in the fish fed the diet containing mint oil. It was observed that SOD, G6PD and GPx activities were significantly increased in liver tissues of all the treated fish groups compared to that of control diet-fed group. However, CAT, GST and GR activities were significantly decreased in experimental diet-fed fish groups at the end of the experiment. On the other hand, a significant reduction was found in MDA levels in the fish fed the diets with sage and thyme oils compared to control and mint diets on the 30th and 60th days of experiment. Overall, dietary inclusion of sage and thyme oils is effective in enhancing rainbow trout growth, reduction in MDA and least changing antioxidant enzyme activities at a low level of 500 mg kg(-1) diet, and they can be used as important feed supplements for rainbow trout production.

  17. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  18. Multiple-enzyme supplementation on digestive traits, carcass characteristics, blood lipid parameters and growth performance of broilers fed a wheat-based diet

    Directory of Open Access Journals (Sweden)

    Hamid Reza Taheri

    2017-09-01

    Full Text Available Objective A trial was conducted from 11 to 42 d post-hatch to investigate the effectiveness of the supplementation of a multiple-enzyme preparation (Natuzyme Plus in a wheat-based diet on digesta viscosity, pH and microbial population, villus morphology, feed passage time, nutrient retention, carcass characteristics, blood lipid parameters and growth performance of broiler chickens. Methods Three hundreds 10-d-old male Ross 308 chicks were allocated to three diets with five replicates of 20 birds per replicate. Dietary treatments were i a wheat-based diet (W, ii W+Natuzyme Plus (WN; 500 mg/kg of the diet, and iii a corn-based diet (C. Results Birds fed on the C diet had higher average daily gain (ADG, p0.05 difference compared to those of the C diet. Compared to those of the W diet, the WN diet showed the higher count of Lactobacilli and lower count of coliforms (p<0.01 and digesta viscosity (p<0.01. Conclusion In general, the results of this study showed that Natuzyme Plus supplementation in a wheat-based diet can be appropriate to achieve a comparable growth performance in broiler chickens to those given the C diet probably through improving digesta viscosity, VH, ET, TTAR of NT and EE, AMEn, count of Lactobacilli and coliforms.

  19. Measurement of the enzymes lactate dehydrogenase and creatine kinase using reflectance spectroscopy and reagent strips.

    OpenAIRE

    Stevens, J F; Tsang, W; Newall, R G

    1983-01-01

    Two new methods for the assay of total activities of lactate dehydrogenase and creatine kinase are described, in which the enzyme activities are measured from a solid-state reagent strip during a kinetic reaction, the reaction being monitored in the ultra-violet region of the spectrum by reflectance spectroscopy. The performances of these methods are evaluated, and compared to conventional "wet" chemistry methods. The solid-phase reagent methods demonstrated precision and accuracy acceptable ...

  20. Determination of moxifloxacin and its oxidation products with kinetic evaluation under potassium permanganate treatment in acidic solution by ultra-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Hubicka, Urszula; Zmudzki, Paweł; Zajdel, Paweł; Krzek, Jan

    2013-01-01

    A simple, sensitive, and reproducible ultra-performance LC method for the determination of moxifloxacin (MOXI) oxidation stability under permanganate treatment in acidic conditions (pH 3.0-6.0) was developed. Besides the MOXI peak [retention time (RT) = 2.58], four additional products (RT = 0.86, 0.91, 1.42, and 1.89) were observed in all conditions tested. The oxidation process followed second-order reaction kinetics and depended upon solution acidity. The highest reaction rate constant was observed at pH 3.0, and this value decreased as the pH was increased to 6.0. The oxidation products were characterized, and their fragmentation pathways, derived from MS/MS data, were proposed. Two of these products were identified as hydroxyl derivatives of MOXI and two others as their oxidation product analogs with molecular ions of 418.4 and 416.4 m/z, respectively.

  1. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    Science.gov (United States)

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  3. A validated stability-indicating high performance liquid chromatographic method for moxifloxacin hydrochloride and ketorolac tromethamine eye drops and its application in pH dependent degradation kinetics

    Directory of Open Access Journals (Sweden)

    Jayant B Dave

    2013-01-01

    Full Text Available Background and Aim: A fixed dose combination of moxifloxacin hydrochloride and ketorolac tromethamine is used in ratio of 1:1 as eye drops for the treatment of the reduction of post operative inflammatory conditions of the eye. A simple, precise, and accurate High Performance Liquid Chromatographic (HPLC method was developed and validated for determination of moxifloxacin hydrochloride and ketorolac tromethamine in eye drops. Materials and Methods: Isocratic HPLC separation was achieved on a ACE C 18 column (C 18 (5 μm, 150 mm×4.6 mm, i.d. using the mobile phase 10 mM potassium di-hydrogen phosphate buffer pH 4.6-Acetonitrile (75:25 v/v at a flow rate of 1.0 mL/min. The detection was performed at 307 nm. Drugs were subjected to acid, alkali and neutral hydrolysis, oxidation and photo degradation. Moreover, the proposed HPLC method was utilized to investigate the pH dependent degradation kinetics of moxifloxacin hydrochloride and ketorolac tromethamine in buffer solutions at different pH values like 2.0, 6.8 and 9.0. Results and Conclusion: The retention time (t R of moxifloxacin hydrochloride and ketorolac tromethamine were 3.81±0.01 and 8.82±0.02 min, respectively. The method was linear in the concentration range of 2-20 μ/mL each for moxifloxacin hydrochloride and ketorolac tromethamine with a correlation coefficient of 0.9996 and 0.9999, respectively. The method was validated for linearity, precision, accuracy, robustness, specificity, limit of detection and limit of quantitation. The drugs could be effectively separated from different degradation products and hence the method can be used for stability analysis. Different kinetics parameters like apparent first-order rate constant, half-life and t 90 (time for 90% potency left were calculated.

  4. Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling.

    Science.gov (United States)

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A

    2016-12-25

    This work focuses on the performance of ten commercial Saccharomyces yeast strains in the batch alcoholic fermentation of sugars contained in selected industrial wastewaters from the soft drink industry. Fermentation has been applied successfully to treat these effluents prior to their disposal. Although many strains were investigated, similar behaviour was observed between all of the Saccharomyces strains tested. When media were inoculated with 2gL -1 of yeast, all strains were able to completely consume the available sugars in less than 14h. Thus, any of the strains studied in this work could be used in non-conventional wastewater treatment processes based on alcoholic fermentation. However, ethanol production varied between strains, and these differences could be significant from a production point of view. Saccharomyces bayanus produced the most ethanol, with a mean yield of 0.44g ethanol g sugarconsumed -1 and an ethanol specific production rate of 5.96g ethanol (Lh) -1 . As the assayed soft drinks wastewaters contain about 105g sugar /L of fermentable sugars, the concentration of ethanol achieved after the fermentations process was 46.2g ethanol /L. A rigorous kinetic modelling methodology was used to model the Saccharomyces bayanus fermentation process. The kinetic model included coupled mass balances and a minimal number of parameters. A simple unstructured model based on the Andrews equation (substrate inhibition) was developed. This model satisfactorily described biomass growth, sugar consumption and bioethanol production. In addition to providing insights into the fermentative performance of potentially relevant strains, this work can facilitate the design of large-scale ethanol production processes that use wastewaters from the sugar-sweetened beverage industry as feedstock. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Microsecond reaction kinetics and catalytic mechanism of bacterial cytochrome oxidases

    NARCIS (Netherlands)

    Paulus, A.

    2017-01-01

    Fundamental biochemical research is of crucial importance for a complete and detailed
    understanding of what drives enzyme activity and how enzyme kinetic properties are
    optimized towards survival of the host organism. When cells fail to produce a fully functional
    enzyme, the organism’s

  6. Kinetic studies of alkaline phosphatase extracted from rabbit (Lepus ...

    African Journals Online (AJOL)

    user

    activity, and the kinetic constants-maximum enzyme velocity (Vmax) and Michealis-Menten constant (Km) were evaluated. ... the enzyme a readily available parameter for diagnostic and research .... procedure while treatment means were separated by the least .... mammalian enzymes are responsible for this increase in ...

  7. Granulocyte kinetics

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.

    1985-01-01

    By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction

  8. Design requirements for ERD in diffusion-dominated media: how do injection interval, bioactive zones and reaction kinetics affect remediation performance?

    Science.gov (United States)

    Chambon, J.; Lemming, G.; Manoli, G.; Broholm, M. M.; Bjerg, P.; Binning, P. J.

    2011-12-01

    Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD at several sites in Denmark have shown that the main challenge is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion transport processes, and this affects the timeframes for the remediation. Due to the limited ERD applications and the complex transport and reactive processes occurring in low-permeability media, design guidelines are currently not available for ERD in such settings, and remediation performance assessments are limited. The objective of this study is to combine existing knowledge from several sites with numerical modeling to assess the effect of the injection interval, development of bioactive zones and reaction kinetics on the remediation efficiency for ERD in diffusion-dominated media. A numerical model is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities and hydraulic parameters, which are relevant for clay till sites in general. The numerical model couples flow and transport in the fracture network and low-permeability matrix. Sequential degradation of TCE to ethene is modeled using Monod kinetics, and the kinetic parameters are obtained from laboratory experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected

  9. Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones.

