WorldWideScience

Sample records for enzyme inhibitory peptides

  1. Enzyme Hydrolysates from Stichopus horrens as a New Source for Angiotensin-Converting Enzyme Inhibitory Peptides

    Directory of Open Access Journals (Sweden)

    Bita Forghani

    2012-01-01

    Full Text Available Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH and peptide profiling (SDS-PAGE of Stichopus horrens hydrolysates (SHHs was also assessed. Alcalase hydrolysate showed the highest DH value (39.8% followed by flavourzyme hydrolysate (32.7%. Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC50 value of 0.41 mg/mL followed by flavourzyme hydrolysate (IC50 value of 2.24 mg/mL, trypsin hydrolysate (IC50 value of 2.28 mg/mL, papain hydrolysate (IC50 value of 2.48 mg/mL, bromelain hydrolysate (IC50 value of 4.21 mg/mL, and protamex hydrolysate (IC50 value of 6.38 mg/mL. The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC50 values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits.

  2. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants

    Science.gov (United States)

    Daskaya-Dikmen, Ceren; Yucetepe, Aysun; Karbancioglu-Guler, Funda; Daskaya, Hayrettin; Ozcelik, Beraat

    2017-01-01

    Hypertension is an important factor in cardiovascular diseases. Angiotensin-I-converting enzyme (ACE) inhibitors like synthetic drugs are widely used to control hypertension. ACE-inhibitory peptides from food origins could be a good alternative to synthetic drugs. A number of plant-based peptides have been investigated for their potential ACE inhibitor activities by using in vitro and in vivo assays. These plant-based peptides can be obtained by solvent extraction, enzymatic hydrolysis with or without novel food processing methods, and fermentation. ACE-inhibitory activities of peptides can be affected by their structural characteristics such as chain length, composition and sequence. ACE-inhibitory peptides should have gastrointestinal stability and reach the cardiovascular system to show their bioactivity. This paper reviews the current literature on plant-derived ACE-inhibitory peptides including their sources, production and structure, as well as their activity by in vitro and in vivo studies and their bioavailability. PMID:28333109

  3. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata.

    Science.gov (United States)

    Furuta, Tomoe; Miyabe, Yoshikatsu; Yasui, Hajime; Kinoshita, Yasunori; Kishimura, Hideki

    2016-02-04

    We examined the inhibitory activity of angiotensin I converting enzyme (ACE) in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE) followed by phycocyanin (PC) and allophycocyanin (APC). The dulse proteins showed slight ACE inhibitory activity, whereas the inhibitory activity was extremely enhanced by thermolysin hydrolysis. The ACE inhibitory activity of hydrolysates was hardly affected by additional pepsin, trypsin and chymotrypsin treatments. Nine ACE inhibitory peptides (YRD, AGGEY, VYRT, VDHY, IKGHY, LKNPG, LDY, LRY, FEQDWAS) were isolated from the hydrolysates by reversed-phase high-performance liquid chromatography (HPLC), and it was demonstrated that the synthetic peptide LRY (IC50: 0.044 μmol) has remarkably high ACE inhibitory activity. Then, we investigated the structural properties of dulse phycobiliproteins to discuss the origin of dulse ACE inhibitory peptides. Each dulse phycobiliprotein possesses α-subunit (Mw: 17,477-17,638) and β-subunit (Mw: 17,455-18,407). The sequences of YRD, AGGEY, VYRT, VDHY, LKNPG and LDY were detected in the primary structure of PE α-subunit, and the LDY also exists in the APC α- and β-subunits. In addition, the LRY sequence was found in the β-subunits of PE, PC and APC. From these results, it was suggested that the dulse ACE inhibitory peptides were derived from phycobiliproteins, especially PE. To make sure the deduction, we carried out additional experiment by using recombinant PE. We expressed the recombinant α- and β-subunits of PE (rPEα and rPEβ, respectively), and then prepared their peptides by thermolysin hydrolysis. As a result, these peptides showed high ACE inhibitory activities (rPEα: 94.4%; rPEβ: 87.0%). Therefore, we concluded that the original proteins of dulse ACE inhibitory peptides were phycobiliproteins.

  4. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata

    Directory of Open Access Journals (Sweden)

    Tomoe Furuta

    2016-02-01

    Full Text Available We examined the inhibitory activity of angiotensin I converting enzyme (ACE in protein hydrolysates from dulse, Palmaria palmata. The proteins extracted from dulse were mainly composed of phycoerythrin (PE followed by phycocyanin (PC and allophycocyanin (APC. The dulse proteins showed slight ACE inhibitory activity, whereas the inhibitory activity was extremely enhanced by thermolysin hydrolysis. The ACE inhibitory activity of hydrolysates was hardly affected by additional pepsin, trypsin and chymotrypsin treatments. Nine ACE inhibitory peptides (YRD, AGGEY, VYRT, VDHY, IKGHY, LKNPG, LDY, LRY, FEQDWAS were isolated from the hydrolysates by reversed-phase high-performance liquid chromatography (HPLC, and it was demonstrated that the synthetic peptide LRY (IC50: 0.044 μmol has remarkably high ACE inhibitory activity. Then, we investigated the structural properties of dulse phycobiliproteins to discuss the origin of dulse ACE inhibitory peptides. Each dulse phycobiliprotein possesses α-subunit (Mw: 17,477–17,638 and β-subunit (Mw: 17,455–18,407. The sequences of YRD, AGGEY, VYRT, VDHY, LKNPG and LDY were detected in the primary structure of PE α-subunit, and the LDY also exists in the APC α- and β-subunits. In addition, the LRY sequence was found in the β-subunits of PE, PC and APC. From these results, it was suggested that the dulse ACE inhibitory peptides were derived from phycobiliproteins, especially PE. To make sure the deduction, we carried out additional experiment by using recombinant PE. We expressed the recombinant α- and β-subunits of PE (rPEα and rPEβ, respectively, and then prepared their peptides by thermolysin hydrolysis. As a result, these peptides showed high ACE inhibitory activities (rPEα: 94.4%; rPEβ: 87.0%. Therefore, we concluded that the original proteins of dulse ACE inhibitory peptides were phycobiliproteins.

  5. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  6. A virtual screening method for inhibitory peptides of Angiotensin I-converting enzyme.

    Science.gov (United States)

    Wu, Hongxi; Liu, Yalan; Guo, Mingrong; Xie, Jingli; Jiang, XiaMin

    2014-09-01

    Natural small peptides from foods have been proven to be efficient inhibitors of Angiotensin I-converting enzyme (ACE) for the regulation of blood pressure. The traditional ACE inhibitory peptides screening method is both time consuming and money costing, to the contrary, virtual screening method by computation can break these limitations. We establish a virtual screening method to obtain ACE inhibitory peptides with the help of Libdock module of Discovery Studio 3.5 software. A significant relationship between Libdock score and experimental IC(50) was found, Libdock score = 10.063 log(1/IC(50)) + 68.08 (R(2) = 0.62). The credibility of the relationship was confirmed by testing the coincidence of the estimated log(1/IC(50)) and measured log(1/IC(50)) (IC(50) is 50% inhibitory concentration toward ACE, in μmol/L) of 5 synthetic ACE inhibitory peptides, which was virtual hydrolyzed and screened from a kind of seafood, Phascolosoma esculenta. Accordingly, Libdock method is a valid IC(50) estimation tool and virtual screening method for small ACE inhibitory peptides. © 2014 Institute of Food Technologists®

  7. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Science.gov (United States)

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  8. Production of the angiotensin I converting enzyme inhibitory peptides and isolation of four novel peptides from jellyfish (Rhopilema esculentum) protein hydrolysate.

    Science.gov (United States)

    Liu, Xin; Zhang, Miansong; Shi, Yaping; Qiao, Ruojin; Tang, Wei; Sun, Zhenliang

    2016-07-01

    Angiotensin I converting enzyme (ACE) plays an important role in regulating blood pressure in the human body. ACE inhibitory peptides derived from food proteins could exert antihypertensive effects without side effects. Jellyfish (Rhopilema esculentum) is an important fishery resource suitable for production of ACE inhibitory peptides. The objective of this study was to optimize the hydrolysis conditions for production of protein hydrolysate from R. esculentum (RPH) with ACE inhibitory activity, and to isolate and identify the ACE inhibitory peptides from RPH. Rhopilema esculentum protein was hydrolyzed with Compound proteinase AQ to produce protein hydrolysate with ACE inhibitory activity, and the hydrolysis conditions were optimized using response surface methodology. The optimum parameters for producing peptides with the highest ACE inhibitory activity were as follows: hydrolysis time 3.90 h, hydrolysis temperature 58 °C, enzyme:substrate ratio 2.8% and pH 7.60. Under these conditions, the ACE inhibitory rate reached 32.21%. In addition, four novel ACE inhibitory peptides were isolated, and their amino acids sequences were identified as Val-Gly-Pro-Tyr, Phe-Thr-Tyr-Val-Pro-Gly, Phe-Thr-Tyr-Val-Pro-Gly-Ala and Phe-Gln-Ala-Val-Trp-Ala-Gly, respectively. The IC50 value of the purified peptides for ACE inhibitory activity was 8.40, 23.42, 21.15 and 19.11 µmol L(-1) . These results indicate that the protein hydrolysate prepared from R. esculentum might be a commercial competitive source of ACE inhibitory ingredients to be used in functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta.

    Science.gov (United States)

    Li, Yun; Sadiq, Faizan A; Fu, Li; Zhu, Hui; Zhong, Minghua; Sohail, Muhammad

    2016-06-03

    Angiotensin I-converting enzyme (ACE) inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH) (45.87%) followed by A. elegans T3 proteases hydrolysate (37.84%) and alcalase (30.55%). The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY) was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits.

  10. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta

    Directory of Open Access Journals (Sweden)

    Yun Li

    2016-06-01

    Full Text Available Angiotensin I-converting enzyme (ACE inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH (45.87% followed by A. elegans T3 proteases hydrolysate (37.84% and alcalase (30.55%. The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits.

  11. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Otte, Jeanette; De Gobba, Cristian

    2017-01-01

    Buffaloes' milk, which is consumed in many parts of the world, is a little-explored source of bioactive peptides. The angiotensin converting enzyme (ACE)-inhibitory activity and the antioxidant capacity of peptides from buffaloes' milk were examined. A retentate from buffaloes' skimmed milk......-inhibitory (FPGPIPK, IPPK, IVPN, and QPPQ) and antioxidant (YPSG, HPFA and KFQ) activities. The results obtained showed the potential of buffaloes' milk proteins to release ACE-inhibitory and antioxidant peptides...

  12. Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension.

    Science.gov (United States)

    Rai, Amit Kumar; Sanjukta, Samurailatpam; Jeyaram, Kumaraswamy

    2017-09-02

    Fermented milk is a potential source of various biologically active peptides with specific health benefits. Angiotensin converting enzyme inhibitory (ACE-I) peptides are one of the most studied bioactive peptides produced during milk fermentation. The presence of these peptides is reported in various fermented milk products such as, yoghurt, cheese, sour milk, etc., which are also available as commercial products. Many of the ACE-I peptides formed during milk fermentation are resistant to gastrointestinal digestion and inhibit angiotensin converting enzyme (ACE) in the rennin angiotension system (RAS). There are various factors, which affect the formation ACE-I peptides and their ability to reach the target tissue in active form, which includes type of starters (lactic acid bacteria (LAB), yeast, etc.), substrate composition (casein type, whey protein, etc.), composition of ACE-I peptide, pre and post-fermentation treatments, and its stability during gastrointestinal digestion. The antihypertensive effect of fermented milk products has also been proved by various in vitro and in vivo (animal and human trials) experiments. This paper reviews the literature on fermented milk products as a source of ACE-I peptides and various factors affecting the production and activity of ACE-I peptides.

  13. Novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of goby (Zosterisessor ophiocephalus) muscle proteins.

    Science.gov (United States)

    Nasri, Rim; Chataigné, Gabrielle; Bougatef, Ali; Chaâbouni, Maha Karra; Dhulster, Pascal; Nasri, Moncef; Nedjar-Arroume, Naima

    2013-10-08

    In recent years, food protein-derived bioactive peptides have received considerable attention because of their numerous health benefits. Amongst bioactive peptides, those with antihypertensive activity are receiving special attention due to their role in cardiovascular diseases. Goby protein hydrolysates (GPHs) prepared by treatment with five different crude bacterial proteases were found to exhibit varying degrees of angiotensin I-converting enzyme (ACE) inhibitory activity. The hydrolysate generated by the crude protease from Bacillus mojavensis A21, which displayed the highest ACE inhibitory activity, was further fractionated by size exclusion chromatography on a Sephadex G-25 and reversed-phase high performance liquid chromatography (RP-HPLC). The molecular masses and amino acid sequences of five peptides, in sub-fraction F5-2, which exhibited the highest ACE inhibitory activity, were determined using ESI-MS and ESI-MS/MS, respectively. The structures of these peptides were identified as Ala-Arg-Ser, Val-Val-Ala-Pro-Phe-Ala-His-Gly-Thr, Arg-Ser-Thr-Ala, Phe-Tyr-Pro-Pro, Arg-Cys-Ser-Ala-Gly-Val. Further, the sequences of fifteen peptides in the F5-4 sub-fraction, which exhibited high activity, were determined. Therefore, GPHs have a potential as hypotensive nutraceutical ingredients. Peptides find many outlets of application in the biotechnological field, amongst which are pharmaceutical applications. Progression amongst new small molecules deposited like substance medicamentous blows itself. In this context, large pharmaceutical companies invest in peptide research to open therapeutic new prospects. Even if they are used as therapeutic agents for nearly one century in their natural form, the use of peptides remains parsimonious although we experienced a significant development since a few tens of years, in particular thanks to the clarification of the methods of production, chemical in solid or biological phase such as in phage display. Peptides present many

  14. Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk.

    Science.gov (United States)

    Chaves-López, Clemencia; Tofalo, Rosanna; Serio, Annalisa; Paparella, Antonello; Sacchetti, Giampiero; Suzzi, Giovanna

    2012-09-17

    This study investigated the possibility of using yeast strains in fermented milks to obtain products with high Angiotensin I-converting enzyme (ACE) inhibitory activity and low bitter taste. Ninety-three yeast strains isolated from Colombian Kumis in different geographic regions were molecularly identified, and their milk fermentation performances were determined. Molecular identification evidenced that Galactomyces geotrichum, Pichia kudriavzevii, Clavispora lusitaniae and Candida tropicalis, were the dominant species. Eighteen out of 93 strains produced fermented milk with ACE-inhibitory (ACEI) activity values ranging from 8.69 to 88.19%. Digestion of fermented milk samples by pepsin and pancreatin demonstrated an increase in ACEI activity, with C. lusitaniae KL4A as the best producer of ACEI peptides. Moreover, sensory analysis of the products containing the major ACE-inhibitory activity pointed out that P. kudriavzevii KL84A and Kluyveromyces marxianus KL26A could be selected as potential adjunct starter cultures in Kumis, since they made a considerable contribution to the ACE inhibitory activity and produced fermented milk without bitter taste. In this study we observed that Colombian Kumis can be an excellent vehicle for the isolation of yeasts with a potential to enhance bioactive peptides produced during milk fermentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin.

    Science.gov (United States)

    Ngo, Dai-Hung; Ryu, Bomi; Vo, Thanh-Sang; Himaya, S W A; Wijesekara, Isuru; Kim, Se-Kwon

    2011-12-01

    Potent antioxidative peptides were purified from Pacific cod (Gadus macrocephalus) skin gelatin using alcalase, neutrase, papain, trypsin, pepsin, and α-chymotrypsin. Among them, the papain hydrolysate exhibited the highest antioxidant activity. Therefore, it was further purified and obtained two peptides with amino acid sequences of Thr-Cys-Ser-Pro (388 Da) and Thr-Gly-Gly-Gly-Asn-Val (485.5 Da). The antioxidant activity of the purified peptides was performed by electron spin resonance technique. Moreover, their intracellular free radical scavenging activity using 2',7'-dichlorofluorescin diacetate and the protective effect against oxidation-induced DNA damage were evaluated in mouse macrophages (RAW 264.7 cells). Furthermore, both peptides have shown potential angiotensin-I converting enzyme inhibitory effect. The present study demonstrated that the peptides derived from Pacific cod (G. macrocephalus) skin gelatin could be used in the food industry as functional ingredients with potent antioxidative and antihypertensive benefits. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence.

    Science.gov (United States)

    Guo, Yuxing; Gan, Junai; Zhu, Qian; Zeng, Xiaoqun; Sun, Yangying; Wu, Zhen; Pan, Daodong

    2018-02-01

    To exert an antihypertensive effect after oral administration, angiotensin I-converting enzyme (ACE)-inhibitory peptides must remain active after intestinal transport. The purpose of this article is to elucidate the transport permeability and route of ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro (RLSFNP) across the intestinal epithelium using Caco-2 cell monolayers. Intact RLSFNP and RLSFNP breakdown fragments F, FNP, SFNP and RLSF were found in RLSFNP transport solution across Caco-2 cell monolayers using ultra-performance liquid chromatography-tandem mass spectrometry. RLSFNP fragments FNP, SFNP and RLSF also contributed to ACE inhibitory effects. Protease inhibitors (bacitracin and leupeptin) and absorption enhancers (sodium glycocholate hydrate, sodium deoxycholate and Na 2 EDTA) improved the transport flux of RLSFNP. A transport inhibitor experiment showed that intact RLSFNP may be transported via the paracellular route. Intact RLSFNP can be transported across the Caco-2 cell monolayers via the paracellular route. Extensive hydrolysis was the chief reason for the low permeability of RLSFNP. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    Science.gov (United States)

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Angiotensin-I converting enzyme inhibitory and antioxidant activity of bioactive peptides produced by enzymatic hydrolysis of skin from grass carp (Ctenopharyngodon idella)

    DEFF Research Database (Denmark)

    Yi, Jierong; De Gobba, Cristian; Skibsted, Leif Horsfelt

    2017-01-01

    Grass carp skin pieces were homogenized in water and hydrolyzed by Alcalase®, collagenase, proteinase K, and/or trypsin at their optimum conditions. Samples were taken at various degrees of hydrolysis and were evaluated for antioxidant, antimicrobial, and angiotensin-converting enzyme inhibitory...... hydrolysates with trypsin slightly increased the antioxidant activity. Proteinase K, although only partially hydrolyzing the skin, also catalyzed the release of peptides with antioxidant and angiotensin-converting enzyme-inhibitory activities. These results show that skin by-products from grass carp can...... activities. Alcalase and collagenase completely hydrolyzed the skin with different rates, and released peptides with antioxidant and angiotensin-converting enzyme-inhibitory activity. These activities increased linearly with increasing degrees of hydrolysis. Subsequent incubation of the collagenase...

  19. Biochemical characterization of a novel antioxidant and angiotensin I-converting enzyme inhibitory peptide from Struthio camelus egg white protein hydrolysis

    Directory of Open Access Journals (Sweden)

    Ahmad Asoodeh

    2016-04-01

    Full Text Available A peptide from ostrich (Struthio camelus egg white protein hydrolysate (OEWPH was purified, characterized, and its antioxidant and enzyme inhibitory properties were evaluated. The OEWPH was prepared using pepsin and pancreatin, and then fractionated using reversed-phase high performance liquid chromatography. The antioxidant activity of the WG-9 peptide was investigated based on its scavenging capacity for 1,1-diphenyl-2-picrylhydrazyl (DPPH radical, 2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid diammonium salt (ABTS, superoxide (O2•−, hydroxyl (OH•−, and lipid peroxidation inhibition. The angiotensin-converting enzyme (ACE inhibitory activity and kinetic parameters of the peptide were determined using N-[3-(2-Furylacryloyl]-L-phenylalanyl-glycyl-glycine (FAPGG as a substrate. Tandem mass spectrometry analysis of the purified peptide revealed a sequence of WESLSRLLG (MW: 1060 Da; WG-9. This peptide inhibited linoleic acid oxidation and acted as a DPPH (IC50 = 15 ± 0.4 μg/mL, ABTS (IC50 = 130 ± 4.5 μg/mL, superoxide (IC50 = 160 ± 6.4 μg/mL, and hydroxyl (IC50 = 150 ± 6.7 μg/mL radical scavenger. The ACE-inhibitory activity and kinetic parameters of the WG-9 peptide were determined, showing an ACE inhibitory activity with IC50 of 46.7 ± 1.4 μg/mL. The parameters of peptide/ACE interactions were investigated by molecule docking. Furthermore, viability assays showed that the identified peptide had no cytotoxicity against an HFLF-PI-5 cell line. In conclusion, the WG-9 peptide showed potent antioxidant and ACE-inhibitory activity.

  20. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities.

    Science.gov (United States)

    Corrêa, Ana Paula Folmer; Daroit, Daniel Joner; Fontoura, Roberta; Meira, Stela Maris Meister; Segalin, Jeferson; Brandelli, Adriano

    2014-11-01

    Enzymatic proteolysis may be employed to release bioactive peptides, which have been investigated for potential benefits from both technological and human health perspectives. In this study, sheep cheese whey (SCW) was hydrolyzed with a protease preparation from Bacillus sp. P7, and the hydrolysates were evaluated for antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities. Soluble protein and free amino acids increased during hydrolysis of SCW for up to 4h. Antioxidant activity of hydrolysates, evaluated by the 2,2'azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid radical scavenging method, increased 3.2-fold from 0 h (15.9%) to 6h of hydrolysis (51.3%). Maximum Fe(2+) chelation was reached in 3h hydrolysates, and the reducing power peaked at 1h of hydrolysis, representing 6.2 and 2.1-fold increase, respectively, when compared to that of non-hydrolyzed SCW. ACE inhibition by SCW (12%) was improved through hydrolysis, reaching maximal values (55% inhibition) in 4h, although 42% inhibition was already observed after 1h hydrolysis. The peptide LAFNPTQLEGQCHV, derived from β-lactoglobulin, was identified from 4-h hydrolysates. Such a biotechnological approach might be an interesting strategy for SCW processing, potentially contributing to the management and valorization of this abundant dairy byproduct. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Separation and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Saurida elongata Proteins Hydrolysate by IMAC-Ni2.

    Science.gov (United States)

    Sun, Lixia; Wu, Shanguang; Zhou, Liqin; Wang, Feng; Lan, Xiongdiao; Sun, Jianhua; Tong, Zhangfa; Liao, Dankui

    2017-02-15

    Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish (Saurida elongata) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated from LFPH-I using immobilized metal affinity chromatography (IMAC-Ni2+). Analysis of amino acid levels revealed that F2 eluted from IMAC was enriched in Met, His, Tyr, Pro, Ile, and Leu compared to the crude peptide LFPH-I. F2 with the high ACE inhibitory activity (IC50 of 0.116 mg·mL-1) was further separated by a reverse-phase column to yield a novel ACE inhibitory peptide with IC50 value of 52 μM. The ACE inhibitory peptide was identified as Arg-Tyr-Arg-Pro, RYRP. The present study demonstrated that IMAC may be a useful tool for the separation of ACE inhibitory peptides from protein hydrolysate.

  2. Utilisation of rapeseed protein isolates for production of peptides with angiotensin I-converting enzyme (ACE-inhibitory activity

    Directory of Open Access Journals (Sweden)

    Vioque, Javier

    2004-12-01

    Full Text Available ACE activity is related to increased arterial pressure and coronary diseases. A rapeseed protein isolate was hydrolyzed with the protease Alcalase in order to investigate the possible presence of ACE inhibitory peptides in the resulting hydrolysates. Hydrolysis for 30 min yielded a hydrolysate with the highest ACE inhibitory activity. Two fractions of this hydrolysate obtained by Biogel P2 gel filtration chromatography were used for further purification of ACE inhibitory peptides. Three fractions with ACE inhibitory activity were purified by reverse-phase HPLC of Biogel P2 f ractions. This demonstrates that rapeseed protein hydrolysates represent a good source of ACE inhibitory peptides .La actividad de ECA está relacionada con una presión arterial alta y enfermedades cardíacas. Un aislado proteico de colza se hidrolizó con alcalasa para estudiar la posible presencia de péptidos inhibidores de ECA en el hidrolizado. La hidrólisis durante 30 min produjo el hidrolizado con la mayor actividad inhibidora de ECA. Dos fracciones de este hidrolizado, obtenidas por cromatografía de filtración en gel Biogel P2, se usaron para la purificación de péptidos inhibidores de ECA. Tres fracciones con actividad inhibidora de ECA se purificaron mediante HPLC en fase reversa de las fracciones obtenidas mediante Biogel P2. Esto demuestra que los hidrolizados proteicos de colza representan una buena fuente de péptidos inhibidores de ECA.

  3. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins.

    Science.gov (United States)

    Garcia-Mora, P; Peñas, E; Frias, J; Gomez, R; Martinez-Villaluenga, C

    2015-03-15

    Angiotensin I converting enzyme (ACE) inhibitory and antioxidant peptides are receiving attention due to their beneficial effects in the prevention/treatment of hypertension. The objective was to explore the effect of high hydrostatic pressure (HP) on proteolysis by different proteases and the release of bioactive peptides from lentil proteins. Pressurisation (100-300 MPa) enhanced the hydrolytic efficiency of Protamex, Savinase and Corolase 7089 compared to Alcalase. Proteolysis at 300 MPa led to a complete degradation of lentil proteins and increased peptide (antioxidant activities that were retained upon in vitro gastrointestinal digestion. The peptides responsible for the multifunctional properties of S300 hydrolysate were identified as different fragments from storage proteins and the allergen Len c 1. These results support the potential of HP as a technology for the cost-effective production of bioactive peptides from lentil proteins during enzymatic proteolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin.

    Science.gov (United States)

    Assaran Darban, Reza; Shareghi, Behzad; Asoodeh, Ahmad; Chamani, Jamshidkhan

    2016-12-26

    The present study was carried out to characterize Angiotensin-converting enzyme (ACE) inhibitory peptides which are released from the trypsin hydrolysate of wheat gluten protein. The binding of two inhibitory peptide (P4 and P6) to human serum albumin (HSA) under physiological conditions has been investigated by multi-spectroscopic in combination with molecular modeling techniques. Time-resolved and quenching fluorescence spectroscopies results revealed that the quenching of HSA fluorescence by P4 and P6 in the binary and ternary systems caused HSA-peptides complexes formation. The results indicated that both peptides quenched the fluorescence intensity of HSA through a static mechanism. The binding affinities and number of binding sites were obtained for the HSA-peptides complexes. The circular dichroism (CD) data revealed that the presence of both peptides increased the α-helix content of HSA and induced the remarkable folding of the polypeptide of the protein. Therefore, the CD data determined that the protein structure has been stabilized in the percent of ACE inhibitory peptides in binary and ternary systems. The binding distances between HSA and both peptides were estimated by the Forster theory, and it was revealed that nonradiative energy transfer from HSA to peptides occurred with a high probability. ITC experiments reveal that, in the absence and presence of P6, the dominant forces are electrostatic in binary and ternary systems. Furthermore, molecular modeling studies confirmed the experimental results. Molecular modeling investigation suggested that P4 bound to the site IA and IIA of HSA in binary and ternary systems, respectively. This study on the interaction of peptides with HSA should prove helpful for realizing the distribution and transportation of food compliments and drugs in vivo, elucidating the action mechanism and dynamics of food compliments and drugs at the molecular level. It should moreover be of great use for understanding the

  5. In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on α-glucosidase and angiotensin I converting enzyme.

    Science.gov (United States)

    Uraipong, Chatchaporn; Zhao, Jian

    2018-01-01

    The bioactivities of peptides released from the digestion of rice bran protein under in vitro simulated human digestive conditions were investigated. Four protein fractions extracted from rice bran were digested and the hydrolysates were fractionated by ultrafiltration and anion exchange chromatography. α-Glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of the crude hydrolysates and their fractions were determined. Peptides with molecular weight (MW) digests, while the ACE inhibitory activities of the MW digestive tract with substantial health benefits. ACE and α-glucosidase inhibitory activities of the digests of rice bran proteins, and albumin and glutelin in particular, were especially strong, comparable to that of the standard drugs. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins.

    Science.gov (United States)

    Toopcham, Tidarat; Mes, Jurriaan J; Wichers, Harry J; Roytrakul, Sittiruk; Yongsawatdigul, Jirawat

    2017-04-01

    The angiotensin I-converting enzyme (ACE) inhibitory activity of protein hydrolysates from tilapia muscle fractions, namely mince (M), washed mince (WM), and sarcoplasmic protein (SP), were investigated. Each fraction was hydrolyzed by Virgibacillus halodenitrificans SK1-3-7 proteinases for up to 24h. After 8h of hydrolysis, the M hydrolysate (48% degree of hydrolysis (DH)) showed the highest ACE inhibitory activity, with an IC50 value of 0.54mg/ml, while the SP hydrolysate exhibited the lowest DH and ACE inhibition. In vitro gastrointestinal digestion reduced the ACE inhibitory activity of the M hydrolysate but enhanced its transport across Caco-2 cell monolayers. The transported peptides were found to contain 3-4 amino acid residues showing strong ACE inhibition. The novel ACE inhibitory peptide with the highest inhibition was found to be MCS, with an IC50 value of 0.29μM. Therefore, tilapia mince hydrolyzed by V. halodenitrificans proteinases contained ACE inhibitory peptides that are potentially bioavailable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Osteoanabolic activity of whey-derived anti-oxidative (MHIRL and YVEEL) and angiotensin-converting enzyme inhibitory (YLLF, ALPMHIR, IPA and WLAHK) bioactive peptides.

    Science.gov (United States)

    Pandey, Masum; Kapila, Rajeev; Kapila, Suman

    2017-11-06

    Exploring bone rebuilding anabolic agents has been gaining much attention due to their potential therapeutic effects in treating several bone disorders including osteoporosis. Whey protein has been reported to affect bone health osteoanabolically, in terms of proliferation and differentiation of primary osteoblast cells. This study investigates whether whey derived anti-oxidative (AO) (P1- MHIRL, P2- YVEEL) and angiotensin converting enzyme inhibitory (ACE inhibitory) (P3- YLLF, P4-ALPMHIR, P5-IPA, P6- WLAHK) bioactive peptides affect the proliferation and differentiation of primary osteoblast cells isolated from rat calvaria. The proliferation and osteogenic activity of osteoblast cells in presence of these peptides were determined by MTT assay, DNA quantification study, Alkaline phosphatase activity (ALP) and ALP staining, Alizarin red activity and staining, and secretory osteocalcin measurement. The expression of osteogenesis-related genes (COLI-α, ALP, OCN and RUNX2) were determined by real-time quantitative PCR (RT-PCR) analysis over a period of 21days. The peptide treated osteoblasts showed a significant increase in viable cell density and proliferation in the order of P2>P6>P3 at optimised concentration. Furthermore, the osteoblastic differentiation markers in response to these peptides were found to be significantly up regulated in the order of P2>P6>P3 when compared to the controls. These results demonstrated that bioactive whey-derived AO and ACE inhibitory peptides can play a potential therapeutic role in osteoporosis by activating osteoblasts anabolically. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A Bovine Fibrinogen-Enriched Fraction as a Source of Peptides with in Vitro Renin and Angiotensin-I-Converting Enzyme Inhibitory Activities.

    Science.gov (United States)

    Lafarga, Tomas; Rai, Dilip K; O'Connor, Paula; Hayes, Maria

    2015-10-07

    Bovine fibrinogen is currently used in the food industry as a binding agent in restructured meat products. However, this protein is underused as a source of bioactive peptides. In this study, a number of novel angiotensin-I-converting enzyme (ACE-I) and renin inhibitory peptides were identified and enriched from a bovine fibrinogen fraction. Fibrinogen was isolated and enriched from bovine blood and hydrolyzed with the food-grade enzyme papain, which was selected for use using in silico analysis. The generated hydrolysate was subjected to ultrafiltration and its peptide profile characterized by liquid chromatography-tandem mass spectrometry. A number of peptides were identified and chemically synthesized to confirm their bioactivity in vitro. Identified peptides included the multifunctional tripeptide SLR, corresponding to f(35-37) of the β-chain of bovine fibrinogen with ACE-I and renin IC50 values of 0.17 and 7.2 mM, respectively. Moreover, the resistance of identified peptides to gastrointestinal degradation and their bitterness were predicted using in silico methods.

  9. Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats.

    Science.gov (United States)

    Ngo, Dai-Hung; Kang, Kyong-Hwa; Ryu, BoMi; Vo, Thanh-Sang; Jung, Won-Kyo; Byun, Hee-Guk; Kim, Se-Kwon

    2015-05-01

    The aim of this study was to investigate antihypertensive effect of bioactive peptides from skate (Okamejei kenojei) skin gelatin. The Alcalase/protease gelatin hydrolysate below 1 kDa (SAP) exhibited the highest angiotensin-I converting enzyme (ACE) inhibition compared to other hydrolysates. SAP can decrease systolic blood pressure significantly in spontaneously hypertensive rats. SAP inhibited vasoconstriction via PPAR-γ expression, activation and phosphorylation of eNOS in lungs. Moreover, the expression levels of endothelin-1, RhoA, α-smooth muscle actin, cleaved caspase 3 and MAPK were decreased by SAP in lungs. Vascularity, muscularization and cellular proliferation in lungs were detected by immunohistochemical staining. Finally, two purified peptides (LGPLGHQ, 720Da and MVGSAPGVL, 829Da) showed potent ACE inhibition with IC50 values of 4.22 and 3.09 μM, respectively. These results indicate that bioactive peptides isolated from skate skin gelatin may serve as candidates against hypertension and could be used as functional food ingredients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hybrid in Silico/in Vitro Approach for the Identification of Angiotensin I Converting Enzyme Inhibitory Peptides from Parma Dry-Cured Ham.

    Science.gov (United States)

    Dellafiora, Luca; Paolella, Sara; Dall'Asta, Chiara; Dossena, Arnaldo; Cozzini, Pietro; Galaverna, Gianni

    2015-07-22

    The bioactivity assessment of foodborne peptides is currently a research area of great relevance, and, in particular, several studies are devoted to the antihypertensive effects through the inhibition of angiotensin I converting enzyme (ACE). In the present work, a straightforward workflow to identify inhibitory peptides from food matrices is proposed, which involves a hybrid in vitro/in silico tandem approach. Parma dry-cured ham was chosen as case study. In particular, the advantage of using the hybrid approach to identify active sequences (in comparison to the experimental trials alone) has been pointed out. Specifically, fractions obtained by in vitro gastrointestinal digestion of ham samples of 18 and 24 months of aging have been assessed for ACE inhibition. At the same time, the released peptidomic profiles, which cannot be entirely evaluated by using in vitro assays, have been screened for the inhibition by using an in silico model. Then, to identify novel inhibitory sequences, a series of strong candidates have been synthesized and assessed for their inhibitory activity through in vitro assay. On the one hand, the use of computational simulations appeared to be an effective strategy to find active sequences, as confirmed by in vitro analysis. On the other hand, strong inhibitory sequences were identified for the first time in Parma dry-cured ham (e.g., LGL and SFVTT with IC50 values of 145 and 395 μM, respectively), which is a product of international dietary and economic relevance. Therefore, these findings demonstrate the usefulness of in silico methodologies coupled to in vitro tests for the identification of potentially bioactive peptides, and they give an important contribution to the study of the overall nutritional value of Parma ham.

  11. Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances.

