WorldWideScience

Sample records for enzyme isocitrate lyase

  1. Cloning and expression of isocitrate lyase from human round worm Strongyloides stercoralis

    Directory of Open Access Journals (Sweden)

    Siddiqui A.A.

    2000-09-01

    Full Text Available A full length cDNA (1463 bp encoding isocitrate lyase (EC 4.1.3.1 of Strongyloides stercoralis is described. The nucleotide sequence of this insert identified a cDNA coding for the isocitrate lyase. The conceptually translated amino acid sequence of the open reading frame for S. stercoralis isocitrate lyase encodes a 450 amino acid residue protein with an apparent molecular weight of 50 kDa and a predicted pl of 6.39. The sequence is 69 % A/T, reflecting a characteristic A/T codon bias of S. stercoralis. The amino acid sequence of S. stercoralis isocitrate lyase is compared with bifunctional glyoxylate cycle protein of Caenorhabditis elegans and isocitrate lyases from Chlamydomonas reinhardtii and Myxococcus xanthus. The full length cDNA of S. stercoralis was expressed in pRSET vector and bacteriophage T7 promoter based expression system. S. stercoralis lyase recombinant protein, purified via immobilized metal affinity chromatography, showed a molecular mass of 50 kDa on polyacrylamide gels. The role of isocitrate lyase in the glyoxylate cycle and energy metabolism of S. stercoralis is also discussed.

  2. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    Science.gov (United States)

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  3. Diversity of function in the isocitrate lyase enzyme superfamily: the Dianthus caryophyllus petal death protein cleaves alpha-keto and alpha-hydroxycarboxylic acids.

    Science.gov (United States)

    Lu, Zhibing; Feng, Xiaohua; Song, Ling; Han, Ying; Kim, Alexander; Herzberg, Osnat; Woodson, William R; Martin, Brian M; Mariano, Patrick S; Dunaway-Mariano, Debra

    2005-12-20

    The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.

  4. ¹³C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation.

    Directory of Open Access Journals (Sweden)

    Dany J V Beste

    2011-07-01

    Full Text Available Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using ¹³C-metabolic flux analysis (MFA. Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with ¹³C labeled glycerol or sodium bicarbonate. Through measurements of the ¹³C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate--oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO₂ into biomass. As the human host is abundant in CO₂ this finding requires further investigation in vivo as CO₂ fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using ¹³C-MFA.

  5. Potential Inhibitors for Isocitrate Lyase of Mycobacterium tuberculosis and Non-M. tuberculosis: A Summary

    Directory of Open Access Journals (Sweden)

    Yie-Vern Lee

    2015-01-01

    Full Text Available Isocitrate lyase (ICL is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle, especially Mycobacterium tuberculosis (MTB. In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a MTB ICL with natural compounds; (b MTB ICL with synthetic compounds; (c non-MTB ICL with natural compounds; and (d non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.

  6. Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids

    NARCIS (Netherlands)

    Holdsworth, Jane E.; Veenhuis, Marten; Ratledge, Colin

    1988-01-01

    The activities of ATP:citrate lyase (ACL; EC 4.1.3.8), carnitine acetyltransferase (CAT; EC 2.3.1.7), NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42), isocitrate lyase (ICL; EC 4.1.3.1) and malic enzyme (malate dehydrogenase; EC 1.1.1.40) were measured in four oleaginous yeasts, Candida

  7. Characterization of phosphorylated isocitrate dehydrogenase and purification of the isocitrate dehydrogenase kinase/phosphatase of Escherichia coli

    International Nuclear Information System (INIS)

    Malloy, P.J.

    1985-01-01

    NADP + -specific isocitrate dehydrogenase (IDH; EC 1.1.1.42) was shown to be phosphorylated with ( 32 P)-orthophosphate in vivo in several strains of Escherichia coli. In strain KC 13, an adenylate cyclase deficient mutant, the specific activity of IDH decreased 70% when acetate was added to stationary phase cultures grown on glucose. The enzyme was immunoprecipitated from sonic extracts and shown to contain 32 P by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The results demonstrate that unlike many eukaryotic protein kinases, the protein kinase involved in the phosphorylation of IDH in E. coli does not require cyclic adenosine monophosphate for catalysis. Similarly, the phosphorylation of IDH was demonstrated in E. coli mutants deficient in either isocitrate lyase or malate synthase. The incorporation of 32 P in IDH was demonstrated following SDS-PAGE and autoradiography of the immunoprecipitated enzyme. These results suggest that the conditions required for the phosphorylation of IDH do not depend on the functioning of the glyoxylate shunt. Following in vivo 32 P-labeling of E. coli strain F143/KL259 in the presence of acetate, 32 P-labeled IDH was isolated from sonicated extracts of the cells. The 32 P-enzyme was carboxylmethylated and digested with trypsin. A single 32 P-labeled peptide was isolated from the tryptic digest. Amino acid analysis of the purified 32 P-labeled peptide showed that the peptide contains seven amino acids, including a single phosphorylated serine residue

  8. Active tuberculosis patients have high levels of IgA anti-alpha-crystallin and isocitrate lyase proteins.

    Science.gov (United States)

    Talavera-Paulín, M; García-Morales, L; Ruíz-Sánchez, B P; Caamal-Ley, Á D; Hernández-Solis, A; Ramírez-Casanova, E; Cicero-Sabido, R; Espitia, C; Helguera-Repetto, C; González-Y-Merchand, J A; Flores-Mejía, R; Estrada-Parra, S; Estrada-García, I; Chacón-Salinas, R; Wong-Baeza, I; Serafín-López, J

    2016-12-01

    Mexico City, Mexico. To identify proteins synthetised by Mycobacterium tuberculosis in hypoxic culture, which resemble more closely a granuloma environment than aerobic culture, and to determine if they are recognised by antibodies from patients with active pulmonary tuberculosis (PTB). Soluble extracts from M. tuberculosis H37Rv cultured under aerobic or hypoxic conditions were analysed using two-dimensional polyacrylamide gel electrophoresis, and proteins over-expressed under hypoxia were identified by mass spectrometry. The presence of immunoglobulin (Ig) G, IgA and IgM antibodies against these proteins was determined in the serum of 42 patients with active PTB and 42 healthy controls. We selected three M. tuberculosis H37Rv proteins (alpha-crystallin protein [Acr, Rv2031c], universal stress protein Rv2623 and isocitrate lyase [ICL, RV0467]) that were over-expressed under hypoxia. Titres of anti-Acr and anti-ICL IgA antibodies were higher in patients than in healthy controls, with an area under the receiver operating characteristic curve of 0.71 for anti-ICL IgA antibodies. ICL could be used in combination with other M. tuberculosis antigens to improve the sensitivity and specificity of current serological TB diagnostic methods.

  9. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  10. Gaseous environment of plants and activity of enzymes of carbohydrate catabolism

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Igamberdiev, A.U.; Salam, A.M.M.

    1989-01-01

    The authors investigated the action of hypoxia and high CO 2 concentration in the atmosphere on activity of phosphofructokinase, aldolase, glucose phosphate isomerase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, and isocitrate lyase in pea seedlings (Pisum sativum L.), corn scutella (Zea mays L.), and hemp cotyledons (Cannabis sativa L.). The first 4-12h of hypoxia witnessed suppression of enzymes of the initial stages of glycolysis (glucose-6-phosphate isomerase, phosphofructokinase)and activation of enzymes of its final stages (alcohol dehydrogenase and lactate dehydrogenase) and enzymes linking glycolysis and the pentose phosphate pathway (aldolase and glucose-6-phosphate dehydrogenase). An excess of CO 2 in the environment accelerated and amplified this effect. At the end of a 24-h period of anaerobic incubation, deviations of enzyme activity from the control were leveled in both gaseous environments. An exception was observed in the case of phosphofructokinase, whose activity increased markedly at this time in plants exposed to CO 2 . Changes in activity of the enzymes were coupled with changes in their kinetic parameters (apparent K m and V max values). The activity of isocitrate lyase was suppressed in both variants of hypoxic gaseous environments, a finding that does not agree with the hypothesis as to participation of the glyoxylate cycle in the metabolic response of plants to oxygen stress. Thus, temporary inhibition of the system of glycolysis and activation of the pentose phosphate pathway constituted the initial response of the plants to O 2 stress, and CO 2 intensified this metabolic response

  11. Calcium inhibition of the NAD+-linked isocitrate dehydrogenase from blowfly flight muscle mitochondria.

    Science.gov (United States)

    Bulos, B A; Thomas, B J; Sacktor, B

    1984-08-25

    Free Ca2+ was shown to inhibit the NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria. Inhibition by free Ca2+ concentrations of 40 microM or greater was found in the absence or presence of ADP and citrate, two known activators of the enzyme. Calcium decreased the affinity of the enzyme for its substrate, the magnesium DL-isocitrate chelate; no change in the apparent V of the reaction was observed. Calcium was inhibitory when activity was measured in the presence of fixed concentrations of magnesium DL-isocitrate chelate in the presence of several fixed concentrations of either free isocitrate3-, an activator, or free Mg2+, an inhibitor of the enzyme. That NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria was not activated by micromolar free Ca2+ is consistent with the view that calcium does not play a role in regulating the flux through the tricarboxylate cycle in this species.

  12. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212.

    Science.gov (United States)

    Zhang, Shuyi; Bryant, Donald A

    2015-05-29

    Cyanobacteria are important photoautotrophic bacteria with extensive but variable metabolic capacities. The existence of the glyoxylate cycle, a variant of the TCA cycle, is still poorly documented in cyanobacteria. Previous studies reported the activities of isocitrate lyase and malate synthase, the key enzymes of the glyoxylate cycle in some cyanobacteria, but other studies concluded that these enzymes are missing. In this study the genes encoding isocitrate lyase and malate synthase from Chlorogloeopsis fritschii PCC 9212 were identified, and the recombinant enzymes were biochemically characterized. Consistent with the presence of the enzymes of the glyoxylate cycle, C. fritschii could assimilate acetate under both light and dark growth conditions. Transcript abundances for isocitrate lyase and malate synthase increased, and C. fritschii grew faster, when the growth medium was supplemented with acetate. Adding acetate to the growth medium also increased the yield of poly-3-hydroxybutyrate. When the genes encoding isocitrate lyase and malate synthase were expressed in Synechococcus sp. PCC 7002, the acetate assimilation capacity of the resulting strain was greater than that of wild type. Database searches showed that the genes for the glyoxylate cycle exist in only a few other cyanobacteria, all of which are able to fix nitrogen. This study demonstrates that the glyoxylate cycle exists in a few cyanobacteria, and that this pathway plays an important role in the assimilation of acetate for growth in one of those organisms. The glyoxylate cycle might play a role in coordinating carbon and nitrogen metabolism under conditions of nitrogen fixation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.

    Directory of Open Access Journals (Sweden)

    María Agustina Domínguez-Martín

    Full Text Available The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42 catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  14. Ser95, Asn97, and Thr78 are important for the catalytic function of porcine NADP-dependent isocitrate dehydrogenase

    OpenAIRE

    Kim, Tae-Kang; Colman, Roberta F.

    2005-01-01

    The mammalian mitochondrial NADP-dependent isocitrate dehydrogenase is a citric acid cycle enzyme and an important contributor to cellular defense against oxidative stress. The Mn2+-isocitrate complex of the porcine enzyme was recently crystallized; its structure indicates that Ser95, Asn97, and Thr78 are within hydrogen-bonding distance of the γ-carboxylate of enzyme-bound isocitrate. We used site-directed mutagenesis to replace each of these residues by Ala and Asp. The wild-type and mutant...

  15. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  16. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine.

    Science.gov (United States)

    Pinto, John T; Krasnikov, Boris F; Alcutt, Steven; Jones, Melanie E; Dorai, Thambi; Villar, Maria T; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J L

    2014-11-07

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Studies on pectin lyase

    NARCIS (Netherlands)

    Houdenhoven, van F.E.A.

    1975-01-01

    The pectin lyase activity in the commercial enzyme preparation Ultrazym originates from more then one type of enzyme; two of them, accounting for 95 % of the total activity, have been completely purified. As purity criteria specific activity, polyacrylamide disc gel electrophoresis and SDS

  18. Molecular characterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins.

    Science.gov (United States)

    Iwai, Marin; Kawakami, Takuya; Ikemoto, Takeshi; Fujiwara, Daisuke; Takenaka, Shigeo; Nakazawa, Masami; Ueda, Mitsuhiro; Sakamoto, Tatsuji

    2015-10-01

    We previously described an endo-acting rhamnogalacturonan (RG) lyase, termed PcRGL4A, of Penicillium chrysogenum 31B. Here, we describe a second RG lyase, called PcRGLX. We determined the cDNA sequence of the Pcrglx gene, which encodes PcRGLX. Based on analyses using a BLAST search and a conserved domain search, PcRGLX was found to be structurally distinct from known RG lyases and might belong to a new polysaccharide lyase family together with uncharacterized fungal proteins of Nectria haematococca, Aspergillus oryzae, and Fusarium oxysporum. The Pcrglx cDNA gene product (rPcRGLX) expressed in Escherichia coli demonstrated specific activity against RG but not against homogalacturonan. Divalent cations were not essential for the enzymatic activity of rPcRGLX. rPcRGLX mainly released unsaturated galacturonosyl rhamnose (ΔGR) from RG backbones used as the substrate from the initial stage of the reaction, indicating that the enzyme can be classified as an exo-acting RG lyase (EC 4.2.2.24). This is the first report of an RG lyase with this mode of action in Eukaryota. rPcRGLX acted synergistically with PcRGL4A to degrade soybean RG and released ΔGR. This ΔGR was partially decorated with galactose (Gal) residues, indicating that rPcRGLX preferred oligomeric RGs to polymeric RGs, that the enzyme did not require Gal decoration of RG backbones for degradation, and that the enzyme bypassed the Gal side chains of RG backbones. These characteristics of rPcRGLX might be useful in the determination of complex structures of pectins.

  19. Regulation of two loblolly pine (Pinus taeda L.) isocitrate lyase genes in megagametophytes of mature and stratified seeds and during postgerminative growth.

    Science.gov (United States)

    Mullen, R T; Gifford, D J

    1997-03-01

    Two full-length cDNAs encoding the glyoxysomal enzyme isocitrate lyase (ICL) were isolated from a lambda ZAP cDNA library prepared from megagametophyte mRNAs extracted from seeds imbibed at 30 degrees C for 8 days. The cDNAs, designated Ptbs ICL 8 and Ptbs ICL 12, have open reading frames of 1740 and 1719 bp, with deduced amino acid sequences of 580 and 573 residues, respectively. The predicted amino acid sequences of Ptbs ICL 8 and Ptbs ICL 12 exhibit a 79% identity with each other, and have a greater than 75% identity with ICLs from various angiosperm species. The C-termini of Ptbs ICL 8 and Ptbs ICL 12 terminate with the tripeptide Ser-Arg-Met and Ala-Arg-Met, respectively, both being conserved variants of the type 1 peroxisomal targeting signal. RNA blot and slot analysis revealed that Ptbs ICL 8 and Ptbs ICL 12 mRNAs were present at low levels in the megagametophyte of the mature and stratified seeds, and that the level of both transcripts increased markedly upon seed germination. Protein blot analysis indicated that the steady-state level of ICL was low in the mature and stratified seed, then increased rapidly upon seed germination, peaking at around 8-10 days after imbibition (DAI). Changes in the level of ICL activity in cell-free extracts was similar to the steady-state protein content with the exception that ICL activity was not detected in megagametophyte extracts of mature or stratified seeds. From 10-12 DAI when the megagametophyte tissue senesced, ICL activity decreased rapidly to near undetectable levels. In contrast, steady-state levels of ICL protein and mRNA remained relatively constant during megagametophyte senescence. In vivo synthesis of ICL protein was measured to shed light on these differences. ICL immunoselected from [(35)S]-methionine labelled proteins indicated that ICL was synthesized at very low levels during megagametophyte senescence. Together, the results show that loblolly pine ICL gene expression is complex. While temporal

  20. Identification, expression, and characterization of a novel bacterial RGI Lyase enzyme for the production of bio-functional fibers

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Larsen, Dorte Møller; Meyer, Anne S.

    2011-01-01

    A gene encoding a putative rhamnogalacturonan I (RGI) Lyase (EC 4.2.2.-) from Bacillus licheniformis (DSM13) was selected after a homology search and phylogenetic analysis and optimized with respect to codon usage. The designed gene was transformed into Pichia pastoris and the enzyme was produced...

  1. A novel gene encoding xanthan lyase of Paenibacillus alginolyticus strain XL-1

    NARCIS (Netherlands)

    Ruijssenaars, H.J.; Hartmans, S.; Verdoes, J.C.

    2000-01-01

    Xanthan-modifying enzymes are powerful tools in studying structure-function relationships of this polysaccharide. One of these modifying enzymes is xanthan lyase, which removes the terminal side chain residue of xanthan. In this paper, the cloning and sequencing of the first xanthan lyase-encoding

  2. Aspergillus fumigatus Does Not Require Fatty Acid Metabolism via Isocitrate Lyase for Development of Invasive Aspergillosis▿

    OpenAIRE

    Schöbel, Felicitas; Ibrahim-Granet, Oumaïma; Avé, Patrick; Latgé, Jean-Paul; Brakhage, Axel A.; Brock, Matthias

    2006-01-01

    Aspergillus fumigatus is the most prevalent airborne filamentous fungus causing invasive aspergillosis in immunocompromised individuals. Only a limited number of determinants directly associated with virulence are known, and the metabolic requirements of the fungus to grow inside a host have not yet been investigated. Previous studies on pathogenic microorganisms, i.e., the bacterium Mycobacterium tuberculosis and the yeast Candida albicans, have revealed an essential role for isocitrate lyas...

  3. Chondroitin Sulfate (CS) Lyases: Structure, Function and Application in Therapeutics.

    Science.gov (United States)

    Rani, Aruna; Patel, Seema; Goyal, Arun

    2018-01-01

    Glycosaminoglycans (GAGs) such as chondroitin sulfate (CS) are the chief natural polysaccharides which reside in biological tissues mainly in extracellular matrix. These CS along with adhesion molecules and growth factors are involved in central nervous system (CNS) development, cell progression and pathogenesis. The chondroitin lyases are the enzyme that degrade and alter the CS chains and hence modify various signalling pathways involving CS chains. These CS lyases are substrate specific, can precisely manipulate the CS polysaccharides and have various biotechnological, medical and therapeutic applications. These enzymes can be used to produce the unsaturated oligosaccharides, which have immune-modulatory, anti-inflammatory and neuroprotective properties. This review focuses on the major breakthrough of the chondroitin sulfate degrading enzymes, their structures and functioning mechanism. This also provides comprehensive information regarding production, purification, characterization of CS lyases and their major applications, both established as well as emerging ones such as neural development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Prenatal diagnosis in adenylosuccinate lyase deficiency

    NARCIS (Netherlands)

    Marie, S.; Flipsen, J. W.; Duran, M.; Poll-The, B. T.; Beemer, F. A.; Bosschaart, A. N.; Vincent, M. F.; van den Berghe, G.

    2000-01-01

    Adenylosuccinate lyase deficiency, an autosomal recessive inborn error of purine synthesis, provokes accumulation in body fluids of succinylaminoimidazolecarboxamide riboside and succinyladenosine, the dephosphorylated derivatives of the two substrates of the enzyme. Most patients display severe

  5. A radiometric technique for the measurement of adenylosuccinate lyase

    International Nuclear Information System (INIS)

    Park, K.W.; Tyagi, A.K.; Cooney, D.A.

    1980-01-01

    When radioactive adenylosuccinic acid (AMP-S) is metabolized to AMP and fumaric acid by the enzyme adenylosuccinate lyase (EC 4.3.2.2), a proton is released to the solvent as 3 H 2 O. This removal is believed to be stereospecifically identical to that catalyzed by the enzyme, L-aspartase, and therefore entails the loss of a proton from C-3 of the dicarboxylic acid moiety of the nucleotide. Advantage has been taken of this fact in the design of a facile assay for this enzyme. The assay permits the simultaneous estimation of the lyase activity in a large battery of samples; it is not interfered with by opalescent or proteinaceous suspensions; it is accurate and outstandingly sensitive. (Auth.)

  6. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    International Nuclear Information System (INIS)

    Ochiai, Akihito; Yamasaki, Masayuki; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2006-01-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2 1 and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°

  7. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  8. Catalytically important amino-acid residues of abalone alginate lyase HdAly assessed by site-directed mutagenesis

    OpenAIRE

    Yamamoto, Sayo; Sahara, Takehiko; Sato, Daisuke; Kawasaki, Kosei; Ohgiya, Satoru; Inoue, Akira; Ojima, Takao

    2008-01-01

    Alginate lyase is an enzyme that degrades alginate chains via β-elimination and has been used for the production of alginate oligosaccharides and protoplasts from brown algae. Previously, we deduced the amino-acid sequence of an abalone alginate lyase, HdAly, from its cDNA sequence and, through multiple amino-acid sequence alignment, found that several basic amino-acid residues were highly conserved among the polysaccharide-lyase family 14 (PL-14) enzymes including HdAly. In the present study...

  9. Pathway confirmation and flux analysis of central metabolicpathways in Desulfovibrio vulgaris Hildenborough using gaschromatography-mass spectrometry and fourier transform-ion cyclotronresonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan,Richard; Hazen, Terry C.; Keasling, Jay D.

    2006-07-11

    It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.

  10. Circadian Rhythmicity in the Activities of Phenylalanine Ammonia-Lyase from Lemna perpusilla and Spirodela polyrhiza 1

    Science.gov (United States)

    Gordon, William R.; Koukkari, Willard L.

    1978-01-01

    The oscillations in phenylalanine ammonia-lyase activity from Spirodela polyrhiza and phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities from Lemna perpusilla displayed a circadian rhythm under continuous light. Rhythmicity in enzymic activity could not be detected in continuous darkness since under this condition phenylalanine ammonia-lyase activity remains at a fairly constantly low level. Results from our studies of the oscillatory pattern of the respective activities of phenylalanine and tyrosine ammonia-lyase support their “inseparability.” PMID:16660569

  11. Crystal structure studies of NADP{sup +} dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Pampa, K.J. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Manjula, M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Abdoh, M.M.M. [Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Lokanath, N.K., E-mail: lokanath@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India)

    2014-06-20

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{sup +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  12. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents.

    Directory of Open Access Journals (Sweden)

    Hong-Leong Cheah

    Full Text Available Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1, are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF, rosmarinic acid (ROS, and apigenin (API were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.

  13. Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues

    OpenAIRE

    Koser, Safia; Anwar, Zahid; Iqbal, Zafar; Anjum, Awais; Aqil, Tahir; Mehmood, Sajid; Irshad, Muhammad

    2014-01-01

    The present study was aimed to investigate the culture influence on pectin lyase production potential of fungal strain Aspergillus oryzae. The enzyme profile of A. oryzae showed highest activity of pectin lyase after 3rd day of incubation on lemon peel waste under solid state fermentation conditions. To induce the pectin lyase synthesis capability of A. oryzae at optimal level various culture variables including physical and nutritional parameters were optimized by adopting classical optimiza...

  14. Priming ammonia lyases and aminomutases for industrial and therapeutic applications

    NARCIS (Netherlands)

    Heberling, Matthew M.; Wu, Bian; Bartsch, Sebastian; Janssen, Dick B.

    Ammonia lyases (AL) and aminomutases (AM) are emerging in green synthetic routes to chiral amines and an AL is being explored as an enzyme therapeutic for treating phenylketonuria and cancer. Although the restricted substrate range of the wild-type enzymes limits their widespread application, the

  15. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and fourier transform-ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan, Richard; Hazen, Terry C.; Keasling, Jay D.

    2006-01-01

    It has been proposed that during growth under anaerobic or oxygen-limited conditions Shewanella oneidensis MR-1 uses the serine-isocitrate lyase pathway common to many methylotrophic anaerobes, in which formaldehyde produced from pyruvate is condensed with glycine to form serine. The serine is then transformed through hydroxypyruvate and glycerate to enter central metabolism at phosphoglycerate. To examine its use of the serine-isocitrate lyase pathway under anaerobic conditions, we grew S. oneidensis MR-1 on [1-13C] lactate as the sole carbon source with either trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor. Analysis of cellular metabolites indicates that a large percentage (>75 percent) of lactate was partially oxidized to either acetate or pyruvate. The 13C isotope distributions in amino acids and other key metabolites indicate that, under anaerobic conditions, a complete serine pathway is not present, and lactate is oxidized via a highly reversible serine degradation pathway. The labeling data also suggest significant activity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase) reactions. Although the tricarboxylic acid (TCA) cycle is often observed to be incomplete in many other anaerobes (absence of 2-oxoglutaratede hydrogenase activity), isotopic labeling supports the existence of a complete TCA cycle in S. oneidensis MR-1 under TMAO reduction condition

  16. Fluorometric determination of free and total isocitrate in bovine milk

    DEFF Research Database (Denmark)

    Larsen, Torben

    2014-01-01

    Isocitrate is an intermediate metabolite in the citric acid cycle found both inside the mitochondria as well as outside in the cytosolic shunt. Oxidation of isocitrate is believed to deliver large fractions of energy [i.e., reducing equivalents (NADPH) in the bovine udder] used for fatty acid...... and cholesterol synthesis. This study describes a new analytical method for determination of free and total isocitrate in bovine milk where time-consuming pretreatment of the sample is not necessary. Methods for estimation of both total isocitrate and free isocitrate are described, the difference being...

  17. Catalytic Mechanisms and Biocatalytic Applications of Aspartate and Methylaspartate Ammonia Lyases

    NARCIS (Netherlands)

    de Villiers, Marianne; Veetil, Vinod Puthan; Raj, Hans; de Villiers, Jandre; Poelarends, Gerrit J.

    2012-01-01

    Ammonia lyases catalyze the formation of alpha-beta-unsaturated bonds by the elimination of ammonia from their substrates. This conceptually straightforward reaction has been the emphasis of many studies, with the main focus on the catalytic mechanism of these enzymes and/or the use of these enzymes

  18. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  19. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.

    Science.gov (United States)

    Turner, Nicholas J

    2011-04-01

    Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Identification of fungal oxaloacetate hydrolyase within the isocitrate lyase/PEP mutase enzyme superfamily using a sequence marker-based method

    NARCIS (Netherlands)

    Joosten, H.J.; Han, Y.; Niu, W.; Vervoort, J.J.M.; Dunaway-Mariano, D.; Schaap, P.J.

    2008-01-01

    Aspergillus niger produces oxalic acid through the hydrolysis of oxaloacetate, catalyzed by the cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH). The A. niger genome encodes four additional open reading frames with strong sequence similarity to OAH yet only the oahA gene encodes OAH activity.

  1. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Parinaz Ghadam

    2017-05-01

    Full Text Available Objective(s: Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Alginate lyase gene (algl is a member of alginate producing operon which by glycosidase activity produces primer for other enzymes in this cluster. Also this activity can destroy the extracellular alginate; therefore this enzyme participates in alginate production and destruction pathway. Alginate lyase causes detachment of a biofilm by reducing its adhesion to the surfaces, and increases phagocytosis and antibiotic susceptibility. In this study, alginate lyase was purified in just one step and its properties were investigated. Materials and Methods: The purification was done by affinity chromatography, analysed by SDS-PAGE, and its effect on P. aeruginosa biofilms was surveyed by micro titer plate assay and SEM. The substrate specificity of the enzyme was determined by PCR. Results: Alginate lyase from isolate 48 was purified in one step. It is more thermally resistant than alginate lyase from Pseudomonas aeruginosa PAO1 and poly M, poly G and poly MG alginate were the substrate of this enzyme. Moreover, it has an eradication effect on biofilms from P. aeruginosa 48 and PAO1. Conclusion: In this study an alginate lyase with many characteristics suitable in medicine such as thermal stability, effective on poly M alginate, and bacterial biofilm destructive was introduced and purified.

  2. Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana.

    Science.gov (United States)

    Rylott, E L; Hooks, M A; Graham, I A

    2001-05-01

    Molecular genetic approaches in the model plant Arabidopsis thaliana (Col0) are shedding new light on the role and control of the pathways associated with the mobilization of lipid reserves during oilseed germination and post-germinative growth. Numerous independent studies have reported on the expression of individual genes encoding enzymes from the three major pathways: beta-oxidation, the glyoxylate cycle and gluconeogenesis. However, a single comprehensive study of representative genes and enzymes from the different pathways in a single plant species has not been done. Here we present results from Arabidopsis that demonstrate the co-ordinate regulation of gene expression and enzyme activities for the acyl-CoA oxidase- and 3-ketoacyl-CoA thiolase-mediated steps of beta-oxidation, the isocitrate lyase and malate synthase steps of the glyoxylate cycle and the phosphoenolpyruvate carboxykinase step of gluconeogenesis. The mRNA abundance and enzyme activities increase to a peak at stage 2, 48 h after the onset of seed germination, and decline thereafter either to undetectable levels (for malate synthase and isocitrate lyase) or low basal levels (for the genes of beta-oxidation and gluconeogenesis). The co-ordinate induction of all these genes at the onset of germination raises the possibility that a global regulatory mechanism operates to induce the expression of genes associated with the mobilization of storage reserves during the heterotrophic growth period.

  3. The hydroxynitrile lyase from almond: crystal structure and mechanistical studies

    International Nuclear Information System (INIS)

    Dreveny, Ingrid

    2001-09-01

    Cyanogenesis is a defense process of several thousand plant species. Hydroxynitrile lyase (HNL), a key enzyme of this process, cleaves a cyanohydrin precursor into hydrocyanic acid and the corresponding aldehyde or ketone. The reverse reaction constitutes an important tool in industrial biocatalysis. Different classes of hydroxynitrile lyases have convergently evolved from FAD-dependent oxidoreductases, α/β hydrolases and alcohol dehydrogenases. The FAD-dependent hydroxynitrile lyases (FAD-HNLs) carry a flavin cofactor whose redox properties appear to be unimportant for catalysis. The high resolution crystal structure of the hydroxynitrile lyase from almond (Prunus amygdalus), PaHNL1, has been determined and constitutes the first 3D structure of an FAD-HNL. The overall fold and the architecture of the active site region showed that PaHNL1 belongs to the glucose-methanol-choline-oxidoreductase family, with closest structural similarity to glucose oxidase. There is strong evidence from the sequence and the reaction product that FAD-dependent hydroxynitrile lyases have evolved from an aryl alcohol oxidizing precursor. Structures of PaHNL1 in complex with its natural substrate mandelonitrile and the competitive inhibitor benzyl alcohol provided insight into the residues involved in catalysis and a mechanism without participation of the cofactor could be suggested. Although the catalytic residues differ between the α/β-hydrolase-type HNLs and PaHNL1, common general features relevant for hydroxynitrile lyase activity could be proposed. (author)

  4. Optimization of oligomeric enzyme activity in ionic liquids using Rhodotorula glutinis yeast phenylalanine ammonia lyase.

    Science.gov (United States)

    Barron, Christiaan C; Sponagle, Brandon J D; Arivalagan, Pugazhendhi; D'Cunha, Godwin B

    2017-01-01

    Phenylalanine ammonia lyase (E.C.4.3.1.24, PAL) activity of Rhodotorula glutinis yeast has been demonstrated in four commonly used ionic liquids. PAL forward reaction was carried out in 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO 4 ]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF 6 ]) and 1-butyl-3-methylimidazolium lactate ([BMIM][lactate]). Our experiments have revealed that PAL is catalytically active in ionic liquids and the enzyme activity in ([BMIM][PF 6 ]) is comparable to that obtained in aqueous buffer medium. Different conditions were optimized for maximal PAL forward activity including time of incubation (30.0min) L -phenylalanine substrate concentration (30.0mM), nature of buffer (50.0mM Tris-HCl), pH (9.0), temperature (37°C), and speed of agitation (100 rev min -1 ). Under these optimized conditions, about 83% conversion of substrate to product was obtained for the PAL forward reaction that was determined using UV spectroscopy at 290nm. PAL reverse reaction in ([BMIM][PF 6 ]) was determined spectrophotometrically at 520nm; and about 59% substrate conversion was obtained. This data provides further knowledge in enzyme biocatalysis in non-aqueous media, and may be of importance when studying the function of other oligomeric/multimeric proteins and enzymes in ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Occurrence of a number of enzymes involved in either gluconeogenesis or other processes in the pericarp of three cultivars of grape (Vitis vinifera L.) during development.

    Science.gov (United States)

    Famiani, Franco; Moscatello, Stefano; Ferradini, Nicoletta; Gardi, Tiziano; Battistelli, Alberto; Walker, Robert P

    2014-11-01

    It is uncertain whether the enzymes pyruvate orthophosphate dikinase (PPDK) or isocitrate lyase (ICL) are present in the pericarp of grape, in which they could function in gluconeogenesis. The occurrence of these and other enzymes was investigated in the pericarp of three cultivars of grape (Vitis vinifera L.). In particular, the abundance of the enzymes aldolase, glutamine synthase (GS), acid invertase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), PPDK and ICL were determined during the development of the pericarp of the cultivars Cabernet Sauvignon, Chardonnay and Zibibbo. PPDK and ICL were not detected at any stage of development. Each of the other enzymes showed different changes in abundance during development. However, for a given enzyme its changes in abundance were similar in each cultivar. In the ripe pericarp of Cabernet Sauvignon, PEPC, cytosolic GS and aldolase were equally distributed between the vasculature and parenchyma cells of the flesh and skin. The absence or very low abundance of PPDK provides strong evidence that any gluconeogenesis from malate utilises phosphoenolpyruvate carboxykinase (PEPCK). The absence or very low abundance of ICL in the pericarp precludes any gluconeogenesis from ethanol. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Multifaceted roles of metabolic enzymes of the Paracoccidioides species complex

    Directory of Open Access Journals (Sweden)

    Caroline Maria Marcos

    2014-12-01

    Full Text Available Paracoccidioides species are dimorphic fungi, and are the etiologic agents of paracoccidioidomycosis (PCM, a serious disease of multiple organs. The large number of tissues colonized by this fungus suggests the presence of a variety of surface molecules involved in adhesion. A surprising finding is that the majority of enzymes in the glycolytic pathway, tricarboxylic acid (TCA cycle and glyoxylate cycle in Paracoccidioides spp. has adhesive properties that aid in the interaction with the host extracellular matrix, and so act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions and add another dimension to cellular complexity, while benefiting cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play roles in bacterial pathogens, either by acting as proteins secreted in a conventional pathway or not and/or as cell surface component that facilitate adhesion or adherence . This review outlines the multifuncionality exposed by a variety of Paracoccidioides spp. enzymes including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase and enolase. The roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host are discussed.

  7. Characterization of a Novel Alginate Lyase from Marine Bacterium Vibrio furnissii H1

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhu

    2018-01-01

    Full Text Available Alginate lyases show great potential for industrial and medicinal applications, especially as an attractive biocatalyst for the production of oligosaccharides with special bioactivities. A novel alginate lyase, AlyH1, from the marine bacterium Vibrio furnissii H1, which has been newly isolated from rotten seaweed, was purified and characterized. The purified enzyme showed the specific activity of 2.40 U/mg. Its molecular mass was 35.8 kDa. The optimal temperature and pH were 40 °C and pH 7.5, respectively. AlyH1 maintained stability at neutral pH (7.0–8.0 and temperatures below 30 °C. Metal ions Na+, Mg2+, and K+ increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax values of AlyH1 were 2.28 mg/mL and 2.81 U/mg, respectively. AlyH1 exhibited activities towards both polyguluronate and polymannuronate, and preferentially degraded polyguluronate. Products prepared from sodium alginate by AlyH1 were displayed to be di-, tri-, and tetra-alginate oligosaccharides. A partial amino acid sequence (190 aa of AlyH1 analysis suggested that AlyH1 was an alginate lyase of polysaccharide lyase family 7. The sequence showed less than 77% identity to the reported alginate lyases. These data demonstrated that AlyH1 could be as a novel and potential candidate in application of alginate oligosaccharides production with low polymerization degrees.

  8. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate).

    Science.gov (United States)

    Plaga, W; Frank, R; Knappe, J

    1988-12-15

    Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.

  9. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    Science.gov (United States)

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues

    Directory of Open Access Journals (Sweden)

    Safia Koser

    2014-07-01

    Full Text Available The present study was aimed to investigate the culture influence on pectin lyase production potential of fungal strain Aspergillus oryzae. The enzyme profile of A. oryzae showed highest activity of pectin lyase after 3rd day of incubation on lemon peel waste under solid state fermentation conditions. To induce the pectin lyase synthesis capability of A. oryzae at optimal level various culture variables including physical and nutritional parameters were optimized by adopting classical optimization technique. Therefore, through fermentation process optimization the production of pectin lyase was substantially induced up to the level of 875 U/mL, when fermentation medium of lemon peel waste inoculated with 5 mL spore suspension of A. oryzae. The optimal fermentation conditions for maximum pectin lyase yield were as: optimum pH 5, 70% moisture level and incubated at 40 °C in addition with 1% sterile glucose solution as readily available carbon source and 0.2% yeast extract as an inexpensive nitrogen supplement (1%. The results obtained in current investigation so far demonstrated that culture conditions have great influence on the pectin lyase production potential of A. oryzae.

  11. Isolation and characterization of Salmonella typhimurium glyoxylate shunt mutants.

    OpenAIRE

    Wilson, R B; Maloy, S R

    1987-01-01

    Growth of Salmonella typhimurium on acetate as a sole carbon source requires expression of the glyoxylate shunt; however, the genes for the glyoxylate shunt enzymes have not been previously identified in S. typhimurium. In this study, we isolated transposon insertions in the genes for the two unique enzymes of this pathway, aceA (isocitrate lyase) and aceB (malate synthase). The aceA and aceB genes were located at 89.5 min on the S. typhimurium genetic map. Genetic linkage to nearby loci indi...

  12. Cytochrome c and c1 heme lyases are essential in Plasmodium berghei.

    Science.gov (United States)

    Posayapisit, Navaporn; Songsungthong, Warangkhana; Koonyosying, Pongpisid; Falade, Mofolusho O; Uthaipibull, Chairat; Yuthavong, Yongyuth; Shaw, Philip J; Kamchonwongpaisan, Sumalee

    Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc 1 hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc 1 hl are both essential and thus may be antimalarial targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Science.gov (United States)

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  14. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  15. Production and Purification of a Novel Xanthan Lyase from a Xanthan-Degrading Microbacterium sp. Strain XT11

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2014-01-01

    Full Text Available A xanthan lyase was produced and purified from the culture supernatant of an excellent xanthan-modifying strain Microbacterium sp. XT11. Xanthan lyase was induced by xanthan but was inhibited by its structural monomer glucose. Its production by strain XT11 is much higher than that by all other reported strains. The purified xanthan lyase has a molecular mass of 110 kDa and a specific activity of 28.2 U/mg that was much higher than that of both Paenibacillus and Bacillus lyases. It was specific on the pyruvated mannosyl residue in the intact xanthan molecule, but about 50% lyase activity remained when xanthan was partially depyruvated. Xanthan lyase was optimally active at pH 6.0–6.5 and 40°C and alkali-tolerant at a high pH value of 11.0. The metal ions including K+, Ca2+, Na+, Mg2+, Mn2+, and Li+ strongly stimulated xanthan lyase activity but ions Zn2+ and Cu2+ were its inhibitor. Xanthan lyase should be a novel enzyme different from the other xanthan lyases ever reported.

  16. Isolation and Characterization of NADP+ -Linked Isocitrate Dehydrogenase in Germinating Urd Bean Seeds (Phaseolus mungo

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Srivastava

    2010-06-01

    Full Text Available Isocitrate dehydrogenase (EC 1.1.1.42 has been purified to homogeneity from germinating urd bean seeds. The enzyme NADP+ -linked isocitrate dehydrogenase is a tetrameric protein (molecular weight 130,000; gel filtration made up of four identical monomers (sub unit molecular weight about 32,000-33,000; PAGE in presence of sodium dodecyl sulphate. Thermal inactivation of purified enzyme at 40 °C, 45 °C and 50 °C shows single exponential loss of enzyme activity suggesting that the inactivation of this enzyme follows simple first order kinetics (rate constants for purified enzyme 0.020, 0.043 and 0.077 min–1 at 40 °C, 45 °C and 50 °C respectively. Thermal inactivation in presence of glutathione and dithiothretol at 45 °C and 50 °C also follows simple first order kinetics, but the presence of these compounds protects the loss of enzyme activity. The enzyme shows optimum activity at pH 7.3-8.0. The variation of Vmax and Km at different pH values (6.5-8.0 suggests that proton behaves as an "Uncompetitive Inhibitor". A basic group is present at the active site of enzyme which is accessible for protonation in this pH range in the presence of substrate only, with a pKa equal to 6.8. Successive dialysis against EDTA and phosphate buffer, pH 7.5 at 0-4 °C gives an enzymatically inactive protein. Thermal inactivation of this protein at 45 °C and 50 °C shows an exponential loss of enzyme activity as in the case of untreated (native enzyme. Full activity is restored on adding Mn2+ (3.75mM to a solution of this protein. Addition of Mg2+, Zn2+, Co2+ and Cu2+ brings about partial recovery. Alkali metal ions bring about 75% inhibition at 4mM concentration. The inhibition is stronger at high concentration of Na+ and K+ . Other metal ions are not effective.

  17. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A.

    Directory of Open Access Journals (Sweden)

    Steven M Swift

    Full Text Available Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates.

  18. [Effects of isocitrate lyase from Mycobacterium tuberculosis on the survival of Mycobacterium smegmatis in macrophage and mechanism thereof].

    Science.gov (United States)

    Li, Jun-Ming; Wan, La-Gen; Zhu, Dao-Yin; Li, Na; He, Yong-Lin; Yang, Chun

    2008-02-26

    To investigate the effects of isocitrate lyase (ICL) from Mycobacterium tuberculosis (MTB-icl) on the survival of Mycobacterium smegmatis (MS) in macrophage and illuminate the possible mechanisms. MTB-icl gene was amplified by PCR and cloned into Ecoli-Mycobacterium shuttle plasmid pUV15 to obtain recombinant shuttle plasmid pUV15-icl expressing ICL-GFP. The recombinant shuttle plasmid pUV15-icl and blank plasmid pUV15 were induced into MS of the line 1-2c so as to obtain rMS-pUV15-icl and rMS-pUV15. Shuttle plasmid rMS-pUV15-IG expressing ICL-green fluorescent protein (GFP) was constructed. rMS-pUV15-IG and MS 1-2c were used to infect the murine macrophages of the line RAW264.7, fluorescence microscopy was used to observe the expression of ICL-GFP. The expression of ICL in the MS swallowed by the macrophages was verified by RT-PCR and Western blotting. Another macrophages RAW264.7 were cultured and infected with rMS-pUV15-icl and rMS-pUV15 respectively. 0, 24, and 48 hours later macrophages were collected and the number of MS colonies was calculated. The interferon (IFN)-gamma and nitrogen oxide (NO) concentrations in the culture supernatants of macrophages infected by rMS-pUV15-icl and rMS-pUV15 were measured by ELISA and Griess assay respectively. The apoptotic rate of the macrophages was assayed by in situ TUNEL technique. Western blotting showed that the MTB ICL protein expression of the rMS-pUV15-icl was significantly higher than that of rMS-pUVI5. Fluorescence microscopy showed green fluorescence in the RAW264.7 cells infected with rMS-pUV15-IG, but not ion the RAW264.7 cells infected with MS 1-2c. 0 h after the infection of the macrophages there was not significant difference in the MS amount in the macrophages between the rMS-pUV15-isl and rMS-pUV15 groups, and 24 h and 48 h later the MS amounts of the rMS-pUV15-icl group were (32.78 +/- 2.90) x 10(3) and (23.33 + 2.34) x 10(3) respectively, both significantly higher than those of the rMS-pUV15 group [(14

  19. Pectinolytic bacteria and their secreted pectate lyases: agents for the maceration and solubilization of phytomass for fuels production

    Energy Technology Data Exchange (ETDEWEB)

    Preston, J.F. III; Rice, J.D.; Chow, M.C. (Florida Univ., Gainesville, FL (United States). Dept. of Microbiology and Cell Science)

    1993-01-01

    The objectives of this research have been to identify the pectinolytic enzymes secreted by bacteria and apply these towards the enhanced maceration and solubilization of plant material, focusing on the pectate lyases secreted by the phytopathogenic strains of Erwinia chrysanthemi, the ruminant resident Lachnospira multiparus, and the wood digestor isolate, Clostridium populeti. An HPLC approach has been developed that permits the kinetic analysis of each enzyme with respect to the formation of individual products during the pectate depolymerization process. This approach has demonstrated that each of these organisms secretes a nonrandom trimer-generating pectate lyase with a combination of endolytic and exolytic depolymerizing mechanisms. Two different strains of E. chrysanthemi secrete a battery of pectate lyases that include random endolytic as well as nonrandom dimer - and nonrandom trimer-generating endolytic/exolytic mechanisms. (author)

  20. Structure-based functional annotation of putative conserved proteins having lyase activity from Haemophilus influenzae.

    Science.gov (United States)

    Shahbaaz, Mohd; Ahmad, Faizan; Imtaiyaz Hassan, Md

    2015-06-01

    Haemophilus influenzae is a small pleomorphic Gram-negative bacteria which causes several chronic diseases, including bacteremia, meningitis, cellulitis, epiglottitis, septic arthritis, pneumonia, and empyema. Here we extensively analyzed the sequenced genome of H. influenzae strain Rd KW20 using protein family databases, protein structure prediction, pathways and genome context methods to assign a precise function to proteins whose functions are unknown. These proteins are termed as hypothetical proteins (HPs), for which no experimental information is available. Function prediction of these proteins would surely be supportive to precisely understand the biochemical pathways and mechanism of pathogenesis of Haemophilus influenzae. During the extensive analysis of H. influenzae genome, we found the presence of eight HPs showing lyase activity. Subsequently, we modeled and analyzed three-dimensional structure of all these HPs to determine their functions more precisely. We found these HPs possess cystathionine-β-synthase, cyclase, carboxymuconolactone decarboxylase, pseudouridine synthase A and C, D-tagatose-1,6-bisphosphate aldolase and aminodeoxychorismate lyase-like features, indicating their corresponding functions in the H. influenzae. Lyases are actively involved in the regulation of biosynthesis of various hormones, metabolic pathways, signal transduction, and DNA repair. Lyases are also considered as a key player for various biological processes. These enzymes are critically essential for the survival and pathogenesis of H. influenzae and, therefore, these enzymes may be considered as a potential target for structure-based rational drug design. Our structure-function relationship analysis will be useful to search and design potential lead molecules based on the structure of these lyases, for drug design and discovery.

  1. Probing the structure of glucan lyases – the lytic members of GH31 - by sequence analysis, circular dichroism and proteolysis

    DEFF Research Database (Denmark)

    Ernst, Heidi; Lo Leggio, Leila; Yu, Shukun

    2005-01-01

    Glucan lyase (GL) is a polysaccharide lyase with unique characteristics. It is involved in an alternative pathway for the degradation of alpha-glucans, the anhydrofructose pathway. Sequence similarity suggests that this lytic enzyme belongs to glycoside hydrolase family 31, for which until very r...

  2. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    Science.gov (United States)

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  3. High-Level Expression of a Thermally Stable Alginate Lyase Using Pichia pastoris, Characterization and Application in Producing Brown Alginate Oligosaccharide

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2018-05-01

    Full Text Available An alginate lyase encoding gene sagl from Flavobacterium sp. H63 was codon optimized and recombinantly expressed at high level in P.pastoris through high cell-density fermentation. The highest yield of recombinant enzyme of sagl (rSAGL in yeast culture supernatant reached 226.4 μg/mL (915.5 U/mL. This was the highest yield record of recombinant expression of alginate lyase so far. The rSAGL was confirmed as a partially glycosylated protein through EndoH digestion. The optimal reaction temperature and pH of this enzyme were 45 °C and 7.5; 80 mM K+ ions could improve the catalytic activity of the enzyme by 244% at most. rSAGL was a thermal stable enzyme with T5015 of 57–58 °C and T5030 of 53–54 °C. Its thermal stability was better than any known alginate lyase. In 100 mM phosphate buffer of pH 6.0, rSAGL could retain 98.8% of the initial activity after incubation at 50 °C for 2 h. Furthermore, it could retain 61.6% of the initial activity after 48 h. The specific activity of the purified rSAGL produced by P. pastoris attained 4044 U/mg protein, which was the second highest record of alginate lyase so far. When the crude enzyme of the rSAGL was directly used in transformation of sodium alginate with 40 g/L, 97.2% of the substrate was transformed to di, tri, tetra brown alginate oligosaccharide after 32 h of incubation at 50 °C, and the final concentration of reducing sugar in mixture reached 9.51 g/L. This is the first report of high-level expression of thermally stable alginate lyase using P. pastoris system.