    Science.gov (United States)

    Schröder, J; Raiber, S; Berger, T; Schmidt, A; Schmidt, J; Soares-Sello, A M; Bardshiri, E; Strack, D; Simpson, T J; Veit, M; Schröder, G

    1998-06-09

    Heterologous screening of a cDNA library from Pinusstrobus seedlings identified clones for two chalcone synthase (CHS) related proteins (PStrCHS1 and PStrCHS2, 87.6% identity). Heterologous expression in Escherichia coli showed that PStrCHS1 performed the typical CHS reaction, that it used starter CoA-esters from the phenylpropanoid pathway, and that it performed three condensation reactions with malonyl-CoA, followed by the ring closure to the chalcone. PstrCHS2 was completely inactive with these starters and also with linear CoA-esters. Activity was detected only with a diketide derivative (N-acetylcysteamine thioester of 3-oxo-5-phenylpent-4-enoic acid) that corresponded to the CHS reaction intermediate postulated after the first condensation reaction. PstrCHS2 performed only one condensation, with 6-styryl-4-hydroxy-2-pyrone derivatives as release products. The enzyme preferred methylmalonyl-CoA against malonyl-CoA, if only methylmalonyl-CoA was available. These properties and a comparison with the CHS from Pinus sylvestris suggested for PstrCHS2 a special function in the biosynthesis of secondary products. In contrast to P. sylvestris, P. strobus contains C-methylated chalcone derivatives, and the methyl group is at the position predicted from a chain extension with methylmalonyl-CoA in the second condensation of the biosynthetic reaction sequence. We propose that PstrCHS2 specifically contributes the condensing reaction with methylmalonyl-CoA to yield a methylated triketide intermediate. We discuss a model that the biosynthesis of C-methylated chalcones represents the simplest example of a modular polyketide synthase.

  10. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  12. Effect of different levels of alpha tocopherol on performance traits, serum antioxidant enzymes, and trace elements in Japanese quail ( Coturnix coturnix japonica under low ambient temperature

    Directory of Open Access Journals (Sweden)

    Assar Ali Shah

    Full Text Available ABSTRACT This study was designed to find the effect of vitamin E supplementation on growth, serum antioxidant enzymes, and some trace elements in Japanese quail (Coturnix coturnix japonica under low ambient temperature. A total of 180 day-old Japanese quails were randomly divided into four groups and provided with 0 (group A, 50 (group B, 100 (group C, and 150 IU/kg (group D vitamin E (dl-α-tocopherol acetate under an average temperature of 9±0.5 °C for an experimental period of 42 days. The result showed that feed intake per day, body weight, weight gain per day, and feed conversion ratio did not differ significantly between the groups. Serum concentrations of superoxide and glutathione peroxidase were significantly high in birds supplemented with 150 mg/kg of vitamin E. The concentration of aspartate aminotransferase was not significantly affected between the control and treated groups; however, alanine transaminase concentration significantly reduced in group D. Zinc concentration in the blood increased significantly in group D, with no significant effect on copper and manganese between the control and treated groups. Vitamin E at the level of 150 IU/kg of feed improves the blood antioxidant status and zinc concentration, with no effect on the performance traits of quail reared under low ambient temperature.

  13. Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay (ELISA for Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Harpal Singh

    2015-07-01

    Full Text Available Enzyme-linked Immunosorbent Assay (ELISA-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a ‘3D well’ was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines.

  14. Potential Therapeutic Applications of Mucuna pruriens Peptide Fractions Purified by High-Performance Liquid Chromatography as Angiotensin-Converting Enzyme Inhibitors, Antioxidants, Antithrombotic and Hypocholesterolemic Agents.

    Science.gov (United States)

    Herrera-Chalé, Francisco; Ruiz-Ruiz, Jorge Carlos; Betancur-Ancona, David; Segura-Campos, Maira Rubi

    2016-02-01

    A Mucuna pruriens protein concentrate was hydrolyzed with a digestive (pepsin-pancreatin) enzymatic system. The soluble portion of the hydrolysate was fractionated by ultrafiltration and the ultrafiltered peptide fraction (PF) with lower molecular weight was purified by reversed-phase high-performance liquid chromatography. The PF obtained were evaluated by testing the biological activity in vitro. Fractions showed that the ability to inhibit the angiotensin-converting enzyme had IC50 values that ranged from 2.7 to 6.2 μg/mL. Trolox equivalent antioxidant capacity values ranged from 132.20 to 507.43 mM/mg. The inhibition of human platelet aggregation ranged from 1.59% to 11.11%, and the inhibition of cholesterol micellar solubility ranged from 0.24% to 0.47%. Hydrophobicity, size, and amino acid sequence could be factors in determining the biological activity of peptides contained in fractions. This is the first report that M. pruriens peptides act as antihypertensives, antioxidants, and inhibitors for human platelet aggregation and cholesterol micellar solubility in vitro.

  15. Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay (ELISA) for Infectious Diseases

    Science.gov (United States)

    Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a ‘3D well’ was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines. PMID:26184194

  16. Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay (ELISA) for Infectious Diseases.

    Science.gov (United States)

    Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming

    2015-07-08

    Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a '3D well' was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines.

  17. The effects of RSR13 on microvascular Po2 kinetics and muscle contractile performance in the rat arterial ligation model of peripheral arterial disease.

    Science.gov (United States)

    Watanabe, Aiko; Poole, David C; Kano, Yutaka

    2017-10-01

    Exercise intolerance and claudication are symptomatic of peripheral arterial disease. There is a close relationship between muscle O 2 delivery, microvascular oxygen partial pressure (P mv O 2 ), and contractile performance. We therefore hypothesized that a reduction of hemoglobin-oxygen affinity via RSR13 would maintain a higher P mv O 2 and enhance blood-muscle O 2 transport and contractile function. In male Wistar rats (12 wk of age), we created hindlimb ischemia via right-side iliac artery ligation (AL). The contralateral (left) muscle served as control (CONT). Seven days after AL, phosphorescence-quenching techniques were used to measure P mv O 2 at rest and during contractions (electrical stimulation; 1 Hz, 300 s) in tibialis anterior muscle (TA) under saline ( n = 10) or RSR13 ( n = 10) conditions. RSR13 at rest increased TA P mv O 2 in CONT (13.9 ± 1.6 to 19.3 ± 1.9 Torr, P < 0.05) and AL (9.0 ± 0.5 to 9.9 ± 0.7 Torr, P < 0.05). Furthermore, RSR13 extended maintenance of the initial TA force (i.e., improved contractile performance) such that force was not decreased significantly until contraction 240 vs. 150 in CONT and 80 vs. 20 in AL. This improved muscle endurance with RSR13 was accompanied by a greater ΔP mv O 2 (P mv O 2 decrease from baseline) (CONT, 7.4 ± 1.0 to 11.2 ± 1.3; AL, 6.9 ± 0.5 to 8.6 ± 0.6 Torr, both P < 0.05). Whereas RSR13 did not alter the kinetics profile of P mv O 2 (i.e., mean response time) substantially during contractions, muscle force was elevated, and the ratio of muscle force to P mv O 2 increased. In conclusion, reduction of hemoglobin-oxygen affinity via RSR13 in AL increased P mv O 2 and improved muscle contractile performance most likely via enhanced blood-muscle O 2 diffusion. NEW & NOTEWORTHY This is the first investigation to examine the effect of RSR13 (erythrocyte allosteric effector) on skeletal muscle microvascular oxygen partial pressure kinetics and contractile function using an arterial ligation model of

  18. Effect of dietary seaweed (Ulva lactuca) supplementation on growth performance of sheep and on in vitro gas production kinetics

    OpenAIRE

    EL-WAZIRY, Ahmed; AL-HAIDARY, Ahmed; OKAB, Aly; SAMARA, Emad; ABDOUN, Khalid

    2015-01-01

    This study was carried out to determine the effect of dietary seaweed (Ulva lactuca) supplementation on growth performance of sheep, in vitro gas production, estimated energy, and microbial protein synthesis. A total of 18 Naimey male sheep with average live weight of 22.78 ± 0.24 kg were randomly allocated to 3 groups. Sheep in group 1 were fed a diet containing commercial feed without seaweed as a control diet, sheep in group 2 were fed the control diet with 3% seaweed, and sheep in group 3...

  19. Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens.

    Science.gov (United States)

    Lei, K; Li, Y L; Yu, D Y; Rajput, I R; Li, W F

    2013-09-01

    This experiment was conducted to evaluate the effects of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Hy-Line Variety W-36 hens (n = 540; 28 wk of age) were randomized into 6 groups, each group with 6 replications (n = 15). The control group received the basal diet formulated with maize and soybean meal. The treatment groups received the same basal diets supplemented with 0.01, 0.02, 0.03, 0.06, and 0.09% Bacillus licheniformis powder (2 × 10(10) cfu/g) for an 8-wk trial. The results showed that dietary supplementation with 0.01 and 0.03% B. licheniformis significantly increased egg production and egg mass. However, no significant differences were observed in egg weight, feed consumption, and feed conversion efficiency among the 6 groups. Supplementation with different levels of B. licheniformis was found to be effective in improvement of egg quality by increasing egg shell thickness and strength. Compared with control, d-lactate content, diamine oxidase activity, and adrenocorticotropic hormone level in serum decreased significantly, and the level of estradiol and follicle-stimulating hormone increased significantly in plasma of all the experimental groups. Dietary supplementation with B. licheniformis increased the intestinal villus height and reduced the crypt depth. In conclusion, dietary inclusion of B. licheniformis could improve laying performance and egg quality significantly in a dose-dependent manner by decreasing the stress response, upregulating the growth hormone, and improving intestinal health.

  20. Comparison of clinical performance of antigen based-enzyme immunoassay (EIA) and major outer membrane protein (MOMP)-PCR for detection of genital Chlamydia trachomatis infection.