    Science.gov (United States)

    Nakahara, Takeharu; Sano, Atsushi; Yamaguchi, Hitomi; Sugimoto, Katsutoshi; Chikata, Hiroyuki; Kinoshita, Emiko; Uchida, Riichiro

    2010-01-27

    We have developed a peptide-enriched soy sauce-like seasoning termed Fermented Soybean Seasoning (FSS), by modifying the process of soy sauce brewing. The FSS has a 2.7-fold higher concentration of total peptides than regular soy sauce. The angiotensin I-converting enzyme (ACE) inhibitory activity of FSS (IC(50) = 454 microg/mL) was greater than that of regular soy sauce (IC(50) = 1620 microg/mL). The FSS demonstrated antihypertensive effects both in spontaneously hypertensive rats and in Dahl salt-sensitive rats during continuous feeding. The ACE inhibitory substances were purified from FSS by reversed-phase chromatography. Ala-Trp IC(50) = 10 microM; Gly-Trp IC(50) = 30 microM; Ala-Tyr IC(50) = 48 microM; Ser-Tyr, IC(50) = (67 microM; Gly-Tyr, IC(50) = 97 microM; Ala-Phe, IC(50) = 190 microM; Val-Pro, IC(50) = (480 microM; Ala-Ile, IC(50) = 690 microM; Val-Gly, IC(50) = 1100 microM; and a nicotianamine, IC(50) = 0.26 microM. [corrected] The concentrations of these substances in the FSS were revealed to be higher than that of regular soy sauce through quantitative LC-MS/MS analysis.

  12. Novel peptides with tyrosinase inhibitory activity

    NARCIS (Netherlands)

    Schurink, M.; Berkel, van W.J.H.; Wichers, H.J.; Boeriu, C.G.

    2007-01-01

    Tyrosinase inhibition by peptides may find its application in food, cosmetics or medicine. In order to identify novel tyrosinase inhibitory peptides, protein-based peptide libraries made by SPOT synthesis were used to screen for peptides that show direct interaction with tyrosinase. One of the

  13. Hypotensive effects and angiotensin-converting enzyme inhibitory peptides of reishi (Ganoderma lingzhi) auto-digested extract.

    Science.gov (United States)

    Tran, Hai-Bang; Yamamoto, Atsushi; Matsumoto, Sayaka; Ito, Hisatomi; Igami, Kentaro; Miyazaki, Toshitsugu; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2014-08-29

    Reishi (Ganoderma lingzhi) has been used as a traditional medicine for millennia. However, relatively little is known about this mushroom's proteins and their bioactivities. In this study, we used reishi's own proteases to hydrolyze its protein and obtained auto-digested reishi (ADR) extract. The extract was subjected to in vitro assays and administered to spontaneous hypertensive rats (SHRs) to determine its potential for use as a hypotensive medication. Bioassay-guided fractionation and de novo sequencing were used for identifying the active compounds. After 4 h administration of ADR, the systolic pressure of SHRs significantly decreased to 34.3 mmHg (19.5% change) and the effect was maintained up to 8 h of administration, with the decrease reaching as low as 26.8 mmHg (15% reduction-compare to base line a decrease of 26.8 mmHg is less than a decrease of 34.3 mmHg so it should give a smaller % reduction). Eleven peptides were identified and four of them showed potent inhibition against ACE with IC50 values ranging from 73.1 μM to 162.7 μM. The results showed that ADR could be a good source of hypotensive peptides that could be used for antihypertensive medication or incorporation into functional foods.

  14. Hypotensive Effects and Angiotensin-Converting Enzyme Inhibitory Peptides of Reishi (Ganoderma lingzhi Auto-Digested Extract

    Directory of Open Access Journals (Sweden)

    Hai-Bang Tran

    2014-08-01

    Full Text Available Reishi (Ganoderma lingzhi has been used as a traditional medicine for millennia. However, relatively little is known about this mushroom’s proteins and their bioactivities. In this study, we used reishi’s own proteases to hydrolyze its protein and obtained auto-digested reishi (ADR extract. The extract was subjected to in vitro assays and administered to spontaneous hypertensive rats (SHRs to determine its potential for use as a hypotensive medication. Bioassay-guided fractionation and de novo sequencing were used for identifying the active compounds. After 4 h administration of ADR, the systolic pressure of SHRs significantly decreased to 34.3 mmHg (19.5% change and the effect was maintained up to 8 h of administration, with the decrease reaching as low as 26.8 mmHg (15% reduction–compare to base line a decrease of 26.8 mmHg is less than a decrease of 34.3 mmHg so it should give a smaller % reduction. Eleven peptides were identified and four of them showed potent inhibition against ACE with IC50 values ranging from 73.1 μM to 162.7 μM. The results showed that ADR could be a good source of hypotensive peptides that could be used for antihypertensive medication or incorporation into functional foods.

  15. A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study.

    Science.gov (United States)

    Wu, Qiongying; Jia, Junqiang; Yan, Hui; Du, Jinjuan; Gui, Zhongzheng

    2015-06-01

    Silkworm pupa (Bombyx mori) protein was hydrolyzed using gastrointestinal endopeptidases (pepsin, trypsin and α-chymotrypsin). Then, the hydrolysate was purified sequentially by ultrafiltration, gel filtration chromatography and RP-HPLC. A novel ACE inhibitory peptide, Ala-Ser-Leu, with the IC50 value of 102.15μM, was identified by IT-MS/MS. This is the first report of Ala-Ser-Leu from natural protein. Lineweaver-Burk plots suggest that the peptide is a competitive inhibitor against ACE. The molecular docking studies revealed that the ACE inhibition of Ala-Ser-Leu is mainly attributed to forming very strong hydrogen bonds with the S1 pocket (Ala354) and the S2 pocket (Gln281 and His353). The results indicate that silkworm pupa (B. mori) protein or its gastrointestinal protease hydrolysate could be used as a functional ingredient in auxiliary therapeutic foods against hypertension. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Identification of Potent ACE Inhibitory Peptides from Wild Almond Proteins.

    Science.gov (United States)

    Mirzapour, Mozhgan; Rezaei, Karamatollah; Sentandreu, Miguel Angel

    2017-10-01

    In this study, the production, fractionation, purification and identification of ACE (angiotensin-I-converting enzyme) inhibitory peptides from wild almond (Amygdalus scoparia) proteins were investigated. Wild almond proteins were hydrolyzed using 5 different enzymes (pepsin, trypsin, chymotrypsin, alcalase and flavourzyme) and assayed for their ACE inhibitory activities. The degree of ACE inhibiting activity obtained after hydrolysis was found to be in the following order: alcalase > chymotrypsin > trypsin/pepsin > flavourzyme. The hydrolysates obtained from alcalase (IC50 = 0.8 mg/mL) were fractionated by sequential ultrafiltration at 10 and 3 kDa cutoff values and the most active fraction (protein is a rich source of potential antihypertensive peptides and can be suggested for applications in functional foods and drinks with respect to hindrance and mitigation of hypertension after in vivo assessment. This study has shown the potential of wild almond proteins as good sources for producing ACE-inhibitory active peptides. According to this finding, peptides with higher ACE inhibitory activities could be released during the gastrointestinal digestion and contribute to the health- promoting activities of this natural protein source. © 2017 Institute of Food Technologists®.

  17. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats.

    Science.gov (United States)

    Balti, Rafik; Bougatef, Ali; Sila, Assaâd; Guillochon, Didier; Dhulster, Pascal; Nedjar-Arroume, Naima

    2015-03-01

    This study aimed to identify novel ACE inhibitory peptides from the muscle of cuttlefish. Proteins were hydrolyzed and the hydrolysates were then subjected to various types of chromatography to isolate the active peptides. Nine ACE inhibitory peptides were isolated and their molecular masses and amino acid sequences were determined using ESI-MS and ESI-MS/MS, respectively. The structures of the most potent peptides were identified as Val-Glu-Leu-Tyr-Pro, Ala-Phe-Val-Gly-Tyr-Val-Leu-Pro and Glu-Lys-Ser-Tyr-Glu-Leu-Pro. The first peptide displayed the highest ACE inhibitory activity with an IC50 of 5.22μM. Lineweaver-Burk plots suggest that Val-Glu-Leu-Tyr-Pro acts as a non-competitive inhibitor against ACE. Furthermore, antihypertensive effects in spontaneously hypertensive rats (SHR) also revealed that oral administration of Val-Glu-Leu-Tyr-Pro can decrease systolic blood pressure significantly (p<0.01). These results suggest that the Val-Glu-Leu-Tyr-Pro would be a beneficial ingredient for nutraceuticals and pharmaceuticals acting against hypertension and its related diseases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides

    DEFF Research Database (Denmark)

    Zhang, Yuhao; Olsen, Karsten; Grossi, Alberto Blak

    2013-01-01

    structure of collagen. Many of these peptides had C-terminal sequences similar to known ACE-inhibitory peptides. The present results suggest that collagen-rich food materials are good substrates for the release of potent ACE-inhibitory peptides, when proper pre-treatment and enzymatic treatment is applied.......Bovine collagen was pre-treated (boiled or high pressure (HP)-treated) and then hydrolysed by 6 proteases. The degree of hydrolysis (DH) and the angiotensin-converting enzyme (ACE)-inhibitory activity of hydrolysates were measured. All enzymes used were able to partly degrade collagen and release...

  19. Modeling the QSAR of ACE-Inhibitory Peptides with ANN and Its Applied Illustration

    Directory of Open Access Journals (Sweden)

    Ronghai He

    2012-01-01

    Full Text Available A quantitative structure-activity relationship (QSAR model of angiotensin-converting enzyme- (ACE- inhibitory peptides was built with an artificial neural network (ANN approach based on structural or activity data of 58 dipeptides (including peptide activity, hydrophilic amino acids content, three-dimensional shape, size, and electrical parameters, the overall correlation coefficient of the predicted versus actual data points is =0.928, and the model was applied in ACE-inhibitory peptides preparation from defatted wheat germ protein (DWGP. According to the QSAR model, the C-terminal of the peptide was found to have principal importance on ACE-inhibitory activity, that is, if the C-terminal is hydrophobic amino acid, the peptide's ACE-inhibitory activity will be high, and proteins which contain abundant hydrophobic amino acids are suitable to produce ACE-inhibitory peptides. According to the model, DWGP is a good protein material to produce ACE-inhibitory peptides because it contains 42.84% of hydrophobic amino acids, and structural information analysis from the QSAR model showed that proteases of Alcalase and Neutrase were suitable candidates for ACE-inhibitory peptides preparation from DWGP. Considering higher DH and similar ACE-inhibitory activity of hydrolysate compared with Neutrase, Alcalase was finally selected through experimental study.

  20. Egg-derived bioactive peptides with ACE-inhibitory properties: a literature update.

    Science.gov (United States)

    Grootaert, Charlotte; Matthijs, Bea; Voorspoels, Stefan; Possemiers, Sam; Smagghe, Guy; Van Camp, John

    2017-11-15

    Egg proteins contain a wide set of peptide sequences which have an impact on cardiovascular health. Their modes-of-action involve, among others, the inhibition of angiotensin-converting enzyme (ACE) and antioxidant and anti-inflammatory properties. In this review, we focus particularly on ACE-inhibition and discuss recent findings in: (i) production methods for egg protein-derived ACE-inhibitory peptides, (ii) in vitro functionality of these peptides, (iii) their intestinal digestion and absorption in order to reach the target tissue, (iv) the impact of ACE-inhibitory egg-derived peptides in vivo and (v) future perspectives for the implementation of egg-derived ACE-inhibitory peptides as functional foods.

  1. Peptide-modified surfaces for enzyme immobilization.

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    Full Text Available BACKGROUND: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity. METHODOLOGY/PRINCIPAL FINDINGS: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation. CONCLUSIONS/SIGNIFICANCE: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

  2. Discovery of GPX4 inhibitory peptides from random peptide T7 phage display and subsequent structural analysis.

    Science.gov (United States)

    Sakamoto, Kotaro; Sogabe, Satoshi; Kamada, Yusuke; Matsumoto, Shin-Ichi; Kadotani, Akito; Sakamoto, Jun-Ichi; Tani, Akiyoshi

    2017-01-08

    The phospholipid hydroperoxidase glutathione peroxidase (GPX4) is an enzyme that reduces lipid hydroperoxides in lipid membranes. Recently, GPX4 has been investigated as a target molecule that induces iron-dependent cell death (ferroptosis) selectively in cancer cells that express mutant Ras. GPX4 inhibitors have the potential to become novel anti-cancer drugs. However, there are no druggable pockets for conventional small molecules on the molecular surface of GPX4. To generate GPX4 inhibitors, we examined the use of peptides as an alternative to small molecules. By screening peptide libraries displayed on T7 phages, and analyzing the X-ray crystal structures of the peptides, we successfully identified one peptide that binds to near Sec73 of catalytic site and two peptides that bind to another site on GPX4. To our knowledge, this is the first study reporting GPX4 inhibitory peptides and their structural information. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Acetyl-cholinesterase Enzyme Inhibitory Effect of Calophyllum species

    African Journals Online (AJOL)

    acetylcholinesterase (AChE) enzyme using Ellman's method. Results: Most of the extracts showed promising inhibitory activity against AChE at concentrations of. 100 µg/mL, with the methanol extract of C. inophyllum demonstrating the strongest inhibitory effect of. 81.28 % followed by the methanol extract of C. benjaminum ...

  4. Microarray Selection of Cooperative Peptides for Modulating Enzyme Activities

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    2017-04-01

    Full Text Available Recently, peptide microarrays have been used to distinguish proteins, antibodies, viruses, and bacteria based on their binding to random sequence peptides. We reported on the use of peptide arrays to identify enzyme modulators that involve screening an array of 10,000 defined and addressable peptides on a microarray. Primary peptides were first selected to inhibit the enzyme at low μM concentrations. Then, new peptides were found to only bind strongly with the enzyme–inhibitor complex, but not the native enzyme. These new peptides served as secondary inhibitors that enhanced the inhibition of the enzyme together with the primary peptides. Without the primary peptides, the secondary effect peptides had little effect on the enzyme activity. Conversely, we also selected peptides that recovered the activities of inhibited enzyme–peptide complex. The selection of cooperative peptide pairs will provide a versatile toolkit for modulating enzyme functions, which may potentially be applied to drug discovery and biocatalysis.

  5. Critical evaluation of the use of bioinformatics as a theoretical tool to find high-potential sources of ACE inhibitory peptides

    NARCIS (Netherlands)

    Vercruysse, L.; Smagghe, G.; Bent, van der A.; Amerongen, van A.; Ongenaert, M.; Camp, van J.

    2009-01-01

    A bioinformatics analysis to screen for high-potential sources of angiotensin converting enzyme (ACE) inhibitory peptides was conducted in the area of insect muscle proteins. Vertebrate muscle proteins are reported as good sources of ACE inhibitory peptides, while the research on invertebrate muscle

  6. Optimization of the Enzymatic Hydrolysis of Lupin (Lupinus) Proteins for Producing ACE-Inhibitory Peptides.

    Science.gov (United States)

    Boschin, Giovanna; Scigliuolo, Graziana Maria; Resta, Donatella; Arnoldi, Anna

    2014-02-26

    Recently, the enzymatic hydrolysis of Lupinus albus and Lupinus angustifolius proteins with pepsin was showed to produce peptides able to inhibit the angiotensin-converting enzyme (ACE). The objective of the present work was to test different hydrolytic enzymes and to investigate three lupin species (L. albus, L. angustifolius, Lupinus luteus) with the final goal of selecting the best enzyme/species combination for an efficient production of ACE-inhibitory peptide mixtures. Pepsin gave peptides with the best IC50 values (mean value on three species 186 ± 10 μg/mL), followed by pepsin + trypsin (198 ± 16 μg/mL), chymotrypsin (213 ± 83 μg/mL), trypsin (405 ± 54 μg/mL), corolase PP (497 ± 32 μg/mL), umamizyme (865 ± 230 μg/mL), and flavourzyme (922 ± 91 μg/mL). The three species showed similar activity scales, but after pepsin + trypsin and chymotrypsin treatments, L. luteus peptide mixtures resulted to be significantly the most active. This investigation indicates that lupin proteins may be a valuable source of ACE-inhibitory peptides, which may explain the activity observed in experimental and clinical studies and foresee the application of lupin proteins into functional foods or dietary supplements.

  7. ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme.

    Science.gov (United States)

    Rao, Shengqi; Sun, Jun; Liu, Yuntao; Zeng, Huawei; Su, Yujie; Yang, Yanjun

    2012-12-01

    Lysozyme from hen egg white is a well-known antimicrobial protein with high ratio of hydrophobic and positively charged amino acid residues. In order to explore functional bioactivities of enzymatic hydrolysates of lysozyme, the protein was subjected to a simulated gastrointestinal digestion and the resulting hydrolysate (LPH2) showed a strong competitive angiotensin I-converting enzyme (ACE) inhibitory activity (IC(50)=12.6μg/ml) and a remarkable antioxidant activity. The LPH2 was fractionated using a 3kDa cut-off membrane and the obtained permeate LPH2-3kDa was analysed by MALDI-TOF-TOF MS. Using this technology, 38 different peptides were identified and some of these peptides were well fit with structure requirements of ACE inhibitory peptides and/or antioxidant peptides. The findings from this study suggest that the protein containing high proportion of hydrophobic and positively charged residues have the potential to generate multifunctional peptides, and these peptides would be beneficial ingredient to be used in functional foods. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Correlation between enzymes inhibitory effects and antioxidant ...

    African Journals Online (AJOL)

    Recently, there has been increasing interest in Ficus deltoidea (Moracea) due to its chemical composition and the potential health benefits. The leaves of the plant have been suggested to have potential antidiabetic effects. Inhibition of carbohydrate-hydrolysing enzymes, such as α-glucosidase and α-amylase is one of the ...

  9. Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits.

    Science.gov (United States)

    Zare-Zardini, Hadi; Tolueinia, Behnaz; Hashemi, Azam; Ebrahimi, Leila; Fesahat, Farzaneh

    2013-11-01

    Antioxidant agents and cholinesterase inhibitors are the foremost drugs for the treatment of Alzheimer's disease (AD). In this study, a new peptide from Ziziphus jujuba fruits was investigated for its inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes as well as antioxidant activity. This peptide was introduced as a new peptide and named Snakin-Z. The Snakin-Z displayed considerable cholinesterase inhibition against AChE and BChE. The half maximal inhibitory concentration (IC50) values of Snakin-Z against AChE and BChE are 0.58 ± 0.08 and 0.72 ± 0.085 mg/mL, respectively. This peptide has 80% enzyme inhibitory activity on AChE and BChE at 1.5 mg/mL. The Snakin-Z also had the high antioxidant activity (IC50 = 0.75 ± 0.09 mg/mL). Thus, it is suggested that Snakin-Z may be beneficial in the treatment of AD. However, more detailed researches are still required as in vivo testing its anticholinesterase and antioxidant activities.

  10. Peptide array on cellulose support--a screening tool to identify peptides with dipeptidyl-peptidase IV inhibitory activity within the sequence of α-lactalbumin.

    Science.gov (United States)

    Lacroix, Isabelle M E; Li-Chan, Eunice C Y

    2014-11-13

    The inhibition of the enzyme dipeptidyl-peptidase IV (DPP-IV) is an effective pharmacotherapeutic approach for the management of type 2 diabetes. Recent findings have suggested that dietary proteins, including bovine α-lactalbumin, could be precursors of peptides able to inhibit DPP-IV. However, information on the location of active peptide sequences within the proteins is far from being comprehensive. Moreover, the traditional approach to identify bioactive peptides from foods can be tedious and long. Therefore, the objective of this study was to use peptide arrays to screen α-lactalbumin-derived peptides for their interaction with DPP-IV. Deca-peptides spanning the entire α-lactalbumin sequence, with a frame shift of 1 amino acid between successive sequences, were synthesized on cellulose membranes using "SPOT" technology, and their binding to and inhibition of DPP-IV was studied. Among the 114 α-lactalbumin-derived decamers investigated, the peptides 60WCKDDQNPHS69 (αK(i) = 76 µM), 105LAHKALCSEK114 (K(i) = 217 µM) and 110LCSEKLDQWL119 (K(i) = 217 µM) were among the strongest DPP-IV inhibitors. While the SPOT- and traditionally-synthesized peptides showed consistent trends in DPP-IV inhibitory activity, the cellulose-bound peptides' binding behavior was not correlated to their ability to inhibit the enzyme. This research showed, for the first time, that peptide arrays are useful screening tools to identify DPP-IV inhibitory peptides from dietary proteins.

  11. Inhibitory activity of the peptides derived from buffalo prolactin on ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/jbiosci. Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis. JAEOK LEE, SYAMANTAK MAJUMDER, SUVRO CHATTERJEE and KAMBADUR MURALIDHAR. M L1 L2 L3 L4 L5. (A). (B). Densitometry of 15% SDS-PAGE on 20th Oct. 07. 0. 0.5. 1. 1.5. Rf. O.D.. Protein Marker.

  12. In Vitro angiotensin converting enzyme inhibitory and antioxidant ...

    African Journals Online (AJOL)

    ... present study was carried out to investigate the in vitro angiotensin converting enzyme (ACE) inhibitory and antioxidant activities of the methanolic seed extract of Apium graveolens Linn. belonging to the family Apiaceae. Traditionally, the seeds of A. graveolens L. were used as diuretic, anti-inflammatory and aphrodisiac.

  13. Effect of partially purified angiotensin converting enzyme inhibitory ...

    African Journals Online (AJOL)

    This study evaluated the effect of partially-purified angiotensin converting enzyme (ACE) inhibitory proteins obtained from the leaves of Moringa oleifera on blood glucose, serum ACE activity and lipid profile of alloxaninduced diabetic rats. Twenty-five apparently healthy male albino rats were divided into five groups of five ...

  14. Inhibitory properties of cysteine protease pro-peptides from barley confer resistance to spider mite feeding.

    Directory of Open Access Journals (Sweden)

    M Estrella Santamaria

    Full Text Available C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and acari. The in vitro inhibitory action of these pro-sequences, purified as recombinant proteins, is demonstrated. Moreover, transgenic Arabidopsis plants expressing different fragments of HvPap-1 barley gene containing the pro-peptide sequence were generated and the acaricide function was confirmed by bioassays conducted with the two-spotted spider mite Tetranychus urticae. Feeding trials resulted in a significant reduction of leaf damage in the transgenic lines expressing the pro-peptide in comparison to non-transformed control and strongly correlated with an increase in mite mortality. Additionally, the analysis of the expression levels of a selection of potential mite targets (proteases and protease inhibitors revealed a mite strategy to counteract the inhibitory activity produced by the C1A barley pro-prodomain. These findings demonstrate that pro-peptides can control mite pests and could be applied as defence proteins in biotechnological systems.

  15. Inhibitory properties of cysteine protease pro-peptides from barley confer resistance to spider mite feeding.

    Science.gov (United States)

    Santamaria, M Estrella; Arnaiz, Ana; Diaz-Mendoza, Mercedes; Martinez, Manuel; Diaz, Isabel

    2015-01-01

    C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and acari). The in vitro inhibitory action of these pro-sequences, purified as recombinant proteins, is demonstrated. Moreover, transgenic Arabidopsis plants expressing different fragments of HvPap-1 barley gene containing the pro-peptide sequence were generated and the acaricide function was confirmed by bioassays conducted with the two-spotted spider mite Tetranychus urticae. Feeding trials resulted in a significant reduction of leaf damage in the transgenic lines expressing the pro-peptide in comparison to non-transformed control and strongly correlated with an increase in mite mortality. Additionally, the analysis of the expression levels of a selection of potential mite targets (proteases and protease inhibitors) revealed a mite strategy to counteract the inhibitory activity produced by the C1A barley pro-prodomain. These findings demonstrate that pro-peptides can control mite pests and could be applied as defence proteins in biotechnological systems.

  16. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins.

    Science.gov (United States)

    Yousr, Marwa; Howell, Nazlin

    2015-12-07

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  17. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    Directory of Open Access Journals (Sweden)

    Marwa Yousr

    2015-12-01

    Full Text Available Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF. Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y and tryptophan (W, in sequences identified by LC-MS as WYGPD (EYGF-23 and KLSDW (EYGF-33, contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56 was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69% and IC50 value (3.35 mg/mL. The SDNRNQGY peptide (10 mg/mL had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL. In addition, YPSPV in (EYGF-33 (10 mg/mL had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  18. Data mining of enzymes using specific peptides

    Directory of Open Access Journals (Sweden)

    Lavi Yair

    2009-12-01

    Full Text Available Abstract Background Predicting the function of a protein from its sequence is a long-standing challenge of bioinformatic research, typically addressed using either sequence-similarity or sequence-motifs. We employ the novel motif method that consists of Specific Peptides (SPs that are unique to specific branches of the Enzyme Commission (EC functional classification. We devise the Data Mining of Enzymes (DME methodology that allows for searching SPs on arbitrary proteins, determining from its sequence whether a protein is an enzyme and what the enzyme's EC classification is. Results We extract novel SP sets from Swiss-Prot enzyme data. Using a training set of July 2006, and test sets of July 2008, we find that the predictive power of SPs, both for true-positives (enzymes and true-negatives (non-enzymes, depends on the coverage length of all SP matches (the number of amino-acids matched on the protein sequence. DME is quite different from BLAST. Comparing the two on an enzyme test set of July 2008, we find that DME has lower recall. On the other hand, DME can provide predictions for proteins regarded by BLAST as having low homologies with known enzymes, thus supplying complementary information. We test our method on a set of proteins belonging to 10 bacteria, dated July 2008, establishing the usefulness of the coverage-length cutoff to determine true-negatives. Moreover, sifting through our predictions we find that some of them have been substantiated by Swiss-Prot annotations by July 2009. Finally we extract, for production purposes, a novel SP set trained on all Swiss-Prot enzymes as of July 2009. This new set increases considerably the recall of DME. The new SP set is being applied to three metagenomes: Sargasso Sea with over 1,000,000 proteins, producing predictions of over 220,000 enzymes, and two human gut metagenomes. The outcome of these analyses can be characterized by the enzymatic profile of the metagenomes, describing the relative

  19. New ACE-Inhibitory Peptides from Hemp Seed (Cannabis sativa L.) Proteins.

    Science.gov (United States)

    Orio, Lara P; Boschin, Giovanna; Recca, Teresa; Morelli, Carlo F; Ragona, Laura; Francescato, Pierangelo; Arnoldi, Anna; Speranza, Giovanna

    2017-12-06

    A hemp seed protein isolate, prepared from defatted hemp seed meals by alkaline solubilization/acid precipitation, was subjected to extensive chemical hydrolysis under acid conditions (6 M HCl). The resulting hydrolysate was fractionated by semipreparative RP-HPLC, and the purified fractions were tested as inhibitors of angiotensin converting enzyme (ACE). Mono- and bidimensional NMR experiments and LC-MS analyses led to the identification of four potentially bioactive peptides, i.e. GVLY, IEE, LGV, and RVR. They were prepared by solid-phase synthesis, and tested for ACE-inhibitory activity. The IC50 values were GVLY 16 ± 1.5 μM, LGV 145 ± 13 μM, and RVR 526 ± 33 μM, confirming that hemp seed may be a valuable source of hypotensive peptides.

  20. Molecular design and synthesis of novel peptides from amphibians skin acting as inhibitors of cholinesterase enzymes.

    Science.gov (United States)

    Siano, Alvaro; Garibotto, Francisco F; Andujar, Sebastian A; Baldoni, Hector A; Tonarelli, Georgina G; Enriz, Ricardo D

    2017-03-01

    Cholinesterases are a family of enzymes that catalyze the hydrolysis of neurotransmitter acetylcholine. There are two types of cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which differ in their distribution in the body. Currently, cholinesterase inhibitors (ChEI) represent the treatment of choice for Alzheimer's disease (AD). In this paper, we report the synthesis and inhibitory effect on both enzymes of four new peptides structurally related to P1-Hp-1971 (amphibian skin peptide found in our previous work. Sequence: TKPTLLGLPLGAGPAAGPGKR-NH2 ). The bioassay data and cytotoxicity test show that some of the compounds possess a significant AChE and BChE inhibition and no toxic effect. The present work demonstrates that diminution of the size of the original peptide could potentially result in new compounds with significant cholinesterase inhibition activity, although it appears that there is an optimal size for the sequence. We also conducted an exhaustive molecular modeling study to better understand the mechanism of action of these compounds by combining docking techniques with molecular dynamics simulations on BChE. This is the first report about amphibian peptides and the second one of natural peptides with ChE inhibitory activity. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  1. Development of a seaweed derived platelet activating factor acetylhydrolase (PAF-AH) inhibitory hydrolysate, synthesis of inhibitory peptides and assessment of their toxicity using the Zebrafish larvae assay.

    Science.gov (United States)

    Fitzgerald, Ciarán; Gallagher, Eimear; O'Connor, Paula; Prieto, José; Mora-Soler, Leticia; Grealy, Maura; Hayes, Maria

    2013-12-01

    The vascular inflammatory role of platelet activating factor acetylhydrolase (PAF-AH) is thought to be due to the formation of lysophosphatidyl choline and oxidized non-esterified fatty acids. This enzyme is considered a promising therapeutic target for the prevention of atherosclerosis and there is a need to expand the available chemical templates of PAF-AH inhibitors. This study demonstrated how natural PAF-AH inhibitory peptides were isolated and characterized from the red macroalga Palmaria palmata. The dried powdered alga was hydrolyzed using the food grade enzyme papain, and the resultant peptide containing fraction generated using RP-HPLC. Several oligopeptides were identified as potential PAF-AH inhibitors following bio-guided fractionation, and the amino acid sequences of these oligopeptides were confirmed by Q-TOF-MS and microwave-assisted solid phase de novo synthesis. The most promising PAF-AH inhibitory peptide had the amino acid sequence NIGK and a PAF-AH IC50 value of 2.32 mM. This peptide may constitute a valid drug template for PAF-AH inhibitors. Furthermore the P. palmata hydrolysate was nontoxic when assayed using the Zebrafish toxicity model at a concentration of 1mg/ml. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Angiotensin Converting Enzyme Inhibitory and Antioxidant Activities of Enzymatic Hydrolysates of Korean Native Cattle (Hanwoo Myofibrillar Protein

    Directory of Open Access Journals (Sweden)

    Seung Yun Lee

    2017-01-01

    Full Text Available The purpose of this study was to determine the angiotensin converting enzyme (ACE inhibitory and antioxidant activities of myofibrillar protein hydrolysates (HMPHs of different molecular weights (<3 and <10 kDa derived from Korean native cattle (Hanwoo breed using a commercially available and inexpensive enzyme (Alkaline-AK. HMPH of both tested molecular weights had ACE inhibitory activity. Among the antioxidant activities, iron chelation and nitrite scavenging activities were higher in low-molecular-weight peptide of HMPH (<3 kDa, whereas 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity was higher in high-molecular-weight peptide of HMPH (<10 kDa. HMPH did not induce cytotoxicity in RAW 264.7 cells at concentrations of 5–20 mg/mL. These results indicate that HMPH can be cheaply produced using Alkaline-AK and applied as a potential ACE inhibitor and antioxidant.

  3. New Quantitative Structure-Activity Relationship Model for Angiotensin-Converting Enzyme Inhibitory Dipeptides Based on Integrated Descriptors.

    Science.gov (United States)

    Deng, Baichuan; Ni, Xiaojun; Zhai, Zhenya; Tang, Tianyue; Tan, Chengquan; Yan, Yijing; Deng, Jinping; Yin, Yulong

    2017-11-08

    Angiotensin-converting enzyme (ACE) inhibitory peptides derived from food proteins have been widely reported for hypertension treatment. In this paper, a benchmark data set containing 141 unique ACE inhibitory dipeptides was constructed through database mining, and a quantitative structure-activity relationships (QSAR) study was carried out to predict half-inhibitory concentration (IC50) of ACE activity. Sixteen descriptors were tested and the model generated by G-scale descriptor showed the best predictive performance with the coefficient of determination (R2) and cross-validated R2 (Q2) of 0.6692 and 0.6220, respectively. For most other descriptors, R2 were ranging from 0.52 to 0.68 and Q2 were ranging from 0.48 to 0.61. A complex model combining all 16 descriptors was carried out and variable selection was performed in order to further improve the prediction performance. The quality of model using integrated descriptors (R2 0.7340 ± 0.0038, Q2 0.7151 ± 0.0019) was better than that of G-scale. An in-depth study of variable importance showed that the most correlated properties to ACE inhibitory activity were hydrophobicity, steric, and electronic properties and C-terminal amino acids contribute more than N-terminal amino acids. Five novel predicted ACE-inhibitory peptides were synthesized, and their IC50 values were validated through in vitro experiments. The results indicated that the constructed model could give a reliable prediction of ACE-inhibitory activity of peptides, and it may be useful in the design of novel ACE-inhibitory peptides.

  4. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology.

    Science.gov (United States)

    Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya; Yaguchi, Masahiro; Niida, Ayumu; Sasaki, Shigekazu; Miwa, Masanori; Ohkubo, Shoichi; Sakamoto, Jun-Ichi; Kamaura, Masahiro; Cho, Nobuo; Tani, Akiyoshi

    2017-03-11

    Amino-acid mutations of Gly 12 (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH 2 ) as a consensus sequence. KRpep-2 showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K D and IC 50 values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH 2 ) that inhibited enzyme activity of K-Ras(G12D) with IC 50  = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers.

    Science.gov (United States)

    Lacroix, Isabelle M E; Chen, Xiu-Min; Kitts, David D; Li-Chan, Eunice C Y

    2017-02-22

    In recent years, peptides derived from a variety of dietary proteins have been reported to exhibit inhibitory activity against the dipeptidyl-peptidase IV (DPP-IV) enzyme, a target in the management of type 2 diabetes. While much attention has been given to the production and identification of peptides with DPP-IV inhibitory activity from food proteins, particularly dairy proteins, little is known on the bioavailability of these molecules. In this study, the stability and transport of five previously identified milk-derived peptides (LKPTPEGDL, LPYPY, IPIQY, IPI and WR) and a whey protein isolate (WPI) digest with DPP-IV-inhibitory activity were investigated using Caco-2 cell monolayers as a model system for human intestinal absorption. Even though a small percentage (ranging from 0.05% for LPYPY to 0.47% for WR) of the bioactive peptides added to the apical side was able to cross the monolayer intact, all five peptides investigated were susceptible to peptidase action during the transport study. Conversely, only minor changes to the WPI digest composition were observed. Determination of the DPP-IV inhibitory activity of the peptides and amino acids identified in the apical and basolateral solutions showed that most degradation products were less effective at inhibiting DPP-IV than the peptide they originated from. Findings from this research suggest that the susceptibility of food-derived DPP-IV inhibitory peptides to degradation by intestinal brush border membrane enzymes may alter their biological activity in vivo. Further research should be conducted to enhance the bioavailability of DPP-IV inhibitory peptides.

  6. In vivo efficacy of anuran trypsin inhibitory peptides against staphylococcal skin infection and the impact of peptide cyclization.

    Science.gov (United States)

    Malik, U; Silva, O N; Fensterseifer, I C M; Chan, L Y; Clark, R J; Franco, O L; Daly, N L; Craik, D J

    2015-04-01

    Staphylococcus aureus is a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weak in vitro inhibitory activities against S. aureus, but several had strong antibacterial activities against S. aureus in an in vivo murine wound infection model. pYR, an immunomodulatory peptide from Rana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg(-1). Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. ACE-I Inhibitory Activity from Phaseolus lunatus and Phaseolus vulgaris Peptide Fractions Obtained by Ultrafiltration.

    Science.gov (United States)

    Betancur-Ancona, David; Dávila-Ortiz, Gloria; Chel-Guerrero, Luis Antonio; Torruco-Uco, Juan Gabriel

    2015-11-01

    The involvement of angiotensin-I-converting enzyme (ACE-I) as one of the mechanisms controlling blood pressure is being studied to find alternative means of control of hypertension on human beings. On the market there are synthetic drugs that can control it, but these can cause undesirable health side effects. In this work was assessed the fractionation by ultrafiltration of the Lima bean (Phaseolus lunatus) and Jamapa bean (Phaseolus vulgaris), protein hydrolysates obtained with Alcalase(®) and Flavourzyme(®) on ACE-I inhibitory activity. Four membranes of different molecular cutoffs (10, 5, 3, and 1 kDa) were used. Fractions that had a higher inhibitory activity in both legumes were denominated as E (Phaseolus vulgaris with Alcalase and Flavourzyme with about 63.8 and 65.8 μg/mL values, respectively. The amino acid composition of these fractions showed residues in essential amino acids, which make a good source of energy and amino acids. On the other hand, the presence of hydrophobic amino acids such as V and P is a determining factor in the ACE-I inhibitor effect. The results suggest the possibility of obtaining and utilizing these peptide fractions in the development and innovation of a functional product that helps with treatment and/or prevention of hypertension.