  4. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    Science.gov (United States)

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives.

    Science.gov (United States)

    Husarcíková, Jana; Voß, Hauke; Domínguez de María, Pablo; Schallmey, Anett

    2018-05-04

    Lignin is the major aromatic biopolymer in nature, and it is considered a valuable feedstock for the future supply of aromatics. Hence, its valorisation in biorefineries is of high importance, and various chemical and enzymatic approaches for lignin depolymerisation have been reported. Among the enzymes known to act on lignin, β-etherases offer the possibility for a selective cleavage of the β-O-4 aryl ether bonds present in lignin. These enzymes, together with glutathione lyases, catalyse a reductive, glutathione-dependent ether bond cleavage displaying high stereospecificity. β-Etherases and glutathione lyases both belong to the superfamily of glutathione transferases, and several structures have been solved recently. Additionally, different approaches for their application in lignin valorisation have been reported in the last years. This review gives an overview on the current knowledge on β-etherases and glutathione lyases, their biochemical and structural features, and critically discusses their potential for application in biorefineries.

  6. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    Directory of Open Access Journals (Sweden)

    Elias Abdou

    2017-05-01

    Full Text Available For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL, were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work

  7. Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids

    NARCIS (Netherlands)

    Raj, Hans; Szymanski, Wiktor; de Villiers, Jandre; Rozeboom, Henriëtte J.; Puthan Veetil, Vinod; Reis, Carlos R.; Villiers, Marianne de; Dekker, Frank J.; Wildeman, Stefaan de; Quax, Wim J.; Thunnissen, Andy-Mark W.H.; Feringa, Ben L.; Janssen, Dick B.; Poelarends, Gerrit J.

    The redesign of enzymes to produce catalysts for a predefined transformation remains a major challenge in protein engineering. Here, we describe the structure-based engineering of methylaspartate ammonia lyase (which in nature catalyses the conversion of 3-methylaspartate to ammonia and

  8. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  9. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    Science.gov (United States)

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-02

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  11. Biocatalytic Enantioselective Synthesis of N-Substituted Aspartic Acids by Aspartate Ammonia Lyase

    NARCIS (Netherlands)

    Weiner, Barbara; Poelarends, Gerrit J.; Janssen, Dick B.; Feringa, Ben L.

    2008-01-01

    The gene encoding aspartate ammonia lyase (aspB) from Bacillus sp. YM55-1 has been cloned and overexpressed, and the recombinant enzyme containing a C-terminal His6 tag has been purified to homogeneity and subjected to kinetic characterization. Kinetic studies have shown that the His6 tag does not

  12. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    International Nuclear Information System (INIS)

    Chocat, P.; Esaki, N.; Tanizawa, K.; Nakamura, K.; Tanaka, H.; Soda, K.

    1985-01-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH 3 , pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar

  13. Prognostic Value of Malic Enzyme and ATP-Citrate Lyase in Non-Small Cell Lung Cancer of the Young and the Elderly.

    Directory of Open Access Journals (Sweden)

    Agnes Csanadi

    Full Text Available Lung cancer is the leading cause of death among malignancies worldwide. Understanding its biology is therefore of pivotal importance to improve patient's prognosis. In contrast to non-neoplastic tissues, cancer cells utilize glucose mainly for production of basic cellular modules '(i.e. nucleotides, aminoacids, fatty acids. In cancer, Malic enzyme (ME and ATP-citrate lyase (ACLY are key enzymes linking aerobic glycolysis and fatty acid synthesis and may therefore be of biological and prognostic significance in non-small cell lung cancer (NSCLC.ME and ACLY expression was analyzed in 258 NSCLC in correlation with clinico-pathological parameters including patient's survival.Though, overall expression of both enzymes correlated positively, ACLY was associated with local tumor stage, whereas ME correlated with occurrence of mediastinal lymph node metastases. Young patients overexpressing ACLY and/or ME had a significantly longer overall survival. This proved to be an independent prognostic factor. This contrasts older NSCLC patients, in whom overexpression of ACLY and/or ME appears to predict the opposite.In NSCLC, ME and ACLY show different enzyme expressions relating to local and mediastinal spread. Most important, we detected an inverse prognostic impact of ACLY and/or ME overexpression in young and elderly patients. It can therefore be expected, that treatment of NSCLC especially, if targeting metabolic pathways, requires different strategies in different age groups.

  14. The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models

    Directory of Open Access Journals (Sweden)

    Amaia Zúñiga-Ripa

    2018-04-01

    Full Text Available Bacteria of the genus Brucella infect a range of vertebrates causing a worldwide extended zoonosis. The best-characterized brucellae infect domestic livestock, behaving as stealthy facultative intracellular parasites. This stealthiness depends on envelope molecules with reduced pathogen-associated molecular patterns, as revealed by the low lethality and ability to persist in mice of these bacteria. Infected cells are often engorged with brucellae without signs of distress, suggesting that stealthiness could also reflect an adaptation of the parasite metabolism to use local nutrients without harming the cell. To investigate this, we compared key metabolic abilities of Brucella abortus 2308 Wisconsin (2308W, a cattle biovar 1 virulent strain, and B. suis 513, the reference strain of the ancestral biovar 5 found in wild rodents. B. suis 513 used a larger number of C substrates and showed faster growth rates in vitro, two features similar to those of B. microti, a species phylogenomically close to B. suis biovar 5 that infects voles. However, whereas B. microti shows enhanced lethality and reduced persistence in mice, B. suis 513 was similar to B. abortus 2308W in this regard. Mutant analyses showed that B. suis 513 and B. abortus 2308W were similar in that both depend on phosphoenolpyruvate synthesis for virulence but not on the classical gluconeogenic fructose-1,6-bisphosphatases Fbp-GlpX or on isocitrate lyase (AceA. However, B. suis 513 used pyruvate phosphate dikinase (PpdK and phosphoenolpyruvate carboxykinase (PckA for phosphoenolpyruvate synthesis in vitro while B. abortus 2308W used only PpdK. Moreover, whereas PpdK dysfunction causes attenuation of B. abortus 2308W in mice, in B. suis, 513 attenuation occurred only in the double PckA-PpdK mutant. Also contrary to what occurs in B. abortus 2308, a B. suis 513 malic enzyme (Mae mutant was not attenuated, and this independence of Mae and the role of PpdK was confirmed by the lack of

  15. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW--A Mononuclear Iron-Dependent DMSP Lyase.

    Directory of Open Access Journals (Sweden)

    Adam E Brummett

    Full Text Available The osmolyte dimethylsulfoniopropionate (DMSP is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS, a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121. Measurements of metal binding affinity and catalytic activity indicate that Fe(II is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II per monomer. Electronic absorption and electron paramagnetic resonance (EPR studies show an interaction between NO and Fe(II-DddW, with NO binding to the EPR silent Fe(II site giving rise to an EPR active species (g = 4.29, 3.95, 2.00. The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW.

  16. Alginate-modifying enzymes: Biological roles and biotechnological uses

    Directory of Open Access Journals (Sweden)

    Helga eErtesvåg

    2015-05-01

    Full Text Available Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M and α-L-guluronic acid (G. The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g. gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG and an alginate acetylase (AlgX are integral parts of the protein complex necessary for alginate polymerisation and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. One enzyme with alginate deacetylase activity from Pseudomonas syringae has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and

  17. Engineering of pectinolytic enzymes for enhanced thermostability

    DEFF Research Database (Denmark)

    Larsen, Dorte Møller

    Conversion of waste materials into valuable compounds is promising concerning transformation of byproduct streams such as sugar beet and potato pulp. In order to obtain those compounds with reduced energy consumption, carbohydrate active enzymes can be used as catalysts. Sugar beet and potato pulp...... consist of pectin that can be converted into beneficial polymeric and oligomeric carbohydrates requiring enzymes such as pectin lyases, rhamnogalacturonan I (RGI) lyases, polygalacturonases and galactanases. Enzymatic conversion of such pectinaceous biomasses at high temperatures is advantageous...... as it gives rise to lower substrate viscosity, easier mixing, higher substrate solubility and lowers the risk of contamination. The overall objective of this thesis was to discover enzymes for degradation of RGI structures in pectin and further engineer for enhanced thermostability. The hypotheses were...

  18. Functional Analyses of Resurrected and Contemporary Enzymes Illuminate an Evolutionary Path for the Emergence of Exolysis in Polysaccharide Lyase Family 2.

    Science.gov (United States)

    McLean, Richard; Hobbs, Joanne K; Suits, Michael D; Tuomivaara, Sami T; Jones, Darryl R; Boraston, Alisdair B; Abbott, D Wade

    2015-08-28

    Family 2 polysaccharide lyases (PL2s) preferentially catalyze the β-elimination of homogalacturonan using transition metals as catalytic cofactors. PL2 is divided into two subfamilies that have been generally associated with secretion, Mg(2+) dependence, and endolysis (subfamily 1) and with intracellular localization, Mn(2+) dependence, and exolysis (subfamily 2). When present within a genome, PL2 genes are typically found as tandem copies, which suggests that they provide complementary activities at different stages along a catabolic cascade. This relationship most likely evolved by gene duplication and functional divergence (i.e. neofunctionalization). Although the molecular basis of subfamily 1 endolytic activity is understood, the adaptations within the active site of subfamily 2 enzymes that contribute to exolysis have not been determined. In order to investigate this relationship, we have conducted a comparative enzymatic analysis of enzymes dispersed within the PL2 phylogenetic tree and elucidated the structure of VvPL2 from Vibrio vulnificus YJ016, which represents a transitional member between subfamiles 1 and 2. In addition, we have used ancestral sequence reconstruction to functionally investigate the segregated evolutionary history of PL2 progenitor enzymes and illuminate the molecular evolution of exolysis. This study highlights that ancestral sequence reconstruction in combination with the comparative analysis of contemporary and resurrected enzymes holds promise for elucidating the origins and activities of other carbohydrate active enzyme families and the biological significance of cryptic metabolic pathways, such as pectinolysis within the zoonotic marine pathogen V. vulnificus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    Science.gov (United States)

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  20. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    Science.gov (United States)

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  1. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    Science.gov (United States)

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  2. [Construction and high-density fermentation of alkaline pectate lyase high-yield yeast].

    Science.gov (United States)

    Wang, Xiaowen; Xiang, La; Xu, Ting; Lu, Zhenghui; Zhang, Guimin

    2017-12-25

    Pectate lyase is widely applied in ramie degumming and fabric bioscouring in the textile industry. Compared to conventional processes that involve high alkaline and high temperature treatment, enzyme based treatments have significant advantages in fibers protectiveness, improved efficiency of refining, reduced energy consumption and pollution. Hence, it would be highly desirable to construct high-yield alkaline pectate lyase engineered strains and reduce the pectate lyase production cost. In the previous study, pectate lyase gene pel from Bacillus subtilis168 was expressed in Pichia pastoris GS115 after codon usage optimization based on the vector pHBM905A. To improve the expression level, the vector pHBM905BDM with optimized promoter and signal peptide was used to express the optimized gene pels in GS115. The transformant had increased activity from 68 U/mL to 100 U/mL with the improvement in the transcription level by 27% measured by qPCR. The transformants were further screened on pectin plates, where higher halo forming strains were picked for shake-flask fermentation and strain GS115-pHBM905BDM-pels4 showed the highest activity of 536 U/mL. Then plasmid pPIC9K-pels was constructed and electroporated into the GS115-pHBM905BDM-pels4 cells. Subsequently, high-copy transformant was screened by using the medium containing antibiotics G418, strain GS115-pHBM905BDMpPIC9K- pels1 was identified with increased activity of 770 U/mL and the copy number of pels was 7 confirmed by qPCR. Finally, the activity of pectate lyase produced by GS115-pHBM905BDM-pPIC9K-pels1reached to 2 271 U/mL in a 5-L fermentor. The activity of pectate lyase in our study reached the highest level of expression in P. pastoris, showing good application potential in the textile industry.

  3. Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5.

    Science.gov (United States)

    Mohapatra, Bidyut R

    2017-05-01

    In an effort to screen out the alginolytic and cellulolytic bacteria from the putrefying invasive seaweed Sargassum species accumulated off Barbados' coast, a potent bacterial strain was isolated. This bacterium, which simultaneously produced alginate lyase and cellulase, was identified as Exiguobacterium sp. Alg-S5 via the phylogenetic approach targeting the 16S rRNA gene. The co-produced alginate lyase and cellulase exhibited maximal enzymatic activity at pH 7.5 and at 40°C and 45°C, respectively. The K m and V max values recorded as 0.91mg/mL and 21.8U/mg-protein, respectively, for alginate lyase, and 10.9mg/mL and 74.6U/mg-protein, respectively, for cellulase. First order kinetic analysis of the thermal denaturation of the co-produced alginate lyase and cellulase in the temperature range from 40°C to 55°C revealed that both the enzymes were thermodynamically efficient by displaying higher activation energy and enthalpy of denaturation. These enzymatic properties indicate the potential industrial importance of this bacterium in algal biomass conversion. This appears to be the first report on assessing the efficacy of a bacterium for the co-production of alginate lyase and cellulase. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    Science.gov (United States)

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate

    International Nuclear Information System (INIS)

    Bandhuvula, Padmavathi; Li Zaiguo; Bittman, Robert; Saba, Julie D.

    2009-01-01

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an ω-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K m of 35 μM for BODIPY-sphingosine 1-phosphate.

  6. Rhodotorulaglutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity

    Directory of Open Access Journals (Sweden)

    Marybeth C MacDonald

    2016-03-01

    Full Text Available Biotransformation of L-tyrosine methyl ester (L-TM to the methyl ester of para- hydroxycinnamic acid (p-HCAM using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26 enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5, temperature (37 C, speed of agitation (50 rpm, enzyme concentration (0.080 µM, and substrate concentration (0.50 mM. Under these conditions, the yield of the reaction was ~15% in 1 h incubation period and ~63% after an overnight (~18 h incubation period. The product (p-HCAM of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR. Fourier Transform Infra-Red spectroscopy (FTIR was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram positive and Gram negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications.

  7. Identification and Characterisation of a Pectinolytic Enzyme from Paenibacillus xylanolyticus

    Directory of Open Access Journals (Sweden)

    Simona Giacobbe

    2014-06-01

    Full Text Available Pectinolytic enzymes play an important role in the processing of lignocellulosic materials because of their ability to improve the access of cellulases to their substrate by removing pectins. The strain Paenibacillus xylanolyticus 2-6L3 was isolated from mature compost obtained from agro-industrial wastes, and the enzyme pectate lyase from P. xylanolyticus 2-6L3, named PaenxylPel, was partially purified and subjected to structural and functional characterisation. The enzyme exhibited an optimum temperature between 60 and 70 °C and optimal pH value of 9.0 for its pectinase activity on pectin from citrus fruit. PaenxylPel showed a thermoresistance and pH resistance higher than those of other pectate lyases so far described, with half-lives of 48 and 24 h at 60 and 70 °C, respectively, a retention of around 80% of activity after 96 h at 40 and 50 °C, and a half-life of about 15 days at pH 8.0. PaenxylPel followed Michaelis-Menten kinetics toward pectin from citrus fruit, pectin from sugar beet pulp, high-ester pectin extracted from citrus peel (> 50% esterified, and polygalacturonic acid (PLA. The ability to act on both PLA and highly methylated pectins, together with a double peak in the graph of optimum pH at pH 5 and 9, suggest that pectate lyase from P. xylanolyticus shows an unusual activity, combining traits of pectate lyase and pectin lyase. This is the first manuscript on the pectinolytic activity of P. xylanolyticus.

  8. Crystallization and preliminary X-ray analysis of argininosuccinate lyase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Cao, Yan-Li; Li, Gui-Lan; Wang, Kai-Tuo; Zhang, Hong-Yin; Li, Lan-Fen

    2011-01-01

    Crystals of argininosuccinate lyase from S. mutans were obtained and X-ray data were collected to 2.5 Å resolution in space group R3. Argininosuccinate lyase (ASL) is an important enzyme in arginine synthesis and the urea cycle, which are highly conserved from bacteria to eukaryotes. The gene encoding Streptococcus mutans ASL (smASL) was amplified and cloned into expression vector pET28a. The recombinant smASL protein was expressed in a soluble form in Escherichia coli strain BL21 (DE3) and purified to homogeneity by two-step column chromatography. Crystals suitable for X-ray analysis were obtained and X-ray diffraction data were collected to a resolution of 2.5 Å. The crystals belonged to space group R3, with unit-cell parameters a = b = 254.5, c = 78.3 Å

  9. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  10. Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging.

    Science.gov (United States)

    Kil, In Sup; Lee, Young Sup; Bae, Young Seuk; Huh, Tae Lin; Park, Jeen-Woo

    2004-01-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.

  11. Activities of methionine-γ-lyase in the acidophilic archaeon “Ferroplasma acidarmanus” strain fer1

    Directory of Open Access Journals (Sweden)

    Khan MA

    2013-04-01

    Full Text Available M A Khan,1 Madeline M López-Muñoz,2 Charles W Kaspar,3 Kai F Hung1 1Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA; 2Department of Biology, Universidad de Puerto Rico, Mayaguez, Puerto Rico; 3Bacteriology Department, University of Wisconsin, Madison, WI, USA Abstract: Biogeochemical processes on exposed pyrite ores result in extremely high levels of sulfuric acid at these locations. Acidophiles that thrive in these conditions must overcome significant challenges, including an environment with proton concentrations at pH 3 or below. The role of sulfur metabolism in the archaeon “Ferroplasma acidarmanus” strain fer1's ability to thrive in this environment was investigated due to its growth-dependent production of methanethiol, a volatile organic sulfur compound. Two putative sequences for methionine-γ-lyase (EC 4.4.1.11, an enzyme known to carry out α, γ-elimination on L-methionine to produce methanethiol, were identified in fer1. Bioinformatic analyses identified a conserved pyridoxal-5'-phosphate (PLP binding domain and a partially conserved catalytic domain in both putative sequences. Detection of PLP-dependent and L-methionine-dependent production of α-keto compounds and thiol groups in fer1 confirmed the presence of methionine-γ-lyase activity. Further, fer1 lysate was capable of processing related substrates, including D-methionine, L-cysteine, L-cystathionine, and L/D-homocysteine. When the two putative fer1 methionine-γ-lyase gene-coded proteins were expressed in Escherichia coli cells, one sequence demonstrated an ability to carry out α, γ-elimination activity, while the other exhibited γ-replacement activity. These fer1 methionine-γ-lyases also exhibited optimum pH, substrate specificity, and catalytic preferences that are different from methionine-γ-lyases from other organisms. These differences are discussed in the context of molecular phylogeny constructed using a maximum

  12. Sugar-cane juice induces pectin lyase and polygalacturonase in Penicillium griseoroseum

    Directory of Open Access Journals (Sweden)

    Minussi Rosana Cristina

    1998-01-01

    Full Text Available The use of other inducers as substitutes for pectin was studied aiming to reduce the production costs of pectic enzymes. The effects of sugar-cane juice on the production of pectin lyase (PL and polygalacturonase (PG by Penicillium griseoroseum were investigated. The fungus was cultured in a mineral medium (pH 6.3 in a rotary shaker (150 rpm for 48 h at 25oC. Culture media were supplemented with yeast extract and sucrose or sugar-cane juice. Sugar-cane juice added singly to the medium promoted higher PL activity and mycelial dry weight when compared to pectin and the use of sugar-cane juice and yeast extract yielded levels of PG activity that were similar to those obtained with sucrose-yeast extract or pectin. The results indicated that, even at low concentrations, sugar-cane juice was capable of inducing pectin lyase and polygalacturonase with no cellulase activity in P. griseoroseum.

  13. AlgM4: A New Salt-Activated Alginate Lyase of the PL7 Family with Endolytic Activity

    Directory of Open Access Journals (Sweden)

    Guiyuan Huang

    2018-04-01

    Full Text Available Alginate lyases are a group of enzymes that catalyze the depolymerization of alginates into oligosaccharides or monosaccharides. These enzymes have been widely used for a variety of purposes, such as producing bioactive oligosaccharides, controlling the rheological properties of polysaccharides, and performing structural analyses of polysaccharides. The algM4 gene of the marine bacterium Vibrio weizhoudaoensis M0101 encodes an alginate lyase that belongs to the polysaccharide lyase family 7 (PL7. In this study, the kinetic constants Vmax (maximum reaction rate and Km (Michaelis constant of AlgM4 activity were determined as 2.75 nmol/s and 2.72 mg/mL, respectively. The optimum temperature for AlgM4 activity was 30 °C, and at 70 °C, AlgM4 activity dropped to 11% of the maximum observed activity. The optimum pH for AlgM4 activity was 8.5, and AlgM4 was completely inactive at pH 11. The addition of 1 mol/L NaCl resulted in a more than sevenfold increase in the relative activity of AlgM4. The secondary structure of AlgM4 was altered in the presence of NaCl, which caused the α-helical content to decrease from 12.4 to 10.8% and the β-sheet content to decrease by 1.7%. In addition, NaCl enhanced the thermal stability of AlgM4 and increased the midpoint of thermal denaturation (Tm by 4.9 °C. AlgM4 exhibited an ability to degrade sodium alginate, poly-mannuronic acid (polyM, and poly-guluronic acid (polyG, resulting in the production of oligosaccharides with a degree of polymerization (DP of 2–9. AlgM4 possessed broader substrate, indicating that it is a bifunctional alginate lyase. Thus, AlgM4 is a novel salt-activated and bifunctional alginate lyase of the PL7 family with endolytic activity.

  14. Phenolic compounds and related enzymes as determinants of sorghum for food use

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; Berkel, van W.J.H.

    2006-01-01

    Phenolic compounds and related enzymes such as phenol biosynthesizing enzymes (phenylalanine ammonia lyase) and phenol catabolizing enzymes (polyphenol oxidase and peroxidase) are determinants for sorghum utilization as human food because they influence product properties during and after sorghum

  15. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    Science.gov (United States)

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  16. Design of a species-specific PCR method for the detection of the heat-resistant fungi Talaromyces macrosporus and Talaromyces trachyspermus.

    Science.gov (United States)

    Yamashita, S; Nakagawa, H; Sakaguchi, T; Arima, T-H; Kikoku, Y

    2018-01-01

    Heat-resistant fungi occur sporadically and are a continuing problem for the food and beverage industry. The genus Talaromyces, as a typical fungus, is capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Isocitrate lyase, a signature enzyme of the glyoxylate cycle, is required for the metabolism of non-fermentable carbon compounds, like acetate and ethanol. Here, species-specific primer sets for detection and identification of DNA derived from Talaromyces macrosporus and Talaromyces trachyspermus were designed based on the nucleotide sequences of their isocitrate lyase genes. Polymerase chain reaction (PCR) using a species-specific primer set amplified products specific to T. macrosporus and T. trachyspermus. Other fungal species, such as Byssochlamys fulva and Hamigera striata, which cause food spoilage, were not detected using the Talaromyces-specific primer sets. The detection limit for each species-specific primer set was determined as being 50 pg of template DNA, without using a nested PCR method. The specificity of each species-specific primer set was maintained in the presence of 1,000-fold amounts of genomic DNA from other fungi. The method also detected fungal DNA extracted from blueberry inoculated with T. macrosporus. This PCR method provides a quick, simple, powerful and reliable way to detect T. macrosporus and T. trachyspermus. Polymerase chain reaction (PCR)-based detection is rapid, convenient and sensitive compared with traditional methods of detecting heat-resistant fungi. In this study, a PCR-based method was developed for the detection and identification of amplification products from Talaromyces macrosporus and Talaromyces trachyspermus using primer sets that target the isocitrate lyase gene. This method could be used for the on-site detection of T. macrosporus and T. trachyspermus in the near future, and will be helpful in the safety control of raw materials and in food and beverage

  17. Crosslinked enzyme aggregates of hydroxynitrile lyase partially purified from Prunus dulcis seeds and its application for the synthesis of enantiopure cyanohydrins.

    Science.gov (United States)

    Yildirim, Deniz; Tükel, S Seyhan; Alagöz, Dilek

    2014-01-01

    Hydroxynitrile lyases are powerful catalysts in the synthesis of enantiopure cyanohydrins which are key synthons in the preparations of a variety of important chemicals. The response surface methodology including three-factor and three-level Box-Behnken design was applied to optimize immobilization of hydroxynitrile lyase purified partially from Prunus dulcis seeds as crosslinked enzyme aggregates (PdHNL-CLEAs). The quadratic model was developed for predicting the response and its adequacy was validated with the analysis of variance test. The optimized immobilization parameters were initial glutaraldehyde concentration, ammonium sulfate saturation concentration, and crosslinking time, and the response was relative activity of PdHNL-CLEA. The optimal conditions were determined as initial glutaraldehyde concentration of 25% w/v, ammonium sulfate saturation concentration of 43% w/v, and crosslinking time of 18 h. The preparations of PdHNL-CLEA were examined for the synthesis of (R)-mandelonitrile, (R)-2-chloromandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, (R)-4-bromomandelonitrile, (R)-4-fluoromandelonitrile, and (R)-4-nitromandelonitrile from their corresponding aldehydes and hydrocyanic acid. After 96-h reaction time, the yield-enantiomeric excess values (%) were 100-99, 100-21, 100-99, 83-91, 100-99, 100-72, and 100-14%, respectively, for (R)-mandelonitrile, (R)-2-chloromandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, (R)-4-bromomandelonitrile, (R)-4-fluoromandelonitrile, and (R)-4-nitromandelonitrile. The results show that PdHNL-CLEA offers a promising potential for the preparation of enantiopure (R)-mandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, and (R)-4-bromomandelonitrile with a high yield and enantiopurity. © 2014 American Institute of Chemical Engineers.

  18. Impact of different alginate lyases on combined cellulase–lyase saccharification of brown seaweed

    DEFF Research Database (Denmark)

    Manns, Dirk Martin; Nyffenegger, Christian; Saake, B.

    2016-01-01

    -guluronic acid. When applied together with a fungal cellulase preparation (Cellic®CTec2) at pH 6 and 40 °C on a glucan rich brown seaweed Laminaria digitata the viscosity decreased in the initial minutes while measurable alginate degradation occurred primarily within the first 1–2 hours of reaction. Whereas FALy......, indicating that the degradation of mannuronic acid blocks inhibited cellulase catalyzed glucose release from L. digitata. Nevertheless, combined alginate lyase and cellulase treatment for 24 hours released all potential glucose regardless of the applied lyase. The enzymatic treatment moreover induced...

  19. Purification, crystallization and preliminary X-ray analysis of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli

    International Nuclear Information System (INIS)

    Zheng, Jimin; Lee, Daniel C.; Jia, Zongchao

    2009-01-01

    Isocitrate dehydrogenase kinase/phosphatase has been crystallized in three different crystal forms. Data were collected from each crystal form for structure determination. The Escherichia coli aceK gene encodes isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5), a bifunctional protein that phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH), resulting in its inactivation and activation, respectively. This reversible (de)phosphorylation directs isocitrate, an intermediate of the citric acid cycle, to either go through the full cycle or to enter the glyoxylate bypass. In the present study, the AceK protein from E. coli has been purified and crystallized. Three crystal forms were obtained from very similar crystallization conditions. The crystals belong to space groups P4 1 2 1 2, P3 2 21 and P2 1 2 1 2 1 and diffracted X-rays to resolutions of 2.9, 3.0 and 2.7 Å, respectively

  20. Increased protein expression of LHCG receptor and 17a-hydroxylase/17,20-lyase in human polycystic ovaries

    NARCIS (Netherlands)

    Comim, F.V.; Teerds, K.J.; Hardy, K.; Franks, S.

    2013-01-01

    STUDY QUESTION Does the expression of LHCG receptor (LHCGR) protein and key enzymes in the androgen biosynthetic pathway differ in normal human versus polycystic ovarian tissue? SUMMARY ANSWER LHCGR and 17a-hydroxylase/17-20-lyase (CYP17A1) protein levels are increased in polycystic ovaries (PCOs).

  1. Enhancing RGI lyase thermostability by targeted single point mutations

    DEFF Research Database (Denmark)

    Silva, Inês R.; Larsen, Dorte Møller; Jers, Carsten

    2013-01-01

    Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering...

  2. Isocitrate dehydrogenase mutation hot spots in acute lymphoblastic leukemia and oral cancer

    Directory of Open Access Journals (Sweden)

    Jen-Yang Tang

    2012-03-01

    Full Text Available Isocitrate dehydrogenase (IDH encodes a nicotinamide adenine dinucleotide phosphate+-dependent enzyme for oxidative decarboxylation of isocitrate and has an essential role in the tricarboxylic acid cycle. Mutations of IDH1 and IDH2 have been identified in patients with glioma, leukemia, and other cancers. However, the incidence of IDH mutations in acute myeloid leukemia in Taiwan is much lower than that reported in Western countries. The reason for the difference is unknown and its clinical implications remain unclear. Acute lymphoblastic leukemia (ALL is a heterogenous hematopoietic malignancy. Oral squamous cell carcinoma (OSCC results from chronic carcinogen exposures and is highly prevalent in trucking workers, especially in southern Taiwan. Subtypes of both diseases require specific treatments, and molecular markers for developing tailored treatments are limited. High-resolution melting (HRM analysis is now a widely used methodology for rapid, accurate, and low-cost mutation scanning. In this study, 90 adults with OSC and 31 children with ALL were scanned by HRM analysis for IDH1 and IDH2 mutation hot spots. In ALL, the allele frequency was 3.23% in both IDH1 and IDH2. In OSCC, the allele frequency was 2.22% in IDH2. A synonymous mutation over pG313 (c.939A > G of IDH2 was found in both pediatric ALL and adult OSCC. Therefore, we concluded that mutations of IDH are uncommon in ALL and OSCC and are apparently not a major consideration when selecting treatment modalities.

  3. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism.

    Science.gov (United States)

    Koh, Ho-Jin; Lee, Su-Min; Son, Byung-Gap; Lee, Soh-Hyun; Ryoo, Zae Young; Chang, Kyu-Tae; Park, Jeen-Woo; Park, Dong-Chan; Song, Byoung J; Veech, Richard L; Song, Hebok; Huh, Tae-Lin

    2004-09-17

    NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP(+)-dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor gamma were markedly elevated. The hepatic and epididymal fat pad contents of acetyl-CoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.

  4. Hydroxynitrile Lyases with α/β-Hydrolase Fold: Two Enzymes with Almost Identical 3D Structures but Opposite Enantioselectivities and Different Reaction Mechanisms

    Science.gov (United States)

    Andexer, Jennifer N; Staunig, Nicole; Eggert, Thorsten; Kratky, Christoph; Pohl, Martina; Gruber, Karl

    2012-01-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins to yield hydrocyanic acid (HCN) and the respective carbonyl compound and are key enzymes in the process of cyanogenesis in plants. In organic syntheses, HNLs are used as biocatalysts for the formation of enantiopure cyanohydrins. We determined the structure of the recently identified, R-selective HNL from Arabidopsis thaliana (AtHNL) at a crystallographic resolution of 2.5 Å. The structure exhibits an α/β-hydrolase fold, very similar to the homologous, but S-selective, HNL from Hevea brasiliensis (HbHNL). The similarities also extend to the active sites of these enzymes, with a Ser-His-Asp catalytic triad present in all three cases. In order to elucidate the mode of substrate binding and to understand the unexpected opposite enantioselectivity of AtHNL, complexes of the enzyme with both (R)- and (S)-mandelonitrile were modeled using molecular docking simulations. Compared to the complex of HbHNL with (S)-mandelonitrile, the calculations produced an approximate mirror image binding mode of the substrate with the phenyl rings located at very similar positions, but with the cyano groups pointing in opposite directions. A catalytic mechanism for AtHNL is proposed, in which His236 from the catalytic triad acts as a general base and the emerging negative charge on the cyano group is stabilized by main-chain amide groups and an α-helix dipole very similar to α/β-hydrolases. This mechanistic proposal is additionally supported by mutagenesis studies. PMID:22851196

  5. Purification and Characterization of a Unique Pectin Lyase from Aspergillus giganteus Able to Release Unsaturated Monogalacturonate during Pectin Degradation

    Directory of Open Access Journals (Sweden)

    Danielle Biscaro Pedrolli

    2014-01-01

    Full Text Available A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb2+ and was not significantly affected by Hg2+. Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca2+. The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking.

  6. Characterization of arsenite tolerant Halomonas sp. Alang-4, originated from heavy metal polluted shore of Gulf of Cambay.

    Science.gov (United States)

    Jain, Raina; Jha, Sanjay; Mahatma, Mahesh K; Jha, Anamika; Kumar, G Naresh

    2016-01-01

    Arsenite [As(III)]-oxidizing bacteria were isolated from heavy metal contaminated shore of Gulf of Cambay at Alang, India. The most efficient bacterial strain Alang-4 could tolerate up to 15 mM arsenite [As(III)] and 200 mM of arsenate [As(V)]. Its 16S rRNA gene sequence was 99% identical to the 16S rRNA genes of genus Halomonas (Accession no. HQ659187). Arsenite oxidase enzyme localized on membrane helped in conversion of As(III) to As(V). Arsenite transporter genes (arsB, acr3(1) and acr3(2)) assisted in extrusion of arsenite from Halomonas sp. Alang-4. Generation of ROS in response to arsenite stress was alleviated by higher activities of catalase, ascorbate peroxidase, superoxide dismutase and glutathione S-transferase enzymes. Down-regulation in the specific activities of nearly all dehydrogenases of carbon assimilatory pathway viz., glucose-6-phosphate, pyruvate, α-ketoglutarate, isocitrate and malate dehydrogenases, was observed in presence of As(III), whereas, the specific activities of phosphoenol pyruvate carboxylase, pyruvate carboxylase and isocitrate lyase enzymes were found to increase two times in As(III) treated cells. The results suggest that in addition to efficient ars operon, alternative pathways of carbon utilization exist in the marine bacterium Halomonas sp. Alang-4 to overcome the toxic effects of arsenite on its dehydrogenase enzymes.

  7. Exploration of swapping enzymatic function between two proteins: A simulation study of chorismate mutase and isochorismate pyruvate lyase

    Science.gov (United States)

    Choutko, Alexandra; Eichenberger, Andreas P; Gunsteren, Wilfred F; Dolenc, Jožica

    2013-01-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. PMID:23595942

  8. Exploration of swapping enzymatic function between two proteins: a simulation study of chorismate mutase and isochorismate pyruvate lyase.

    Science.gov (United States)

    Choutko, Alexandra; Eichenberger, Andreas P; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-06-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. © 2013 The Protein Society.

  9. Characterization of a new (R)-hydroxynitrile lyase from the Japanese apricot Prunus mume and cDNA cloning and secretory expression of one of the isozymes in Pichia pastoris.

    Science.gov (United States)

    Fukuta, Yasuhisa; Nanda, Samik; Kato, Yasuo; Yurimoto, Hiroya; Sakai, Yasuyoshi; Komeda, Hidenobu; Asano, Yasuhisa

    2011-01-01

    PmHNL, a hydroxynitrile lyase from Japanese apricot ume (Prunus mume) seed was purified to homogeneity by ammonium sulfate fractionation and chromatographic steps. The purified enzyme was a monomer with molecular mass of 58 kDa. It was a flavoprotein similar to other hydroxynitrile lyases of the Rosaceae family. It was active over a broad temperature, and pH range. The N-terminal amino acid sequence (20 amino acids) was identical with that of the enzyme from almond (Prunus dulcis). Based on the N-terminal sequence of the purified enzyme and the conserved amino acid sequences of the enzymes from Pr. dulcis, inverse PCR method was used for cloning of a putative PmHNL (PmHNL2) gene from a Pr. mume seedling. Then the cDNA for the enzyme was cloned. The deduced amino acid sequence was found to be highly similar (95%) to that of an enzyme from Pr. serotina, isozyme 2. The recombinant Pichia pastoris transformed with the PmHNL2 gene secreted an active enzyme in glycosylated form.

  10. Degradation of the endosperm cell walls of Lactuca sativa L., cv. grand rapids in relation to the mobilisation of proteins and the production of hydrolytic enzymes in the axis, cotyledons and endosperm.

    Science.gov (United States)

    Leung, D W; Reid, J S; Bewley, J D

    1979-01-01

    The timing of changes in total nitrogen and soluble amino nitrogen content, and in the activities of proteinase (pH 7.0), isocitrate lyase, catalase, phytase, phosphatase (pH 5.0), α-galactosidase and β-mannosidase were studied in extracts from the cotyledons, axis and endosperms of germinating and germinated light-promoted lettuce seeds. The largest amount of total nitrogen (2.7% seed dry weight) occurs within the cotyledons, as storage protein. As this decreases the total nitrogen content of the axis increases and the soluble amino nitrogen in the cotyledons and axis increases. Proteinase activity in the cotyledons increases coincidentally with the depletion of total nitrogen therein. Enzymes for phytate mobilisation and for gluconeogenesis of hydrolysed lipids increase in activity in the cotyledons as the appropriate stored reserves decline. Beta-mannosidase, an enzyme involved in the hydrolysis of oligo-mannans released by the action of endo-β-mannase on mannan reserves in the endosperm, arises within the cotyledons. This indicates that complete hydrolysis of mannans to the monomer does not occur within the endosperm. Mobilisation of all cotyledon reserves occurs after the endosperm has been degraded, providing further evidence that the endosperm is an early source of food reserves for the growing embryo.

  11. Fermentation Conditions and Media Optimization for Isocitric Acid Production from Ethanol by Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Svetlana V. Kamzolova

    2018-01-01

    Full Text Available Isocitric acid exists in the form of four stereoisomers, of which only the threo-Ds-form (ICA is a natural active compound, an intermediate of Krebs cycle, and suitable for nutritional and pharmaceutical use. In this paper, we propose a method for ICA production from ethanol by yeast Yarrowia lipolytica. The effects of temperature, pH of the medium, and aeration on the growth of the producer Y. lipolytica VKM Y-2373 and synthesis of ICA were studied. An optimal fermentation regime, which ensures a good growth of the producer and directed synthesis of the target product, was determined. The producer is advised to carry out cultivation at 29°C and various pH of the medium and the oxygen concentration (pH 5 and pO2 20–25% (of saturation during the growth period and pH 6 and pO2 50–55% (of saturation during the acid formation on a nutrient medium containing an increased content of zinc (0.6 mg/L, iron (1.2 mg/L, and 30 mM itaconic acid (inhibitor of isocitrate lyase—the key enzyme of ICA metabolism should also be introduced into the nutrition medium. Such fermentation production mode provides 90.5 g/L ICA with process selectivity of 80%, mass yield (YICA of 0.77 g/g, and energy yield (ηICA of 0.278 g/g.

  12. Crystal Structure of α-1,4-Glucan Lyase, a Unique Glycoside Hydrolase Family Member with a Novel Catalytic Mechanism

    NARCIS (Netherlands)

    Rozeboom, Henriëtte J.; Yu, Shukun; Madrid, Susan; Kalk, Kor H.; Zhang, Ran; Dijkstra, Bauke W.

    2013-01-01

    α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-D-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades

  13. In Silico Characterization of Pectate Lyase Protein Sequences from Different Source Organisms

    Directory of Open Access Journals (Sweden)

    Amit Kumar Dubey

    2010-01-01

    Full Text Available A total of 121 protein sequences of pectate lyases were subjected to homology search, multiple sequence alignment, phylogenetic tree construction, and motif analysis. The phylogenetic tree constructed revealed different clusters based on different source organisms representing bacterial, fungal, plant, and nematode pectate lyases. The multiple accessions of bacterial, fungal, nematode, and plant pectate lyase protein sequences were placed closely revealing a sequence level similarity. The multiple sequence alignment of these pectate lyase protein sequences from different source organisms showed conserved regions at different stretches with maximum homology from amino acid residues 439–467, 715–816, and 829–910 which could be used for designing degenerate primers or probes specific for pectate lyases. The motif analysis revealed a conserved Pec_Lyase_C domain uniformly observed in all pectate lyases irrespective of variable sources suggesting its possible role in structural and enzymatic functions.

  14. Production of endo-pectate lyase by two stage cultivation of Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Satoshi; Kobayashi, Yoshiaki

    1987-02-26

    The productivity of endo-pectate lyase from Erwinia carotovora GIR 1044 was found to be greatly improved by two stage cultivation: in the first stage the bacterium was grown with an inducing carbon source, e.g., pectin, and in the second stage it was cultivated with glycerol, xylose, or fructose with the addition of monosodium L-glutamate as nitrogen source. In the two stage cultivation using pectin or glycerol as the carbon source the enzyme activity reached 400 units/ml, almost 3 times as much as that of one stage cultivation in a 10 liter fermentor. Using two stage cultivation in the 200 liter fermentor improved enzyme productivity over that in the 10 liter fermentor, with 500 units/ml of activity. Compared with the cultivation in Erlenmeyer flasks, fermentor cultivation improved enzyme productivity. The optimum cultivating conditions were agitation of 480 rpm with aeration of 0.5 vvm at 28 /sup 0/C. (4 figs, 4 tabs, 14 refs)

  15. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    Science.gov (United States)

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  16. Knockdown of cytosolic NADP(+) -dependent isocitrate dehydrogenase enhances MPP(+) -induced oxidative injury in PC12 cells.

    Science.gov (United States)

    Yang, Eun Sun; Park, Jeen-Woo

    2011-05-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP(+)) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP(+) -dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP(+) -induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP(+) -mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.

  17. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    Science.gov (United States)

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5′-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3′ side of abasic sites and 5′-dRP residues that remain after cleavage by 5′-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency. PMID:18695225

  18. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase.

    Science.gov (United States)

    Sugimura; Sawabe; Ezura

    2000-01-01

    The alginate lyase-coding genes of Vibrio halioticoli IAM 14596(T), which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2.

  19. Thermostable Alginate degrading enzymes and their methods of use

    NARCIS (Netherlands)

    Hreggvidsson, Gudmundur Oli; Jonsson, Oskar W.J.; Bjornsdottir, Bryndis; Fridjonsson, Hedinn O; Altenbuchner, Josef; Watzlawick, Hildegard; Dobruchowska, Justyna; Kamerling, Johannis

    2015-01-01

    The present invention relates to the identification, production and use of thermostable alginate lyase enzymes that can be used to partially degrade alginate to yield oligosaccharides or to give complete degradation of alginate to yield (unsaturated) mono-uronates.

  20. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).

    Science.gov (United States)

    Dreßen, Alana; Hilberath, Thomas; Mackfeld, Ursula; Billmeier, Arne; Rudat, Jens; Pohl, Martina

    2017-09-20

    Phenylalanine ammonia lyase (PAL) from Arabidopsis thaliana (AtPAL2) was comparatively characterized to the well-studied enzyme from parsley (PcPAL1) and Rhodosporidium toruloides (RtPAL) with respect to kinetic parameters for the deamination and the amination reaction, pH- and temperature optima and the substrate range of the amination reaction. Whereas both plant enzymes are specific for phenylalanine, the bifunctional enzyme from Rhodosporidium toruloides shows K M -values for L-Phe and L-Tyr in the same order of magnitude and, compared to both plant enzymes, a 10-15-fold higher activity. At 30°C all enzymes were sufficiently stable with half-lives of 3.4days (PcPAL1), 4.6days (AtPAL2) and 9.7days (RtPAL/TAL). Very good results for the amination of various trans-cinnamic acid derivatives were obtained using E. coli cells as whole cell biocatalysts in ammonium carbonate buffer. Investigation of the substrate ranges gave interesting results for the newly tested enzymes from A. thaliana and R. toruloides. Only the latter accepts besides 4-hydroxy-CA also 3-methoxy-4-hydroxy-CA as a substrate, which is an interesting intermediate for the formation of pharmaceutically relevant L-Dopa. AtPAL2 is a very good catalyst for the formation of (S)-3-F-Phe, (S)-4-F-Phe and (S)-2-Cl-Phe. Such non-canonical amino acids are valuable building blocks for the formation of various drug molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications.

    Science.gov (United States)

    da Silva, Ronivaldo Rodrigues

    2017-09-01

    Submerged and solid-state bioprocesses have been extensively explored worldwide and employed in a number of important studies dealing with microbial cultivation for the production of enzymes. The development of these production technologies has facilitated the generation of new enzyme-based products with applications in pharmaceuticals, food, bioactive peptides, and basic research studies, among others. The applicability of microorganisms in biotechnology is potentiated because of their various advantages, including large-scale production, short time of cultivation, and ease of handling. Currently, several studies are being conducted to search for new microbial peptidases with peculiar biochemical properties for industrial applications. Bioprospecting, being an important prerequisite for research and biotechnological development, is based on exploring the microbial diversity for enzyme production. Limited information is available on the production of specific proteolytic enzymes from bacterial and fungal species, especially on the subgroups threonine and glutamic peptidases, and the seventh catalytic type, nonhydrolytic asparagine peptide lyase. This gap in information motivated the present study about these unique biocatalysts. In this study, the biochemical and biotechnological aspects of the seven catalytic types of proteolytic enzymes, namely aspartyl, cysteine, serine, metallo, glutamic, and threonine peptidase, and asparagine peptide lyase, are summarized, with an emphasis on new studies, production, catalysis, and application of these enzymes.

  2. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Negrón-Mendoza, A., E-mail: negron@nucleares.unam.mx; Ramos-Bernal, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, A. P. 70-543, 04510 México, D. F. México (Mexico)

    2015-07-23

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes.

  3. Decrease in the cytosolic NADP+-dependent isocitrate dehydrogenase activity through porcine sperm capacitation.

    Science.gov (United States)

    Katoh, Yuki; Tamba, Michiko; Matsuda, Manabu; Kikuchi, Kazuhiro; Okamura, Naomichi

    2018-02-26

    In order to understand the molecular mechanisms involved in the sperm capacitation, we have identified the proteins tyrosine-phosphorylated during the capacitation especially in conjunction with the regulation of the levels of reactive oxygen species (ROS) in sperm. In the present study, the effects of the tyrosine phosphorylation of cytosolic NADP + -dependent isocitrate dehydrogenase (IDPc) on its catalytic activity and on the levels of ROS in sperm have been studied. The tyrosine phosphorylated IDPc showed a significantly lowered enzymatic activity. The immunocytochemical analyses using the highly specific antisera against IDPc revealed that IDPc was mainly localized to the principal piece of the porcine sperm flagellum. As IDPc is one of the major NADPH regenerating enzymes in porcine sperm, it is strongly suggested that the decrease in IDPc activity is involved in the increased levels of ROS, which results in the induction of hyperactivated flagellar movement and capacitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Simultaneous measurement of two enzyme activities using infrared spectroscopy: A comparative evaluation of PARAFAC, TUCKER and N-PLS modeling

    DEFF Research Database (Denmark)

    Baum, Andreas; Hansen, Per Waaben; Meyer, Anne S.

    2013-01-01

    multiway methods, namely PARAFAC, TUCKER3 and N-PLS, to establish simultaneous enzyme activity assays for pectin lyase and pectin methyl esterase. Correlation coefficients Rpred2 for prediction test sets are 0.48, 0.96 and 0.96 for pectin lyase and 0.70, 0.89 and 0.89 for pectin methyl esterase......Enzymes are used in many processes to release fermentable sugars for green production of biofuel, or the refinery of biomass for extraction of functional food ingredients such as pectin or prebiotic oligosaccharides. The complex biomasses may, however, require a multitude of specific enzymes which...... are active on specific substrates generating a multitude of products. In this paper we use the plant polymer, pectin, to present a method to quantify enzyme activity of two pectolytic enzymes by monitoring their superimposed spectral evolutions simultaneously. The data is analyzed by three chemometric...

  5. Design, Synthesis, and Biological Evaluation of Isothiosemicarbazones with Antimycobacterial Activity

    Czech Academy of Sciences Publication Activity Database

    Novotná, E.; Waisser, K.; Kuneš, J.; Palát, K.; Skálová, L.; Szotáková, B.; Buchta, V.; Stolaříková, J.; Ulmann, V.; Pávová, Marcela; Weber, Jan; Komrsková, J.; Hašková, P.; Vokřál, I.; Wsól, V.