    Science.gov (United States)

    Nateghi Rostami, Mahmoud; Hossein Rashidi, Batool; Aghsaghloo, Fatemeh; Nazari, Razieh

    2016-06-01

    Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Early detection and treatment of C.trachomatis genital infection prevent serious reproductive complications. Performances of enzyme immunoassay (EIA) and major outer membrane protein (MOMP)-polymerase chain reaction (PCR) for diagnosis of genital C.trachomatis infection in women were compared. In this cross sectional study a total of 518 women volunteers were included (33.67±8.3 yrs) who had been referred to Gynecology clinics of Qom province, Iran, were included. Endocervical swab specimens were collected to detect lipopolysaccharide (LPS) antigen in EIA and to amplify MOMP gene of C.trachomatis in PCR. Results were confirmed using ompI nested-PCR. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) were calculated for performance of the tests. Odds ratios were determined using binary logistic regression analysis. In total, 37 (7.14%) cases were positive by EIA and/or MOMP-PCR. All discrepant results were confirmed by nested-PCR. Sensitivity, specificity, PPV and NPV values of EIA were 59.46%, 100%, 100% and 96.98%, and those of MOMP-PCR were 97.30%, 100%, 100%, 99.79%, respectively. Reproductive complications including 2.7% ectopic pregnancy, 5.4% stillbirth, 5.4% infertility, and 10.8% PROM were recorded. The risk of developing chlamydiosis was increased 4.8-fold in volunteers with cervicitis (p<0.05; OR 4.80; 95% CI 1.25-18.48). C.trachomatis infection should be regarded in women of reproductive ages especially those with cervicitis. Primary screening of women by using the low cost antigen-EIA is recommended; however, due to the low sensitivity of Ag-EIA, verification of the negative results by a DNA amplification method is needed.

  1. Kinetic studies on the transesterification of sunflower oil with 1-butanol catalyzed by Rhizomucor miehei lipase in a biphasic aqueous-organic system

    NARCIS (Netherlands)

    Ilmi, Miftahul; Hommes, Arne; Winkelman, Jozef; Hidayat, C.; Heeres, Hero

    2016-01-01

    The kinetics of sunflower oil transesterification with 1-butanol using a homogeneous lipase (Rhizomucor miehei) in an aqueous-organic biphasic system were studied in a stirred batch reactor set-up. An initial screening study was performed to optimize relevant process conditions (enzyme

  2. The performance and decolourization kinetics of O3/H2O2 oxidation of reactive green 19 dye in wastewater

    Science.gov (United States)

    Sabri, S. N.; Abidin, C. Z. A.; Fahmi; Kow, S. H.; Razali, N. A.

    2018-03-01

    The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen peroxide (H2O2), contact time, and pH was also being studied. The samples were treated by ozonation (O3) and peroxone O3/H2O2 process. Advanced oxidation processes (AOPs) involve two stages of oxidation; firstly is the formation of strong oxidant and secondly the reaction of organic contaminants in water. In addition, the term advanced oxidation is referring to the processes in which oxidation of organic contaminants occurs primarily through reactions with hydroxyl radicals. There are several analyses that use to determine the efficiency of the treatment process, which are UV-Vis absorption spectra, COD, Fourier Transform Infrared (FT-IR), and pH. The results demonstrated that the ozone oxidation was efficient in decolourization and good in mineralization, based on the reduction of colour and COD. Additionally, results indicate that H2O2 is able to perform better than ozonation in order to decolourize the dye wastewater with 0.5 mL H2O2/L dye dosage of H2O2 at different initial concentration, initial pH, with contact time.

  3. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  4. Kinetic performance of a 50mm long 1.8μm chiral column in supercritical fluid chromatography.

    Science.gov (United States)

    Berger, Terry A

    2016-08-12

    Reduced plate heights (hr) of supercritical fluid chromatography (SFC). The enantiomers of trans-stilbene oxide, were separated on a 4.6×50mm, 1.8μm R,R-Whelk-O1 column, with hr as low as 1.93. The plumbing of a commercial SFC instrument was modified to create a low dispersion version. Without the modification performance was considerably worse. vanDeemter like plots of reduced plate height vs. flow rate, for trans-stilbene oxide, indicate that the optimum flow varied with% modifier. On a 4.6×250mm, 5μm R,R- Whelk-O1 column, the optimum flow was >4mL/min for 5% methanol in CO2, decreasing to 5mL/min with 2.5%, 5%, and 10% methanol, decreasing to between 3 and 3.5mL/min at 40% methanol. This is the first time such shifts have been characterized. Since the solutes were the same in all cases, the differences are likely due to changes in solute diffusion coefficients caused by changes in modifier concentration, and pressure. Pump pressure requirements sometimes exceeded 500bar. It is shown that a 5mL/min flow rate is inadequate for use with 1.8μm particles in a 4.6mm ID column format. Instead, it is suggested to decrease the ID of the column to 3mm, where the optimum flow rates are on the order of 2mL/min with decreased tubing variance. Nevertheless, a number of sub-1min chromatograms are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  6. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. ... Many of the cereal grains, legumes and oilseeds store phosphorus in phytate form. Phytases can be produced by plants, animals and microorganisms. However, the ones with microbial origin ...

  7. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...... concentrations, and stability. Finally, future research directions are discussed, including the integration of biocatalysis with neighboring chemical steps....

  8. Modeling metabolic response to changes of enzyme amount in ...

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... In this work, we first introduced the enzyme parameter (ɑ) into the kinetic equations and consequently established an in silico glycolysis model of Saccharomyces cerevisiae in XML format (Figure 1), based on the work of Hynn et al. (2001). Equation 1 shows how the ɑis introduced into the kinetic equation.

  9. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  10. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  11. Effects of juniper essential oil on growth performance, some rumen protozoa, rumen fermentation and antioxidant blood enzyme parameters of growing Saanen kids.

    Science.gov (United States)

    Yesilbag, D; Biricik, H; Cetin, I; Kara, C; Meral, Y; Cengiz, S S; Orman, A; Udum, D

    2017-10-01

    This study aimed to evaluate the effects of juniper essential oil on the growth performance, rumen fermentation parameters, rumen protozoa population, blood antioxidant enzyme parameters and faecal content in growing Saanen kids. Thirty-six male Saanen kids (36 ± 14 days of age) were used in the study. Each group consisted of 9 kids. The control group (G1) was fed with a diet that consisted of the above concentrated feed and oat hay, whereas the experimental groups consumed the same diet but with the concentrated feed uniformly sprayed with juniper essential oil 0.4 ml/kg (G2), 0.8 ml/kg (G3) or 2 ml/kg (G4). There were no differences (p > 0.05) in live weight, live weight gain or feed consumption between the control and experimental groups. There was a significant improvement (p rumen pH, rumen volatile fatty acid (VFA) profile or faecal pH of the control and experimental groups. The rumen NH 3 N values were similar at the middle and end of the experiment, but at the start of the experiment, the rumen NH 3 N values differed between the control and experimental groups (p < 0.05). The faecal score value was significantly (p < 0.05) decreased in the experimental groups. The addition of juniper essential oil supplementation to the rations caused significant effects on the kids' antioxidant blood parameters. Although the superoxide dismutase (SOD) activity, total antioxidant capacity (TAC) and catalase values were significantly (p < 0.05) increased in the experimental groups (G2, G3 and G4), especially group G4, the blood glutathione peroxidase (GPX) value significantly decreased in the experimental groups. The results of this study suggest that supplementation of juniper oil is more effective on antioxidant parameters than on performance parameters and may be used as a natural antioxidant product. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  12. Effect of γ-Aminobutyric Acid-producing Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress

    Directory of Open Access Journals (Sweden)

    Y. Z. Zhu

    2015-07-01

    Full Text Available Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164 at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i 0 mg/kg, ii 25 mg/kg, iii 50 mg/kg, and iv 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05 by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05 than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009 and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to

  13. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress.

    Science.gov (United States)

    Zhu, Y Z; Cheng, J L; Ren, M; Yin, L; Piao, X S

    2015-07-01

    Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (pGABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (plevel was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying performance and egg quality in heat-stressed hens.

  14. Dose-response feeding study of short chain chlorinated paraffins (SCCPs) in laying hens: effects on laying performance and tissue distribution, accumulation and elimination kinetics.

    Science.gov (United States)

    Ueberschär, Karl-Heinz; Dänicke, Sven; Matthes, Siegfried

    2007-02-01

    Technical short chain chlorinated paraffins (C10-C13 with 60% chlorine) were fed to 93 laying hens from 24 to 32 weeks of age in increasing concentrations of up to 100 mg/kg feed. No significant influence on health, relative organ weights or performance (laying intensity, egg weight, feed consumption) was noted. The chlorinated paraffin content of the tissues was linearly related to the concentration of short chain paraffins of the feed. The highest concentrations were found in abdominal fat, egg yolk and fatty tissues. Breast muscle, egg albumen and bile fluid contained minimal or no residues. Less than 1% of the chlorinated paraffins ingested were incorporated into the body (without head, feet, gut and feathers), whereas about 1.5% were eliminated with the egg yolk and 30% were excreted with urine and faeces. A six-week kinetic depuration study revealed a biphasic elimination with half-lifes of 4-40 min (liver, kidneys, legs, fat, blood) for the initial rapid phase, and 15-30 days (blood, fat, liver, yolk, kidneys, legs) for the terminal slow phase.

  15. Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation.

    Science.gov (United States)

    Escudero, Carlos J; Iglesias, Olalla; Dominguez, Sara; Rivero, Maria J; Ortiz, Inmaculada

    2017-06-15

    This work reports the comparative performance of two Advanced Oxidation Processes (AOPs), electrochemical oxidation and photocatalysis, as individual technological alternatives for the treatment of effluents containing p-cresol. First, the influence of operating parameters in the oxidation and mineralization yield was carried out together with kinetic analysis. Boron Doped Diamond (BDD), RuO 2 and Pt as anodic materials, Na 2 SO 4 and NaCl as supporting electrolytes and different current densities were evaluated in electrochemical oxidation whereas the effect of TiO 2 concentration and radiation was studied in the photocatalytic degradation. Then, the parameter Electrical Energy per Order (E EO ) was calculated to compare the energy consumption in both AOPs, concluding that under the studied conditions the electrochemical treatment with BDD, Na 2 SO 4 and 125 A m -2 showed the best energy efficiency, with an E EO of 5.83 kW h m -3 order -1 for p-cresol and 58.05 kW h m -3 order -1 for DOC removal, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  17. Modeling metabolic response to changes of enzyme amount in ...