  8. Egg-yolk protein by-product as a source of ACE-inhibitory peptides obtained with using unconventional proteinase from Asian pumpkin (Cucurbita ficifolia).

    Science.gov (United States)

    Eckert, Ewelina; Zambrowicz, Aleksandra; Pokora, Marta; Setner, Bartosz; Dąbrowska, Anna; Szołtysik, Marek; Szewczuk, Zbigniew; Polanowski, Antoni; Trziszka, Tadeusz; Chrzanowska, Józefa

    2014-10-14

    In the present study angiotensin I-converting enzyme (ACE) inhibitory peptides were isolated from egg-yolk protein preparation (YP). Enzymatic hydrolysis conducted using unconventional enzyme from Cucurbita ficifolia (dose: 1000 U/mg of hydrolyzed YP (E/S (w/w)=1:7.52)) was employed to obtain protein hydrolysates. The 4-h hydrolysate exhibited a significant (IC₅₀=482.5 μg/mL) ACE inhibitory activity. Moreover, hydrolysate showed no cytotoxic activity on human and animal cell lines which makes it a very useful multifunctional method for peptide preparation. The compiled isolation procedure (ultrafiltration, size-exclusion chromatography and RP-HPLC) of bioactive peptides from YP hydrolysate resulted in obtaining peptides with the strong ACE inhibitory activity. One homogeneous and three heterogeneous peptide fractions were identified. The peptides were composed of 9-18 amino-acid residues, including mainly arginine and leucine at the N-terminal positions. To confirm the selected bioactive peptide sequences their analogs were chemically synthesized and tested. Peptide LAPSLPGKPKPD showed the strongest ACE inhibitory activity, with IC₅₀ value of 1.97 μmol/L. Peptides with specific biological activity can be used in pharmaceutical, cosmetic or food industries. Because of their potential role as physiological modulators, as well as theirhigh safety profile, they can be used as natural pharmacological compounds or functional food ingredients. The development of biotechnological solutions to obtain peptides with desired biological activity is already in progress. Studies in this area are focused on using unconventional highly specific enzymes and more efficient methods developed to conduct food process technologies. Natural peptides have many advantages. They are mainly toxicologically safe, have wide spectra of therapeutic actions, exhibit less side effects compared to synthetic drugs and are more efficiently absorbed in the intestinal tract. The complexity of

  9. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses.

    Science.gov (United States)

    Cheung, Imelda W Y; Nakayama, Satoko; Hsu, Monica N K; Samaranayaka, Anusha G P; Li-Chan, Eunice C Y

    2009-10-14

    The potential for producing antihypertensive peptides from oat proteins through enzymatic hydrolysis was assessed in silico and confirmed in vitro. Thermolysin (EC 3.4.24.27) was predicted using BIOPEP database as the enzyme that would theoretically produce the most angiotensin I converting enzyme (ACE) inhibitory peptides from oat. Experimental evidence confirmed that strong ACE-inhibitory activity was produced under various hydrolysis conditions. Hydrolysates produced under high enzyme-to-substrate ratio (3%) short time (20 min) (HEST) and low enzyme-to-substrate ratio (0.1%) long time (120 min) (LELT) conditions had IC(50) values of 30 and 50 microg/mL, respectively. After simulated gastrointestinal digestion, the IC(50) of the HEST hydrolysate was 35 microg/mL whereas the IC(50) of the LELT hydrolysate was higher at 85 microg/mL. Ultrafiltration revealed that potent ACE-inhibitory peptides had molecular weights below 3 kDa. This study demonstrates the usefulness of in silico analysis to select enzymes for hydrolysis of proteins not previously examined as sources of bioactive peptides.

  10. Acetyl-cholinesterase Enzyme Inhibitory Effect of Calophyllum species

    African Journals Online (AJOL)

    : Most of the extracts showed promising inhibitory activity against AChE at concentrations of 100 μg/mL, with the methanol extract of C. inophyllum demonstrating the strongest inhibitory effect of 81.28 % followed by the methanol extract of C.

  11. Inhibitory activity of the peptides derived from buffalo prolactin on ...

    Indian Academy of Sciences (India)

    The peptide fragments obtained by cathepsin digestion of purified buffalo prolactin (buPRL) monomer have been characterized using SDS-PAGE and FPLC with regard to size and pI. ... The synthetic peptide matching with SST sequence was found to exhibit antiangiogenic activity in both in vitro and ex vivo assays.

  12. Catalytic Features of the Botulinum Neurotoxin A Light Chain Revealed by High Resolution Structure of an Inhibitory Peptide Complex

    Energy Technology Data Exchange (ETDEWEB)

    Silvaggi,N.; Wilson, D.; Tzipori, S.; Allen, K.

    2008-01-01

    The Clostridium botulinum neurotoxin serotype A light chain (BoNT/A-LC) is a Zn(II)-dependent metalloprotease that blocks the release of acetylcholine at the neuromuscular junction by cleaving SNAP-25, one of the SNARE proteins required for exocytosis. Because of the potential for use of the toxin in bioterrorism and the increasingly widespread application of the toxin in the medical field, there is significant interest in the development of small-molecule inhibitors of the metalloprotease. Efforts to design such inhibitors have not benefited from knowledge of how peptides bind to the active site since the enzyme-peptide structures available previously either were not occupied in the vicinity of the catalytic Zn(II) ion or did not represent the product of SNAP-25 substrate cleavage. Herein we report the 1.4 Angstroms-resolution X-ray crystal structure of a complex between the BoNT/A-LC and the inhibitory peptide N-Ac-CRATKML, the first structure of the light chain with an inhibitory peptide bound at the catalytic Zn(II) ion. The peptide is bound with the Cys S? atom coordinating the metal ion. Surprisingly, the cysteine sulfur is oxidized to the sulfenic acid form. Given the unstable nature of this species in solution, is it likely that oxidation occurs on the enzyme. In addition to the peptide-bound structure, we report two structures of the unliganded light chain with and without the Zn(II) cofactor bound at 1.25 and 1.20 Angstroms resolution, respectively. The two structures are nearly identical, confirming that the Zn(II) ion plays a purely catalytic role. Additionally, the structure of the Zn(II)-bound uncomplexed enzyme allows identification of the catalytic water molecule and a second water molecule that occupies the same position as the peptidic oxygen in the tetrahedral intermediate. This observation suggests that the enzyme active site is prearranged to stabilize the tetrahedral intermediate of the protease reaction.

  13. Signal peptide etiquette during assembly of a complex respiratory enzyme.

    Science.gov (United States)

    James, Martyn J; Coulthurst, Sarah J; Palmer, Tracy; Sargent, Frank

    2013-10-01

    Salmonella enterica serovar Typhimurium is a Gram-negative pathogen capable of respiration with a number of terminal electron acceptors. Tetrathionate reductase is important for the infection process and is encoded by the ttrBCA operon where TtrA and TtrB are metallocofactor-containing proteins targeted to the periplasmic side of the membrane by two different Tat targeting peptides. In this work, the inter-relationship between these two signal peptides has been explored. Molecular genetics and biochemical approaches reveal that the processing of the TtrB Tat signal peptide is dependent on the successful assembly of its partner protein, TtrA. Inactivation of either the TtrA or the TtrB Tat targeting peptides individually was observed to have limited overall effects on assembly of the enzyme or on cellular tetrathionate reductase activity. However, inactivation of both signal peptides simultaneously was found to completely abolish physiological tetrathionate reductase activity. These data suggest both signals are normally active during assembly of the enzyme, and imply a code of conduct exists between the signal peptides where one can compensate for inactivity in the other. Since it appears likely that tetrathionate reductase presents itself for export as a multi-signal complex, these observations also have implications for the mechanism of the bacterial Tat translocase. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  14. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk.

    Science.gov (United States)

    Gútiez, Loreto; Gómez-Sala, Beatriz; Recio, Isidra; del Campo, Rosa; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2013-08-16

    Enterococcus faecalis isolates from food and environmental origin were evaluated for their angiotensin-converting enzyme (ACE)-inhibitory activity (ACE-IA) after growth in bovine skim milk (BSM). Most (90% active) but not all (10% inactive) E. faecalis strains produced BSM-derived hydrolysates with high ACE-IA. Known ACE-inhibitory peptides (ACE-IP) and an antioxidant peptide were identified in the E. faecalis hydrolysates by reversed-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC-MS/MS). Antimicrobial activity against Pediococcus damnosus CECT4797 and Listeria ivanovii CECT913 was also observed in the E. faecalis hydrolysates. The incidence of virulence factors in the E. faecalis strains with ACE-IA and producers of ACE-IP was variable but less virulence factors were observed in the food and environmental strains than in the clinical reference strains. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) based analysis demonstrated that food and environmental E. faecalis strains were genetically different from those of clinical origin. When evaluated, most E. faecalis strains of clinical origin also originated BSM-derived hydrolysates with high ACE-IA due to the production of ACE-IP. Accordingly, the results of this work suggest that most E. faecalis strains of food, environmental and clinical origin produce BSM-derived bioactive peptides with human health connotations and potential biotechnological applications. © 2013 Elsevier B.V. All rights reserved.

  15. Inhibitory activity of the peptides derived from buffalo prolactin on ...

    Indian Academy of Sciences (India)

    The peptide fragments obtained by cathepsin digestion of purified buffalo prolactin (buPRL) monomer have been characterized using SDS-PAGE and FPLC with regard to size and pI. Their antiangiogenic activity was tested in chick embryo chorioallantoic membrane (CAM) assay and the human endothelial cells wound ...

  16. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Yu, Zhipeng; Zhang, Ting; Liu, Jingbo

    2016-01-01

    The objective of this study was to investigate the digestion and absorption of egg white-derived angiotensin I-converting enzyme (ACE)-inhibitory peptide TNGIIR in human intestinal Caco-2 cell monolayers. Results showed that the digestion of TNGIIR to simulated gastrointestinal enzymes and brush border membrane peptidases were 5.87% ± 1.92% and 17.17% ± 0.64%, respectively (p Caco-2 cell monolayers was determined to be (4.92 ± 0.40) × 10(-6) cm/s, indicating that TNGIIR can transport across Caco-2 cell monolayers in intact form. In addition, only cytochalasin D, a disruptor of tight junctions (TJs), changed TNGIIR transport rate significantly (p Caco-2 cell monolayers was paracellular pathway via TJs.

  17. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation.

    Science.gov (United States)

    Sun, Yue; Shang, Dejing

    2015-01-01

    Antimicrobial peptides (AMPs) are usually small molecule peptides, which display broad-spectrum antimicrobial activity, high efficiency, and stability. For the multiple-antibiotic-resistant strains, AMPs play a significant role in the development of novel antibiotics because of their broad-spectrum antimicrobial activities and specific antimicrobial mechanism. Besides broad-spectrum antibacterial activity, AMPs also have anti-inflammatory activity. The neutralization of lipopolysaccharides (LPS) plays a key role in anti-inflammatory action of AMPs. On the one hand, AMPs can readily penetrate the cell wall barrier by neutralizing LPS to remove Gram-negative bacteria that can lead to infection. On the contrary, AMPs can also inhibit the production of biological inflammatory cytokines to reduce the inflammatory response through neutralizing circulating LPS. In addition, AMPs also modulate the host immune system by chemotaxis of leukocytes, to promote immune cell proliferation, epithelialization, and angiogenesis and thus play a protective role. This review summarizes some recent researches about anti-inflammatory AMPs, with a focus on the interaction of AMPs and LPS on the past decade.

  18. Structure elucidation of ACE-inhibitory and antithrombotic peptides isolated from mackerel skin gelatine hydrolysates.

    Science.gov (United States)

    Khiari, Zied; Rico, Daniel; Martin-Diana, Ana Belen; Barry-Ryan, Catherine

    2014-06-01

    The fish-processing industry generates significant amounts of waste and by-products that are usually discarded. This study investigated the preparation of bioactive gelatine peptides from fish skin. Gelatine was extracted from mackerel (Scomber scombrus) skin and hydrolysed by pepsin for 1, 2, 6 and 24 h. All hydrolysates were screened for antioxidant, ACE-inhibitory and antithrombotic activities. Gelatine peptides obtained after 24 h of hydrolysis exhibited the highest antioxidant activity (DPPH reduction ∼80%, FRAP ∼130 µmol Trolox equivalent L(-1) ). These hydrolysates had high ACE-inhibitory activity (>70%) and were able to significantly (P < 0.05) inhibit platelet aggregation by about 30%, corresponding to moderate antithrombotic activity. The bioactive properties were mainly due to the presence of low-molecular-weight peptides of 337 and 423 Da. © 2013 Society of Chemical Industry.

  19. Studies on a growth-inhibitory peptide derived from alpha-fetoprotein and some analogs.

    Science.gov (United States)

    Eisele, L E; Mesfin, F B; Bennett, J A; Andersen, T T; Jacobson, H I; Soldwedel, H; MacColl, R; Mizejewski, G J

    2001-01-01

    A 34-amino acid synthetic peptide was derived from the third domain of human alpha-fetoprotein, and the peptide was shown to inhibit estrogen-stimulated growth. Under certain conditions, however, the peptide lost growth-inhibitory activity. A biophysical study of the peptide was undertaken with a goal of obtaining completely reliable preparations. The peptide was studied using gel-filtration column chromatography as a function of peptide concentration and age of solution, and was found to exhibit complex aggregation behaviors. During the early period (0-3 h) after dissolving lyophilized peptide into pH 7.4 buffer, solutions were composed mostly of trimers. At higher peptide concentrations (> or = 3.0 g/L), the trimers aggregated extensively to a large aggregate (minimum size approximately 102 peptides). At 5.0-8.0 g/L, these large aggregates increased in size (up to approximately 146 peptides) until trimers were largely exhausted from solution. During the later times (>3 h) after sample preparation, the trimeric oligomer of the peptide dissociated slowly to form dimers for samples at 0.10-3.0 g/L. After their build-up, a very small number of dimers associated to form hexamers. Disulfide bonds stabilized the dimers as indicated by the conversion of dimers to trimers upon the addition of a reducing agent, and the failure of dimers to form in the presence of reducing agent. Reducing agent did not affect trimer or large aggregate formation. Trimers were found to be active in an assay monitoring inhibition of estrogen-stimulated growth, whereas dimers and large aggregates were inactive. The two cysteines in the peptide were modified to either S-methylcysteine or S-(2-aminoethyl)cysteine, and both derivatives showed significant growth-inhibition activity. A serine analog in which both cysteines were replaced had very different aggregation behavior than the cysteine peptide and lacked its growth inhibitory ability. Peptide aggregation is critically important in

  20. Cyclooxygenase-2 enzyme inhibitory triterpenoids from Picrorhiza kurroa seeds.

    Science.gov (United States)

    Zhang, Yanjun; Dewitt, David L; Murugesan, Sorimuthu; Nair, Muraleedharan G

    2005-11-04

    A bioassay guided phytochemical study of the ethyl acetate extract of the seeds of Picrorhiza kurroa afforded a new triterpenoid, 2alpha, 3beta, 19beta, 23-tetrahydroxyolean-12-en-28-O-beta-D-glucoside (1), along with five known triterpenoids, 2alpha, 3beta, 19beta, 23-tetrahydroxyolean-12-en-28-oic acid (2), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-O-beta-d-glucoside (3), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-oic acid (4), 2alpha, 3beta, 19beta, trihydroxyolean-12-en-28-oic acid (5), and 2alpha, 3beta, 6beta, 23-tetrahydroxyolean-12-en-28-oic acid (6). Their structures were established by extensive NMR spectral studies. The acetyl derivatives, compounds 7 and 8, were prepared from compounds 1 and 2, respectively, to aid in their structure elucidation. The inhibition of cyclooxygenase-2 (COX-2) enzyme by compounds 1--6 at 100 microg/mL was 38.3%, 39%, 37%, 49.6%, 25%, and 45.0%, respectively. However, compounds 1--6, at 100 microg/mL, did not inhibit cyclooxygenase-1 (COX-1) enzyme. Compound 1 is a novel triterpenoid and compounds 1--6 are isolated for the first time from the seeds of P. kurroa.

  1. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation.

    Science.gov (United States)

    Ngo, Dai-Hung; Ryu, BoMi; Kim, Se-Kwon

    2014-01-15

    Skin gelatin of skate (Okamejei kenojei) was hydrolyzed using Alcalase, flavourzyme, Neutrase and protamex. It was found that the Alcalase hydrolysate exhibited the highest angiotensin-I converting enzyme (ACE) inhibitory activity. Then, Alcalase hydrolysate was further hydrolyzed with protease and separated by an ultrafiltration membrane system. Finally, two peptides responsible for ACE inhibitory activity were identified to be MVGSAPGVL (829Da) and LGPLGHQ (720Da), with IC50 values of 3.09 and 4.22μM, respectively. Moreover, the free radical-scavenging activity of the purified peptides was determined in human endothelial cells. In addition, the antioxidative mechanism of the purified peptides was evaluated by protein and gene expression levels of antioxidant enzymes. The current study demonstrated that the peptides derived from skate skin gelatin could be used in the food industry as functional ingredients with potent antihypertensive and antioxidant benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A New Frontier in Soy Bioactive Peptides that May Prevent Age‐related Chronic Diseases

    National Research Council Canada - National Science Library

    Wang, Wenyi; De Mejia, Elvira Gonzalez

    2005-01-01

    .... Numerous biologically active peptides (bioactive peptides) have been identified. Most bioactive peptides are derived from milk and dairy products, with the most common being angiotensin converting enzyme inhibitory peptides...

  3. ANTI-OXIDANT AND ENZYME-INHIBITORY POTENTIAL OF MARINE STREPTOMYCES

    OpenAIRE

    Suthindhiran, K.; M. A. Jayasri; Revathy, T.

    2013-01-01

    Marine actinomycetes are potential source for the discovery of novel compounds and enzymes. Though extensive research on marine actinomycetes is underway globally, the actinomycetes research from Indian marine ecosystem is unexplored and understudied. Hence, the present research is focussed on the screening of bioactive compounds from marine actinomycetes isolated from Indian coastal region. This study is designed to determine the antioxidant and enzyme inhibitory potential of Streptomyces sp...

  4. In vitro inhibitory potential of selected Malaysian plants against key enzymes involved in hyperglycemia and hypertension.

    Science.gov (United States)

    Loh, S P; Hadira, O

    2011-04-01

    This study was conducted to determine the inhibitory potential of selected Malaysian plants against key enzymes related to type 2 diabetes and hypertension. The samples investigated were pucuk ubi (Manihot esculenta), pucuk betik (Carica papaya), ulam raja (Cosmos caudatus), pegaga (Centella asiatica) and kacang botol (Psophocarpus tetragonolobus). The inhibitory potential of hexane and dichloromethane extracts against the enzymes were determined by using alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme (ACE) inhibition assay. In alpha-amylase inhibition assay, the inhibitory potential was highest in pucuk ubi for both hexane (59.22%) and dichloromethane extract (54.15%). Hexane extract of pucuk ubi (95.01%) and dichloromethane extract of kacang botol (38.94%) showed the highest inhibitory potential against alpha-glucosidase, while in ACE inhibition assay, the inhibitory potential was highest in hexane extract of pegaga (48.45%) and dichloromethane extract of pucuk betik (59.77%). This study suggests a nutraceutical potential of some of these plants for hyperglycemia and hypertension prevention associated with type 2 diabetes.

  5. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins.

    Science.gov (United States)

    Wang, Feng; Yu, Guoyong; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2015-11-04

    Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM.

  6. oxadiazole-5-thiol derivatives. 2. Anti-bacterial, enzyme- inhibitory an

    African Journals Online (AJOL)

    Methods: Antibacterial activities of the compounds were evaluated using broth dilution method in 96 well plates. Enzyme ... bacterial potential similar to ciprofloxacin, and had minimum inhibitory concentrations (MIC) of at least. 9.00 ± 4.12 µM against S. .... residues/amino acids as shown in the docking images) of the above ...

  7. Monitoring enzyme synthesis as a means of studying peptide transport and utilization in Escherichia coli.

    Science.gov (United States)

    Bell, G; Payne, G M; Payne, J W

    1977-02-01

    A new method has been developed for measuring peptide transport in aminoacid auxotrophs of Escherichia coli by following induction of beta-galactosidase. Appearance of the enzyme was determined after addition of inducer and peptides to amino-acid starved bacteria. For a given number of lysine equivalents, the rate and the extent of enzyme synthesis were the same for lysine and lysyl peptides; similar results were found for glycine and glycl peptides. Saturation constants for peptide transport were determined from the exogenous peptide concentration that gave half maximal rates of enzyme synthesis. The saturation constants, studies with mutants defective in peptide transport, and detection of competition between peptides for uptake, all endorsed earlier conclusions from growth tests about the structural specificities for peptide transport. The new method is quicker, more sensitive and more informative than growth tests.

  8. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Pilgaard, Bo; Lezyk, Mateusz Jakub

    2017-01-01

    for prediction of enzyme function. A fastand reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interestas demonstrated for the glycosyl hydrolase...... and the lytic polysaccharide monooxygenase families. This approach notonly assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. Results: We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition....... The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared...

  9. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey

    Directory of Open Access Journals (Sweden)

    Nilüfer Orhan

    2014-06-01

    Full Text Available Objective(s:Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus  communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum, are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. Materials and Methods: α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. Results: H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2 on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml. Conclusion:Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes.

  10. Costus afer Possesses Carbohydrate Hydrolyzing Enzymes Inhibitory Activity and Antioxidant Capacity In Vitro

    Directory of Open Access Journals (Sweden)

    Armelle D. Tchamgoue

    2015-01-01

    Full Text Available Diabetes mellitus is a metabolic disorder of glucose metabolism which correlates with postprandial hyperglycemia and oxidative stress. Control of blood glucose level is imperative in the management of diabetes. The present study tested the hypothesis that Costus afer, an antihyperglycemic medicinal plant, possesses inhibitory activity against carbohydrate hydrolyzing enzymes. Hexane, ethyl acetate, methanol, and water extracts were prepared from the leaf, stem, and rhizome of C. afer and subjected to phytochemical screening, assayed for α-amylase and α-glucosidase inhibitory activities and antioxidant capacity (determined by total phenolic and total flavonoids contents, ferric reducing antioxidant power (FRAP, and DPPH radical scavenging activity. All extracts inhibited α-amylase and α-glucosidase activities. Ethyl acetate rhizome and methanol leaf extracts exhibited the best inhibitory activity against α-amylase and α-glucosidase (IC50: 0.10 and 5.99 mg/mL, respectively. Kinetic analysis revealed two modes of enzyme inhibition (competitive and mixed. All extracts showed antioxidant capacity, with hexane extracts exhibiting the best activity. DPPH assay revealed that methanol leaf, rhizome, and ethyl acetate stem extracts (IC50 < 5 mg/mL were the best antioxidants. The presence of bioactive compounds such as flavonoids, alkaloids, phenols, and tannins may account for the antioxidant capacity and carbohydrate hydrolyzing enzyme inhibitory activity of C. afer.

  11. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  12. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities.

    Science.gov (United States)

    Elbarbry, Fawzy; Ung, Aimy; Abdelkawy, Khaled

    2018-01-01

    Quercetin (QR) and thymoquinone (TQ) are herbal remedies that are currently extensively used by the general population to prevent and treat various chronic conditions. Therefore, investigating the potential of pharmacokinetic interactions caused by the concomitant use of these herbal remedies and conventional medicine is warranted to ensure patient safety. This study was conducted to determine the inhibitory effect of QR and TQ, two commonly used remedies, on the activities of selected cytochrome P450 (CYP) enzymes that play an important role in drug metabolism and/or toxicology. The in vitro studies were conducted using fluorescence-based high throughput assays using human c-DNA baculovirus expressed CYP enzymes. For measuring CYP2E1 activity, a validated High-performance liquid chromatography (HPLC) assay was utilized to measure the formation of 6-hydroxychlorzoxazone. The obtained half-maximum inhibitory concentration values with known positive control inhibitors of this study were comparable to the published values indicating accurate experimental techniques. Although QR did not show any significant effect on CYP1A2 and CYP2E1, it exhibited a strong inhibitory effect against CYP2D6 and a moderate effect against CYP2C19 and CYP3A4. On the other hand, TQ demonstrated a strong and a moderate inhibitory effect against CYP3A4 and CYP2C19, respectively. The findings of this study may indicate that consumption of QR or TQ, in the form of food or dietary supplements, with drugs that are metabolized by CYP2C19, CYP2D6, or CYP3A4 may cause significant herb-drug interactions. Neither QR nor TQ has any significant inhibitory effect on the activity of CYP1A2 or CYP2E1 enzymesBoth QR and TQ have a moderate to strong inhibitory effect on CYP3A4 activityQR has a moderate inhibitory effect on CYP2C19 and a strong inhibitory effect on CYP2D6Both QR and TQ are moderate inhibitors of the CYP2C9 activity. Abbreviations used: ABT: Aminobenztriazole, BZF: 7,8 Benzoflavone, CYP

  13. Identification and Characterization of a Small Inhibitory Peptide That Can Target DNA-PKcs Autophosphorylation and Increase Tumor Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaonan [Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou (China); Yang Chunying [Department of Radiation Oncology, Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX (United States); Liu Hai; Wang Qi [Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou (China); Wu Shixiu [Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou (China); Li Xia; Xie Tian [Research Center of Biomedicine and Health, Hangzhou Normal University, Hangzhou (China); Brinkman, Kathryn L.; Teh, Bin S.; Butler, E. Brian [Department of Radiation Oncology, Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX (United States); Xu Bo, E-mail: bxu@tmhs.org [Department of Radiation Oncology, Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX (United States); Zheng, Shu, E-mail: zhengshu@zju.edu.cn [Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China)

    2012-12-01

    Purpose: The DNA protein kinase catalytic subunit (DNA-PKcs) is one of the critical elements involved in the DNA damage repair process. Inhibition of DNA-PKcs results in hypersensitivity to ionizing radiation (IR); therefore, this approach has been explored to develop molecular targeted radiosensitizers. Here, we aimed to develop small inhibitory peptides that could specifically target DNA-PKcs autophosphorylation, a critical step for the enzymatic activation of the kinase in response to IR. Methods and Materials: We generated several small fusion peptides consisting of 2 functional domains, 1 an internalization domain and the other a DNA-PKcs autophosphorylation inhibitory domain. We characterized the internalization, toxicity, and radiosensitization activities of the fusion peptides. Furthermore, we studied the mechanisms of the inhibitory peptides on DNA-PKcs autophosphorylation and DNA repair. Results: We found that among several peptides, the biotin-labeled peptide 3 (BTW3) peptide, which targets DNA-PKcs threonine 2647 autophosphorylation, can abrogate IR-induced DNA-PKcs activation and cause prolonged {gamma}-H2AX focus formation. We demonstrated that BTW3 exposure led to hypersensitivity to IR in DNA-PKcs-proficient cells but not in DNA-PKcs-deficient cells. Conclusions: The small inhibitory peptide BTW3 can specifically target DNA-PKcs autophosphorylation and enhance radiosensitivity; therefore, it can be further developed as a novel class of radiosensitizer.

  14. Tetrapeptides, as small-sized peptidic inhibitors; synthesis and their inhibitory activity against BACE1.

    Science.gov (United States)

    Kakizawa, Taeko; Hidaka, Koushi; Hamada, Daisuke; Yamaguchi, Ryoji; Uemura, Tsuyoshi; Kitamura, Hitomi; Tagad, Harichandra D; Hamada, Takashi; Ziora, Zyta; Hamada, Yoshio; Kimura, Tooru; Kiso, Yoshiaki

    2010-06-01

    Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is known to be involved in the production of amyloid beta-peptide in Alzheimer's disease and is a major target for current drug design. We previously reported substrate-based peptidomimetics, KMI-compounds as potent BACE1 inhibitors. In this study, we designed and synthesized tetrapeptides as low molecular-sized inhibitors. These exhibited high potency against recombinant BACE1, with the highest IC(50) value of 34.6 nM from KMI-927. (c) 2010 European Peptide Society and John Wiley & Sons, Ltd.

  15. BACE1 Inhibitor Peptides: Can an Infinitely Small k cat Value Turn the Substrate of an Enzyme into Its Inhibitor?

    Science.gov (United States)

    Hamada, Yoshio; Ishiura, Shoichi; Kiso, Yoshiaki

    2012-03-08

    Recently, we reported substrate-based pentapeptidic β-secretase (BACE1) inhibitors with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent BACE1 inhibitory activity in enzyme and cell assays, with KMI-429 showing in vivo inhibition of Aβ production. We also designed and synthesized nonpeptidic and small-sized BACE1 inhibitors using "in-silico conformational structure-based design". By studying the structure-activity relationship of these inhibitors, we found that the σ-π interaction of an inhibitor with the BACE1-Arg235 side chain played a key role in the inhibition of BACE1. We speculated that a peptide capable of binding to the BACE1-Arg235 side chain via the σ-π interaction might exhibit BACE1 inhibitory activity. Hence, we designed and synthesized a series of peptides that were modified at the P2 position and found that some of these peptides exhibited a potent BACE1 inhibitory activity despite their structural similarity to the BACE1 substrate.

  16. Clotrimazole potentiates the inhibitory effects of ATP on the key glycolytic enzyme 6-phosphofructo-1-kinase.

    Science.gov (United States)

    Marcondes, Mariah Celestino; Sola-Penna, Mauro; Zancan, Patricia

    2010-05-01

    Clotrimazole (CTZ) has been proposed as a potential anti-neoplastic agent, which inhibits glucose metabolism. The present work aimed to evaluate the effects of CTZ on the kinetic mechanism of 6-phosphofructo-1-kinase (PFK). We show that CTZ promotes a dose-dependent inhibition of PFK, presenting a K(i) of 28 +/- 2 microM. Inhibition occurs through the dissociation of the enzyme tetramers, as demonstrated through fluorescence spectroscopy and gel filtration chromatography. Moreover, the affinities of the enzyme for ATP and fructose-6-phosphate are reduced 50% and 30%, respectively. Furthermore, the affinity of PFK for ATP at the inhibitory site becomes 2-fold higher. Altogether, the results presented here suggest that PFK inhibition by CTZ involves a decrease in the affinity of PFK for its substrates at the catalytic site with the concomitant potentiation of the inhibitory properties of ATP. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties.

    Science.gov (United States)

    Garcia-Mora, Patricia; Peñas, Elena; Frias, Juana; Martínez-Villaluenga, Cristina

    2014-05-07

    The aim of this study was to produce multifunctional hydrolysates from lentil protein concentrates. Four different proteases (Alcalase, Savinase, Protamex, and Corolase 7089) and different hydrolysis times were evaluated for their degree and pattern of proteolysis and their angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activities. Alcalase and Savinase showed the highest proteolytic effectiveness (P ≤ 0.05), which resulted in higher yield of peptides. The hydrolysate produced by Savinase after 2 h of hydrolysis (S2) displayed the highest ACE-inhibitory (IC50 = 0.18 mg/mL) and antioxidant activity (1.22 μmol of Trolox equiv/mg of protein). Subsequent reverse-phase HPLC-tandem mass spectrometric analysis of 3 kDa permeates of S2 showed 32 peptides, mainly derived from convicilin, vicilin, and legumin containing bioactive amino acid sequences, which makes them potential contributors to ACE-inhibitory and antioxidant activities detected. The ACE-inhibitory and antioxidant activities of S2 were significantly improved after in vitro gastrointestinal digestion (P ≤ 0.05). Multifunctional hydrolysates could encourage value-added utilization of lentil proteins for the formulation of functional foods and nutraceuticals.

  18. Review of Growth Inhibitory Peptide as a biotherapeutic agent for tumor growth, adhesion, and metastasis.

    Science.gov (United States)

    Muehlemann, M; Miller, K D; Dauphinee, M; Mizejewski, G J

    2005-09-01

    This review surveys the biological activities of an alpha-fetoprotein (AFP) derived peptide termed the Growth Inhibitory Peptide (GIP), which is a synthetic 34 amino acid segment produced from the full length 590 amino acid AFP molecule. The GIP has been shown to be growth-suppressive in both fetal and tumor cells but not in adult terminally-differentiated cells. The mechanism of action of this peptide has not been fully elucidated; however, GIP is highly interactive at the plasma membrane surface in cellular events such as endocytosis, cell contact inhibition and cytoskeleton-induced cell shape changes. The GIP was shown to be growth-suppressive in nine human tumor types and to suppress the spread of tumor infiltrates and metastases in human and mouse mammary cancers. The AFP-derived peptide and its subfragments were also shown to inhibit tumor cell adhesion to extracellular matrix (ECM) proteins and to block platelet aggregation; thus it was expected that the GIP would inhibit cell spreading/migration and metastatic infiltration into host tissues such as lung and pancreas. It was further found that the cyclic versus linear configuration of GIP determined its biological and anti-cancer efficacy. Genbank amino acid sequence identities with a variety of integrin alpha/beta chain proteins supported the GIP's linkage to inhibition of tumor cell adhesion and platelet aggregation. The combined properties of tumor growth suppression, prevention of tumor cell-to-ECM adhesion, and inhibition of platelet aggregation indicate that tumor-to-platelet interactions present promising targets for GIP as an anti-metastatic agent. Finally, based on cholinergic studies, it was proposed that GIP could influence the enzymatic activity of membrane acetylcholinesterases during tumor growth and metastasis. It was concluded that the GIP derived from full-length AFP represents a growth inhibitory motif possessing instrinsic properties that allow it to interfere in cell surface events such

  19. Inhibitory Properties of Cysteine Protease Pro-Peptides from Barley Confer Resistance to Spider Mite Feeding

    OpenAIRE

    Santamaria, M. Estrella; Arnaiz, Ana; Diaz-Mendoza, Mercedes; Martinez, Manuel; Diaz, Isabel

    2015-01-01

    C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and ac...

  20. Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents

    Science.gov (United States)

    Huang, Yi-Lin; Bode, Jeffrey W.

    2014-10-01

    Microbial fermentation can rapidly provide potent compounds that can be easily screened for biological activity, and the active components can be isolated. Its success in drug discovery has inspired extensive efforts to modulate and control the products. In this Article, we document a ‘synthetic fermentation’ of bioactive, unnatural peptides ‘grown’ from small building blocks in water using amide-forming ligations. No organisms, enzymes or reagents are needed. The sequences, structures and compositions of the products can be modulated by adjusting the building blocks and conditions. No specialized knowledge of organic chemistry or handling of toxic material is required to produce complex organic molecules. The ‘fermentations’ can be conducted in arrays and screened for biological activity without isolation or workup. As a proof-of-concept, about 6,000 unnatural peptides were produced from just 23 building blocks, from which a hepatitis C virus NS3/4A protease inhibitor with a half-maximum inhibitory concentration of 1.0 μM was identified and characterized.

  1. COMPARATIVE STUDY ON ANGIOTENSIN CONVERTING ENZYME INHIBITORY ACTIVITY OF HYDROLYSATE OF MEAT PROTEIN OF INDONESIAN LOCAL LIVESTOCKS

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The experiment was conducted to investigate the angiotensin converting enzyme (ACE inhibitoryactivity of hydrolysate in meat protein of Bali cattle, Kacang goat, native chicken, and local duck. Themeats of Bali cattle, Kacang goat, native chicken, and local duck were used in this study. The meatswere ground using food processor added with aquadest to obtain meat extract. The meat extracts werethen hydrolyzed using protease enzymes to obtain hydrolysate of meat protein. Protein concentration ofmeat extract and hydrolysate of meat protein were determined, and were confirmed by sodium dodecylsulfate - poly acrylamide gel electrophoresis (SDS-PAGE. ACE inhibitory activity of hydrolysate ofmeat protein derived from Bali cattle, Kacang goat, native chicken, and local duck was also determined.The results showed that protein concentration of hydrolysate of meat protein of Bali cattle, Kacang goat,native chicken, and local duck meat was significantly higher than their meat extracts. SDS-PAGEanalysis indicated that hydrolysate of meat protein of Bali cattle, Kacang goat, native chicken, and localduck had more peptides with lower molecular weight, compared to their meat extracts. Hydrolysate ofmeat protein of Bali cattle, Kacang goat, native chicken, and local duck had potencies in inhibiting ACEactivity, so it will potentially reduce blood pressure.