    2017-01-01

    Roč. 350, č. 8 (2017), č. článku e1700020. ISSN 0365-6233 Institutional support: RVO:61388963 Keywords : biological activity * cytotoxicity * isocitrate lyase * isothiosemicarbazone * tuberculosis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.994, year: 2016

  6. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    2010-04-01

    Full Text Available Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system.We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication.Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  7. Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss.

    Science.gov (United States)

    Weske, Sarah; Vaidya, Mithila; Reese, Alina; von Wnuck Lipinski, Karin; Keul, Petra; Bayer, Julia K; Fischer, Jens W; Flögel, Ulrich; Nelsen, Jens; Epple, Matthias; Scatena, Marta; Schwedhelm, Edzard; Dörr, Marcus; Völzke, Henry; Moritz, Eileen; Hannemann, Anke; Rauch, Bernhard H; Gräler, Markus H; Heusch, Gerd; Levkau, Bodo

    2018-05-01

    Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P 2 potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38-GSK3β-β-catenin and WNT5A-LRP5 pathways. Accordingly, S1P 2 -deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.

  8. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine

  9. Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation

    Energy Technology Data Exchange (ETDEWEB)

    Fon, E.A.; Sarrazin, J.; Rouleau, G.A. [Montreal General Hospital (Canada)] [and others

    1995-12-18

    Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119 patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.

  10. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation.

    Science.gov (United States)

    Molenaar, Remco J; Radivoyevitch, Tomas; Maciejewski, Jaroslaw P; van Noorden, Cornelis J F; Bleeker, Fonnet E

    2014-12-01

    Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP(+) to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which "survivalogenic" effects should be retained. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. PecS and PecT coregulate the synthesis of HrpN and pectate lyases, two virulence determinants in Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Nasser, William; Reverchon, Sylvie; Vedel, Regine; Boccara, Martine

    2005-11-01

    Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases play a key role in soft rot symptoms; however, the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include HrpN (harpin), a heat-stable, glycine-rich hydrophilic protein, which is secreted by the type III secretion system. We investigated the expression of hrpN in E. chrysanthemi 3937 in various environmental conditions and different regulatory backgrounds. Using lacZ fusions, hrpN expression was markedly influenced by the carbon source, osmolarity, growth phase, and growth substrate. hrpN was repressed when pectinolysis started and negatively regulated by the repressors of pectate lyase synthesis, PecS and PecT. Primer extension data and in vitro DNA-protein interaction experiments support a model whereby PecS represses hrpN expression by binding to the hrpN regulatory region and inhibiting transcript elongation. The results suggest coordinated regulation of HrpN and pectate lyases by PecS and PecT. A putative model of the synthesis of these two virulence factors in E. chrysanthemi during pathogenesis is presented.

  12. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wupeng; Stone, Everett; Zhang, Yan Jessie

    2017-02-01

    Enzyme therapeutics that can degrade l-methionine (l-Met) are of great interest as numerous malignancies are exquisitely sensitive to l-Met depletion. To exhaust the pool of methionine in human serum, we previously engineered an l-Met-degrading enzyme based on the human cystathionine-γ-lyase scaffold (hCGL-NLV) to circumvent immunogenicity and stability issues observed in the preclinical application of bacterially derived methionine-γ-lyases. To gain further insights into the structure–activity relationships governing the chemistry of the hCGL-NLV lead molecule, we undertook a biophysical characterization campaign that captured crystal structures (2.2 Å) of hCGL-NLV with distinct reaction intermediates, including internal aldimine, substrate-bound, gem-diamine, and external aldimine forms. Curiously, an alternate form of hCGL-NLV that crystallized under higher-salt conditions revealed a locally unfolded active site, correlating with inhibition of activity as a function of ionic strength. Subsequent mutational and kinetic experiments pinpointed that a salt bridge between the phosphate of the essential cofactor pyridoxal 5'-phosphate (PLP) and residue R62 plays an important role in catalyzing β- and γ-eliminations. Our study suggests that solvent ions such as NaCl disrupt electrostatic interactions between R62 and PLP, decreasing catalytic efficiency.

  13. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions.

    Directory of Open Access Journals (Sweden)

    Mathias J Gerl

    Full Text Available Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1 HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions.

  14. Structure and Mechanism of PhnP, a Phosphodiesterase of the Carbon-Phosphorus Lyase Pathway

    DEFF Research Database (Denmark)

    He, Shu-Mei; Wathier, Matthew; Podzelinska, Kateryna

    2011-01-01

    PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase s......PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo...

  15. Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships.

    Science.gov (United States)

    Fushinobu, Shinya; Alves, Victor D; Coutinho, Pedro M

    2013-10-01

    Recent progress in three-dimensional structure analyses of glycoside hydrolases (GHs) and polysaccharide lyases (PLs), the historically relevant enzyme classes involved in the cleavage of glycosidic bonds of carbohydrates and glycoconjugates, is reviewed. To date, about 80% and 95% of the GH and PL families, respectively, have a representative crystal structure. New structures have been determined for enzymes acting on plant cell wall polysaccharides, sphingolipids, blood group antigens, milk oligosaccharides, N-glycans, oral biofilms and dietary seaweeds. Some GH enzymes have very unique catalytic residues such as the Asp-His dyad. New methods such as high-speed atomic force microscopy and computational simulation have opened up a path to investigate both the dynamics and the detailed molecular interactions displayed by these enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells

    Czech Academy of Sciences Publication Activity Database

    Smolková, Katarína; Ježek, Petr

    2012-01-01

    Roč. 2012, č. 2012 (2012), ID273947 ISSN 1687-8876 R&D Projects: GA ČR GPP301/12/P381; GA ČR(CZ) GAP302/10/0346 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : isocitrate dehydrogenase 2 * Krebs cycle * cancer cells Subject RIV: ED - Physiology

  17. Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem.

    Directory of Open Access Journals (Sweden)

    Peng Yuan

    Full Text Available Efficient degradation of pectin in the rumen is necessary for plant-based feed utilization. The objective of this study was to characterize the diversity, abundance, and functions of pectinases from microorganisms in the sheep rumen.A total of 103 unique fragments of polygalacturonase (PF00295 and pectate lyase (PF00544 and PF09492 genes were retrieved from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of the sequences of these fragments had low identities (<65% with known sequences. Phylogenetic tree building separated the PF00295, PF00544, and PF09492 sequences into five, three, and three clades, respectively. Cellulolytic and noncellulolytic Butyrivibrio, Prevotella, and Fibrobacter species were the major sources of the pectinases. The two most abundant pectate lyase genes were cloned, and their protein products, expressed in Escherichia coli, were characterized. Both enzymes probably act extracellularly as their nucleotide sequences contained signal sequences, and they had optimal activities at the ruminal physiological temperature and complementary pH-dependent activity profiles.This study reveals the specificity, diversity, and abundance of pectinases in the rumen ecosystem and provides two additional ruminal pectinases for potential industrial use under physiological conditions.

  18. Hydrogen sulfide synthesis enzymes reduced in lower esophageal sphincter of patients with achalasia.

    Science.gov (United States)

    Zhang, L; Zhao, W; Zheng, Z; Wang, T; Zhao, C; Zhou, G; Jin, H; Wang, B

    2016-10-01

    The etiology of achalasia remains largely unknown. Considerable evidence reveals that the lower esophageal sphincter dysfunction is due to the lack of inhibitory neurotransmitter, secondary to esophageal neuronal inflammation or loss. Recent studies suggest hydrogen sulfide may act as an inhibitory transmitter in gastrointestinal tract, but study about hydrogen sulfide in human esophagus still lack. The aim of the study was to investigate if hydrogen sulfide synthesis enzymes could be detected in human esophagus and if the synthesis of the endogenous hydrogen sulfide could be affected in achalasia patients. Tissue samples in cardia, lower esophageal sphincter, 2 cm and 4 cm above lower esophageal sphincter were obtained from achalasia patients undergoing peroral endoscopic myotomy. Control tissues in lower esophageal sphincter were obtained from esophageal carcinoma patients. Expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients and control were detected by immunohistochemical staining. In addition, expression of cystathionine-β-synthase and cystathionine-γ-lyase were compared among different parts of esophagus in achalasia patients. Compared with control, the expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients was significantly reduced (χ 2 = 11.429, P = 0.010). The expression of cystathionine-β-synthase and cystathionine-γ-lyase were lower in lower esophageal sphincter than that in 2 cm and 4 cm above lower esophageal sphincter, respectively (all P achalasia, which implicates the involvement of the two hydrogen sulfide synthesis enzymes in the pathophysiology of achalasia. © 2015 International Society for Diseases of the Esophagus.

  19. Exploiting fine-scale genetic and physiological variation of closely related microbes to reveal unknown enzyme functions.

    Science.gov (United States)

    Badur, Ahmet H; Plutz, Matthew J; Yalamanchili, Geethika; Jagtap, Sujit Sadashiv; Schweder, Thomas; Unfried, Frank; Markert, Stephanie; Polz, Martin F; Hehemann, Jan-Hendrik; Rao, Christopher V

    2017-08-04

    Polysaccharide degradation by marine microbes represents one of the largest and most rapid heterotrophic transformations of organic matter in the environment. Microbes employ systems of complementary carbohydrate-specific enzymes to deconstruct algal or plant polysaccharides (glycans) into monosaccharides. Because of the high diversity of glycan substrates, the functions of these enzymes are often difficult to establish. One solution to this problem may lie within naturally occurring microdiversity; varying numbers of enzymes, due to gene loss, duplication, or transfer, among closely related environmental microbes create metabolic differences akin to those generated by knock-out strains engineered in the laboratory used to establish the functions of unknown genes. Inspired by this natural fine-scale microbial diversity, we show here that it can be used to develop hypotheses guiding biochemical experiments for establishing the role of these enzymes in nature. In this work, we investigated alginate degradation among closely related strains of the marine bacterium Vibrio splendidus One strain, V. splendidus 13B01, exhibited high extracellular alginate lyase activity compared with other V. splendidus strains. To identify the enzymes responsible for this high extracellular activity, we compared V. splendidus 13B01 with the previously characterized V. splendidus 12B01, which has low extracellular activity and lacks two alginate lyase genes present in V. splendidus 13B01. Using a combination of genomics, proteomics, biochemical, and functional screening, we identified a polysaccharide lyase family 7 enzyme that is unique to V. splendidus 13B01, secreted, and responsible for the rapid digestion of extracellular alginate. These results demonstrate the value of querying the enzymatic repertoires of closely related microbes to rapidly pinpoint key proteins with beneficial functions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. GenBank blastx search result: AK287540 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287540 J065011K01 AF013216.1 AF013216 Myxococcus xanthus Dog (dog), isocitrate lyase (icl), Mls (mls), Ufo... (ufo), fumarate hydratase (fhy), and proteosome major subunit (clpP) genes, complete cds; and acyl-CoA oxidase (aco) gene, partial cds. BCT 0.0 0 ...

  1. GenBank blastx search result: AK243510 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243510 J100075B22 AF013216.1 AF013216 Myxococcus xanthus Dog (dog), isocitrate lyase (icl), Mls (mls), Ufo... (ufo), fumarate hydratase (fhy), and proteosome major subunit (clpP) genes, complete cds; and acyl-CoA oxidase (aco) gene, partial cds. BCT 2e-87 1 ...

  2. GenBank blastx search result: AK243527 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243527 J100075P16 AF013216.1 AF013216 Myxococcus xanthus Dog (dog), isocitrate lyase (icl), Mls (mls), Ufo... (ufo), fumarate hydratase (fhy), and proteosome major subunit (clpP) genes, complete cds; and acyl-CoA oxidase (aco) gene, partial cds. BCT 1e-143 1 ...

  3. GenBank blastx search result: AK241214 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241214 J065122P06 AF013216.1 AF013216 Myxococcus xanthus Dog (dog), isocitrate lyase (icl), Mls (mls), Ufo... (ufo), fumarate hydratase (fhy), and proteosome major subunit (clpP) genes, complete cds; and acyl-CoA oxidase (aco) gene, partial cds. BCT 1e-151 1 ...

  4. A new versatile microarray-based method for high-throughput screening of carbohydrate-active enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia; Pedersen, Henriette Lodberg; Schückel, Julia

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing, together with associated bioinformatic tools have identified vast numbers of putative carbohydrate degrading and modifying enzymes including glycoside hydrolases...... that the technique can be used to analyse both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified un-characterised enzymes...

  5. Simultaneous measurement of two enzyme activities using infrared spectroscopy: A comparative evaluation of PARAFAC, TUCKER and N-PLS modeling.

    Science.gov (United States)

    Baum, Andreas; Hansen, Per Waaben; Meyer, Anne S; Mikkelsen, Jørn Dalgaard

    2013-08-06

    Enzymes are used in many processes to release fermentable sugars for green production of biofuel, or the refinery of biomass for extraction of functional food ingredients such as pectin or prebiotic oligosaccharides. The complex biomasses may, however, require a multitude of specific enzymes which are active on specific substrates generating a multitude of products. In this paper we use the plant polymer, pectin, to present a method to quantify enzyme activity of two pectolytic enzymes by monitoring their superimposed spectral evolutions simultaneously. The data is analyzed by three chemometric multiway methods, namely PARAFAC, TUCKER3 and N-PLS, to establish simultaneous enzyme activity assays for pectin lyase and pectin methyl esterase. Correlation coefficients Rpred(2) for prediction test sets are 0.48, 0.96 and 0.96 for pectin lyase and 0.70, 0.89 and 0.89 for pectin methyl esterase, respectively. The retrieved models are compared and prediction test sets show that especially TUCKER3 performs well, even in comparison to the supervised regression method N-PLS. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effects of 20 standard amino acids on the growth, total fatty acids production, and γ-linolenic acid yield in Mucor circinelloides.

    Science.gov (United States)

    Tang, Xin; Zhang, Huaiyuan; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2014-12-01

    Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

  7. Crystallization and preliminary X-ray analysis of βC–S lyases from two oral streptococci

    International Nuclear Information System (INIS)

    Kezuka, Yuichiro; Yoshida, Yasuo; Nonaka, Takamasa

    2009-01-01

    The βC-S lyases from two oral bacteria, Streptococcus anginosus and S. gordonii, were cloned, overproduced, purified and crystallized. The obtained crystals were characterized by X-ray diffraction. Hydrogen sulfide, which causes oral malodour, is generally produced from l-cysteine by the action of βC–S lyase from oral bacteria. The βC–S lyases from two oral bacteria, Streptococcus anginosus and S. gordonii, have been cloned, overproduced, purified and crystallized. X-ray diffraction data were collected from the two types of crystals using synchrotron radiation. The crystal of S. anginosus βC–S lyase belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 67.0, b = 111.1, c = 216.4 Å, and the crystal of S. gordonii βC–S lyase belonged to the same space group, with unit-cell parameters a = 58.0, b = 73.9. c = 187.6 Å. The structures of the βC–S lyases were solved by molecular-replacement techniques

  8. Key Building Blocks via Enzyme-Mediated Synthesis

    Science.gov (United States)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  9. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle

    Science.gov (United States)

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S.; Vardi, Assaf

    2015-06-01

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms.

  10. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    OpenAIRE

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymeras...

  11. GenBank blastn search result: AK241214 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241214 J065122P06 AF013216.1 AF013216 Myxococcus xanthus Dog (dog), isocitrate lyase (icl), Mls (mls), Ufo... (ufo), fumarate hydratase (fhy), and proteosome major subunit (clpP) genes, complete cds; and acyl-CoA oxidase (aco) gene, partial cds. BCT 8e-18 1 -1 ...

  12. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    Science.gov (United States)

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  13. Elimination of hydrogen sulphide and β substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1961-01-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the β-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this β-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the β-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the β-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [fr

  14. Comparison of expression, purification and characterization of a new pectate lyase from Phytophthora capsici using two different methods

    Directory of Open Access Journals (Sweden)

    Zhang Xiuguo

    2011-04-01

    Full Text Available Abstract Background Pectate lyases (PELs play an important role in the infection process of plant pathogens and also have a commercial significance in industrial applications. Most of the PELs were expressed as soluble recombinant proteins, while a few recombinant proteins were insoluble. The production of a large-scale soluble recombinant PEL would allow not only a more detailed structural and functional characterization of this enzyme but also may have important applications in the food industry. Results We cloned a new pectate lyase gene (Pcpel2 from Phytophthora capsici. Pcpel2 was constructed by pET system and pMAL system, and both constructs were used to express the PCPEL2 in Escherichia coli BL21 (DE3 pLysS. The expressed products were purified using affinity chromatography and gel filtration chromatography. The purity, specific activity and pathogenicity of the purified PCPEL2 expressed by the pMAL system were higher than the purified PCPEL2 expressed by the pET system. In addition, some other characteristics of the purified PCPEL2 differed from the two systems, such as crystallographic features. Purified PCPEL2 expressed by the pMAL system was crystallized by the hanging-drop vapour-diffusion method at 289 K, and initial crystals were grown. Conclusion The two different methods and comparison presented here would be highly valuable in obtaining an ideal enzyme for the downstream experiments, and supply an useful alternative to purify some insoluble recombinant proteins.

  15. Mini-review: recent developments in hydroxynitrile lyases for industrial biotechnology.

    Science.gov (United States)

    Lanfranchi, Elisa; Steiner, Kerstin; Glieder, Anton; Hajnal, Ivan; Sheldon, Roger A; van Pelt, Sander; Winkler, Margit

    2013-12-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage as well as the formation of cyanohydrins. The latter reaction is valuable for the stereoselective C-C bond formation by condensation of HCN with carbonyl compounds. The resulting cyanohydrins serve as versatile building blocks for a broad range of chemical and enzymatic follow-up reactions. A significant number of (R)- and (S)-selective HNLs are known today and the number is still increasing. HNLs not only exhibit varying substrate scope but also differ in sequence and structure. Tailor-made enzymes for large-scale manufacturing of cyanohydrins with improved yield and enantiomeric excess are very interesting targets, which is reflected in a solid number of patents. This review will complement and extend our recent review with a strong focus on applications of HNLs for the synthesis of highly functionalized, chiral compounds with newest literature, recent and current patent literature.

  16. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    Science.gov (United States)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  17. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    Science.gov (United States)

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  18. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  19. Pseudomonas aeruginosa 4-amino-4-deoxychorismate lyase: spatial conservation of an active site tyrosine and classification of two types of enzyme.

    Directory of Open Access Journals (Sweden)

    Patrick E F O'Rourke

    Full Text Available 4-Amino-4-deoxychorismate lyase (PabC catalyzes the formation of 4-aminobenzoate, and release of pyruvate, during folate biosynthesis. This is an essential activity for the growth of gram-negative bacteria, including important pathogens such as Pseudomonas aeruginosa. A high-resolution (1.75 Å crystal structure of PabC from P. aeruginosa has been determined, and sequence-structure comparisons with orthologous structures are reported. Residues around the pyridoxal 5'-phosphate cofactor are highly conserved adding support to aspects of a mechanism generic for enzymes carrying that cofactor. However, we suggest that PabC can be classified into two groups depending upon whether an active site and structurally conserved tyrosine is provided from the polypeptide that mainly forms an active site or from the partner subunit in the dimeric assembly. We considered that the conserved tyrosine might indicate a direct role in catalysis: that of providing a proton to reduce the olefin moiety of substrate as pyruvate is released. A threonine had previously been suggested to fulfill such a role prior to our observation of the structurally conserved tyrosine. We have been unable to elucidate an experimentally determined structure of PabC in complex with ligands to inform on mechanism and substrate specificity. Therefore we constructed a computational model of the catalytic intermediate docked into the enzyme active site. The model suggests that the conserved tyrosine helps to create a hydrophobic wall on one side of the active site that provides important interactions to bind the catalytic intermediate. However, this residue does not appear to participate in interactions with the C atom that undergoes an sp(2 to sp(3 conversion as pyruvate is produced. The model and our comparisons rather support the hypothesis that an active site threonine hydroxyl contributes a proton used in the reduction of the substrate methylene to pyruvate methyl in the final stage of

  20. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli.

    Science.gov (United States)

    Deng, Yu; Ma, Ning; Zhu, Kangjia; Mao, Yin; Wei, Xuetuan; Zhao, Yunying

    2018-03-01

    The glyoxylate shunt is a branch of the tricarboxylic acid (TCA) cycle which directly determines the synthesis of glycolate, and the balance between the glyoxylate shunt and TCA cycle is very important for the growth of Escherichia coli. In order to accumulate glycolate at high yield and titer, strategies for over-expressing glycolate pathway enzymes including isocitrate lyase (AceA), isocitrate dehydrogenase kinase/phosphatase (AceK) and glyoxylate reductase (YcdW) were analyzed. The genes encoding these three enzymes were transcribed under the control of promoter pTrc on pTrc99A, to form pJNU-3, which was harbored by strain Mgly1, resulting in strain Mgly13. Strain Mgly13 produced glycolate with 0.385 g/g-glucose yield (45.2% of the theoretical yield). Citrate synthase (GltA) converted excess acetyl-CoA and oxaloacetate to citrate and was over-expressed by pJNU-4 (pCDFDuet-1 backbone). Thus, the resulting strain Mgly134 produced glycolate with a 0.504 g/g-glucose yield (59.3% of the theoretical yield). We then eliminated the pathways involved in the degradation of glycolate, resulting in strain Mgly434, which produced glycolate with 92.9% of the theoretical yield. Following optimization of fermentation, the maximum glycolate titer from strain Mgly434 was 65.5 g/L. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Biochemical Evaluation of Phenylalanine Ammonia Lyase from Endemic Plant Cyathobasis fruticulosa (Bunge Aellen. for the Dietary Treatment of Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Seda Şirin

    2016-01-01

    Full Text Available Enzyme substitution therapy with the phenylalanine ammonia lyase (PAL is a new approach to the treatment of patients with phenylketonuria (PKU. This enzyme is responsible for the conversion of phenylalanine to trans-cinnamic acid. We assessed the PAL enzyme of the endemic plant Cyathobasis fruticulosa (Bunge Aellen. for its possible role in the dietary treatment of PKU. The enzyme was found to have a high activity of (64.9±0.1 U/mg, with the optimum pH, temperature and buffer (Tris–HCl and L-phenylalanine concentration levels of pH=8.8, 37 °C and 100 mM, respectively. Optimum enzyme activity was achieved at pH=4.0 and 7.5, corresponding to pH levels of gastric and intestinal juice, and NaCl concentration of 200 mM. The purifi cation of the enzyme by 1.87-fold yielded an activity of 98.6 U/mg. PAL activities determined by HPLC analyses before and after purification were similar. Two protein bands, one at 70 and the other at 23 kDa, were determined by Western blot analysis of the enzyme. This enzyme is a potential candidate for serial production of dietary food and biotechnological products.

  2. Determination of enzyme-substrate dissociation rates by dynamic isotope exchange enhancement experiments

    International Nuclear Information System (INIS)

    Kim, S.C.; Raushel, F.M.

    1986-01-01

    A new method for the determination of dissociation rates of enzyme-substrate complexes has been developed. The rate of exchange of a labeled product back into the substrate is measured during catalysis of the forward reaction when the forward reaction is kept far from equilibrium by the enzymatic removal of the nonexchanging product. The ratio of the exchange rate and the net rate for product formation is then determined at various concentrations of the exchanging product. A plot of this ratio is a diagnostic indication of the kinetic mechanism and the relative rates of product dissociation from the binary and ternary enzyme complexes. This technique has been applied to the reaction catalyzed by bovine liver argininosuccinate lyase. The ratio for the rate of exchange of fumarate into argininosuccinate and the net rate for product formation was found to increase with the concentration of fumarate but to reach a limit of 3.3. The ratio of rates was half-maximal at 36 mM fumarate. The data have been interpreted to indicate the argininosuccinate lyase has a random kinetic mechanism. The calculated lower limit for the rate of release of arginine from the enzyme-fumarate-arginine complex is 0.35 times as fast as the Vmax in the reverse direction. The rate of release of arginine from the enzyme-arginine binary complex is 210 times faster than Vmax in the reverse direction

  3. The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Katarína Smolková

    2012-01-01

    Full Text Available Isocitrate dehydrogenase 2 (IDH2 is located in the mitochondrial matrix. IDH2 acts in the forward Krebs cycle as an NADP+-consuming enzyme, providing NADPH for maintenance of the reduced glutathione and peroxiredoxin systems and for self-maintenance by reactivation of cystine-inactivated IDH2 by glutaredoxin 2. In highly respiring cells, the resulting NAD+ accumulation then induces sirtuin-3-mediated activating IDH2 deacetylation, thus increasing its protective function. Reductive carboxylation of 2-oxoglutarate by IDH2 (in the reverse Krebs cycle direction, which consumes NADPH, may follow glutaminolysis of glutamine to 2-oxoglutarate in cancer cells. When the reverse aconitase reaction and citrate efflux are added, this overall “anoxic” glutaminolysis mode may help highly malignant tumors survive aglycemia during hypoxia. Intermittent glycolysis would hypothetically be required to provide ATP. When oxidative phosphorylation is dormant, this mode causes substantial oxidative stress. Arg172 mutants of human IDH2—frequently found with similar mutants of cytosolic IDH1 in grade 2 and 3 gliomas, secondary glioblastomas, and acute myeloid leukemia—catalyze reductive carboxylation of 2-oxoglutarate and reduction to D-2-hydroxyglutarate, which strengthens the neoplastic phenotype by competitive inhibition of histone demethylation and 5-methylcytosine hydroxylation, leading to genome-wide histone and DNA methylation alternations. D-2-hydroxyglutarate also interferes with proline hydroxylation and thus may stabilize hypoxia-induced factor α.

  4. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus.

    Directory of Open Access Journals (Sweden)

    Klaudia Kovács

    Full Text Available The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24 of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD studies showed that RxPAL is associated with an extensive α-helical character (far UV CD and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia.

  5. Crystal structure and mechanism of the Staphylococcus cohnii virginiamycin B lyase (Vgb).

    Science.gov (United States)

    Lipka, Magdalena; Filipek, Renata; Bochtler, Matthias

    2008-04-08

    The semisynthetic streptogramin antibiotic quinupristin/dalfopristin (trade name Synercid, Aventis Pharma) is a mixture of the A-type streptogramin dalfopristin and the B-type streptogramin quinupristin, a capped hexapeptide macrolactone. Quinupristin/dalfopristin was developed to combat multidrug resistant pathogens, but suffers from its own problems with drug resistance. Virginiamycin B lyase (Vgb) inactivates the quinupristin component of Synercid by lactone ring opening. Remarkably, the enzyme promotes this reaction by intramolecular beta-elimination without the involvement of a water molecule. Recently, structures of S. aureus Vgb in the presence and absence of substrate were reported and used together with detailed mutagenesis data to suggest a catalytic mechanism. Here, we report an independent determination of the S. cohnii Vgb crystal structure and a biochemical characterization of the enzyme. As expected, the S. cohnii and S. aureus Vgb structures and active sites are very similar. Moreover, both enzymes catalyze quinupristin lactone ring opening with similar rate constants, albeit perhaps with different dependencies on divalent metal ions. Replacement of the conserved active site residues His228, Glu268, or His270 with alanine reduces or abolishes S. cohnii Vgb activity. Residue Lys285 in S. cohnii Vgb is spatially equivalent to the S. aureus Vgb active site residue Glu284. A glutamate but not an alanine residue can substitute for the lysine without significant loss of activity.

  6. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    Science.gov (United States)

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  7. The effect of cadmium on phenylalanine ammonia lyase activity and lipid peroxidation in pepper (Capsicum annuum L. seedlings

    Directory of Open Access Journals (Sweden)

    Esra Koç

    2015-04-01

    Full Text Available In this study, the effect on differrent concentrations (20, 40, 80µM ve 100 µM CdCl2 of cadmium (CdCl2 on the activity of phenylalanine ammonia-lyase (PAL and lipid peroxidation amount in leaf and stem of Kahramanmaraş- Hot (Capsicum annum L. pepper seedlings were researched. Activity of phenylalanine ammonia-lyase (PAL, the first enzyme in the phenylpropanoid biosynthetic pathway, was increased at 2 and 4 days in KM-Hot plants exposed to CdCl2 stress. The highest PAL activity was detected in 20 μM CdCl2 application, on the four day after the application in the leaves of KM-Hot pepper. Moreover, it was observed that treatment of pepper with Cd led to an increased the rate of lipid peroxidation (which is indicated by increasing MDA content in the leaf and stem tissues. The highest MDA content was detected in 80 μM CdCl2 application, on the four day after the application in the leaf tissues. These results suggest that the activation of PAL may be associated with increased production of MDA

  8. Gene-enzyme relationships in somatic cells and their organismal derivatives in higher plants. Progress report

    International Nuclear Information System (INIS)

    Jensen, R.A.

    1983-01-01

    Several enzymes involved in the biosynthesis of aromatic amino acids have been isolated from Nicotiana silvestris. Isozymes of chlorismate mutase were isolated, partially purified and subjected to enzyme kinetic analysis. In addition, studies investigating the role of 5-enolpyruvyl-shikimate-3-phosphate synthetase, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase, shikimate dehydrogenase, prephenate aminotransferase, arogenate dehydrogenase and phenylalanine ammonia-lyase in regulation of aromatic amino acids levels in tobacco are reported

  9. Quantitation of heparosan with heparin lyase III and spectrophotometry.

    Science.gov (United States)

    Huang, Haichan; Zhao, Yingying; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2014-02-15

    Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Mechanistic deductions from multiple kinetic and solvent deuterium isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: escherichia coli tryptophan indole-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    Analysis of the pH dependence of the kinetic parameters and competitive inhibitor Ki values for tryptophan indole-lyase suggests two enzymic groups must be unprotonated in order to facilitate binding and catalysis of tryptophan. The V/K for tryptophan and the pKi for oxindolyl-L-alanine, a putative transition state analogue and competitive inhibitor, decrease below two pK values of 7.6 and 6.0, while the Ki for L-alanine, also a competitive inhibitor, is 3300-fold larger (20 mM) than that for oxindolyl-L-alanine and increases below a single pK of 7.6. A single pK of 7.6 is also observed in the V/K profile for the alternate substrate, S-methyl-L-cysteine. Therefore, the enzymic group with a pK of 7.6 is responsible for proton abstraction at the 2-position of tryptophan, while the enzymic group with a pK of 6.0 interacts with the indole portion of tryptophan and probably catalyzes formation of the indolenine tautomer of tryptophan (in concert with proton transfer to C-3 of indole from the group with pK 7.6) to facilitate carbon-carbon bond cleavage and elimination of indole. The pH variation of the primary deuterium isotope effects for proton abstraction at the 2-position of tryptophan (DV = 2.5 and D(V/Ktrp) = 2.8) are pH independent, while the Vmax for tryptophan or S-methyl-L-cysteine is the same and also pH independent. Thus, substrates bind only to the correctly protonated form of the enzyme. Further, tryptophan is not sticky, and the pK values observed in both V/K profiles are the correct ones

  11. Expression and enzymatic activity of phenylalanine ammonia-lyase and p-coumarate 3-hydroxylase in mango (Mangifera indica 'Ataulfo') during ripening.

    Science.gov (United States)

    Palafox-Carlos, H; Contreras-Vergara, C A; Muhlia-Almazán, A; Islas-Osuna, M A; González-Aguilar, G A

    2014-05-16

    Phenylalanine ammonia lyase (PAL) and p-coumarate 3-hydroxylase (C3H) are key enzymes in the phenylpropanoid pathway. The relative expression of PAL and C3H was evaluated in mango fruit cultivar 'Ataulfo' in four ripening stages (RS1, RS2, RS3, and RS4) by quantitative polymerase chain reaction. In addition, enzyme activity of PAL and C3H was determined in mango fruits during ripening. The PAL levels were downregulated at the RS2 and RS3 stages, while C3H levels were upregulated in fruits only at RS3. The enzyme activity of PAL followed a pattern that was different from that of the PAL expression, thus suggesting regulation at several levels. For C3H, a regulation at the transcriptional level is suggested because a similar pattern was revealed by its activity and transcript level. In this study, the complexity of secondary metabolite biosynthesis regulation is emphasized because PAL and C3H enzymes are involved in the biosynthesis of several secondary metabolites that are active during all mango ripening stages.

  12. Dose and time-dependent effects of cyanide on thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine λ-lyase activities.

    Science.gov (United States)

    Singh, Poonam; Rao, Pooja; Bhattacharya, Rahul

    2013-12-01

    We assessed the dose-dependent effect of potassium cyanide (KCN) on thiosulfate sulfurtransferase (TST), 3-mercaptopyruvate sulfurtransferase (3-MPST), and cystathionine λ-lyase (CST) activities in mice. The time-dependent effect of 0.5 LD50 KCN on cyanide level and cytochrome c oxidase (CCO), TST, 3-MPST, and CST activities was also examined. Furthermore, TST, 3-MPST, and CST activities were measured in stored mice cadavers. Hepatic and renal TST activity increased by 0.5 LD50 KCN but diminished by ≥2.0 LD50. After 0.5 LD50 KCN, the elevated hepatic cyanide level was accompanied by increased TST, 3-MPST, and CST activities, and CCO inhibition. Elevated renal cyanide level was only accompanied by increased 3-MPST activity. No appreciable change in enzyme activities was observed in mice cadavers. The study concludes that high doses of cyanide exert saturating effects on its detoxification enzymes, indicating their exogenous use during cyanide poisoning. Also, these enzymes are not reliable markers of cyanide poisoning in autopsied samples. © 2013 Wiley Periodicals, Inc.

  13. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.

    Directory of Open Access Journals (Sweden)

    Ranji Singh

    Full Text Available The reduced nicotinamide adenine dinucleotide phosphate (NADPH is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH, a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC, malic enzyme (ME, malate dehydrogenase (MDH, malate synthase (MS, and isocitrate lyase (ICL that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK and the upregulation of pyruvate kinase (PK ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.

  14. Pectin-modifying enzymes and pectin-derived materials: applications and impacts.

    Science.gov (United States)

    Bonnin, Estelle; Garnier, Catherine; Ralet, Marie-Christine

    2014-01-01

    Pectins are complex branched polysaccharides present in primary cell walls. As a distinctive feature, they contain high amount of partly methyl-esterified galacturonic acid and low amount of rhamnose and carry arabinose and galactose as major neutral sugars. Due to their structural complexity, they are modifiable by many different enzymes, including hydrolases, lyases, and esterases. Their peculiar structure is the origin of their physicochemical properties. Among others, their remarkable gelling properties make them a key additive for food industries. Pectin-degrading enzymes and -modifying enzymes may be used in a wide variety of applications to modulate pectin properties or produce pectin derivatives and oligosaccharides with functional as well as nutritional interests. This paper reviews the scientific information available on pectin structure, pectin-modifying enzymes, and the use of enzymes to produce pectin with controlled structure or pectin-derived oligosaccharides, with functional or nutritional interesting properties.

  15. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Jers, Carsten; Otten, Harm

    2014-01-01

    Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM......, were obtained due to additive stabilizing effects of single amino acid mutations (E434L, G55V, and G326E) compared to the wild type. The crystal structure of the B. licheniformis wild-type RGI lyase was also determined; the structural analysis corroborated that especially mutation of charged amino...

  16. Cellular defense against UVB-induced phototoxicity by cytosolic NADP+-dependent isocitrate dehydrogenase

    International Nuclear Information System (INIS)

    Jo, Seung-Hee; Lee, So-Hyun; Suk Chun, Hang; Min Lee, Su; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-01-01

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP + -dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP + -dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury

  17. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Jo, Seung-Hee; Lee, So-Hyun; Chun, Hang Suk; Lee, Su Min; Koh, Ho-Jin; Lee, Sung-Eun; Chun, Jang-Soo; Park, Jeen-Woo; Huh, Tae-Lin

    2002-03-29

    Ultraviolet (UV) radiation is known as a major cause of skin photoaging and photocarcinogenesis. Many harmful effects of UV radiation are associated with the generation of reactive oxygen species. Recently, we have shown that NADP(+)-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study we investigated the role of cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc) against UV radiation-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to UVB (312 nm), the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly overexpressed IDPc exhibited enhanced resistance against UV radiation, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against UV radiation-induced oxidative injury. (c)2002 Elsevier Science (USA).

  18. The Skin Bacterium Propionibacterium acnes Employs Two Variants of Hyaluronate Lyase with Distinct Properties

    DEFF Research Database (Denmark)

    Nazipi, Seven; Stødkilde-Jørgensen, Kristian; Scavenius, Carsten

    2017-01-01

    Hyaluronic acid (HA) and other glycosaminoglycans are extracellular matrix components in the human epidermis and dermis. One of the most prevalent skin microorganisms, Propionibacterium acnes, possesses HA-degrading activity, possibly conferred by the enzyme hyaluronate lyase (HYL). In this study......, we identified the HYL of P. acnes and investigated the genotypic and phenotypic characteristics. Investigations include the generation of a P. acneshyl knockout mutant and HYL activity assays to determine the substrate range and formed products. We found that P. acnes employs two distinct variants...... of the observed differences between P. acnes phylotype IA and IB/II strains. Whereas type IA strains are primarily found on the skin surface and associated with acne vulgaris, type IB/II strains are more often associated with soft and deep tissue infections, which would require elaborate tissue invasion...

  19. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  20. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    1999-01-01

    Fatty acid hydroperoxides formed by lipoxygenase can be cleaved by hydroperoxide lyase resulting in the formation of short-chain aldehydes and omega-oxo acids. Plant hydroperoxide lyases use 13- or 9-hydroperoxy linoleic and linolenic acid as substrates. Alfalfa (Medicago sativa L.) has been

  1. A Pectate Lyase-Coding Gene Abundantly Expressed during Early Stages of Infection Is Required for Full Virulence in Alternaria brassicicola.

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    Full Text Available Alternaria brassicicola causes black spot disease of Brassica species. The functional importance of pectin digestion enzymes and unidentified phytotoxins in fungal pathogenesis has been suspected but not verified in A. brassicicola. The fungal transcription factor AbPf2 is essential for pathogenicity and induces 106 genes during early pathogenesis, including the pectate lyase-coding gene, PL1332. The aim of this study was to test the importance and roles of PL1332 in pathogenesis. We generated deletion strains of the PL1332 gene, produced heterologous PL1332 proteins, and evaluated their association with virulence. Deletion strains of the PL1332 gene were approximately 30% less virulent than wild-type A. brassicicola, without showing differences in colony expansion on solid media and mycelial growth in nutrient-rich liquid media or minimal media with pectins as a major carbon source. Heterologous PL1332 expressed as fusion proteins digested polygalacturons in vitro. When the fusion proteins were injected into the apoplast between leaf veins of host plants the tissues turned dark brown and soft, resembling necrotic leaf tissue. The PL1332 gene was the first example identified as a general toxin-coding gene and virulence factor among the 106 genes regulated by the transcription factor, AbPf2. It was also the first gene to have its functions investigated among the 19 pectate lyase genes and several hundred putative cell-wall degrading enzymes in A. brassicicola. These results further support the importance of the AbPf2 gene as a key pathogenesis regulator and possible target for agrochemical development.

  2. A QM/MM study of the reaction mechanism of (R)-hydroxynitrile lyases from Arabidopsis thaliana (AtHNL).

    Science.gov (United States)

    Zhu, Wenyou; Liu, Yongjun; Zhang, Rui

    2015-01-01

    Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R-selective HNL enzyme containing an α/β-hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1-C2 bond and the rotation of the generated cyanide ion (CN(-)) follow, afterwards, CN(-) abstracts a proton from His236 via Ser81. The C1-C2 bond cleavage and the protonation of CN(-) correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol(-1)), suggesting that both of the two processes contribute a lot to rate-limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1-C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol(-1). The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN(-) is stabilized by the hydroxyl group of Ser81 and the main-chain NH-groups of Ala13 and Phe82. © 2014 Wiley Periodicals, Inc.

  3. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    NARCIS (Netherlands)

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Mueller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch; Bot, Ilze; Biessen, Erik A. L.

    2013-01-01

    Aims: Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/-)) deficiency on leukocyte subsets

  4. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice

    NARCIS (Netherlands)

    Bot, Martine; van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; van Santbrink, Peter J.; Westra, Marijke M.; van der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; van Berkel, Theo J. C.; Nofer, Jerzy-Roch; Bot, Ilze; Biessen, Erik A. L.

    2013-01-01

    Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/-)) deficiency on leukocyte subsets relevant to

  5. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    NARCIS (Netherlands)

    Bot, M.; Veldhoven, van P.P.; Jager, de S.C.; Johnson, J.; Nijstad, N.; van, Santbrink P.J.; Westra, M.M.; Hoeven, van der G.; Gijbels, M.J.; Muller-Tidow, C.; Varga, G.; Tietge, U.J.; Kuiper, J.; Berkel, van T.J.; Nofer, J.R.; Bot, I.; Biessen, E.A.

    2013-01-01

    Abstract Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte

  6. Pectinases: aplicações industriais e perspectivas Pectinolytic enzymes: industrial applications and future perspectives

    Directory of Open Access Journals (Sweden)

    Mariana Uenojo

    2007-04-01

    Full Text Available Pectic substances are structural heteropolysaccharides that occur in the middle lamellae and primary cell walls of higher plants. They are composed of partially methyl-esterified galacturonic acid residues linked by alpha-1, 4-glycosidic bonds. Pectinolytic enzymes are complex enzymes that degrade pectic polymers and there are several classes of enzymes, which include pectin esterases, pectin and pectate lyases and polygalacturonases. Plants, filamentous fungi, bacteria and yeasts are able to produce pectinases. In the industrial world, pectinases are used in fruit juice clarification, in the production of wine, in the extraction of olive oil, fiber degumming and fermentation of tea, coffee and cocoa.

  7. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su In; Kim, Hee Sook [Kyungsung Univ., Busan (Korea, Republic of). Dept. of Food Science and Biotechnology; Choi, Sung Hee; Lee, Eun Yeol [Kyung Hee Univ., Gyeonggi-do (Korea, Republic of). Dept. of Chemical Engineering

    2012-09-15

    A gene for a polyMG-specific alginate lyase possessing a novel structure was identified and cloned from Stenotrophomas maltophilia KJ-2 by using PCR with homologous nucleotide sequences-based primers. The recombinant alginate lyase consisting of 475 amino acids was purified on Ni-Sepharose column and exhibited the highest activity at pH 8 and 40 C. Interestingly, the recombinant alginate lyase was expected to have a similar catalytic active site of chondroitin B lyase but did not show chondroitin lyase activity. In the test of substrate specificity, the recombinant alginate lyase preferentially degraded the glycosidic bond of polyMG-block than polyM-block and polyG-block. The chemical structures of the degraded alginate oligosaccharides were elucidated to have mannuronate (M) at the reducing end on the basis of NMR analysis, supporting that KJ-2 polyMG-specific alginate lyase preferably degraded the glycosidic bond in M-G linkage than that in G-M linkage. The KJ-2 polyMG-specific alginate lyase can be used in combination with other alginate lyases for a synergistic saccharification of alginate. (orig.)

  8. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  9. Sequence analysis and overexpression of a pectin lyase gene (pel1) from Aspergillus oryzae KBN616.

    Science.gov (United States)

    Kitamoto, N; Yoshino-Yasuda, S; Ohmiya, K; Tsukagoshi, N

    2001-01-01

    A gene (pel1) encoding pectin lyase (Pel1) was isolated from a shoyu koji mold, Aspergillus oryzae KBN616, and characterized. The structural gene comprised 1,196 bp with a single intron. The ORF encoded 381 amino acids with a signal peptide of 20 amino acids. The deduced amino acid sequence showed high similarity to those of Aspergillus niger pectin lyases and Glomerella cingulata PnlA. The pel1 gene was successfully overexpressed under the promoter of the A. oryzae TEF1 gene. The molecular mass of the recombinant pectin lyase substantially coincided with that calculated based on nucleotide sequence.

  10. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-08-01

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.

  11. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  12. Cloning and study of the pectate lyase gene of Erwinia carotovora

    International Nuclear Information System (INIS)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.; Syarinskii, M.A.; Strel'chenko, P.P.; Yankovski, N.K.; Alikhanyan, S.I.; Fomichev, Yu.K.; Debabov, V.G.

    1986-01-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector λ 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representative gene libraries on phage vectors from no less than 1 μg of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, λ 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it

  13. Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Keisuke eYoshida

    2014-09-01

    Full Text Available Regulation of mitochondrial metabolism is essential for ensuring cellular growth and maintenance in plants. Based on redox-proteomics analysis, several proteins involved in diverse mitochondrial reactions have been identified as potential redox-regulated proteins. NAD+-dependent isocitrate dehydrogenase (IDH, a key enzyme in the tricarboxylic acid cycle, is one such candidate. In this study, we investigated the redox regulation mechanisms of IDH by biochemical procedures. In contrast to mammalian and yeast counterparts reported to date, recombinant IDH in Arabidopsis mitochondria did not show adenylate-dependent changes in enzymatic activity. Instead, IDH was inactivated by oxidation treatment and partially reactivated by subsequent reduction. Functional IDH forms a heterodimer comprising regulatory (IDH-r and catalytic (IDH-c subunits. IDH-r was determined to be the target of oxidative modifications forming an oligomer via intermolecular disulfide bonds. Mass spectrometric analysis combined with tryptic digestion of IDH-r indicated that Cys128 and Cys216 are involved in intermolecular disulfide bond formation. Furthermore, we showed that mitochondria-localized o-type thioredoxin (Trx-o promotes the reduction of oxidized IDH-r. These results suggest that IDH-r is susceptible to oxidative stress, and Trx-o serves to convert oxidized IDH-r to the reduced form that is necessary for active IDH complex.

  14. 3-Bromopyruvate as a potential pharmaceutical in the light of experimental data.

    Science.gov (United States)

    Szczuka, Izabela; Gamian, Andrzej; Terlecki, Grzegorz

    2017-12-08

    3-Bromopyruvate (3-BrPA) is an halogenated analogue of pyruvic acid known for over four decades as an alkylating agent reacting with thiol groups of many proteins. It enters animal cells like a lactate: via monocarboxylic acid transporters. Increasing interest in this compound, in recent times, is mainly due to hopes associated with its anticancer action. It is based on the impairment of energy metabolism of tumor cells by inhibiting enzymes in the glycolysis pathway (hexokinase II, glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase) and the oxidative phosphorylation (succinate dehydrogenase). Two cases of clinical application of this compound in the treatment of advanced cancers were reported. By using 3-BrPA, rheumatoid arthritis in SKG mice has been reduced. This compound has also antiparasitic activity: lowers cell viability of Trypanosoma brucei, decreases intracellular proliferation of Toxoplasma gondii and reduces the metabolic activity of Schistosoma mansoni. It also has antifungal properties; particularly it acts strongly on Cryptococcus neoformans, as well as Saccharomyces cerevisiae. An inhibitory effect on bacterial enzymes was also described on: isocitrate lyase from Escherichia coli, Mycobacterium tuberculosis, Pseudomonas indigofera and 2-methylisocitrate lyase, succinate dehydrogenase and acetohydroxylic acid synthase from Escherichia coli. Wherever undesirable (cancer, parasitic) cells differ from normal by more intense glycolysis and higher energy needs, there is a good chance of successful 3-BrPA use. However, this compound acts on all cells and it, therefore, seems that its future as a pharmaceutical is dependent upon the development of appropriate methods for its effective and safe application.

  15. Effect of degradation of xylan constituent in Mitsumata (Edgeworthia papyrifera Sieb. et Zucc. ) bast on its pulping by pectinolytic enzymes form Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hiroyuki; Matsuo, Ryukichi; Kobayashi, Yoshinari

    1988-01-01

    Pulping of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast by the crude enzyme from a bacterium Erwinia carotovora FERM P-7576, was more effective by a stepwise treatment at pH 6.5 and subsequently at pH 9.5 and eluted greater amount of xylose constituent than a constant pH treatment at pH 9.5 where only the maceration enzymes, endo-pectate lyase and endo-pectin lyase, among the crude enzyme are operative. The crude enzymes obtained from the cultivation of this bacterial strain on mitsumata bast fibers were more effective for the stepwise pH pulping method than those from the cultivation on soluble pectin. Xylanase activity in the mitsumata bast-induced enzyme at pH 6.5 was twice as high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, however, independent on the inducing materials. Purified exo-type xylanase prepared from the crude enzyme acted comparably to the entire crude enzyme in the first step of the combination pulping, but the xylanase per se showed no maceration activity. These results suggests that the degradation of xylan constituent within the bast fibers effects the acceleration of the subsequent enzymatic pulping by the pectinolytic maceration enzymes. The maceration mechanism involving xylan degradation was also discussed.