    African Journals Online (AJOL)

    Based on the work of Hynne et al. (2001), in an in silico model of glycolysis, Saccharomyces cerevisiae is established by introducing an enzyme amount multiple factor (.) into the kinetic equations. The model is aimed to predict the metabolic response to the change of enzyme amount. With the help of .α, the amounts of ...

  18. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  19. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  20. Kinetic parameters from thermogravimetric analysis

    Science.gov (United States)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  1. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  2. Kinetic study of hydrogen peroxide decomposition by catalase in a flow-mix microcalorimetric system

    International Nuclear Information System (INIS)

    Fidaleo, Marcello; Lavecchia, Roberto

    2003-01-01

    The kinetics of hydrogen peroxide decomposition by the enzyme catalase was studied at pH 7.4 in the temperature range 10-30 deg. C. Experiments were performed by the LKB-2277 Thermal Activity Monitor equipped with a flow-mix cylinder. The calorimetric reaction unit was schematised as a tubular reactor operating under plug-flow conditions. A first-order kinetic expression, with respect to both the substrate and the enzyme, was used to describe the rate of hydrogen peroxide decomposition. Regression analysis of calorimetric data provided a molar reaction enthalpy of -87.55 kJ mol -1 and an activation energy of 11 kJ mol -1 . Analysis of model residuals and the normal probability plot indicated that the results obtained were statistically significant

  3. Enzymes as Biocatalysts for Lipid-based Bioproducts Processing

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Guo, Zheng; Fedosov, Sergey

    2012-01-01

    Bioproducts are materials, chemicals and energy derived from renewable biological resources such as agriculture, forestry, and biologically-derived wastes. To date, the use of enzymes as biocatalysts for lipid-based bioproducts processing has shown marked increase. This is mainly due to the fact...... that cost benefit derived from enzymatic processing such as enzyme specificity, higher product purity and lesser or none toxic waste disposal has surpassed the cost of biocatalysts itself. This chapter provided insights into distinct enzymes characteristics essential in industrial processing especially...... enzymes kinetics. Understanding of enzyme kinetics is important especially in designing efficient reaction set-ups including type of bioreactors, reaction conditions and reusability of biocatalysts to ensure efficient running cost. A brief review of state-of-the-art in industrial applications of enzymes...

  4. Tolrestat kinetics

    International Nuclear Information System (INIS)

    Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.

    1984-01-01

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total 14 C were measured after dosing normal subjects and subjects with diabetes with 14 C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of 14 C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate

  5. Efeito do uso de enzimas sobre o desempenho e metabolismo de poedeiras Effect of the use of enzymes on the performance and metabolism of laying hens

    Directory of Open Access Journals (Sweden)

    Maurício Tárcio dos Santos Viana

    2009-06-01

    Full Text Available Objetivou-se verificar o efeito da adição do complexo enzimático (CE sobre o desempenho e o metabolismo de poedeiras. Foram utilizadas 216 poedeiras da linhagem Bovans Goldline, distribuídas em delineamento experimental inteiramente casualizado, com 12 repetições de seis aves por unidade experimental e 3 tratamentos: controle positivo; controle negativo; e controle negativo + Rovábio® Max (100 g/t. A dieta controle positivo foi formulada segundo recomendações das tabelas brasileiras e a dieta controle negativo foi calculada reduzindo os nutrientes presentes na matriz nutricional da enzima de acordo com a empresa produtora. Avaliaram-se o consumo de ração, a produção de ovos, o peso dos ovos, a massa de ovo, a conversão por massa de ovo, a conversão alimentar por dúzia (CAD e os componentes do ovo no período de 24 a 36 semanas de idade. No ensaio de metabolismo, calcularam-se os valores do coeficiente de digestibilidade da matéria seca, da energia metabolizável aparente (EMA e da energia metabolizável corrigida (EMAn, bem como seus coeficientes de metabolizabilidade e a retenção de nitrogênio e do balanço de P e Ca das dietas. Nas aves mantidas com a dieta controle negativo, a adição de complexo enzimático na dieta melhorou o percentual de postura e a conversão alimentar por dúzia. A redução dos níveis nutricionais das dietas resultou em menores valores de EMA e EMAn. A suplementação de complexo enzimático às dietas com menores níveis nutricionais melhorou os valores de EMA, resultando em valores similares aos obtidos nas aves alimentadas com a ração controle positivo. Poedeiras alimentadas com a ração controle positivo apresentam maior ingestão, excreção e retenção de fósforo (mg/ave/dia, entretanto, quando a ração é suplementada com complexo enzimático, ocorre maior retenção de fósforo pelas aves.The effect of the addition of multienzymatic complex on performance and metabolism of laying

  6. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  7. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.

    2009-01-01

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  8. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  9. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.

    Science.gov (United States)

    Dai, Boyi; Garrett, William E; Gross, Michael T; Padua, Darin A; Queen, Robin M; Yu, Bing

    2015-02-01

    Anterior cruciate ligament injuries (ACL) commonly occur during jump landing and cutting tasks. Attempts to land softly and land with greater knee flexion are associated with decreased ACL loading. However, their effects on performance are unclear. Attempts to land softly will decrease peak posterior ground-reaction force (PPGRF) and knee extension moment at PPGRF compared with a natural landing during stop-jump and side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact will increase knee flexion at PPGRF compared with a natural landing during both tasks. In addition, both landing techniques will increase stance time and lower extremity mechanical work as well as decrease jump height and movement speed compared with a natural landing during both tasks. Controlled laboratory study. A total of 18 male and 18 female recreational athletes participated in the study. Three-dimensional kinematic and kinetic data were collected during stop-jump and side-cutting tasks under 3 conditions: natural landing, soft landing, and landing with greater knee flexion at initial ground contact. Attempts to land softly decreased PPGRF and knee extension moment at PPGRF compared with a natural landing during stop-jump tasks. Attempts to land softly decreased PPGRF compared with a natural landing during side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact increased knee flexion angle at PPGRF compared with a natural landing during both stop-jump and side-cutting tasks. Attempts to land softly and land with greater knee flexion at initial ground contact increased stance time and lower extremity mechanical work, as well as decreased jump height and movement speed during both stop-jump and side-cutting tasks. Although landing softly and landing with greater knee flexion at initial ground contact may reduce ACL loading during stop-jump and side-cutting tasks, the performance of these tasks decreased, as indicated by

  10. Lower extremity kinematics and kinetics of Division III collegiate baseball and softball players while performing a modified pro-agility task.

    Science.gov (United States)

    Wallace, B J; Kernozek, T W; Bothwell, E C

    2007-12-01

    Females experience at least twice as many non-contact anterior cruciate ligament (ACL) injuries as males. The aim of this study was to investigate if males and females exhibited different characteristics while performing a modified pro-agility test. Collegiate Division III male baseball (n=14) and female softball (n=13) players performed 4 trials of a modified pro-agility task, which consisted of running toward a force platform target for 5 steps, planting their right foot, and propelling themselves off of the target with their left foot. Kinematic and kinetic parameters were compared using a multivariate analysis of variance between gender with the level of significance set at P<0.05. Males and females exhibited similar knee valgus angles. Females had a greater maximum knee extension angle (10.14 degrees vs 17.43 degrees ), and greater knee range of motion (46.12 degrees vs 40.12 degrees ). Both groups reached maximum knee flexion at 52% of stance. Females had significantly more maximum hip flexion than males (28.86 degrees vs 22.75 degrees ). Females had significantly smaller minimum internal knee varus moments than their male counterparts (1.12 Nm/kg vs 1.55 Nm/kg). Vertical ground reaction forces as a percentage of bodyweight, and stance time, were not statistically different. The female group displayed an external knee rotation angle (2.49 degrees ) during the beginning of their stance, which was significantly different than the internal rotation angle (4.11 degrees ) in the male group. Early in stance knee rotation angle was highly correlated with the lack of internal knee varus moment (males R(2)=0.75, females R(2)=0.88). Females displayed knee moments and kinematics that may place them at greater risk for ACL injury during a stop-cut task. Females should be coached to perform stop cuts with more knee flexion and a more neutral knee rotation angle upon foot contact in an effort to reduce moments that may place the ACL at risk.

  11. High performance mass spectrometry based proteomics reveals enzyme and signaling pathway regulation in neutrophils during the early stage of surgical trauma

    DEFF Research Database (Denmark)

    Arshid, Samina; Tahir, Muhammad; Fontes, Belchor

    2017-01-01

    and surgical trauma rats in this study. Extracted proteins were analyzed using nano liquid chromatography coupled to tandem mass spectrometry. A total of 2924 rat neutrophil proteins were identified in our analysis, of which 393 were found differentially regulated between control and trauma groups. By using...... functional pathways analysis of the 190 proteins up-regulated in surgical trauma we found proteins related to transcription initiation and protein biosynthesis. On the other hand, among the 203 proteins down-regulated in surgical trauma we found enrichment for proteins of the immune response, proteasome...... degradation and actin cytoskeleton. Overall, enzyme prediction analysis revealed that regulated enzymes are directly involved in neutrophil apoptosis, directional migration and chemotaxis. Our observations were then confirmed by in silico protein-protein interaction analysis. Collectively, our results reveal...

  12. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  13. Biodegradation of phenol with chromium(VI) reduction in an anaerobic fixed-biofilm process-Kinetic model and reactor performance

    International Nuclear Information System (INIS)

    Lin, Yen-Hui; Wu, Chih-Lung; Hsu, Chih-Hao; Li, Hsin-Lung

    2009-01-01

    A mathematical model system was derived to describe the simultaneous removal of phenol biodegradation with chromium(VI) reduction in an anaerobic fixed-biofilm reactor. The model system incorporates diffusive mass transport and double Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A laboratory-scale column reactor was employed to validate the kinetic model system. Batch kinetic tests were conducted independently to evaluate the biokinetic parameters used in the model simulation. The removal efficiencies of phenol and chromium(VI) in an anaerobic fixed-biofilm process were approximately 980 mg/g and 910 mg/g, respectively, under a steady-state condition. In the steady state, model-predicted biofilm thickness reached up to 350 μm and suspended cells in the effluent were 85 mg cell/l. The experimental results agree closely with the results of the model simulations.