  2. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits.

    Science.gov (United States)

    Podsędek, Anna; Majewska, Iwona; Redzynia, Małgorzata; Sosnowska, Dorota; Koziołkiewicz, Maria

    2014-05-21

    Dietary inhibitors of fats and carbohydrates degrading enzymes can reduce obesity and type 2 diabetes. In this study, we screened crude extracts from 30 commonly consumed fruits to test their in vitro inhibitory effect against key enzymes relevant for obesity (pancreatic lipase) and type 2 diabetes (α-glucosidase and α-amylase), total phenolic content (Folin-Ciocalteu method), and antioxidant capacity (ABTS and FRAP). The IC50 values of the fruits tested varied from 39.91 to >400 mg/mL, from 1.04 to >80 mg/mL, and from 0.72 to 135.07 mg/mL against α-glucosidase, α-amylase, and pancreatic lipase, respectively. Antioxidant capacity ranged from 0.66 to 124.66 μmol of TE/g of fruit and strongly correlated with phenolic content, while the enzyme inhibition was poorly correlated with total phenolic and antioxidant capacity. Among fruits tested, blue honeysuckle and red gooseberry exhibited the highest inhibitory activity with respect to the carbohydrate degrading enzymes, while lingonberry had the strongest anti-lipase activity.

  3. Investigation of hydrazide derivatives inhibitory effect on peroxidase enzyme purified from turnip roots

    Science.gov (United States)

    Almaz, Züleyha; Öztekin, Aykut; Özdemir, Hasan

    2017-04-01

    Peroxidases (EC: 1.11.1.7) are haem proteins and contain iron (III) protoporphyrin IX (ferriprotoporphyrin IX) as the prosthetic group [1]. They are found in all cells and play a critical role in many biological processes, such as the host-defense mechanism [2]. Peroxidases (PODs) are widely used in clinical biochemistry, enzyme immunoassays, synthesis of various aromatic chemicals, treatment of waste water containing phenolic compounds [3, 4]. In this study, peroxidase enzyme was purified with Para amino benzohydrazide (PABH)-L-Tyrosine Sepharose 4B affinity chromatography to investigate the inhibitory effect of hydrazide derivatives on Turnip (Brassica rapa L.). IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzyme and inhibition type of these molecules were determined.

  4. Inhibitory actions of Pseuderanthemum palatiferum (Nees Radlk. leaf ethanolic extract and its phytochemicals against carbohydrate-digesting enzymes

    Directory of Open Access Journals (Sweden)

    Pawitra Pulbutr

    2016-02-01

    Conclusions: These results indicate an inhibitory action against carbohydrate-digesting enzymes as the anti-diabetic mechanism of action of PPE. Nonetheless, further clinical study is required to justify its role in the treatment of diabetes.

  5. Discovery and engineering of enzymes for chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Toplak, Ana

    2016-01-01

    The use of peptides and proteins as therapeutic agents, nutritional additives or cosmetic ingredients is becoming more prominent. The number of therapeutic peptides in development is increasing, as well as their length, complexity and quantity requirements. An attractive approach for peptide

  6. Peptiligase, an Enzyme for Efficient Chemoenzymatic Peptide Synthesis and Cyclization in Water

    NARCIS (Netherlands)

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J. L. M.; Wu, Bian; Janssen, Dick B.

    2016-01-01

    We describe a novel, organic cosolvent-stable and cation-independent engineered enzyme for peptide coupling reactions. The enzyme is a variant of a stable calcium-independent mutant of subtilisin BPN, with the catalytic Ser212 mutated to Cys and Pro216 converted to Ala. The enzyme, called

  7. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum.

    Science.gov (United States)

    Mentlein, R; Gallwitz, B; Schmidt, W E

    1993-06-15

    Peptides of the glucagon/vasoactive-intestinal-peptide (VIP) peptide family share a considerable sequence similarity at their N-terminus. They either start with Tyr-Ala, His-Ala or His-Ser which might be in part potential targets for dipeptidyl-peptidase IV, a highly specialized aminopeptidase removing dipeptides only from peptides with N-terminal penultimate proline or alanine. Growth-hormone-releasing factor (1-29)amide and gastric inhibitory peptide/glucose-dependent insulinotropic peptide (GIP) with terminal Tyr-Ala as well as glucagon-like peptide-1(7-36)amide/insulinotropin [GLP-1(7-36)amide] and peptide histidine methionine (PHM) with terminal His-Ala were hydrolysed to their des-Xaa-Ala derivatives by dipeptidyl-peptidase IV purified from human placenta. VIP with terminal His-Ser was not significantly degraded by the peptidase. The kinetics of the hydrolysis of GIP, GLP-1(7-36)amide and PHM were analyzed in detail. For these peptides Km values of 4-34 microM and Vmax values of 0.6-3.8 mumol.min-1.mg protein-1 were determined for the purified peptidase which should allow their enzymic degradation also at physiological, nanomolar concentrations. When human serum was incubated with GIP or GLP-1(7-36)amide the same fragments as with the purified dipeptidyl-peptidase IV, namely the des-Xaa-Ala peptides and Tyr-Ala in the case of GIP or His-Ala in the case of GLP-1(7-36)amide, were identified as the main degradation products of these peptide hormones. Incorporation of inhibitors specific for dipeptidyl-peptidase IV, 1 mM Lys-pyrrolidide or 0.1 mM diprotin A (Ile-Pro-Ile), completely abolished the production of these fragments by serum. It is concluded that dipeptidyl-peptidase IV initiates the metabolism of GIP and GLP-1(7-36)amide in human serum. Since an intact N-terminus is obligate for the biological activity of the members of the glucagon/VIP peptide family [e. g. GIP(3-42) is known to be inactive to release insulin in the presence of glucose as does intact

  8. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions.

    Science.gov (United States)

    Chen, Lei; Kang, Young-Hwa

    2014-03-12

    An adaptation of cultural management to the specific cultural system, as well as crop demand, can further result in the improvement of the quality of horticultural products. Therefore, this study focused on the antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) grown in hydroponics in comparison with those of the plant grown in soil. The antioxidant activities of Plebeian herba extract were measured as 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities as well as the reducing power by decreasing nitric oxide (NO) and superoxide dismutase activity (SOD) in vitro. Interestingly, by comparison with hydroponics and traditional cultivation, Plebeian herba cultivated in nutrition-based soil improved inhibitory effect on free radicals of DPPH, ABTS, and NO and increased the contents of phenolics such as caffeic acid (1), luteolin-7-glucoside (2), homoplantaginin (3), hispidulin (4), and eupatorin. Free radical scavenging and SOD activity, as well as α-glucosidase inhibitory effect, were higher in Plebeian herba grown in nutrition-based soil than in plants grown in hydroponics and traditional condition.

  9. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme.

    Directory of Open Access Journals (Sweden)

    Po-Ting Chen

    Full Text Available Upregulation of neprilysin (NEP to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer's disease (AD. This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12-16AAC (with the sequence VHHQKAAC, which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12-16AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12-16AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE, but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1-7C [which is sensitive to NEP and insulin-degrading enzyme (IDE], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1-7C and qf-Aβ(12-16AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.

  10. Predicted Release and Analysis of Novel ACE-I, Renin, and DPP-IV Inhibitory Peptides from Common Oat (Avena sativa) Protein Hydrolysates Using in Silico Analysis.

    Science.gov (United States)

    Bleakley, Stephen; Hayes, Maria; O' Shea, Nora; Gallagher, Eimear; Lafarga, Tomas

    2017-12-04

    The renin-angiotensin-aldosterone system (RAAS) plays an important role in regulating hypertension by controlling vasoconstriction and intravascular fluid volume. RAAS itself is largely regulated by the actions of renin (EC 3.4.23.15) and the angiotensin-I-converting enzyme (ACE-I; EC 3.4.15.1). The enzyme dipeptidyl peptidase-IV (DPP-IV; EC 3.4.14.5) also plays a role in the development of type-2 diabetes. The inhibition of the renin, ACE-I, and DPP-IV enzymes has therefore become a key therapeutic target for the treatment of hypertension and diabetes. The aim of this study was to assess the bioactivity of different oat ( Avena sativa ) protein isolates and their ability to inhibit the renin, ACE-I, and DPP-IV enzymes. In silico analysis was carried out to predictthe likelihood of bioactive inhibitory peptides occurring from oat protein hydrolysates following in silico hydrolysis with the proteases papain and ficin. Nine peptides, including FFG, IFFFL, PFL, WWK, WCY, FPIL, CPA, FLLA, and FEPL were subsequently chemically synthesised, and their bioactivities were confirmed using in vitro bioassays. The isolated oat proteins derived from seven different oat varieties were found to inhibit the ACE-I enzyme by between 86.5 ± 10.7% and 96.5 ± 25.8%, renin by between 40.5 ± 21.5% and 70.9 ± 7.6%, and DPP-IV by between 3.7 ± 3.9% and 46.2 ± 28.8%. The activity of the synthesised peptides was also determined.

  11. Enzyme Inhibitory Properties, Antioxidant Activities, and Phytochemical Profile of Three Medicinal Plants from Turkey

    Directory of Open Access Journals (Sweden)

    Gokhan Zengin

    2015-01-01

    Full Text Available We aimed to investigate the inhibitory potential of three medicinal plants (Hedysarum varium, Onobrychis hypargyrea, and Vicia truncatula from Turkey against key enzymes involved in human pathologies, namely, diabetes (α-amylase and α-glucosidase, neurodegenerative disorders (tyrosinase, acetylcholinesterase, and butyrylcholinesterase, and hyperpigmentation (tyrosinase. The antioxidant potential, phenolic and flavonoid content of ethyl acetate, and methanolic and aqueous extracts were investigated using in vitro assays. The total antioxidant capacity (TAC, β-carotene/linoleic acid bleaching activity, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH•, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+, cupric ion reducing antioxidant capacity (CUPRAC, ferric reducing antioxidant power (FRAP, and metal chelating activity on ferrous ions were used to evaluate the antioxidant capabilities of the extracts. The half-maximal inhibitory concentrations (IC50 of the extracts on cholinesterase, tyrosinase, and α-amylase were significantly higher than the references, galantamine, kojic acid, and acarbose, respectively. The half-maximal effective concentrations (EC50 of the extracts on TAC, CUPRAC, and FRAP were significantly higher than trolox. The phenol and flavonoid contents of the plant extracts were in the range 20.90±0.190–83.25±0.914 mg gallic acid equivalent/g extract and 1.45±0.200–39.71±0.092 mg rutin equivalent/g extract, respectively. The plants were found to possess moderate antioxidant capacities and interesting inhibitory action against key enzymes.

  12. Fermentation characteristics and angiotensin I-converting enzyme-inhibitory activity of Lactobacillus helveticus isolate H9 in cow milk, soy milk, and mare milk.

    Science.gov (United States)

    Wang, Jicheng; Li, Changkun; Xue, Jiangang; Yang, Jie; Zhang, Qing; Zhang, Heping; Chen, Yongfu

    2015-06-01

    Lactobacillus helveticus isolate H9 demonstrated high angiotensin I-converting enzyme (ACE)-inhibitory activity in previous research. Here, we evaluated the fermentation characteristics (pH, titratable acidity, free amino nitrogen, and viable bacterial counts), ACE-inhibitory activity, and contents of Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) peptides of stored yogurt (4°C for 28 d) fermented by L. helveticus isolate H9 (initially inoculated at 4 concentrations), from cow, mare, and soy milks. During storage, the pH and titratable acidity remained stable in yogurts produced from all milk types and all inoculation concentrations. The viable bacterial counts in all stored yogurts ranged between 10(6.72) and 10(8.59) cfu/g. The highest ACE-inhibitory activity (70.9-74.5%) was achieved at inoculation concentrations of 5×10(6) cfu/mL. The ACE-inhibitory tripeptides VPP and IPP as determined by ultra-performance liquid chromatography-tandem mass spectrometry were not produced in yogurt made from soy milk or mare milk. These evaluations indicate that L. helveticus H9 has good probiotic properties and would be a promising candidate for production of fermented food with probiotic properties. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Aqueous extract of Psidium guajava leaves: phenolic compounds and inhibitory potential on digestive enzymes.

    Science.gov (United States)

    Simão, Anderson A; Marques, Tamara R; Marcussi, Silvana; Corrêa, Angelita D

    2017-01-01

    Leaves of Psidium guajava L. (guava) have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI) on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated). In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.

  14. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    Science.gov (United States)

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  15. Angiotensin converting enzyme (ACE) inhibitory, antihypertensive and antihyperlipidaemic activities of protein hydrolysates from Rhopilema esculentum.

    Science.gov (United States)

    Liu, Xin; Zhang, Miansong; Zhang, Chao; Liu, Changheng

    2012-10-15

    Angiotensin-converting enzyme (ACE) inhibitory, antihypertensive and antihyperlipidaemic activities of protein hydrolysates (RPH) from the jellyfish Rhopilema esculentum were investigated. R. esculentum was hydrolysed sequentially with pepsin and papain, and then the hydrolysate was ultrafiltered with a 2000 Da cut-off membrane. It was found that RPH contained high levels of Gly, Glu, Pro, Asp and Ala, having potential ACE inhibitory activity in vitro with an IC(50) of 1.28 mg/ml. It was also found that systolic blood pressure was reduced markedly in spontaneously hypertensive rats after single and chronic oral administration of RPH, indicating that RPH had an antihypertensive effect. In addition, oral administration of RPH decreased total serum cholesterol and triglyceride, and increased high-density lipoprotein cholesterol in rats fed with high-fat diet. These results indicate that RPH may prove to be a promising functional food for the prevention and treatment of hypertension and hyperlipidaemia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia

    Directory of Open Access Journals (Sweden)

    Gulati Vandana

    2012-06-01

    Full Text Available Abstract Background Traditional Indian and Australian medicinal plant extracts were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of hyperglycemia and type 2 diabetes. The antioxidant activities were also assessed. Methods The evaluation of enzyme inhibitory activity of seven Australian aboriginal medicinal plants and five Indian Ayurvedic plants was carried out against α-amylase and α-glucosidase. Antioxidant activity was determined by measuring (i the scavenging effect of plant extracts against 2, 2-diphenyl-1-picryl hydrazyl (DPPH and 2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS and (ii ferric reducing power. Total phenolic and total flavonoid contents were also determined. Results Of the twelve plant extracts evaluated, the highest inhibitory activity against both α-amylase and α-glucosidase enzymes was exerted by Santalum spicatum and Pterocarpus marsupium with IC50 values of 5.43 μg/ml and 0.9 μg/ml, respectively, and 5.16 μg/ml and 1.06 μg/ml, respectively. However, the extracts of Acacia ligulata (IC50 = 1.01 μg/ml, Beyeria leshnaultii (0.39 μg/ml, Mucuna pruriens (0.8 μg/ml and Boerhaavia diffusa (1.72 μg/ml exhibited considerable activity against α-glucosidase enzyme only. The free radical scavenging activity was found to be prominent in extracts of Acacia kempeana, Acacia ligulata followed by Euphorbia drummondii against both DPPH and ABTS. The reducing power was more pronounced in Euphorbia drummondii and Pterocarpus marsupium extracts. The phenolic and flavonoid contents ranged from 0.42 to 30.27 μg/mg equivalent of gallic acid and 0.51 to 32.94 μg/mg equivalent of quercetin, respectively, in all plant extracts. Pearson’s correlation coefficient between total flavonoids and total phenolics was 0.796. Conclusion The results obtained in this study showed that most of the plant extracts

  17. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.

    Science.gov (United States)

    Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L

    2017-04-12

    Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.

  18. A heptameric peptide purified from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin I-converting enzyme- and angiotensin II-induced vascular dysfunction in human endothelial cells.

    Science.gov (United States)

    Heo, Seong-Yeong; Ko, Seok-Chun; Kim, Chang Su; Oh, Gun-Woo; Ryu, Bomi; Qian, Zhong-Ji; Kim, Geunhyung; Park, Won Sun; Choi, Il-Whan; Phan, Thi Tuong Vy; Heo, Soo-Jin; Kang, Do-Hyung; Yi, Myunggi; Jung, Won-Kyo

    2017-05-01

    In this study, a marine microalga Spirulina sp.-derived protein was hydrolyzed using gastrointestinal enzymes to produce an angiotensin I (Ang I)-converting enzyme (ACE) inhibitory peptide. Following consecutive purification, the potent ACE inhibitory peptide was composed of 7 amino acids, Thr-Met‑Glu‑Pro‑Gly‑Lys-Pro (molecular weight, 759 Da). Analysis using the Lineweaver-Burk plot and molecular modeling suggested that the purified peptide acted as a mixed non-competitive inhibitor of ACE. The inhibitory effects of the peptide against the cellular production of vascular dysfunction-related factors induced by Ang II were also investigated. In human endothelial cells, the Ang II-induced production of nitric oxide and reactive oxygen species was inhibited, and the expression of inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) was downregulated when the cells were cultured with the purified peptide. Moreover, the peptide blocked the activation of p38 mitogen‑activated protein kinase. These results indicated that this Spirulina sp.-derived peptide warrants further investigation as a potential pharmacological inhibitor of ACE and vascular dysfunction.

  19. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    Directory of Open Access Journals (Sweden)

    Jena B. Hales

    2015-01-01

    Full Text Available Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP. However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF. In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.

  20. Computational and experimental analysis of short peptide motifs for enzyme inhibition.

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    Full Text Available The metabolism of living systems involves many enzymes that play key roles as catalysts and are essential to biological function. Searching ligands with the ability to modulate enzyme activities is central to diagnosis and therapeutics. Peptides represent a promising class of potential enzyme modulators due to the large chemical diversity, and well-established methods for library synthesis. Peptides and their derivatives are found to play critical roles in modulating enzymes and mediating cellular uptakes, which are increasingly valuable in therapeutics. We present a methodology that uses molecular dynamics (MD and point-variant screening to identify short peptide motifs that are critical for inhibiting β-galactosidase (β-Gal. MD was used to simulate the conformations of peptides and to suggest short motifs that were most populated in simulated conformations. The function of the simulated motifs was further validated by the experimental point-variant screening as critical segments for inhibiting the enzyme. Based on the validated motifs, we eventually identified a 7-mer short peptide for inhibiting an enzyme with low μM IC50. The advantage of our methodology is the relatively simplified simulation that is informative enough to identify the critical sequence of a peptide inhibitor, with a precision comparable to truncation and alanine scanning experiments. Our combined experimental and computational approach does not rely on a detailed understanding of mechanistic and structural details. The MD simulation suggests the populated motifs that are consistent with the results of the experimental alanine and truncation scanning. This approach appears to be applicable to both natural and artificial peptides. With more discovered short motifs in the future, they could be exploited for modulating biocatalysis, and developing new medicine.

  1. Anticancer versus antigrowth activities of three analogs of the growth-inhibitory peptide: relevance to physicochemical properties.

    Science.gov (United States)

    Mizejewski, G J; Eisele, L; Maccoll, R

    2006-01-01

    A 34-amino acid peptide has been synthesized based on an amino acid sequence from the third domain of native full-length alpha-fetoprotein, which has been shown to have both antigrowth and anticancer activities. This peptide, known as the growth-inhibitory peptide (GIP), has two cysteine residues and demonstrates reduced antigrowth activity after long-term storage, presumably due to disulfide bond formation. The disulfide bridge problem was addressed by replacing the two naturally occurring cysteines with either glycines, alanines, or serines (to produce the G-, A- and S-peptides, respectively). The non-hydrophobic G- and S-peptides were found to exist as dimers, while the more hydrophobic C- and A-peptides formed trimers in solution under certain conditions of pH and peptide concentration. The A-peptide was already known to display anticancer activity; however, the G- and S-serine analogs have not been studied in depth since they had demonstrated low antigrowth activities in rodent uterine assays. Using both in vivo and in vitro assays, the A-, G- and S-peptides were shown to exhibit various degrees of cancer growth suppression. An in vitro culture assay, using MCF-7 breast cancer cells, demonstrated that both the G- and S-peptides showed modest cancer growth suppression, while the A- analog showed strong inhibition at doses ranging from 10(-5) M to 10(-7) M. In contrast, an in vivo ascites tumor study of all four peptides showed them to have notable activity in the suppression of mouse mammary tumor growth. Overall, our data indicated that physicochemical properties, such as hydrophobicity, oligomeric state and secondary structure, contribute to the anticancer activity of both the active C- peptide and its analogs. In addition, the antigrowth rodent uterine assay was not always predictive of the anticancer potential of the peptide forms, suggesting a difference between the mechanism of peptide action in the antigrowth models and that in the anticancer assay

  2. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities.

    Science.gov (United States)

    Hanapi, N A; Ismail, S; Mansor, S M

    2013-10-01

    To date, many findings reveal that most of the modern drugs have the ability to interact with herbal drugs. This study was conducted to determine the inhibitory effects of mitragynine on cytochrome P450 2C9, 2D6 and 3A4 activities. The in vitro study was conducted using a high-throughput luminescence assay. Statistical analysis was conducted using one-way ANOVA and Dunnett's test with P GraphPad Prism(®) 5 (Version 5.01, GraphPad Software, Inc., USA). Assessment using recombinant enzymes showed that mitragynine gave the strongest inhibitory effect on CYP2D6 with an IC50 value of 0.45±0.33 mM, followed by CYP2C9 and CYP3A4 with IC50 values of 9.70±4.80 and 41.32±6.74 μM respectively. Positive inhibitors appropriate for CYP2C9, CYP2D6, and CYP3A4 which are sulfaphenazole, quinidine and ketoconazole were used respectively. Vmax values of CYP2C9, CYP2D6 and CYP3A4 were 0.0005, 0.01155 and 0.0137 μM luciferin formed/pmol/min respectively. Km values of CYP2C9, CYP2D6, and CYP3A4 were 32.65, 56.01, and 103.30 μM respectively. Mitragynine noncompetitively inhibits CYP2C9 and CYP2D6 activities with the Ki values of 61.48 and 12.86 μM respectively. On the other hand, mitragynine inhibits CYP3A4 competitively with a Ki value of 379.18 μM. The findings of this study reveal that mitragynine might inhibit cytochrome P450 enzyme activities, specifically CYP2D6. Therefore, administration of mitragynine together with herbal or modern drugs which follow the same metabolic pathway may contribute to herb-drug interactions.

  3. Purification and characterization of angiotensin I converting enzyme inhibition peptides from sandworm Sipunculus nudus

    Science.gov (United States)

    Sun, Xueping; Wang, Man; Liu, Buming; Sun, Zhenliang

    2017-10-01

    Three angiotensin I converting enzyme (ACE) inhibition peptides were isolated from sandworm Sipunculus nudus protein hydrolysate prepared using protamex. Consecutive purification methods, including size exclusion chromatography and reverse-phase high performance liquid chromatography (RP-HPLC), were used to isolate the ACE inhibition peptides. The amino acid sequences of the peptides were identified as Ile-Asn-Asp, Val-Glu-Pro-Gly and Leu-Ala-Asp-Glu-Phe. The IC50 values of the purified peptides for ACE inhibition activity were 34.72 μmol L-1, 20.55 μmol L-1 and 22.77 μmol L-1, respectively. These results suggested that S. nudus proteins contain specific peptides that can be released by enzymatic hydrolysis. This study may provide an experimental basis for further systematic research, rational development and clinical utilization of sandworm resources.

  4. In vitro inhibitory effects of pristimerin on human liver cytochrome P450 enzymes.

    Science.gov (United States)

    Hao, Xiaoyi; Yuan, Jianlei; Xu, Yansen; Wang, Zhao; Hou, Jianzhang; Hu, Tao

    2017-04-07

    1. Pristimerin (PTM) is a biological component isolated from Chinese herbal plant Celastrus and Maytenus spp and it possesses numerous pharmacological activities. However, whether PTM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. 2. In this study, the inhibitory effects of PTM on the eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs). 3. The results showed that PTM inhibited the activity of CYP1A2, 3A4, and 2C9, with IC50 values of 21.74, 15.88, and 16.58 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that PTM was not only a non-competitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP1A2 and 2C9, with Ki values of 7.33, 11.60, and 8.09 μM, respectively. In addition, PTM is a time-dependent inhibitor for CYP3A4 with Kinact/KI value of 0.049/11.62 μM-1min-1. 4. The in vitro studies of PTM with CYP isoforms indicate that PTM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, 3A4, and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.

  5. Role of Endogenous Peptides and Enzymes in the Pathogenesis of ...

    African Journals Online (AJOL)

    However, one of the proposed mechanisms for induction of acute pancreatitis is auto-digestion of pancreatic tissues by unwanted activation of pancreatic digestive enzymes. The main objective of this review is to describe the pathogenesis mechanism of acute pancreatitis that are related to various inflammatory and ...

  6. Oligomeric amyloid-β peptide disrupts olfactory information output by impairment of local inhibitory circuits in rat olfactory bulb.

    Science.gov (United States)

    Hu, Bin; Geng, Chi; Hou, Xiao-Yu

    2017-03-01

    Although early olfactory dysfunction has been found in patients with Alzheimer's disease, the underlying mechanisms remain unclear. In this study, we investigated whether and how oligomeric amyloid-β peptide (Aβ) affects the responses of mitral cells (MCs). We found that oligomeric Aβ1-42 increased spontaneous and evoked firing rates but decreased the ratio of evoked to spontaneous firings in MCs. Aβ1-42 oligomers showed no impact on the hyperactivity exerted by pharmacological blockage of GABAA receptors, suggesting an involvement of GABAergic inhibitory transmission in Aβ1 to 42-induced over-excitability. It was further determined that Aβ1-42 oligomers inhibited the frequency of spontaneous inhibitory postsynaptic currents and miniature inhibitory postsynaptic currents, as well as the amplitude of miniature inhibitory postsynaptic currents in MCs. Both recurrent and lateral inhibition of MCs, which are critical for odor discrimination, were also disrupted by Aβ1-42 oligomers. The above data indicate that Aβ impairs local inhibitory circuits and thereby leads to perturbations of olfactory information output in the olfactory bulb. This study reveals a cellular and synaptic basis of olfactory deficits associated with Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    Science.gov (United States)

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. KARAKTERISTIK FISIK, KIMIA, MIKROBIOLOGI WHEY KEFIR DAN AKTIVITASNYA TERHADAP PENGHAMBATAN ANGIOTENSIN CONVERTING ENZYME (ACE [Physical, Chemical and Microbiological Characteristics of Whey Kefir and Its Angiotensin Converting Enzyme (ACE Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Andi Febrisiantosa*

    2013-12-01

    Full Text Available This study was conducted to evaluate the characteristics of whey-based kefir products and their activity to inhibit the angiotensin converting enzyme (ACE. Kefir was produced by using many types of whey, namely SK: skim milk based kefir (control; WK: gouda cheese whey based kefir; and WKB: commercial whey powder based kefir. The experimental design was a completely randomized design. Each treatment was conducted in triplicates. Kefirs were evaluated for physical and chemical properties (pH, total titratable acidity, viscosity, protein, fat, lactose, and alcohol, microbiological (lactic acid bacteria and yeast population, peptide concentration, ACE inhibition, IC50 and Inhibition Efficiency Ratio (IER. The results showed that the types of whey used for kefir productions significantly affected the physical and chemical characteristics of the products (p0.05. The peptide concentration and ACE inhibitory activity of WK, 1.54±0.02 mg/mL and 73.07±0.91%, was significantly higher (p0.05 from the control (47.19±0.09% per mg/mL but was significantly higher (p<0.05 than that of WKB (45.75±0.18% per mg/mL. This research indicated that whey kefir is a potential source of bioactive peptide for antihypertention agent.

  9. In vitro digestion of purified β-casein variants A(1), A(2), B, and I: effects on antioxidant and angiotensin-converting enzyme inhibitory capacity.

    Science.gov (United States)

    Petrat-Melin, B; Andersen, P; Rasmussen, J T; Poulsen, N A; Larsen, L B; Young, J F

    2015-01-01

    Genetic polymorphisms of bovine milk proteins affect the protein profile of the milk and, hence, certain technological properties, such as casein (CN) number and cheese yield. However, reports show that such polymorphisms may also affect the health-related properties of milk. Therefore, to gain insight into their digestion pattern and bioactive potential, β-CN was purified from bovine milk originating from cows homozygous for the variants A(1), A(2), B, and I by a combination of cold storage, ultracentrifugation, and acid precipitation. The purity of the isolated β-CN was determined by HPLC, variants were verified by mass spectrometry, and molar extinction coefficients at λ=280nm were determined. β-Casein from each of the variants was subjected to in vitro digestion using pepsin and pancreatic enzymes. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory capacities of the hydrolysates were assessed at 3 stages of digestion and related to that of the undigested samples. Neither molar extinction coefficients nor overall digestibility varied significantly between these 4 variants; however, clear differences in digestion pattern were indicated by gel electrophoresis. In particular, after 60min of pepsin followed by 5min of pancreatic enzyme digestion, one ≈4kDa peptide with the N-terminal sequence (106)H-K-E-M-P-F-P-K- was absent from β-CN variant B. This is likely a result of the (122)Ser to (122)Arg substitution in variant B introducing a novel trypsin cleavage site, leading to the changed digestion pattern. All investigated β-CN variants exhibited a significant increase in antioxidant capacity upon digestion, as measured by the Trolox-equivalent antioxidant capacity assay. After 60min of pepsin + 120min of pancreatic enzyme digestion, the accumulated increase in antioxidant capacity was ≈1.7-fold for the 4 β-CN variants. The ACE inhibitory capacity was also significantly increased by digestion, with the B variant reaching the highest inhibitory

  10. Enzyme from an Uncultivated Sponge Bacterium Catalyzes S-Methylation in a Ribosomal Peptide.

    Science.gov (United States)

    Helf, Maximilian J; Jud, Aurelia; Piel, Jörn

    2017-03-02

    Amino acid modifications are essential for the structural diversity and bioactivity of ribosomally synthesized and post-translationally modified peptide natural products (RiPPs). A particularly large and virtually untapped pool of unusual RiPPs and associated modifying enzymes is provided by uncultivated bacteria. An example is the chemically rich sponge symbiont "Candidatus Entotheonella factor", which produces the hypermodified polytheonamides of the poorly studied proteusin RiPP family. In addition to the polytheonamide genes, "E. factor" contains several further additional RiPP clusters of unknown function. Here we provide insights into one of these cryptic proteusin pathways by identifying an enzyme (PtyS) that catalyzes the S-methylation of cysteine residues. S-methylcysteine is rare in natural peptides and proteins, and the enzymatic activity was previously unknown for RiPPs, thus adding a new modification to the ribosomal peptide toolbox. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Poly(amidoamine) dendrimers show carbonic anhydrase inhibitory activity against α-, β-, γ- and η-class enzymes.

    Science.gov (United States)

    Carta, Fabrizio; Osman, Sameh M; Vullo, Daniela; AlOthman, Zeid; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T

    2015-11-01

    Four generations of poly(amidoamine) (PAMAM) dendrimers incorporating benzenesulfonamide moieties were investigated as inhibitors of carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ- and η-classes which are present in pathogenic bacteria, fungi or protozoa. The following bacterial, fungal and protozoan organisms were included in the study: Vibrio cholerae, Trypanosoma cruzi, Leishmania donovani chagasi, Porphyromonas gingivalis, Cryptococcus neoformans, Candida glabrata, and Plasmodium falciparum. The eight pathozymes present in these organisms were efficiently inhibited by the four generations PAMAM-sulfonamide dendrimers, but multivalency effects were highly variable among the different enzyme classes. The Vibrio enzyme VchCA was best inhibited by the G3 dendrimer incorporating 32 sulfamoyl moieties. The Trypanosoma enzyme TcCA on the other hand was best inhibited by the first generation dendrimer G0 (with 4 sulfamoyl groups), whereas for other enzymes the optimal inhibitory power was observed for the G1 or G2 dendrimers, with 8 and 16 sulfonamide functionalities. This study thus proves that the multivalency may be highly relevant for enzyme inhibition for some but not all CAs from pathogenic organisms. On the other hand, some dendrimers investigated here showed a better inhibitory power compared to acetazolamide for enzymes from widespread pathogens, such as the η-CA from Plasmodium falciparum. Overall, the main conclusion is that this class of molecules may lead to important developments in the field of anti-infective CA inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Antihypertensive peptides from animal products, marine organisms, and plants.

    Science.gov (United States)

    Lee, Seung Yun; Hur, Sun Jun

    2017-08-01

    Bioactive peptides from food proteins exert beneficial effects on human health, such as angiotensin-converting enzyme (ACE) inhibition and antihypertensive activity. Several studies have reported that ACE-inhibitory peptides can come from animal products, marine organisms, and plants-derived by hydrolyzing enzymes such as pepsin, chymotrypsin, and trypsin-and microbial enzymes such as alcalase, thermolysin, flavourzyme, and proteinase K. Different ACE-inhibitory effects are closely related with different peptide sequences and molecular weights. Sequences of ACE-inhibitory peptides are composed of hydrophobic (proline) and aliphatic amino acids (isoleucine and leucine) at the N-terminus. As result of this review, we assume that low molecular weight peptides have a greater ACE inhibition because lower molecular weight peptides have a higher absorbency in the body. Therefore, the ACE-inhibitory effect is closely related with the degree of enzymatic hydrolysis and the composition of the peptide sequence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High-Throughput and Rapid Screening of Novel ACE Inhibitory Peptides from Sericin Source and Inhibition Mechanism by Using in Silico and in Vitro Prescriptions.

    Science.gov (United States)

    Sun, Huaju; Chang, Qing; Liu, Long; Chai, Kungang; Lin, Guangyan; Huo, Qingling; Zhao, Zhenxia; Zhao, Zhongxing

    2017-11-22

    Several novel peptides with high ACE-I inhibitory activity were successfully screened from sericin hydrolysate (SH) by coupling in silico and in vitro approaches for the first time. Most screening processes for ACE-I inhibitory peptides were achieved through high-throughput in silico simulation followed by in vitro verification. QSAR model based predicted results indicated that the ACE-I inhibitory activity of these SH peptides and six chosen peptides exhibited moderate high ACE-I inhibitory activities (log IC50 values: 1.63-2.34). Moreover, two tripeptides among the chosen six peptides were selected for ACE-I inhibition mechanism analysis which based on Lineweaver-Burk plots indicated that they behave as competitive ACE-I inhibitors. The C-terminal residues of short-chain peptides that contain more H-bond acceptor groups could easily form hydrogen bonds with ACE-I and have higher ACE-I inhibitory activity. Overall, sericin protein as a strong ACE-I inhibition source could be deemed a promising agent for antihypertension applications.

  14. Investigation of lactic acid bacterial strains for meat fermentation and the product's antioxidant and angiotensin-I-converting-enzyme inhibitory activities.