  16. Phenylalanine ammonia-lyase (pal) and peroxidase activity in brown rust infected tissues of pakistani wheat cultivars

    International Nuclear Information System (INIS)

    Riaz, A.; Tahir, M.I.

    2014-01-01

    Besides other factors resistance and susceptibility is the outcome of biochemical processes such as activities of defense-related enzymes. So in this study, Phenylalanine ammonia-lyase (PAL) and Peroxidase activity of resistant (Inqilab-91) and susceptible (Kirin-95) wheat cultivars were determined through spectrophotometer to address the biochemical aspect related to the disease after 8 hours, 24 hours, 48 hours and 72 hours of leaf rust inoculation. The results have shown that these enzymes were present in both the resistant and susceptible cultivars but the activity was more pronounced in the resistant one. The effect of PAL and peroxidase activity was also investigated among inoculated and uninoculated plants within the same cultivar. The activity of both PAL and peroxidase were more significant in inoculated ones. The results have shown that the after 72 hours of inoculation Inqilab-91 had more PAL activity i.e., 5.47 IU/ml/min than in Kirin-95 i.e., 2.08 IU/ml/min at 270 nm. While peroxidase activity in Inqilab-91 was 6.41 IU/ml/min and in Kirin-95, 3.66 IU/ml/min after 72 hours of inoculation, observed under 470 nm wavelength. Increase in one's activity increases the other enzyme's activity. The activity was more prominent after 72 hours of infection as pathogen had successfully established itself in the host plant tissue. The activities of these enzymes act as plants active defense mechanism against the attack of pathogen. (author)

  17. Recent Advances in Marine Enzymes for Biotechnological Processes.

    Science.gov (United States)

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  18. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease

    Science.gov (United States)

    Paul, Bindu D.; Sbodio, Juan I.; Xu, Risheng; Vandiver, M. Scott; Cha, Jiyoung Y.; Snowman, Adele M.; Snyder, Solomon H.

    2015-01-01

    Huntington’s disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes1. Huntington’s disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington’s disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity2. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington’s disease tissues, which may mediate Huntington’s disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington’s disease tissues and in intact mouse models of Huntington’s disease, suggesting therapeutic potential. PMID:24670645

  19. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    Science.gov (United States)

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phenylalanine ammonia-lyase through evolution: A bioinformatic approach

    Directory of Open Access Journals (Sweden)

    Shiva Hemmati

    2015-03-01

    Full Text Available Phenylalanine ammonia-lyase (PAL is the first entry enzyme of the phenylpropanoid pathway that converts phenylalanine to cinnamic acid which is the precursor of various secondary metabolites. PAL is recently formulated for phenylketonuric patients in pegylated forms; therefore, screening a PAL with the highest affinity to the substrate is of a great importance. PAL exists in all higher plants and some fungi and few bacteria. Ancestors of land plants have been adopted by evolving metabolic pathways. A multi-gene family encodes PAL by gene duplication events in most plants. In this study, the taxonomic distribution and phylogeny of pal gene found in land plants, fungi and bacteria have been analyzed. It seems that the ancestor of plants acquired a pal gene via horizontal gene transfer in symbioses with bacteria and fungi. Gymnosperms have kept a diverse set of pal genes that arose from gene duplication events. In angiosperms, after the divergence of dicotyledons from monocots, pal genes were duplicated many times. The close paralogues of pal genes in some species indicate expansion of gene families after the divergence in plant pal gene evolution. Interestingly, some of the plant pals clustered by species in a way that pals within one species are more closely related to each other than to homologs in the other species which indicates this duplication event occurred more recently.

  1. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  2. Cystathionine .gamma.-lyase: Clinical, metabolic, genetic, and structural studies

    Czech Academy of Sciences Publication Activity Database

    Kraus, J. P.; Hašek, Jindřich; Kožich, V.; Collard, R.; Venezia, S.; Janošíková, B.; Wang, J.; Stabler, S. P.; Allen, R. H.; Jakobs, C.; Finn, C. T.; Chien, Y. H.; Hwu, W. L.; Hegele, R. A.; Mudd, S. H.

    2009-01-01

    Roč. 97, č. 4 (2009), s. 250-259 ISSN 1096-7192 R&D Projects: GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : cystathionine gamma-lyase * cystathioninuria * hypercystathioninemia Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.897, year: 2009

  3. Phenylalanine ammonia-lyase (PAL) gene activity in response to ...

    African Journals Online (AJOL)

    Phenylalanine ammonia-lyase (PAL) catalyzes the biosynthesis of rosmarinic acid (RA), tyrosine and phenylalanine are the precursors of RA, while proline drives metabolite precursors toward Shikimate and phenylpropanoid pathway ending with the production of RA. The aim of this study was to investigate the PAL gene ...

  4. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria.

    Science.gov (United States)

    Bell, Sean M; Wendt, Dan J; Zhang, Yanhong; Taylor, Timothy W; Long, Shinong; Tsuruda, Laurie; Zhao, Bin; Laipis, Phillip; Fitzpatrick, Paul A

    2017-01-01

    Phenylketonuria (PKU) is a genetic metabolic disease in which the decrease or loss of phenylalanine hydroxylase (PAH) activity results in elevated, neurotoxic levels of phenylalanine (Phe). Due to many obstacles, PAH enzyme replacement therapy is not currently an option. Treatment of PKU with an alternative enzyme, phenylalanine ammonia lyase (PAL), was first proposed in the 1970s. However, issues regarding immunogenicity, enzyme production and mode of delivery needed to be overcome. Through the evaluation of PAL enzymes from multiple species, three potential PAL enzymes from yeast and cyanobacteria were chosen for evaluation of their therapeutic potential. The addition of polyethylene glycol (PEG, MW = 20,000), at a particular ratio to modify the protein surface, attenuated immunogenicity in an animal model of PKU. All three PEGylated PAL candidates showed efficacy in a mouse model of PKU (BTBR Pahenu2) upon subcutaneous injection. However, only PEGylated Anabaena variabilis (Av) PAL-treated mice demonstrated sustained low Phe levels with weekly injection and was the only PAL evaluated that maintained full enzymatic activity upon PEGylation. A PEGylated recombinant double mutant version of AvPAL (Cys503Ser/Cys565Ser), rAvPAL-PEG, was selected for drug development based on its positive pharmacodynamic profile and favorable expression titers. PEGylation was shown to be critical for rAvPAL-PEG efficacy as under PEGylated rAvPAL had a lower pharmacodynamic effect. rAvPAL and rAvPAL-PEG had poor stability at 4°C. L-Phe and trans-cinnamate were identified as activity stabilizing excipients. rAvPAL-PEG is currently in Phase 3 clinical trials to assess efficacy in PKU patients.

  5. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Sean M Bell

    Full Text Available Phenylketonuria (PKU is a genetic metabolic disease in which the decrease or loss of phenylalanine hydroxylase (PAH activity results in elevated, neurotoxic levels of phenylalanine (Phe. Due to many obstacles, PAH enzyme replacement therapy is not currently an option. Treatment of PKU with an alternative enzyme, phenylalanine ammonia lyase (PAL, was first proposed in the 1970s. However, issues regarding immunogenicity, enzyme production and mode of delivery needed to be overcome. Through the evaluation of PAL enzymes from multiple species, three potential PAL enzymes from yeast and cyanobacteria were chosen for evaluation of their therapeutic potential. The addition of polyethylene glycol (PEG, MW = 20,000, at a particular ratio to modify the protein surface, attenuated immunogenicity in an animal model of PKU. All three PEGylated PAL candidates showed efficacy in a mouse model of PKU (BTBR Pahenu2 upon subcutaneous injection. However, only PEGylated Anabaena variabilis (Av PAL-treated mice demonstrated sustained low Phe levels with weekly injection and was the only PAL evaluated that maintained full enzymatic activity upon PEGylation. A PEGylated recombinant double mutant version of AvPAL (Cys503Ser/Cys565Ser, rAvPAL-PEG, was selected for drug development based on its positive pharmacodynamic profile and favorable expression titers. PEGylation was shown to be critical for rAvPAL-PEG efficacy as under PEGylated rAvPAL had a lower pharmacodynamic effect. rAvPAL and rAvPAL-PEG had poor stability at 4°C. L-Phe and trans-cinnamate were identified as activity stabilizing excipients. rAvPAL-PEG is currently in Phase 3 clinical trials to assess efficacy in PKU patients.

  6. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  7. Modifications Caused by Enzyme-Retting and Their Effect on Composite Performance

    Directory of Open Access Journals (Sweden)

    Jonn A. Foulk

    2011-01-01

    Full Text Available Bethune seed flax was collected from Canada with seed removed using a stripper header and straw pulled and left in field for several weeks. Unretted straw was decorticated providing a coarse fiber bundle feedstock for enzyme treatments. Enzyme treatments using a bacterial pectinolytic enzyme with lyase activity were conducted in lab-scale reactors. Four fiber specimens were created: no retting, minimal retting, moderate retting, and full retting. Fiber characterization tests: strength, elongation, diameter, metal content, wax content, and pH were conducted with significant differences between fibers. Thermosetting vinyl ester resin was used to produce composite panels via vacuum-assisted infusion. Composite performance was evaluated using fiber bundle pull-out, tensile, impact, and interlaminar shear tests. Composite tests indicate that composite panels are largely unchanged among fiber samples. Variation in composite performance might not be realized due to poor interfacial bonding being of larger impact than the more subtle changes incurred by the enzyme treatment.

  8. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  9. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  10. A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Wieczorek, K; Elashry, A; Quentin, M; Grundler, F M W; Favery, B; Seifert, G J; Bohlmann, H

    2014-09-01

    Pectin in the primary plant cell wall is thought to be responsible for its porosity, charge density, and microfibril spacing and is the main component of the middle lamella. Plant-parasitic nematodes secrete cell wall-degrading enzymes that macerate the plant tissue, facilitating the penetration and migration within the roots. In sedentary endoparasitic nematodes, these enzymes are released only during the migration of infective juveniles through the root. Later, nematodes manipulate the expression of host plant genes, including various cell wall enzymes, in order to induce specific feeding sites. In this study, we investigated expression of two Arabidopsis pectate lyase-like genes (PLL), PLL18 (At3g27400) and PLL19 (At4g24780), together with pectic epitopes with different degrees of methylesterification in both syncytia induced by the cyst nematode Heterodera schachtii and giant cells induced by the root-knot nematode Meloidogyne incognita. We confirmed upregulation of PLL18 and PLL19 in both types of feeding sites with quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ RT-PCR. Furthermore, the functional analysis of mutants demonstrated the important role of both PLL genes in the development and maintenance of syncytia but not giant cells. Our results show that both enzymes play distinct roles in different infected root tissues as well as during parasitism of different nematodes.

  11. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney

    OpenAIRE

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V.; Park, Kwon Moo

    2008-01-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expressio...

  12. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  13. Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures of Haplopappus gracilis

    International Nuclear Information System (INIS)

    Wellmann, E.; Hrazdina, G.; Grisebach, H.

    1976-01-01

    Only UV light below 345 nm stimulates anthocyanin formation in dark grown cell suspension cultures of Haplopappus gracilis. A linear relationship between UV dose and flavonoid accumulation, as found previously with parsley cell cultures was not observed with the H.gracilis cells. Only continuous irradiation with high doses of UV was effective. Drastic increases in the activities of the enzymes phenylalanine ammonia-lyase, chalcone isomerase and flavanone synthase were observed under continuous UV light. The increase in enzyme activities paralleled anthocyanin formation. (author)

  14. Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency

    Directory of Open Access Journals (Sweden)

    Mónica Fernández-Cancio

    2018-04-01

    Full Text Available The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel missense mutation V366M at the catalytic center of CYP17A1 which preferentially impaired 17,20 lyase activity. Kinetic experiments with bacterially expressed proteins revealed that V366M mutant enzyme can bind and metabolize pregnenolone to 17OH-pregnenolone, but 17OH-pregnenolone binding and conversion to dehydroepiandrosterone (DHEA was impaired, explaining the patient’s steroid profile. Abiraterone could not bind and inhibit the 17α-hydroxylase activity of the CYP17A1-V366M mutant. Molecular dynamics (MD simulations showed that V366M creates a “one-way valve” and suggests a mechanism for dual activities of human CYP17A1 where, after the conversion of pregnenolone to 17OH-pregnenolone, the product exits the active site and re-enters for conversion to dehydroepiandrosterone. The V366M mutant also explained the effectiveness of the anti-prostate cancer drug abiraterone as a potent inhibitor of CYP17A1 by binding tightly at the active site in the WT enzyme. The V366M is the first human mutation to be described at the active site of CYP17A1 that causes isolated 17,20 lyase deficiency. Knowledge about the specificity of CYP17A1 activities is of importance for the development of treatments for polycystic ovary syndrome and inhibitors for prostate cancer therapy.

  15. Oxidation-reduction enzymes of myocardium under ionizing radiation effect

    International Nuclear Information System (INIS)

    Uteshev, A.B.

    1988-01-01

    Tissue respiration proceses under radiation effect were investigated which allowed one to reveal slight biochemical disturbances in a cell which make up the base of functional changes of different organs and tissues and to get to know the essence of tissue respiration processes. An attempt to explain significant value of oxidation enzyme system radiosensitivity in the course of cell respiration process altogether is made when studying the state of separate links of oxidation-reduction chain. It is shown that at early periods of radiation injury activity of catalase, dehydrogenases (isocitric, α-ketoglutaric, malic, succinic acids) is suppressed, concentration of a number of cytochromes is reduced and general ferrum content is increased which is connected with conformation changes of ultrastructure of mitochondrial membranes

  16. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    Science.gov (United States)

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Studies on the effects of radiation on enzyme activity and chromosome in mammals (Mus musuculus)

    International Nuclear Information System (INIS)

    Kim, J.B.; Lee, K.S.; Kim, Y.J.

    1982-01-01

    From the results of many researches in radiation biology, it is well known that the radiation induces gene mutation, aberration of chromosome which is a carrier of genes and the increase or decrease of enzyme activities in living organisms. However, the frequency of chromosomal aberration or the degree of enzyme activities according to the animal's age when they are irradiated with radiation and time pass after irradiation are known a little if any. From these viewpoints, the research on the frequencies of chromosomal aberrations in bone marrow cells and the degree of activities of glucose-6-phosphate dehydrogenase in liver, kidney and brain, and isocitrate dehydrogense in kidney and brain of mouse has been carried out according to the mice age when they are irradiated with 200 rad of whole body irradiation. The chromosomes and enzyme activities were observed at 24 hours, 48 hours and 4 days to 90 days after irradiation. (Author)

  18. Correlation between the cystathionine-r-lyase (CES) and the ...

    African Journals Online (AJOL)

    Background: The infection of Helicobacter pylori (H. pylori) is one of the most important causes of gastric ulcer disease. The role of hydrogen sulfide (H2S) production in H. pylori-induced gastric ulcer disease. Aim: The expression of cystathionine-γ-lyase (CSE) was determined, and correlated with the severity of gastric ulcer ...

  19. Effect of NaHCO3 treatments on the activity of cell wall-degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit.

    Science.gov (United States)

    Venditti, Tullio; D'hallewin, Guy; Ladu, Gianfranca; Petretto, Giacomo L; Pintore, Giorgio; Labavitch, John M

    2018-03-25

    The present study was performed to clarify the strategies of Penicillium digitatum during pathogenesis on citrus, assessing, on albedo plugs, the effects of treatment with NaHCO 3 , at two different pH (5 and 8.3), on cell wall-degrading enzymes activity, over a period of 72 h. The treatment with NaHCO 3 , under alkaline pH, delayed the polygalacturonase activity for 72 h, or 48 h in the case of the pectin lyase, if compared to the control or the same treatment at pH 5. On the contrary, the pectin methyl esterase activity rapidly increased after 24 h, in plugs dipped in the same solution. In this case, the activity remained higher than untreated or pH 5 treated plugs up to 72 h. The rapid increase in pectin methyl esterase activity, under alkaline conditions, is presumably the strategy of the pathogen to lower the pH, soon after the initiation of infection, in order to restore an optimal environment for the subsequent polygalacturonase and pectin lyase action. In fact at the same time, a low pH delayed the enzymatic activity of polygalacturonase and pectin lyase, the two enzymes that actually cleave the α-1,4-linkages between the galacturonic acid residues. This article is protected by copyright. All rights reserved.

  20. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

    Directory of Open Access Journals (Sweden)

    Xin Tang

    Full Text Available The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA; however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11 isolated in this laboratory can produce lipid up to 36% (w/w cell dry weight (CDW. We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.

  1. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

    Science.gov (United States)

    Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2015-01-01

    The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA); however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11) isolated in this laboratory can produce lipid up to 36% (w/w) cell dry weight (CDW). We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w) lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL) to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.

  2. Genetic analysis of the pelA-pelE cluster encoding the acidic and basic pectate lyases in Erwinia chrysanthemi EC16.

    Science.gov (United States)

    Barras, F; Chatterjee, A K

    1987-10-01

    In Erwinia chrysanthemi (EC16) the clustered pelA and pelE genes encode an acidic (pI 4.2) and a basic (pI 10.0) pectate lyase (Pel), respectively. The pelA gene has been isolated on a 1.2 kb restriction fragment and the direction of transcription determined. DNA hybridization analysis showed that the pelE sequence shares DNA homology with pelA but not with pelB or pelC, two genes encoding other Pel species in EC16. Since Pel A and Pel E enzymes showed little similarity in terms of catalytic properties, it is proposed that pelA and pelE are duplicates which have highly diverged.

  3. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    Science.gov (United States)

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  4. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  5. Peroxisomal enzymes in the liver of rats with experimental diabetes mellitus type 2.

    Science.gov (United States)

    Turecký, L; Kupčová, V; Uhlíková, E; Mojto, V

    2014-01-01

    Diabetes mellitus is relatively frequently associated with fatty liver disease. Increased oxidative stress probably plays an important role in the development of this hepatopathy. One of possible sources of reactive oxygen species in liver is peroxisomal system. There are several reports about changes of peroxisomal enzymes in experimental diabetes, mainly enzymes of fatty acid oxidation. The aim of our study was to investigate the possible changes of activities of liver peroxisomal enzymes, other than enzymes of beta-oxidation, in experimental diabetes mellitus type 2. Biochemical changes in liver of experimental animals suggest the presence of liver steatosis. The changes of serum parameters in experimental group are similar to changes in serum of patients with non-alcoholic fatty liver disease. We have shown that diabetes mellitus influenced peroxisomal enzymes by the different way. Despite of well-known induction of peroxisomal beta-oxidation, the activities of catalase, aminoacid oxidase and NADH-cytochrome b(5) reductase were not significantly changed and the activities of glycolate oxidase and NADP-isocitrate dehydrogenase were significantly decreased. The effect of diabetes on liver peroxisomes is probably due to the increased supply of fatty acids to liver in diabetic state and also due to increased oxidative stress. The changes of metabolic activity of peroxisomal compartment may participate on the development of diabetic hepatopathy.

  6. Probing Reversible Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase with Kinetic Isotope Effects

    Science.gov (United States)

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  7. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica.

    Science.gov (United States)

    Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong

    2015-06-01

    Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

  8. Characterization of the N-linked glycosylation site of recombinant pectate lyase

    NARCIS (Netherlands)

    Colangelo, J.; Licon, V.; Benen, J.A.E.; Visser, J.; Bergmann, C.; Orlando, R.

    1999-01-01

    Recombinant pectate lyase from Aspergillus niger was overexpressed in Aspergillus nidulans. The two recombinant proteins produced differed in molecular mass by 1200 Da, which suggested that the larger molecular weight protein was glycosylated. The deduced amino acid sequence was searched for

  9. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma.

    Science.gov (United States)

    Yahagi, Naoya; Shimano, Hitoshi; Hasegawa, Kiyoshi; Ohashi, Kenichi; Matsuzaka, Takashi; Najima, Yuho; Sekiya, Motohiro; Tomita, Sachiko; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Nagai, Ryozo; Ishibashi, Shun; Kadowaki, Takashi; Makuuchi, Masatoshi; Ohnishi, Shin; Osuga, Jun-ichi; Yamada, Nobuhiro

    2005-06-01

    Hepatocellular carcinoma is a very common neoplastic disease in countries where hepatitis viruses B and/or C are prevalent. Small hepatocellular carcinoma lesions detected by ultrasonography at an early stage are often hyperechoic because they are composed of well-differentiated cancer cells that are rich in triglyceride droplets. The triglyceride content of hepatocytes depends in part on the rate of lipogenesis. Key lipogenic enzymes, such as fatty acid synthase, are co-ordinately regulated at the transcriptional level. We therefore examined the mRNA expression of lipogenic enzymes in human hepatocellular carcinoma samples from 10 patients who had undergone surgical resection. All of the samples exhibited marked elevation of expression of mRNA for lipogenic enzymes, such as fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase, compared with surrounding non-cancerous liver tissue. In contrast, the changes in mRNA expression of SREBP-1, a transcription factor that regulates a battery of lipogenic enzymes, did not show a consistent trend. In some cases where SREBP-1 was elevated, the main contributing isoform was SREBP-1c rather than SREBP-1a. Thus, lipogenic enzymes are markedly induced in hepatocellular carcinomas, and in some cases SREBP-1c is involved in this activation.

  10. Application of high-performance liquid chromatography to the determination of glyoxylate synthesis in chick embryo liver.

    Science.gov (United States)

    Qureshi, A A; Elson, C E; Lebeck, L A

    1982-11-19

    The isolation and identification of three major alpha-keto end products (glyoxylate, pyruvate, alpha-ketoglutarate) of the isocitrate lyase reaction in 18-day chick embryo liver have been described. This was accomplished by the separation of these alpha-keto acids as their 2,4-dinitrophenylhydrazones (DNPHs) by high-performance liquid chromatography (HPLC). The DNPHs of alpha-keto acids were eluted with an isocratic solvent system of methanol-water-acetic acid (60:38.5:1.5) containing 5 mM tetrabutylammonium phosphate from a reversed-phase ultrasphere C18 (IP) and from a radial compression C18 column. The separation can be completed on the radial compression column within 15-20 min as compared to 30-40 min with a conventional reversed-phase column. Retention times and peak areas were integrated for both the assay samples and reference compounds. A relative measure of alpha-keto acid in the peak was calculated by comparison with the standard. The identification of each peak was done on the basis of retention time matching, co-chromatography with authentic compounds, and stopped flow UV-VIS scanning between 240 and 440 nm. Glyoxylate represented 5% of the total product of the isocitrate lyase reaction. Day 18 parallels the peak period of embryonic hepatic glycogenesis which occurs at a time when the original egg glucose reserve has been depleted.

  11. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    International Nuclear Information System (INIS)

    Haedener, A.; Tamm, Ch.

    1987-01-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-[2- 2 H]phenyl-[2- 2 H]alanine was formed from (E) -[2,2'- 2 H 2 ]cinnamic acid and ammonia in 46% yield, whereas L-phenyl-[2- 13 C, 15 N]alanine was obtained from (E)-[2- 13 C]cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged 15 NH 3 was reisolated as 15 NH 4 Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. [2- 2 H]Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with 2 H 2 O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines. (author)

  12. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Stahlhut, Steen Gustav; Li, Mingji

    2015-01-01

    Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches...

  13. Wild-type and mutated IDH1/2 enzymes and therapy responses.

    Science.gov (United States)

    Molenaar, Remco J; Maciejewski, Jaroslaw P; Wilmink, Johanna W; van Noorden, Cornelis J F

    2018-04-01

    Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of D-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.

  14. Modification of Cys-418 of pyruvate formate-lyase by methacrylic acid, based on its radical mechanism.

    Science.gov (United States)

    Plaga, W; Vielhaber, G; Wallach, J; Knappe, J

    2000-01-21

    The recently determined crystal structure of pyruvate formate-lyase (PFL) suggested a new view of the mechanism of this glycyl radical enzyme, namely that intermediary thiyl radicals of Cys-418 and Cys-419 participate in different ways [Becker, A. et al. (1999) Nat. Struct. Biol. 6, 969-975]. We report here a suicide reaction of PFL that occurs with the substrate-analog methacrylate with retention of the protein radical (K(I)=0.42 mM, k(i)=0.14 min(-1)). Using [1-(14)C]methacrylate (synthesized via acetone cyanhydrin), the reaction end-product was identified by peptide mapping and cocrystallization experiments as S-(2-carboxy-(2S)-propyl) substituted Cys-418. The stereoselectivity of the observed Michael addition reaction is compatible with a radical mechanism that involves Cys-418 thiyl as nucleophile and Cys-419 as H-atom donor, thus supporting the functional assignments of these catalytic amino acid residues derived from the protein structure.

  15. S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1.

    Science.gov (United States)

    Maeda, Yasuhiro; Yagi, Hideki; Takemoto, Kana; Utsumi, Hiroyuki; Fukunari, Atsushi; Sugahara, Kunio; Masuko, Takashi; Chiba, Kenji

    2014-05-01

    Sphingosine 1-phosphate (S1P) and S1P receptor 1 (S1P1) play an important role in the egress of mature CD4 or CD8 single-positive (SP) thymocytes from the thymus. Fingolimod hydrochloride (FTY720), an S1P1 functional antagonist, induced significant accumulation of CD62L(high)CD69(low) mature SP thymocytes in the thymic medulla. Immunohistochemical staining using anti-S1P1 antibody revealed that S1P1 is predominantly expressed on thymocytes in the thymic medulla and is strongly down-regulated even at 3h after FTY720 administration. 2-Acetyl-4-tetrahydroxybutylimidazole (THI), an S1P lyase inhibitor, also induced accumulation of mature SP thymocytes in the thymic medulla with an enlargement of the perivascular spaces (PVS). At 6h after THI administration, S1P1-expressing thymocytes reduced partially as if to form clusters and hardly existed in the proximity of CD31-expressing blood vessels in the thymic medulla, suggesting S1P lyase expression in the cells constructing thymic medullary PVS. To determine the cells expressing S1P lyase in the thymus, we newly established a mAb (YK19-2) specific for mouse S1P lyase. Immunohistochemical staining with YK19-2 revealed that S1P lyase is predominantly expressed in non-lymphoid thymic stromal cells in the thymic medulla. In the thymic medullary PVS, S1P lyase was expressed in ER-TR7-positive cells (reticular fibroblasts and pericytes) and CD31-positive vascular endothelial cells. Our findings suggest that S1P lyase expressed in the thymic medullary PVS keeps the tissue S1P concentration low around the vessels and promotes thymic egress via up-regulation of S1P1.

  16. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui; Ding, Bo; Mishra, Gyan Prakash; Zhou, Bo; Yang, Hongmei; Bellizzi, Maria Del Rosario; Chen, Songbiao; Meyers, Blake C.; Peng, Zhaohua; Zhu, Jian-Kang; Wang, Guoliang

    2011-01-01

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  17. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui

    2011-09-06

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  18. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  19. Rhamnogalacturonan I modifying enzymes: an update

    DEFF Research Database (Denmark)

    Silva, Ines R.; Jers, Carsten; Meyer, Anne S.

    2016-01-01

    been described to be produced by Aspergillus spp. and Bacillus subtilis and are categorized in glycosyl hydrolase families 28 and 105. The RGI lyases, EC 4.2.2.23–EC 4.2.2.24, have been isolated from different fungi and bacterial species and are categorized in polysaccharide lyase families 4 and 11...

  20. Genetic and molecular analyses of Escherichia coli N-acetylneuraminate lyase gene.

    OpenAIRE

    Kawakami, B; Kudo, T; Narahashi, Y; Horikoshi, K

    1986-01-01

    Two plasmids containing the N-acetylneuraminate lyase (NALase) gene (nanA) of Escherichia coli, pNL1 and pNL4, were constructed. Immunoprecipitation analysis indicated that the 35,000-dalton protein encoded in pNL4 was NALase. The synthesis of NALase in E. coli carrying these plasmids was constitutive.

  1. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    Science.gov (United States)

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  2. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Viviani Ferreira

    2010-01-01

    Full Text Available Pectate lyase (PL was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w, or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w, and in a submerged liquid culture with orange bagasse and wheat bran (3% as the carbon source. PL production was highest (1,500 U  mL−1 or 300 Ug−1 of substrate in solid-state fermentation (SSF on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL  I′, II′, III′, IV′, and VII′. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35∘C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45∘C. Crude enzyme from SmF and PL   III′ showed thermophilic profiles of activity, with maximum activity at 60 and 55∘C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0–10.0 and PL III was most stable in the pH range 4.0–7.0. Crude enzyme from SmF retained 70%–80% of its maximum activity in the acid-neutral pH range (4.0–7.0, but PIII showed high stability at alkaline pH (7.5–9.5. PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55

  3. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation

    Science.gov (United States)

    Ferreira, Viviani; da Silva, Roberto; Silva, Dênis; Gomes, Eleni

    2010-01-01

    Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500 U  mL−1 or 300 Ug−1 of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL  I′, II′, III′, IV′, and VII′. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35°C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45°C. Crude enzyme from SmF and PL III′ showed thermophilic profiles of activity, with maximum activity at 60 and 55°C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0–10.0 and PL III was most stable in the pH range 4.0–7.0. Crude enzyme from SmF retained 70%–80% of its maximum activity in the acid-neutral pH range (4.0–7.0), but PIII showed high stability at alkaline pH (7.5–9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55°C. The differing

  4. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  5. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial.

    Science.gov (United States)

    Longo, Nicola; Harding, Cary O; Burton, Barbara K; Grange, Dorothy K; Vockley, Jerry; Wasserstein, Melissa; Rice, Gregory M; Dorenbaum, Alejandro; Neuenburg, Jutta K; Musson, Donald G; Gu, Zhonghua; Sile, Saba

    2014-07-05

    Phenylketonuria is an inherited disease caused by impaired activity of phenylalanine hydroxylase, the enzyme that converts phenylalanine to tyrosine, leading to accumulation of phenylalanine and subsequent neurocognitive dysfunction. Phenylalanine ammonia lyase is a prokaryotic enzyme that converts phenylalanine to ammonia and trans-cinnamic acid. We aimed to assess the safety, tolerability, pharmacokinetic characteristics, and efficacy of recombinant Anabaena variabilis phenylalanine ammonia lyase (produced in Escherichia coli) conjugated with polyethylene glycol (rAvPAL-PEG) in reducing phenylalanine concentrations in adult patients with phenylketonuria. In this open-label, phase 1, multicentre trial, single subcutaneous injections of rAvPAL-PEG were given in escalating doses (0·001, 0·003, 0·010, 0·030, and 0·100 mg/kg) to adults with phenylketonuria. Participants aged 18 years or older with blood phenylalanine concentrations of 600 μmol/L or higher were recruited from among patients attending metabolic disease clinics in the USA. The primary endpoints were safety and tolerability of rAvPAL-PEG. Secondary endpoints were the pharmacokinetic characteristics of the drug and its effect on concentrations of phenylalanine. Participants and investigators were not masked to assigned dose group. This study is registered with ClinicalTrials.gov, number NCT00925054. 25 participants were recruited from seven centres between May 6, 2008, and April 15, 2009, with five participants assigned to each escalating dose group. All participants were included in the safety population. The most frequently reported adverse events were injection-site reactions and dizziness, which were self-limited and without sequelae. Two participants had serious adverse reactions to intramuscular medroxyprogesterone acetate, a drug that contains polyethylene glycol as an excipient. Three of five participants given the highest dose of rAvPAL-PEG (0·100 mg/kg) developed a generalised skin rash

  6. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    Science.gov (United States)

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  7. Preparation and Characterization of Enzyme Compartments in UV-Cured Polyurethane-Based Materials and Their Application in Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Diana Uhrich

    2017-11-01

    Full Text Available The preparation and characterization of UV-cured polyurethane-based materials for the mild inclusion immobilization of enzymes was investigated. Full curing of the polymer precursor/enzyme solution mixture was realized by a short irradiation with UV-light at ambient temperatures. The included aqueous enzyme solution remains highly dispersed in the polymer material with an even size distribution throughout the polymer material. The presented concept provides stable enzyme compartments which were applied for an alcohol dehydrogenase-catalyzed reduction reaction in organic solvents. Cofactor regeneration was achieved by a substrate-coupled approach via 2-propanol or an enzyme-coupled approach by a glucose dehydrogenase. This reaction concept can also be used for a simultaneous application of contrary biocatalytic reaction conditions within an enzymatic cascade reaction. Independent polymer-based reaction compartments were provided for two incompatible enzymatic reaction systems (alcohol dehydrogenase and hydroxynitrile lyase, while the relevant reactants diffuse between the applied compartments.

  8. Biochemical Stability and Molecular Dynamic Characterization of Aspergillus fumigatus Cystathionine γ-Lyase in Response to Various Reaction Effectors

    KAUST Repository

    El-Sayed, Ashraf S.A.

    2015-08-11

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8 U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3 °C, with ∼3 °C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under

  9. Biochemical Stability and Molecular Dynamic Characterization of Aspergillus fumigatus Cystathionine γ-Lyase in Response to Various Reaction Effectors

    KAUST Repository

    El-Sayed, Ashraf S.A.; Abdel-Azeim, Safwat; Ibrahim, Hend M.; Yassin, Marwa A.; Abdel-Ghany, Salah E.; Esener, Sadik; Ali, Gul Shad

    2015-01-01

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8 U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3 °C, with ∼3 °C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under

  10. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    Energy Technology Data Exchange (ETDEWEB)

    Haedener, A.; Tamm, Ch.

    1987-11-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-(2-/sup 2/H)phenyl-(2-/sup 2/H)alanine was formed from (E) -(2,2'-/sup 2/H/sub 2/)cinnamic acid and ammonia in 46% yield, whereas L-phenyl-(2-/sup 13/C, /sup 15/N)alanine was obtained from (E)-(2-/sup 13/C)cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged /sup 15/NH/sub 3/ was reisolated as /sup 15/NH/sub 4/Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. (2-/sup 2/H)Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with /sup 2/H/sub 2/O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines.

  11. Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger

    DEFF Research Database (Denmark)

    Limberg, G; Körner, R; Buchholt, H C

    2000-01-01

    with either endopectin lyase (PL) or endopolygalacturonase II (PG II) from Aspergillus niger were analysed using matrix assisted laser desorption ionisation mass spectrometry (MALDIMS) and high-performance anion-exchange chromatography with pulsed amperometric or UV detection (HPAEC-PAD/UV). Time course......A series of pectins with different distribution patterns of methyl ester groups was produced by treatment with either plant (p-PME) or fungal pectin methyl esterases (f-PME) and compared with those obtained by base catalysed de-esterification. The products generated by digestion of these pectins...... analysis using MALDIMS was used to identify the most preferred substrate for each enzyme. For PL, this was shown to be fully methyl esterified HG whereas for PG II, long regions of HG without any methyl esterification, as produced by p-PME was the optimal substrate. The blockwise de-esterification caused...

  12. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Science.gov (United States)

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine

  13. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Directory of Open Access Journals (Sweden)

    Daniel E Almonacid

    2010-03-01

    Full Text Available Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3 show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1 catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56% suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to

  14. Stabilization of enzymes activities of lipoxygenase pathway by irradiation to improve the production of olive oil aroma

    International Nuclear Information System (INIS)

    Musrati, Imen

    2009-01-01

    The main purpose of this work was to improve the synthesis of volatile compounds leading to green note in olives and olive tree leaves by improving enzymes activities of lipoxygenase pathway. Lipoxygenase (LOX), hydroperoxyde lyase (HPL) and alcohol dehydrogenase (ADH) activities were tested in olives and olive tree leaves during maturation. The gamma irradiation effects on these samples were studied. LOX, HPL and ADH showed maximum activities at black stage for olives and in December for olive leaves. Those activities, from olives and Chemlali olive leaves, were improved after irradiation with 0,5KGy. For the case of Chetoui olive leaves, the irradiation treatment was unfavorable because it causes a loss in enzymes activities. (Author)

  15. Characterization of two bacterial hydroxynitrile lyases with high similarity to cupin superfamily proteins

    NARCIS (Netherlands)

    Hussain, Z.; Wiedner, R.; Steiner, K.; Hajek, T.; Avi, M.; Hecher, B.; Sessitsch, A.; Schwab, H.

    2012-01-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins. In the reverse reaction, they catalyze the formation of carbon-carbon bonds by enantioselective condensation of hydrocyanic acid with carbonyls. In this study, we describe two proteins from endophytic bacteria that display activity

  16. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Otero, José Manuel; Olivares Hernandez, Roberto

    2009-01-01

    of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Furthermore, in the strain with over-expression of icl the organic acid production shifted from fumarate...... towards malate production when malonate was added to the cultivation medium. Overall, the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct...

  17. Study of RNA interference inhibiting rat ovarian androgen biosynthesis by depressing 17alpha-hydroxylase/17, 20-lyase activity in vivo

    Directory of Open Access Journals (Sweden)

    Yang Xing

    2009-07-01

    Full Text Available Abstract Background 17alpha-hydroxylase/17, 20-lyase encoded by CYP17 is the key enzyme in androgen biosynthesis pathway. Previous studies demonstrated the accentuation of the enzyme in patients with polycystic ovary syndrome (PCOS was the most important mechanism of androgen excess. We chose CYP17 as the therapeutic target, trying to suppress the activity of 17alpha-hydroxylase/17, 20-lyase and inhibit androgen biosynthesis by silencing the expression of CYP17 in the rat ovary. Methods Three CYP17-targeting and one negative control oligonucleotides were designed and used in the present study. The silence efficiency of lentivirus shRNA was assessed by qRT-PCR, Western blotting and hormone assay. After subcapsular injection of lentivirus shRNA in rat ovary, the delivery efficiency was evaluated by GFP fluorescence and qPCR. Total RNA was extracted from rat ovary for CYP17 mRNA determination and rat serum was collected for hormone measurement. Results In total, three CYP17-targeting lentivirus shRNAs were synthesized. The results showed that all of them had a silencing effect on CYP17 mRNA and protein. Moreover, androstenedione secreted by rat theca interstitial cells (TIC in the RNAi group declined significantly compared with that in the control group. Two weeks after rat ovarian subcapsular injection of chosen CYP17 shRNA, the GFP fluorescence of frozen ovarian sections could be seen clearly under fluorescence microscope. It also showed that the GFP DNA level increased significantly, and its relative expression level was 7.42 times higher than that in the control group. Simultaneously, shRNA treatment significantly decreased CYP17 mRNA and protein levels at 61% and 54%, respectively. Hormone assay showed that all the levels of androstenedione, 17-hydroxyprogesterone and testosterone declined to a certain degree, but progesterone levels declined significantly. Conclusion The present study proves for the first time that ovarian androgen

  18. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency.

    Science.gov (United States)

    Stuy, M; Chen, G-F; Masonek, J M; Scharschmidt, B F

    2015-09-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.

  19. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency☆

    Science.gov (United States)

    Stuy, M.; Chen, G.-F.; Masonek, J.M.; Scharschmidt, B.F.

    2015-01-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet. PMID:26937403

  20. Understanding Which Residues of the Active Site and Loop Structure of a Tyrosine Aminomutase Define Its Mutase and Lyase Activities.

    Science.gov (United States)

    Attanayake, Gayanthi; Walter, Tyler; Walker, Kevin D

    2018-05-30

    Site-directed mutations and substrate analogues were used to gain insights into the branch-point reaction of the 3,5-dihydro-5-methylidene-4 H-imidazol-4-one (MIO)-tyrosine aminomutase from Oryza sativa ( OsTAM). Exchanging the active residues of OsTAM (Y125C/N446K) for those in a phenylalanine aminomutase TcPAM altered its substrate specificity from tyrosine to phenylalanine. The aminomutase mechanism of OsTAM surprisingly changed almost exclusively to that of an ammonia lyase making cinnamic acid (>95%) over β-phenylalanine [Walter, T., et al. (2016) Biochemistry 55, 3497-3503]. We hypothesized that the missing electronics or sterics on the aryl ring of the phenylalanine substrate, compared with the sizable electron-donating hydroxyl of the natural tyrosine substrate, influenced the unexpected lyase reactivity of the OsTAM mutant. The double mutant was incubated with 16 α-phenylalanine substituent analogues of varying electronic strengths and sterics. The mutant converted each analogue principally to its acrylate with ∼50% conversion of the p-Br substrate, making only a small amount of the β-amino acid. The inner loop structure over the entrance to the active site was also mutated to assess how the lyase and mutase activities are affected. An OsTAM loop mutant, matching the loop residues of TcPAM, still chiefly made >95% of the acrylate from each substrate. A combined active site:loop mutant was most reactive but remained a lyase, making 10-fold more acrylates than other mutants did. While mutations within the active site changed the substrate specificity of OsTAM, continued exploration is needed to fully understand the interplay among the inner loop, the substrate, and the active site in defining the mutase and lyase activities.

  1. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells.

    Science.gov (United States)

    Asanagi, Miki; Yamada, Shigeru; Hirata, Naoya; Itagaki, Hiroshi; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2016-04-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.

  2. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

    OpenAIRE

    Lee, Su Jeong; Park, Jeen-Woo

    2014-01-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocyte...

  3. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency

    Directory of Open Access Journals (Sweden)

    M. Stuy

    2015-09-01

    Full Text Available A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB. The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.

  4. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP...

  5. Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw.

    Science.gov (United States)

    Jose, V Lyju; Appoothy, Thulasi; More, Ravi P; Arun, A Sha

    2017-12-01

    The rumen is a unique natural habitat, exhibiting an unparalleled genetic resource of fibrolytic enzymes of microbial origin that degrade plant polysaccharides. The objectives of this study were to identify the principal plant cell wall-degrading enzymes and the taxonomic profile of rumen microbial communities that are associated with it. The cattle rumen microflora and the carbohydrate-active enzymes were functionally classified through a whole metagenomic sequencing approach. Analysis of the assembled sequences by the Carbohydrate-active enzyme analysis Toolkit identified the candidate genes encoding fibrolytic enzymes belonging to different classes of glycoside hydrolases(11,010 contigs), glycosyltransferases (6366 contigs), carbohydrate esterases (4945 contigs), carbohydrate-binding modules (1975 contigs), polysaccharide lyases (480 contigs), and auxiliary activities (115 contigs). Phylogenetic analysis of CAZyme encoding contigs revealed that a significant proportion of CAZymes were contributed by bacteria belonging to genera Prevotella, Bacteroides, Fibrobacter, Clostridium, and Ruminococcus. The results indicated that the cattle rumen microbiome and the CAZymes are highly complex, structurally similar but compositionally distinct from other ruminants. The unique characteristics of rumen microbiota and the enzymes produced by resident microbes provide opportunities to improve the feed conversion efficiency in ruminants and serve as a reservoir of industrially important enzymes for cellulosic biofuel production.

  6. Adaptation to a high protein, carbohydrate-free diet induces a marked reduction of fatty acid synthesis and lipogenic enzymes in rat adipose tissue that is rapidly reverted by a balanced diet.

    Science.gov (United States)

    Brito, S M R C; Moura, M A F; Kawashita, N H; Festuccia, W T L; Garófalo, M A R; Kettelhut, I C; Migliorini, R H

    2005-06-01

    We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.

  7. Sulfur mobilization in cyanobacteria: the catalytic mechanism of L-cystine C-S lyase (C-DES) from synechocystis.

    Science.gov (United States)

    Campanini, Barbara; Schiaretti, Francesca; Abbruzzetti, Stefania; Kessler, Dorothea; Mozzarelli, Andrea

    2006-12-15

    Sulfur mobilization represents one of the key steps in ubiquitous Fe-S clusters assembly and is performed by a recently characterized set of proteins encompassing cysteine desulfurases, assembly factors, and shuttle proteins. Despite the evolutionary conservation of these proteins, some degree of variability among organisms was observed, which might reflect functional specialization. L-Cyst(e)ine lyase (C-DES), a pyridoxal 5'-phosphatedependent enzyme identified in the cyanobacterium Synechocystis, was reported to use preferentially cystine over cysteine with production of cysteine persulfide, pyruvate, and ammonia. In this study, we demonstrate that C-DES sequences are present in all cyanobacterial genomes and constitute a new family of sulfur-mobilizing enzymes, distinct from cysteine desulfurases. The functional properties of C-DES from Synechocystis sp. PCC 6714 were investigated under pre-steady-state and steady-state conditions. Single wavelength and rapid scanning stopped-flow kinetic data indicate that the internal aldimine reacts with cystine forming an external aldimine that rapidly decays to a transient quinonoid species and stable tautomers of the alpha-aminoacrylate Schiff base. In the presence of cysteine, the transient formation of a dipolar species precedes the selective and stable accumulation of the enolimine tautomer of the external aldimine, with no formation of the alpha-aminoacrylate Schiff base under reducing conditions. Effective sulfur mobilization from cystine might represent a mechanism that allows adaptation of cyanobacteria to different environmental conditions and to light-dark cycles.

  8. Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation.

    Science.gov (United States)

    Jang, Chul Ho; Piao, Yu Lan; Huang, Xiaoqin; Yoon, Eun Jeong; Park, So Hee; Lee, Kyoung; Zhan, Chang-Guo; Cho, Hoon

    2016-01-01

    Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL) might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A) were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate) compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT) and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect.

  9. Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation.

    Directory of Open Access Journals (Sweden)

    Chul Ho Jang

    Full Text Available Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect.

  10. Molecular characterisation of radish cultivars

    Directory of Open Access Journals (Sweden)

    Sara Michelly Cruz

    Full Text Available The radish has been gaining importance in the Brazilian market due to its use as a green manure and cover crop, and also due to its potential for the production of biodiesel, however there are only two registered cultivars, which are morphologically very similar. Determination of genetic purity is a prerequisite in marketing seeds as it ensures uniformity of the crop and is important in breeding programs. The aim of this work therefore was to evaluate the similarity and genotype patterns which permit differentiation of the commercial radish cultivars IPR 116 and CATI AL-1000. In order to do this, isoenzyme electrophoretic patterns were analysed in dry seeds, soaked seeds, seedling leaves and young leaves; the isoenzymes used being: superoxide dismutase, catalase, esterase, glutamate-oxalocetate, malate dehydrogenase and isocitrate lyase. Thirty-seven RAPD primers and 10 ISSR primers in leaves of the CATI AL-1000 and IPR-116 cultivars were analysed. Among the isoenzymes under study, the most polymorphic were glutamate oxalocetate, malate dehydrogenase, esterase and superoxide dismutase, with the superoxide dismutase system giving the best characterisation for all stages of development. The catalase isoenzyme system did not make it possible to differentiate between cultivars at any stage of development, and isocitrate lyase was not revealed by the protocol used. In analysis of the markers, 27 RAPD primers and eight ISSR primers showed polymorphism. The results indicate that it is possible to determine reliable descriptors based on isoenzymes at different stages of development of the radish and with the use of RAPD and ISSR primers.

  11. Regulation of expression of pectate lyase genes pelA, pelD, and pelE in Erwinia chrysanthemi.

    Science.gov (United States)

    Reverchon, S; Robert-Baudouy, J

    1987-06-01

    The regulation of pelA, pelD, and pelE genes encoding three of the five major pectate lyase isoenzymes (PLa, PLd, and PLe) in Erwinia chrysanthemi B374 was analyzed by using genetic fusions to lacZ. These three genes are clustered on a 5-kilobase DNA fragment in the order pelD-pelE-pelA and constitute three independent transcriptional units. We localized the pelDEA cluster near the pro-1 marker on the genetic map of B374 by chromosomal mobilization with RP4::mini-Mu plasmid pULB110. Three classes of regulatory mutations responsible for constitutive pectate lyase synthesis have been described (kdgR, gpiR, and cri). We studied the effects of each mutation on pelE, pelD, and pelA expression independently. The mutations kdgR and gpiR mainly affect the expression of pelE and pelD, although PLa synthesis is slightly increased. The cri mutation results in a low level of constitutive expression of the three pel genes, but it is a pleiotropic mutation since other genes not involved in pectinolysis are also affected. In addition, we demonstrated that exuR, a negative regulatory gene governing the catabolism of hexuronates, does not modify the expression of pel genes. The frequency of gpiR or cri mutations (about 10(-8)) and the resulting constitutivity of pectate lyase synthesis suggest that these genes act as negative regulatory genes in addition to kdgR, which is already known to encode a repressor. Moreover, we found that expression of pel-lac fusions carried on pBR322 derivatives was higher in E. chrysanthemi than in Escherichia coli; this fact suggests the existence of positive regulation of pectate lyase synthesis in E. chrysanthemi.