  14. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  15. Substrate-Dependent Kinetics in Tyrosinase-based Biosensing: Amperometry vs. Spectrophotometry

    NARCIS (Netherlands)

    Rassaei, Liza; Cui, Jin; Goluch, E.D.; Lemay, Serge Joseph Guy

    2012-01-01

    Despite the broad use of enzymes in electroanalytical biosensors, the influence of enzyme kinetics on the function of prototype sensors is often overlooked or neglected. In the present study, we employ amperometry as an alternative or complementary method to study the kinetics of tyrosinase, whose

  16. Substrate Specificity and Enzyme Recycling Using Chitosan Immobilized Laccase

    Directory of Open Access Journals (Sweden)

    Everton Skoronski

    2014-10-01

    Full Text Available The immobilization of laccase (Aspergillus sp. on chitosan by cross-linking and its application in bioconversion of phenolic compounds in batch reactors were studied. Investigation was performed using laccase immobilized via chemical cross-linking due to the higher enzymatic operational stability of this method as compared to immobilization via physical adsorption. To assess the influence of different substrate functional groups on the enzyme’s catalytic efficiency, substrate specificity was investigated using chitosan-immobilized laccase and eighteen different phenol derivatives. It was observed that 4-nitrophenol was not oxidized, while 2,5-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, syringaldazine, 2,6-dimetoxyphenol and ethylphenol showed reaction yields up 90% at 40 °C. The kinetic of process, enzyme recyclability and operational stability were studied. In batch reactors, it was not possible to reuse the enzyme when it was applied to syringaldazne bioconversion. However, when the enzyme was applied to bioconversion of 2,6-DMP, the activity was stable for eight reaction batches.

  17. Ceramic membrane microfilter as an immobilized enzyme reactor.

    Science.gov (United States)

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  18. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  19. Kinetic and Thermodynamic Rationale for SAHA Being a Preferential Human HDAC8 Inhibitor as Compared to the Structurally Similar Ligand, TSA

    Science.gov (United States)

    Singh, Raushan K.; Lall, Naveena; Leedahl, Travis S.; McGillivray, Abigail; Mandal, Tanmay; Haldar, Manas; Mallik, Sanku; Cook, Gregory; Srivastava, D.K.

    2013-01-01

    Of the different hydroxamate-based histone deacetylase (HDAC) inhibitors, Suberoylanilide hydroxamic acid (SAHA) has been approved by the FDA for treatment of T-cell lymphoma. Interestingly, a structurally similar inhibitor, Trichostatin A (TSA), which has a higher in vitro inhibitory-potency against HDAC8, reportedly shows a poor efficacy in clinical settings. In order to gain the molecular insight into the above discriminatory feature, we performed transient kinetic and isothermal titration calorimetric studies for the interaction of SAHA and TSA to the recombinant form of human HDAC8. The transient kinetic data revealed that the binding of both the inhibitors to the enzyme showed the biphasic profiles, which represented an initial encounter of enzyme with the inhibitor followed by the isomerization of the transient enzyme-inhibitor complexes. The temperature-dependent transient kinetic studies with the above inhibitors revealed that the bimolecular process is primarily dominated by favorable enthalpic changes, as opposed to the isomerization step; which is solely contributed by entropic changes. The standard binding-enthalpy (ΔH0) of SAHA, deduced from the transient kinetic as well as the isothermal titration calorimetric experiments, was 2–3 kcal/mol higher as compared to TSA. The experimental data presented herein suggests that SAHA serves as a preferential (target-specific/selective) HDAC8 inhibitor as compared to TSA. Arguments are presented that the detailed kinetic and thermodynamic studies may guide in the rational design of HDAC inhibitors as therapeutic agents. PMID:24079912

  20. The effect of aerobic exercise training on growth performance, digestive enzyme activities and postprandial metabolic response in juvenile qingbo (Spinibarbus sinensis).

    Science.gov (United States)

    Li, Xiu-Ming; Yu, Li-Juan; Wang, Chuan; Zeng, Ling-Qing; Cao, Zhen-Dong; Fu, Shi-Jian; Zhang, Yao-Guang

    2013-09-01

    Continual swimming exercise usually promotes growth in fish at a moderate water velocity. We hypothesized that the improvement in growth in exercise-trained fish may be accompanied by increases in digestive enzyme activity, respiratory capacity and, hence, postprandial metabolism. Juvenile qingbo fish (Spinibarbus sinensis) were subjected to aerobic training for 8weeks at a water velocity of control (3cms(-1)), 1, 2 and 4 body length (bl)s(-1) at a constant temperature of 25°C. The feed intake (FI), food conversion rate (FCR), specific growth rate (SGR), whole-body composition, trypsin and lipase activities, maximal oxygen consumption (M˙O2max) and postprandial M˙O2 response were measured at the end of the training period. Aerobic exercise training induced a significant increase in FI compared with the control group, while the FCR of the 4bls(-1) group was significantly lower than for the other three groups (PFI after long-term training; (3) and aerobic exercise training boosted the activity of digestive enzymes and maximum digestive metabolism, which could favor fast digestion and growth in juvenile S. sinensis. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II (performance...

  2. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    Science.gov (United States)

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  3. Kinetics and mechanism of the cutinase-catalyzed transesterification of oils in AOT reversed micellar system.

    Science.gov (United States)

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2011-11-01

    The kinetics of the enzymatic transesterification between a mixture of triglycerides (oils) and methanol for biodiesel production in a bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane reversed micellar system, using recombinant cutinase from Fusarium solani pisi as a catalyst, was investigated. In order to describe the results that were obtained, a mechanistic scheme was proposed, based on the literature and on the experimental data. This scheme includes the following reaction steps: the formation of the active enzyme-substrate complex, the addition of an alcohol molecule to the complex followed by the separation of a molecule of the fatty acid alkyl ester and a glycerol moiety, and release of the active enzyme. Enzyme inhibition and deactivation effects due to methanol and glycerol were incorporated in the model. This kinetic model was fitted to the concentration profiles of the fatty acid methyl esters (the components of biodiesel), tri-, di- and monoglycerides, obtained for a 24 h transesterification reaction performed in a stirred batch reactor under different reaction conditions of enzyme and initial substrates concentration.

  4. Thermal inactivation kinetics of β-galactosidase during bread baking.

    Science.gov (United States)

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Improvement in low-temperature and instantaneous high-rate output performance of Al-free AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery: Effect of thermodynamic and kinetic regulation via partial Mn substituting

    Science.gov (United States)

    Zhou, Wanhai; Zhu, Ding; Tang, Zhengyao; Wu, Chaoling; Huang, Liwu; Ma, Zhewen; Chen, Yungui

    2017-03-01

    A series of Al-free Mn-modified AB5-type hydrogen storage alloys have been designed and the effects of thermodynamic stability and electrochemical kinetics on electrochemical performance via Mn substituting have been investigated. Compared with high-Al alloys, the Al-free alloys in this study have better low-temperature performance and instantaneous high-rate output because of the higher surface catalytic ability. After partial substitution of Ni by Mn, both the hydrogen desorption capacity and plateau pressure decrease, and correspondingly results in an improved thermodynamic stability which is adverse to low-temperature delivery. Additionally, with the improvement of charge acceptance ability and anti-corrosion property via Mn substitution, the room-temperature discharge capacity and cycling stability increase slightly. However, Mn adversely affects the electrochemical kinetics and deteriorates both the surface catalytic ability and the bulk hydrogen diffusion ability, leading to the drop of low-temperature dischargeability, high-rate dischargeability and peak power (Ppeak). Based on the thermodynamic and kinetic regulation and overall electrochemical properties, the optimal composition is obtained when x = 0.2, the discharge capacity is 243.6 mAh g-1 at -40 °C with 60 mA g-1, and the Ppeak attains to 969.6 W kg-1 at -40 °C.

  6. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  7. Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil

    Science.gov (United States)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic

  8. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  9. Performance of four different indirect enzyme-linked immunosorbent assays (ELISAs) to detect specific IgG, IgA, and IgM in Legionnaires' disease

    DEFF Research Database (Denmark)

    Bangsborg, Jette Marie; Shand, G H; Hansen, K

    1994-01-01

    Currently recommended methods in Legionnaires' disease serology are based upon crude whole-cell antigenic preparations. To investigate whether purified antigens would perform better in a given diagnostic test for antibodies against Legionella pneumophila, we compared the performance of three...

  10. Adsorption kinetics

    African Journals Online (AJOL)

    The Eucalyptus lenceolata wood was collected from Malakand division, Khyber Pakhtunkhwa Pakistan. Chemical activation of sample was conducted for surface efficiency. Batch studies were performed to address various experimental parameters like, contact time, temperature and adsorbent dosage for the removal of dye.

  11. Measurement of the enzymes lactate dehydrogenase and creatine kinase using reflectance spectroscopy and reagent strips.

    Science.gov (United States)

    Stevens, J F; Tsang, W; Newall, R G

    1983-01-01

    Two new methods for the assay of total activities of lactate dehydrogenase and creatine kinase are described, in which the enzyme activities are measured from a solid-state reagent strip during a kinetic reaction, the reaction being monitored in the ultra-violet region of the spectrum by reflectance spectroscopy. The performances of these methods are evaluated, and compared to conventional "wet" chemistry methods. The solid-phase reagent methods demonstrated precision and accuracy acceptable for diagnostic purposes, and were easy to use by trained operators. PMID:6655069

  12. Improved performance of Yarrowia lipolytica lipase-catalyzed kinetic resolution of (R,S)-2-octanol by an integrated strategy of interfacial activation, bioimprinting and immobilization.