    Science.gov (United States)

    Takeda, Shiro; Matsufuji, Hisashi; Nakade, Koji; Takenoyama, Shin-Ichi; Ahhmed, Abdulatef; Sakata, Ryoichi; Kawahara, Satoshi; Muguruma, Michio

    2017-03-01

    In the lactic acid bacteria (LAB) strains screened from our LAB collection, Lactobacillus (L.) sakei strain no. 23 and L. curvatus strain no. 28 degraded meat protein and tolerated salt and nitrite in vitro. Fermented sausages inoculated strains no. 23 and no. 28 showed not only favorable increases in viable LAB counts and reduced pH, but also the degradation of meat protein. The sausages fermented with these strains showed significantly higher antioxidant activity than those without LAB or fermented by each LAB type strain. Angiotensin-I-converting-enzyme (ACE) inhibitory activity was also significantly higher in the sausages fermented with strain no. 23 than in those fermented with the type strain. Higher ACE inhibitory activity was also observed in the sausages fermented with strain no. 28, but did not differ significantly from those with the type strain. An analysis of the proteolysis and degradation products formed by each LAB in sausages suggested that those bioactivities yielded fermentation products such as peptides. Therefore, LAB starters that can adequately ferment meat, such as strains no. 23 and no. 28, should contribute to the production of bioactive compounds in meat products. © 2016 Japanese Society of Animal Science.

  15. Phytochemical screening of Nepeta cataria extracts and their in vitro inhibitory effects on free radicals and carbohydrate-metabolising enzymes.

    Science.gov (United States)

    Naguib, Abdel Moneam Mohamed; Ebrahim, Mohamed Elsayed; Aly, Hanan Farouk; Metawaa, Hemaia Mohamed; Mahmoud, Ahlam Hosni; Mahmoud, Ebtissam A; Ebrahim, Faten Mohamed

    2012-01-01

    This research was performed to investigate in vitro the biological activities of successive as well as 70% ethanol extracts of Nepeta cataria on some biochemical parameters including oxidative markers and carbohydrate-hydrolysing enzyme activities (α-amylase, β-galactosidase and α-glucosidase). Powdered N. cataria and its successive extracts were screened for their phytochemical constituents. Tests for tannins, carbohydrates, glycosides and flavonoids were positive in ethanolic extract, but those for steroids and terpenoids were positive in petroleum ether and chloroform extracts. Also, different extracts were chromatographically investigated. The results obtained demonstrated that different successive extracts of N. cataria exhibited an inhibitory effect on oxidative stress indices and carbohydrate-hydrolysing enzymes. It is observed that 70% ethanol, petroleum ether and chloroform extracts showed, respectively, the most potent inhibitory activities, while ethyl acetate and ethanol successive extracts appeared with moderate or low reducing activities.

  16. Angiotensin-I Converting Enzyme (ACE Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora Hydrolysates

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2015-12-01

    Full Text Available In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8% after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH (56.00% and ferrous ion-chelating (FIC (59.00% methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  17. Early steps of HIV-1 fusion define the sensitivity to inhibitory peptides that block 6-helix bundle formation.

    Directory of Open Access Journals (Sweden)

    Kosuke Miyauchi

    2009-09-01

    Full Text Available The HIV envelope (Env glycoprotein mediates membrane fusion through sequential interactions with CD4 and coreceptors, followed by the refolding of the transmembrane gp41 subunit into the stable 6-helix bundle (6HB conformation. Synthetic peptides derived from the gp41 C-terminal heptad repeat domain (C-peptides potently inhibit fusion by binding to the gp41 pre-bundle intermediates and blocking their conversion into the 6HB. Our recent work revealed that HIV-1 enters cells by fusing with endosomes, but not with the plasma membrane. These studies also showed that, for the large part, gp41 pre-bundles progress toward 6HBs in endosomal compartments and are thus protected from external fusion inhibitors. Here, we examined the consequences of endocytic entry on the gp41 pre-bundle exposure and on the virus' sensitivity to C-peptides. The rates of CD4 and coreceptor binding, as well as the rate of productive receptor-mediated endocytosis, were measured by adding specific inhibitors of these steps at varied times of virus-cell incubation. Following the CD4 binding, CCR5-tropic viruses recruited a requisite number of coreceptors much faster than CXCR4-tropic viruses. The rate of subsequent uptake of ternary Env-CD4-coreceptor complexes did not correlate with the kinetics of coreceptor engagement. These measurements combined with kinetic analyses enabled the determination of the lifetime of pre-bundle intermediates on the cell surface. Overall, these lifetimes correlated with the inhibitory potency of C-peptides. On the other hand, the basal sensitivity to peptides varied considerably among diverse HIV-1 isolates and ranked similarly with their susceptibility to inactivation by soluble CD4. We conclude that both the longevity of gp41 intermediates and the extent of irreversible conformational changes in Env upon CD4 binding determine the antiviral potency of C-peptides.

  18. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.

    Science.gov (United States)

    Sun, Yunxiang; Qian, Zhenyu; Wei, Guanghong

    2016-05-14

    Alzheimer's disease (AD) is associated with the pathological self-assembly of amyloid-β (Aβ) peptides into β-sheet enriched fibrillar aggregates. Aβ dimers formed in the initial step of Aβ aggregation were reported to be the smallest toxic species. Inhibiting the formation of β-sheet-rich oligomers and fibrils is considered as the primary therapeutic strategy for AD. Previous studies reported that fullerene derivatives strongly inhibit Aβ fibrillation. However, the underlying inhibitory mechanism remains elusive. As a first step to understand fullerene-modulated full-length Aβ aggregation, we investigated the conformational ensemble of the Aβ1-42 dimer with and without 1,2-(dimethoxymethano)fullerene (DMF) - a more water-soluble fullerene derivative - by performing a 340 ns explicit-solvent replica exchange molecular dynamics simulation. Our simulations show that although disordered states are the most abundant conformations of the Aβ1-42 dimer, conformations containing diverse extended β-hairpins are also populated. The first most-populated β-hairpins involving residues L17-D23 and A30-V36 strongly resemble the engineered β-hairpin which is a building block of toxic Aβ oligomers. We find that the interaction of DMFs with Aβ peptides greatly impedes the formation of such β-hairpins and inter-peptide β-sheets. Binding energy analyses demonstrate that DMF preferentially binds not only to the central hydrophobic motif LVFFA of the Aβ peptide as suggested experimentally, but also to the aromatic residues including F4 and Y10 and the C-terminal hydrophobic region I31-V40. This study reveals a complete picture of the inhibitory mechanism of full-length Aβ1-42 aggregation by fullerenes, providing theoretical insights into the development of drug candidates against AD.

  19. Dual Actions of Mammalian and Piscine Gonadotropin-Inhibitory Hormones, RFamide-Related Peptides and LPXRFamide Peptides, in the Hypothalamic–Pituitary–Gonadal Axis

    Directory of Open Access Journals (Sweden)

    Takayoshi Ubuka

    2018-01-01

    Full Text Available Gonadotropin-inhibitory hormone (GnIH is a hypothalamic neuropeptide that decreases gonadotropin synthesis and release by directly acting on the gonadotrope or by decreasing the activity of gonadotropin-releasing hormone (GnRH neurons. GnIH is also called RFamide-related peptide in mammals or LPXRFamide peptide in fishes due to its characteristic C-terminal structure. The primary receptor for GnIH is GPR147 that inhibits cAMP production in target cells. Although most of the studies in mammals, birds, and fish have shown the inhibitory action of GnIH in the hypothalamic–pituitary–gonadal (HPG axis, several in vivo studies in mammals and many in vivo and in vitro studies in fish have shown its stimulatory action. In mouse, although the firing rate of the majority of GnRH neurons is decreased, a small population of GnRH neurons is stimulated by GnIH. In hamsters, GnIH inhibits luteinizing hormone (LH release in the breeding season when their endogenous LH level is high but stimulates LH release in non-breeding season when their LH level is basal. Besides different effects of GnIH on the HPG axis depending on the reproductive stages in fish, higher concentration or longer duration of GnIH administration can stimulate their HPG axis. These results suggest that GnIH action in the HPG axis is modulated by sex-steroid concentration, the action of neuroestrogen synthesized by the activity of aromatase stimulated by GnIH, estrogen membrane receptor, heteromerization and internalization of GnIH, GnRH, and estrogen membrane receptors. The inhibitory and stimulatory action of GnIH in the HPG axis may have a physiological role to maintain reproductive homeostasis according to developmental and reproductive stages.

  20. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates

    Directory of Open Access Journals (Sweden)

    Mirna H. R. Seleghim

    Full Text Available Herein we present the results of a screening with 349 crude extracts of Brazilian marine sponges, ascidians, bryozoans and octocorals, against 16 strains of susceptible and antibiotic-resistant bacteria, one yeast (Candida albicans, Mycobacterium tuberculosis H37Rv, three cancer cell lines MCF-7 (breast, B16 (murine melanoma and HCT8 (colon, and Leishmania tarentolae adenine phosphoribosyl transferase (L-APRT enzyme. Less than 15% of marine sponge crude extracts displayed antibacterial activity, both against susceptible and antibiotic-resistant bacteria. Up to 40% of marine sponge crude extracts displayed antimycobacterial activity against M. tuberculosis H37Rv. Cytotoxicity was observed for 18% of marine sponge crude extracts. Finally, less than 3% of sponge extracts inhibited L-APRT. Less than 10% of ascidian crude extracts displayed antibacterial activity. More than 25% of ascidian crude extracts were active against M. tuberculosis and the three cancer cell lines. Only two crude extracts from the ascidian Polysyncraton sp. collected in different seasons (1995 and 1997 displayed activity against L-APRT. Less than 2% of bryozoan and octocoral crude extracts presented antibacterial activity, but a high percentage of crude extracts from bryozoan and octororal displayed cytotoxic (11% and 30%, respectively and antimycobacterial (60% activities. The extract of only one species of bryozoan, Bugula sp., presented inhibitory activity against L-APRT. Overall, the crude extracts of marine invertebrates herein investigated presented a high level of cytotoxic and antimycobacterial activities, a lower level of antibacterial activity and only a small number of crude extracts inhibited L-APRT. Taxonomic analysis of some of the more potently active crude extracts showed the occurrence of biological activity in taxa that have been previously chemically investigated. These include marine sponges belonging to genera Aaptos, Aplysina, Callyspongia, Haliclona

  1. Role of Glucagon-Like Peptide-1 and Gastric Inhibitory Peptide in Anorexia Induction Following Oral Exposure to the Trichothecene Mycotoxin Deoxynivalenol (Vomitoxin).

    Science.gov (United States)

    Jia, Hui; Wu, Wen-Da; Lu, Xi; Zhang, Jie; He, Cheng-Hua; Zhang, Hai-Bin

    2017-09-01

    Deoxynivalenol (DON), which is a Type B trichothecene mycotoxin produced by Fusarium, frequently contaminates cereal staples, such as wheat, barley and corn. DON threatens animal and human health by suppressing food intake and impairing growth. While anorexia induction in mice exposed to DON has been linked to the elevation of the satiety hormones cholecystokinin and peptide YY3-36 in plasma, the effects of DON on the release of other satiety hormones, such as glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), have not been established. The purpose of this study was to determine the roles of GLP-1 and GIP in DON-induced anorexia. In a nocturnal mouse food consumption model, the elevation of plasma GLP-1 and GIP concentrations markedly corresponded to anorexia induction by DON. Pretreatment with the GLP-1 receptor antagonist Exendin9-39 induced a dose-dependent attenuation of both GLP-1- and DON-induced anorexia. In contrast, the GIP receptor antagonist Pro3GIP induced a dose-dependent attenuation of both GIP- and DON-induced anorexia. Taken together, these results suggest that GLP-1 and GIP play instrumental roles in anorexia induction following oral exposure to DON, and the effect of GLP-1 is more potent and long-acting than that of GIP. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Measuring angiotensin-I converting enzyme inhibitory activity by micro plate assays: comparison using marine cryptides and tentative threshold determinations with captopril and losartan.

    Science.gov (United States)

    Ben Henda, Yesmine; Labidi, Anis; Arnaudin, Ingrid; Bridiau, Nicolas; Delatouche, Régis; Maugard, Thierry; Piot, Jean-Marie; Sannier, Frédéric; Thiéry, Valérie; Bordenave-Juchereau, Stéphanie

    2013-11-13

    To determine the angiotensin-I converting enzyme (ACE) inhibitory activity of marine cryptides, different methods were tested. ACE inhibition was measured using two synthetic substrates, (N-[3-(2-furyl) acryloyl]-Phe-Gly-Gly (FAPGG) and N-hippuryl-His-Leu hydrate salt (HHL)), and a natural one, angiotensin-I. The IC50 value (defined as the concentration of inhibitory molecule needed to inhibit 50% of the ACE activity) of the reference synthetic inhibitor captopril was in the nanomolar range (1.79-15.1 nM) when synthetic substrates were used, whereas it exhibited IC50 of micromolar range (16.71 μM) with angiotensin-I. We chose losartan, an antagonist of angiotensin-II receptor as negative control for the ACE inhibition. Losartan was also able to inhibit ACE whatever the substrate tested, with IC50 of micromolar range (17.13-146 μM). We defined this value as a limit above which molecules are not showing in vitro ACE inhibitory activity. Val-Trp (VW), Val-Tyr (VY), Lys-Tyr (KY), Lys-Trp (KW), Ile-Tyr (IY), Ala-Pro (AP), Val-Ile-Tyr (VIY), Leu-Lys-Pro (LKP), Gly-Pro-Leu (GPL), Ala-Lys-Lys (AKK), and Val-Ala-Pro (VAP) were tested as inhibitors of ACE with synthetic and natural substrates. IC50 displayed were substrate-dependent. With FAPGG as substrate, IW, VAP, KY, IY, AP, AKK, and VIY show IC50 values over the IC50 value of losartan and should not be considered as inhibitors of ACE. VY, VW, KW, and LKP exhibited IC50 value lower than the IC50 value of losartan for all substrates tested and were thus considered as good candidates for effectively decreasing hypertension. It appears that the comparison of IC50 is not consistent when IC50 values are obtained with different substrates and different methods. In vitro ACE inhibitory activity assays should always include various ACE substrates and references such as captopril and a negative control to obtain data reliable to discriminate ACE inhibitory peptides.

  3. Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes.

    Science.gov (United States)

    Furlund, C B; Ulleberg, E K; Devold, T G; Flengsrud, R; Jacobsen, M; Sekse, C; Holm, H; Vegarud, G E

    2013-01-01

    Lactoferrin (LF) is a protein present in milk and other body fluids that plays important biological roles. As part of a diet, LF must survive gastrointestinal conditions or create bioactive fragments to exert its effects. The degradation of LF and formation of bioactive peptides is highly dependent on individual variation in intraluminal composition. The present study was designed to compare the degradation and peptide formation of bovine LF (bLF) following in vitro digestion under different simulated intraluminal conditions. Human gastrointestinal (GI) juices were used in a 2-step model digestion to mimic degradation in the stomach and duodenum. To account for variation in the buffering capacity of different lactoferrin-containing foods, gastric pH was adjusted either slowly or rapidly to 2.5 or 4.0. The results were compared with in vivo digestion of bLF performed in 2 volunteers. High concentration of GI juices and fast pH reduction to 2.5 resulted in complete degradation in the gastric step. More LF resisted gastric digestion when pH was slowly reduced to 2.5 or 4.0. Several peptides were identified; however, few matched with previously reported peptides from studies using nonhuman enzymes. Surprisingly, no bovine lactoferricin, f(17-41), was identified during in vitro or in vivo digestion under the intraluminal conditions used. The diversity of enzymes in human GI juices seems to affect the hydrolysis of bLF, generating different peptide fragments compared with those obtained when using only one or a few proteases of animal origin. Multiple sequence analysis of the identified peptides indicated a motif consisting of proline and neighboring hydrophobic residues that could restrict proteolytic processing. Further structure analysis showed that almost all proteolytic cutting sites were located on the surface and mainly on the nonglycosylated half of lactoferrin. Digestion of bLF by human enzymes may generate different peptides from those found when lactoferrin is

  4. Cytotoxic and Enzyme Inhibitory Potential of Two Potentilla species (P. speciosa L. and P. reptans Willd. and Their Chemical Composition

    Directory of Open Access Journals (Sweden)

    Sengul Uysal

    2017-05-01

    Full Text Available In this work, the biological and chemical fingerprints of three extracts (ethyl acetate, methanol, and water from two Potentilla species (Potentilla reptans and P. speciosa were investigated. Antioxidant, enzyme inhibitory, and cytotoxic activities were performed for the biological fingerprint. For the chemical characterization, total bioactive components, and individual phenolic components were determined using photometric and HPLC methods, respectively. The main identified phenolic compounds in these extracts were rutin and catechin. Methanol and water extracts contained the highest total phenolic and flavonoid content. The results of antioxidant assays showed that methanol and water extracts displayed higher antioxidant activity compared to the ethyl acetate extract. Generally, methanol and water extracts exhibited higher biological activities correlated with higher levels the bioactive components. For P. speciosa, the methanol extract exhibited the highest enzyme inhibitory activity (except BChE inhibitory activity. P. reptans exhibited also high antiproliferative activity against MCF-7 cells whilst P. speciosa had weak to moderate activity against both of A549 and MCF-7 cell lines. The results suggest that Potentilla species could be potential candidates for developing new phyto-pharmaceuticals and functional ingredients.

  5. Lysine-Tryptophan-Crosslinked Peptides Produced by Radical SAM Enzymes in Pathogenic Streptococci.

    Science.gov (United States)

    Schramma, Kelsey R; Seyedsayamdost, Mohammad R

    2017-04-21

    Macrocycles represent a common structural framework in many naturally occurring peptides. Several strategies exist for macrocyclization, and the enzymes that incorporate them are of great interest, as they enhance our repertoire for creating complex molecules. We recently discovered a new peptide cyclization reaction involving a crosslink between the side chains of lysine and tryptophan that is installed by a radical SAM enzyme. Herein, we characterize relatives of this metalloenzyme from the pathogens Streptococcus agalactiae and Streptococcus suis. Our results show that the corresponding enzymes, which we call AgaB and SuiB, contain multiple [4Fe-4S] clusters and catalyze Lys-Trp crosslink formation in their respective substrates. Subsequent high-resolution-MS and 2D-NMR analyses located the site of macrocyclization. Moreover, we report that AgaB can accept modified substrates containing natural or unnatural amino acids. Aside from providing insights into the mechanism of this unusual modification, the substrate promiscuity of AgaB may be exploited to create diverse macrocyclic peptides.

  6. Evaluation of phenolic profile, enzyme inhibitory and antimicrobial activities of Nigella sativa L. seed extracts

    Directory of Open Access Journals (Sweden)

    Anela Topcagic

    2017-11-01

    Full Text Available Black cumin (Nigella sativa L. [N.sativa] seed extracts demonstrated numerous beneficial biological effects including, among others, antidiabetic, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, antihypertensive, and antioxidant activity. To better understand the phytochemical composition of N. sativa seeds, methanol seed extracts were analyzed for phenolic acid and flavonoid content. Furthermore, we tested N. sativa methanol, n-hexane, and aqueous seed extracts for their inhibitory activity against butyrylcholinesterase (BChE and catalase (CAT as well as for antimicrobial activity against several bacterial and a yeast strains. The phenolic content of N. sativa was analyzed using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS. The inhibition of BChE was assessed by modified Ellman’s method, and the inhibition of CAT was determined by monitoring hydrogen peroxide consumption. The extracts were tested against Bacillus subtilis, Staphylococcus aureus, Salmonella enterica, and Escherichia coli using the agar diffusion method. The UHPLC-MS/MS method allowed the identification and quantification of 23 phenolic compounds within 15 minutes. The major components found in N. sativa seed extract were sinapinic acid (7.22 ± 0.73 µg/mg as a phenolic acid and kaempferol (11.74 ± 0.92 µg/mg as a flavonoid. All extracts showed inhibitory activity against BChE, with methanol seed extract demonstrating the highest inhibitory activity (inhibitory concentration 50% [IC50] 79.11 ± 6.06 µg/ml. The methanol seed extract also showed strong inhibitory activity against CAT with an IC50 value of 6.61 ± 0.27 µg/ml. Finally, the methanol extract exhibited considerable inhibitory activity against the tested microbial strains. Overall, this is the first study to investigate the ability of black cumin seed extracts to inhibit CAT. Our results indicate that N. sativa seed can be considered as an effective inhibitor

  7. Angiotensin-I-Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysate from Muscle of Barbel (Barbus callensis

    Directory of Open Access Journals (Sweden)

    Assaad Sila

    2013-01-01

    Full Text Available The present study investigated angiotensin-I-converting enzyme (ACE inhibitory and antioxidant activities of barbel muscle protein hydrolysate prepared with Alcalase. The barbel muscle protein hydrolysate displayed a high ACE inhibitory activity (CI50=0.92 mg/mL. The antioxidant activities of protein hydrolysate at different concentrations were evaluated using various in vitro antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH radical method and reducing power assay. The barbel muscle protein hydrolysate exhibited an important radical scavenging effect and reducing power. These results obtained by in vitro systems obviously established the antioxidant potency of barbel hydrolysate to donate electron or hydrogen atom to reduce the free radical. Furthermore, these bioactive substances can be exploited into functional foods or used as source of nutraceuticals.

  8. The dipeptidyl peptidase 4 inhibitor vildagliptin does not accentuate glibenclamide-induced hypoglycemia but reduces glucose-induced glucagon-like peptide 1 and gastric inhibitory polypeptide secretion

    DEFF Research Database (Denmark)

    El-Ouaghlidi, Andrea; Rehring, Erika; Holst, Jens Juul

    2007-01-01

    BACKGROUND/AIMS: Inhibition of dipeptidyl peptidase 4 by vildagliptin enhances the concentrations of the active form of the incretin hormones glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). The present study asked whether vildagliptin accentuates glibenclamide-induced hy......BACKGROUND/AIMS: Inhibition of dipeptidyl peptidase 4 by vildagliptin enhances the concentrations of the active form of the incretin hormones glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). The present study asked whether vildagliptin accentuates glibenclamide...

  9. Inhibitory mechanism of peptides with a repeating hydrophobic and hydrophilic residue pattern on interleukin-10.

    Science.gov (United States)

    Ni, Guoying; Wang, Yuejian; Cummins, Scott; Walton, Shelley; Mounsey, Kate; Liu, Xiaosong; Wei, Ming Q; Wang, Tianfang

    2017-03-04

    Interleukin 10 (IL-10) is a cytokine that is able to downregulate inflammation. Its overexpression is directly associated with the difficulty in the clearance of chronic viral infections, such as chronic hepatitis B, hepatitis C and HIV infection, and infection-related cancer. IL-10 signaling blockade has been proposed as a promising way of clearing chronic viral infection and preventing tumor growth in animal models. Recently, we have reported that peptides with a helical repeating pattern of hydrophobic and hydrophilic residues are able to inhibit IL-10 significantly both in vitro and in vivo. 1 In this work, we seek to further study the inhibiting mechanism of these peptides using sequence-modified peptides. As evidenced by both experimental and molecular dynamics simulation in concert the N-terminal hydrophobic peptide constructed with repeating hydrophobic and hydrophilic pattern of residues is more likely to inhibit IL10. In addition, the sequence length and the ability of protonation are also important for inhibition activity.

  10. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray.

    Science.gov (United States)

    Cornett, E M; Dickson, B M; Vaughan, R M; Krishnan, S; Trievel, R C; Strahl, B D; Rothbart, S B

    2016-01-01

    The dynamic addition and removal of covalent posttranslational modifications (PTMs) on histone proteins serves as a major mechanism regulating chromatin-templated biological processes in eukaryotic genomes. Histone PTMs and their combinations function by directly altering the physical structure of chromatin and as rheostats for effector protein interactions. In this chapter, we detail microarray-based methods for analyzing the substrate specificity of lysine methyltransferase and demethylase enzymes on immobilized synthetic histone peptides. Consistent with the "histone code" hypothesis, we reveal a strong influence of adjacent and, surprisingly, distant histone PTMs on the ability of histone-modifying enzymes to methylate or demethylate their substrates. This platform will greatly facilitate future investigations into histone substrate specificity and mechanisms of PTM signaling that regulate the catalytic properties of histone-modifying enzymes. © 2016 Elsevier Inc. All rights reserved.

  11. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents.

    Science.gov (United States)

    He, Huining; Sun, Lu; Ye, Junxiao; Liu, Ergang; Chen, Sunhui; Liang, Qiuling; Shin, Meong Cheol; Yang, Victor C

    2016-10-28

    Conventional chemotherapy has little or no specificity for cancer cells, normally resulting in low drug accumulation at the tumor region (inefficacy) and drug-induced severe side effects (toxicity). Nowadays, new strategies have been developed to improve both the targeting ability and cellular drug uptake using active targeting ligands and drug internalization agents, which could recognize and interact with specific receptors overexpressed on tumor cells and then trigger a drug internalization process by transporting the cargos into cells. Among those strategies, enzyme-triggered cell penetrating peptide (CPP)-mediated systems seem to be a feasible approach. The expression level of specific enzymes like proteases, esterases or glycosidases is often higher in tumor cells than in normal tissues, and such concentration gradients can be exploited as a tool for targeted cancer therapy. CPPs are known to be effective in promoting membrane transportation of the drug cargos, rendering a deeper tumor permeation that could further enhance the therapeutic efficacy of the delivered drug. An enzyme-triggered, CPP-mediated system would combine these advantages to yield a system with the enhanced tumor targeting ability and internalization efficiency and so far many systems have been successfully exploited and applied to cancer therapy. In this review, typical enzymes applied in cancer theranostic systems were firstly reviewed, followed by analyzing pros and cons of cell penetrating peptides. Most importantly, different types of applications of enzyme-triggered CPP-mediated systems in tumor imaging were illustrated. Finally, the drug loaded applications, i.e. enzyme-triggered CPP-mediated systems in drug delivery were reviewed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hyperglycemia acutely lowers the postprandial excursions of glucagon-like Peptide-1 and gastric inhibitory polypeptide in humans

    DEFF Research Database (Denmark)

    Vollmer, Kirsten; Gardiwal, Husai; Menge, Bjoern A

    2009-01-01

    INTRODUCTION: Impaired secretion of glucagon-like peptide 1 (GLP-1) has been suggested to contribute to the deficient incretin effect in patients with type 2 diabetes. It is unclear whether this is a primary defect or a consequence of the hyperglycemia in type 2 diabetes. We examined whether acute...... hyperglycemia reduces the postprandial excursions of gastric inhibitory polypeptide (GIP) and GLP-1, and if so, whether this can be attributed to changes in gastric emptying. PATIENTS AND METHODS: Fifteen nondiabetic individuals participated in a euglycemic clamp and a hyperglycemic clamp experiment, carried...... the hyperglycemic clamp experiments and 83 +/- 3 mg/dl during the euglycemia (P hyperglycemia, but meal ingestion led to a decline in glucose requirements in both experiments (P

  13. Antioxidant, Liver Protective and Angiotensin I-converting Enzyme Inhibitory Activities of Old Laying Hen Hydrolysate in Crab Meat Analogue.

    Science.gov (United States)

    Jin, Sang Keun; Choi, Jung Seok; Choi, Yeung Joon; Lee, Seung-Jae; Lee, Seung Yun; Hur, Sun Jin

    2016-12-01

    The purpose of this study was to evaluate the antioxidative activities of Crab meat analogue prepared with protein hydrolysates obtained from mechanically deboned chicken meat (MDCM) from spent laying hens. 2 , 2-diphenyl-1-picrylhydrazyl hydrate (DPPH) radical-scavenging activity was increased by adding MDCM hydrolysates during storage, and activity correlated with the concentration of DPPH added up to 6 weeks of storage. Hydroxyl radical-scavenging activity was increased in all analogues containing MDCM hydrolysates. At 0 days of storage, angiotensin I-converting enzyme (ACE)-inhibitory activity was increased by the addition of MDCM hydrolysates. Activity did not correlate after 6 weeks of storage, in which ACE-inhibitory activity was increased with low concentrations of MDCM hydrolysates, but no ACE-inhibitory activity was observed at higher concentrations. The liver-protecting activity of crab meat analogue was shown to be around 60% of the positive control; however, it was not significantly different among the samples during storage. These results support the use of MDCM as a source of health-promoting constituents in crab meat analogue.

  14. Antioxidant, Liver Protective and Angiotensin I-converting Enzyme Inhibitory Activities of Old Laying Hen Hydrolysate in Crab Meat Analogue

    Directory of Open Access Journals (Sweden)

    Sang Keun Jin

    2016-12-01

    Full Text Available The purpose of this study was to evaluate the antioxidative activities of Crab meat analogue prepared with protein hydrolysates obtained from mechanically deboned chicken meat (MDCM from spent laying hens. 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH radical-scavenging activity was increased by adding MDCM hydrolysates during storage, and activity correlated with the concentration of DPPH added up to 6 weeks of storage. Hydroxyl radical-scavenging activity was increased in all analogues containing MDCM hydrolysates. At 0 days of storage, angiotensin I-converting enzyme (ACE-inhibitory activity was increased by the addition of MDCM hydrolysates. Activity did not correlate after 6 weeks of storage, in which ACE-inhibitory activity was increased with low concentrations of MDCM hydrolysates, but no ACE-inhibitory activity was observed at higher concentrations. The liver-protecting activity of crab meat analogue was shown to be around 60% of the positive control; however, it was not significantly different among the samples during storage. These results support the use of MDCM as a source of health-promoting constituents in crab meat analogue.

  15. Inhibitory effect of Pistia tannin on digestive enzymes of Indian major carps: an in vitro study.

    Science.gov (United States)

    Mandal, Sudipta; Ghosh, Koushik

    2010-12-01

    Aquatic weeds are one of the major unconventional feed ingredients tested for aquafeed formulation. Tannin content in the water lettuce, Pistia, has been quantified (26.67 mg g(-1); dry weight) and graded levels of which (12.5-200 μg) have been incorporated in the reaction mixtures to evaluate any change in the in vitro activity of the principal digestive enzymes from the three Indian major carps (IMC), namely rohu (Labeo rohita), catla (Catla catla) and mrigala (Cirrhinus mrigala). Result of the experiment revealed that the Pistia tannin (PT) significantly inhibit/lower the activities of the digestive enzymes from three IMCs in a dose-dependent manner, even at very low concentration. Significant variation in the reduction of the enzyme activities was noticed between the three fish species, as well as between the three enzymes studied. Among the three species studied, digestive enzymes from L. rohita were found to be the most sensitive to the PT, whereas enzymes from C. catla were found to be comparatively least affected. On the other hand, protease and lipase activities were comparatively more affected than the amylase activity. The results of the study suggest that more stress should be given on the elimination of tannin while incorporating feed ingredients of plant origin in fish diets.

  16. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods.

    Science.gov (United States)

    Nile, Shivraj Hariram; Nile, Arti Shivraj; Keum, Young-Soo

    2017-05-01

    The phenolic content, antioxidant, antitumor, and enzyme inhibitory activities of commonly used medicinal herbs from a Unani system of medicine were investigated using four different extraction methods. Among the plants studied, the Hyssopus officinalis L, Origanum vulgare L, and Portulaca oleracea L. extracts showed the highest amount of total phenolics (64.40, 60.35, and 58.81 mg GAE/g) and revealed significant antioxidant activities. The plants also showed a maximum cytotoxic activity as indicated by H. officinalis (82%), O. vulgare (75%), and P. oleracea (72%) showed more than 70% cytotoxicity for breast cancer cells, 82% of the cells were dead at the concentration of 500 mg/mL. The plants H. officinalis, P. oleracea, O. vulgare, and Rubia cordifolia L. revealed more than 80% inhibition towards xanthine oxidase and comprising maximum 70% of inhibition for superoxide dismutase. From results we conclude that there is a strong correlation between phenolic content, antioxidant, and enzyme inhibitory activity among these plants, indicating phenolics are the major compounds for these biological activities. Furthermore, this study provides the basis for the therapeutic importance of studied plants as latent inhibitors of oxidative stress and antitumor cell proliferation which correlate with the ethnobotanical data contained in the Unani system of medicine.

  17. The HGF inhibitory peptide HGP-1 displays promising in vitro and in vivo efficacy for targeted cancer therapy

    Science.gov (United States)

    Chen, Lisha; Li, Chunlin; Zhu, Yimin

    2015-01-01

    HGF/MET pathway mediates cancer initiation and development. Thus, inhibition on HGF-initiated MET signaling pathway would provide a new approach to cancer targeted therapeutics. In our study, we identified a targeting peptide candidate binding to HGF which was named HGF binding peptide-1 (HGP-1) via bacterial surface display methods coupled with fluorescence-activated cell sorting (FACS). HGP-1 showed the moderate affinity when determined with surface plasmon resonance (SPR) technique and high specificity in binding to HGF while assessed by fluorescence-based ELISA assay. The results from MTT and in vitro migration assay indicated that HGF-dependent cell proliferation and migration could be inhibited by HGP-1. In vivo administration of HGP-1 led to an effective inhibitory effect on tumor growth in A549 tumor xenograft models. Moreover, findings from Western Blots revealed that HGP-1 could down-regulated the phosphorylation levels of MET and ERK1/2 initiated by HGF, which suggested that HGP-1 could disrupt the activation of HGF/MET signaling to influence the cell activity. All the data highlighted the potential of HGP-1 to be a potent inhibitor for HGF/MET signaling. PMID:26254225

  18. High similarity of phylogenetic profiles of rate-limiting enzymes with inhibitory relation in Human, Mouse, Rat, budding Yeast and E. coli

    Science.gov (United States)

    2011-01-01

    Background The phylogenetic profile is widely used to characterize functional linkage and conservation between proteins without amino acid sequence similarity. To survey the conservative regulatory properties of rate-limiting enzymes (RLEs) in metabolic inhibitory network across different species, we define the enzyme inhibiting pair as: where the first enzyme in a pair is the inhibitor provider and the second is the target of the inhibitor. Phylogenetic profiles of enzymes in the inhibiting pairs are further generated to measure the functional linkage of these enzymes during evolutionary history. Results We find that the RLEs generate, on average, over half of all in vivo inhibitors in each surveyed model organism. And these inhibitors inhibit on average over 85% targets in metabolic inhibitory network and cover the majority of targets of cross-pathway inhibiting relations. Furthermore, we demonstrate that the phylogenetic profiles of the enzymes in inhibiting pairs in which at least one enzyme is rate-limiting often show higher similarities than those in common inhibiting enzyme pairs. In addition, RLEs, compared to common metabolic enzymes, often tend to produce ADP instead of AMP in conservative inhibitory networks. Conclusions Combined with the conservative roles of RLEs in their efficiency in sensing metabolic signals and transmitting regulatory signals to the rest of the metabolic system, the RLEs may be important molecules in balancing energy homeostasis via maintaining the ratio of ATP to ADP in living cells. Furthermore, our results indicate that similarities of phylogenetic profiles of enzymes in the inhibiting enzyme pairs are not only correlated with enzyme topological importance, but also related with roles of the enzymes in metabolic inhibitory network. PMID:22369203

  19. Three consecutive arginines are important for the mycobacterial peptide deformylase enzyme activity.

    Science.gov (United States)

    Saxena, Rahul; Kanudia, Pavitra; Datt, Manish; Dar, Haider Hussain; Karthikeyan, Subramanian; Singh, Balvinder; Chakraborti, Pradip K

    2008-08-29

    Genes encoding the peptide deformylase enzyme (def) are present in all eubacteria and are involved in the deformylation of the N-formyl group of newly synthesized polypeptides during protein synthesis. We compared the amino acid sequences of this enzyme in different mycobacterial species and found that they are highly conserved (76% homology with 62% identity); however, when this comparison was extended to other eubacterial homologs, it emerged that the mycobacterial proteins have an insertion region containing three consecutive arginine residues (residues 77-79 in Mycobacterium tuberculosis peptide deformylase (mPDF)). Here, we demonstrate that these three arginines are important for the activity of mPDF. Circular dichroism studies of wild-type mPDF and of mPDF containing individual conservative substitutions (R77K, R78K, or R79K) or combined substitutions incorporated into a triple mutant (R77K/R78K/R79K) indicate that such mutations cause mPDF to undergo structural alterations. Molecular modeling of mPDF suggests that the three arginines are distal to the active site. Molecular dynamics simulations of wild-type and mutant mPDF structures indicate that the arginines may be involved in the stabilization of substrate binding pocket residues for their proper interaction with peptide(s). Treatment with 5'-phosphothiorate-modified antisense oligodeoxyribonucleotides directed against different regions of def from M. tuberculosis inhibits growth of Mycobacterium smegmatis in culture. Taken together, these results hold out the possibility of future design of novel mycobacteria-specific PDF inhibitors.