  12. Anti-bacterial activity of Achatina CRP and its mechanism of action.

    Science.gov (United States)

    Mukherjee, Sandip; Barman, Soma; Mandal, Narayan Chandra; Bhattacharya, Shelley

    2014-07-01

    The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 microg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells.

  13. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase beta.

    Science.gov (United States)

    Chaturvedula, V S Prakash; Zhou, Bing-Nan; Gao, Zhijie; Thomas, Shannon J; Hecht, Sidney M; Kingston, David G I

    2004-12-01

    Bioassay-directed fractionation of a methyl ethyl ketone extract of Solidago canadensis L. (Asteraceae), using an assay to detect the lyase activity of DNA polymerase beta, resulted in the isolation of the four new lupane triterpenoids 1-4 and the seven known compounds lupeol, lupeyl acetate, ursolic acid, cycloartenol, cycloartenyl palmitate, alpha-amyrin acetate, and stigmasterol. The structures of the new compounds were established as 3beta-(3R-acetoxyhexadecanoyloxy)-lup-20(29)-ene (1), 3beta-(3-ketohexadecanoyloxy)-lup-20(29)-ene (2), 3beta-(3R-acetoxyhexadecanoyloxy)-29-nor-lupan-20-one (3), and 3beta-(3-hetohexadecanoyloxy)-29-nor-lupan-20-one (4), respectively, on the basis of extensive 1D and 2D NMR spectroscopic interpretation and chemical modification studies. All 11 compounds were inhibitory to the lyase activity of DNA polymerase beta.

  14. Structural insights into RipC, a putative citrate lyase β subunit from a Yersinia pestis virulence operon

    International Nuclear Information System (INIS)

    Torres, Rodrigo; Chim, Nicholas; Sankaran, Banumathi; Pujol, Céline; Bliska, James B.; Goulding, Celia W.

    2011-01-01

    Comparison of the 2.45 Å resolution crystal structure of homotrimeric RipC, a putative citrate lyase β subunit from Y. pestis, with structural homologs reveals conserved RipC residues that are implicated in CoA binding. Yersinia pestis remains a threat, with outbreaks of plague occurring in rural areas and its emergence as a weapon of bioterrorism; thus, an improved understanding of its various pathogenicity pathways is warranted. The rip (required for intracellular proliferation) virulence operon is required for Y. pestis survival in interferon-γ-treated macrophages and has been implicated in lowering macrophage-produced nitric oxide levels. RipC, one of three gene products from the rip operon, is annotated as a citrate lyase β subunit. Furthermore, the Y. pestis genome lacks genes that encode citrate lyase α and γ subunits, suggesting a unique functional role of RipC in the Y. pestisrip-mediated survival pathway. Here, the 2.45 Å resolution crystal structure of RipC revealed a homotrimer in which each monomer consists of a (β/α) 8 TIM-barrel fold. Furthermore, the trimeric state was confirmed in solution by size-exclusion chromatography. Through sequence and structure comparisons with homologous proteins, it is proposed that RipC is a putative CoA- or CoA-derivative binding protein

  15. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    Science.gov (United States)

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-07-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration.

  16. Structural insights into the bacterial carbon - phosphorus lyase machinery

    DEFF Research Database (Denmark)

    Seweryn, Paulina; Van, Lan Bich; Kjeldgaard, Morten

    2015-01-01

    Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon......–phosphorus (C–P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C–P lyase core complex (PhnG–PhnH–PhnI–PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero...

  17. Somatic mutations of isocitrate dehydrogenases 1 and 2 are prognostic and follow-up markers in patients with acute myeloid leukaemia with normal karyotype

    Directory of Open Access Journals (Sweden)

    Virijevic Marijana

    2016-12-01

    Full Text Available Mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2 genes are frequent molecular lesions in acute myeloid leukaemia with normal karyotype (AML-NK. The effects of IDH mutations on clinical features and treatment outcome in AML-NK have been widely investigated, but only a few studies monitored these mutations during follow-up.

  18. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

    Science.gov (United States)

    Ferreira Filho, Jaire Alves; Horta, Maria Augusta Crivelente; Beloti, Lilian Luzia; Dos Santos, Clelton Aparecido; de Souza, Anete Pereira

    2017-10-12

    Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.

  19. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  20. Isolation and amino acid sequence of a dehydratase acting on d-erythro-3-hydroxyaspartate from Pseudomonas sp. N99, and its application in the production of optically active 3-hydroxyaspartate.

    Science.gov (United States)

    Nagano, Hiroyuki; Shibano, Kana; Matsumoto, Yu; Yokota, Atsushi; Wada, Masaru

    2017-06-01

    An enzyme catalyzing the ammonia-lyase reaction for the conversion of d-erythro-3-hydroxyaspartate to oxaloacetate was purified from the cell-free extract of a soil-isolated bacterium Pseudomonas sp. N99. The enzyme exhibited ammonia-lyase activity toward l-threo-3-hydroxyaspartate and d-erythro-3-hydroxyaspartate, but not toward other 3-hydroxyaspartate isomers. The deduced amino acid sequence of the enzyme, which belongs to the serine/threonine dehydratase family, shows similarity to the sequence of l-threo-3-hydroxyaspartate ammonia-lyase (EC 4.3.1.16) from Pseudomonas sp. T62 (74%) and Saccharomyces cerevisiae (64%) and serine racemase from Schizosaccharomyces pombe (65%). These results suggest that the enzyme is similar to l-threo-3-hydroxyaspartate ammonia-lyase from Pseudomonas sp. T62, which does not act on d-erythro-3-hydroxyaspartate. We also then used the recombinant enzyme expressed in Escherichia coli to produce optically pure l-erythro-3-hydroxyaspartate and d-threo-3-hydroxyaspartate from the corresponding dl-racemic mixtures. The enzymatic resolution reported here is one of the simplest and the first enzymatic method that can be used for obtaining optically pure l-erythro-3-hydroxyaspartate.

  1. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries.

    Science.gov (United States)

    Kot, Anna M; Błażejak, Stanisław; Kurcz, Agnieszka; Gientka, Iwona; Kieliszek, Marek

    2016-07-01

    Rhodotorula glutinis is capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of this yeast constitutes sources of microbiological oils, and the whole pool of fatty acids is dominated by oleic, linoleic, and palmitic acid. Due to its composition, the lipids may be useful as a source for the production of the so-called third-generation biodiesel. These yeasts are also capable of synthesizing carotenoids such as β-carotene, torulene, and torularhodin. Due to their health-promoting characteristics, carotenoids are commonly used in the cosmetic, pharmaceutical, and food industries. They are also used as additives in fodders for livestock, fish, and crustaceans. A significant characteristic of R. glutinis is its capability to produce numerous enzymes, in particular, phenylalanine ammonia lyase (PAL). This enzyme is used in the food industry in the production of L-phenylalanine that constitutes the substrate for the synthesis of aspartame-a sweetener commonly used in the food industry.

  2. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase

    Science.gov (United States)

    Roldán-Arjona, Teresa; Wei, Ying-Fei; Carter, Kenneth C.; Klungland, Arne; Anselmino, Catherine; Wang, Rui-Ping; Augustus, Meena; Lindahl, Tomas

    1997-01-01

    The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen. PMID:9223306

  3. One Year Experience of Pheburane® (Sodium Phenylbutyrate) Treatment in a Patient with Argininosuccinate Lyase Deficiency

    OpenAIRE

    Uçar, Sema Kalkan; Ozbaran, Burcu; Altinok, Yasemin Atik; Kose, Melis; Canda, Ebru; Kagnici, Mehtap; Coker, Mahmut

    2015-01-01

    Argininosuccinate lyase deficiency (ASLD) is a urea cycle disorder (UCD) treated with dietary adjustment and nitrogen scavenging agents. “Pheburane®” is a new tasteless and odour-free formulation of sodium phenylbutyrate, indicated in the treatment of UCD.

  4. Iron-Dependent Enzyme Catalyzes the Initial Step in Biodegradation of N-Nitroglycine by Variovorax sp. Strain JS1663.

    Science.gov (United States)

    Mahan, Kristina M; Zheng, Hangping; Fida, Tekle T; Parry, Ronald J; Graham, David E; Spain, Jim C

    2017-08-01

    Nitramines are key constituents of most of the explosives currently in use and consequently contaminate soil and groundwater at many military facilities around the world. Toxicity from nitramine contamination poses a health risk to plants and animals. Thus, understanding how nitramines are biodegraded is critical to environmental remediation. The biodegradation of synthetic nitramine compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has been studied for decades, but little is known about the catabolism of naturally produced nitramine compounds. In this study, we report the isolation of a soil bacterium, Variovorax sp. strain JS1663, that degrades N -nitroglycine (NNG), a naturally produced nitramine, and the key enzyme involved in its catabolism. Variovorax sp. JS1663 is a Gram-negative, non-spore-forming motile bacterium isolated from activated sludge based on its ability to use NNG as a sole growth substrate under aerobic conditions. A single gene ( nnlA ) encodes an iron-dependent enzyme that releases nitrite from NNG through a proposed β-elimination reaction. Bioinformatics analysis of the amino acid sequence of NNG lyase identified a PAS (Per-Arnt-Sim) domain. PAS domains can be associated with heme cofactors and function as signal sensors in signaling proteins. This is the first instance of a PAS domain present in a denitration enzyme. The NNG biodegradation pathway should provide the basis for the identification of other enzymes that cleave the N-N bond and facilitate the development of enzymes to cleave similar bonds in RDX, nitroguanidine, and other nitramine explosives. IMPORTANCE The production of antibiotics and other allelopathic chemicals is a major aspect of chemical ecology. The biodegradation of such chemicals can play an important ecological role in mitigating or eliminating the effects of such compounds. N -Nitroglycine (NNG) is produced by the Gram-positive filamentous soil bacterium Streptomyces noursei This study reports the

  5. Isolation and characterization of an Antarctic Flavobacterium strain with agarase and alginate lyase activities

    Directory of Open Access Journals (Sweden)

    Lavín Paris

    2016-09-01

    Full Text Available Several bacteria that are associated with macroalgae can use phycocolloids as a carbon source. Strain INACH002, isolated from decomposing Porphyra (Rhodophyta, in King George Island, Antarctica, was screened and characterized for the ability to produce agarase and alginate-lyase enzymatic activities. Our strain INACH002 was identified as a member of the genus Flavobacterium, closely related to Flavobacterium faecale, using 16S rRNA gene analysis. The INACH002 strain was characterized as psychrotrophic due to its optimal temperature (17ºC and maximum temperature (20°C of growth. Agarase and alginate-lyase displayed enzymatic activities within a range of 10°C to 50°C, with differences in the optimal temperature to hydrolyze agar (50°C, agarose (50°C and alginate (30°C during the first 30 min of activity. Strain Flavobacterium INACH002 is a promising Antarctic biotechnological resource; however, further research is required to illustrate the structural and functional bases of the enzymatic performance observed during the degradation of different substrates at different temperatures.

  6. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum

    Directory of Open Access Journals (Sweden)

    Taraka R. Donti

    2016-09-01

    Full Text Available Adenylosuccinate lyase (ADSL deficiency is a rare autosomal recessive neurometabolic disorder that presents with a broad-spectrum of neurological and physiological symptoms. The ADSL gene produces an enzyme with binary molecular roles in de novo purine synthesis and purine nucleotide recycling. The biochemical phenotype of ADSL deficiency, accumulation of SAICAr and succinyladenosine (S-Ado in biofluids of affected individuals, serves as the traditional target for diagnosis with targeted quantitative urine purine analysis employed as the predominate method of detection. In this study, we report the diagnosis of ADSL deficiency using an alternative method, untargeted metabolomic profiling, an analytical scheme capable of generating semi-quantitative z-score values for over 1000 unique compounds in a single analysis of a specimen. Using this method to analyze plasma, we diagnosed ADSL deficiency in four patients and confirmed these findings with targeted quantitative biochemical analysis and molecular genetic testing. ADSL deficiency is part of a large a group of neurometabolic disorders, with a wide range of severity and sharing a broad differential diagnosis. This phenotypic similarity among these many inborn errors of metabolism (IEMs has classically stood as a hurdle in their initial diagnosis and subsequent treatment. The findings presented here demonstrate the clinical utility of metabolomic profiling in the diagnosis of ADSL deficiency and highlights the potential of this technology in the diagnostic evaluation of individuals with neurologic phenotypes.

  7. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype

    OpenAIRE

    Whitehall, VLJ; Dumenil, TD; McKeone, DM; Bond, CE; Bettington, ML; Buttenshaw, RL; Bowdler, L; Montgomery, GW; Wockner, LF; Leggett, BA

    2014-01-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause o...

  8. Simultaneous determination of the lipoxygenase and hydroperxide lyase specificity in olive fruit pulp

    Directory of Open Access Journals (Sweden)

    Salas, Joaquín J.

    2000-06-01

    Full Text Available Olive pulp lipoxygenase regiospecificity and hydroperoxide lyase substrate specificity are important parameters in order to justify the volatile composition of olive oil. A new radiolabelling method to determine simultaneously these properties using only thin layer chromatography steps is described in the present work. The method involves incubation of an enzyme preparation from olive pulp with radiolabelled linoleate, followed by the fractionation of the resulting lipid products, previously treated with 2,4-dinitrophenyl hydrazine, on thin layer chromatography plates coated with polyethylenglycol 400. The results obtained are in agreement with previous studies carried out by other methods.La regioespecificidad de la lipoxigenasa y la especificidad del sustrato hidroperóxido liasa de pulpa de aceituna son parámetros importantes en la justificación de la composición en volátiles del aceite de oliva. En este trabajo se describe un nuevo método de marcaje radioactivo para determinar simultáneamente estas propiedades, usando solo etapas de cromatografía en capa fina. El método implica la incubación de una preparación enzimática de pulpa de aceituna con linoleato marcado, seguido del fraccionamiento de los productos lipídicos resultantes, previamente tratados con 2,4-dinitrofenil hidrazina, sobre placas de cromatografía en capa fina soportadas con polietilenglicol 400. Los resultados obtenidos están de acuerdo con estudios previos llevados a cabo con otros métodos.

  9. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    Science.gov (United States)

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  10. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits.

    Science.gov (United States)

    Choi, Su-Lim; Rha, Eugene; Lee, Sang Jun; Kim, Haseong; Kwon, Kilkoang; Jeong, Young-Su; Rhee, Young Ha; Song, Jae Jun; Kim, Hak-Sung; Lee, Seung-Goo

    2014-03-21

    Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.

  11. Mode of action of pectin lyase A of Aspergillus niger on differently C6-substituted oligogalacturonides

    NARCIS (Netherlands)

    Alebeek, van G.J.W.M.; Christensen, T.M.I.E.; Schols, H.A.; Mikkelsen, J.D.; Voragen, A.G.J.

    2002-01-01

    A thorough investigation of the mode of action of Aspergillus niger (4M-147) pectin lyase A (PLA) on differently C6-substituted oligogalacturonides is described. PLA appeared to be very specific for fully methyl-esterified oligogalacturonides: removal of the methyl-ester or changing the type of

  12. Kinetic Resolution and Stereoselective Synthesis of 3-Substituted Aspartic Acids by Using Engineered Methylaspartate Ammonia Lyases

    NARCIS (Netherlands)

    Raj, Hans; Szymanski, Wiktor; Villiers, Jandré de; Puthan Veetil, Vinod; Quax, Wim J.; Shimamoto, Keiko; Janssen, Dick B.; Feringa, Ben L.; Poelarends, Gerrit J.

    2013-01-01

    Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described.

  13. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo

    2006-01-01

    The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.

  14. Effect of high dietary copper on growth, antioxidant and lipid metabolism enzymes of juvenile larger yellow croaker Larimichthys croceus

    Directory of Open Access Journals (Sweden)

    Fanxing Meng

    2016-05-01

    Full Text Available A study was carried out to test the responses of juvenile larger yellow croaker Larimichthys croceus to high Cu intake. Experimental diets were formulated containing three levels of Cu: low Cu (3.67 mg/kg, middle Cu (13.65 mg/kg and high Cu (25.78 mg/kg, and each diet were fed to large yellow croaker in triplicate for 10 weeks. Final body weight, weight gain and feed intake were the lowest in high Cu group, but hepatosomatic index was the highest; Cu concentrations in the whole-body, muscle and liver of fish fed low Cu diet was the lowest; Liver superoxide dismutase, catalase and glutathione peroxidase activities in fish fed high Cu diet were lower than those in fish fed other diets; The higher content of liver thiobarbituric acid reactive substance content was found in high Cu group, followed by middle Cu group, and the lowest in low Cu group; Liver 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, malic enzyme, isocitrate dehydrogenase and fatty acid synthase activities were the lowest in high Cu group, but lipoprotein lipase activity was the highest. This study indicated that high copper intake reduced growth of juvenile larger yellow croaker, inhibited activities of antioxidant enzymes and lipid synthetases, and led to energy mobilization. Keywords: Larger yellow croaker, Copper, Antioxidant enzyme, Lipid metabolism enzyme

  15. Phycourobilin in Trichromatic Phycocyanin from Oceanic Cyanobacteria Is Formed Post-translationally by a Phycoerythrobilin Lyase-Isomerase*S⃞

    Science.gov (United States)

    Blot, Nicolas; Wu, Xian-Jun; Thomas, Jean-Claude; Zhang, Juan; Garczarek, Laurence; Böhm, Stephan; Tu, Jun-Ming; Zhou, Ming; Plöscher, Matthias; Eichacker, Lutz; Partensky, Frédéric; Scheer, Hugo; Zhao, Kai-Hong

    2009-01-01

    Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (λmax ∼ 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its α-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters. PMID:19182270

  16. Potential role of pectate lyase and Ca(2+) in the increase in strawberry fruit firmness induced by short-term treatment with high-pressure CO2.

    Science.gov (United States)

    Wang, Mao Hua; Kim, Jin Gook; Ahn, Sun Eun; Lee, Ah Youn; Bae, Tae Min; Kim, Deu Re; Hwang, Yong Soo

    2014-04-01

    Postharvest treatment with high-pressure CO2 helps to control decay and increase firmness in strawberries. Increases in firmness occurred through modification of calcium binding to cell wall. However, the mechanism(s) involved in Ca(2+) migration to pectic polymers and other physiological events associated with the maintenance of increased firmness are not clearly understood. The focus of this study was to find potential mechanism(s) that are associated with calcium movement, increases in firmness, or maintenance of firmness in strawberry fruit after high-pressure CO2 treatment. An increase in firmness was induced by high-pressure CO2 treatment, but not by high-pressure N2 treatment. This indicates that CO2 stimulates a change in firmness. The increase in firmness induced by high-pressure CO2 seems to involve calcium efflux. Using membrane Ca(2+) -dependent ATPase inhibitors sodium vanadate (250 μM) and erythrosin B (100 μM) delayed both the increase in firmness and calcium binding to wall polymers. Exogenous application of CaCl2 (10 mM) enhanced the firmness increase of fruit slices only when they were exposed to high-pressure CO2 . The activity of pectate lyase was downregulated by CO2 treatment, but β-galactosidase activity was not affected. The increase in strawberry firmness induced by high-pressure CO2 treatment primarily involves the efflux of calcium ions and their binding to wall polymers. These physiological changes are not induced by an anaerobic environment. The downregulation of wall-modifying enzymes, such as pectate lyase, appeared to contribute to the maintenance of firmness that was induced by high-pressure CO2 treatment. © 2014 Institute of Food Technologists®

  17. Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: Species diversity and citrate lyase production.

    Science.gov (United States)

    Ouattara, Hadja D; Ouattara, Honoré G; Droux, Michel; Reverchon, Sylvie; Nasser, William; Niamke, Sébastien L

    2017-09-01

    Microbial fermentation is an indispensable process for high quality chocolate from cocoa bean raw material. lactic acid bacteria (LAB) are among the major microorganisms responsible for cocoa fermentation but their exact role remains to be elucidated. In this study, we analyzed the diversity of LAB in six cocoa producing regions of Ivory Coast. Ribosomal 16S gene sequence analysis showed that Lactobacillus plantarum and Leuconostoc mesenteroides are the dominant LAB species in these six regions. In addition, other species were identified as the minor microbial population, namely Lactobacillus curieae, Enterococcus faecium, Fructobacillus pseudoficulneus, Lactobacillus casei, Weissella paramesenteroides and Weissella cibaria. However, in each region, the LAB microbial population was composed of a restricted number of species (maximum 5 species), which varied between the different regions. LAB implication in the breakdown of citric acid was investigated as a fundamental property for a successful cocoa fermentation process. High citrate lyase producer strains were characterized by rapid citric acid consumption, as revealed by a 4-fold decrease in citric acid concentration in the growth medium within 12h, concomitant with an increase in acetic acid and lactic acid concentration. The production of citrate lyase was strongly dependent on environmental conditions, with optimum production at acidic pH (pHfermentation. This study reveals that one of the major roles of LAB in the cocoa fermentation process involves the breakdown of citric acid during the early stage of cocoa fermentation through the activity of citrate lyase. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The effect of enzymes upon metabolism, storage, and release of carbohydrates in normal and abnormal endometria.

    Science.gov (United States)

    Hughes, E C

    1976-07-01

    This paper presents preliminary data concerning the relationship of various components of glandular epithelium and effect of enzymes on metabolism, storage, and release of certain substances in normal and abnormal endometria. Activity of these endometrial enzymes has been compared between two groups: 252 patients with normal menstrual histories and 156 patients, all over the age of 40, with abnormal uterine bleeding. Material was obtained by endometrial biopsy or curettage. In the pathologic classification of the group of 156, 30 patients had secretory endometria, 88 patients had endometria classified as proliferative, 24 were classified as endometrial hyperplasia, and 14 were classified as adenocarcinoma. All tissue was studied by histologic, histochemical, and biochemical methods. Glycogen synthetase activity caused synthesis of glucose to glycogen, increasing in amount until midcycle, when glycogen phosphorylase activity caused the breakdown to glucose during the regressive stage of endometrial activity. This normal cyclic activity did not occur in the abnormal endometria, where activity of both enzymes continued at low constant tempo. Only the I form of glycogen synthetase increased as the tissue became more hyperplastic. With the constant glycogen content and the increased activity of both the TPN isocitric dehydrogenase and glucose-6-phosphate dehydrogenase in the hyperplastic and cancerous endometria, tissue energy was created, resulting in abnormal cell proliferation. These altered biochemical and cellular activities may be the basis for malignant cell growth.

  19. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

    Science.gov (United States)

    Mahajan, Chhavi; Basotra, Neha; Singh, Surender; Di Falco, Marcos; Tsang, Adrian; Chadha, B S

    2016-01-01

    This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Isolation and Functional Characterization of a Phenylalanine Ammonia-Lyase Gene (SsPAL1 from Coleus (Solenostemon scutellarioides (L. Codd

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    2015-09-01

    Full Text Available Phenylalanine ammonia-lyase (PAL is the first enzyme involved in the phenylpropanoid pathway and plays important roles in the secondary metabolisms, development and defense of plants. To study the molecular function of PAL in anthocyanin synthesis of Coleus (Solenostemon scutellarioides (L. Codd, a Coleus PAL gene designated as SsPAL1 was cloned and characterized using a degenerate oligonucleotide primer PCR and RACE method. The full-length SsPAL1 was 2450 bp in size and consisted of one intron and two exons encoding a polypeptide of 711 amino acids. The deduced SsPAL1 protein showed high identities and structural similarities with other functional plant PAL proteins. A series of putative cis-acting elements involved in transcriptional regulation, light and stress responsiveness were found in the upstream regulatory sequence of SsPAL1. Transcription pattern analysis indicated that SsPAL1 was constitutively expressed in all tissues examined and was enhanced by light and different abiotic factors. The recombinant SsPAL1 protein exhibited high PAL activity, at optimal conditions of 60 °C and pH 8.2. Although the levels of total PAL activity and total anthocyanin concentration have a similar variation trend in different Coleus cultivars, there was no significant correlation between them (r = 0.7529, p > 0.1, suggesting that PAL was not the rate-limiting enzyme for the downstream anthocyanin biosynthetic branch in Coleus. This study enables us to further understand the role of SsPAL1 in the phenylpropanoid (flavonoids, anthocyanins biosynthesis in Coleus at the molecular level.

  1. Possible regulatory role of phenylalanine ammonia-lyase in the production of anthocyanins in asparagus (Asparagus officinalis L)

    NARCIS (Netherlands)

    Flores, F.B.; Oosterhaven, J.; Martinez-Madrid, M.C.; Romojaro, F.

    2005-01-01

    The regulatory role of phenylalanine ammonia-lyase (PAL) in the light-induced accumulation of anthocyanins in the epidermis of asparagus spears has been analysed. A correlation between the stimulation of PAL activity and the rise in total anthocyanin content has been observed. Light radiation

  2. The sequential action of a dipeptidase and a beta-lyase is required for the release of the human body odorant 3-methyl-3-sulfanylhexan-1-ol from a secreted Cys-Gly-(S) conjugate by Corynebacteria.

    Science.gov (United States)

    Emter, Roger; Natsch, Andreas

    2008-07-25

    Human axillary odor is formed by the action of Corynebacteria on odorless axilla secretions. Sulfanylalkanols, 3-methyl-3-sulfanylhexan-1-ol in particular, form one key class of the odoriferous compounds. A conjugate with the dipeptide Cys-Gly has been reported as the secreted precursor for 3-methyl-3-sulfanylhexan-1-ol. Here, we confirm the Cys-Gly-(S) conjugate as the major precursor of this odorant, with lower levels of the Cys-(S) conjugate being present in axilla secretions. The enzymatic release of 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate by the axilla isolate Corynebacterium Ax20 was thus investigated. Cellular extracts of Ax20 released 3-methyl-3-sulfanylhexan-1-ol from the Cys-Gly-(S) conjugate and from the Cys-(S) conjugate, whereas the previously isolated C-S lyase of this bacterial strain was only able to cleave the Cys-(S) conjugate. o-Phenanthroline blocked the release from the Cys-Gly-(S) conjugate but did not affect cleavage of the Cys-(S) conjugate, indicating that in a first step, a metal-dependent dipeptidase hydrolyzes the Cys-Gly bond. This enzyme was purified by four chromatographic steps and gel electrophoresis, and the partial amino acid sequence was determined. The corresponding gene was cloned and expressed in Escherichia coli. It codes for a novel dipeptidase with a high affinity toward the Cys-Gly-(S) conjugate of 3-methyl-3-sulfanylhexan-1-ol. Co-incubating either the synthetic Cys-Gly-(S) conjugate or fresh axilla secretions with both the C-S lyase and the novel dipeptidase did release 3-methyl-3-sulfanylhexan-1-ol, proving that the sequential action of these two enzymes from the skin bacterium Corynebacterium Ax20 does release the odorant from the key secreted precursor.

  3. Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer.

    Science.gov (United States)

    Wang, Mingpeng; Chen, Lei; Liu, Zhengyi; Zhang, Zhaojie; Qin, Song; Yan, Peisheng

    2016-12-01

    Algae have long been used to augment plant productivity through their beneficial effects. Alginate oligosaccharide is believed to be one of the important components to enhance growth and crop yield. In this study, we isolated and characterized a Bacillus litoralis strain, named Bacillus M3, from decayed kelps. We further demonstrated that the M3 strain could secrete alginate lyase to degrade alginate. The crude enzyme exhibited the highest activity (33.74 U/mg) at pH 7.0 and 50°C. The M3 strain was also able to ferment the brown alga Sargassum horneri. Fermentation results revealed that a fermentation period of 8-12 hr was the best harvest time with the highest level of alginate oligosaccharides. Plant growth assay showed that the seaweed fermentation extract had an obvious promotion effect on root and seedling growth of Lycopersicon eseulentum L. Our results suggest that fermentation extract of Sargassum horneri by the novel strain of Bacillus litoralis M3 has significant development potential for biofertilizer production and agriculture application. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    Science.gov (United States)

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  5. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    Science.gov (United States)

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-04

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  6. Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection.

    Science.gov (United States)

    Kolb, Alexander L; Corridon, Peter R; Zhang, Shijun; Xu, Weimin; Witzmann, Frank A; Collett, Jason A; Rhodes, George J; Winfree, Seth; Bready, Devin; Pfeffenberger, Zechariah J; Pomerantz, Jeremy M; Hato, Takashi; Nagami, Glenn T; Molitoris, Bruce A; Basile, David P; Atkinson, Simon J; Bacallao, Robert L

    2018-04-01

    Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine ( P <0.05) observed in controls and increased the mitochondria membrane potential ( P <0.05), maximal respiratory capacity ( P <0.05), and intracellular ATP levels ( P <0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning. Copyright © 2018 by the American Society of Nephrology.

  7. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.

    Science.gov (United States)

    Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

    2013-09-01

    Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.

  8. Isocitrate dehydrogenase of Helicobacter pylori potentially induces humoral immune response in subjects with peptic ulcer disease and gastritis.

    Directory of Open Access Journals (Sweden)

    M Abid Hussain

    Full Text Available BACKGROUND: H. pylori causes gastritis and peptic ulcers and is a risk factor for the development of gastric carcinoma. Many of the proteins such as urease, porins, flagellins and toxins such as lipo-polysaccharides have been identified as potential virulence factors which induce proinflammatory reaction. We report immunogenic potentials of isocitrate dehydrogenase (ICD, an important house keeping protein of H. pylori. METHODOLOGY/PRINCIPAL FINDINGS: Amino acid sequences of H. pylori ICD were subjected to in silico analysis for regions with predictably high antigenic indexes. Also, computational modelling of the H. pylori ICD as juxtaposed to the E. coli ICD was carried out to determine levels of structure similarity and the availability of surface exposed motifs, if any. The icd gene was cloned, expressed and purified to a very high homogeneity. Humoral response directed against H. pylori ICD was detected through an enzyme linked immunosorbent assay (ELISA in 82 human subjects comprising of 58 patients with H. pylori associated gastritis or ulcer disease and 24 asymptomatic healthy controls. The H. pylori ICD elicited potentially high humoral immune response and revealed high antibody titers in sera corresponding to endoscopically-confirmed gastritis and ulcer disease subjects. However, urea-breath-test negative healthy control samples and asymptomatic control samples did not reveal any detectable immune responses. The ELISA for proinflammatory cytokine IL-8 did not exhibit any significant proinflammatory activity of ICD. CONCLUSIONS/SIGNIFICANCE: ICD of H. pylori is an immunogen which interacts with the host immune system subsequent to a possible autolytic-release and thereby significantly elicits humoral responses in individuals with invasive H. pylori infection. However, ICD could not significantly stimulate IL8 induction in a cultured macrophage cell line (THP1 and therefore, may not be a notable proinflammatory agent.

  9. Hormonal regulation of gluconeogenesis in cereal aleurone is strongly cultivar-dependent and gibberellin action involves SLENDER1 but not GAMYB.

    Science.gov (United States)

    Eastmond, Peter J; Jones, Russell L

    2005-11-01

    Storage oil is a major constituent in the cereal aleurone layer. The aim of this study was to investigate how gibberellin (GA) and abscisic acid (ABA) regulate conversion of oil to sugar in barley aleurone. The activity of the glyoxylate cycle enzyme isocitrate lyase (ICL) was surveyed in eight barley cultivars. Surprisingly, some cultivars do not require GA for the induction of ICL (e.g. Himalaya), whereas some do (e.g. Golden Promise). Furthermore, in Golden Promise, GA also stimulates triacylglycerol breakdown and enhances the net flux of carbon from acetate to sugar. In contrast, ABA strongly represses ICL activity and the flux of carbon from oil to sugar in both Golden Promise and Himalaya. Biolistics using a promoter reporter showed that GA and ABA regulate ICL at the level of transcription. Studies using barley and rice mutants and pharmacological agents show that GA-dependent induction of ICL activity is mediated by SLENDER1 and requires cGMP, but does not involve the transcription factor GAMYB. Gibberellin and ABA therefore act antagonistically to regulate gluconeogenesis in the aleurone layer as well as controlling the production and secretion of hydrolases into the starchy endosperm. We suggest that the variation between different barley cultivars might be a result of selective breeding to alter seed dormancy.

  10. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  11. Sugarcane expressed sequences tags (ESTs encoding enzymes involved in lignin biosynthesis pathways

    Directory of Open Access Journals (Sweden)

    Ramos Rose Lucia Braz

    2001-01-01

    Full Text Available Lignins are phenolic polymers found in the secondary wall of plant conductive systems where they play an important role by reducing the permeability of the cell wall to water. Lignins are also responsible for the rigidity of the cell wall and are involved in mechanisms of resistance to pathogens. The metabolic routes and enzymes involved in synthesis of lignins have been largely characterized and representative genes that encode enzymes involved in these processes have been cloned from several plant species. The synthesis of lignins is liked to the general metabolism of the phenylpropanoids in plants, having enzymes (e.g. phenylalanine ammonia-lyase (PAL, cinnamate 4-hydroxylase (C4H and caffeic acid O-methyltransferase (COMT common to other processes as well as specific enzymes such as cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. Some maize and sorghum mutants, shown to have defective in CAD and/or COMT activity, are easier to digest because they have a reduced lignin content, something which has motivated different research groups to alter the lignin content and composition of model plants by genetic engineering try to improve, for example, the efficiency of paper pulping and digestibility. In the work reported in this paper, we have made an inventory of the sugarcane expressed sequence tag (EST coding for enzymes involved in lignin metabolism which are present in the sugarcane EST genome project (SUCEST database. Our analysis focused on the key enzymes ferulate-5-hydroxylase (F5H, caffeic acid O-methyltransferase (COMT, caffeoyl CoA O-methyltransferase (CCoAOMT, hydroxycinnamate CoA ligase (4CL, cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. The comparative analysis of these genes with those described in other species could be used as molecular markers for breeding as well as for the manipulation of lignin metabolism in sugarcane.

  12. The significance of nitrogen limited condition in the initiation of lipid biosynthesis in Aurantiochytrium sp. SW1

    Science.gov (United States)

    Haladu, Zangoma Maryam; Ibrahim, Izyanti; Hamid, Aidil Abdul

    2018-04-01

    The manner of the onset of lipid synthesis in Aurantiochytrium sp. SW1 as well as the possible role of NAD+ dependent isocitrate dehydrogenase (NAD+: ICDH) in the initiation of lipid biosynthesis were studied. The initiation of lipid synthesis in the microalgae was not associated with the cessation of growth, but commence at the early phase of growth. Substantial amount of lipid (30 %, g/g biomass) was accumulated during the active growth phase at 48 h with growth rate decreasing from 0.11 g/L/h during active growth to 0.02 g/L/h in the limited growth phase. At that period the activity of NAD+: ICDH was still detectable although it slightly decreased to 20 nmol/min/mg in 48 h from 25 nmol/min/mg at 24 h. Analysis of ammonium sulfate fractionated of NAD+: ICDH activity showed that NAD+: ICDH was not completely dependent on adenosine monophosphate (AMP) for its activity, although the presence of AMP increased the enzyme's affinity towards its substrate (isocitrate) indicated by the low Km value of the enzyme for isocitrate. While citrate acts as inhibitor of the enzyme only at high concentration. The probable implications of these properties to the regulation of lipid are discussed.

  13. Temporal dynamics of the Saccharopolyspora erythraea phosphoproteome.

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Lim, Sooa; Marcellin, Esteban; Nielsen, Lars K

    2014-05-01

    Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest ("metabolic switch") preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete Saccharopolyspora erythraea. A total of 109 phosphopeptides from 88 proteins were detected across a 150-h fermentation using open-profile two-dimensional LC-MS proteomics and TiO(2) enrichment. Quantitative analysis of the phosphopeptides and their unphosphorylated cognates was possible for 20 pairs that also displayed constant total protein expression. Enzymes from central carbon metabolism such as putative acetyl-coenzyme A carboxylase, isocitrate lyase, and 2-oxoglutarate dehydrogenase changed dramatically in the degree of phosphorylation during the stationary phase, suggesting metabolic rearrangement for the reutilization of substrates and the production of polyketide precursors. In addition, an enzyme involved in cellular response to environmental stress, trypsin-like serine protease (SACE_6340/NC_009142_6216), decreased in phosphorylation during the growth arrest stage. More important, enzymes related to the regulation of protein synthesis underwent rapid phosphorylation changes during this stage. Whereas the degree of phosphorylation of ribonuclease Rne/Rng (SACE_1406/NC_009142_1388) increased during the metabolic switch, that of two ribosomal proteins, S6 (SACE_7351/NC_009142_7233) and S32 (SACE_6101/NC_009142_5981), dramatically decreased during this stage of the fermentation, supporting the hypothesis that ribosome subpopulations differentially regulate translation before and after the metabolic switch. Overall, we show the great potential of phosphoproteomic studies to explain microbial physiology and specifically provide evidence of dynamic protein phosphorylation events across the developmental cycle of

  14. Temporal Dynamics of the Saccharopolyspora erythraea Phosphoproteome*

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Lim, SooA; Marcellin, Esteban; Nielsen, Lars K.

    2014-01-01

    Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest (“metabolic switch”) preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete Saccharopolyspora erythraea. A total of 109 phosphopeptides from 88 proteins were detected across a 150-h fermentation using open-profile two-dimensional LC-MS proteomics and TiO2 enrichment. Quantitative analysis of the phosphopeptides and their unphosphorylated cognates was possible for 20 pairs that also displayed constant total protein expression. Enzymes from central carbon metabolism such as putative acetyl-coenzyme A carboxylase, isocitrate lyase, and 2-oxoglutarate dehydrogenase changed dramatically in the degree of phosphorylation during the stationary phase, suggesting metabolic rearrangement for the reutilization of substrates and the production of polyketide precursors. In addition, an enzyme involved in cellular response to environmental stress, trypsin-like serine protease (SACE_6340/NC_009142_6216), decreased in phosphorylation during the growth arrest stage. More important, enzymes related to the regulation of protein synthesis underwent rapid phosphorylation changes during this stage. Whereas the degree of phosphorylation of ribonuclease Rne/Rng (SACE_1406/NC_009142_1388) increased during the metabolic switch, that of two ribosomal proteins, S6 (SACE_7351/NC_009142_7233) and S32 (SACE_6101/NC_009142_5981), dramatically decreased during this stage of the fermentation, supporting the hypothesis that ribosome subpopulations differentially regulate translation before and after the metabolic switch. Overall, we show the great potential of phosphoproteomic studies to explain microbial physiology and specifically provide evidence of dynamic protein phosphorylation events across the developmental cycle of

  15. Inhibitory effect of tributyltin on expression of steroidogenic enzymes in mouse testis.

    Science.gov (United States)

    Kim, Suel-Kee; Kim, Jong-Hoon; Han, Jung Ho; Yoon, Yong-Dal

    2008-01-01

    Tributyltin (TBT) is known to disrupt the development of reproductive organs, thereby reducing fertility. The aim of this study was to evaluate the acute toxicity of TBT on the testicular development and steroid hormone production. Immature (3-week-old) male mice were given a single administration of 25, 50, or 100 mg/kg of TBT by oral gavage. Lumen formation in seminiferous tubule was remarkably delayed, and the number of apoptotic germ cells found inside the tubules was increased in the TBT-exposed animals, whereas no apoptotic signal was observed in interstitial Leydig cells. Reduced serum testosterone concentration and down-regulated expressions of the mRNAs for cholesterol side-chain cleavage enzyme (P450scc), 17alpha -hydroxylase/C(17-20) lyase (P450(17alpha)), 3beta -hydroxysteroid-dehydrogenase (3beta -HSD), and 17beta -hydroxysteroid-dehydrogenase (17beta -HSD) were also observed after TBT exposure. Altogether, these findings demonstrate that exposure to TBT is associated with induced apoptosis of testicular germ cells and inhibition of steroidogenesis by reduction in the expression of steroidogenic enzymes in interstitial Leydig cells. These adverse effects of TBT would cause serious defects in testicular development and function.

  16. Biochemical characterization of a novel tyrosine phenol-lyase from Fusobacterium nucleatum for highly efficient biosynthesis of l-DOPA.

    Science.gov (United States)

    Zheng, Ren-Chao; Tang, Xiao-Ling; Suo, Hui; Feng, Li-Lin; Liu, Xiao; Yang, Jian; Zheng, Yu-Guo

    2018-05-01

    Tyrosine phenol-lyase (TPL) catalyzes the reversible cleavage of l-tyrosine to phenol, pyruvate and ammonia. When pyrocatechol is substituted for phenol, l-dihydroxyphenylalanine (l-DOPA) is produced. The TPL-catalyzed route was regarded as the most economic process for l-DOPA production. In this study, a novel TPL from Fusobacterium nucleatum (Fn-TPL) was successfully overexpressed in Escherichia coli and screened for l-DOPA synthesis with a specific activity of 2.69Umg -1 . Fn-TPL was found to be a tetramer, and the optimal temperature and pH for α, β-elimination of l-tyrosine was 60°C and pH 8.5, respectively. The enzyme showed broad substrate specificity toward natural and synthetic l-amino acids. Kinetic analysis suggested that the k cat /K m value for l-tyrosine decomposition was much higher than that for l-DOPA decomposition, while Fn-TPL exhibited similar catalytic efficiency for synthesis of l-tyrosine and l-DOPA. With whole cells of recombinant E. coli as biocatalyst, l-DOPA yield reached 110gL -1 with a pyrocatechol conversion of 95%, which was comparable to the reported highest level. The results demonstrated the great potential of Fn-TPL for industrial production of l-DOPA. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [Effects of melaxen and valdoxan on the activity of glutathione antioxidant system and NADPH-producing enzymes in rat heart under experimental hyperthyroidism conditions].

    Science.gov (United States)

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S

    2013-01-01

    The effects of melaxen and valdoxan on the activity of glutathione antioxidant system and some NADPH-producing enzymes have been studied under conditions of experimental hyperthyroidism in rat heart. Under the action of these drugs, reduced glutathione (GSH) content increased as compared to values observed under the conditions of pathology. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP), glucose-6-phosphate dehydrogenase, and NADP isocitrate dehydrogenase (increased under pathological conditions) change toward the intact control values upon the introduction of both drugs. The influence of melaxen and valdoxan, capable of producing antioxidant effect, leads apparently to the inhibition of free-radical oxidation processes and, as a consequence, the reduction of mobilization degree of the glutathione antioxidant system.

  18. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.

    NARCIS (Netherlands)

    Boxma, B.; Voncken, F.L.M.; Jannink, S.A.; Alen, T.A. van; Akhmanova, A.S.; Weelden, S.W. van; Hellemond, J.J. van; Ricard, G.N.S.; Huynen, M.A.; Tielens, A.G.; Hackstein, J.H.P.

    2004-01-01

    Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of

  19. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    Directory of Open Access Journals (Sweden)

    K. M. Singh

    2014-01-01

    Full Text Available The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs. We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs, carbohydrate binding module (CBM: 23 contigs, glycosyl transferase (GT: 373 contigs, carbohydrate esterases (CE: 259 contigs, and polysaccharide lyases (PE: 16 contigs. The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry.

  20. Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunyoung [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of); Kim, Hyoung-June [Basic Research and Innovation Division, AmorePacific Corporation R& D Center, Yongin, Gyeounggi-do 17074 (Korea, Republic of); Lee, Moonyoung [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Jin, Sun Hee; Hong, Soo Hyun; Ahn, Seyeon; Kim, Sae On [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of); Shin, Dong Wook [Basic Research and Innovation Division, AmorePacific Corporation R& D Center, Yongin, Gyeounggi-do 17074 (Korea, Republic of); Lee, Seung-Taek [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722 (Korea, Republic of); Noh, Minsoo, E-mail: minsoonoh@snu.ac.kr [College of Pharmacy, Seoul National University, Seoul 08826 (Korea, Republic of); Natural Products Research Institute, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-11-01

    Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μM formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR

  1. Structural Insights Into The Bacterial Carbon-Phosphorus Lyase Machinery

    DEFF Research Database (Denmark)

    Brodersen, Ditlev Egeskov

    the proteins encoded in the phn operon act in concert to catabolise phosphonate remain unknown. We have determined the crystal structure of a 240 kDa Escherichia coli carbon-phosphorus lyase core complex at 1.7 Å and show that it comprises a highly intertwined network of subunits with several unexpected......Phosphonate compounds act as a nutrient source for some microorganisms when phosphate is limiting but require a specialised enzymatic machinery due to the presence of the highly stable carbon-phosphorus bond. Despite the fundamental importance to microbial metabolism, the details of how...... structural features. The complex contains at least two different active sites and suggest a revision of current models of carbon-phosphorus bond cleavage. Using electron microscopy, we map the binding site of an additional protein subunit, which may use ATP for driving conformational changes during...

  2. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne; Lolle, Signe; McSorley, Fern R.

    2011-01-01

    Organophosphonate utilization by Escherichia coli requires the 14 cistrons of the phnCDEFGHIJKLMNOP operon, of which the carbon-phosphorus lyase has been postulated to consist of the seven polypeptides specified by phnG to phnM. A 5,660-bp DNA fragment encompassing phnGHIJKLM is cloned, followed...

  3. Activities of some enzymes of lignin formation in reaction wood of Thuja orientalis, Metasequoia glyptostroboides and Robinia pseudoacacia.

    Science.gov (United States)

    Kutsuki, H; Higuchi, T

    1981-07-01

    The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.

  4. Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    International Nuclear Information System (INIS)

    Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo

    2013-01-01

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP + -dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report an autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer

  5. Prenatal ethanol exposure alters steroidogenic enzyme activity in newborn rat testes.

    Science.gov (United States)

    Kelce, W R; Rudeen, P K; Ganjam, V K

    1989-10-01

    We have examined the in utero effects of ethanol exposure on testicular steroidogenesis in newborn male pups. Pregnant Sprague-Dawley rats were fed a liquid ethanol diet (35% ethanol-derived calories), a pair-fed isocaloric liquid diet, or a standard laboratory rat chow and water diet beginning on Day 12 of gestation and continuing through parturition. Although there were no significant differences in the enzymatic activity of 5-ene-3 beta-hydroxysteroid dehydrogenase/isomerase or C17,20-lyase, the enzymatic activity of 17 alpha-hydroxylase was significantly (p less than 0.01) reduced (i.e., approximately 36%) in the ethanol-exposed pups compared to those from the pair-fed and chow treatment groups. This lesion in testicular steroidogenic enzyme activity in newborn male pups exposed to alcohol in utero was transient as 17 alpha-hydroxylase activity from the ethanol-exposed animals returned to control levels by postnatal Day 20 and remained at control levels through adulthood (postnatal Day 60). These data suggest that the suppression of the perinatal testosterone surge in male rats exposed to alcohol in utero and the associated long term demasculinizing effects of prenatal ethanol exposure might be the result of reduced testicular steroidogenic enzyme activity in the perinatal animal.

  6. Unstable argininosuccinate lyase in variant forms of the urea cycle disorder argininosuccinic aciduria.

    Science.gov (United States)

    Hu, Liyan; Pandey, Amit V; Balmer, Cécile; Eggimann, Sandra; Rüfenacht, Véronique; Nuoffer, Jean-Marc; Häberle, Johannes

    2015-09-01

    Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3% of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16% of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30% of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

  7. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2017-06-01

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat /K m ) for L-aspartic acid (14.18 s -1  mM -1 ) was higher than that for L-phenylalanine (4.65 s -1  mM -1 ). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  8. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells.

    Science.gov (United States)

    Lee, Su Jeong; Park, Jeen-Woo

    2014-04-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.