    Science.gov (United States)

    Liu, Ying; Guo, Chen; Sun, Xi-Tong; Liu, Chun-Zhao

    2013-08-01

    Yarrowia lipolytica lipase (YLL) demonstrated an (R)-enantiopreference for efficient resolution of (R,S)-2-octanol. The activity, enantioselectivity, the ratio of substrate to enzyme, acetaldehyde tolerance, and operational stability of YLL were improved by an integrated strategy of interfacial activation, bioimprinting, and immobilization. In comparison with the control, both the enzymatic activity and enantioselectivity increased by a factor of 8.85 and 2.75 by the integrated strategy, respectively. Fifty-one percentage of conversion with 220 of enantioselectivity was obtained using the immobilized YLL prepared by the integrated strategy at a ratio of 104 of substrate to enzyme loaded. The immobilized YLL retained 97% of its initial activity without a decrease in enantioselectivity after 10 successive reuse cycles. Together these results will result in a promising strategy with the YYL for efficient resolution of (R,S)-2-octanol in practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Computational Biochemistry-Enzyme Mechanisms Explored.

    Science.gov (United States)

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  14. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  15. Production and enzyme engineerinq of human acetylcholinesterase and its mutant derivatives. Midterm report, 15 January 1993-15 July 1994

    Energy Technology Data Exchange (ETDEWEB)

    Shafferman, A.

    1994-07-15

    Specificity determinants of human acetylcholinesterase (HuAChE) towards ligands (substrate and some reversible and irreversible inhibitors) were identified by combination of site-directed mutagenesis, molecular modeling and kinetic studies with enzymes mutated in active center residues Trp86, Glu202, Trp286, Phe295, Phe297, Tyr337, Phe338 and Glu450. Thus, the anionic and hydrophobic subsites as well as the acyl pocket were identified. Enzymes with resistance to OP aging were engineered.The role of N-glycosylation in the function, biosynthesis and stability of HuAChE was examined by site-directed mutagenesis (Asn to GIn substitution) of the three potential N glycosylation sites, Asn265, Asn350 and Asn464. Large scale preparation of recombinant HuAChE was performed utilizing the microcarrier technology. Over 500 milligrams of enzyme was prepared for x-ray crystallography.

  16. Online Measurement of Oxygen-Dependent Enzyme Reaction Kinetics

    DEFF Research Database (Denmark)

    Meissner, Murray Peter; Nordblad, Mathias; Woodley, John M

    2018-01-01

    accurate measurement of the oxygen mass balance in the gas-phase of a reactor. The method was successfully validated and demonstrated using two model reactions: firstly the oxidation of glucose by glucose oxidase and secondly the Baeyer-Villiger oxidation of macrocyclic ketones to lactones. Initial...

  17. Effective use of enzyme microreactors : thermal, kinetic and ethical guidelines

    NARCIS (Netherlands)

    Swarts, J.W.

    2009-01-01

    Microreactor technology is reported to have many benefits over regular chemical methods. Due to the small dimensions over which temperature and concentration gradients can exist, mass and heat transfer can be very quick. This could minimize the time needed for heating and mixing, due to a reduction

  18. Limiting Concentrate during Growing Period Affect Performance and Gene Expression of Hepatic Gluconeogenic Enzymes and Visfatin in Korean Native Beef Calves

    Directory of Open Access Journals (Sweden)

    S. S. Chang

    2013-02-01

    Full Text Available This study elucidated the effects of limited concentrate feeding on growth, plasma profile, and gene expression of gluconeogenic enzymes and visfatin in the liver of Hanwoo beef calves. The purpose of this study was to test that reducing the amount of concentrate would partially be compensated by increasing the intake of forage and by altering the metabolic status. The study utilized 20 Korean native beef calves (Hanwoo; 60 to 70 d of age divided into two groups of 10 calves each for 158 d. Control group calves received the amount of concentrate as per the established Korean feeding standards for Hanwoo, whereas calves in the restricted group only received half the amount of concentrate as per standard requirements. Good quality forage (Timothy hay was available for ad libitum consumption to both groups. Since calves were with their dam until 4 months of age in breeding pens before weaning, the intake of milk before weaning was not recorded, however, the concentrate and forage intakes were recorded daily. Body weights (BW were recorded at start and on 10 d interval. Blood samples were collected at start and at 50 d interval. On the final day of the experiment, liver biopsies were collected from all animals in each group. The BW was not different between the groups at all times, but tended to be higher (p = 0.061 only at final BW in control than restricted group. Total BW gain in the control group was 116.2 kg as opposed to 84.1 kg in restricted group that led to average BW gain of 736 g/d and 532 g/d in respective groups, and the differences were significant (p<0.01. As planned, the calves in the control group had higher concentrate and lower forage intake than the restricted group. The plasma variables like total protein and urea were higher (p<0.05 in control than restricted group. The mRNA expressions for the gluconeogenic enzymes such as cytosolic phosphoenol pyruvate carboxykinase (EC 4.1.1.32 and pyruvate carboxylase (EC 6.4.1.1, and

  19. Limiting Concentrate during Growing Period Affect Performance and Gene Expression of Hepatic Gluconeogenic Enzymes and Visfatin in Korean Native Beef Calves.

    Science.gov (United States)

    Chang, S S; Lohakare, J D; Singh, N K; Kwon, E G; Nejad, J G; Sung, K I; Hong, S K

    2013-02-01

    This study elucidated the effects of limited concentrate feeding on growth, plasma profile, and gene expression of gluconeogenic enzymes and visfatin in the liver of Hanwoo beef calves. The purpose of this study was to test that reducing the amount of concentrate would partially be compensated by increasing the intake of forage and by altering the metabolic status. The study utilized 20 Korean native beef calves (Hanwoo; 60 to 70 d of age) divided into two groups of 10 calves each for 158 d. Control group calves received the amount of concentrate as per the established Korean feeding standards for Hanwoo, whereas calves in the restricted group only received half the amount of concentrate as per standard requirements. Good quality forage (Timothy hay) was available for ad libitum consumption to both groups. Since calves were with their dam until 4 months of age in breeding pens before weaning, the intake of milk before weaning was not recorded, however, the concentrate and forage intakes were recorded daily. Body weights (BW) were recorded at start and on 10 d interval. Blood samples were collected at start and at 50 d interval. On the final day of the experiment, liver biopsies were collected from all animals in each group. The BW was not different between the groups at all times, but tended to be higher (p = 0.061) only at final BW in control than restricted group. Total BW gain in the control group was 116.2 kg as opposed to 84.1 kg in restricted group that led to average BW gain of 736 g/d and 532 g/d in respective groups, and the differences were significant (pforage intake than the restricted group. The plasma variables like total protein and urea were higher (p<0.05) in control than restricted group. The mRNA expressions for the gluconeogenic enzymes such as cytosolic phosphoenol pyruvate carboxykinase (EC 4.1.1.32) and pyruvate carboxylase (EC 6.4.1.1), and visfatin measured by quantitative real-time PCR in liver biopsies showed higher expression (p<0.05) in

  20. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    DEFF Research Database (Denmark)

    Jammer, Alexandra; Gasperl, Anna; Luschin-Ebengreuth, Nora

    2015-01-01

    The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been...... shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic...

  1. Bisubstrate Kinetics of Glutathione S-Transferase: A Colorimetric Experiment for the Introductory Biochemistry Laboratory

    Science.gov (United States)

    Stefanidis, Lazaros; Scinto, Krystal V.; Strada, Monica I.; Alper, Benjamin J.

    2018-01-01

    Most biochemical transformations involve more than one substrate. Bisubstrate enzymes catalyze multiple chemical reactions in living systems and include members of the transferase, oxidoreductase, and ligase enzyme classes. Working knowledge of bisubstrate enzyme kinetic models is thus of clear importance to the practicing biochemist. However,…

  2. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  3. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  4. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    Directory of Open Access Journals (Sweden)

    Krivtcova Nadezhda

    2016-01-01

    Full Text Available Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  5. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    OpenAIRE

    Krivtsova, Nadezhda Igorevna; Tataurshikov, A.; Kotkova, Elena

    2016-01-01

    Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  6. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  7. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  8. Co-immobilized Coupled Enzyme Systems in Biotechnology

    Science.gov (United States)

    2010-01-01

    coimmobilized by ~n­ capsulation in silica spheres that were formed by a polymer -templated silicificatiOn reaction (Betancor et al., 2006). Nitrobenzene...F. , FERNANDEZ-LAFUENTE, R. , GUISAN J. M. (2005). Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol... polymer monoliths in microftuidic devices for steady- state kinetic analysis and spatially separated multi-enzyme reactions. Analytical Chemistry, 79

  9. Limiting Concentrate during Growing Period Affect Performance and Gene Expression of Hepatic Gluconeogenic Enzymes and Visfatin in Korean Native Beef Calves

    Science.gov (United States)

    Chang, S. S.; Lohakare, J. D.; Singh, N. K.; Kwon, E. G.; Nejad, J. G.; Sung, K. I.; Hong, S. K.