  20. RFamide-related peptide-like immunoreactivity in the porcine hypothalamus indicates thepresence of a gonadotropin-inhibitory system in the pig

    Science.gov (United States)

    Gonadotropin-inhibitory hormone (GnIH) was identified as an RFamide-related peptide (RFRP) in avian species. Mammalian orthologs (RFRP-1 and RFRP-3) have been reported in the human, rodents, and recently in sheep, but the role of RFRPs in the domestic pig is not established. We hypothesize that a Gn...

  1. ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution.

    Science.gov (United States)

    Moayedi, Ali; Mora, Leticia; Aristoy, M-Concepción; Hashemi, Maryam; Safari, Mohammad; Toldrá, Fidel

    2017-01-01

    The effects of amino acid composition and peptide molecular mass on ACE-inhibitory and antioxidant activities of protein fragments obtained from tomato waste fermented using Bacillus subtilis were evaluated. The addition of B. subtilis increased the relative amounts of aromatic and positively-charged amino acids which have been described to influence the biological activities of peptide fragments. IC50 values of hydrolysates for ACE-inhibitory and 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities were found to be 1.5 and 8.2 mg/mL, respectively. Size-exclusion chromatography (SEC) pattern of the hydrolysate indicated the breakdown of parent proteins to smaller peptides with molecular weights mainly below 1400 Da. MALDI-TOF mass spectrometry analysis revealed that the highest ACE-inhibitory activity was due to peptides showing molecular mass range 500-800 Da, while the most active antioxidant peptides were found to be mainly at the two different peptide weight ranges 500-800 Da and 1200-1500 Da.

  2. Directed evolution of an LBP/CD14 inhibitory peptide and its anti-endotoxin activity.

    Directory of Open Access Journals (Sweden)

    Li Fang

    Full Text Available BACKGROUND: LPS-binding protein (LBP and its ligand CD14 are located upstream of the signaling pathway for LPS-induced inflammation. Blocking LBP and CD14 binding might prevent LPS-induced inflammation. In previous studies, we obtained a peptide analog (MP12 for the LBP/CD14 binding site and showed that this peptide analog had anti-endotoxin activity. In this study, we used in vitro directed evolution for this peptide analog to improve its in vivo and in vitro anti-endotoxin activity. METHODS: We used error-prone PCR (ep-PCR and induced mutations in the C-terminus of LBP and attached the PCR products to T7 phages to establish a mutant phage display library. The positive clones that competed with LBP for CD14 binding was obtained by screening. We used both in vivo and in vitro experiments to compare the anti-endotoxin activities of a polypeptide designated P1 contained in a positive clone and MP12. RESULTS: 11 positive clones were obtained from among target phages. Sequencing showed that 9 positive clones had a threonine (T to methionine (M mutation in amino acid 287 of LBP. Compared to polypeptide MP12, polypeptide P1 significantly inhibited LPS-induced TNF-α expression and NF-κB activity in U937 cells (P<0.05. Compared to MP12, P1 significantly improved arterial oxygen pressure, an oxygenation index, and lung pathology scores in LPS-induced ARDS rats (P<0.05. CONCLUSION: By in vitro directed evolution of peptide analogs for the LBP/CD14 binding site, we established a new polypeptide (P1 with a threonine (T-to-methionine (M mutation in amino acid 287 of LBP. This polypeptide had high anti-endotoxin activity in vitro and in vivo, which suggested that amino acid 287 in the C-terminus of LBP may play an important role in LBP binding with CD14.

  3. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    Science.gov (United States)

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the

  4. Resistance of casein-derived bioactive peptides to simulated gastrointestinal digestion

    OpenAIRE

    Contreras, María del Mar; Sánchez, David; Sevilla, Mª Ángeles; Recio, Isidra; Amigo, Lourdes

    2013-01-01

    The resistance of six casein-derived peptides, including antihypertensive peptides RYLGY, AYFYPEL and YQKFPQY, to simulated gastrointestinal digestion and the effect on angiotensin-converting enzyme (ACE)-inhibitory activity were evaluated. After digestion, peptides RYLGY, AYFYPEL, and YQKFPQY were partly hydrolysed by the digestive enzymes. RYLGY and AYFYPEL maintained potent ACE-inhibitory activity, with IC50 values as low as 9.3 and 4.7μgmL-1, respectively. Digestion fragments were sequenc...

  5. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    Science.gov (United States)

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.

  6. Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase.

    Science.gov (United States)

    Carillon, Julie; Del Rio, Daniele; Teissèdre, Pierre-Louis; Cristol, Jean-Paul; Lacan, Dominique; Rouanet, Jean-Max

    2012-12-01

    Antioxidant capacity and angiotensin 1-converting enzyme (ACE) inhibitory activity of a melon concentrate rich in superoxide dismutase (SOD-MC) were investigated in vitro. The total antioxidant capacity (TAC) was measured by the Trolox equivalent antioxidant capacity assay (TEAC), the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, and the ferric reducing antioxidant power assay (FRAP). The ability of the extract to scavenge three specific reactive oxygen species (superoxide radical anion (O(2)(-)), hydroxyl radical (HO()) and hydrogen peroxide (H(2)O(2))) was also investigated in order to better evaluate its antioxidant properties. Even if the measures of TAC were relatively low, results clearly established an antioxidant potential of SOD-MC that exhibited the highest radical-scavenging activity towards O(2)(-), with a IC(50) 12-fold lower than that of H(2)O(2) or HO(). This lets hypothesis that the antioxidant potential of SOD-MC could be mainly due to its high level of SOD. Moreover, for the first time, an ACE inhibitory activity of SOD-MC (IC(50)=2.4±0.1mg/mL) was demonstrated, showing that its use as a functional food ingredient with potential preventive benefits in the context of hypertension may have important public health implications and should be carefully considered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium

    Directory of Open Access Journals (Sweden)

    Claudia I. Gamboa-Gómez

    2016-01-01

    Full Text Available Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profi le measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50 % of DPPH radical (i.e. lower IC50. Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14 % of E. camaldulensis and 49 % of L. glaucescens; whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril. The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  8. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium.

    Science.gov (United States)

    Gamboa-Gómez, Claudia I; González-Laredo, Rubén F; Gallegos-Infante, José Alberto; Pérez, Mş Del Mar Larrosa; Moreno-Jiménez, Martha R; Flores-Rueda, Ana G; Rocha-Guzmán, Nuria E

    2016-09-01

    Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical (i.e. lower IC50). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  9. Effects of sub-inhibitory concentrations of German chamomile (Matricaria recotita extracts on the activity of catalase enzyme of S. aureus

    Directory of Open Access Journals (Sweden)

    gholamreza Goudarzi

    2005-12-01

    Findings: The extract showed growth inhibitory effect at dilution of and at dilution of showed bactericidal effect on standard strain. Dilutions of and as sub-inhibitory concentrations, decreased catalase activity prominently. Conclusion: Significant decrease of catalase activity at sub-inhibitory concentrations of this extract shows that this extract affects the production of catalase at different levels such as transcription, translation or transport and etc. Therefore, it is necessary to further study this extract. This enzyme can be a new target for production of novel antimicrobial agents.

  10. Mass Spectrometry of Single GABAergic Somatic Motorneurons Identifies a Novel Inhibitory Peptide, As-NLP-22, in the Nematode Ascaris suum

    Science.gov (United States)

    Konop, Christopher J.; Knickelbine, Jennifer J.; Sygulla, Molly S.; Wruck, Colin D.; Vestling, Martha M.; Stretton, Antony O. W.

    2015-12-01

    Neuromodulators have become an increasingly important component of functional circuits, dramatically changing the properties of both neurons and synapses to affect behavior. To explore the role of neuropeptides in Ascaris suum behavior, we devised an improved method for cleanly dissecting single motorneuronal cell bodies from the many other cell processes and hypodermal tissue in the ventral nerve cord. We determined their peptide content using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The reduced complexity of the peptide mixture greatly aided the detection of peptides; peptide levels were sufficient to permit sequencing by tandem MS from single cells. Inhibitory motorneurons, known to be GABAergic, contain a novel neuropeptide, As-NLP-22 (SLASGRWGLRPamide). From this sequence and information from the A. suum expressed sequence tag (EST) database, we cloned the transcript ( As-nlp-22) and synthesized a riboprobe for in situ hybridization, which labeled the inhibitory motorneurons; this validates the integrity of the dissection method, showing that the peptides detected originate from the cells themselves and not from adhering processes from other cells (e.g., synaptic terminals). Synthetic As-NLP-22 has potent inhibitory activity on acetylcholine-induced muscle contraction as well as on basal muscle tone. Both of these effects are dose-dependent: the inhibitory effect on ACh contraction has an IC50 of 8.3 × 10-9 M. When injected into whole worms, As-NLP-22 produces a dose-dependent inhibition of locomotory movements and, at higher levels, complete paralysis. These experiments demonstrate the utility of MALDI TOF/TOF MS in identifying novel neuromodulators at the single-cell level.

  11. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats.

    Science.gov (United States)

    Fitzgerald, Ciaran; Aluko, Rotimi E; Hossain, Mohammad; Rai, Dilip K; Hayes, Maria

    2014-08-20

    This work examined the resistance of the renin inhibitory, tridecapeptide IRLIIVLMPILMA derived previously from a Palmaria palmata papain hydrolysate, during gastrointestinal (GI) transit. Following simulated GI digestion, breakdown products were identified using mass spectrometry analysis and the known renin and angiotensin I converting enzyme inhibitory dipeptide IR was identified. In vivo animal studies using spontaneously hypertensive rats (SHRs) were used to confirm the antihypertensive effects of both the tridecapeptide IRLIIVLMPILMA and the seaweed protein hydrolysate from which this peptide was isolated. After 24 h, the SHR group fed the P. palmata protein hydrolysate recorded a drop of 34 mm Hg in systolic blood pressure (SBP) from 187 (±0.25) to 153 (± 0.64) mm Hg SBP, while the group fed the tridecapeptide IRLIIVLMPLIMA presented a drop of 33 mm Hg in blood pressure from 187 (±0.95) to 154 (±0.94) mm Hg SBP compared to the SBP recorded at time zero. The results of this study indicate that the seaweed protein derived hydrolysate has potential for use as antihypertensive agents and that the tridecapeptide is cleaved and activated to the dipeptide IR when it travels through the GI tract. Both the hydrolysate and peptide reduced SHR blood pressure when administered orally over a 24 h period.

  12. Programmable Peptide-Cross-Linked Nucleic Acid Nanocapsules as a Modular Platform for Enzyme Specific Cargo Release.

    Science.gov (United States)

    Santiana, Joshua J; Sui, Binglin; Gomez, Nicole; Rouge, Jessica L

    2017-12-20

    Herein we describe a modular assembly strategy for photo-cross-linking peptides into nucleic acid functionalized nanocapsules. The peptides embedded within the nanocapsules form discrete nanoscale populations capable of gating the release of molecular and nanoscale cargo using enzyme-substrate recognition as a triggered release mechanism. Using photocatalyzed thiol-yne chemistry, different peptide cross-linkers were effectively incorporated into the nanocapsules and screened against different proteases to test for degradation specificity both in vitro and in cell culture. By using a combination of fluorescence assays, confocal and TEM microscopy, the particles were shown to be highly specific for their enzyme targets, even between enzymes of similar protease classes. The rapid and modular nature of the assembly strategy has the potential to be applied to both intracellular and extracellular biosensing and drug delivery applications.

  13. A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell.

    Science.gov (United States)

    Li, Siming; Hao, Linlin; Bao, Wanguo; Zhang, Ping; Su, Dan; Cheng, Yunyun; Nie, Linyan; Wang, Gang; Hou, Feng; Yang, Yang

    2016-07-01

    A vastarray of bioactive peptides from amphibian skin secretions is attracting increasing attention due to the growing problem of bacteria resistant to conventional antibiotics. In this report, a small molecular antibacterial peptide, named Xenopus laevis antibacterial peptide-P1 (XLAsp-P1), was isolated from the skin of Xenopus laevis using reversed-phase high-performance liquid chromatography. The primary structure of XLAsp-P1, which has been proved to be a novel peptide by BLAST search in AMP database, was DEDDD with a molecular weight of 607.7 Da analysed by Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). The highlight of XLAsp-P1 is the strong in vitro potency against a variety of Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) starting at 10 μg/mL and potent inhibitory activity against breast cancer cell at tested concentrations from 5 to 50 μg/mL. In addition, only 6.2 % of red blood cells was haemolytic when incubated with 64 μg/mL (higher than MICs of all bacterial strain) of XLAsp-P1. The antimicrobial mechanism for this novel peptide was the destruction of the cell membrane investigated by transmission electron microscopy. All these showed that XLAsp-P1 is a novel short anionic antibacterial peptide with broad antibacterial activity and inhibitory activity against breast cancer cell.

  14. Gastric inhibitory peptide, serotonin, and glucagon are unexpected chloride secretagogues in the rectal gland of the skate (Leucoraja erinacea).

    Science.gov (United States)

    Kelley, Catherine A; Decker, Sarah E; Silva, Patricio; Forrest, John N

    2014-05-01

    Since the discovery of the rectal gland of the dogfish shark 50 years ago, experiments with this tissue have greatly aided our understanding of secondary active chloride secretion and the secretagogues responsible for this function. In contrast, very little is known about the rectal gland of skates. In the present experiments, we performed the first studies in the perfused rectal gland of the little skate (Leucoraja erinacea), an organ weighing less than one-tenth of the shark rectal gland. Our results indicate that the skate gland can be studied by modified perfusion techniques and in primary culture monolayers, and that secretion is blocked by the inhibitors of membrane proteins required for secondary active chloride secretion. Our major finding is that three G protein-coupled receptor agonists, the incretin gastric inhibitory polypeptide (GIP), also known as glucose-dependent insulinotropic peptide, as well as glucagon and serotonin, are unexpected potent chloride secretagogues in the skate but not the shark. Glucagon stimulated chloride secretion to a mean value of 1,661 ± 587 μeq·h(-1)·g(-1) and serotonin stimulated to 2,893 ± 699 μeq·h(-1)·g(-1). GIP stimulated chloride secretion to 3,733 ± 679 μeq·h(-1)·g(-1) and significantly increased tissue cAMP content compared with basal conditions. This is the first report of GIP functioning as a chloride secretagogue in any species or tissue.

  15. Identification of peptides in wheat germ hydrolysate that demonstrate calmodulin-dependent protein kinase II inhibitory activity.

    Science.gov (United States)

    Kumrungsee, Thanutchaporn; Akiyama, Sayaka; Guo, Jian; Tanaka, Mitsuru; Matsui, Toshiro

    2016-12-15

    Hydrolysis of wheat germ by proteases resulted in bioactive peptides that demonstrated an inhibitory effect against the vasoconstrictive Ca(2+)-calmodulin (CaM)-dependent protein kinase II (CaMK II). The hydrolysate by thermolysin (1.0wt%, 5h) showed a particularly potent CaMK II inhibition. As a result of mixed mode high-performance liquid chromatography of thermolysin hydrolysate with pH elution gradient ranging between 4.8 and 8.9, the fraction eluted at pH 8.9 was the most potent CaMK II inhibitor. From this fraction, Trp-Val and Trp-Ile were identified as CaMK II inhibitors. In Sprague-Dawley rats, an enhanced aortic CaMK II activity by 1μM phenylephrine was significantly (pCaMK II activity assays, it was concluded that Trp-Val and Trp-Ile competed with Ca(2+)-CaM complex to bind to CaMK II with Ki values of 5.4 and 3.6μM, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synergic study of α-glucosidase inhibitory action of aloin and its antioxidant activity with and without camel β-casein and its peptides.

    Science.gov (United States)

    Ghamari, F; Ghaffari, S M; Salami, M; Moosavi-Movahedi, F; Farivar, F; Johari, A; Saboury, A A; Chobert, J M; Haertlé, T; Moosavi-Movahedi, A A

    2013-05-01

    Regular consumption of natural antioxidants reduces the risk of developing diseases. Aloin is one of the main active phenolic components of Aloe vera. The main disadvantage of aloin is its concentration limit of use that causes cell damage. One of the aims of this study was to investigate the antioxidant activity of aloin in the presence and absence of camel β-casein ( β-CN) and its peptide fractions. The mixture of aloin, β-CN and peptides showed a very high antioxidant activity in a synergistic manner as compared to each component alone. The alpha ( α)-glucosidase inhibitory activity of aloin was also investigated in the presence and absence of β-CN and its peptides. Aloin alone is a potent inhibitor of α-glucosidase. The α-glucosidase inhibitory activity of aloin is reduced in the presence of β-CN or its peptides. The combination of aloin and β-CN or its peptides makes a high antioxidant functional ingredient.

  17. Enzyme Inhibitory Radicinol Derivative from Endophytic fungus Bipolaris sorokiniana LK12, Associated with Rhazya stricta

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    2015-07-01

    Full Text Available Endophytes, living inside plant tissues, play an essential role in plant growth and development, whilst producing unique bioactive secondary metabolites. In the current study, the endophytic fungus Bipolaris sorokiniana LK12 was isolated from the leaves of ethno-medicinal and alkaloidal rich Rhazya stricta. The bulk amount of ethyl acetate extract of fungus was subjected to advance column chromatographic techniques, which resulted in the isolation of a new radicinol derivative, bipolarisenol (1. It was found to be a derivative of radicinol. The structure elucidation was carried out by the combined use of 1D and 2D nuclear magnetic resonance, infrared spectroscopy, mass, and UV spectrometric analyses. The bipolarisenol was assessed for its potential role in enzyme inhibition of urease and acetyl cholinesterase (AChE. Results showed that bipolarisenol significantly inhibited the AChE activity with low IC50 (67.23 ± 5.12 µg·mL−1. Bipolarisenol inhibited urease in a dose-dependent manner with high IC50 (81.62 ± 4.61 µg·mL−1. The new compound also showed a moderate anti-lipid peroxidation potential (IC50 = 168.91 ± 4.23 µg·mL−1. In conclusion, endophytes isolated from medicinal plants possess a unique potential to be considered for future drug discovery.

  18. Cross-linked collagen sponges loaded with plant polyphenols with inhibitory activity towards chronic wound enzymes.

    Science.gov (United States)

    Antonio, Francesko; Guillem, Rocasalbas; Sonia, Touriño; Clara, Mattu; Piergiorgio, Gentile; Valeria, Chiono; Gianluca, Ciardelli; Tzanov, Tzanko

    2011-10-01

    Collagen sponges loaded with polyphenols from Hamamelis virginiana were investigated as active materials for chronic wound dressings, evaluating in vitro the inhibition of two major enzymes that impair the wound healing process - myeloperoxidase (MPO) and collagenase. Prior to polyphenols loading, collagen was cross-linked with genipin to improve its biostability. The effect of genipin cross-linking and polyphenol concentration in the development of mechanically and enzymatically stable sponges was studied. The tensile strength of the cross-linked collagen increased with the increase of the cross-linking degree, coupled to decrease in the elongation and the swelling capacity of the sponges. The stability of the sponges to collagenase digestion reached maximum when 1 mM genipin was used. However, the biostability decreased more than 10-fold after loading the sponges with polyphenols (0.5 mg/mL), nevertheless, this effect was partially overcome using higher concentration of polyphenols (1 and 2 mg/mL) to inhibit collagenase. Moreover, the polyphenols released from the sponges were sufficient for complete inhibition of MPO activity. No considerable cytotoxicity of the genipin cross-linked collagen loaded with polyphenols was observed evaluating the NIH 3T3 fibroblasts viability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: design, synthesis, cytotoxicity and enzyme-inhibitory activity.

    Science.gov (United States)

    Farzaneh, Shabnam; Zainalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin

    2017-10-03

    Background Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Objective Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anti-cancer activities. Method Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. Results In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti

  20. Peptides present in the non-digestible fraction of common beans (Phaseolus vulgaris L.) inhibit the angiotensin-I converting enzyme by interacting with its catalytic cavity independent of their antioxidant capacity.

    Science.gov (United States)

    Luna-Vital, Diego A; González de Mejía, Elvira; Mendoza, Sandra; Loarca-Piña, Guadalupe

    2015-05-01

    The aim was to evaluate the angiotensin-I converting enzyme (ACE) inhibitory potential and the antioxidant capacity of pure synthesized peptides (GLTSK, LSGNK, GEGSGA, MPACGSS and MTEEY) originally identified in the non-digestible fraction (NDF) of common beans (P. vulgaris L.) that had previously demonstrated antiproliferative activity against human colorectal cancer cells. The five peptides were able to inhibit ACE with half maximal inhibitory concentration (IC50) values ranging from 65.4 (GLTSK) to 191.5 μM (MPACGSS). The combination of GLTSK and MTEEY increased the ACE inhibition by 30% compared to equieffective doses of the single peptides. According to molecular docking analysis, the five peptides had lower estimated free energy values (-6.47 to -9.34 kcal mol(-1)) when they interacted with the catalytic site of ACE than that of the substrate hippuryl-histidyl-leucine (-5.41 kcal mol(-1)), thus inhibiting the enzymatic activity. According to molecular docking analysis, the five peptides interacted with four (His353, Ala354, Glu411 and Tyr523) out of 6 catalytic residues. Moreover, MPACGSS had the highest antioxidant activity according to Ferric reducing antioxidant power (FRAP) (421.58 μmol FeSO4 mg(-1)), Fe(2+) chelation (2.01 μmol Na2EDTA mg(-1)) assays, and also in DPPH (748.39 μmol Trolox per mg of dry peptide) and ABTS (561.42 μmol Trolox mg(-1)) radical scavenging assays. The results support the hypothesis that peptides present in the non-digestible fraction of common beans (Phaseolus vulgaris L.) may exert their physiological benefits independent of their antioxidant capacity, by ACE inhibition through interaction with its catalytic cavity.

  1. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  2. Controlled enzyme-immobilisation on capillaries for microreactors for peptide mapping.

    Science.gov (United States)

    Bossi, A; Guizzardi, L; D'Acunto, M R; Righetti, P G

    2004-04-01

    In the present paper, the covalent immobilisation of the digesting enzyme trypsin has been achieved through photo-immobilisation on a portion of a silica capillary, thus leading to the construction of a capillary electrophoretic (CE)-microreactor for peptide mapping. The CE-microreactor is characterised by being a single piece, thus ensuring no fluidic or electrical leakage. The enzyme was immobilised with a surface density of 15.8 microg/cm(2), the stability was high (80% after 38 days) and the rate of conversion was 0.2 ng/s. On-line protein mapping was tested with proteins of different dimensions, showing competitiveness in terms of time (completed map within 15 min) and exhaustive maps of small proteins. The results of the CE-microreactor and the potential to immobilise biocomponents easily on a desired portion of the capillary indicate further developments towards the construction of a variety of miniaturised enzymatic screening devices for high-throughput screening analysis.

  3. OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system.

    Science.gov (United States)

    Pechsrichuang, Phornsiri; Songsiriritthigul, Chomphunuch; Haltrich, Dietmar; Roytrakul, Sittiruk; Namvijtr, Peenida; Bonaparte, Napolean; Yamabhai, Montarop

    2016-01-01

    The production of secreted recombinant proteins from E. coli is pivotal to the biotechnological industry because it reduces the cost of downstream processing. Proteins destined for secretion contain an N-terminal signal peptide that is cleaved by secretion machinery in the plasma membrane. The resulting protein is released in an active mature form. In this study, Bacillus subtilis chitosanase (Csn) was used as a model protein to compare the effect of two signal peptides on the secretion of heterologous recombinant protein. The results showed that the E. coli secretion machinery could recognize both native bacillus and E. coli signal peptides. However, only the native bacillus signal peptide could generate the same N-terminal sequence as in the wild type bacteria. When the recombinant Csn constructs contained the E. coli OmpA signal peptide, the secreted enzymes were heterogeneous, comprising a mixed population of secreted enzymes with different N-terminal sequences. Nevertheless, the E. coli OmpA signal peptide was found to be more efficient for high expression and secretion of bacillus Csn. These findings may be used to help engineer other recombinant proteins for secretory production in E. coli.

  4. Expression of an antimicrobial peptide, digestive enzymes and nutrient transporters in the intestine of E. praecox-infected chickens

    Science.gov (United States)

    Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters and an antimicrobial peptide following an Eimeria praecox challenge of chickens at d...

  5. Evaluating the inhibitory potential of Withania somnifera on platelet aggregation and inflammation enzymes: An in vitro and in silico study.

    Science.gov (United States)

    M, Madhusudan; Zameer, Farhan; Naidu, Akhilender; M N, Nagendra Prasad; Dhananjaya, Bhadrapura Lakkappa; Hegdekatte, Raghavendra

    2016-09-01

    Context Withania somnifera (L.) Dunal is traditionally used for treating various ailments, but lacks scientific evaluation. Objective This study evaluates Withania somnifera (WS) for its effect on platelet activity and inflammatory enzymes. Materials and methods Aqueous and ethanolic (1:1) leaf extracts were subjected to in vitro indirect haemolytic activity using Naja naja venom, human platelet aggregation was quantified for lipid peroxidation using arachidonic acid (AA) as agonist and 5-lipoxygenase (5-LOX) levels were determined using standard spectrometric assays. Further, molecular docking was performed by the ligand fit method using molegro software package (Molegro ApS, Aarhus, Denmark). Results The study found that aqueous and ethanol extracts have very negligible effect (15%) with an IC50 value of 13.8 mg/mL on PLA2 from Naja naja venom. Further, extracts of WS also had very little effect (18%) with an IC50 value of 16.6 mg/mL on malondialdehyde (MDA) formation. However, a 65% inhibition of 5-LOX with an IC50 value of 0.92 mg/mL was observed in 1:1 ethanol extracts. The same was evident from SAR model with the active ingredient withaferin A binding predominantly on Phe 77, Tyr 98, Arg 99, Asp 164, Leu 168, Ser 382, Arg 395, Tyr 396 and Tyr 614 with an atomic contact energy value of -128.96 compared to standard phenidone (-103.61). Thus, the current study validates the application of WS for inflammatory diseases. Conclusion This study reveals the inhibitory potential of W. somnifera on inflammatory enzymes and platelet aggregation. Thus, WS can serve as a newer, safer and affordable medicine for inflammatory diseases.

  6. Canonical and Cross-reactive Binding of NK Cell Inhibitory Receptors to HLA-C Allotypes Is Dictated by Peptides Bound to HLA-C.

    Science.gov (United States)

    Sim, Malcolm J W; Malaker, Stacy A; Khan, Ayesha; Stowell, Janet M; Shabanowitz, Jeffrey; Peterson, Mary E; Rajagopalan, Sumati; Hunt, Donald F; Altmann, Daniel M; Long, Eric O; Boyton, Rosemary J

    2017-01-01

    Human natural killer (NK) cell activity is regulated by a family of killer cell immunoglobulin-like receptors (KIRs) that bind human leukocyte antigen (HLA) class I. Combinations of KIR and HLA genotypes are associated with disease, including susceptibility to viral infection and disorders of pregnancy. KIR2DL1 binds HLA-C alleles of group C2 (Lys80). KIR2DL2 and KIR2DL3 bind HLA-C alleles of group C1 (Asn80). However, this model cannot explain HLA-C allelic effects in disease or the impact of HLA-bound peptides. The goal of this study was to determine the extent to which the endogenous HLA-C peptide repertoire can influence the specific binding of inhibitory KIR to HLA-C allotypes. The impact of HLA-C bound peptide on inhibitory KIR binding was investigated taking advantage of the fact that HLA-C*05:01 (HLA-C group 2, C2) and HLA-C*08:02 (HLA-C group 1, C1) have identical sequences apart from the key KIR specificity determining epitope at residues 77 and 80. Endogenous peptides were eluted from HLA-C*05:01 and used to test the peptide dependence of KIR2DL1 and KIR2DL2/3 binding to HLA-C*05:01 and HLA-C*08:02 and subsequent impact on NK cell function. Specific binding of KIR2DL1 to the C2 allotype occurred with the majority of peptides tested. In contrast, KIR2DL2/3 binding to the C1 allotype occurred with only a subset of peptides. Cross-reactive binding of KIR2DL2/3 with the C2 allotype was restricted to even fewer peptides. Unexpectedly, two peptides promoted binding of the C2 allotype-specific KIR2DL1 to the C1 allotype. We showed that presentation of endogenous peptides or HIV Gag peptides by HLA-C can promote KIR cross-reactive binding. KIR2DL2/3 binding to C1 is more peptide selective than that of KIR2DL1 binding to C2, providing an explanation for KIR2DL3-C1 interactions appearing weaker than KIR2DL1-C2. In addition, cross-reactive binding of KIR is characterized by even higher peptide selectivity. We demonstrate a hierarchy of functional peptide

  7. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens.

    Science.gov (United States)

    Badawy, Mohamed E I; Rabea, Entsar I; Taktak, Nehad E M

    2014-10-13

    Chemical modification of a biopolymer chitosan by introducing quaternary ammonium moieties into the polymer backbone enhances its antimicrobial activity. In the present study, a series of quaternary N-(benzyl) chitosan derivatives were synthesized and characterized by (1)H-NMR, FT-IR and UV spectroscopic techniques. The antimicrobial activity against crop-threatening bacteria Agrobacterium tumefaciens and Erwinia carotovora and fungi Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum and Phytophthora infestans were evaluated. The results proved that the grafting of benzyl moiety or quaternization of the derivatives onto chitosan molecule was successful in inhibiting the microbial growth. Moreover, increase water-solubility of the compounds by quaternization significantly increased the activity against bacteria and fungi. Exocellular enzymes including polygalacturonase (PGase), pectin-lyase (PLase), polyphenol oxidase (PPOase) and cellulase were also affected at 1000 mg/L. These compounds especially quaternary-based chitosan derivatives that have good inhibitory effect should be potentially used as antimicrobial agents in crop protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity.

    Science.gov (United States)

    Bounouala, Fatima Zohra; Roudj, Salima; Karam, Nour-Eddine; Recio, Isidra; Miralles, Beatriz

    2017-10-25

    Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.

  9. Mechanism of Cancer Growth Suppression of Alpha-Fetoprotein Derived Growth Inhibitory Peptides (GIP): Comparison of GIP-34 versus GIP-8 (AFPep). Updates and Prospects

    Energy Technology Data Exchange (ETDEWEB)

    Mizejewski, Gerald J. [Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States)

    2011-06-20

    The Alpha-fetoprotein (AFP) derived Growth Inhibitory Peptide (GIP) is a 34-amino acid segment of the full-length human AFP molecule that inhibits tumor growth and metastasis. The GIP-34 and its carboxy-terminal 8-mer segment, termed GIP-8, were found to be effective as anti-cancer therapeutic peptides against nine different human cancer types. Following the uptake of GIP-34 and GIP-8 into the cell cytoplasm, each follows slightly different signal transduction cascades en route to inhibitory pathways of tumor cell growth and proliferation. The parallel mechanisms of action of GIP-34 versus GIP-8 are demonstrated to involve interference of signaling transduction cascades that ultimately result in: (1) cell cycle S-phase/G2-phase arrest; (2) prevention of cyclin inhibitor degradation; (3) protection of p53 from inactivation by phosphorylation; and (4) blockage of K{sup +} ion channels opened by estradiol and epidermal growth factor (EGF). The overall mechanisms of action of both peptides are discussed in light of their differing modes of cell attachment and uptake fortified by RNA microarray analysis and electrophysiologic measurements of cell membrane conductance and resistance. As a chemotherapeutic adjunct, the GIPs could potentially aid in alleviating the negative side effects of: (1) tamoxifen resistance, uterine hyperplasia/cancer, and blood clotting; (2) Herceptin antibody resistance and cardiac (arrest) arrhythmias; and (3) doxorubicin's bystander cell toxicity.

  10. Mechanism of Cancer Growth Suppression of Alpha-Fetoprotein Derived Growth Inhibitory Peptides (GIP: Comparison of GIP-34 versus GIP-8 (AFPep. Updates and Prospects

    Directory of Open Access Journals (Sweden)

    Gerald J. Mizejewski

    2011-06-01

    Full Text Available The Alpha-fetoprotein (AFP derived Growth Inhibitory Peptide (GIP is a 34-amino acid segment of the full-length human AFP molecule that inhibits tumor growth and metastasis. The GIP-34 and its carboxy-terminal 8-mer segment, termed GIP-8, were found to be effective as anti-cancer therapeutic peptides against nine different human cancer types. Following the uptake of GIP-34 and GIP-8 into the cell cytoplasm, each follows slightly different signal transduction cascades en route to inhibitory pathways of tumor cell growth and proliferation. The parallel mechanisms of action of GIP-34 versus GIP-8 are demonstrated to involve interference of signaling transduction cascades that ultimately result in: (1 cell cycle S-phase/G2-phase arrest; (2 prevention of cyclin inhibitor degradation; (3 protection of p53 from inactivation by phosphorylation; and (4 blockage of K+ ion channels opened by estradiol and epidermal growth factor (EGF. The overall mechanisms of action of both peptides are discussed in light of their differing modes of cell attachment and uptake fortified by RNA microarray analysis and electrophysiologic measurements of cell membrane conductance and resistance. As a chemotherapeutic adjunct, the GIPs could potentially aid in alleviating the negative side effects of: (1 tamoxifen resistance, uterine hyperplasia/cancer, and blood clotting; (2 Herceptin antibody resistance and cardiac (arrest arrhythmias; and (3 doxorubicin’s bystander cell toxicity.

  11. Diterpenoids and phenylethanoid glycosides from the roots of Clerodendrum bungei and their inhibitory effects against angiotensin converting enzyme and α-glucosidase.

    Science.gov (United States)

    Liu, Qing; Hu, Hai-Jun; Li, Peng-Fei; Yang, Ying-Bo; Wu, Li-Hong; Chou, Gui-Xin; Wang, Zheng-Tao

    2014-07-01

    Abietane derivatives, bungnates A, B, 15-dehydrocyrtophyllone A and 15-dehydro-17-hydroxycyrtophyllone A, and two phenylethanoid glycosides, bunginoside A and 3″,4″-di-O-acetylmartynoside, together with nine known abietane derivatives and fourteen known phenylethanoid glycosides, were isolated from dried roots of Clerodendrum bungei. Their structures were determined on the basis of detailed spectroscopic analyses and acidic hydrolysis. The absolute configuration of bunginoside A was established from analysis of CD data. Selected compounds were evaluated for inhibitory effects against angiotensin converting enzyme (ACE) and α-glucosidase. 15-Dehydrocyrtophyllone A showed an ACE inhibitory effect, and verbascoside, leucosceptoside A and isoacteoside exhibited strong inhibitory capacity against α-glucosidase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K

    Directory of Open Access Journals (Sweden)

    Bao Chunju

    2016-06-01

    Full Text Available Angiotensin I converting enzyme (ACE inhibitory peptides derived from milk proteins have obvious effect of lowering blood pressure, safe and non-toxic side effects. This study compared four commercial proteases, namely alcalase, flavourzyme, neutral protease and proteinase K for their ACE inhibitory activity in skimmed goat and cow milk and identified the best one with higher ACE inhibitory activity. The degree of hydrolysis (DH of alcalase and proteinase K were much higher than flavourzyme, neutral protease for both skimmed goat and cow milk. Alcalase was the best enzyme to produce ACE inhibitory peptides from goat milk, with the ACE inhibitory activity 95.31%, while proteinase K was the optimal protease for hydrolyzing cow milk, with 81.28% ACE inhibitory activity. Furthermore, no correlation was obtained between the ACE inhibitory activity and DH for both goat and cow milk.

  13. Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review.