  9. In-Vivo Proton Magnetic Resonance Spectroscopy of 2-Hydroxyglutarate in Isocitrate Dehydrogenase-Mutated Gliomas: A Technical Review for Neuroradiologists

    International Nuclear Information System (INIS)

    Kim, Hyeonjin; Kim, Sungjin; Lee, Hyeong Hun; Heo, Hwon

    2016-01-01

    The diagnostic and prognostic potential of an onco-metabolite, 2-hydroxyglutarate (2HG) as a proton magnetic resonance spectroscopy (1H-MRS) detectable biomarker of the isocitrate dehydrogenase (IDH)-mutated (IDH-MT) gliomas has drawn attention of neuroradiologists recently. However, due to severe spectral overlap with background signals, quantification of 2HG can be very challenging. In this technical review for neuroradiologists, first, the biochemistry of 2HG and its significance in the diagnosis of IDH-MT gliomas are summarized. Secondly, various 1H-MRS methods used in the previous studies are outlined. Finally, wereview previous in vivo studies, and discuss the current status of 1H-MRS in the diagnosis of IDH-MT gliomas

  10. In-Vivo Proton Magnetic Resonance Spectroscopy of 2-Hydroxyglutarate in Isocitrate Dehydrogenase-Mutated Gliomas: A Technical Review for Neuroradiologists

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonjin [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University, Seoul 03087 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080 (Korea, Republic of); Kim, Sungjin [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Lee, Hyeong Hun; Heo, Hwon [Department of Biomedical Sciences, Seoul National University, Seoul 03087 (Korea, Republic of)

    2016-11-01

    The diagnostic and prognostic potential of an onco-metabolite, 2-hydroxyglutarate (2HG) as a proton magnetic resonance spectroscopy (1H-MRS) detectable biomarker of the isocitrate dehydrogenase (IDH)-mutated (IDH-MT) gliomas has drawn attention of neuroradiologists recently. However, due to severe spectral overlap with background signals, quantification of 2HG can be very challenging. In this technical review for neuroradiologists, first, the biochemistry of 2HG and its significance in the diagnosis of IDH-MT gliomas are summarized. Secondly, various 1H-MRS methods used in the previous studies are outlined. Finally, wereview previous in vivo studies, and discuss the current status of 1H-MRS in the diagnosis of IDH-MT gliomas.

  11. Determination of extra and intracellular content from some lytic enzymes related with carnation (Dianthus caryophyllus L. root cell wall

    Directory of Open Access Journals (Sweden)

    Sixta Tulia Martínez Peralta

    2016-11-01

    Full Text Available The presence of some enzymes related to cell wall (polygalacturonase, the pectate lyase, protease and xylanase in carnation (Dianthus caryophyllus L. roots as well as the activity levels were determined. These levels were analyzed in different cellular places: the intercellular fluid that is part of apoplast, the symplast, and the total level (apoplast and symplast in carnation roots. Two methods were tested to extract the intercellular fluid. To obtain the intracellular content (symplast and total extract (apoplast+symplast, three methods were tested, using as extracting solution  i phosphate buffer, ii phosphate buffer + PVPP,  iii before the extraction with phosphate buffer, the carnation roots were washed with acetone.  The results showed the effect of different extracting solutions in the enzymatic activities and in the protein content. A new only one step method is proposed to extract the four enzymes and make the comparative analysis of enzymatic activity.

  12. Evaluation of the hydroxynitrile lyase activity in cell cultures of capulin (Prunus serotina).

    Science.gov (United States)

    Hernández, Liliana; Luna, Héctor; Navarro-Ocaña, Arturo; Olivera-Flores, Ma Teresa de Jesús; Ayala, Ivon

    2008-07-01

    Enzymatic preparations obtained from young plants and cell cultures of capulin were screened for hydroxynitrile lyase activity. The three week old plants, grown under sterile conditions, were used to establish a solid cell culture. Crude preparations obtained from this plant material were evaluated for the transformation of benzaldehyde to the corresponding cyanohydrin (mandelonitrile). The results show that the crude material from roots, stalks, and leaves of young plants and calli of roots, stalks, internodes and petioles biocatalyzed the addition of hydrogen cyanide (HCN) to benzaldehyde with a modest to excellent enantioselectivity.

  13. Response of Glycine max to drought stress in relation to growth parameters and some key enzymes of carbon and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Maryam Nasr Esfahani

    2015-06-01

    Full Text Available Drought stress is one of the major constraints for production and yield of soybean (Glycine max. For this reason, identifying mechanisms associated with drought tolerance in soybean is very impotent for improving and increasing drought resistance by genetic engineering methods. In this study, the effect of drought on growth traits (plant height, fresh and dry weight of shoot and also fresh and dry weight of root and enzyme activities of isocitrate dehydrogenase (ICDH, phosphoenolpyruvate carboxylase (PEPC, malate dehydrogenase (MDH, glutamine synthetase (GS and nitrate reductase (NR were assessed in drought sensitive and tolerant cultivars of soybean. The results showed that growth indicators are higher in drought tolerant cultivar under water availability (control and water deficient when compared with those of drought sensitive cultivar. An increase in the activity of ICDH was observed in both the cultivars under drought stress as compared with their respective control plants but this activity was higher in tolerant cultivar. The activities of PEPC, MDH, GS and NR were significantly decreased in drought sensitive cultivar whereas the activities of these enzymes were higher in another cultivar. In general, the results of this study showed different behavior in the activities of assayed enzymes in two sets of soybean cultivars differing in drought tolerance and also decline of the activities of these enzymes in drought sensitive cultivar due to water deficit stress may be one of the possible reasons for decreased growth of the soybean plants under drought.

  14. The ketogenic diet is well tolerated and can be effective in patients with argininosuccinate lyase deficiency and refractory epilepsy

    NARCIS (Netherlands)

    Peuscher, Rosanne; Dijsselhof, Monique E.; Abeling, Nico G.; van Rijn, Margreet; van Spronsen, Francjan J.; Bosch, Annet M.

    2012-01-01

    Argininosuccinate lyase (ASL) deficiency (MIM 608310, McKusick 207900) is a rare disorder of the urea cycle, which leads to a deficiency of arginine and hyperammonemia. Epilepsy is a frequent complication of this disorder. A ketogenic diet (KD) can be a very effective therapy for refractory

  15. One-Pot Enzymatic Synthesis of D-Arylalanines Using Phenylalanine Ammonia Lyase and L-Amino Acid Deaminase.

    Science.gov (United States)

    Zhu, Longbao; Feng, Guoqiang; Ge, Fei; Song, Ping; Wang, Taotao; Liu, Yi; Tao, Yugui; Zhou, Zhemin

    2018-06-08

    The phenylalanine ammonia-lyase (AvPAL) from Anabaena variabilis catalyzes the amination of substituent trans-cinnamic acid (t-CA) to produce racemic D,L-enantiomer arylalanine mixture owing to its low stereoselectivity. To produce high optically pure D-arylalanine, a modified AvPAL with high D-selectivity is expected. Based on the analyses of catalytic mechanism and structure, the Asn347 residue in the active site was proposed to control stereoselectivity. Therefore, Asn347 was mutated to construct mutant AvPAL-N347A, the stereoselectivity of AvPAL-N347A for D-enantiomer arylalanine was 2.3-fold higher than that of wild-type AvPAL (WtPAL). Furthermore, the residual L-enantiomer product in reaction solution could be converted into the D-enantiomer product through stereoselective oxidation by PmLAAD and nonselective reduction by reducing agent NH 3 BH 3 . At optimal conditions, the conversion rate of t-CA and optical purity (enantiomeric excess (ee D )) of D-phenylalanine reached 82% and exceeded 99%, respectively. The two enzymes displayed activity toward a broad range of substrate and could be used to efficiently synthesize D-arylalanine with different groups on the phenyl ring. Among these D-arylalanines, the yield of m-nitro-D-phenylalanine was highest and reached 96%, and the ee D exceeded 99%. This one-pot synthesis using AvPAL and PmLAAD has prospects for industrial application.

  16. Purification, crystallization and X-ray diffraction analysis of a novel ring-cleaving enzyme (BoxCC) from Burkholderia xenovorans LB400

    International Nuclear Information System (INIS)

    Bains, Jasleen; Boulanger, Martin J.

    2008-01-01

    Preliminary X-ray diffraction studies of a novel ring-cleaving enzyme from B. xenovorans LB400 encoded by the benzoate-oxidation (box) pathway. The assimilation of aromatic compounds by microbial species requires specialized enzymes to cleave the thermodynamically stable ring. In the recently discovered benzoate-oxidation (box) pathway in Burkholderia xenovorans LB400, this is accomplished by a novel dihydrodiol lyase (BoxC C ). Sequence analysis suggests that BoxC C is part of the crotonase superfamily but includes an additional uncharacterized region of approximately 115 residues that is predicted to mediate ring cleavage. Processing of X-ray diffraction data to 1.5 Å resolution revealed that BoxC C crystallized with two molecules in the asymmetric unit of the P2 1 2 1 2 1 space group, with a solvent content of 47% and a Matthews coefficient of 2.32 Å 3 Da −1 . Selenomethionine BoxC C has been purified and crystals are currently being refined for anomalous dispersion studies

  17. Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum.

    Science.gov (United States)

    Morgunov, Igor G; Karpukhina, Olga V; Kamzolova, Svetlana V; Samoilenko, Vladimir A; Inozemtsev, Anatoly N

    2018-01-02

    The effect of biologically active form (threo-Ds-) of isocitric acid (ICA) on oxidative stress was studied using the infusorian Paramecium caudatum stressed by hydrogen peroxide and salts of some heavy metals (Cu, Pb, Zn, and Cd). ICA at concentrations between 0.5 and 10 mM favorably influenced the infusorian cells with oxidative stress induced by the toxicants studied. The maximal antioxidant effect of ICA was observed at its concentration 10 mM irrespective of the toxicant used (either H 2 O 2 or heavy metal ions). ICA was found to be a more active antioxidant than ascorbic acid. Biologically active pharmaceutically pure threo-Ds-ICA was produced through cultivation of the yeast Yarrowia lipolytica and isolated from the culture liquid in the form of crystalline monopotassium salt with a purity of 99.9%.

  18. Studies on carbohydrate metabolism in Bacillus sphaericus 1593

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-02

    Oct 2, 2006 ... Key words: Bacillus sphaericus, carbohydrate metabolism, glycolytic enzymes. ... available in soil close to decaying plant materials. So when a medium .... citrate, isocitrate, 2-oxoglutarate, malate and acetate. The unit of.

  19. Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase.

    Science.gov (United States)

    Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani; Zhao, Yutong; Natarajan, Viswanathan

    2017-01-01

    Cellular level of sphingosine-1-phosphate (S1P), the simplest bioactive sphingolipid, is tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and degradation mediated by S1P phosphatases, lipid phosphate phosphatases, and S1P lyase. The pleotropic actions of S1P are attributed to its unique inside-out (extracellular) signaling via G-protein-coupled S1P1-5 receptors, and intracellular receptor independent signaling. Additionally, S1P generated in the nucleus by nuclear SphK2 modulates HDAC1/2 activity, regulates histone acetylation, and transcription of pro-inflammatory genes. Here, we present data on the role of S1P lyase mediated S1P signaling in regulating LPS-induced inflammation in lung endothelium. Blocking S1P lyase expression or activity attenuated LPS-induced histone acetylation and secretion of pro-inflammatory cytokines. Degradation of S1P by S1P lyase generates Δ2-hexadecenal and ethanolamine phosphate and the long-chain fatty aldehyde produced in the cytoplasmic compartment of the endothelial cell seems to modulate histone acetylation pattern, which is different from the nuclear SphK2/S1P signaling and inhibition of HDAC1/2. These in vitro studies suggest that S1P derived long-chain fatty aldehyde may be an epigenetic regulator of pro-inflammatory genes in sepsis-induced lung inflammation. Trapping fatty aldehydes and other short chain aldehydes such as 4-hydroxynonenal derived from S1P degradation and lipid peroxidation, respectively by cell permeable agents such as phloretin or other aldehyde trapping agents may be useful in treating sepsis-induced lung inflammation via modulation of histone acetylation. . Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Levels of small molecules and enzymes in the mother cell compartment and the forespore of sporulating Bacillus megaterium.

    Science.gov (United States)

    Singh, R P; Setlow, B; Setlow, P

    1977-06-01

    We have determined the amounts of a number of small molecules and enzymes in the mother cell compartment and the developing forespore during sporulation of Bacillus megaterium. Significant amounts of adenosine 5'-triphosphate and reduced nicotinamide adenine dinucleotide were present in the forespore compartment before accumulation of dipicolinic acid (DPA), but these compounds disappeared as DPA was accumulated. 3-Phosphoglyceric acid (3-PGA) accumulated only within the developing forespore, beginning 1 to 2 h before DPA accumulation. Throughout its development the forespore contained constant levels of enzymes of both 3-PGA synthesis (phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase) and 3-PGA utilization (phosphoglycerate mutase, enolase, and pyruvate kinase) at levels similar to those in the mother cell and the dormant spore. Despite the presence of enzymes for 3-PGA utilization, this compound was stable within isolated forespores. Two acid-soluble proteins (A and B proteins) also accumulated only in the forespore, beginning 1 to 2 h before DPA accumulation. At this time the specific protease involved in degradation of the A and B proteins during germination also appeared, but only in the forespore compartment. Nevertheless, the A and B proteins were stable within isolated forespores. Arginine and glutamic acid accumulated within the forespore in parallel with DPA accumulation. The forespore also contained the enzyme arginase at a level similar to that in the mother cell and a level of glutamic acid decarboxylase 2- to 25-fold higher than that in the mother cell, depending on when in sporulation the forespores were isolated. The specific activities of several other enzymes (protease active on hemoglobin, ornithine transcarbamylase, malate dehydrogenase, aconitase, and isocitrate dehydrogenase) in forespores were about 10% or less of the values in the mother cell. Aminopeptidase was present at similar levels in both compartments; threonine

  1. C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves

    NARCIS (Netherlands)

    Kallenbach, M.; Gilardoni, P.A.; Allmann, S.; Baldwin, I.T.; Bonaventure, G.

    2011-01-01

    In response to diverse stresses, the hydroperoxide lyase (HPL) pathway produces C(6) aldehydes and 12-oxo-(9Z )-dodecenoic acid ((9Z )-traumatin). Since the original characterization of (10E )-traumatin and traumatic acid, little has been added to our knowledge of the metabolism and fluxes

  2. The Role of Isocitrate Lyase (ICL1) in the Metabolic Adaptation of Candida albicans Biofilms

    Science.gov (United States)

    Ishola, Oluwaseun Ayodeji; Ting, Seng Yeat; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Yunus, Muhammad Amir; Mohamed, Rafeezul; Lung Than, Leslie Thian; Sandai, Doblin

    2016-01-01

    Background A major characteristic of Candida biofilm cells that differentiates them from free-floating cells is their high tolerance to antifungal drugs. This high resistance is attributed to particular biofilm properties, including the accumulation of extrapolymeric substances, morphogenetic switching, and metabolic flexibility. Objectives This study evaluated the roles of metabolic processes (in particular the glyoxylate cycle) on biofilm formation, antifungal drug resistance, morphology, and cell wall components. Methods Growth, adhesion, biofilm formation, and cell wall carbohydrate composition were quantified for isogenic Candida albicans ICL1/ICL1, ICL1/icl1, and icl1/icl1 strains. The morphology and topography of these strains were compared by light microscopy and scanning electron microscopy. FKS1 (glucan synthase), ERG11 (14-α-demethylase), and CDR2 (efflux pump) mRNA levels were quantified using qRT-PCR. Results The ICL1/icl1 and icl1/icl1 strains formed similar biofilms and exhibited analogous drug-tolerance levels to the control ICL1/ICL1 strains. Furthermore, the drug sequestration ability of β-1, 3-glucan, a major carbohydrate component of the extracellular matrix, was not impaired. However, the inactivation of ICL1 did impair morphogenesis. ICL1 deletion also had a considerable effect on the expression of the FKS1, ERG11, and CDR2 genes. FKS1 and ERG11 were upregulated in ICL1/icl1 and icl1/icl1 cells throughout the biofilm developmental stages, and CDR2 was upregulated at the early phase. However, their expression was downregulated compared to the control ICL1/ICL1 strain. Conclusions We conclude that the glyoxylate cycle is not a specific determinant of biofilm drug resistance. PMID:27800147

  3. A second pectin lyase gene (pel2) from Aspergillus oryzae KBN616: its sequence analysis and overexpression, and characterization of the gene products.

    Science.gov (United States)

    Kitamoto, N; Yoshino-Yasuda, S; Ohmiya, K; Tsukagoshi, N

    2001-01-01

    A second pectin lyase gene, designated pel2, was isolated from a shoyu koji mold Aspergillus oryzae KBN616 and characterized. The structural gene comprised 1306 bp with three introns. The ORF encoded 375 amino acids with a signal peptide of 19 amino acids. The deduced amino acid sequence showed high similarity to those of A. oryzae Pel1, Aspergillus niger pectin lyases and Glomerella cingulata Pn1A. The pel2 gene was overexpressed under the control of the promoter of the A. oryzae TEF1 gene for purification and enzymatic characterization of its gene product. The gene product exhibited two molecular masses of 48 and 44 kDa due to different degrees of glycosylation. Both proteins had the same pH optimum of 6.0 and temperature optimum of 50 degrees C.

  4. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    Science.gov (United States)

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  5. Exposure of E. coli to DNA-methylating agents impairs biofilm formation and invasion of eukaryotic cells via down regulation of the N-acetylneuraminate lyase NanA

    Directory of Open Access Journals (Sweden)

    Pamela eDi Pasquale

    2016-02-01

    Full Text Available DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analogue acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions.

  6. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle.

    Science.gov (United States)

    Flipphi, Michel; Oestreicher, Nathalie; Nicolas, Valérie; Guitton, Audrey; Vélot, Christian

    2014-07-01

    In Aspergillus nidulans, the utilization of acetate as sole carbon source requires several genes (acu). Most of them are also required for the utilization of fatty acids. This is the case for acuD and acuE, which encode the two glyoxylate cycle-specific enzymes, isocitrate lyase and malate synthase, respectively, but also for acuL that we have identified as AN7287, and characterized in this study. Deletion of acuL resulted in the same phenotype as the original acuL217 mutant. acuL encodes a 322-amino acid protein which displays all the structural features of a mitochondrial membrane carrier, and shares 60% identity with the Saccharomyces cerevisiae succinate/fumarate mitochondrial antiporter Sfc1p (also named Acr1p). Consistently, the AcuL protein was shown to localize in mitochondria, and partial cross-complementation was observed between the S. cerevisiae and A. nidulans homologues. Extensive phenotypic characterization suggested that the acuL gene is involved in the utilization of carbon sources that are catabolized via the TCA cycle, and therefore require gluconeogenesis. In addition, acuL proves to be co-regulated with acuD and acuE. Overall, our data suggest that AcuL could link the glyoxylate cycle to gluconeogenesis by exchanging cytoplasmic succinate for mitochondrial fumarate. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    Science.gov (United States)

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  8. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Liu

    Full Text Available The allene oxide synthase (AOS and hydroperoxide lyase (HPL branches of the oxylipin pathway, which underlie the production of jasmonates and aldehydes, respectively, function in plant responses to a range of stresses. Regulatory crosstalk has been proposed to exist between these two signaling branches; however, there is no direct evidence of this. Here, we identified and characterized a jasmonic acid (JA overproduction mutant, cea62, by screening a rice T-DNA insertion mutant library for lineages that constitutively express the AOS gene. Map-based cloning was used to identify the underlying gene as hydroperoxide lyase OsHPL3. HPL3 expression and the enzyme activity of its product, (E-2-hexenal, were depleted in the cea62 mutant, which resulted in the dramatic overproduction of JA, the activation of JA signaling, and the emergence of the lesion mimic phenotype. A time-course analysis of lesion formation and of the induction of defense responsive genes in the cea62 mutant revealed that the activation of JA biosynthesis and signaling in cea62 was regulated in a developmental manner, as was OsHPL3 activity in the wild-type plant. Microarray analysis showed that the JA-governed defense response was greatly activated in cea62 and this plant exhibited enhanced resistance to the T1 strain of the bacterial blight pathogen Xanthomonasoryzaepvoryzae (Xoo. The wounding response was attenuated in cea62 plants during the early stages of development, but partially recovered when JA levels were elevated during the later stages. In contrast, the wounding response was not altered during the different developmental stages of wild-type plants. These findings suggest that these two branches of the oxylipin pathway exhibit crosstalk with regards to biosynthesis and signaling and cooperate with each other to function in diverse stress responses.

  9. Molecular and analysis of a phenylalanine ammonia-lyase gene (LrPAL2) from Lycoris radiata.

    Science.gov (United States)

    Jiang, Yumei; Xia, Bing; Liang, Lijian; Li, Xiaodan; Xu, Sheng; Peng, Feng; Wang, Ren

    2013-03-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid biosynthesis, participates in the biosynthesis of flavonoids, lignins, stilbenes and many other compounds. In this study, we cloned a 2,326 bp full-length PAL2 gene from Lycoris radiata by using degenerate oligonucleotide primer PCR (DOP-PCR) and the rapid amplification of cDNA ends method. The cDNA contains a 2,124 bp coding region encoding 707 amino acids. The LrPAL2 shares about 77.0 % nucleic acid identity and 83 % amino acid identity with LrPAL1. Furthermore, genome sequence analysis demonstrated that LrPAL2 gene contains one intron and two exons. The 5' flanking sequence of LrPAL2 was also cloned by self-formed adaptor PCR (SEFA-PCR), and a group of putative cis-acting elements such as TATA box, CAAT box, G box, TC-rich repeats, CGTCA motif and TCA-element were identified. The LrPAL2 was detected in all tissues examined, with high abundance in bulbs at leaf sprouting stage and in petals at blooming stage. Besides, LrPAL2 drastically responded to MJ, SNP and UV, moderately responded to GA and SA, and a little increased under wounding. Comparison of LrPAL2 expression and LrPAL1 expression demonstrated that LrPAL2 can be more significantly induced than LrPAL1 under the above treatments, and LrPAL2 transcripts accumulated prominently at blooming stage, especially in petals, while LrPAL1 transcripts did not accumulated significantly at blooming stage. All these results suggested that LrPAL2 might play distinct roles in different branches of the phenylpropanoid pathway.

  10. Grapevine fatty acid hydroperoxide lyase generates actin-disrupting volatiles and promotes defence-related cell death

    Science.gov (United States)

    Wang, Hao; Claudel, Patricia; Riemann, Michael; Hause, Bettina; Hugueney, Philippe; Nick, Peter

    2018-01-01

    Abstract Fatty acid hydroperoxides can generate short-chained volatile aldehydes that may participate in plant defence. A grapevine hydroperoxide lyase (VvHPL1) clustering to the CYP74B class was functionally characterized with respect to a role in defence. In grapevine leaves, transcripts of this gene accumulated rapidly to high abundance in response to wounding. Cellular functions of VvHPL1 were investigated upon heterologous expression in tobacco BY-2 cells. A C-terminal green fluorescent protein (GFP) fusion of VvHPL1 was located in plastids. The overexpression lines were found to respond to salinity stress or the bacterial elicitor harpin by increasing cell death. This signal-dependent mortality response was mitigated either by addition of exogenous jasmonic acid or by treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases. By feeding different substrates to recombinantly expressed enzyme, VvHPL1 could also be functionally classified as true 13-HPL. The cognate products generated by this 13-HPL were cis-3-hexenal and trans-2-hexenal. Using a GFP-tagged actin marker line, one of these isomeric products, cis-3-hexenal, was found specifically to elicit a rapid disintegration of actin filaments. This response was not only observed in the heterologous system (tobacco BY-2), but also in a grapevine cell strain expressing this marker, as well as in leaf discs from an actin marker grape used as a homologous system. These results are discussed in the context of a role for VvHPL1 in a lipoxygenase-dependent signalling pathway triggering cell death-related defence that bifurcates from jasmonate-dependent basal immunity. PMID:29659985

  11. [Sudden death of a patient with 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency].

    Science.gov (United States)

    Vilaseca Busca, M A; Ribes Rubio, A; Briones Godino, P; Cusi Sánchez, V; Baraíbar Castelló, R; Gairi Taull, J M

    1990-02-01

    A new case of neonatal 3-hydroxy-3-methylglutaric aciduria is described. 3-hydroxy-3-methylglutaryl CoA lyase activities in leukocytes demonstrated the patient's homozygosity and the heterozygous character of the parents and two other members of the family. Dietetic management with low fat high carbohydrate diet together with protein restriction and carnitine resulted in a good control of the metabolic acidosis, the hypoglycemia, and the physical and neurological development. Nevertheless, sudden death occurred at the age thirteen months without any previous apparent trouble and the necropsia showed neither signs of infection nor hepatic or cardiac derangement.

  12. Structural And Biochemical Characterization of the Therapeutic A. Variabilis Phenylalanine Ammonia Lyase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Gamez, A.; Archer, H.; Abola, E.E.; Sarkissian, C.N.; Fitzpatrick, P.; Wendt, D.; Zhang, Y.; Vellard, M.; Bliesath, J.; Bell, S.; Lemont, J.; Scriver, C.R.; Stevens, R.C.

    2009-05-26

    We have recently observed promising success in a mouse model for treating the metabolic disorder phenylketonuria with phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides and Anabaena variabilis. Both molecules, however, required further optimization in order to overcome problems with protease susceptibility, thermal stability, and aggregation. Previously, we optimized PAL from R. toruloides, and in this case we reduced aggregation of the A. variabilis PAL by mutating two surface cysteine residues (C503 and C565) to serines. Additionally, we report the structural and biochemical characterization of the A. variabilis PAL C503S/C565S double mutant and carefully compare this molecule with the R. toruloides engineered PAL molecule. Unlike previously published PAL structures, significant electron density is observed for the two active-site loops in the A. variabilis C503S/C565S double mutant, yielding a complete view of the active site. Docking studies and N-hydroxysuccinimide-biotin binding studies support a proposed mechanism in which the amino group of the phenylalanine substrate is attacked directly by the 4-methylidene-imidazole-5-one prosthetic group. We propose a helix-to-loop conformational switch in the helices flanking the inner active-site loop that regulates accessibility of the active site. Differences in loop stability among PAL homologs may explain the observed variation in enzyme efficiency, despite the highly conserved structure of the active site. A. variabilis C503S/C565S PAL is shown to be both more thermally stable and more resistant to proteolytic cleavage than R. toruloides PAL. Additional increases in thermal stability and protease resistance upon ligand binding may be due to enhanced interactions among the residues of the active site, possibly locking the active-site structure in place and stabilizing the tetramer. Examination of the A. variabilis C503S/C565S PAL structure, combined with analysis of its physical properties, provides

  13. Protein crystal growth in low gravity

    Science.gov (United States)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  14. NFAT regulation of cystathionine γ-lyase expression in endothelial cells is impaired in rats exposed to intermittent hypoxia.

    Science.gov (United States)

    Gonzalez Bosc, Laura V; Osmond, Jessica M; Giermakowska, Wieslawa K; Pace, Carolyn E; Riggs, Jennifer L; Jackson-Weaver, Olan; Kanagy, Nancy L

    2017-04-01

    Sleep apnea is a risk factor for cardiovascular disease, and intermittent hypoxia (IH, 20 episodes/h of 5% O 2 -5% CO 2 for 7 h/day) to mimic sleep apnea increases blood pressure and impairs hydrogen sulfide (H 2 S)-induced vasodilation in rats. The enzyme that produces H 2 S, cystathionine γ-lyase (CSE), is decreased in rat mesenteric artery endothelial cells (EC) following in vivo IH exposure. In silico analysis identified putative nuclear factor of activated T cell (NFAT) binding sites in the CSE promoter. Therefore, we hypothesized that IH exposure reduces Ca 2+ concentration ([Ca 2+ ]) activation of calcineurin/NFAT to lower CSE expression and impair vasodilation. In cultured rat aortic EC, inhibiting calcineurin with cyclosporine A reduced CSE mRNA, CSE protein, and luciferase activity driven by a full-length but not a truncated CSE promoter. In male rats exposed to sham or IH conditions for 2 wk, [Ca 2+ ] in EC in small mesenteric arteries from IH rats was lower than in EC from sham rat arteries (Δfura 2 ratio of fluorescence at 340 to 380 nm from Ca 2+ free: IH = 0.05 ± 0.02, sham = 0.17 ± 0.03, P intermittent hypoxia to mimic sleep apnea, nuclear factor of activated T cells c3 nuclear translocation and CSE expression are decreased, concomitant with decreased CSE-dependent vasodilation. Copyright © 2017 the American Physiological Society.

  15. Kinetic resolution and stereoselective synthesis of 3-substituted aspartic acids by using engineered methylaspartate ammonia lyases.

    Science.gov (United States)

    Raj, Hans; Szymanski, Wiktor; de Villiers, Jandré; Puthan Veetil, Vinod; Quax, Wim J; Shimamoto, Keiko; Janssen, Dick B; Feringa, Ben L; Poelarends, Gerrit J

    2013-08-19

    Enzymatic amino acid synthesis: Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described. These biocatalytic methodologies for the selective preparation of aspartic acid derivatives appear to be attractive alternatives for existing chemical methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Requirement of argininosuccinate lyase for systemic nitric oxide production.

    Science.gov (United States)

    Erez, Ayelet; Nagamani, Sandesh C S; Shchelochkov, Oleg A; Premkumar, Muralidhar H; Campeau, Philippe M; Chen, Yuqing; Garg, Harsha K; Li, Li; Mian, Asad; Bertin, Terry K; Black, Jennifer O; Zeng, Heng; Tang, Yaoping; Reddy, Anilkumar K; Summar, Marshall; O'Brien, William E; Harrison, David G; Mitch, William E; Marini, Juan C; Aschner, Judy L; Bryan, Nathan S; Lee, Brendan

    2011-11-13

    Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.

  17. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    DEFF Research Database (Denmark)

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red...... possessed all enzymes needed for conversion of glycogen to APP, an a-1,4-glucan lyase from this fungus was isolated and partially sequenced. Based on this work, a scheme of the enzymatic description of the anhydrofructose pathway in A. melaloma was proposed. Keywords: Anhydrofructose pathway; Anthracobia...

  18. Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis.

    Science.gov (United States)

    Zhu, Longbao; Cui, Wenjing; Fang, Yueqin; Liu, Yi; Gao, Xinxing; Zhou, Zhemin

    2013-05-01

    The industrial-scale production of phenylalanine ammonia-lyase (PAL) mainly uses strains of Rhodotorula. However, the PAL gene from Rhodotorula has not been cloned. Here, the full-length gene of PAL from Rhodotorula glutinis was isolated. It was 2,121 bp, encoding a polypeptide with 706 amino acids and a calculated MW of 75.5 kDa. Though R. glutinis is an anamorph of Rhodosporium toruloides, the amino acid sequences of PALs them are not the same (about 74 % identity). PAL was expressed in E. coli and characterized. Its specific activity was 4.2 U mg(-1) and the k cat/K m was 1.9 × 10(4) mM(-1) s(-1), exhibiting the highest catalytic ability among the reported PALs. The genetic and biochemical information reported here should facilitate future application in industry.

  19. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    Science.gov (United States)

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  20. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  1. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress.

    Science.gov (United States)

    Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin

    2010-02-28

    Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.

  2. Metabolic organization and effects of feeding on enzyme activities of the dogfish shark (Squalus acanthias) rectal gland.

    Science.gov (United States)

    Walsh, Patrick J; Kajimura, Makiko; Mommsen, Thomas P; Wood, Chris M

    2006-08-01

    In order to investigate the metabolic poise of the elasmobranch rectal gland, we conducted two lines of experimentation. First, we examined the effects of feeding on plasma metabolites and enzyme activities from several metabolic pathways in several tissues of the dogfish shark, Squalus acanthias, after starvation and at 6, 20, 30 and 48 h post-feeding. We found a rapid and sustained ten-fold decrease in plasma beta-hydroxybutyrate at 6 h and beyond compared with starved dogfish, suggesting an upregulation in the use of this substrate, a decrease in production, or both. Plasma acetoacetate levels remain unchanged, whereas there was a slight and transient decrease in plasma glucose levels at 6 h. Several enzymes showed a large increase in activity post-feeding, including beta-hydroxybutyrate dehydrogenase in rectal gland and liver, and in rectal gland, isocitrate dehydrogenase, citrate synthase, lactate dehydrogenase, aspartate amino transferase, alanine amino transferase, glutamine synthetase and Na(+)/K(+) ATPase. Also notable in these enzyme measurements was the overall high level of activity in the rectal gland in general. For example, activity of the Krebs' TCA cycle enzyme citrate synthase (over 30 U g(-1)) was similar to activities in muscle from other species of highly active fish. Surprisingly, lactate dehydrogenase activity in the gland was also high (over 150 U g(-1)), suggesting either an ability to produce lactate anaerobically or use lactate as an aerobic fuel. Given these interesting observations, in the second aspect of the study we examined the ability of several metabolic substrates (alone and in combination) to support chloride secretion by the rectal gland. Among the substrates tested at physiological concentrations (glucose, beta-hydroxybutyrate, lactate, alanine, acetoacetate, and glutamate), only glucose could consistently maintain a viable preparation. Whereas beta-hydroxybutyrate could enhance gland activity when presented in combination

  3. Molecular Cloning of cpcU and Heterodimeric Bilin Lyase Activity Analysis of CpcU and CpcS for Attachment of Phycocyanobilin to Cys-82 on the β-Subunit of Phycocyanin in Arthrospira platensis FACHB314

    Directory of Open Access Journals (Sweden)

    Fei Wu

    2016-03-01

    Full Text Available A new bilin lyase gene cpcU was cloned from Arthrospira platensis FACHB314 to study the assembly of the phycocyanin β-Subunit. Two recombinant plasmids, one contained the phycocyanobilin (PCB producing genes (hoxI and pcyA, while the other contained the gene of the β-Subunit of phycobiliprotein (cpcB and the lyase gene (cpcU, cpcS, or cpcU/S were constructed and separately transferred into Escherichia coli in order to test the activities of relevant lyases for catalyzing PCB addition to CpcB during synthesizing fluorescent β-PC of A. platensis FACHB314. The fluorescence intensity examination showed that Cys-82 maybe the active site for the β-Subunit binding to PCBs and the attachment could be carried out by CpcU, CpcS, or co-expressed cpcU/S in A. platensis FACHB314.

  4. Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations

    NARCIS (Netherlands)

    Evenepoel, Lucie; Papathomas, Thomas G.; Krol, Niels; Korpershoek, Esther; De Krijger, Ronald R.; Persu, Alexandre; Dinjens, Winand N M

    2015-01-01

    The tricarboxylic acid, or Krebs, cycle is central to the cellular metabolism of sugars, lipids, and amino acids; it fuels the mitochondrial respiratory chain for energy generation. In the past decade, mutations in the Krebs-cycle enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate

  5. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng.

    Science.gov (United States)

    Zhou, Ying; Yang, Zhenming; Gao, Lingling; Liu, Wen; Liu, Rongkun; Zhao, Junting; You, Jiangfeng

    2017-07-01

    Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H 2 O 2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione- S -transferase activity remained constant. Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound

  6. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L.

    Science.gov (United States)

    Gomi, Kenji; Satoh, Masaru; Ozawa, Rika; Shinonaga, Yumi; Sanada, Sachiyo; Sasaki, Katsutomo; Matsumura, Masaya; Ohashi, Yuko; Kanno, Hiroo; Akimitsu, Kazuya; Takabayashi, Junji

    2010-01-01

    A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.

  7. [The relationship between activity and gene expression of phenylalanine ammonia-lyase and peel pitting in 'Fengjie' navel orange fruits].

    Science.gov (United States)

    Li, Zheng-Guo; Gao, Xue; Fan, Jing; Yang, Ying-Wu; Li, Dao-Gao; Kanellis, Angelos K

    2006-06-01

    Citrus fruit is prone to develop peel pitting during development and storage, which greatly decreases its fresh market value because of the deterioration of the peel. In the present study, we have examined the effect of different temperatures (15 degrees C and 4 degrees C), waxing and mechanical damage on the changes in the activity of phenylalanine ammonia-lyase (PAL) and the incidence of peel pitting in 'Fengjie' navel orange (Citrus sinensis Osbeck) fruits. The expression levels of PAL2, PAL6 genes in the peel during the development of peel pitting have been investigated through semi-quantitative PCR method. The incidence of peel pitting was greatly enhanced by waxing and mechanical damage and was decreased in lower temperature storage (4 degrees C) (Fig.1). Waxing and mechanical damage might be the important factors inducing peel pitting and suitable low temperature could decrease the incidence of this disease. The PAL activity increased during the whole storage period in accordance with the development of this pitting (Fig.2). The expression levels of PAL2 and PAL6 genes in damaged peel were higher than those in healthy peel and the expression of PAL2 is much more higher than that of PAL6 (Figs.4 and 5). The results suggested that the enzyme activity of PAL, along with the expression of PAL2 gene is highly related to this peel pitting occurred on 'Fengjie' navel orange fruits.

  8. Sexual Dimorphism in the Selenocysteine Lyase Knockout Mouse.

    Science.gov (United States)

    Ogawa-Wong, Ashley N; Hashimoto, Ann C; Ha, Herena; Pitts, Matthew W; Seale, Lucia A; Berry, Marla J

    2018-01-31

    Selenium (Se) is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly) catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly -/- mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice. Strikingly, females appeared to present with a less severe phenotype, suggesting the relationship between Scly and energy metabolism may be regulated in a sex-specific manner. Here, we report that while body weight and body fat gain occur in both male and female Scly -/- mice, strikingly, males are susceptible to developing glucose intolerance, whereas female Scly -/- mice are protected. Because Se is critical for male reproduction, we hypothesized that castration would attenuate the metabolic dysfunction observed in male Scly -/- mice by eliminating sequestration of Se in testes. We report that fasting serum insulin levels were significantly reduced in castrated males compared to controls, but islet area was unchanged between groups. Finally, both male and female Scly -/- mice exhibit reduced hypothalamic expression of selenoproteins S, M, and glutathione peroxidase 1.

  9. Sexual Dimorphism in the Selenocysteine Lyase Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Ashley N. Ogawa-Wong

    2018-01-01

    Full Text Available Selenium (Se is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly−/− mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice. Strikingly, females appeared to present with a less severe phenotype, suggesting the relationship between Scly and energy metabolism may be regulated in a sex-specific manner. Here, we report that while body weight and body fat gain occur in both male and female Scly−/− mice, strikingly, males are susceptible to developing glucose intolerance, whereas female Scly−/− mice are protected. Because Se is critical for male reproduction, we hypothesized that castration would attenuate the metabolic dysfunction observed in male Scly−/− mice by eliminating sequestration of Se in testes. We report that fasting serum insulin levels were significantly reduced in castrated males compared to controls, but islet area was unchanged between groups. Finally, both male and female Scly−/− mice exhibit reduced hypothalamic expression of selenoproteins S, M, and glutathione peroxidase 1.

  10. Selective Inhibition of Steroidogenic Enzymes by Ketoconazole in Rat Ovary Cells

    Directory of Open Access Journals (Sweden)

    Michael Gal

    2014-01-01

    Full Text Available Objective Ketoconazole (KCZ is an anti-fungal agent extensively used for clinical applications related to its inhibitory effects on adrenal and testicular steroidogenesis. Much less information is available on the effects of KCZ on synthesis of steroid hormones in the ovary. The present study aimed to characterize the in situ effects of KCZ on steroidogenic enzymes in primary rat ovary cells. Methods Following the induction of folliculogenesis in gonadotropin treated rats, freshly prepared ovarian cells were incubated in suspension for up to four hours while radiolabeled steroid substrates were added and time dependent generation of their metabolic products was analyzed by thin layer chromatography (TLC. Results KCZ inhibits the P450 steroidogenic enzymes in a selective and dose dependent manner, including cholesterol side-chain cleavage cytochrome P450 (CYP11A1/P450scc, the 17α-hydroxylase activity of CYP17A1/P450c17, and CYP19A1/P450arom, with IC 50 values of 0.3, 1.8, and 0.3 μg/mL (0.56, 3.36, and 0.56 μM, respectively. Unaffected by KCZ, at 10 μg/mL, were the 17,20 lyase activity of CYP17A1, as well as five non-cytochrome steroidogenic enzymes including 3β-hydroxysteroid dehydrogenase-δ 5-4 isomerase type 1 (3βHSD1, 5α-reductase, 20α-hydroxysteroid dehydrogenase (20α-HSD, 3α-hydroxysteroid dehydrogenase (3α-HSD, and 17β-hydroxysteroid dehydrogenase type 1 (17HSD1. Conclusion These findings map the effects of KCZ on the ovarian pathways of progestin, androgen, and estrogen synthesis. Hence, the drug may have a potential use as an acute and reversible modulator of ovarian steroidogenesis in pathological circumstances.

  11. Increased protein expression of LHCG receptor and 17α-hydroxylase/17-20-lyase in human polycystic ovaries.

    Science.gov (United States)

    Comim, F V; Teerds, K; Hardy, K; Franks, S

    2013-11-01

    Does the expression of LHCG receptor (LHCGR) protein and key enzymes in the androgen biosynthetic pathway differ in normal human versus polycystic ovarian tissue? LHCGR and 17α-hydroxylase/17-20-lyase (CYP17A1) protein levels are increased in polycystic ovaries (PCOs). The predominant source of excess androgen secretion in women with polycystic ovary syndrome (PCOS) is ovarian theca cells but few studies have directly assessed the presence and abundance of protein for key molecules involved in androgen production by theca, including LHCGR and the rate-limiting enzyme in androgen production, CYP17A1. This is a laboratory-based, cross-sectional study comparing protein expression of key molecules in the androgen biosynthetic pathway in archived ovarian tissue from women with normal ovaries (n = 10) with those with PCOs (n = 16). A quantitative morphometric study was performed using sections of archived human ovaries (n = 26) previously characterized as normal or polycystic. The distribution and abundance of LHCGR, CYP17A1, 3β-hydroxysteroid dehydrogenase type 2 (3βHSDII) and 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5) proteins were evaluated by immunohistochemistry and quantified. A higher proportion of theca cells from anovulatory PCO expressed LHCGR protein when compared with control ovaries (P = 0.01). A significant increase in the intensity of immunostaining for CYP17A1 was identified in antral follicles in sections of PCO compared with ovaries from normal women (P = 0.04). As the study used formalin-fixed ovarian tissue sections, it was not possible to carry out studies 'in vitro' using the same ovarian tissues in order to also demonstrate increased functional activity of LHCGR and CYP17A1. The data are in keeping with the results of previous studies in isolated theca cells and support the notion of an intrinsic abnormality of theca cell androgen production in women with PCOS. The research was supported by a Programme Grant, G0802782, from the Medical

  12. Glioma-derived mutations in isocitrate dehydrogenase 2 beneficial to traditional chemotherapy

    International Nuclear Information System (INIS)

    Fu, Yuejun; Huang, Rui; Zheng, Yali; Zhang, Zhiyun; Liang, Aihua

    2011-01-01

    Highlights: → IDH1 and IDH2 mutations are not detected in the rat C6 glioma cell line model. → IDH2 mutations are not required for the tumorigenesis of glioma. → IDH2 R172G can sensitize glioma sensitivity to chemotherapy through NADPH levels. → IDH2 R172G can give a benefit to traditional chemotherapy of glioma. → This finding serves as an important complement to existing research on this topic. -- Abstract: Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. In the present study, we report that mutations of IDH1 and IDH2 are not detected in the rat C6 glioma cell line model, which suggests that these mutations are not required for the development of glioblastoma induced by N,N'-nitroso-methylurea. The effects of IDH2 and IDH2 R172G on C6 cells proliferation and sensitivity to chemotherapy and the possible mechanism are analyzed at the cellular level. IDH1 and IDH2 mutations lead to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2HG), respectively, and result in lowering NADPH levels even further. The low NADPH levels can sensitize tumors to chemotherapy, and account for the prolonged survival of patients harboring the mutations. Our data extrapolate potential importance of the in vitro rat C6 glioma cell model, show that the IDH2 R172G mutation in gliomas may give a benefit to traditional chemotherapy of this cancer and serve as an important complement to existing research on this topic.

  13. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

    Science.gov (United States)

    Cartmell, Alan; Lowe, Elisabeth C; Baslé, Arnaud; Firbank, Susan J; Ndeh, Didier A; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E; Czjzek, Mirjam; Gilbert, Harry J; Bolam, David N

    2017-07-03

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron , a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides , indicating that the model developed is of generic relevance to this important microbial community.

  14. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch

    Directory of Open Access Journals (Sweden)

    Steven Zhao

    2016-10-01

    Full Text Available Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY, cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.

  15. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.

    Science.gov (United States)

    Zhao, Steven; Torres, AnnMarie; Henry, Ryan A; Trefely, Sophie; Wallace, Martina; Lee, Joyce V; Carrer, Alessandro; Sengupta, Arjun; Campbell, Sydney L; Kuo, Yin-Ming; Frey, Alexander J; Meurs, Noah; Viola, John M; Blair, Ian A; Weljie, Aalim M; Metallo, Christian M; Snyder, Nathaniel W; Andrews, Andrew J; Wellen, Kathryn E

    2016-10-18

    Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    Science.gov (United States)

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  17. Cistanche tubulosa ethanol extract mediates rat sex hormone levels by induction of testicular steroidgenic enzymes.

    Science.gov (United States)

    Wang, Tian; Chen, Chen; Yang, Man; Deng, Baiwan; Kirby, Gordon Michael; Zhang, Xiaoying

    2016-01-01

    Plants of the genus Cistanche Hoffmg. et Link (Orobanchaceae) are usually used as ethno-medicine in Eastern Asia. Pharmacology studies have shown that Cistanche possesses an androgen-like effect; however, the exact mechanism is unclear. The present study determines the effect of ethanol extract of Cistanche tubulosa (Schenk) R. Wight stem (CTE) on hormone levels and testicular steroidogenic enzymes in rats. Phenylethanoid glycoside content of CTE was detected by UV spectrophotometry. Rats were fed with different doses of CTE (0.2, 0.4, and 0.8 g/kg) by intragastric administration for 20 d. Sperm parameters were measured by staining and counting method. The level of progesterone and testosterone in serum was quantified by radioimmunoassay. The expression levels of cholesterol side-chain cleavage enzyme (CYP11A1), 17α-hydroxylase/17, 20-lyase (CYP17A1), and a liver metabolic enzyme (CYP3A4) in the microsome were assessed by immunohistochemical staining or/and western blot analysis. The study illustrates that the administration of CTE (0.4 and 0.8 g/kg) increased sperm count (2.3- and 2.7-folds) and sperm motility (1.3- and 1.4-folds) and decreased the abnormal sperm (0.76- and 0.6-folds). The serum level of progesterone and testosterone in rats was also increased by CTE administration (p blot analysis confirmed that the expression of CYP11A1, CYP17A1, and CYP3A4 was enhanced by CTE (p < 0.05). It was also found that high-dose of CTE can cause mild hepatic edema. Our results suggest that the increase in sex hormone levels could be mediated by the induction of testicular steroidogenic enzymes.

  18. Potential effects of plant growth promoting rhizobacteria ...

    African Journals Online (AJOL)

    Damping off caused by Sclerotium rolfsii on cowpea results in yield losses with serious socioeconomic implication. Induction of defense responses by plant growth promoting rhizobacteria (PGPR) is largely associated with the production of defense enzyme phenyl ammonia lyase (PAL) and oxidative enzymes like ...

  19. Influence of Dilution Rate on Enzymes of Intermediary Metabolism in Two Freshwater Bacteria Grown in Continuous Culture

    NARCIS (Netherlands)

    Matin, A.; Grootjans, A.; Hogenhuis, H.

    1976-01-01

    Two freshwater bacteria, a Pseudomonas sp. and a Spirillum sp., were grown in continuous culture under steady-state conditions in L-lactate-, succinate-, ammonium- or phosphate-limited media. In Pseudomonas sp., NAD-independent and NAD-dependent L-lactate dehydrogenases, aconitase, isocitrate

  20. Differences in mitochondrial gene expression profiles, enzyme activities and myosin heavy chain types in yak versus bovine skeletal muscles.