    2013-01-01

    This study elucidated the effects of limited concentrate feeding on growth, plasma profile, and gene expression of gluconeogenic enzymes and visfatin in the liver of Hanwoo beef calves. The purpose of this study was to test that reducing the amount of concentrate would partially be compensated by increasing the intake of forage and by altering the metabolic status. The study utilized 20 Korean native beef calves (Hanwoo; 60 to 70 d of age) divided into two groups of 10 calves each for 158 d. Control group calves received the amount of concentrate as per the established Korean feeding standards for Hanwoo, whereas calves in the restricted group only received half the amount of concentrate as per standard requirements. Good quality forage (Timothy hay) was available for ad libitum consumption to both groups. Since calves were with their dam until 4 months of age in breeding pens before weaning, the intake of milk before weaning was not recorded, however, the concentrate and forage intakes were recorded daily. Body weights (BW) were recorded at start and on 10 d interval. Blood samples were collected at start and at 50 d interval. On the final day of the experiment, liver biopsies were collected from all animals in each group. The BW was not different between the groups at all times, but tended to be higher (p = 0.061) only at final BW in control than restricted group. Total BW gain in the control group was 116.2 kg as opposed to 84.1 kg in restricted group that led to average BW gain of 736 g/d and 532 g/d in respective groups, and the differences were significant (pcalves in the control group had higher concentrate and lower forage intake than the restricted group. The plasma variables like total protein and urea were higher (pfeeding schemes during early growth for beef calves is not advocated. PMID:25049777

  10. Investigation of the Effect of Plasma Polymerized Siloxane Coating for Enzyme Immobilization and Microfluidic Device Conception

    Directory of Open Access Journals (Sweden)

    Kalim Belhacene

    2016-12-01

    Full Text Available This paper describes the impact of a physical immobilization methodology, using plasma polymerized 1,1,3,3, tetramethyldisiloxane, on the catalytic performance of β-galactosidase from Aspergillus oryzae in a microfluidic device. The β-galactosidase was immobilized by a polymer coating grown by Plasma Enhanced Chemical Vapor Deposition (PEVCD. Combined with a microchannel patterned in the silicone, a microreactor was obtained with which the diffusion through the plasma polymerized layer and the hydrolysis of a synthetic substrate, the resorufin-β-d-galactopyranoside, were studied. A study of the efficiency of the immobilization procedure was investigated after several uses and kinetic parameters of immobilized β-galactosidase were calculated and compared with those of soluble enzyme. Simulation and a modelling approach were also initiated to understand phenomena that influenced enzyme behavior in the physical immobilization method. Thus, the catalytic performances of immobilized enzymes were directly influenced by immobilization conditions and particularly by the diffusion behavior and availability of substrate molecules in the enzyme microenvironment.

  11. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse.

    Science.gov (United States)

    Kücükgöze, Gökhan; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke

    2017-08-01

    Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N 1 -methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde ( p- DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p- DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N 1 -methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different K M and k cat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Robustness Analysis of Kinetic Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    Kinetic structures in architecture follows a new trend which is emerging in responsive architecture coined by Nicholas Negroponte when he proposed that architecture may benefit from the integration of computing power into built spaces and structures, and that better performing, more rational...

  13. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  14. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  15. Muscle enzyme release does not predict muscle function impairment after triathlon.

    Science.gov (United States)

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  16. Plasma kinetic theory

    International Nuclear Information System (INIS)

    Elliott, J.A.

    1993-01-01

    Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)

  17. Deuteration kinetics of the graphene

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, Alexei; Woell, Christof [KIT, Leopoldshafen (Germany); Paris, Alessio; Calliari, Lucia [FBK-CMM, Trento (Italy); Verbitskiy, Nikolay [MSU, Moscow (Russian Federation); University of Vienna, Vienna (Austria); Wang, Ying; Irle, Stephan [Nagoya University, Nagoya (Japan); Fedorov, Alexander [IFW Dresden, Dresden (Germany); St. Petersburg University, St. Petersburg (Russian Federation); Haberer, Danny; Knupfer, Martin; Buechner, Bernd [IFW Dresden, Dresden (Germany); Oetzelt, Martin [BESSY II, Berlin (Germany); Petaccia, Luca [Elettra, Trieste (Italy); Usachov, Dmitry [St. Petersburg University, St. Petersburg (Russian Federation); Vyalikh, Denis [St. Petersburg University, St. Petersburg (Russian Federation); TU Dresden, Dresden (Germany); Sagdev, Hermann [MPI fuer Polymerforschung, Mainz (Germany); Yashina, Lada [MSU, Moscow (Russian Federation); Grueneis, Alexander [IFW Dresden, Dresden (Germany); University of Vienna, Vienna (Austria)

    2013-07-01

    The kinetics of the hydrogenation/deuteration reaction of graphene was studied by time-dependent x-ray photoemission spectroscopy (XPS). The graphene layer was then exposed to hydrogen or deuterium atomic gas beams, obtained by thermal cracking in a tungsten capillary at T=3000 K. After each step XPS of the C1s line was performed in order to measure H/C and D/C ratios. We have observed a strong kinetic isotope effect for the hydrogenation/deuteration reaction leading to substantially faster adsorption and higher maximum D/C ratios as compared to H/C (D/C 35% vs. H/C 25%).

  18. PERFORMANCE

    Directory of Open Access Journals (Sweden)

    M Cilli

    2014-10-01

    Full Text Available This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10% was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ and the squat jump (SJ measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p 0.05. In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p>0.05, in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p<0.05. The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.

  19. Design requirements for ERD in diffusion-dominated media: how do injection interval, bioactive zones and reaction kinetics affect remediation performance?

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Lemming, Gitte; Manoli, Gabriele

    is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion...... is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities...... experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected reactants (donor and bacteria) are assumed to spread in horizontal injection zones of various widths, depending on the development of bioactive...

  20. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enxymes? Testing biochemistry.

    NARCIS (Netherlands)

    Teusink, B.; Passarge, J.R.; Reijenga, C.A.; Esgalhado, M.E.L.M.; van der Weijden, C.C.; Schepper, M.; Walsh, M.C.; Bakker, B.M.; van Dam, K.; Westerhoff, H.V.; Snoep, J.L.

    2000-01-01

    This paper examines whether the in vivo behavior of yeast glycolysis can be understood in terms of the in vitro kinetic properties of the constituent enzymes. In nongrowing, anaerobic, compressed Saccharomyces cerevisiae the values of the kinetic parameters of most glycolytic enzymes were

  1. Effect of the solvent type and polymerization conditions on the curing kinetics, thermal and viscoelastic performance of poly(amide-imide resins

    Directory of Open Access Journals (Sweden)

    Z. Rasheva

    2015-03-01

    Full Text Available Isothermal and non-isothermal curing kinetics of both N-methyl-2-pyrrolidone (NMP and N-methylimidazole (MI based poly(amide-imide (PAI resins were investigated by DSC analysis using tightly closed high-pressure crucibles. Several exothermal peaks on the non-isothermal DSC-traces were observed and attributed to the reactions of different functional groups of PAI-resin. Furthermore the final conversion (polymerization degree of PAI was determined under isothermal conditions, simulating three programs with the post-curing temperatures set as 215, 240 and 270°C. For the MI-PAI based resin, the conversion values were found to be much higher compared to those for the NMP-PAI system. Compared to NMP-based PAI-resin, a shift of the main exothermal peaks to the lower temperatures was observed in the non-isothermal kinetic investigations when MI was used as a solvent. This was accompanied with a reduction of activation energy (Ea values, as up to a factor of 3 determined by the Flynn-Wall-Ozawa approach for all the main formation reactions. It indicates a catalytic effect of MI on the PAI polymerization. In addition, conversion values were determined according to the Di Benedetto equation for both systems cured using open molds in the oven. Regardless the different post-curing temperatures, the conversion values were similar for all the samples. Thermal and viscoelastic properties as well as crosslink density (nc were also investigated for these systems. It was found that the MI-based samples demonstrate lower nc values compared to the NMP-based ones at an almost two times higher storage modulus (E' at room temperature.

  2. Influence of alternative cations distribution in AgxLi96-x-LSX on dehydration kinetics and its selective adsorption performance for N2 and O2

    Science.gov (United States)

    Panezai, Hamida; Sun, Jihong; Jin, Xiaoqi

    2016-12-01

    Adsorption characteristics of pure gases N2 and O2 on various silver exchanged low silica X-type (AgxLi96-x-LSX) zeolites were investigated. The equilibrium adsorption isotherms of N2 and O2 were measured at 273 and 298 K. Textual and structural properties of parent and resultant AgxLi96-x-LSX were characterized by XRD, BET surface area, and SEM techniques. Kinetics of their thermal dehydration were studied by exploiting thermogravimetric and differential data (TG-DTG) obtained at three heating rates (5, 10 and 15 K) using two model-free (Kissinger and Flynn-Wall-Ozawa) and one model fitting (Coats-Redfern) methods. Forty one mechanism functions were used to evaluate kinetic triplet (activation energy, frequency factor, and most probable mechanism/model) for different stages of dehydration. Results revealed that the impact of very small content of silver on the adsorption of N2 is pronounced and attributed to weak chemical bonds formed between N2 and Ag+ clusters due to strong adsorption of N2 at low pressure, whereas O2 adsorption is affected to a negligible extent. In addition, the N2/O2 adsorption selectivity shows unexpected low values for Ag87.08Li7.94Na0.98-LSX with higher Ag+ content (91.00 %), which might be due to low crystalline water content as well as Ag+ clusters located at SIII sites. N2 adsorption strongly depends on temperature as higher adsorption occurs at low temperature 273 K as compared to 298 K.

  3. Diagnostic performance of an indirect enzyme-linked immunosorbent assay (ELISA) to detect bovine leukemia virus antibodies in bulk-tank milk samples

    Science.gov (United States)

    Nekouei, Omid; Durocher, Jean; Keefe, Greg

    2016-01-01

    This study assessed the diagnostic performance of a commercial ELISA for detecting bovine leukemia virus antibodies in bulk-tank milk samples from eastern Canada. Sensitivity and specificity of the test were estimated at 97.2% and 100%, respectively. The test was recommended as a cost-efficient tool for large-scale screening programs. PMID:27429469

  4. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  5. Kinetic and mass transfer studies on the isomerization of cellulose hydrolyzate using immobilized Streptomyces cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, T K; Chand, S

    1978-01-01

    Streptomyces cells possessing glucose isomerase activity, heat-treated and confined within polyester sacs have been used in batch/continuous isomerization of enzymatically hydrolyzed microcrystalline cellulose. Conversion data at different concentrations of substrate closely follow the reactor performance equation based on the reaction kinetics. The effect of external film and pore diffusional resistances were experimentally found to be negligible. The dispersion effects in the packed bed column have been evaluated by pulse input tracer analysis. Continuous operation of the column to isomerize cellulose hydrolyzate (2.0 M glucose) showed an exponential deactivation of enzyme activity with a half-life of 447 h.