    Science.gov (United States)

    Chai, Tsun-Thai; Law, Yew-Chye; Wong, Fai-Chu; Kim, Se-Kwon

    2017-02-16

    Marine invertebrates, such as oysters, mussels, clams, scallop, jellyfishes, squids, prawns, sea cucumbers and sea squirts, are consumed as foods. These edible marine invertebrates are sources of potent bioactive peptides. The last two decades have seen a surge of interest in the discovery of antioxidant peptides from edible marine invertebrates. Enzymatic hydrolysis is an efficient strategy commonly used for releasing antioxidant peptides from food proteins. A growing number of antioxidant peptide sequences have been identified from the enzymatic hydrolysates of edible marine invertebrates. Antioxidant peptides have potential applications in food, pharmaceuticals and cosmetics. In this review, we first give a brief overview of the current state of progress of antioxidant peptide research, with special attention to marine antioxidant peptides. We then focus on 22 investigations which identified 32 antioxidant peptides from enzymatic hydrolysates of edible marine invertebrates. Strategies adopted by various research groups in the purification and identification of the antioxidant peptides will be summarized. Structural characteristic of the peptide sequences in relation to their antioxidant activities will be reviewed. Potential applications of the peptide sequences and future research prospects will also be discussed.

  14. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects

    DEFF Research Database (Denmark)

    Meier, Juris J; Nauck, Michael A; Kranz, Daniel

    2004-01-01

    Glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP) are important factors in the pathogenesis of type 2 diabetes and have a promising therapeutic potential. Alterations of their secretion, in vivo degradation, and elimination in patients with chronic renal insufficiency (CRI.......4 +/- 3.0 min for the GIP metabolite (P = 0.032) for CRI patients vs. healthy control subjects, respectively. Insulin concentrations tended to be lower in the patients during all experiments, whereas C-peptide levels tended to be elevated. These data underline the importance of the kidneys for the final...... elimination of GIP and GLP-1. The initial dipeptidyl peptidase IV-mediated degradation of both hormones is almost unaffected by impairments in renal function. Delayed elimination of GLP-1 and GIP in renal insufficiency may influence the pharmacokinetics and pharmacodynamics of dipeptidyl peptidase IV...

  15. A molecular dynamics study of the interaction of D-peptide amyloid inhibitors with their target sequence reveals a potential inhibitory pharmacophore conformation.

    Science.gov (United States)

    Esteras-Chopo, Alexandra; Morra, Giulia; Moroni, Elisabetta; Serrano, Luis; Lopez de la Paz, Manuela; Colombo, Giorgio

    2008-10-31

    The self-assembly of soluble proteins and peptides into beta-sheet-rich oligomeric structures and insoluble fibrils is a hallmark of a large number of human diseases known as amyloid diseases. Drugs that are able to interfere with these processes may be able to prevent and/or cure these diseases. Experimental difficulties in the characterization of the intermediates involved in the amyloid formation process have seriously hampered the application of rational drug design approaches to the inhibition of amyloid formation and growth. Recently, short model peptide systems have proved useful in understanding the relationship between amino acid sequence and amyloid formation using both experimental and theoretical approaches. Moreover, short D-peptide sequences have been shown to specifically interfere with those short amyloid stretches in proteins, blocking oligomer formation or disassembling mature fibrils. With the aim of rationalizing which interactions drive the binding of inhibitors to nascent beta-sheet oligomers, in this study, we have carried out extensive molecular dynamics simulations of the interaction of selected d-peptide sequences with oligomers of the target model sequence STVIIE. Structural analysis of the simulations helped to identify the molecular determinants of an inhibitory core whose conformational and physicochemical properties are actually shared by nonpeptidic small-molecule inhibitors of amyloidogenesis. Selection of one of these small molecules and experimental validation against our model system proved that it was indeed an effective inhibitor of fibril formation by the STVIIE sequence, supporting theoretical predictions. We propose that the inhibitory determinants derived from this work be used as structural templates in the development of pharmacophore models for the identification of novel nonpeptidic inhibitors of aggregation.

  16. NMR studies of the active site of DNA polymerase I and of a 50-residue peptide fragment of the enzyme.

    Science.gov (United States)

    Mullen, G P; Vaughn, J B; Shenbagamurthi, P; Mildvan, A S

    1990-07-01

    Transferred nuclear Overhauser effects (NOEs) and selective T1 measurements were used to determine interproton distances in the substrates Mg2+dATP and Mg2+TTP bound to the large fragment of DNA polymerase I (Pol I). The distances are consistent with high anti, O1' endo conformations for the enzyme-bound substrates, similar to nucleotides of B-DNA. These substrate conformations show little or no change when the complementary RNA templates (rU)57 or (rA)50 are bound. In contrast, multiple conformations, including syn and anti species, are required to fit the interproton distances measured on the enzyme-bound guanine nucleotide substrates Mg2+dGTP and Mg2+ddGTP. These multiple substrate conformations simplify to a single high anti, O1' endo conformation when the complementary template (rC)37 is bound, possibly due to base-pairing with the template, as in the active complex. In the presence of both template and primer, enzyme-bound Mg2+ddGTP reverts to multiple conformations. This ability of Pol I to decrease the fraction of bound substrate which is appropriate for primer elongation may be an error-preventing mechanism. In all cases, the conformations of the average nucleotide of the enzyme-bound RNA templates are also B-like. Transferred NOEs from protons of the enzyme to those of bound dNTP substrates suggest hydrophobic (Ile, Leu) and an aromatic amino acid (Tyr) at the substrate binding site. Peptide I, a synthetic 50-residue peptide based on residues 728 to 777 of the Pol I sequence, containing the conserved sequence L-I-Y-G, retains significant secondary and tertiary structure in solution as found by circular dichroism (CD) and 2D NMR. While the X-ray structure shows 48% helix in this region, the sequence specific NOESY analysis suggests 18% helix, and the preservation of two of the three beta turns. Peptide I shows tight binding of dNTP substrates, the substrate analog 2',3'-trinitrophenyl-ATP, and duplex DNA, providing direct evidence that the active site for

  17. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  18. Evaluation of the Diagnostic Performance of Onchocerca volvulus Linear Epitopes in a Peptide Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Lagatie, Ole; Verheyen, Ann; Nijs, Erik; Van Dorst, Bieke; Batsa Debrah, Linda; Debrah, Alex; Supali, Taniawati; Sartono, Erliyani; Stuyver, Lieven J

    2018-01-08

    Diagnostic tools for the detection of infection with Onchocerca volvulus are presently limited to microfilaria detection in skin biopsies and serological assessment using the Ov16 immunoglobulin G4 (IgG4) rapid test, both of which have limited sensitivity. We have investigated the diagnostic performance of a peptide enzyme-linked immunosorbent assay (ELISA) based on immunodominant linear epitopes previously discovered. Peptides that were used in these assays were designated O. volvulus motif peptides (OvMP): OvMP-1 (VSV-EPVTTQET-VSV), OvMP-2 (VSV-KDGEDK-VSV), OvMP-3 (VSV-QTSNLD-VSV), and the combination of the latter two, OvMP-23 (VSV-KDGEDK-VSV-QTSNLD-VSV). Sensitivity (O. volvulus infection), specificity (non-helminth infections), and cross-reactivity (helminth infections) were determined using several panels of clinical plasma isolates. OvMP-1 was found to be very sensitive (100%) and specific (98.7%), but showed substantial cross-reactivity with other helminths. Of the other peptides, OvMP-23 was the most promising peptide with a sensitivity of 92.7%, a specificity of 100%, and a cross-reactivity of 6%. It was also demonstrated that these peptides were immunoreactive to IgG but not IgG4, and there is no correlation with the Ov16 IgG4 status, making them promising candidates to complement this already available test. Combination of the Ov16 IgG4 rapid test and OvMP-23 peptide ELISA led to a sensitivity of 97.3% for the detection of O. volvulus infection, without compromising specificity and with minimal impact on cross-reactivity. The available results open the opportunity for a "clinical utility use case" discussion for improved O. volvulus epidemiological mapping.

  19. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Himaya, S.W.A. [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Dewapriya, Pradeep [Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Kim, Se-Kwon, E-mail: sknkim@pknu.ac.kr [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of)

    2013-06-15

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.

  20. The auto-inhibitory state of Rho guanine nucleotide exchange factor ARHGEF5/TIM can be relieved by targeting its SH3 domain with rationally designed peptide aptamers.

    Science.gov (United States)

    He, Ping; Tan, De-Li; Liu, Hong-Xiang; Lv, Feng-Lin; Wu, Wei

    2015-04-01

    The short isoform of Rho guanine nucleotide exchange factor ARHGEF5 is known as TIM, which plays diverse roles in, for example, tumorigenesis, neuronal development and Src-induced podosome formation through the activation of its substrates, the Rho family of GTPases. The activation is auto-inhibited by a putative helix N-terminal to the DH domain of TIM, which is stabilized by the intramolecular interaction of C-terminal SH3 domain with a poly-proline sequence between the putative helix and the DH domain. In this study, we systematically investigated the structural basis, energetic landscape and biological implication underlying TIM auto-inhibition by using atomistic molecular dynamics simulations and binding free energy analysis. The computational study revealed that the binding of SH3 domain to poly-proline sequence is the prerequisite for the stabilization of TIM auto-inhibition. Thus, it is suggested that targeting SH3 domain with competitors of the poly-proline sequence would be a promising strategy to relieve the auto-inhibitory state of TIM. In this consideration, we rationally designed a number of peptide aptamers for competitively inhibiting the SH3 domain based on modeled TIM structure and computationally generated data. Peptide binding test and guanine nucleotide exchange analysis solidified that these designed peptides can both bind to the SH3 domain potently and activate TIM-catalyzed RhoA exchange reaction effectively. Interestingly, a positive correlation between the peptide affinity and induced exchange activity was observed. In addition, separate mutation of three conserved residues Pro49, Pro52 and Lys54 - they are required for peptide recognition by SH3 domain -- in a designed peptide to Ala would completely abolish the capability of this peptide activating TIM. All these come together to suggest an intrinsic relationship between peptide binding to SH3 domain and the activation of TIM. Copyright © 2015 Elsevier B.V. and Société Française de

  1. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein.

    Directory of Open Access Journals (Sweden)

    Syed Hussinien H Shah

    Full Text Available Exotic functions of antifreeze proteins (AFP and antifreeze glycopeptides (AFGP have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.

  2. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein.

    Science.gov (United States)

    Shah, Syed Hussinien H; Kar, Rajiv K; Asmawi, Azren A; Rahman, Mohd Basyaruddin A; Murad, Abdul Munir A; Mahadi, Nor M; Basri, Mahiran; Rahman, Raja Noor Zaliha A; Salleh, Abu B; Chatterjee, Subhrangsu; Tejo, Bimo A; Bhunia, Anirban

    2012-01-01

    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.

  3. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology.

    Science.gov (United States)

    Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-03-31

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.

  4. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Shehu Muhammad Auwal

    2017-03-01

    Full Text Available The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE-inhibitory hydrolysates. Response surface methodology (RSM based on a central composite design was used to model and optimize the degree of hydrolysis (DH and ACE-inhibitory activity. Process conditions including pH (4–7, temperature (40–70 °C, enzyme/substrate (E/S ratio (0.5%–2% and time (30–360 min were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.

  5. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    Science.gov (United States)

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and cheese wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. New synthetic peptides can enhance gene expression of key antioxidant defense enzymes in vitro and in vivo.

    Science.gov (United States)

    Shashoua, Victor E; Adams, David S; Volodina, Natalia V; Li, Hua

    2004-10-22

    Neurodegenerative, cardiovascular, and age-related disorders have been attributed to the cellular damage caused by elevated production of reactive oxygen species (ROS) and free radicals (FRs). These cannot be adequately defended by existing levels of key antioxidant enzymes. Two peptides, 8 and 14 amino acids long, were synthesized and found to up-regulate, at nanomolar concentrations, superoxide dismutase (SOD) and catalase (CAT) m-RNAs (9- to 12-fold) within 3 h, and then elevate by 5- to 10-fold the protein levels of SOD, CAT, and glutathione peroxidase (GPX) in rat primary cortical cultures. Kinetic studies showed that the peptide up-regulation of all three enzymes appears to be a coordinated process which occurs in vitro and in vivo. We also found that ischemia alone, without added drugs, can lead to enhanced gene expression of SOD, CAT, and GPX. This suggests that the CNS can initiate its own "defense" against ROS and FR. Thus, our peptides may activate such systems, as well as AP-1 transcription factor, reported in earlier findings to lead to "repair" (growth) of injured cells.

  7. Hepatic Fibrosis Inhibitory Effect of Peptides Isolated from Navicula incerta on TGF-β1 Induced Activation of LX-2 Human Hepatic Stellate Cells.

    Science.gov (United States)

    Kang, Kyong-Hwa; Qian, Zhong-Ji; Ryu, Bomi; Karadeniz, Fatih; Kim, Daekyung; Kim, Se-Kwon

    2013-06-01

    In this study, novel peptides (NIPP-1, NIPP-2) derived from Navicula incerta (microalgae) protein hydrolysate were explored for their inhibitory effects on collagen release in hepatic fibrosis with the investigation of its underlying mechanism of action. TGF-β1 activated fibrosis in LX-2 cells was examined in the presence or absence of purified peptides NIPP-1 and NIPP-2. Besides the mechanisms of liver cell injury, protective effects of NIPP-1 and NIPP-2 were studied to show the protective mechanism against TGF-β1 stimulated fibrogenesis. Our results showed that the core protein of NIPP-1 peptide prevented fibril formation of type I collagen, elevated the MMP level and inhibited TIMP production in a dose-dependent manner. The treatment of NIPP-1 and NIPP-2 on TGF-β1 induced LX-2 cells alleviated hepatic fibrosis. Moreover, α-SMA, TIMPs, collagen and PDGF in the NIPP-1 treated groups were significantly decreased. Therefore, it could be suggested that NIPP-1 has potential to be used in anti-fibrosis treatment.

  8. Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes.

    Science.gov (United States)

    Li, Qian; Chen, Jun; Li, Ti; Liu, Chengmei; Zhai, Yuxin; McClements, David Julian; Liu, Jiyan

    2015-12-01

    Bioactive proanthocyanidins were isolated from the peel of Choerospondias axillaris fruit, which is a waste product of the food processing industry. Compositional analysis indicated that the proanthocyanidins had extension units mainly consisting of epicatechin gallate or epicatechin, and terminal units mainly consisting of catechin. Numerous polymeric forms of the molecules were detected, including monomers, dimers, and trimers. Certain fractions exhibited strong α-amylase or α-glucosidase inhibition in a dose-dependent manner. Furthermore, their inhibitory activities depended on their degree of polymerization and galloylation. For example, the most bioactive fraction had α-amylase and α-glucosidase inhibitory activities (IC50 values) of 541 and 3.1 μg mL(-1), respectively. This study demonstrates that proanthocyanidins from C. axillaris peels can inhibit carbohydrate digestive enzymes in vitro and may therefore serve as antidiabetic ingredients in functional or medical foods.

  9. Isolation of an Angiotensin I-Converting Enzyme Inhibitory Protein with Antihypertensive Effect in Spontaneously Hypertensive Rats from the Edible Wild Mushroom Leucopaxillus tricolor

    Directory of Open Access Journals (Sweden)

    Xueran Geng

    2015-06-01

    Full Text Available An 86-kDa homodimeric angiotensin I-converting enzyme (ACE inhibitory protein designated as LTP was isolated from fruit bodies of the mushroom Leucopaxillus tricolor. The isolation procedure involved ultrafiltration through a membrane with a molecular weight cutoff of 10-kDa, ion exchange chromatography on Q-Sepharose, and finally fast protein liquid chromatography-gel filtration on Superdex 75. LTP exhibited an IC50 value of 1.64 mg∙mL−1 for its ACE inhibitory activity. The unique N-terminal amino acid sequence of LTP was disclosed by Edman degradation to be DGPTMHRQAVADFKQ. In addition, seven internal sequences of LTP were elucidated by liquid chromatography-tandem mass spectrometry (LC-MS/MS analysis. Results of the Lineweaver-Burk plot suggested that LTP competitively inhibited ACE. Both LTP and the water extract of L. tricolor exhibited a clear antihypertensive effect on spontaneously hypertensive rats.

  10. Isolation of an Angiotensin I-Converting Enzyme Inhibitory Protein with Antihypertensive Effect in Spontaneously Hypertensive Rats from the Edible Wild Mushroom Leucopaxillus tricolor.

    Science.gov (United States)

    Geng, Xueran; Tian, Guoting; Zhang, Weiwei; Zhao, Yongchang; Zhao, Liyan; Ryu, Mansok; Wang, Hexiang; Ng, Tzi Bun

    2015-06-01

    An 86-kDa homodimeric angiotensin I-converting enzyme (ACE) inhibitory protein designated as LTP was isolated from fruit bodies of the mushroom Leucopaxillus tricolor. The isolation procedure involved ultrafiltration through a membrane with a molecular weight cutoff of 10-kDa, ion exchange chromatography on Q-Sepharose, and finally fast protein liquid chromatography-gel filtration on Superdex 75. LTP exhibited an IC50 value of 1.64 mg∙mL-1 for its ACE inhibitory activity. The unique N-terminal amino acid sequence of LTP was disclosed by Edman degradation to be DGPTMHRQAVADFKQ. In addition, seven internal sequences of LTP were elucidated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results of the Lineweaver-Burk plot suggested that LTP competitively inhibited ACE. Both LTP and the water extract of L. tricolor exhibited a clear antihypertensive effect on spontaneously hypertensive rats.

  11. Coccinin, an antifungal peptide with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from large scarlet runner beans.

    Science.gov (United States)

    Ngai, Patrick H K; Ng, T B

    2004-12-01

    An antifungal peptide, designated coccinin, with a molecular mass of 7kDa and an N-terminal sequence resembling those of defensins, was purified from the seeds of large scarlet runner beans (Phaseolus coccineus cv. 'Major'). The peptide isolated was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and Mono S. The peptide excerted antifungal activity on a number of fungal species including Botrytis cinerea, Coprinus comatus, Fusarium oxysporum, Mycosphaerella arachidicola, Physalospora piricola, and Rhizoctonia solani. It also inhibited proliferation in the leukemia cell lines HL60 and L1210, and reduced the activity of HIV-1 reverse transcriptase. However, it did not affect proliferation of mouse splenocytes.

  12. Impact of exogenous hyperglucagonemia on postprandial concentrations of gastric inhibitory polypeptide and glucagon-like peptide-1 in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Ritter, Peter R; Jacob, Alexandra

    2010-01-01

    Postprandial secretion of glucagon-like peptide 1 (GLP-1) has been found diminished in some patients with type 2 diabetes mellitus (T2DM) and high glucagon concentrations. We examined the effects of exogenous glucagon on the release of incretin hormones.......Postprandial secretion of glucagon-like peptide 1 (GLP-1) has been found diminished in some patients with type 2 diabetes mellitus (T2DM) and high glucagon concentrations. We examined the effects of exogenous glucagon on the release of incretin hormones....

  13. HIV-1 gp41-targeting fusion inhibitory peptides enhance the gp120-targeting protein-mediated inactivation of HIV-1 virions.

    Science.gov (United States)

    Qi, Qianqian; Wang, Qian; Chen, Weizao; Du, Lanying; Dimitrov, Dimiter S; Lu, Lu; Jiang, Shibo

    2017-06-21

    Protein- or peptide-based viral inactivators are being developed as novel antiviral drugs with improved efficacy, pharmacokinetics and toxicity profiles because they actively inactivate cell-free human immunodeficiency virus type 1 (HIV-1) virions before attachment to host cells. By contrast, most clinically used antiviral drugs must penetrate host cells to inhibit viral replication. In this study, we pre-treated HIV-1 particles with a gp120-targeting bispecific multivalent protein, 2Dm2m or 4Dm2m, in the presence or absence of the gp41-targeting HIV-1 fusion inhibitory peptides enfuvirtide (T20), T2635, or sifuvirtide (SFT). HIV-1 virions were separated from the inhibitors using PEG-6000, followed by testing of the residual infectivity of the HIV-1 virions. 2Dm2m and 4Dm2m exhibited significant inactivation activity against all HIV-1 strains tested with EC50 values at the low nanomolar level, whereas none of the gp41-targeting peptides showed inactivation activity at concentrations up to 250 nM. Notably, these three peptides significantly enhanced protein-mediated inactivation against cell-free HIV-1 virions, including HIV-1 laboratory-adapted and primary HIV-1 strains, as well as those resistant to T20 or T2635 and virions released from reactivated latently HIV-1-infected cells. These results indicate that the gp120-targeting bispecific multivalent proteins 2Dm2m and 4Dm2m have potential for further development as HIV-1 inactivator-based antiviral drugs for use in the clinic, either alone or in combination with a gp41-targeting HIV-1 fusion inhibitor such as T20, to treat patients with HIV-1 infection and AIDS.

  14. Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication.

    Directory of Open Access Journals (Sweden)

    Kerstin Wunderlich

    Full Text Available There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.

  15. Glucagon-like peptide-1 receptor signaling in acinar cells causes growth dependent release of pancreatic enzymes

    DEFF Research Database (Denmark)

    Albrechtsen, Nicolai Jacob Wewer; Albrechtsen, Reidar; Bremholm, l

    2016-01-01

    -like peptide 1 (GLP-1) on the exocrine pancreas. Here, we identify GLP-1 receptors on pancreatic acini and analyze the impact of receptor activation in humans, rodents, isolated acini, and cell lines from the exocrine pancreas. GLP-1 did not directly stimulate amylase or lipase release. However, we saw...... that GLP-1 induces phosphorylation of the epidermal growth factor receptor and activation of Foxo1, resulting in cell growth with concomitant enzyme release. Our work uncovers GLP-1-induced signaling pathways in the exocrine pancreas and suggests that increases in amylase and lipase levels in subjects...

  16. A phage display selected 7-mer peptide inhibitor of the Tannerella forsythia metalloprotease-like enzyme Karilysin can be truncated to Ser-Trp-Phe-Pro.

    Directory of Open Access Journals (Sweden)

    Peter Durand Skottrup

    Full Text Available Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18 by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15, shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48. Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin.

  17. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study - Cumin seed.

    Science.gov (United States)

    Siow, Hwee-Leng; Lim, Theam Soon; Gan, Chee-Yuen

    2017-01-01

    The main objective of this study was to develop an efficient workflow to discover α-amylase inhibitory peptides from cumin seed. A total of 56 unknown peptides was initially found in the cumin seed protein hydrolysate. They were subjected to 2 different in silico screenings and 6 peptides were shortlisted. The peptides were then subjected to in vitro selection using phage display technique and 3 clones (CSP3, CSP4 and CSP6) showed high affinity in binding α-amylase. These clones were subjected to the inhibitory test and only CSP4 and CSP6 exhibited high inhibitory activity. Therefore, these peptides were chemically synthesized for validation purposes. CSP4 exhibited inhibition of bacterial and human salivary α-amylases with IC50 values of 0.11 and 0.04μmol, respectively, whereas CSP6 was about 0.10 and 0.15μmol, respectively. Results showed that the strength of each protocol has been successfully combined as deemed fit to enhance the α-amylase inhibitor peptide discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Inhibitory effect of zinc on the absorption of beta-lactam antibiotic ceftibuten via the peptide transporters in rats.

    Science.gov (United States)

    Okamura, Miyako; Terada, Tomohiro; Katsura, Toshiya; Inui, Ken-Ichi

    2008-01-01

    Zinc is an essential metal ion for the body, and is widely used for nutritional and clinical purposes. Previously, we showed that zinc inhibits the transport of glycylsarcosine via the intestinal peptide transporter PEPT1 in the human intestinal cell line Caco-2. In this study, we examined the effect of zinc on the activity of peptide transporters in rats using the oral beta-lactam antibiotic ceftibuten as a model drug. The plasma ceftibuten concentration after intraintestinal administration was decreased in the presence of zinc. The maximum plasma concentration (C(max)) was significantly decreased and the time required to reach C(max) (T(max)) was prolonged by zinc coadministration. The plasma ceftibuten concentration after iron coadministration or two hours after zinc administration was not affected. The in situ loop technique revealed 50% inhibition of ceftibuten absorption by zinc. In conclusion, zinc inhibits the transport activity of PEPT1 in vivo as well in vitro.

  19. Inhibitory effect of polyphenolic–rich extract from Cola nitida (Kolanut seed on key enzyme linked to type 2 diabetes and Fe2+ induced lipid peroxidation in rat pancreas in vitro

    Directory of Open Access Journals (Sweden)

    Ganiyu Oboh

    2014-05-01

    Conclusions: This antioxidant and enzyme inhibition could be some of the possible mechanism by which C. nitida is use in folklore for the management/treatment of type-2 diabetes. However, the enzyme inhibitory properties of the extract could be attributed to the presence of catechin, epicatechin, apigenin and naringenin.

  20. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America.

    Science.gov (United States)

    Ranilla, Lena Galvez; Kwon, Young-In; Apostolidis, Emmanouil; Shetty, Kalidas

    2010-06-01

    Traditionally used medicinal plants, herbs and spices in Latin America were investigated to determine their phenolic profiles, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension. High phenolic and antioxidant activity-containing medicinal plants and spices such as Chancapiedra (Phyllantus niruri L.), Zarzaparrilla (Smilax officinalis), Yerba Mate (Ilex paraguayensis St-Hil), and Huacatay (Tagetes minuta) had the highest anti-hyperglycemia relevant in vitro alpha-glucosidase inhibitory activities with no effect on alpha-amylase. Molle (Schinus molle), Maca (Lepidium meyenii Walp), Caigua (Cyclanthera pedata) and ginger (Zingiber officinale) inhibited significantly the hypertension relevant angiotensin I-converting enzyme (ACE). All evaluated pepper (Capsicum) genus exhibited both anti-hyperglycemia and anti-hypertension potential. Major phenolic compounds in Matico (Piper angustifolium R.), Guascas (Galinsoga parviflora) and Huacatay were chlorogenic acid and hydroxycinnamic acid derivatives. Therefore, specific medicinal plants, herbs and spices from Latin America have potential for hyperglycemia and hypertension prevention associated with Type 2 diabetes. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro.

    Science.gov (United States)

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti

    2016-01-01

    To evaluate the phenolics composition and inhibitory effect of the leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes (pancreatic lipase [PL] and angiotensin 1-converting enzyme [ACE]) involved in obesity and hypertension in vitro. The phenolics (flavonoids and phenolic acids) were quantified using high-performance liquid chromatography coupled with diode array detection. PL and ACE inhibitory effects; DPPH* and ABTS*+ scavenging activities of the extracts were tested using spectrophotometric methods. O. basilicum had the following major phenolics: Rutin, quercetin, and quercitrin (flavonoids); caffeic, chlorogenic, and gallic acids (phenolic acids); while O. gratissimum had the following major phenolics: Rutin, quercitrin, and luteolin (flavonoids); ellagic and chlorogenic acids (phenolic acids). "Extracts of both plants inhibited PL and ACE; scavenged DPPH* in a dose-dependent manner". O. gratissimum extract was more potent in inhibiting PL (IC50: 20.69 µg/mL) and ACE (IC50: 29.44 µg/mL) than O. basilicum (IC50: 52.14 µg/mL and IC50: 64.99 µg/mL, against PL and ACE, respectively). O. gratissimum also scavenged DPPH* and ABTS*+ more than O. basilicum. O. basilicum and O. gratissimum leaves could be used as functional foods for the management of obesity and obesity-related hypertension. However, O. gratissimum may be more effective than O. basilicum.

  2. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    Science.gov (United States)

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  3. Gastric inhibitory polypeptide analogues

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2002-01-01

    Gastric inhibitory polypeptide (GIP, also called glucose-dependent insulinotropic polypeptide) and glucagon-like peptide-1 (GLP-1) are peptide hormones from the gut that enhance nutrient-stimulated insulin secretion (the 'incretin' effect). Judging from experiments in mice with targeted deletions...

  4. Solid-Phase Synthesis of Modified Peptides as Putative Inhibitors of Histone Modifying Enzymes

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil O'Hanlon

    to be compatible with all 20 naturally occurring amino acids, and were furthermore feasible on several commonly used polymeric supports. By using dilute SnCl4 for N -Boc deprotection, and NaOH for the release of material from the solid support, N -modified peptides were cleanly obtained in excellent yields...

  5. Posttranslational Peptide-Modification Enzymes in Action : Key Roles for Leaders and Glutamate

    NARCIS (Netherlands)

    Montalbán-López, Manuel; Kuipers, Oscar P.

    2016-01-01

    In this issue of Cell Chemical Biology, Ortega et al. (2016) determine the structure of another lantibiotic dehydratase with a tRNA(Glu)-dependent mechanism of modification. Moreover, they identify a common recognition motif involved in leader peptide binding in a number of different

  6. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  7. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L. and Cistus monspeliensis (L. Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Karima Sayah

    2017-01-01

    Full Text Available Cistus genus (Cistaceae comprises several medicinal plants used in traditional medicines to treat several pathological conditions including hyperglycemia. These include Cistus salviifolius L. (CS and Cistus monspeliensis L. (CM, still not fully explored as a source of metabolites with therapeutic potential for human diseases. In this study, the antioxidant α-amylase and α-glucosidase enzyme inhibitory effects of aqueous and hydromethanolic extracts from the aerial parts of Moroccan CS and CM were investigated. Antioxidant activity has been assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS radicals and ferric reducing/antioxidant power (FRAP methods. The α-amylase and α-glucosidase inhibitory activity has been assessed using an in vitro model. Moreover, mineral and phenolic contents of CS and CM were analyzed. The extracts of both species exhibited potent antioxidant activity in all used systems and possess strong inhibitory effect towards α-glucosidase (IC50: 0.95±0.14 to 14.58±1.26 μg/mL and significant inhibitory potential against α-amylase (IC50: 217.10±0.15 to 886.10±0.10 μg/mL. Furthermore, the result showed high levels of phenolic content and unexpectedly some higher levels of mineral content in CS. The results suggest that the phenolic rich extracts of CS and CM may have a therapeutic potential against diseases associated with oxidative stress and may be useful in the management of hyperglycemia in diabetic patients.

  8. Antioxidant Activity and Inhibitory Potential ofCistus salviifolius(L.) andCistus monspeliensis(L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia.

    Science.gov (United States)

    Sayah, Karima; Marmouzi, Ilias; Naceiri Mrabti, Hanae; Cherrah, Yahia; Faouzi, My El Abbes

    2017-01-01

    Cistus genus (Cistaceae) comprises several medicinal plants used in traditional medicines to treat several pathological conditions including hyperglycemia. These include Cistus salviifolius L. (CS) and Cistus monspeliensis L. (CM), still not fully explored as a source of metabolites with therapeutic potential for human diseases. In this study, the antioxidant α -amylase and α -glucosidase enzyme inhibitory effects of aqueous and hydromethanolic extracts from the aerial parts of Moroccan CS and CM were investigated. Antioxidant activity has been assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and ferric reducing/antioxidant power (FRAP) methods. The α -amylase and α -glucosidase inhibitory activity has been assessed using an in vitro model. Moreover, mineral and phenolic contents of CS and CM were analyzed. The extracts of both species exhibited potent antioxidant activity in all used systems and possess strong inhibitory effect towards α -glucosidase (IC 50 : 0.95 ± 0.14 to 14.58 ± 1.26  μ g/mL) and significant inhibitory potential against α -amylase (IC 50 : 217.10 ± 0.15 to 886.10 ± 0.10  μ g/mL). Furthermore, the result showed high levels of phenolic content and unexpectedly some higher levels of mineral content in CS. The results suggest that the phenolic rich extracts of CS and CM may have a therapeutic potential against diseases associated with oxidative stress and may be useful in the management of hyperglycemia in diabetic patients.

  9. Characterization of angiotensin-I converting enzyme inhibiting peptide from Venerupis philippinarum with nano-liquid chromatography in combination with orbitrap mass spectrum detection and molecular docking

    Science.gov (United States)

    Shi, Lei; Wu, Tizhi; Sheng, Naijuan; Yang, Li; Wang, Qian; Liu, Rui; Wu, Hao

    2017-06-01

    The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-I converting enzyme (ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-I-inhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC50 of 5.75 μmol L-1. The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.

  10. In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme

    Directory of Open Access Journals (Sweden)

    Azizeh Asadzadeh

    2016-02-01

    Conclusion: Based on the docking studies, from the twelve compounds studied, one (IIId appeared to have the highest inhibition on tyrosinase activity. This was confirmed by enzyme activity measurements. Compound IIId has an NO2 group which binds to both of Cu2+ ions located inside the active site of the enzyme. This compound appeared to be even stronger than kojic acid in inhibiting tyrosinase activity. The DPPH free radical scavenging ability of all the studied compounds was more than that of BHT. However, they were not as strong as BHT or gallic acid in scavenging hydrogen peroxide.

  11. Inhibitory activity of a Concanavalin-isolated fraction from a glucosamine-peptides reaction system against heat resistant E. coli

    Directory of Open Access Journals (Sweden)

    Yuliya Hrynets

    2017-07-01

    Full Text Available Alcalase-derived gelatin hydrolysates were glycated with glucosamine in the presence (+ or absence (− of transglutaminase (TGase, and their antimicrobial activities toward Escherichia coli AW 1.7 were studied. Glycation treatments were subjected to concanavalin A affinity chromatography to selectively collect the glycopeptide-enriched fractions and the changes in antimicrobial activity were determined. The minimum inhibitory concentration of glycated hydrolysates decreased by 1.2 times compared to the native hydrolysate, with no differences between (+ or (− TGase treatments. No difference was observed in the dicarbonyl compound concentration between the two glycation methods except that 3-deoxyglucosone was greater in the TGase-mediated reaction. Concanavalin A-retentate, but not the flow-through fractions, significantly improved the antimicrobial activity, however there was no difference between +TGase and −TGase glycated treatments. Purification of the retentate fraction from fluorescent compounds did not improve its antimicrobial activity.

  12. Inhibitory and enzyme-kinetic investigation of chelerythrine and lupeol isolated from Zanthoxylum rhoifolium against krait snake venom acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mustaq, E-mail: mushtaq213@yahoo.com [University of Science and Technology, Bannu, (Pakistan). Department of Biotechnology; Weber, Andrea D.; Zanon, Graciane; Tavares, Luciana de C.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F., E-mail: ademirfariasm@gmail.com [Universidade Federal de Santa Maria, RS (Brazil). Dept. de Quimica

    2014-01-15

    The in vitro activity of chelerythrine and lupeol, two metabolites isolated from Zanthoxylum rhoifolium were studied against the venom of the snake Bungarus sindanus (Elapidae). The venom, which is highly toxic to humans, consists mainly by the enzyme acetylcholinesterase (AChE). Both compounds showed activity against the venom, and the alkaloid chelerythrine presented higher activity than did triterpene lupeol. (author)

  13. Synthetic-peptide-based enzyme-linked immunosorbent assay for screening human serum or plasma for antibodies to human immunodeficiency virus type 1 and type 2.

    OpenAIRE

    Gonzalez, L; Boyle, R W; M. Zhang; Castillo, J; Whittier, S; Della-Latta, P; Clarke, L M; George, J R; Fang, X; Wang, J G; Hosein, B; C. Y. Wang

    1997-01-01

    A synthetic-peptide-based enzyme-linked immunosorbent assay (EIA) capable of screening for antibodies to both human immunodeficiency virus type 1 (HIV-1) and HIV-2 has been developed for use in blood banks and diagnostic laboratories. Microtiter wells are coated with two synthetic peptides, one corresponding to the highly conserved envelope region of HIV-1 and another corresponding to the conserved envelope region of HIV-2. Overall, sensitivity was 100% in 303 individuals diagnosed with AIDS ...

  14. Synthesis, characterization and inhibitory activities of (4-N3[3,5-3H]Phe10)PKI(6-22)amide and its precursors: photoaffinity labeling peptides for the active site of cyclic AMP-dependent protein kinase.