    Science.gov (United States)

    Lin, Y Q; Xu, Y O; Yue, Y; Jin, S Y; Qu, Y; Dong, F; Li, Y P; Zheng, Y C

    2012-08-29

    Hypoxia can affect energy metabolism. We examined gene expression and enzyme activity related to mitochondrial energy metabolism, as well as myosin heavy chain (MyHC) types in yaks (Bos grunniens) living at high altitudes. Real-time quantitative PCR assays indicated that the yak has significantly lower levels of carnitine palmitoyltransferase (CPT) mRNA in the biceps femoris and lower levels of uncoupling protein 3 (UCP3) mRNA in both biceps femoris and longissimus dorsi than in Yellow cattle. No significant differences between yak and Yellow cattle were observed in the activities of mitochondrial β-hydroxyacyl-CoA dehydrogenase, isocitrate dehydrogenase and cytochrome oxidase in the same muscles. Semi-quantitative RT-PCR analysis showed that the MyHC 1 mRNA levels in yak biceps femoris was lower than in Yellow cattle. We conclude that the yak has significantly lower mRNA levels of CPT, UCP3, and MyHC 1 in biceps femoris than in Yellow cattle, suggesting that the yak biceps femoris has lower fatty acid oxidation capacity and greater glycolytic metabolic potential.

  1. Isocitrate dehydrogenase 1 and 2 genes mutations and MGMT methylation in gliomas

    Directory of Open Access Journals (Sweden)

    D. V. Tabakov

    2017-01-01

    Full Text Available Gliomas are the most common brain tumors. It is difficult to detect them at early stages of disease and there is a few available therapies providing significant improvement in survival. Mutations of isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2 play significant role in gliomogenesis, diagnostics and selection of patient therapy. We tested the distribution of IDH1 and IDH2 mutations in gliomas of different histological types and grades of malignancy by DNA melting analysis using our protocol with a sensitivity of 5 %. The results of this assay were confirmed by conventional Sanger sequencing. IDH1/2 mutations were detected in 74 % of lower grade gliomas (II and III, World Health Organization and in 14 % of glioblastomas (IV, World Health Organization. Mutation rate in gliomas with oligodendroglioma component were significantly higher then in other glioma types (р = 0.014. The IDH1 mutations was the most common (79 % of general mutation number. IDH1/2 mutations can induce aberrant gene methylation. Detection of methylation rate of the gene encoding for O6-methylguanine-DNA-methyltransferase (MGMT, predictive biomarker for treatment of gliomas with the alkylating agents, has demonstrated a partial association with IDH1/2 mutations. In 73 % of IDH1/2-mutant tumors MGMT promoter methylation were observed. At the same time IDH1/2 mutations were not revealed in 67 % tumors with MGMT promoter methylation. These results indicate existence of another mechanism of MGMT methylation in gliomas. Our data strong support for necessity of both markers testing when patient therapy is selected.

  2. Efficient immobilization of AGE and NAL enzymes onto functional amino resin as recyclable and high-performance biocatalyst.

    Science.gov (United States)

    Cheng, Jian; Zhuang, Wei; Tang, Chenglun; Chen, Yong; Wu, Jinglan; Guo, Ting; Ying, Hanjie

    2017-03-01

    N-Acetylglucosamine-2-epimerase (AGE) and N-acetylneuraminic acid lyase (NAL) were immobilized for synthesis of N-acetylneuraminic acid (Neu5Ac) on three resins: Amberzyme oxirane resin (AOR), poly (styrene-co-DVB)-Br resin (PBR) and amino resin (AR). The loading capacity and immobilized enzyme activity showed that AR was the best carrier. Three methods of glutaraldehyde cross-linking were tested and simultaneous cross-linking and immobilization was demonstrated to be the best method. The functional properties of immobilized AGE and NAL were studied and compared to those of the free enzyme. The highest enzyme activities of free and immobilized AGE were obtained in 0.1 M potassium phosphate buffer at pH 7.5 and a temperature of 37 °C. Comparatively, the highest NAL activities were at pH 8.5. Meanwhile, an increase in K m (from 1.14 to 1.31 mg·mL -1 for AGE and from 1.05 to 1.25 mg·mL -1 for NAL) and a decrease in V max (from 177.53 to 106.37 µg·min -1 mL -1 for AGE and from 126.41 to 95.96 µg·min -1 mL -1 for NAL) were recorded after immobilization. The AR-glutaraldehyde-enzyme system exhibited better thermal stability than the free enzyme, and retained 72% of its initial activity even after eight repeated runs. The apparent activation energy (E a ) of the free and immobilized AGE (NAL) was 117.14 kJ·mol -1 (124.21 kJ·mol -1 ) and 78.45 kJ·mol -1 (66.64 kJ·mol -1 ), respectively, implying that the catalytic efficiency of the immobilized enzyme was restricted by mass-transfer rather than kinetic limit. Subsequently, Neu5Ac production from GlcNAc using immobilized enzymes in one reactor was carried out resulting 101.45 g·L -1 of Neu5Ac and the highest conversion ratio of 82%. This method of enzyme immobilization may have a promising future for Neu5Ac production in industry.

  3. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    OpenAIRE

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-01-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that en...

  4. Biochemical responses during the pathogenesis of Sclerotium rolfsii ...

    African Journals Online (AJOL)

    Subhadfip Nandi

    a variety of novel proteins and secondary metabolites. This study aimed to examine the induction of different stress related enzymes like phenyl alanineammonia lyase (PAL), chitinase, β-1,3 glucanase, oxidative enzymes like peroxidases (POD), poly phenol oxidases (PPO) and phenolics after inoculation of Sclerotium ...

  5. Regulation of a phenylalanine ammonia lyase (BbPAL) by calmodulin in response to environmental changes in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Kim, Jiyoung; Park, Hyesung; Han, Jae-Gu; Oh, Junsang; Choi, Hyung-Kyoon; Kim, Seong Hwan; Sung, Gi-Ho

    2015-11-01

    Phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5) catalyses the deamination of L -phenylalanine to trans-cinnamic acid and ammonia, facilitating a critical step in the phenylpropanoid pathway that produces a variety of secondary metabolites. In this study, we isolated BbPAL gene in the entomopathogenic fungus Beauveria bassiana. According to multiple sequence alignment, homology modelling and in vitro PAL activity, we demonstrated that BbPAL acts as a typical PAL enzyme in B. bassiana. BbPAL interacted with calmodulin (CaM) in vitro and in vivo, indicating that BbPAL is a novel CaM-binding protein. The functional role of CaM in BbPAL action was to negatively regulate the BbPAL activity in B. bassiana. High-performance liquid chromatography analysis revealed that L -phenylalanine was reduced and trans-cinnamic acid was increased in response to the CaM inhibitor W-7. Dark conditions suppressed BbPAL activity in B. bassiana, compared with light. In addition, heat and cold stresses inhibited BbPAL activity in B. bassiana. Interestingly, these negative effects of BbPAL activity by dark, heat and cold conditions were recovered by W-7 treatment, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbPAL plays a role in the phenylpropanoid pathway mediated by environmental stimuli via the CaM signalling pathway. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate.

    Science.gov (United States)

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-10-03

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ(4,5)HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A Novel Eliminase from a Marine Bacterium That Degrades Hyaluronan and Chondroitin Sulfate*

    Science.gov (United States)

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-01-01

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ4,5HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. PMID:25122756

  8. Synthesis of d‐ and l‐Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process†

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L.; Weise, Nicholas J.; Ahmed, Syed T.

    2015-01-01

    Abstract The synthesis of substituted d‐phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one‐pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high‐throughput solid‐phase screening method has also been developed to identify PALs with higher rates of formation of non‐natural d‐phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d‐configured product. Furthermore, the system was extended to the preparation of those l‐phenylalanines which are obtained with a low ee value using PAL amination. PMID:27478261

  9. Synthesis of d- and l-Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process**

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J

    2015-01-01

    The synthesis of substituted d-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural d-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d-configured product. Furthermore, the system was extended to the preparation of those l-phenylalanines which are obtained with a low ee value using PAL amination. PMID:25728350

  10. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine.

    Science.gov (United States)

    Lee, Su-Min; Park, Sin Young; Shin, Seoung Woo; Kil, In Sup; Yang, Eun Sun; Park, Jeen-Woo

    2009-02-01

    Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.

  11. Modified expression of cytoplasmic isocitrate dehydrogenase electrophoretic isoforms in seminal plasma of men with sertoli-cell-only syndrome and seminoma.

    Science.gov (United States)

    Starita-Geribaldi, Mireille; Samson, Michel; Guigonis, Jean-Marie; Pointis, Georges; Fenichel, Patrick

    2008-06-01

    Two isoforms of human cytoplasmic isocitrate dehydrogenase (IDPc) of close molecular weights and different isoelectric points were identified in human seminal plasma (SP) by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). These two isoforms were detected in the normospermic men SP and their expressions were markedly altered in patients with testicular seminoma, the most frequent testicular germ cell cancer (TGCC): increase of the more acidic spot and decrease of the more basic one. Since oligospermia has been considered as a high risk pathological condition for developing a testicular cancer, the two IDPc isoforms were analyzed in SP of a group of secretory azoospermic patients. In this group the two spots displayed similar variations of expression to those observed in testicular seminoma. These results propose IDPc as a promising SP biomarker of testicular seminoma. Whether IDPc alteration in secretory azoospermia is predictive of testicular seminoma remains to be elucidated. (c) 2007 Wiley-Liss, Inc.

  12. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    Science.gov (United States)

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  13. Elimination of hydrogen sulphide and {beta} substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961); Desulfhydration et {beta} substitution de la cysteine catalysees par la cysteinelyase du sac vitellin et du jaune de l'oeuf de poule (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F; Fromageot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the {beta}-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this {beta}-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the {beta}-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the {beta}-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [French] Le sac vitellin et le jaune d'oeufs embryonnes de poule renferment une enzyme activee par le phosphate de pyridoxal, qui ne contient pas de fer, de magnesium, de cuivre ce de calcium et qui confere une reactivite particuliere au carbone {beta} de la cysteine. Cette reactivite se manifeste par l'aptitude que possede le carbone {beta} a fixer diverses molecules soufrees dont le soufre est reducteur, telles que le sulfure, le sulfite ou la cysteine elle-meme. En l'absence de reactifs capables de reagir avec le carbone {beta}, le complexe actif enzyme-chaine tricarbonee et aminee s'hydrolyse en acide pyruvique et en ammoniaque. La liberation d'hydrogene sulfure apparait ainsi comme une consequence soit de la substitution du carbone {beta} de la cysteine, soit de la decomposition du complexe qu'elle forme avec l'enzyme etudiee. Cette derniere semble donc posseder une activite distincte de celle des desulfhydrases connues jusqu'a present. Nous proposons de l'appeler cysteinelyase. (auteurs)

  14. Expression of Cathepsins B, D, and G in Isocitrate Dehydrogenase-Wildtype Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sabrina P. Koh

    2017-05-01

    Full Text Available AimTo investigate the expression of cathepsins B, D, and G, in relation to the cancer stem cell (CSC subpopulations, we have previously characterized within isocitrate dehydogenase (IDH-wildtype glioblastoma (IDHWGB.Methods3,3-Diaminobezidine (DAB immunohistochemical (IHC staining for cathepsins B, D, and G, was performed on 4μm-thick formalin-fixed paraffin-embedded IDHWGB samples obtained from six patients. Two representative DHWGB samples from the original cohort of patients were selected for immunofluorescent (IF IHC staining, to identify the localization of the cathepsins in relation to the CSC subpopulations. NanoString gene expression analysis and colorimetric in situ hybridization (CISH were conducted to investigate the transcriptional activation of genes encoding for cathepsins B, D, and G. Data obtained from cell counting of DAB IHC-stained slides and from NanoString analysis were subjected to statistical analyses to determine significance.ResultsCathepsin B and cathepsin D were detected in IDHWGB by DAB IHC staining. IF IHC staining demonstrated the expression of both cathepsin B and cathepsin D by the OCT4+ and SALL4+ CSC subpopulations. NanoString gene analysis and CISH confirmed the abundant transcript expression of these cathepsins. The transcriptional and translational expressions of cathepsin G were minimal and were confined to cells within the microvasculature.ConclusionThis study demonstrated the expression of cathepsin B and cathepsin D but not cathepsin G within the CSC subpopulations of IDHWGB at both the transcriptional and translational level. Cathepsin G was expressed at low levels and was not localized to the CSC population of IDHWGB. The novel finding of cathepsin B and cathepsin D in IDHWGB suggests the presence of bypass loops for the renin-angiotensin system, which may facilitate the production of angiotensin peptides. Elucidating the precise role of these cathepsins may lead to better understanding and more

  15. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

    Science.gov (United States)

    Gatfield, John; Monnier, Lucile; Studer, Rolf; Bolli, Martin H; Steiner, Beat; Nayler, Oliver

    2014-07-01

    The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    Science.gov (United States)

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  17. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    Directory of Open Access Journals (Sweden)

    Lavanya Tayi

    Full Text Available Xanthomonas oryzae pv.oryzae (Xoo causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA, one pectin methyl esterase (pmt and two pectate lyases (pel and pelL. There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43 grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA. Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43 in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  18. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    Science.gov (United States)

    Tayi, Lavanya; Maku, Roshan V; Patel, Hitendra Kumar; Sonti, Ramesh V

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  19. Congenital Adrenal Hyperplasia due to 17-alpha-hydoxylase/17,20-lyase Deficiency Presenting with Hypertension and Pseudohermaphroditism: First Case Report from Oman

    Directory of Open Access Journals (Sweden)

    Waad-Allah S. Mula-Abed

    2014-01-01

    Full Text Available This is the first report of congenital adrenal hyperplasia (CAH due to combined 17α-hydroxylase/17,20 lyase deficiency in an Omani patient who was initially treated for many years as a case of hypertension. CAH is an uncommon disorder that results from a defect in steroid hormones biosynthesis in the adrenal cortex. The clinical presentation depends on the site of enzymatic mutations and the types of accumulated steroid precursors. A 22-year-old woman who was diagnosed to have hypertension since the age of 10 years who was treated with anti-hypertensive therapy was referred to the National Diabetes and Endocrine Centre, Royal Hospital, Oman. The patient also had primary amenorrhea and features of sexual infantilism. Full laboratory and radio-imaging investigations were done. Adrenal steroids, pituitary function and karyotyping study were performed and the diagnosis was confirmed by molecular mutation study. Laboratory investigations revealed adrenal steroids and pituitary hormones profile in addition to 46XY karyotype that are consistent with the diagnosis of CAH due to 17α-hydroxylase deficiency. Extensive laboratory workup revealed low levels of serum cortisol (and its precursors 17α-hydroxyprogesterone and 11-deoxycortisol, adrenal androgens (dehydroepiandrosterone sulfate and androstenedione, and estrogen (estradiol; and high levels of mineralocorticoids precursors (11-deoxycorticosterone and corticosterone with high levels of ACTH, FSH and LH. Mutation analysis revealed CYP17A1-homozygous mutation (c.287G>A p.Arg96Gln resulting in the complete absence of 17α-hydroxylase/17,20-lyase activity. The patient was treated with dexamethasone and ethinyl estradiol with cessation of anti-hypertensive therapy. A review of the literature was conducted to identify previous studies related to this subtype of CAH. This is the first biochemically and genetically proven case of CAH due to 17α-hydroxylase/17,20-lyase deficiency in Oman and in the Arab

  20. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    Science.gov (United States)

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as

  1. Molecular cloning and characterization of an Erwinia carotovora subsp. carotovora pectin lyase gene that responds to DNA-damaging agents.

    OpenAIRE

    McEvoy, J L; Murata, H; Chatterjee, A K

    1990-01-01

    recA-mediated production of pectin lyase (PNL) and the bacteriocin carotovoricin occurs in Erwinia carotovora subsp. carotovora 71 when this organism is subjected to agents that damage or inhibit the synthesis of DNA. The structural gene pnlA was isolated from a strain 71 cosmid gene library following mobilization of the cosmids into a moderate PNL producer, strain 193. The cosmid complemented pnl::Tn5 but not ctv::Tn5 mutations. A constitutive level of PNL activity was detected in RecA+ and ...

  2. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats.

    Science.gov (United States)

    Harris, Christopher M; Mittelstadt, Scott; Banfor, Patricia; Bousquet, Peter; Duignan, David B; Gintant, Gary; Hart, Michelle; Kim, Youngjae; Segreti, Jason

    2016-10-01

    Inhibition of the sphingosine-1-phosphate (S1P)-catabolizing enzyme S1P lyase (S1PL) elevates the native ligand of S1P receptors and provides an alternative mechanism for immune suppression to synthetic S1P receptor agonists. S1PL inhibition is reported to preferentially elevate S1P in lymphoid organs. Tissue selectivity could potentially differentiate S1PL inhibitors from S1P receptor agonists, the use of which also results in bradycardia, atrioventricular block, and hypertension. But it is unknown if S1PL inhibition would also modulate cardiac S1P levels or cardiovascular function. The S1PL inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile was used to determine the relationship in rats between drug concentration, S1P levels in select tissues, and circulating lymphocytes. Repeated oral doses of the S1PL inhibitor fully depleted circulating lymphocytes after 3 to 4 days of treatment in rats. Full lymphopenia corresponded to increased levels of S1P of 100- to 1000-fold in lymph nodes, 3-fold in blood (but with no change in plasma), and 9-fold in cardiac tissue. Repeated oral dosing of the S1PL inhibitor in telemeterized, conscious rats resulted in significant bradycardia within 48 hours of drug treatment, comparable in magnitude to the bradycardia induced by 3 mg/kg fingolimod. These results suggest that S1PL inhibition modulates cardiac function and does not provide immune suppression with an improved cardiovascular safety profile over fingolimod in rats. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells.

    Science.gov (United States)

    Filipp, Fabian V; Scott, David A; Ronai, Ze'ev A; Osterman, Andrei L; Smith, Jeffrey W

    2012-05-01

    The tricarboxylic acid (TCA) cycle is the central hub of oxidative metabolism, running in the classic forward direction to provide carbon for biosynthesis and reducing agents for generation of ATP. Our metabolic tracer studies in melanoma cells showed that in hypoxic conditions the TCA cycle is largely disconnected from glycolysis. By studying the TCA branch point metabolites, acetyl CoA and citrate, as well as the metabolic endpoint glutamine and fatty acids, we developed a comprehensive picture of the rewiring of the TCA cycle that occurs in hypoxia. Hypoxic tumor cells maintain proliferation by running the TCA cycle in reverse. The source of carbon for acetyl CoA, citrate, and fatty acids switches from glucose in normoxia to glutamine in hypoxia. This hypoxic flux from glutamine into fatty acids is mediated by reductive carboxylation. This reductive carboxylation is catalyzed by two isocitrate dehydrogenases, IDH1 and IDH2. Their combined action is necessary and sufficient to effect the reverse TCA flux and maintain cellular viability. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  4. Quality Of Cloudy Plum Juice Produced From Fresh Fruit Of Prunus Domestica L. – The Effect Of Cultivar And Enzyme Treatment

    Directory of Open Access Journals (Sweden)

    Zbrzeźniak Monika

    2015-12-01

    Full Text Available The quality of cloudy juices produced from two plum cultivars varied in chemical characteristics and native polyphenol oxidase (PPO activity, and was studied in relation to specific pectinolytic activity of enzyme preparations used for fresh fruit maceration before pressing. Process effectiveness expressed as juice yield, turbidity and the rate of transfer of anthocyanins and polyphenols were determined for five different enzyme preparations, whose activity was also analysed. Juice yields obtained after 1 hour mash maceration (50 ºC, 100 g·t−1 were between 86.6 and 95.4%. The anthocyanins content of the obtained juices strongly depended on the cultivar and ranged from 26 to 50 mg·L−1 for ‘Promis’, and from 269 to 289 mg·L−1 for ‘Čačanska Najbolja’, which could be related to the differences in the measured PPO activity (175.4 and 79.8 nkat·g−1, respectively. The type of enzyme preparation strongly affected the degradation rate of anthocyanins during juice processing. Peonidin-3-rutinoside proved to be the most stable during plum juice production in contrast to cyanidin-3-glucoside. Irrespectively of the cultivar, the juice prepared with the mixture of Rohapect PTE + Rohament PL (2 : 1 showed the highest turbidity among the investigated combinations. The results suggest that for the production of cloudy plum juice use of a preparation with low pectin methyl esterase and polygalacturonase activities and high pectin lyase activity could be recommended.

  5. Early diagnosis of adenylosuccinate lyase deficiency using a high-throughput screening method and a trial of oral S-adenosyl-l-methionine as a treatment method.

    Science.gov (United States)

    van Werkhoven, Michiel A; Duley, John A; McGown, Ivan; Munce, Teresa; Freeman, Jeremy L; Pitt, James J

    2013-11-01

    The aim of this study was to develop a high-throughput urine screening technique for adenylosuccinate lyase (ADSL) deficiency and to evaluate S-adenosyl-l-methionine (SAMe) as a potential treatment for this disorder. Testing for succinyladenosine (S-Ado), a marker of ADSL deficiency, was incorporated into a screening panel for urine biomarkers for inborn errors of metabolism using electrospray tandem mass spectrometry. Liquid chromatography-mass spectrometry and high-performance liquid chromatography were used to confirm and monitor the response of metabolites to oral SAMe treatment. Increased levels of S-Ado were detected in a 3-month-old male infant with hypotonia and seizures. ADSL gene sequencing revealed a previously described c.-49T>C mutation and a novel c.889_891dupAAT mutation, which was likely to disrupt enzyme function. After 9 months of SAMe treatment, there was no clear response evidenced in urine metabolite levels or clinical parameters. These results demonstrate proof of the principle for the high-throughput urine screening technique, allowing earlier diagnosis of patients with ADSL deficiency. However, early treatment with SAMe does not appear to be effective in ADSL deficiency. It is suggested that although SAMe treatment may ameliorate purine nucleotide deficiency, it cannot correct metabolic syndromes in which a toxic nucleotide is present, in this case presumed to be succinylaminoimidazole carboxamide ribotide. © 2013 Mac Keith Press.

  6. Effect of anti-sprouting gamma-ray doses on enzymatic fromation of flavour odor compounds in onion (Allium Cipa L)

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; El-Waziri, S.M.

    1977-01-01

    Cysteine sulfoxide lyase activity, the development of lacrimatory factor and intensity of pungent flavour had been decreased, statistically, with increasing anti-sprouting gamma-ray dose and storage period after irradiation. Inactivation of lyase caused by 5 and 10 krad was perfectly recovered by the storage. The lyase activity was reactivated to unirradiated level at 4-5 months storage, respectively, under room temperature (20-25 C and 85-75%R.H.). 15kr inhibited the enzyme activity and could not be completely recovered and the characteristic flavour as well as the lacrimatory factor were drastically decreased by increasing storage time. Therefore, 10krad seems to be the maximum gamma ray dose proper for sprout-inhibition of Egyptian onions, Giza 6 variety, from technological point of view

  7. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines.

    Science.gov (United States)

    Ben-Daniel, Bat-Hen; Bar-Zvi, Dudy; Tsror Lahkim, Leah

    2012-02-01

    Colletotrichum coccodes (Wallr.) S. Hughes, the causal agent of black dot on potato and anthracnose on tomato, reduces yield and crop quality. We explored the role of secreted pectate lyase (PL), a cell wall-degrading enzyme, in the aggressiveness of C. coccodes. In vitro-cultivated highly aggressive isolates secreted immunologically detectable PL levels 6 h after transfer to secondary medium versus 12 h for mildly aggressive isolates, suggesting that secreted PL is a virulence factor. The gene encoding PL, CcpelA, was cloned and used for the genetic manipulation of highly (US-41 and Si-72) and mildly (Si-60) aggressive isolates. CcpelA gene-disrupted mutants showed reduced aggressiveness towards tomato fruits and impaired PL secretion and extracellular activity. Conversely, overexpression of CcpelA in the Si-60 isolate increased its aggressiveness and PL secretion. Comparison of CcpelA cloned from isolates US-41 and Si-60 revealed that both encode identical proteins, but differ in their promoters. Bioinformatics analysis for cis-acting elements suggested that the promoters of the US-41 and Si-60 isolates contain one and no AreA-binding site (GATA box), respectively. AreA has been suggested to be involved in fungal aggressiveness; therefore, CcpelA may be a key virulence factor in C. coccodes pathogenicity, and the differences in isolate aggressiveness might result from promoter activity. Quantitative reverse transcriptase-polymerase chain reaction analyses confirmed the higher level of CcpelA transcript in isolate US-41 versus Si-60. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  8. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Margret E Berg Miller

    Full Text Available BACKGROUND: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. METHODOLOGY/PRINCIPAL FINDINGS: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb, and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs, polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs. Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315 exhibited the highest levels of up-regulation. CONCLUSIONS/SIGNIFICANCE: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional

  9. PRODUCTION AND PARTIAL CHARACTERIZATION OF PECTINASES FROM MANGO PEELS BY Aspergillus tamarii

    Directory of Open Access Journals (Sweden)

    Tivkaa Amande

    2013-08-01

    Full Text Available Pectinases are a group of enzymes that are able to breakdown or transform pectin. Sources of pectinase comprise a wide variety of bacteria, yeast and filamentous fungi, especially Aspergillus sp. In this study pectinases (polygalacturonase and pectin lyase were produced from mango peels by Aspergillus tamarii in solid state fermentation and a fraction of the crude enzyme solution obtained by ultracentrifugation was used for partial characterization assay. The maximum polygalacturonase production was 141.0095 U/g at day 3, 6 and 9 of incubation while the maximum pectin lyase production was 5670.50 U/g obtained at day 6. The optimum temperature and pH for polygalacturonase activity was between 40 – 70oC and 5.0 respectively while that of pectin lyase was 60oC and 7.5 respectively. The polygalacturonase produced was stable between pH 3.6 – 10.0 and at a temperature range of 30 – 70oC while the pectin lyase was stable between pH 7.0 – 8.5 and at 40oC. Na+, Mn+, Cu2+ and Zn2+ caused a significant increase in the activity of polygalacturonase whereas Fe2+ and Mg2+ caused a significant decrease in its activity (P≤0.05. The activity of pectin lyase was significantly increased by Fe2+, Mn+ and Zn2+ but significantly decreased by Cu2+, Mg2+ and Na+ (P≤0.05. Mango peel is a cheap, available and valuable substrate for pectinase production which could be useful for industrial applications especially in the food industry for processing fruit juices.

  10. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.

    Science.gov (United States)

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-10-24

    as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (www.megazyme.com), NZYTech (www.nzytech.com), and PROZOMIX (www.prozomix.com). Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if

  11. Changes in enzymes, phenolic compounds, tannins, and vitamin C in various stages of jambolan (Syzygium cumini Lamark development

    Directory of Open Access Journals (Sweden)

    Taís Silva de Oliveira Brandão

    2011-12-01

    Full Text Available The physiological state of a fruit is closely related to ripening and climatic conditions during the growing period when the fruit undergo changes in color, texture, and flavor. The ripening of the fruit can involve a complex series of biochemical reactions with alteration in enzymes activities, phenols, tannins, and ascorbic acid. The activity of enzymes (carboximethylcellulase, polygalacturonase, and pectinlyase, the total concentration of phenolic compounds, condensed tannins, and vitamin C in five stages of maturation were studied. Significant changes were observed between the maturity stages. The phenolic compounds were higher at green stage (705.01 ± 7.41; tannins were higher at green/purple stage (699.45 ± 0.22. The results showed that the ascorbic acid levels of the pulp varied significantly from 50.81 ± 1.43 to 6.61 ± 1.04 mg.100 g-1 during maturation. The specific activity of pectin lyase was higher at green stage (1531.90 ± 5.83. The specific activity of polygalacturonase was higher at mature stage (1.83 ± 0.0018. The specific activity of carboximetilcelulose was higher at ripe mature stage (4.61 ± 0.0024. The low ascorbic acid content found in jambolan fruit indicates that this fruit is not a rich source of this nutrient; however, other characteristics can make jambolan products fit for human consumption.

  12. Download this PDF file

    African Journals Online (AJOL)

    amino acids analysis (Especially for the free amino acids), this formula was then analyzed for .... Methods: Skim milk hydrolysates were pre-. 1. pared by two enzymes: purified. Protease ...... recombinant phenylalanine ammonia lyase. Proc.

  13. [3-hydroxy-3-methylglutaric aciduria and recurrent Reye-like syndrome].

    Science.gov (United States)

    Eirís, J; Ribes, A; Fernández-Prieto, R; Rodríguez-García, J; Rodríguez-Segade, S; Castro-Gago, M

    1998-06-01

    3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMG-CoA lyase) is an inborn error of ketogenesis and Leucine catabolism. HMG-CoA lyase catalyses the final step in leucine degradation, converting HMG-CoA to acetyl-CoA and acetoacetic acid. Clinical manifestations include hepatomegaly, lethargy or coma and apnoea. Biochemically there is a characteristic absence of ketosis with hypoglycemia, acidosis, hipertransaminasemia and variable hyperammoniemia. The urinary organic acid profile includes elevated concentrations of 3-hydroxy-3-isovaleric, 3-hydroxy-3-methylglutaric, 3-methylglutaconic and 3-methylglutaric acids. Here, we report the case of a 17-year-old girl who presented in both ten months and five years of age a clinical picture characterized by lethargy leading to apnea and coma, hepatomegaly, hypoglycemia, metabolic acidosis, hyperammoniemia, elevated serum transaminases and absence of ketonuria. Diagnostic of Reye syndrome was suggested by hystopathologic finding of hepatic steatosis and clinical and biochemical data. As of 11 years old, laboratory investigations revealed carnitine deficiency and characteristic aciduria. Confirmatory enzyme diagnosis revealing deficiency of HMG-CoA lyase was made in cultured fibroblasts. Our report constitutes an example of the presentation of HMG-CoA lyase deficiency as recurrent Reye-like syndrome.

  14. Cystathionine γ-Lyase-Produced Hydrogen Sulfide Controls Endothelial NO Bioavailability and Blood Pressure.

    Science.gov (United States)

    Szijártó, István András; Markó, Lajos; Filipovic, Milos R; Miljkovic, Jan Lj; Tabeling, Christoph; Tsvetkov, Dmitry; Wang, Ning; Rabelo, Luiza A; Witzenrath, Martin; Diedrich, André; Tank, Jens; Akahoshi, Noriyuki; Kamata, Shotaro; Ishii, Isao; Gollasch, Maik

    2018-06-01

    Hydrogen sulfide (H 2 S) and NO are important gasotransmitters, but how endogenous H 2 S affects the circulatory system has remained incompletely understood. Here, we show that CTH or CSE (cystathionine γ-lyase)-produced H 2 S scavenges vascular NO and controls its endogenous levels in peripheral arteries, which contribute to blood pressure regulation. Furthermore, eNOS (endothelial NO synthase) and phospho-eNOS protein levels were unaffected, but levels of nitroxyl were low in CTH-deficient arteries, demonstrating reduced direct chemical interaction between H 2 S and NO. Pretreatment of arterial rings from CTH-deficient mice with exogenous H 2 S donor rescued the endothelial vasorelaxant response and decreased tissue NO levels. Our discovery that CTH-produced H 2 S inhibits endogenous endothelial NO bioavailability and vascular tone is novel and fundamentally important for understanding how regulation of vascular tone is tailored for endogenous H 2 S to contribute to systemic blood pressure function. © 2018 American Heart Association, Inc.

  15. Mode of action of pectin lyase A of Aspergillus niger on differently C(6)-substituted oligogalacturonides.

    Science.gov (United States)

    van Alebeek, Gert-Jan W M; Christensen, Tove M I E; Schols, Henk A; Mikkelsen, Jørn D; Voragen, Alphons G J

    2002-07-19

    A thorough investigation of the mode of action of Aspergillus niger (4M-147) pectin lyase A (PLA) on differently C(6)-substituted oligogalacturonides is described. PLA appeared to be very specific for fully methyl-esterified oligogalacturonides: removal of the methyl-ester or changing the type of ester (ethyl esterification) or transamidation resulted in (almost) complete loss of conversion. The PLA activity increased with increasing length of the substrate up to a degree of polymerization (DP) of 8 indicating the presence of at least eight subsites on the enzyme. Product analysis demonstrated the formation of several Delta 4,5 unsaturated products and their saturated counterparts. The Delta 4,5 unsaturated trimer was the main product up to DP 8. For DP 9 and 10 Delta 4,5 unsaturated tetramer was the major product. Based upon the bond cleavage frequencies, a provisional subsite map was calculated, which supports the presence of eight subsites. By limited alkaline de-esterification of fully methyl-esterified pentamer and hexamer two sets of partially methyl-esterified pentamers (x and y methyl groups) and hexamers (a and b methyl groups) were prepared. Matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS) analysis demonstrated that the methyl-ester distribution was fully random. Using these partially methyl-esterified oligogalacturonides as substrates for PLA a 10-fold decrease in reaction rate was recorded compared with the fully methyl-esterified counterparts. Analysis of the methyl-ester distribution of the products showed that PLA tolerates carboxyl groups in the substrate binding cleft. At either subsite +2, +4, or -1 to -4 a free carboxyl group could be tolerated, whereas methyl-esters were obligatory at subsite +1 and +3. So PLA is capable to cleave the bond between a methyl-esterified and a non-esterified galacturonic acid residue, where the newly formed Delta 4,5 unsaturated non-reducing end residue always contains a

  16. 1,5-Anhydro-D-fructose: Structure, characterisation and derivatives

    DEFF Research Database (Denmark)

    Andersen, Søren Møller

    For nylig har Danisco Biotechnology opdaget og isoleret et enzym fra en rødalge, der kan nedbryde stivelse til 1,5-anhydro-D-fruktose (AF), et kulhydrat med en usædvanlig struktur. Da det nye enzym, -1,4-glucan lyase, således kan producere et simpelt chiralt organisk molekyle billigt og let, var...

  17. Ancient acquisition of "alginate utilization loci" by human gut microbiota.

    Science.gov (United States)

    Mathieu, Sophie; Touvrey-Loiodice, Mélanie; Poulet, Laurent; Drouillard, Sophie; Vincentelli, Renaud; Henrissat, Bernard; Skjåk-Bræk, Gudmund; Helbert, William

    2018-05-23

    In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.

  18. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    oxidatively to propionate via 2-ketobutyrate by biodegradative threonine deaminase, 2-ketobutyrate formate-lyase (or ... In the recent past, extensive structural and biochemical studies have been carried out on these enzymes by various groups.

  19. Biotechnological applications for rosmarinic acid production in plant

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... tion and media optimization are the methods applied for improving ... lanine ammonia-lyase and tyrosine aminotransferase, the two entry point enzymes of the rosmarinic acid biosynthesis pathway. .... As determined by HPLC,.

  20. The pectin lyase-encoding gene (pnl) family from Glomerella cingulata: characterization of pnlA and its expression in yeast.

    Science.gov (United States)

    Templeton, M D; Sharrock, K R; Bowen, J K; Crowhurst, R N; Rikkerink, E H

    1994-05-03

    Oligodeoxyribonucleotide primers were designed from conserved amino acid (aa) sequences between pectin lyase D (PNLD) from Aspergillus niger and pectate lyases A and E (PELA/E) from Erwinia chrysanthemi. The polymerase chain reaction (PCR) was used with these primers to amplify genomic DNA from the plant pathogenic fungus Glomerella cingulata. Three different 220-bp fragments with homology to PNL-encoding genes from A. niger, and a 320-bp fragment with homology to PEL-encoding genes from Nicotiana tabacum and E. carotovora were cloned. One of the 220-bp PCR products (designated pnlA) was used as a probe to isolate a PNL-encoding gene from a lambda genomic DNA library prepared from G. cingulata. Nucleotide (nt) sequence data revealed that this gene has seven exons and codes for a putative 380-aa protein. The nt sequence of a cDNA clone, prepared using PCR, confirmed the presence of the six introns. The positions of the introns were different from the sites of the five introns present in the three PNL-encoding genes previously sequenced from A. niger. PNLA was synthesised in yeast by cloning the cDNA into the expression vector, pEMBLYex-4, and enzymatically active protein was secreted into the culture medium. Significantly higher expression was achieved when the context of the start codon, CACCATG, was mutated to CAAAATG, a consensus sequence commonly found in highly expressed yeast genes. The produced protein had an isoelectric point (pI) of 9.4, the same as that for the G. cingulata pnlA product.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat.

    Directory of Open Access Journals (Sweden)

    Karthikeyan Thiyagarajan

    Full Text Available Phenylalanine Ammonia Lyase (PAL gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum. The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.

  2. A high-throughput analysis of the IDH1(R132H) protein expression in pituitary adenomas

    DEFF Research Database (Denmark)

    Casar-Borota, Olivera; Øystese, Kristin Astrid Berland; Sundström, Magnus

    2016-01-01

    PURPOSE: Inactivating mutations of isocitrate dehydrogenase (IDH) 1 and 2, mitochondrial enzymes participating in the Krebs tricarboxylic acid cycle play a role in the tumorigenesis of gliomas and also less frequently in acute myeloid leukemia and other malignancies. Inhibitors of mutant IDH1...... and IDH2 may potentially be effective in the treatment of the IDH mutation driven tumors. Mutations in the succinate dehydrogenase, the other enzyme complex participating in the Krebs cycle and electron transfer of oxidative phosphorylation occur in the paragangliomas, gastrointestinal stromal tumors...

  3. Cloning, expression and characterization of two S-ribosylhomocysteine lyases from Lactobacillus plantarum YM-4-3: Implication of conserved and divergent roles in quorum sensing.

    Science.gov (United States)

    Song, Xiao-Dong; Liu, Chen-Jian; Huang, Shi-Hao; Li, Xiao-Ran; Yang, En; Luo, Yi-Yong

    2018-05-01

    Quorum sensing (QS) is a means of cell-to-cell communication that regulates, via small signalling molecules, expression of a series of genes and controls multicellular behaviour in many bacterial species. The enzyme S-ribosylhomocysteine lyase (LuxS) transforms S-ribosylhomocysteine (SRH) into 4, 5-dihydroxy-2, 3-pentanedione (DPD), the precursor of the interspecies QS signalling molecule autoinducer-2 (AI-2). In this study, two LuxS-coding genes, luxS1 and luxS2, with 70% sequence identity were isolated from Lactobacillus plantarum YM-4-3, and overexpressed in Escherichia coli BL21 (DE3), and the protein products were purified successfully. After incubation of LuxS1 or LuxS2 with SRH, the reaction products were able to induce Vibrio harveyi BB170 bioluminescence, clearly demonstrating that both LuxS1 and LuxS2 synthesize AI-2 from SRH in vitro. Ellman's assay results revealed optimal temperatures for LuxS1 and LuxS2 of 45 and 37 °C, respectively, and their activities were stimulated or inhibited by several metal ions and chemical reagents. In addition, enzyme kinetics data showed that K m , V max and K cat value of LuxS1 for the substrate (SRH) were higher than that of LuxS2. These results suggest that LuxS1 and LuxS2 mediate QS in a temperature-dependent manner and may play conserved roles in AI-2 synthesis but exhibit different activities in response to external environmental stress. To our knowledge, this paper is the first report of two luxS genes present in one bacterial genome and the subsequent comparative elucidation of their functions in AI-2 production. Collectively, our study provides a solid basis for future research concerning the AI-2/LuxS QS system in L. plantarum YM-4-3. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Pectic enzymes secreted by two species of penicilium and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Younis, N.A.

    2005-01-01

    When allowing Penicillium italicum, Penicillium digitalum and Saccharomyces cerevisiae to grow on grounded peels of Mediterranean mandarin (Citrus reticulata) under solid state fermentation (SSF), percentage of reduction in viscosity of citrus pectin by polygalacturonase (PG) reached the maximum values of 82.1 , 54.9 , 53.9 , respectively, at 50 % substrate concentration after 15 days of incubation period for both Penicillium species and after 5 days at 1% substrate concentration for the yeast after one hour of reaction time for all. However, pectin methyl esterase (PME) was not detected in culture filtrate of both fungi and yeast at all substrate concentrations used in the study. After 8 days incubation period at 50 % substrate concentration, gamma rays at dose 0.1 KGy recorded maximum PG activity for Penicillium italicum after one hour of reaction time and PME could not be detected in culture filtrate of the irradiated fungus, while pectin lyase (PL) activity was increased with all doses used. As for Saccharomyces cerevisiae and, after 4 days incubation period at 1% substrate concentration, also the dose 0.1 KGy recorded maximum PG activity after one hour of reaction time and neither PME nor PL were found in the culture filtrate of the yeast after irradiation at all doses under investigation. Partial purification for PG secreted by Penicillium italicum was investigated through acetone precipitation and Sephadex G-100 and the peak of activity was occurred between fractions 11-13. The specific enzyme activity was 28.73 U / mg protein and the purification fold was 2.63. The purified enzyme could effectively hydrolyze citrus pectin and was stable up to 70 degree C with maximum value at 20 degree C and was stable in the ph range of 3-7 at 25 degree C

  5. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    Science.gov (United States)

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. © 2014 The Society for Applied Microbiology.

  6. Rooibos Flavonoids Inhibit the Activity of Key Adrenal Steroidogenic Enzymes, Modulating Steroid Hormone Levels in H295R Cells

    Directory of Open Access Journals (Sweden)

    Lindie Schloms

    2014-03-01

    Full Text Available Major rooibos flavonoids—dihydrochalcones, aspalathin and nothofagin, flavones—orientin and vitexin, and a flavonol, rutin, were investigated to determine their influence on the activity of adrenal steroidogenic enzymes, 3β-hydroxysteroid dehydrogenase (3βHSD2 and cytochrome P450 (P450 enzymes, P450 17α-hydroxylase/17,20-lyase (CYP17A1, P450 21-hydroxylase (CYP21A2 and P450 11β-hydroxylase (CYP11B1. All the flavonoids inhibited 3βHSD2 and CYP17A1 significantly, while the inhibition of downstream enzymes, CYP21A2 and CYP11B1, was both substrate and flavonoid specific. The dihydrochalcones inhibited the activity of CYP21A2, but not that of CYP11B1. Although rutin, orientin and vitexin inhibited deoxycortisol conversion by CYP11B1 significantly, inhibition of deoxycorticosterone was <20%. These three flavonoids were unable to inhibit CYP21A2, with negligible inhibition of deoxycortisol biosynthesis only. Rooibos inhibited substrate conversion by CYP17A1 and CYP21A2, while the inhibition of other enzyme activities was <20%. In H295R cells, rutin had the greatest inhibitory effect on steroid production upon forskolin stimulation, reducing total steroid output 2.3-fold, while no effect was detected under basal conditions. Nothofagin and vitexin had a greater inhibitory effect on overall steroid production compared to aspalathin and orientin, respectively. The latter compounds contain two hydroxyl groups on the B ring, while nothofagin and vitexin contain a single hydroxyl group. In addition, all of the flavonoids are glycosylated, albeit at different positions—dihydrochalcones at C3' and flavones at C8 on ring A, while rutin, a larger molecule, has a rutinosyl moiety at C3 on ring C. Structural differences regarding the number and position of hydroxyl and glucose moieties as well as structural flexibility could indicate different mechanisms by which these flavonoids influence the activity of adrenal steroidogenic enzymes.

  7. Pectinase production by fungal strains in solid-state fermentation using agro-industrial bioproduct

    OpenAIRE

    Martin,Natalia; Souza,Simone Regina de; Silva,Roberto da; Gomes,Eleni

    2004-01-01

    Pectin lyase and polygalacturonase production by newly isolated fungal strains was carried out in solid-state fermentation. Moniliella SB9 and Penicillium sp EGC5 produced polygalcturonase (PG) and pectin lyase (PL) on mixture of orange bagasse, sugar cane bagasse and wheat bran as substrate. PG and PL produced by Moniliella presented optimum activity at pH 4.5 and 10.0 and at 55 and 45°C, respectively, while these enzymes from Penicillium sp presented optimum activity at pH 4.5-5.0 and 9.0 a...

  8. Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2.

    Science.gov (United States)

    Crombie, Andrew; Murrell, J Colin

    2011-01-01

    An understanding of the metabolism and metabolic regulation of the facultative methanotroph Methylocella silvestris BL2 is required to understand its role in methane oxidation in the environment, and methods for genetics manipulation are essential tools in these investigations. In addition, the ability to engineer the metabolic capabilities of M. silvestris may well have useful biotechnological applications. We describe a simple and effective method of genetic manipulation for this organism which relies on the electroporation of a linear DNA fragment to introduce chromosomal gene deletions. In a two-step procedure, the gene of interest is first replaced with an antibiotic-resistance cassette which is subsequently removed, resulting in an unmarked gene deletion. This method is illustrated by the deletion of isocitrate lyase, which abolished growth on one-carbon and severely disabled growth on two-carbon compounds. Subsequent complementation with the wild-type gene and promoter restored growth, demonstrating stable transcription from the broad-host-range plasmid employed. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening

    Science.gov (United States)

    Abrahams, Garth L.; Kumar, Anuradha; Savvi, Suzana; Hung, Alvin W.; Wen, Shijun; Abell, Chris; Barry, Clifton E.; Sherman, David R.; Boshoff, Helena I.M.; Mizrahi, Valerie

    2012-01-01

    SUMMARY Whole-cell screening of Mycobacterium tuberculosis (Mtb) remains a mainstay of drug discovery but subsequent target elucidation often proves difficult. Conditional mutants that under-express essential genes have been used to identify compounds with known mechanism of action by target-based whole-cell screening (TB-WCS). Here, the feasibility of TB-WCS in Mtb was assessed by generating mutants that conditionally express pantothenate synthetase (panC), diaminopimelate decarboxylase (lysA) and isocitrate lyase (icl1). The essentiality of panC and lysA, and conditional essentiality of icl1 for growth on fatty acids, was confirmed. Depletion of PanC and Icl1 rendered the mutants hypersensitive to target-specific inhibitors. Stable reporter strains were generated for use in high-throughput screening, and their utility demonstrated by identifying compounds that display greater potency against a PanC-depleted strain. These findings illustrate the power of TB-WCS as a tool for tuberculosis drug discovery. PMID:22840772

  10. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    Science.gov (United States)

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  11. A Prokaryotic S1P Lyase Degrades Extracellular S1P In Vitro and In Vivo: Implication for Treating Hyperproliferative Disorders

    Science.gov (United States)

    Huwiler, Andrea; Bourquin, Florence; Kotelevets, Nataliya; Pastukhov, Oleksandr; Capitani, Guido; Grütter, Markus G.; Zangemeister-Wittke, Uwe

    2011-01-01

    Sphingosine-1-phosphate (S1P) regulates a broad spectrum of fundamental cellular processes like proliferation, death, migration and cytokine production. Therefore, elevated levels of S1P may be causal to various pathologic conditions including cancer, fibrosis, inflammation, autoimmune diseases and aberrant angiogenesis. Here we report that S1P lyase from the prokaryote Symbiobacterium thermophilum (StSPL) degrades extracellular S1P in vitro and in blood. Moreover, we investigated its effect on cellular responses typical of fibrosis, cancer and aberrant angiogenesis using renal mesangial cells, endothelial cells, breast (MCF-7) and colon (HCT 116) carcinoma cells as disease models. In all cell types, wild-type StSPL, but not an inactive mutant, disrupted MAPK phosphorylation stimulated by exogenous S1P. Functionally, disruption of S1P receptor signaling by S1P depletion inhibited proliferation and expression of connective tissue growth factor in mesangial cells, proliferation, migration and VEGF expression in carcinoma cells, and proliferation and migration of endothelial cells. Upon intravenous injection of StSPL in mice, plasma S1P levels rapidly declined by 70% within 1 h and then recovered to normal 6 h after injection. Using the chicken chorioallantoic membrane model we further demonstrate that also under in vivo conditions StSPL, but not the inactive mutant, inhibited tumor cell-induced angiogenesis as an S1P-dependent process. Our data demonstrate that recombinant StSPL is active under extracellular conditions and holds promise as a new enzyme therapeutic for diseases associated with increased levels of S1P and S1P receptor signaling. PMID:21829623

  12. Cytochrome P450c17 (steroid 17α-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues

    International Nuclear Information System (INIS)

    Chung, B.; Picado-Leonard, J.; Haniu, M.; Bienkowski, M.; Hall, P.F.; Shively, J.E.; Miller, W.L.