  6. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  7. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  8. Complexo enzimático para suínos: digestão, metabolismo, desempenho e impacto ambiental Enzyme complex for swine: nutrient digestion, metabolism, performance and environmental impact

    Directory of Open Access Journals (Sweden)

    Urbano dos Santos Ruiz

    2008-03-01

    energy, protein and amino acids levels. In the Exp 2, growth performance, production and composition of feces in total solids, volatile solids, nitrogen, macro and micro minerals, in relation to growth performance, were measured in barrows from 50 to 151 days of age and 18.34 ± 1.35 kg initial body weight. Three experimental diets were used, one formulated to meet or exceed the nutritional requirements of swine according to NRC (1998 and the others with reduced energy, protein and amino acids levels, with or without the enzyme complex. It was used a complete randomized block design. Dietary enzyme supplementation in feeds based mainly on corn and soybean meal did not improve nutrient digestibilities and growth performance neither reduced nutrient excretion in feces. More research is necessary to test new nutritional matrix and different levels of the enzyme complex.

  9. The effect of a non-starch polysaccharide-hydrolysing enzyme (Rovabio® Excel) on feed intake and body condition of sows during lactation and on progeny growth performance.

    Science.gov (United States)

    Walsh, M C; Geraert, P A; Maillard, R; Kluess, J; Lawlor, P G

    2012-10-01

    A total of 200 (Large White × Landrace) sows were used in a 39-day study to evaluate the effects of feeding a non-starch polysaccharide (NSP)-hydrolysing enzyme multicomplex (Rovabio(®) Excel) in conjunction with a high- or reduced nutrient-density diet during lactation on sow body condition, feed intake and progeny performance. Eight sows were selected each week for 25 weeks, blocked by parity and BW into groups of four, and within the block randomly assigned to one of the four treatments (n = 50/treatment). Treatments were: (1) LND: low energy (13.14 MJ of DE/kg), low CP (15%) diet; (2) LND + RE: LND with 50 mg/kg NSP-hydrolysing enzyme; (3) HND: high energy (14.5 MJ of DE/kg), high CP (16.5%) diet; and (4) HND + RE: HND with 50 mg/kg NSP-hydrolysing enzyme. Sows were fed treatment diets from day 109 of gestation until the day of subsequent service. Between weaning and re-service, Rovabio(®) Excel addition to LND diets resulted in an increase in energy intake; however, a reduction was observed when supplemented to the HND diet (P Excel increased feed and energy intake during week 3 (days 15 to 21) of lactation (P Excel had greater back-fat depth at weaning and service (P < 0.05); however, the magnitude of change in back-fat depth during lactation and from farrowing to service was not different between treatments. Feeding the HND diet increased energy intake before farrowing, throughout lactation and during the weaning to service interval (P < 0.01); however, overall, average daily feed intake tended to be reduced (P < 0.10). At service, sows fed the HND diet were heavier than sows fed the LND diet (P < 0.05); however, the magnitude of change in BW between treatments was not different. Feeding the HND diet to sows resulted in a tendency for heavier piglets at birth (P = 0.10) that tended to grow at a faster rate and be heavier at weaning than piglets from sows fed the LND diet (P = 0.06). These results indicate that NSP-degrading enzymes offer minimal benefit

  10. Performance and diagnostic usefulness of commercially available enzyme linked immunosorbent assay and rapid kits for detection of HIV, HBV and HCV in India.

    Science.gov (United States)

    Maity, Susmita; Nandi, Srijita; Biswas, Subrata; Sadhukhan, Salil Kumar; Saha, Malay Kumar

    2012-11-26

    HIV, HBV and HCV pose a major public health problem throughout the world. Detection of infection markers for these agents is a major challenge for testing laboratories in a resource poor setting. As blood transfusion is an important activity saving millions of live every year, it also carries a risk of transfusion transmissible infections caused by these fatal blood borne pathogens if the quality of testing is compromised. Conventional ELISA is regarded as the mostly used screening technique but due to limitations like high cost, unavailability in many blood banks and testing sites, involvement of costly instruments, time taking nature and requirement of highly skilled personnel for interpretation, rapid tests are gaining more importance and warrants comparison of performance. A comparative study between these two techniques has been performed using commercially available diagnostic kits to assess their efficacy for detection of HIV, HBV and HCV infections. Rapid kits were more efficient in specificity with synthetic antigens along with high PPV than ELISA in most cases. Comparison between different ELISA kits revealed that Microlisa HIV and Hepalisa (J. Mitra & Co. Pvt. Ltd.); ERBA LISA HIV1 + 2, ERBA LISA Hepatitis B and ERBA LISA HCV (Transasia Bio-medicals Ltd.) gives uniform result with good performance in terms of sensitivity, specificity, PPV, NPV and efficiency, whereas, Microlisa HCV (J. Mitra & Co. Pvt. Ltd.), Microscreen HBsAg ELISA and INNOVA HCV (Span Diagnostics Ltd.) did not perform well. Rapid kits were also having high degree of sensitivity and specificity (100%) except in HIV Comb and HCV Comb (J. Mitra & Co. Pvt. Ltd.). The kit efficiency didn't vary significantly among different companies and lots in all the cases except for HCV ELISA showing statistically significant variation (p bank. For availability of quality commercial diagnostic assays, evaluation of kit may be helpful.

  11. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung; Choi, Mina; Han, Beom Seok; Shin, Hyung-Seon; Hong, Jin; Chung, Bong Hyun; Jeong, Jayoung; Cho, Myung-Haing

    2010-01-01

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesenteric lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (∼ 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.

  12. Asymmetric effect of mechanical stress on the forward and reverse reaction catalyzed by an enzyme.

    Directory of Open Access Journals (Sweden)

    Collin Joseph

    Full Text Available The concept of modulating enzymatic activity by exerting a mechanical stress on the enzyme has been established in previous work. Mechanical perturbation is also a tool for probing conformational motion accompanying the enzymatic cycle. Here we report measurements of the forward and reverse kinetics of the enzyme Guanylate Kinase from yeast (Saccharomyces cerevisiae. The enzyme is held in a state of stress using the DNA spring method. The observation that mechanical stress has different effects on the forward and reverse reaction kinetics suggests that forward and reverse reactions follow different paths, on average, in the enzyme's conformational space. Comparing the kinetics of the stressed and unstressed enzyme we also show that the maximum speed of the enzyme is comparable to the predictions of the relaxation model of enzyme action, where we use the independently determined dissipation coefficient [Formula: see text] for the enzyme's conformational motion. The present experiments provide a mean to explore enzyme kinetics beyond the static energy landscape picture of transition state theory.

  13. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  14. Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and why it should be helpful

    Directory of Open Access Journals (Sweden)

    Keith F. Tipton

    2014-05-01

    Full Text Available Data on enzyme activities and kinetics have often been reported with insufficient experimental detail to allow their repetition. This paper discusses the objectives and recommendations of the Standards for Reporting Enzyme Data (STRENDA project to define minimal experimental standards for the reporting enzyme functional data.

  15. Performance and diagnostic usefulness of commercially available enzyme linked immunosorbent assay and rapid kits for detection of HIV, HBV and HCV in India

    Directory of Open Access Journals (Sweden)

    Maity Susmita

    2012-11-01

    Full Text Available Abstract Background HIV, HBV and HCV pose a major public health problem throughout the world. Detection of infection markers for these agents is a major challenge for testing laboratories in a resource poor setting. As blood transfusion is an important activity saving millions of live every year, it also carries a risk of transfusion transmissible infections caused by these fatal blood borne pathogens if the quality of testing is compromised. Conventional ELISA is regarded as the mostly used screening technique but due to limitations like high cost, unavailability in many blood banks and testing sites, involvement of costly instruments, time taking nature and requirement of highly skilled personnel for interpretation, rapid tests are gaining more importance and warrants comparison of performance. Results A comparative study between these two techniques has been performed using commercially available diagnostic kits to assess their efficacy for detection of HIV, HBV and HCV infections. Rapid kits were more efficient in specificity with synthetic antigens along with high PPV than ELISA in most cases. Comparison between different ELISA kits revealed that Microlisa HIV and Hepalisa (J. Mitra & Co. Pvt. Ltd.; ERBA LISA HIV1 + 2, ERBA LISA Hepatitis B and ERBA LISA HCV (Transasia Bio-medicals Ltd. gives uniform result with good performance in terms of sensitivity, specificity, PPV, NPV and efficiency, whereas, Microlisa HCV (J. Mitra & Co. Pvt. Ltd., Microscreen HBsAg ELISA and INNOVA HCV (Span Diagnostics Ltd. did not perform well. Rapid kits were also having high degree of sensitivity and specificity (100% except in HIV Comb and HCV Comb (J. Mitra & Co. Pvt. Ltd.. The kit efficiency didn’t vary significantly among different companies and lots in all the cases except for HCV ELISA showing statistically significant variation (p  Conclusions ELISA is a good screening assay for markers of HIV, HBV and HCV infections. Rapid tests are useful for

  16. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    Science.gov (United States)

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing with the subst......The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...... with the substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine...... and polyphloretinephosphate. The results of the analysis for these inhibitors indicate a substrate competitive mode of action. The effect of reversing the transport direction by interchanging the substrate concentration has been treated for the case of a non-penetrating substrate competitive inhibitor in the external medium...

  18. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.