    1987-01-01

    P450c17 is the single enzyme mediating both 17α-hydroxylase (steroid 17α-monooxygenase, EC 1.14.99.9) and 17,20 lyase activities in the synthesis of steroid hormones. It has been suggested that different P450c17 isozymes mediate these activities in the adrenal gland and testis. The authors sequenced 423 of the 509 amino acids (83%) of the porcine adrenal enzyme; based on this partial sequence, a 128-fold degenerate 17-mer was synthesized and used to screen a porcine adrenal cDNA library. This yielded a 380-base cloned cDNA, which in turn was used to isolate several human adrenal cDNAs. The longest of these, λ hac 17-2, is 1754 base pairs long and includes the full-length coding region, the complete 3'-untranslated region, and 41 bases of the 5'-untranslated region. This cDNA encodes a protein of 508 amino acids having a predicted molecular weight of 57,379.82. High-stringency screening of a human testicular cDNA library yielded a partial clone containing 1303 identical bases. RNA gel blots and nuclease S1-protection experiments confirm that the adrenal and testicular P450c17 mRNAs are indistinguishable. These data indicate that the testis possesses a P450c17 identical to that in the adrenal. The human amino acid sequence is 66.7% homologous to the corresponding regions of the porcine sequence, and the human cDNA and amino acid sequences are 80.1 and 70.3% homologous, respectively, to bovine adrenal P450c17 cDNA. Both comparisons indicate that a central region comprising amino acid residues 160-268 is hypervariable among these species of P450c17

  13. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  14. Paraffin as oxygen vector modulates tyrosine phenol lyase production by Citrobacter freundii MTCC 2424.

    Science.gov (United States)

    Azmi, Wamik; Kumar, Ajay; Dev, Varun

    2013-06-01

    The efficiency of three oxygen-vectors liquid paraffin, silicone oil and n-dodecane in the production of tyrosine phenol lyase (TPL) by Citrobacter freundii MTCC 2424 was evaluated at 4% (v/v) concentration. The liquid paraffin as oxygenvectors was found to exhibit a stimulatory effect on TPL synthesis. The liquid paraffin at 6% (v/v) resulted in 34% increase in the TPL synthesis accompanied by a 13% increase in the production of cell mass at a 10 L scale. This improvement in TPL and cell mass production in the presence of liquid paraffin can be related to the fact that liquid paraffin was capable of maintaining dissolved O2 concentration above 28% throughout the course of the fermentation. Maintenance of the dissolved O2 concentration above 28% could be viewed in terms of an adequate oxygen supply to the rapidly dividing cells of the bacterium, which in turn resulted in enhanced synthesis of TPL and cell mass.

  15. High-performance liquid chromatography-fluorescence assay of pyruvic acid to determine cysteine conjugate beta-lyase activity : application to S-1,2-dichlorovinyl-L-cysteine and S-2-benzothiazolyl-L-cysteine

    NARCIS (Netherlands)

    Stijntjes, G.J.; te Koppele, J.M.; Vermeulen, N P

    1992-01-01

    An HPLC-fluorescence assay has been developed for the determination of the activity of rat renal cytosolic cysteine conjugate beta-lyase. The method is based on isocratic HPLC separation and fluorescence detection of pyruvic acid, derivatized with o-phenylenediamine (OPD), and is shown to be rapid,

  16. Molecular Cloning and Sequence Analysis of a Phenylalanine Ammonia-Lyase Gene from Dendrobium

    Science.gov (United States)

    Cai, Yongping; Lin, Yi

    2013-01-01

    In this study, a phenylalanine ammonia-lyase (PAL) gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748) has 2,458 bps and contains a complete open reading frame (ORF) of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum. PMID:23638048

  17. Enzymatic saccharification of brown seaweed for production of fermentable sugars.

    Science.gov (United States)

    Sharma, Sandeep; Horn, Svein Jarle

    2016-08-01

    This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal

    International Nuclear Information System (INIS)

    Tsirulnikov, Kirill; Abuladze, Natalia; Bragin, Anatol; Faull, Kym; Cascio, Duilio; Damoiseaux, Robert; Schibler, Matthew J.; Pushkin, Alexander

    2012-01-01

    4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by β-lyase. The enzymes of the GSH-conjugation pathway and β-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a β-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.

  19. Suppressed phenylalanine ammonia-lyase activity after heat shock in transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2-parsley PAL2 chimera gene.

    Science.gov (United States)

    Moriwaki, M; Yamakawa, T; Washino, T; Kodama, T; Igarashi, Y

    1999-01-01

    The activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) after heat shock (HS) in leaves and buds of transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2 promoter-parsley phenylalanine ammonia-lyase 2 (HSP18.2-PAL2) chimera gene was examined. Immediately after HS treatment at 44 degrees C for 5 h, the PAL activity in both transgenic and normal (untransformed) plants was 35-38% lower than that before HS. At normal temperature (25-26 degrees C), the PAL activity recovered within 5 h of ending the HS treatment in normal plants, but not until 12-24 h in transgenic plants containing the HSP18.2-PAL2 gene. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of parsley PAL2 mRNA in transgenic plants, which remained for 8-12 h following 5-h HS at 44 degrees C; the mRNA was not observed before HS. The content of chlorogenic acid (CGA; 3-caffeoylquinic acid) decreased drastically 8-12 h after HS in transgenic plants, but only slightly in normal plants. Thus, the decrease in PAL activity accompanied by expression of the parsley PAL2 gene after HS treatment corresponded to the decrease in CGA synthesis. These results might be attributed to post-transcriptional degradation of endogenous PAL mRNA triggered by transcription of the transgene.

  20. Occurrence and properties of bacterial pectate lyases

    NARCIS (Netherlands)

    Rombouts, F.M.

    1972-01-01

    Some 100 pectolytic bacteria belonging to different genera and species, were obtained by isolation from vegetables and by screening of culture collections. The crude enzyme preparations of 19 of these strains were typed by mutual comparison. Differences in the composition of five

  1. Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers

    NARCIS (Netherlands)

    Remoroza, C.A.; Cord-Landwehr, S.; Leijdekkers, A.G.M.; Moerschbacher, B.M.; Schols, H.A.; Gruppen, H.

    2012-01-01

    The combined action of endo-polygalacturonase (endo-PGII), pectin lyase (PL), pectin methyl esterase (fungal PME) and RG-I degrading enzymes enabled the extended degradation of methylesterified and acetylated sugar beet pectins (SBPs). The released oligomers were separated, identified and quantified

  2. Physiological mechanism of resistance to anthracnose of different ...

    African Journals Online (AJOL)

    However, enzyme activity of resistant cultivars improved markedly after pathogen inoculation, while those of susceptible cultivars did not change. This study broadens the understanding of the mechanisms of disease resistance in Camellia. Keywords: Anthracnose, Camellia oleifera, phenylalanine ammonia lyase, ...

  3. One Year Experience of Pheburane(®) (Sodium Phenylbutyrate) Treatment in a Patient with Argininosuccinate Lyase Deficiency.

    Science.gov (United States)

    Uçar, Sema Kalkan; Ozbaran, Burcu; Altinok, Yasemin Atik; Kose, Melis; Canda, Ebru; Kagnici, Mehtap; Coker, Mahmut

    2015-01-01

    Argininosuccinate lyase deficiency (ASLD) is a urea cycle disorder (UCD) treated with dietary adjustment and nitrogen scavenging agents. "Pheburane(®)" is a new tasteless and odour-free formulation of sodium phenylbutyrate, indicated in the treatment of UCD.A male patient diagnosed with ASLD was put on treatment with the new formulation of sodium phenylbutyrate (granules) for a period of one year, at 500 mg/kg orally in 3 intakes/day. Plasma glutamine, arginine, citrulline, argininosuccinate, serum sodium, potassium, liver function tests and urine orotate all remained unchanged over this period. There was no difference in mean ammonia levels before and after treatment, and no hyperammonemia episode occurred during treatment with Pheburane(®). An improvement in a measurement of quality of life (QOL) was noted after treatment with Pheburane(®). Good metabolic control and improved QOL were achieved throughout the treatment period.

  4. Proteomics analysis of Fusarium proliferatum under various initial pH during fumonisin production.

    Science.gov (United States)

    Li, Taotao; Gong, Liang; Wang, Yong; Chen, Feng; Gupta, Vijai Kumar; Jian, Qijie; Duan, Xuewu; Jiang, Yueming

    2017-07-05

    Fusarium proliferatum as a fungal pathogen can produce fumonisin which causes a great threat to animal and human health. Proteomic approach was a useful tool for investigation into mycotoxin biosynthesis in fungal pathogens. In this study, we analyzed the fumonisin content and mycelium proteins of Fusarium proliferatum cultivated under the initial pH5 and 10. Fumonisin production after 10days was significantly induced in culture condition at pH10 than pH5. Ninety nine significantly differently accumulated protein spots under the two pH conditions were detected using two dimensional polyacrylamide gel electrophoresis and 89 of these proteins were successfully identified by MALDI-TOF/TOF and LC-ESI-MS/MS analysis. Among these 89 proteins, 45 were up-regulated at pH10 while 44 were up-accumulated at pH5. At pH10, these proteins were found to involve in the modification of fumonisin backbone including up-regulated polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase, which might contribute to the induction of fumonisin production. At pH5, these up-regulated proteins such as l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase might inhibit the condensation of fumonisin backbone, resulting in reduced production of fumonisins. These results may help us to understand the molecular mechanism of the fumonisin synthesis in F. proliferatum. To extend our understanding of the mechanism of the fumonisin biosynthesis of F. proliferatum, we reported the fumonisin production in relation to the differential proteins of F. proliferatum mycelium under two pH culture conditions. Among these 89 identified spots, 45 were up-accumulated at pH10 while 44 were up-accumulated at pH5. Our results revealed that increased fumonisin production at pH10 might be related to the induction of fumonisin biosynthesis caused by up-regulation of polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase. Meanwhile, the

  5. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays.

    Science.gov (United States)

    Lee, S H; Jo, S H; Lee, S M; Koh, H J; Song, H; Park, J W; Lee, W H; Huh, T L

    2004-09-01

    To investigate the regulation of NADPH-producing isocitrate dehydrogenase (ICDH) in cytosol (IDPc) and mitochondria (IDPm) upon gamma-ray irradiation, and the roles of IDPc and IDPm in the protection against cellular damage induced by gamma-ray irradiation. Changes of IDPc and IDPm proteins upon gamma-ray irradiation to NIH3T3 cells were analysed by immunoblotting. To increase or decrease the expression of IDPc or IDPm, NIH3T3 cells were stably transfected with mouse IDPc or IDPm cDNA in either the sense or the antisense direction. The transfected cells with either increased or decreased IDPc or IDPm were exposed to gamma-rays, and the levels of reactive oxygen species generation, protein oxidation and lipid peroxidation were measured. Both IDPc and IDPm activities were induced by gamma-ray in NIH3T3 cells. Cells with decreased expression of IDPc or IDPm had elevated reactive oxygen species generation, lipid peroxidation and protein oxidation. Conversely, overproduction of IDPc or IDPm protein partially protected the cells from oxidative damage induced by gamma-ray irradiation. The protective role of IDPc and IDPm against gamma-ray-induced cellular damage can be attributed to elevated NADPH, reducing equivalents needed for recycling reduced glutathione in the cytosol and mitochondria. Thus, a primary biological function of the ICDHs may be production of NADPH, which is a prerequisite for some cellular defence systems against oxidative damage.

  6. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  7. Insights into the structural characteristics and substrate binding analysis of chondroitin AC lyase (PsPL8A) from Pedobacter saltans.

    Science.gov (United States)

    Rani, Aruna; Dhillon, Arun; Sharma, Kedar; Goyal, Arun

    2018-04-01

    The structure of chondroitin AC lyase (PsPL8A) of family 8 polysaccharide lyase was characterized. Modeled PsPL8A structure showed, it contains N-terminal (α/α) 6 incomplete toroidal fold and a layered β sandwich structure at C-terminal. Ramchandran plot displayed 98.5% residues in favoured and 1.2% in generously allowed region. Secondary structure of PsPL8A by CD revealed 27.31% α helices 22.7% β sheets and 49.9% random coils. Protein melting study showed, PsPL8A completely unfolds at 60°C. SAXS analysis showed, PsPL8A is fully folded in solution form. The ab initio derived dummy model of PsPL8A superposed well with its modeled structure excluding some α-helices and loop region. Structural superposition and docking analysis showed, N153, W105, H203, Y208, Y212, R266 and E349 were involved in catalysis. Mutants N153A, H203A, Y212F, R266A and E349A created by SDM revealed no residual activity. Isothermal titration calorimetry analysis of Y212F and H203A with C4S polysaccharide, showed moderate binding by Y212F (Ka=9.56±3.81×10 5 ) and no binding with H203A, showing active contribution of Y212 in substrate binding. Residues Y212 and H203 or R266 might act as general base and general acid respectively. Residues N153 and E349 are likely contributing in charge neutralization and stabilizing enolate anion intermediate during β-elimination. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  9. Transgenic modification of potato pectic polysaccharides also affects type and level of cell wall xyloglucan

    NARCIS (Netherlands)

    Huang, Jie Hong; Jiang, Rui; Kortstee, Anne; Dees, Dianka C.T.; Trindade, Luisa M.; Gruppen, Harry; Schols, Henk A.

    2017-01-01

    BACKGROUND: Genes encoding pectic enzymes were introduced into wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14) or rhamnogalacturonan lyase (RGL-18). Pectic polysaccharides from the β-Gal-14 transgenic line exhibited

  10. Inducers of resistance and silicon on the activity of defense enzymes in the soybean-Phakopsora pachyrhizi interaction

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Antunes da Cruz

    2013-06-01

    Full Text Available This study aimed to determine the effect of jasmonic acid (JA, Acibenzolar-S-Methyl (ASM and calcium silicate (a source of soluble silicon, Si, on the potentiation of soybean resistance to Asian soybean rust (ASR. The ASR severity was significantly reduced on plants sprayed with ASM or supplied with Si in comparison to plants sprayed with JA or deionized water. For chitinases (CHI, significant differences in activity between non-inoculated and inoculated plants sprayed with deionized water or with ASM occurred at 72 hours after inoculation (hai, at 24 and 72 hai when sprayed with JA and at 141 hai when supplied with Si. For β-1,3-glucanases (GLU, significant differences in activity between non-inoculated and inoculated plants sprayed with deionized water occurred at 24, 48 and 141 hai, but not until 72 for plants sprayed with ASM. For phenylalanine ammonia-lyases (PAL, significant differences in activity between non-inoculated and inoculated plants occurred only for plants sprayed with ASM at 72 and 141 hai. In conclusion, the ASR symptoms can be mild on plants sprayed with ASM or supplied with Si and that this amelioration likely involved the defense enzymes.

  11. S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling

    Science.gov (United States)

    Kumar, Ashok; Zamora-Pineda, Jesus; Degagné, Emilie

    2017-01-01

    Sphingosine-1-phosphate (S1P) is a potent lipid signaling molecule that regulates pleiotropic biological functions including cell migration, survival, angiogenesis, immune cell trafficking, inflammation, and carcinogenesis. It acts as a ligand for a family of cell surface receptors. S1P concentrations are high in blood and lymph but low in tissues, especially the thymus and lymphoid organs. S1P chemotactic gradients are essential for lymphocyte egress and other aspects of physiological cell trafficking. S1P is irreversibly degraded by S1P lyase (SPL). SPL regulates lymphocyte trafficking, inflammation and other physiological and pathological processes. For example, SPL located in thymic dendritic cells acts as a metabolic gatekeeper that controls the normal egress of mature T lymphocytes from the thymus into the circulation, whereas SPL deficiency in gut epithelial cells promotes colitis and colitis-associated carcinogenesis (CAC). Recently, we identified a complex syndrome comprised of nephrosis, adrenal insufficiency, and immunological defects caused by inherited mutations in human SGPL1, the gene encoding SPL. In the present article, we review current evidence supporting the role of SPL in thymic egress, inflammation, and cancer. Lastly, we summarize recent progress in understanding other SPL functions, its role in inherited disease, and SPL targeting for therapeutic purposes. PMID:29333002

  12. PECTATE LYASE-LIKE 9 from Brassica campestris is associated with intine formation.

    Science.gov (United States)

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Liang, Ying; Jiang, Jianxia; Ye, Nenghui; Miao, Ying; Cao, Jiashu

    2014-12-01

    Brassica campestris pectate lyase-like 9 (BcPLL9) was previously identified as a differentially expressed gene both in buds during late pollen developmental stage and in pistils during fertilization in Chinese cabbage. To characterize the gene's function, antisense-RNA lines of BcPLL9 (bcpll9) were constructed in Chinese cabbage. Self- and cross-fertilization experiments harvested half seed yields when bcpll9 lines were used as pollen donors. In vivo and in vitro pollen germination assays showed that nearly half of the pollen tubes in bcpll9 were irregular with shorter length and uneven surface. Aniline blue staining identified abnormal accumulation of a specific bright blue unknown material in the bcpll9 pollen portion. Scanning electron microscopy observation verified the abnormal outthrust material to be near the pollen germinal furrows. Transmission electron microscopy observation revealed the internal endintine layer was overdeveloped and predominantly occupied the intine. This abnormally formed intine likely induced the wavy structure and growth arrest of the pollen tube in half of the bcpll9 pollen grains, which resulted in less seed yields. Collectively, this study presented a novel PLL gene that has an important function in B. campestris intine formation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2017-01-01

    Full Text Available Sphingosine-1-phosphate (S1P is a potent lipid signaling molecule that regulates pleiotropic biological functions including cell migration, survival, angiogenesis, immune cell trafficking, inflammation, and carcinogenesis. It acts as a ligand for a family of cell surface receptors. S1P concentrations are high in blood and lymph but low in tissues, especially the thymus and lymphoid organs. S1P chemotactic gradients are essential for lymphocyte egress and other aspects of physiological cell trafficking. S1P is irreversibly degraded by S1P lyase (SPL. SPL regulates lymphocyte trafficking, inflammation and other physiological and pathological processes. For example, SPL located in thymic dendritic cells acts as a metabolic gatekeeper that controls the normal egress of mature T lymphocytes from the thymus into the circulation, whereas SPL deficiency in gut epithelial cells promotes colitis and colitis-associated carcinogenesis (CAC. Recently, we identified a complex syndrome comprised of nephrosis, adrenal insufficiency, and immunological defects caused by inherited mutations in human SGPL1, the gene encoding SPL. In the present article, we review current evidence supporting the role of SPL in thymic egress, inflammation, and cancer. Lastly, we summarize recent progress in understanding other SPL functions, its role in inherited disease, and SPL targeting for therapeutic purposes.

  14. Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts1[W][OPEN

    Science.gov (United States)

    Maruyama, Kyonoshin; Urano, Kaoru; Yoshiwara, Kyouko; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Kojima, Mikiko; Sakakibara, Hitoshi; Shibata, Daisuke; Saito, Kazuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2014-01-01

    Correlations between gene expression and metabolite/phytohormone levels under abiotic stress conditions have been reported for Arabidopsis (Arabidopsis thaliana). However, little is known about these correlations in rice (Oryza sativa ‘Nipponbare’), despite its importance as a model monocot. We performed an integrated analysis to clarify the relationships among cold- and dehydration-responsive metabolites, phytohormones, and gene transcription in rice. An integrated analysis of metabolites and gene expression indicated that several genes encoding enzymes involved in starch degradation, sucrose metabolism, and the glyoxylate cycle are up-regulated in rice plants exposed to cold or dehydration and that these changes are correlated with the accumulation of glucose (Glc), fructose, and sucrose. In particular, high expression levels of genes encoding isocitrate lyase and malate synthase in the glyoxylate cycle correlate with increased Glc levels in rice, but not in Arabidopsis, under dehydration conditions, indicating that the regulation of the glyoxylate cycle may be involved in Glc accumulation under dehydration conditions in rice but not Arabidopsis. An integrated analysis of phytohormones and gene transcripts revealed an inverse relationship between abscisic acid (ABA) signaling and cytokinin (CK) signaling under cold and dehydration stresses; these stresses increase ABA signaling and decrease CK signaling. High levels of Oryza sativa 9-cis-epoxycarotenoid dioxygenase transcripts correlate with ABA accumulation, and low levels of Cytochrome P450 (CYP) 735A transcripts correlate with decreased levels of a CK precursor in rice. This reduced expression of CYP735As occurs in rice but not Arabidopsis. Therefore, transcriptional regulation of CYP735As might be involved in regulating CK levels under cold and dehydration conditions in rice but not Arabidopsis. PMID:24515831

  15. Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions.

    Directory of Open Access Journals (Sweden)

    Patrick Kiefer

    2009-11-01

    Full Text Available The introduction and maintenance of plasmids in cells is often associated with a reduction of growth rate. The reason for this growth reduction is unclear in many cases.We observed a surprisingly large reduction in growth rate of about 50% of Methylobacterium extorquens AM1 during methylotrophic growth in the presence of a plasmid, pCM80 expressing the tetA gene, relative to the wild-type. A less pronounced growth delay during growth under non-methylotrophic growth conditions was observed; this suggested an inhibition of one-carbon metabolism rather than a general growth inhibition or metabolic burden. Metabolome analyses revealed an increase in pool sizes of ethylmalonyl-CoA and methylmalonyl-CoA of more than 6- and 35-fold, respectively, relative to wild type, suggesting a strongly reduced conversion of these central intermediates, which are essential for glyoxylate regeneration in this model methylotroph. Similar results were found for M. extorquens AM1 pCM160 which confers kanamycin resistance. These intermediates of the ethylmalonyl-CoA pathway have in common their conversion by coenzyme B(12-dependent mutases, which have cobalt as a central ligand. The one-carbon metabolism-related growth delay was restored by providing higher cobalt concentrations, by heterologous expression of isocitrate lyase as an alternative path for glyoxylate regeneration, or by identification and overproduction of proteins involved in cobalt import.This study demonstrates that the introduction of the plasmids leads to an apparent inhibition of the cobalt-dependent enzymes of the ethylmalonyl-CoA pathway. Possible explanations are presented and point to a limited cobalt concentration in the cell as a consequence of the antibiotic stress.

  16. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.

    Science.gov (United States)

    Han, Bong-Kwan; Emr, Scott D

    2013-07-12

    Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans.

  17. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    International Nuclear Information System (INIS)

    Chen, Qi-Liang; Luo, Zhi; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-01-01

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  18. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi-Liang; Luo, Zhi, E-mail: luozhi99@yahoo.com.cn; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-07-15

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  19. Anaerobic Degradation of Marine Algae, Seagrass and Tropical Climbing Vines to Produce a Renewable Energy Source and the Analysis of Their Anaerobic Microbial Communities

    Science.gov (United States)

    2013-01-01

    specific mechanisms and enzymes as a result of their complex structure. For these reasons there have been searches for other biomasses that may...Te’o, V., Saul, D., Morgan, H. 1999. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. Microbiology Ecology, 28:99-110...lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new Vibrio enzyme . Marine Biotechnology, 12:526-533. Ugwu, C

  20. Molecular cloning and sequence analysis of a phenylalanine ammonia-lyase gene from dendrobium.

    Directory of Open Access Journals (Sweden)

    Qing Jin

    Full Text Available In this study, a phenylalanine ammonia-lyase (PAL gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748 has 2,458 bps and contains a complete open reading frame (ORF of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum.

  1. Effect of cocoyam (Colocasia esculenta), unripe plantain (Musa paradisiaca) or their combination on glycated hemoglobin, lipogenic enzymes, and lipid metabolism of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Eleazu, Chinedum Ogbonnaya; Eleazu, Kate Chinedum; Iroaganachi, Mercy Amarachi

    2016-01-01

    The possibility of combining unripe plantain [Musa paradisiacae Linn (Plantaginaceae)] and cocoyam [Colocassia esculenta Linn (Araceae)] in the management of diabetes has not been investigated. The objective of this study is to evaluate the antihyperglycemic and antihyperlipidemic actions of unripe plantain and cocoyam. Diabetes was induced in rats by intraperitoneal injection of streptozotocin (STZ) (65 mg/kg body weight). Twelve days after STZ induction, respective groups of diabetic rats were fed cocoyam (810 g/kg), unripe plantain (810 g/kg), and unripe plantain + cocoyam (405:405 g/kg) for 28 d. Body weights, feed intake, biochemical parameters, namely serum glucose, total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), atherogenic index, coronary risk index, triacylglycerol, glycated hemoglobin (HbA1C), hepatic isocitrate dehydrogenase, malic enzyme, and glucose-6-phosphate dehydrogenase of the rats and phytochemical composition of the test and standard rat feeds were measured. Cocoyam or unripe plantain alone significantly (p 0.05) at the end of experimentation and the feed samples contained considerable amounts of saponins, alkaloids, flavonoids, and tannins. Cocoyam or unripe plantain alone showed better antihyperglycemic and anihyperlipidemic action than their combination.

  2. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2016-07-01

    Full Text Available Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve, while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve. This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium.

  3. Rhizobacteria induces resistance against Fusarium wilt of tomato by increasing the activity of defense enzymes

    Directory of Open Access Journals (Sweden)

    Hélvio Gledson Maciel Ferraz

    2014-09-01

    Full Text Available Fusarium wilt, caused by Fusarium oxysporum f.sp. lycopersici (Fol, is one of the most important diseases that affect tomato yield worldwide. This study investigated the potential of three antagonists, Streptomyces setonii (UFV 618, Bacillus cereus (UFV 592 and Serratia marcescens (UFV 252, and as positive control the hormone jasmonic acid (JA, to reduce Fusarium wilt symptoms and to potentiate the defense enzymes in the stem tissues of tomato plants infected by Fol. The seeds were microbiolized with each antagonist, and the soil was also drenched with them. The plants were sprayed with JA 48 h before Fol inoculation. The area under the Fusarium wilt index progress curve was reduced by 54, 48, 47 and 45% for the UFV 618, JA, UFV 592 and UFV 252 treatments, respectively. The three antagonists, and even the JA spray, efficiently reduced the Fusarium wilt symptoms on the tomato plant stems, which can be explained by the lower malondialdehyde concentration (an indication of oxidative damage to lipids in the plasma membranes and the greater activities of peroxidases, polyphenoloxidases, glucanases, chitinases, phenylalanine ammonia-lyases and lipoxygenases, which are commonly involved in host resistance against fungal diseases. These results present a novel alternative that can be used in the integrated management of Fusarium wilt on tomatoes.

  4. Effects of tributyltin chloride(TBTCl) on seroid hormone and seroidogenic enzymes in Sprague-Dawley male rat

    Energy Technology Data Exchange (ETDEWEB)

    Kang, T.S.; Lee, S.J.; Shin, J.H.; Kim, T.S.; Moon, H.J.; Ki, H.Y.; Bae, H.; Han, S.Y. [Endocrine Toxicology Div., National Inst. of Toxicological Research, Korea FDA, Seoul (Korea); Dong, M.S. [Korea Univ., Seoul (Korea); Yoon, Y.D. [Hanyang Univ., Seoul (Korea)

    2004-09-15

    Tributyltin (TBT), organotin compound is used a wood preservative, a stabilizer of poly-vinyl chloride (PVC), a bactericide, a vermicide, and antifouling agent in maritime paint. TBTCl has been known to bioaccumulate through the food chain and induce imposex in female gastropods. Testosterone was synthesized from cholesterol in Leydig cell. In male rat testes, cholesterol in in the inner membrane of mitochondria is converted to prognenolone by cytochrome P450 side-chain cleavage (P450scc), and prognenolone is consequently converted to progesterone by 3{beta}-hydroxysteroid dehydrogenase (3{beta}a-HSD). Progesterone is converted to testosterone by cytochrome P450 17{alpha}-hydroxylase/C17-20 lyase (P450c17), and 17{beta}-hydroxysteroid dehydrogenase (17{beta}-HSD). Testosterone is converted to estradiol by P450 aromatase. Some studies have been reported that steroidogenic enzyme and steroid hormone were affected by TBT. In a two-generation study of tributyltin chloride, serum estradiol was decreased in F1 and F2 male rats. But serum concentration of testosterone and luteinizing hormone (LH) were not changed in F1 and F2 male rats. When pregnant rats were orally administrated by TBTCl, serum progesterone was decreased and serum estradiol was increased in female litters. Also litters were affected on development of reproductive organs and sexual of differentiation by TBTCl.3 Tributyltin increased serum progesterone in granulosa cells, but serum testosterone and estradiol were diminished.4 TBT has been known that it repressed P450 aromatase activity. In this study, we investigated effect of tributyltin chloride (TBTCl) on the mRNA expression of steroidogenic enzymes and steroid hormone in male rat.

  5. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  6. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  7. Transcriptional regulation of Saccharomyces cerevisiaeCYS3 encoding cystathionine γ-lyase

    Science.gov (United States)

    Hiraishi, Hiroyuki; Miyake, Tsuyoshi

    2008-01-01

    In studying the regulation of GSH11, the structural gene of the high-affinity glutathione transporter (GSH-P1) in Saccharomyces cerevisiae, a cis-acting cysteine responsive element, CCGCCACAC (CCG motif), was detected. Like GSH-P1, the cystathionine γ-lyase encoded by CYS3 is induced by sulfur starvation and repressed by addition of cysteine to the growth medium. We detected a CCG motif (−311 to −303) and a CGC motif (CGCCACAC; −193 to −186), which is one base shorter than the CCG motif, in the 5′-upstream region of CYS3. One copy of the centromere determining element 1, CDE1 (TCACGTGA; −217 to −210), being responsible for regulation of the sulfate assimilation pathway genes, was also detected. We tested the roles of these three elements in the regulation of CYS3. Using a lacZ-reporter assay system, we found that the CCG/CGC motif is required for activation of CYS3, as well as for its repression by cysteine. In contrast, the CDE1 motif was responsible for only activation of CYS3. We also found that two transcription factors, Met4 and VDE, are responsible for activation of CYS3 through the CCG/CGC and CDE1 motifs. These observations suggest a dual regulation of CYS3 by factors that interact with the CDE1 motif and the CCG/CGC motifs. PMID:18317767

  8. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20.

    Science.gov (United States)

    Zha, Musu; Sun, Baoguo; Yin, Sheng; Mehmood, Arshad; Cheng, Lei; Wang, Chengtao

    2018-03-07

    2-Furfurylthiol is the representative aroma compound of Chinese sesame-flavored baijiu. Previous studies demonstrated that baijiu yeasts could generate 2-furfurylthiol using furfural and l-cysteine as precursors and that the Saccharomyces cerevisiae genes STR3 and CYS3 are closely related to 2-furfurylthiol biosynthesis. To confirm the mechanism of the STR3- and CYS3-gene products on 2-furfurylthiol biosynthesis, their encoded proteins were purified, and we confirmed their activities as carbon-sulfur lyases. Str3p and Cys3p were able to cleave the cysteine-furfural conjugate to release 2-furfurylthiol. Moreover, the characterization of the enzymatic properties of the purified proteins shows good thermal stabilities and wide pH tolerances, which enable their strong potential for various applications. These data provide direct evidence that yeast Str3p and Cys3p release 2-furfurylthiol in vitro, which can be applied to improve baijiu flavor.

  9. Structure Expression and Function of kynurenine Aminotransferases in Human and Rodent Brains

    Energy Technology Data Exchange (ETDEWEB)

    Q Han; T Cai; D Tagle; J Li

    2011-12-31

    Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.

  10. Cystathionine γ-lyase

    Directory of Open Access Journals (Sweden)

    Halina Jurkowska

    2014-01-01

    Full Text Available γ-Cystathionase (CTH, EC: 4.4.1.1, an enzyme widely distributed in the world of prokaryotic and eukaryotic organisms, catalyzes the formation and transformations of sulfane sulfur-containing compounds and plays a pivotal role in the L-cysteine desulfuration pathway. Human, tetrameric CTH is composed of two dimers and each monomer binds pyridoxal phosphate (PLP. The gene, located on the short arm of chromosome 1, consists of 13 exons and 12 introns. As a result of alternative splicing, three isoforms of human CTH arise. Analysis of genetic variations of the CTH encoding gene showed a large number of polymorphisms. A decrease of the expression of CTH entails a drop in the level of cysteine , glutathione (GSH, taurine and hydrogen sulfide (H2S in the cells and, more importantly, leads to cystathioninuria. H2S, endogenously formed by CTH, affects the vasodilation and regulation of blood pressure. CTH knockout mice have decreased levels of H2S, hypertension, and reduced capacity for vascular endothelium relaxation. Overexpression of the gene encoding CTH in the cells leads to increased production of H2S. H2S plays a role in protection of neurons against oxidative stress, and stimulates an increase in γ-glutamylcysteine synthetase and thereby an increase in the level of GSH. Sulfurtransferases, including CTH, can locally prevent oxidative stress due to reversible oxidation of – SH groups in the presence of increased levels of reactive oxygen species, and reduction in the presence of GSH and/or reduced thioredoxin.

  11. Wound-induced ethylene synthesis and expression and formation of 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, phenylalanine ammonia-lyase, and peroxidase in wounded mesocarp tissue of Cucurbita maxima.

    Science.gov (United States)

    Kato, M; Hayakawa, Y; Hyodo, H; Ikoma, Y; Yano, M

    2000-04-01

    1-Aminocyclopropane-1-carboxylate (ACC) synthase was rapidly induced in mesocarp tissue of Cucurbita maxima after wounding in the cut surface layer in 1 mm thickness (ca. 9 cells) (first layer) in both the enzyme activity and the levels of transcript. This led to a rapid accumulation of ACC and hence ethylene production. In the inside tissue (1-2 mm) (second layer), no significant induction of ACC synthase was observed, which resulted in a low level of ACC, although ethylene was evolved at a much lower rate than the first one. In contrast to ACC synthase, ACC oxidase was induced markedly in both the first and second layers and the development of its activity and the levels of mRNA remained high until later stages. It was considered that wound ethylene was closely associated with the development of ACC oxidase, since 2,5-norbornadiene (NBD), an inhibitor of ethylene action, substantially suppressed it. Phenylalanine ammonia-lyase (PAL) greatly increased in activity after wounding similarly to that of ACC synthase, in which increase in PAL activity occurred predominantly in the first layer. Induction of peroxidase activity after wounding had a close correlation in profile with that of ACC oxidase in that marked increases in the activity were observed in both the first and second layers and were strongly suppressed by NBD application. Four peroxidase isozymes were found by PAGE, among which a fraction was newly detected after wounding.

  12. Urea cycle disorder--argininosuccinic lyase deficiency.

    Science.gov (United States)

    Mehta, Neeta; Kirk, Pia Chatterjee; Holder, Ray; Precheur, Harry V

    2012-01-01

    An increased level of ammonia in the bloodstream, or hyperammonemia, is a symptom associated with metabolic disorders referred to as inborn errors of metabolism. Urea cycle disorder is a congenital abnormality or absence of one of the six enzymes involved in the elimination of ammonia. Administration of certain medications, high protein diet, excessive exercise, surgical procedures, or trauma can precipitate symptoms of mental confusion, seizure-like activity, and ataxia. This paper reviews the literature with insight into current treatment and management options of the disorder and modification of treatment for the dental patient. © 2012 Special Care Dentistry Association and Wiley Periodicals, Inc.

  13. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Bingzhi Chen

    Full Text Available Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation and GH43 (hemicellulose and pectin degradation, and the lyase families PL1, PL3 and PL4 (pectin degradation but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3'-tag digital gene expression (DGE reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.

  14. Control of phenylalanine ammonia-lyase gene promoters from pea by UV radiation

    International Nuclear Information System (INIS)

    Pluskota, W.E.; Michalczyk, D.J.; Gorecki, R.J.

    2005-01-01

    The gene fusion system was used to study UV light-control of PS PAL1 and PS PAL2 genes encoding phenylalanine ammonia-lyase of pea. The induction of pea PAL promoters was analysed in transgenic tobacco plants. Binary plasmids (derivatives of pBI101.2 vector) containing 5' regulatory fragments of PS PAL1 and PS PAL2 linked to reporter genes (GUS, LUC) were constructed. The analyses were performed with the use of single constructs (containing one variant of PS PAL promoter and one reporter gene) and dual constructs (containing both PS PAL1 and PS PAL2 promoters connected with different reporter genes). The use of dual constructs enabled the evaluation of both PS PAL promoters activity in the same plant. The analyses of in vitro grown plants have shown that both PAL promoters are strongly induced in leaves subjected to UV radiation. In some cases, the UV-stimulated expression exceeded the exposed areas. This phenomenon was observed more often in the leaves of plants containing the PS PAL1::GUS than PS PAL2::GUS construct. Removal of boxes 2, 4, 5 from PS PAL1 promoter and deletion of its 5' end region (-339 to -1394) decreases the level of gene expression but does not eliminate its responsiveness to UV

  15. Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Wang, Wenshuang; Cai, Xiaojuan; Han, Naihan; Han, Wenjun; Sugahara, Kazuyuki; Li, Fuchuan

    2017-11-09

    Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  17. Isocitrate dehydrogenase mutation in Vibrio anguillarum results in virulence attenuation and immunoprotection in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Mou, Xiangyu; Spinard, Edward J; Hillman, Shelby L; Nelson, David R

    2017-11-14

    Vibrio anguillarum is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans with mortality rates ranging from 30% to 100%. Mutations in central metabolism (glycolysis and the TCA cycle) of intracellular pathogens often result in attenuated virulence due to depletion of required metabolic intermediates; however, it was not known whether mutations in central metabolism would affect virulence in an extracellular pathogen such as V. anguillarum. Seven central metabolism mutants were created and characterized with regard to growth in minimal and complex media, expression of virulence genes, and virulence in juvenile rainbow trout (Oncorhynchus mykiss). Only the isocitrate dehydrogenase (icd) mutant was attenuated in virulence against rainbow trout challenged by either intraperitoneal injection or immersion. Further, the icd mutant was shown to be immunoprotective against wild type V. anguillarum infection. There was no significant decrease in the expression of the three hemolysin genes detected by qRT-PCR. Additionally, only the icd mutant exhibited a significantly decreased growth yield in complex media. Growth yield was directly related to the abundance of glutamate. A strain with a restored wild type icd gene was created and shown to restore growth to a wild type cell density in complex media and pathogenicity in rainbow trout. The data strongly suggest that a decreased growth yield, resulting from the inability to synthesize α-ketoglutarate, caused the attenuation despite normal levels of expression of virulence genes. Therefore, the ability of an extracellular pathogen to cause disease is dependent upon the availability of host-supplied nutrients for growth. Additionally, a live vaccine strain could be created from an icd deletion strain.

  18. Derivation of Mutants of Erwinia carotovora subsp. betavasculorum Deficient in Export of Pectolytic Enzymes with Potential for Biological Control of Potato Soft Rot

    Science.gov (United States)

    Costa, José M.; Loper, Joyce E.

    1994-01-01

    Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora. PMID:16349316

  19. A Novel Bifunctional Amino Acid Racemase With Multiple Substrate Specificity, MalY From Lactobacillus sakei LT-13: Genome-Based Identification and Enzymological Characterization

    Directory of Open Access Journals (Sweden)

    Shiro Kato

    2018-03-01

    Full Text Available The Lactobacillus sakei strain LK-145 isolated from Moto, a starter of sake, produces potentially large amounts of three D-amino acids, D-Ala, D-Glu, and D-Asp, in a medium containing amylase-digested rice as a carbon source. The comparison of metabolic pathways deduced from the complete genome sequence of strain LK-145 to the type culture strain of Lactobacillus sakei strain LT-13 showed that the L- and D-amino acid metabolic pathways are similar between the two strains. However, a marked difference was observed in the putative cysteine/methionine metabolic pathways of strain LK-145 and LT-13. The cystathionine β-lyase homolog gene malY was annotated only in the genome of strain LT-13. Cystathionine β-lyase is an important enzyme in the cysteine/methionine metabolic pathway that catalyzes the conversion of L-cystathionine into L-homocysteine. In addition to malY, most genome-sequenced strains of L. sakei including LT-13 lacked the homologous genes encoding other putative enzymes in this pathway. Accordingly, the cysteine/methionine metabolic pathway likely does not function well in almost all strains of L. sakei. We succeeded in cloning and expressing the malY gene from strain LT-13 (Ls-malY in the cells of Escherichia coli BL21 (DE3 and characterized the enzymological properties of Ls-MalY. Spectral analysis of purified Ls-MalY showed that Ls-MalY contained a pyridoxal 5′-phosphate (PLP as a cofactor, and this observation agreed well with the prediction based on its primary structure. Ls-MalY showed amino acid racemase activity and cystathionine β-lyase activity. Ls-MalY showed amino acid racemase activities in various amino acids, such as Ala, Arg, Asn, Glu, Gln, His, Leu, Lys, Met, Ser, Thr, Trp, and Val. Mutational analysis revealed that the -amino group of Lys233 in the primary structure of Ls-MalY likely bound to PLP, and Lys233 was an essential residue for Ls-MalY to catalyze both the amino acid racemase and β-lyase reactions. In

  20. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth.

    Science.gov (United States)

    Tomassetti, Susanna; Pontiggia, Daniela; Verrascina, Ilaria; Reca, Ida Barbara; Francocci, Fedra; Salvi, Gianni; Cervone, Felice; Ferrari, Simone

    2015-04-01

    Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  2. Preliminary structural investigations of the Eut-L shell protein of the ethanolamine ammonia-lyase metabolosome of Escherichia coli

    International Nuclear Information System (INIS)

    Nikolakakis, Kiel; Ohtaki, Akashi; Newton, Keith; Chworos, Arkadiusz; Sagermann, Martin

    2009-01-01

    Preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. The ethanolamine ammonia-lyase microcompartment is composed of five different shell proteins that have been proposed to assemble into symmetrically shaped polyhedral particles of varying sizes. Here, preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. Cloning, overexpression and purification resulted in highly pure protein that crystallized readily under many different conditions. In all cases the protein forms thin hexagonal plate-shaped crystals belonging to space group P3 that are of unusually high stability against different solvent conditions. The crystals diffracted to a resolution of 2.0 Å using synchrotron radiation but proved to be radiation-sensitive. Preparations of heavy-atom-derivatized crystals for use in determining the three-dimensional structure are under way

  3. Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense

    Science.gov (United States)

    Mohidin, Hasmah; Idris, Abu Seman; Fariz, A.; Abiri, Rambod; Taheri, Sima; Moradpoor, Mehdi

    2018-01-01

    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease. PMID:29721500

  4. Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense.

    Science.gov (United States)

    Sahebi, Mahbod; Hanafi, Mohamed M; Mohidin, Hasmah; Rafii, M Y; Azizi, Parisa; Idris, Abu Seman; Fariz, A; Abiri, Rambod; Taheri, Sima; Moradpoor, Mehdi

    2018-01-01

    Oil palm ( Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β -1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.

  5. Antioxidant Enzyme Activities and Secondary Metabolite Profiling of Oil Palm Seedlings Treated with Combination of NPK Fertilizers Infected with Ganoderma boninense

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2018-01-01

    Full Text Available Oil palm (Elaeis guineensis Jacq is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.

  6. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  7. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  8. The Phosphatidylinositol 3,5-Bisphosphate (PI(3,5)P2)-dependent Tup1 Conversion (PIPTC) Regulates Metabolic Reprogramming from Glycolysis to Gluconeogenesis*

    Science.gov (United States)

    Han, Bong-Kwan; Emr, Scott D.

    2013-01-01

    Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans. PMID:23733183

  9. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  10. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  11. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris.

    Science.gov (United States)

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Lv, Meiling; Miao, Ying; Cao, Jiashu

    2014-11-01

    PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture. © 2014 Institute of Botany, Chinese Academy of Sciences.

  12. Possibilities and scope of the double isotope effect method in the elucidation of mechanisms of enzyme catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H L; Medina, R [Technische Univ. Muenchen, Freising (Germany, F.R.). Lehrstuhl fuer Allgemeine Chemie und Biochemie

    1991-01-01

    Kinetic isotope effects on enzyme catalyzed reactions are indicative for the first irreversible in a sequence of individual steps. Hints on the relative velocities of other steps can only be obtained from the partitioning factor R and its dependence on external reaction conditions. In general, the experimental data needed are obtained from isotope abundance measurements in a defined position of the substrate or product as a function of turnover. This method does not reveal events dealing with neighbour atoms or preceding the main isotope sensitive step. In the method presented here, the analytical measurement is extended to the second atom involved in a bond fission of formation (Double Isotope Effect Method). It is shown that the additional results obtained support the identification of the main isotopically sensitive step and its relative contribution to the overall reaction rate, the identification of other kinetically significant steps and the differentiation between stepwise and concerted reaction mechanisms. The method and its advantages are demonstrated on reactions comprising C-N-bond splitting (urease and arginase reaction), C-C-bound fission (reactions catalyzed by pyruvate-dehydrogenase, pyruvate-formiate-lyase and lactate-oxidase), C-O-bound formation (ribulose-bisphosphate-oxygenase reaction), and N-O-bond fission (nitrate- and nitrite-reductase reactions). (orig.).

  13. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    Science.gov (United States)

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-02-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged.

  14. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype.

    Science.gov (United States)

    Whitehall, V L J; Dumenil, T D; McKeone, D M; Bond, C E; Bettington, M L; Buttenshaw, R L; Bowdler, L; Montgomery, G W; Wockner, L F; Leggett, B A

    2014-11-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.

  15. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    Directory of Open Access Journals (Sweden)

    Christina eNeumann

    2014-10-01

    Full Text Available Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6, thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  16. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    KAUST Repository

    Neumann, Christina

    2014-10-17

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  17. STUDY ON THE SUGAR-ACID RATIO AND RELEVANT METABOLIZING ENZYME ACTIVITIES IN NAVEL ORANGE FRUITS FROM DIFFERENT ECO-REGIONS

    Directory of Open Access Journals (Sweden)

    GONG RONGGAO

    2015-12-01

    Full Text Available ABSTRACT The flavor quality of citrus fruits is largely determined by the sugar-acid ratio, but it remains uncertain how sugar- and/or acid-metabolizing enzymes regulate the sugar-acid ratio of navel oranges and further affect the fruit quality. In the present study, Robertson navel oranges (Citrus sinesis Osb. were collected from six representative habitats in three eco-regions of Sichuan, China. The changes in the sugar-acid ratio and the activities of sucrose phosphate synthase (SPS, sucrose synthase (SS, cytosolic cio-aconitase (ACO, and isocitrate dehydrogenase (IDH were examined in navel oranges during fruit development. The results indicated that the sugar-acid ratio of fruits in different eco-regions changed significantly from 150 days after full bloom. The SPS and cytosolic ACO fruit activities had minor changes among different ecoregions throughout the experimental periods, whereas the activities of SS and IDH changed significantly in fruits among three eco-regions. Furthermore, the sugar-acid ratio and the activities of SS in the synthetic direction and IDH were the highest in south subtropics and the lowest in north mid-subtropics, probably due to the effects of climate conditions and/or other relevant eco-factors. It demonstrated that SS in the synthetic direction and IDH were of greater importance in regulating the sugar-acid ratio of navel oranges in different eco-regions, which provided new insights into the factors that determine the flavor quality of navel oranges and valuable data for guiding relevant agricultural practices.

  18. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  19. Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Xing, Xin-Hui [Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-06-15

    To examine perturbation effects of formate pathway on hydrogen productivity in Enterobacter aerogenes (Ea), formate dehydrogenase FDH-H gene (fdhF) and formate hydrogen lyase activator protein FHLA gene (fhlA) originated from Escherichia coli, were overexpressed in the wild strain Ea, its hycA-deleted mutant (A) by knockout the formate hydrogen lyase repressor and hybO-deleted mutant (O) by knockout of the uptake hydrogenase, respectively. Overexpression of fdhF and fhlA promoted cell growth and volumetric hydrogen production rates of all the strains, and the hydrogen production per gram cell dry weight (CDW) for Ea, A and O was increased by 38.5%, 21.8% and 5.25%, respectively. The fdhF and fhlA overexpression improved the hydrogen yield per mol glucose of strains Ea and A, but declined that of strain O. The increase of hydrogen yield of the strain Ea with fdhF and fhlA expression was mainly attributed to the increase of formate pathway, while for the mutant A, the improved hydrogen yield with fdhF and fhlA expression was mainly due to the increase of NADH pathway. Analysis of the metabolites and ratio of ethanol-to-acetate showed that the cellular redox state balance and energy level were also changed for these strains by fdhF and fhlA expression. These findings demonstrated that the hydrogen production was not only dependent on the hydrogenase genes, but was also affected by the regulation of the whole metabolism. Therefore, fdhF and fhlA expression in different strains of E. aerogenes could exhibit different perturbation effects on the metabolism and the hydrogen productivity. (author)

  20. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...