    Science.gov (United States)

    Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B

    1989-06-01

    PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.

  15. Inhibitory effects of the essential oil of chamomile (Matricaria recutita L.) and its major constituents on human cytochrome P450 enzymes.

    Science.gov (United States)

    Ganzera, M; Schneider, P; Stuppner, H

    2006-01-18

    Chamomile extracts and tea are widely used herbal preparations for the treatment of minor illnesses (e.g. indigestion, inflammation). In this study the inhibitory effect of chamomile essential oil and its major constituents on four selected human cytochrome P450 enzymes (CYP1A2, CYP2C9, CYP2D6 and CYP3A4) was investigated. Increasing concentrations of the test compounds were incubated with individual, recombinant CYP isoforms and their effect on the conversion of surrogate substances was measured fluorometrically in 96-well plates; enzyme inhibition was expressed as IC50 and Ki value in relation to positive controls. Crude essential oil demonstrated inhibition of each of the enzymes, with CYP1A2 being more sensitive than the other isoforms. Three constituents of the oil, namely chamazulene (IC50 = 4.41 microM), cis-spiroether (IC50 = 2.01 microM) and trans-spiroether (IC50 = 0.47 microM) showed to be potent inhibitors of this enzyme, also being active towards CYP3A4. CYP2C9 and CYP2D6 were less inhibited, only chamazulene (IC50 = 1.06 microM) and alpha-bisabolol (IC50 = 2.18 microM) revealed a significant inhibition of the latter. As indicated by these in vitro data, chamomile preparations contain constituents inhibiting the activities of major human drug metabolizing enzymes; interactions with drugs whose route of elimination is mainly via cytochromes (especially CYP1A2) are therefore possible.

  16. Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis.

    Directory of Open Access Journals (Sweden)

    Sonia Fieulaine

    2011-05-01

    Full Text Available For several decades, molecular recognition has been considered one of the most fundamental processes in biochemistry. For enzymes, substrate binding is often coupled to conformational changes that alter the local environment of the active site to align the reactive groups for efficient catalysis and to reach the transition state. Adaptive substrate recognition is a well-known concept; however, it has been poorly characterized at a structural level because of its dynamic nature. Here, we provide a detailed mechanism for an induced-fit process at atomic resolution. We take advantage of a slow, tight binding inhibitor-enzyme system, actinonin-peptide deformylase. Crystal structures of the initial open state and final closed state were solved, as well as those of several intermediate mimics captured during the process. Ligand-induced reshaping of a hydrophobic pocket drives closure of the active site, which is finally "zipped up" by additional binding interactions. Together with biochemical analyses, these data allow a coherent reconstruction of the sequence of events leading from the encounter complex to the key-lock binding state of the enzyme. A "movie" that reconstructs this entire process can be further extrapolated to catalysis.

  17. Biochemical properties of regulatory peptides derived from milk proteins.

    Science.gov (United States)

    Meisel, H

    1997-01-01

    Biologically active peptides derived from milk proteins are inactive within the sequence of the precursor proteins but can be released by enzymatic proteolysis. Based on structure-activity studies, peptides with a defined bioactivity show common structural features. Moreover, many milk protein-derived peptides reveal multifunctional bioactivities. Bioactive peptide fragments originating from milk proteins should be taken into account as potential modulators of various regulatory processes in the body. Opioid peptides are opioid receptor ligands with agonistic or antagonistic activities. Angiotensin converting enzyme (ACE) inhibitory peptides can exert an antihypertensive effect. Immunomodulating casein peptides have been found to stimulate the proliferation of human lymphocytes and the phagocytic activities of macrophages. Antimicrobial peptides have been shown to kill sensitive microorganisms. Antithrombotic peptides inhibit the fibrinogen binding to a specific receptor region on the platelet surface and also inhibit aggregation of platelets. Casein phosphopeptides can form soluble organophosphate salts and may function as carriers for different minerals, especially calcium. In relation to their mode of action, bioactive peptides may reach target sites (e.g., receptors, enzymes) at the luminal side of the intestinal tract or after absorption, in peripheral organs. The physiological significance of bioactive peptides as exogenous regulatory substances is not yet fully understood. Nevertheless, several bioactive peptides derived from milk proteins have been shown to exert beneficial physiological effects. Milk-derived peptides were already produced on an industrial scale and as a consequence these peptides have been considered for application both as dietary supplements in "functional foods" and as drugs.

  18. Inhibitory effect of oatmeal extract oligomer on vasoactive intestinal peptide-induced inflammation in surviving human skin.

    Science.gov (United States)

    Boisnic, S; Branchet-Gumila, M C; Coutanceau, C

    2003-01-01

    The aim of this study was to evaluate the antiinflammatory effect of oatmeal extract oligomer on skin fragments stimulated by a neuromediator, vasoactive intestinal peptide (VIP). Skin fragments (from plastic surgery) were maintained in survival conditions for 6 h. To induce inflammation, VIP was placed in contact with dermis by culture medium. Histological analysis was then performed on hematoxylin- and eosin-stained slides. Edema was evaluated with semiquantitative scores. Vasodilation was studied by quantifying the percentage of dilated vessels according to scores and by measuring their surface by morphometrical image analysis. TNF-alpha dosage was made on culture supernatants. Vasodilation was significantly increased after application of VIP. After treatment with oatmeal extract oligomer, the mean surface of dilated vessels and edema were significantly decreased compared with VIP-treated skin. Moreover, treatment with this extract decreased TNF-alpha.

  19. Agonism of free fatty acid receptors 1 and 4 generates peptide YY-mediated inhibitory responses in mouse colon.

    Science.gov (United States)

    Moodaley, Runisha; Smith, David M; Tough, Iain R; Schindler, Marcus; Cox, Helen M

    2017-12-01

    Free fatty acid receptors FFA1 and FFA4 are located on enteroendocrine L cells with the highest gastrointestinal (GI) expression in descending colon. Their activation causes the release of glucagon-like peptide 1 and peptide YY (PYY) from L cells. Additionally, FFA1 agonism releases insulin from pancreatic β cells. As these receptors are modulators of nutrient-stimulated glucose regulation, the aim of this study was to compare the pharmacology of commercially available agonists (TUG424, TUG891, GW9508) with proven selective agonists (JTT, TAK-875, AZ423, Metabolex-36) in mice. Mouse mucosa was mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc ) was recorded continuously. Pretreatments included antagonists of FFA1, Y1  or Y2 receptors. Glucose sensitivity was investigated by mannitol replacement apically, and colonic and upper GI transit was assessed in vitro and in vivo. FFA1 and FFA4 agonism required glucose and reduced Isc in a PYY-Y1 receptor-dependent manner. The novel compounds were more potent than GW9508. The FFA1 antagonists (GW1100 and ANT825) blocked FFA1 activity only and revealed FFA1 tonic activity. The FFA4 agonist, Metabolex-36, slowed colonic transit in vitro but increased small intestinal transit in vivo. The selective FFA1 and FFA4 agonists were more potent at reducing Isc than GW9508, a dual FFA1 and FFA4 agonist. A paracrine epithelial mechanism involving PYY-stimulated Y1 receptors mediated their responses, which were glucose sensitive, potentially limiting hypoglycaemia. ANT825 revealed tonic activity and the possibility of endogenous FFA1 ligands causing PYY release. Finally, FFA4 agonism induced regional differences in transit. © 2017 The British Pharmacological Society.

  20. Inhibitory Potencies of Several Iridoids on Cyclooxygenase-1, Cyclooxygnase-2 Enzymes Activities, Tumor Necrosis Factor-α and Nitric Oxide Production In Vitro

    Directory of Open Access Journals (Sweden)

    Kyoung Sik Park

    2010-01-01

    Full Text Available To verify the anti-inflammatory potency of iridoids, seven iridoid glucosides (aucubin, catalpol, gentiopicroside, swertiamarin, geniposide, geniposidic acid and loganin and an iridoid aglycone (genipin were investigated with in vitro testing model systems based on inhibition of cyclooxygenase (COX-1/-2 enzymes, the tumor necrosis factor-α (TNF-α formation and nitric oxide (NO production. The hydrolyzed-iridoid products (H-iridoid with β-gludosidase treatment only showed inhibitory activities, and revealed different potencies, depending on their chemical structures. Without the β-gludosidase treatment, no single iridoid glycoside exhibited any activities. The aglycone form (genipin also did not show inhibitory activities. To compare anti-inflammatory potency, the inhibitory concentrations (IC50 in each testing system were measured. The hydrolyzed-aucubin product (H-aucubin with β-gludosidase treatment showed a moderate inhibition on COX-2 with IC50 of 8.83 μM, but much less inhibition (IC50, 68.9 μM on COX-1 was noted. Of the other H-iridoid products, the H-loganin and the H-geniposide exhibited higher inhibitory effects on COX-1, revealing IC50 values of 3.55 and 5.37 μM, respectively. In the case of TNF-α assay, four H-iridoid products: H-aucubin, H-catalpol, H-geniposide and H-loganin suppressed the TNF-α formation with IC50 values of 11.2, 33.3, 58.2 and 154.6 μM, respectively. But other H-iridoid products manifested no significant activity. Additional experiments on NO production were conducted. We observed that only the H-aucubin exhibited a significant suppression with IC50 value of 14.1 μM. Genipin, an agycone form, showed no inhibitory effects on all testing models, implying the hydrolysis of the glycosidic bond of iridoid glycoside is a pre-requisite step to produce various biological activities.

  1. Inhibitory and enzyme-kinetic Investigation of chelerythrine and lupeol Isolated from Zanthoxylum rhoifolium against krait snake venom acetylcholinesterase

    OpenAIRE

    Ahmad,Mustaq; Weber,Andréia D.; Zanon,Graciane; Tavares,Luciana de C.; Ilha,Vinicius; Dalcol,Ionara I.; F. Morel,Ademir

    2014-01-01

    The in vitro activity of chelerythrine and lupeol, two metabolites isolated from Zanthoxylum rhoifolium were studied against the venom of the snake Bungarus sindanus (Elapidae). The venom, which is highly toxic to humans, consists mainly by the enzyme acetylcholinesterase (AChE). Both compounds showed activity against the venom, and the alkaloid chelerythrine presented higher activity than did triterpene lupeol. A atividade in vitro de queleritrina e lupeol, dois metabólitos isolados de Za...

  2. ESAT-6/CFP-10 fusion protein and peptides for optimal diagnosis of mycobacterium tuberculosis infection by ex vivo enzyme-linked immunospot assay in the Gambia.

    Science.gov (United States)

    Hill, Philip C; Jackson-Sillah, Dolly; Fox, Annette; Franken, Kees L M C; Lugos, Moses D; Jeffries, David J; Donkor, Simon A; Hammond, Abdulrahman S; Adegbola, Richard A; Ottenhoff, Tom H M; Klein, Michel R; Brookes, Roger H

    2005-05-01

    Overlapping peptides of Mycobacterium tuberculosis antigens ESAT-6 and CFP-10 offer increased specificity over the purified protein derivative skin test when they were used in an ex vivo enzyme-linked immunospot (ELISPOT) assay for gamma interferon detection for the diagnosis of M. tuberculosis infection from recent exposure. We assessed whether equivalent results could be obtained for a fusion protein of the two antigens and whether a combined readout would offer increased sensitivity in The Gambia. We studied the ELISPOT assay results for 488 household contacts of 88 sputum smear-positive tuberculosis (TB) cases. The proportions of subjects positive by each test and by the tests combined were assessed across an exposure gradient, defined according to sleeping proximity to a TB case. Eighty-eight (18%) subjects were positive for CFP-10 peptides, 148 (30%) were positive for ESAT-6 peptides, 161 (33%) were positive for both peptides, and 168 (34%) were positive for the fusion protein; 188 (39%) subjects had either a positive result for a peptide or a positive result for the fusion protein. There was reasonable agreement between the peptide and the protein results (kappa statistic = 0.78) and no significant discordance (P = 0.38). There was a strong correlation between the fusion protein and combined peptide spot counts (r = 0.9), and responses to the peptide and the proteins all increased significantly according to M. tuberculosis exposure. The proportion of subjects positive for either the pool of peptides or the fusion protein offered maximum sensitivity, being significantly higher than the proportion of subjects positive for ESAT-6 peptides alone (P = 0.007). A fusion protein of ESAT-6 and CFP-10 is equivalent to overlapping peptides for the diagnosis of latent M. tuberculosis infection. Use of a combination of peptides and fusion protein offers improved sensitivity.

  3. Research progress in structure-activity relationship of bioactive peptides.

    Science.gov (United States)

    Li, Ying; Yu, Jianmei

    2015-02-01

    Bioactive peptides are specific protein fragments that have positive impact on health. They are important sources of new biomedicine, energy and high-performance materials. The beneficial effects of bioactive peptides are due to their antioxidant, antihypertensive, anticarcinogenic, antimicrobial, and immunomodulatory activities. The structure-activity relationship of bioactive peptides plays a significant role in the development of innovative and unconventional synthetic polymeric counterparts. It provides the basis of the stereospecific synthesis, transformation, and development of bioactive peptide products. This review covers the progress of studies in the structure-activity relationship of some bioactive peptides including antioxidant peptides, angiotensin-I-converting enzyme-inhibitory peptides, and anticarcinogenic peptides in the past decade.

  4. Control of Surface-Localized, Enzyme-Assisted Self-Assembly of Peptides through Catalyzed Oligomerization.

    Science.gov (United States)

    Vigier-Carrière, Cécile; Wagner, Déborah; Chaumont, Alain; Durr, Baptiste; Lupattelli, Paolo; Lambour, Christophe; Schmutz, Marc; Hemmerlé, Joseph; Senger, Bernard; Schaaf, Pierre; Boulmedais, Fouzia; Jierry, Loïc

    2017-08-22

    Localized self-assembly allowing both spatial and temporal control over the assembly process is essential in many biological systems. This can be achieved through localized enzyme-assisted self-assembly (LEASA), also called enzyme-instructed self-assembly, where enzymes present on a substrate catalyze a reaction that transforms noninteracting species into self-assembling ones. Very few LEASA systems have been reported so far, and the control of the self-assembly process through the surface properties represents one essential step toward their use, for example, in artificial cell mimicry. Here, we describe a new type of LEASA system based on α-chymotrypsin adsorbed on a surface, which catalyzes the production of (KL)nOEt oligopeptides from a KLOEt (K: lysine; L: leucine; OEt ethyl ester) solution. When a critical concentration of the formed oligopeptides is reached near the surface, they self-assemble into β-sheets resulting in a fibrillar network localized at the interface that can extend over several micrometers. One significant feature of this process is the existence of a lag time before the self-assembly process starts. We investigate, in particular, the effect of the α-chymotrypsin surface density and KLOEt concentration on the self-assembly kinetics. We find that the lag time can be finely tuned through the surface density in α-chymotrypsin and KLOEt concentration. For a given surface enzyme concentration, a critical KLOEt concentration exists below which no self-assembly takes place. This concentration increases when the surface density in enzyme decreases.

  5. NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1985-08-13

    Proton NMR was used to study the interaction of beta,gamma-bidentate Cr3+ATP and MgATP with rabbit muscle adenylate kinase, which has 194 amino acids, and with a synthetic peptide consisting of residues 1-45 of the enzyme, which has previously been shown to bind MgepsilonATP [Hamada, M., Palmieri, R. H., Russell, G. A., & Kuby, S. A. (1979) Arch. Biochem. Biophys. 195, 155-177]. The peptide is globular and binds Cr3+ATP competitively with MgATP with a dissociation constant, KD(Cr3+ATP) = 35 microM, comparable to that of the complete enzyme [KI(Cr3+ATP) = 12 microM]. Time-dependent nuclear Overhauser effects (NOE's) were used to measure interproton distances on enzyme- and peptide-bound MgATP. The correlation time was measured directly for peptide-bound MgATP by studying the frequency dependence of the NOE's at 250 and 500 MHz. The H2' to H1' distance so obtained (3.07 A) was within the range established by X-ray and model-building studies of nucleotides (2.9 +/- 0.2 A). Interproton distances yielded conformations of enzyme- and peptide-bound MgATP with indistinguishable anti-glycosyl torsional angles (chi = 63 +/- 12 degrees) and 3'-endo/O1'-endo ribose puckers (sigma = 96 +/- 12 degrees). Enzyme- and peptide-bound MgATP molecules exhibited different C4'-C5' torsional angles (gamma) of 170 degrees and 50 degrees, respectively. Ten intermolecular NOE's from protons of the enzyme and four such NOE's from protons of the peptide to protons of bound MgATP were detected, which indicated proximity of the adenine ribose moiety to the same residues on both the enzyme and the peptide. Paramagnetic effects of beta,gamma-bidentate Cr3+ATP on the longitudinal relaxation rates of protons of the peptide provided a set of distances to the side chains of five residues, which allowed the location of the bound Cr3+ atom to be uniquely defined. Distances from enzyme-bound Cr3+ATP to the side chains of three residues of the protein agreed with those measured for the peptide. The mutual

  6. Inhibitory potential of omega-3 fatty and fenugreek essential oil on key enzymes of carbohydrate-digestion and hypertension in diabetes rats

    Directory of Open Access Journals (Sweden)

    Hamden Khaled

    2011-12-01

    Full Text Available Abstract Background diabetes is a serious health problem and a source of risk for numerous severe complications such as obesity and hypertension. Treatment of diabetes and its related diseases can be achieved by inhibiting key digestives enzymes-related to starch digestion secreted by pancreas. Methods The formulation omega-3 with fenugreek terpenenes was administrated to surviving diabetic rats. The inhibitory effects of this oil on rat pancreas α-amylase and maltase and plasma angiotensin-converting enzyme (ACE were determined. Results the findings revealed that administration of formulation omega-3 with fenugreek terpenenes (Om3/terp considerably inhibited key enzymes-related to diabetes such as α-amylase activity by 46 and 52% and maltase activity by 37 and 35% respectively in pancreas and plasma. Moreover, the findings revealed that this supplement helped protect the β-Cells of the rats from death and damage. Interestingly, the formulation Om3/terp modulated key enzyme related to hypertension such as ACE by 37% in plasma and kidney. Moreover administration of fenugreek essential oil to surviving diabetic rats improved starch and glucose oral tolerance additively. Furthermore, the Om3/terp also decreased significantly the glucose, triglyceride (TG and total-cholesterol (TC and LDL-cholesterol (LDL-C rates in the plasma and liver of diabetic rats and increased the HDL-Cholesterol (HDL-Ch level, which helped maintain the homeostasis of blood lipid. Conclusion overall, the findings of the current study indicate that this formulation Om3/terp exhibit attractive properties and can, therefore, be considered for future application in the development of anti-diabetic, anti-hypertensive and hypolipidemic foods.

  7. Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS.

    Science.gov (United States)

    Zhang, Ying; Chen, Ran; Ma, Huiqin; Chen, Shangwu

    2015-10-14

    New dipeptidyl peptidase IV (DPP-IV)-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates were isolated and identified by two-dimensional silica thin-layer chromatography (2D-TLC) combined to nano LC-MS/MS. 2D-TLC with chloroform/methanol/25% ammonia (2:2:1) and n-butanol/acetic acid/water (4:1:1) as the first- and second-dimension eluents, respectively, in analytical and semipreparative scales, was set up and verified by reversed-phase high-performance liquid chromatography (RP-HPLC) to be feasible and efficient to separate the hydrolysates. Five new DPP-IV-inhibitory peptides, four relatively large oligopeptides (MHQPPQPL, SPTVMFPPQSVL, VMFPPQSVL, and INNQFLPYPY), and AWPQYL were identified, and INNQFLPYPY showed a notable IC50 value of 40.08 μM as an uncompetitive inhibitor. Interactive effects on DPP-IV inhibition were also observed among separated fractions and pure synthetic peptide mixtures with concentration-dependent activity. The study gives new insights into goat casein hydrolysates with identified DPP-IV-inhibitory peptides efficiently isolated by 2D-TLC, which provides a simple and cost-efficient separation process and is compatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification.

  8. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica]. E-mail: agcorrea@power.ufscar.br; Castilho, Marcelo S.; Oliva, Glaucius [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    2005-07-15

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 {mu}M. (author)

  9. Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibitory effects of some chemicals on enzyme activity.

    Science.gov (United States)

    Güllçin, Ilhami; Küfrevioğlu, O Irfan; Oktay, Münir

    2005-06-01

    Polyphenol oxidase (PPO) of nettle (Urtica dioica L.) was extracted and purified through (NH4)2SO4 precipitation, dialysis, and CM-Sephadex ion-exchange chromatography and was used for its characterization. The PPO showed activity to catechol, 4-methylcatechol, L-3,4-dihydroxyphenylalanine (L-DOPA), L-tyrosine, p-cresol, pyrogallol, catechin and trans-cinnamic acid. For each of these eight substrates, optimum conditions such as pH and temperature were determined and L-tyrosine was found to be one of the most suitable substrates. Optimum pH and temperature were found at pH 4.5 and 30 degrees C respectively and Km and Vmax values were 7.90 x 10(-4) M, and 11290 EU/mL for with L-tyrosine as substrate. The inhibitory effect of several inhibitors, L-cysteine chloride, sodium azide, sodium cyanide, benzoic acid, salicylic acid, L-ascorbic acid, glutathione, thiourea, sodium diethyl dithiocarbamate, beta-mercaptoethanol and sodium metabisulfite were tested. The most effective was found to be sodium diethyl dithiocarbamate which acted as a competitive inhibitor with a Ki value of 1.79 x 10(-9)M. In addition one isoenzyme of PPO was detected by native polacrylamide slab gel electrophoresis.

  10. Inhibitory effects of palm tocotrienol-rich fraction supplementation on bilirubin-metabolizing enzymes in hyperbilirubinemic adult rats.

    Directory of Open Access Journals (Sweden)

    Yusof Kamisah

    Full Text Available Phenylhydrazine, a hemolytic agent, is widely used as a model of experimental hyperbilirubinemia. Palm tocotrienol-rich fraction (TRF was shown to exert beneficial effects in hyperbilirubinemic rat neonates.To investigate the effects of palm TRF supplementation on hepatic bilirubin-metabolizing enzymes and oxidative stress status in rats administered phenylhydrazine.Twenty-four male Wistar rats were divided into two groups; one group was intraperitoneally injected with palm TRF at the dose of 30 mg/kg/day, while another group was only given vehicle (control (vitamin E-free palm oil for 14 days. Twenty-four hours after the last dose, each group was further subdivided into another two groups. One group was administered phenylhydrazine (100 mg/kg, intraperitoneally and another group was administered normal saline. Twenty-four hours later, blood and liver were collected for biochemical parameter measurements.Phenylhydrazine increased plasma total bilirubin level and oxidative stress in the erythrocytes as well as in the liver, which were reduced by the pretreatment of palm TRF. Palm TRF also prevented the increases in hepatic heme oxygenase, biliverdin reductase and UDP-glucuronyltransferase activities induced by phenylhydrazine.Palm tocotrienol-rich fraction was able to afford protection against phenylhydrazine-induced hyperbilirubinemia, possibly by reducing oxidative stress and inhibiting bilirubin-metabolizing enzymes in the liver.

  11. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.

  12. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity, Antioxidant Properties, Phenolic Content and Amino Acid Profiles of Fucus spiralis L. Protein Hydrolysate Fractions

    Directory of Open Access Journals (Sweden)

    Lisete Paiva

    2017-10-01

    Full Text Available Food protein-derived hydrolysates with multi-bioactivities such as antihypertensive and antioxidant properties have recently received special attention since both activities can play significant roles in preventing cardiovascular diseases. This study reports, for the first time, the angiotensin I-converting enzyme (ACE-inhibition and antioxidant properties of ultrafiltrate fractions (UF with different molecular weight ranges (<1, 1–3 and ≥3 kDa obtained from Fucus spiralis protein hydrolysate (FSPH digested with cellulase–bromelain. The amino acids profile, recovery yield, protein, peptide and total phenolic contents of these FSPH-UF, and the in vitro digestibility of F. spiralis crude protein were also investigated. FSPH-UF ≥3 kDa presented remarkably higher ACE-inhibition, yield, peptide and polyphenolic (phlorotannins contents. Antioxidant analysis showed that FSPH-UF <1 kDa and ≥3 kDa exhibited significantly higher scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion-chelating (FIC activity. FSPH-UF ≥3 kDa had also notably higher ferric reducing antioxidant power (FRAP. Strong correlations were observed between ACE-inhibition and antioxidant activities (FIC and FRAP. The results suggest that ACE-inhibition and antioxidant properties of FSPH-UF may be due to the bioactive peptides and polyphenols released during the enzymatic hydrolysis. In conclusion, this study shows the potential use of defined size FSPH-UF for the prevention/treatment of hypertension and/or oxidative stress-related diseases.

  13. A subtype-specific peptide-based enzyme immunoassay for detection of antibodies to the G protein of human respiratory syncytial virus is more sensitive than routine serological tests.

    NARCIS (Netherlands)

    J.P.M. Langedijk; A.H. Brandenburg (Afke); W.G.J. Middel; A.D.M.E. Osterhaus (Albert); R.H. Meloen; J.T. van Oirschot

    1997-01-01

    textabstractPeptides deduced from the central conserved region (residues 158 to 189) of protein G of human respiratory syncytial virus (HRSV) subtypes A and B were used as antigens in subtype-specific enzyme-linked immunosorbent assays (G-peptide ELISAs). These G-peptide ELISAs were compared with

  14. A subtype-specific peptide-based enzyme immunoassay for detection of antibodies to the G protein of human respiratory syncytial virus is more sensitive than routine serological tests

    NARCIS (Netherlands)

    Langedijk, J.P.M.; Brandenburg, A.H.; Middel, W.G.J.; Osterhaus, A.B.; Meloen, R.H.; Oirschot, van J.T.

    1997-01-01

    Peptides deduced from the central conserved region (residues 158 to 189) of protein G of human respiratory syncytial virus (HRSV) subtypes A and B were used as antigens in subtype-specific enzyme-linked -bent assays (G- peptide ELISAs). These G-peptide ELlSAs were compared with seven other

  15. Computational Chemistry Study of Natural Alkaloids and Homemade Databank to Predict Inhibitory Potential Against Key Enzymes in Neurodegenerative Diseases.

    Science.gov (United States)

    Lorenzo, Vitor Prates; Alves, Mateus Feitosa; Scotti, Luciana; Dos Santos, Socrates Golzio; de Fatima Formiga Melo Diniz, Margareth; Scotti, Marcus Tullius

    2017-01-01

    Cissampelos sympodialis Eichl is used in folk medicine for the treatment of various inflammatory diseases; several alkaloids have been isolated from this species and some of them have anti-allergic, immunomodulatory and spasmolytic activities. Treatment of rats with the total tertiary alkaloid fraction showed an antidepressant effect. One of the depression causes can be the deficiency of monoamines, which is a factor displayed in patients with Alzheimer's disease. Theoretical studies using in silico methods have aided in the process of drug discovery. From this perspective, we applied ligand-based-virtual associated with structure-based-virtual screening of alkaloids from C. sympodialis Eichl and 101 derivatives proposed by us are promising leads against some important targets (BACE, GSK-3β and MAO-A). From the ChEMBL database, we selected a diverse set of 724, 1898 and 1934 structures, which had been tested against BACE, GSK-3β and MAO-A, to create Random Forest (RF) models with good overall prediction rate, over 78%, for cross-validation and test set. Compounds 24 and 47 presented activity against GSK-3β and MAO-A simultaneously. The natural alkaloids roraimine and simpodialine-β-N-oxide presented activity against BACE and liriodenine against MAO-A. The top 20 compounds with best docking performance per enzyme were selected and validated through the RF model. All 9 compounds classified as active in RF model for BACE are bisbenzylisoquinoline alkaloids and were present in the top docking scoring, demonstrating a consensus on results. Affinities of bisbenzylisoquinoline alkaloids, including two secondary metabolites (roraimine and simpodialine-β-N-oxide), with BACE suggest that this skeleton can be used as a model to design new antagonists of this enzyme. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Kinetics and molecular docking studies of the inhibitions of angiotensin converting enzyme and renin activities by hemp seed (Cannabis sativa L.) peptides.

    Science.gov (United States)

    Girgih, Abraham T; He, Rong; Aluko, Rotimi E

    2014-05-07

    Four novel peptide sequences (WVYY, WYT, SVYT, and IPAGV) identified from an enzymatic digest of hemp seed proteins were used for enzyme inhibition kinetics and molecular docking studies. Results showed that WVYY (IC50 = 0.027 mM) was a more potent (p protein, especially formation of higher numbers of hydrogen bonds with active site residues.

  17. Enzyme-linked immunosorbent serum assays (ELISAs) for rat and human N-terminal pro-peptide of collagen type I (PINP) - Assessment of corresponding epitopes

    DEFF Research Database (Denmark)

    Leeming, Diana Julie; Larsen, D.V.; Zhang, C.

    2010-01-01

    Objectives: The present study describes two newly developed N-terminal pro-peptides of collagen type I (PINP) competitive enzyme-linked immunosorbent assays (ELISAs) for the assessment of corresponding PINP epitopes in the rat- and human species. Methods: Monoclonal antibodies were raised against...

  18. Identification of distinct nisin leader peptide regions that determine interactions with the modification enzymes NisB and NisC

    NARCIS (Netherlands)

    Khusainov, Rustem; Moll, Gert N.; Kuipers, Oscar P.

    2013-01-01

    Nisin is the most prominent and applied bacteriocin that serves as a model for class I lantibiotics. The nisin leader peptide importantly determines interactions between precursor nisin and its modification enzymes NisB and NisC that mature nisin posttranslationally. NisB dehydrates serines and

  19. Allosteric Inhibitory Molecular Recognition of a Photochromic Dye by a Digestive Enzyme: Dihydroindolizine makes α-chymotrypsin Photo-responsive

    Science.gov (United States)

    Bagchi, Damayanti; Ghosh, Abhijit; Singh, Priya; Dutta, Shreyasi; Polley, Nabarun; Althagafi, Ismail. I.; Jassas, Rabab S.; Ahmed, Saleh A.; Pal, Samir Kumar

    2016-09-01

    The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity.

  20. Mimotopes selected with a neutralizing antibody against urease B from Helicobacter pylori induce enzyme inhibitory antibodies in mice upon vaccination

    Directory of Open Access Journals (Sweden)

    Long Min

    2010-11-01

    Full Text Available Abstract Background Urease B is an important virulence factor that is required for Helicobacter pylori to colonise the gastric mucosa. Mouse monoclonal antibodies (mAbs that inhibit urease B enzymatic activity will be useful as vaccines for the prevention and treatment of H. pylori infection. Here, we produced murine mAbs against urease B that neutralize the enzyme's activity. We mapped their epitopes by phage display libraries and investigated the immunogenicity of the selected mimotopes in vivo. Results The urease B gene was obtained (GenBank accession No. DQ141576 and the recombinant pGEX-4T-1/UreaseB protein was expressed in Escherichia coli as a 92-kDa recombinant fusion protein with glutathione-S-transferase (GST. Five mAbs U001-U005 were produced by a hybridoma-based technique with urease B-GST as an immunogen. Only U001 could inhibit urease B enzymatic activity. Immunoscreening via phage display libraries revealed two different mimotopes of urease B protein; EXXXHDM from ph.D.12-library and EXXXHSM from ph.D.C7C that matched the urease B proteins at 347-353 aa. The antiserum induced by selected phage clones clearly recognised the urease B protein and inhibited its enzymatic activity, which indicated that the phagotope-induced immune responses were antigen specific. Conclusions The present work demonstrated that phage-displayed mimotopes were accessible to the mouse immune system and triggered a humoral response. The urease B mimotope could provide a novel and promising approach for the development of a vaccine for the diagnosis and treatment of H. pylori infection.

  1. Peptide-Recombinant VP6 Protein Based Enzyme Immunoassay for the Detection of Group A Rotaviruses in Multiple Host Species.

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    Full Text Available We developed a novel enzyme immunoassay for the detection of group A rotavirus (RVA antigen in fecal samples of multiple host species. The assay is based on the detection of conserved VP6 protein using anti-recombinant VP6 antibodies as capture antibodies and anti-multiple antigenic peptide (identified and constructed from highly immunodominant epitopes within VP6 protein antibodies as detector antibodies. The clinical utility of the assay was evaluated using a panel of 914 diarrhoeic fecal samples from four different host species (bovine, porcine, poultry and human collected from diverse geographical locations in India. Using VP6- based reverse transcription-polymerase chain reaction (RT-PCR as the gold standard, we found that the diagnostic sensitivity (DSn and specificity (DSp of the new assay was high [bovine (DSn = 94.2% & DSp = 100%; porcine (DSn = 94.6% & DSp = 93.3%; poultry (DSn = 74.2% & DSp = 97.7% and human (DSn = 82.1% & DSp = 98.7%]. The concordance with RT-PCR was also high [weighted kappa (k = 0.831-0.956 at 95% CI = 0.711-1.0] as compared to RNA-polyacrylamide gel electrophoresis (RNA-PAGE. The performance characteristics of the new immunoassay were comparable to those of the two commercially available ELISA kits. Our results suggest that this peptide-recombinant protein based assay may serve as a preliminary assay for epidemiological surveillance of RVA antigen and for evaluation of vaccine effectiveness especially in low and middle income settings.

  2. Inhibitory effect of aqueous extract of different parts of Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro

    Directory of Open Access Journals (Sweden)

    Ayodeji Augustine Olabiyi

    2016-06-01

    Full Text Available This study sought to determine the inhibitory effect of aqueous extract of different parts (bark, leaf, and flower of cotton plant (Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro. The aqueous extract (1:10 w/v of Gossypium herbaceum was prepared and the ability of the extract to inhibit the activity of α-amylase and α-glucosidase as well as activities of pro-oxidant Fe2+-induced lipid peroxidation was determined spectrophotometrically. The results revealed that the three varieties were able to inhibit the activity of α-amylase and α-glucosidase in rat's pancreas in a dose dependent manner (0–88.8 mg/ml. Also, the incubation of pancreas tissue homogenate in the presence of Fe2+ caused a significant increase (233.3% in the malondialdehyde (MDA content of pancreas homogenate, nevertheless, the introduction of the aqueous extract inhibited MDA production dose dependently (0–33.33 mg/ml and also exhibited further antioxidant properties as represented by their high radical scavenging and Fe2+ chelating abilities. Inhibition of α-amylase and α-glucosidase activities has been the primary treatment for the management/prevention of type 2 diabetes. Therefore, the α-amylase and α-glucosidase inhibitory activities of aqueous extracts of different parts of Gossypium herbaceum in rat pancreas and prevention of lipid peroxidation in the tissue may be attributed to the presence of polyphenol content of the plant.

  3. Two Ganoderma species: profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders.

    Science.gov (United States)

    Zengin, Gokhan; Sarikurkcu, Cengiz; Gunes, Erdogan; Uysal, Ahmet; Ceylan, Ramazan; Uysal, Sengul; Gungor, Halil; Aktumsek, Abdurrahman

    2015-08-01

    This work reports the antioxidant, antimicrobial, and inhibitory effects of methanol and water extracts from Ganoderma applanatum (GAM: methanol extract and GAW: water extract) and G. resinaceum (GRM: methanol extract and GRW: water extract) against cholinesterase, tyrosinase, α-amylase and α-glucosidase. The total phenolics, flavonoids contents, and HPLC profile of phenolic components present in the extracts, were also determined. Antioxidant activities were investigated by using different assays, including DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating assays. Antimicrobial activity of the tested Ganoderma extracts was also studied by the broth microdilution method. Generally, the highest antioxidant (59.24 mg TEs per g extract for DPPH, 41.32 mg TEs per g extract for ABTS, 41.35 mg TEs per g extract for CUPRAC, 49.68 mg TEs per g extract for FRAP, 130.57 mg AAEs per g extract for phosphomolybdenum and 26.92 mg EDTAEs per g extract) and enzyme inhibitory effects (1.47 mg GALAEs per g extract for AChE, 1.51 mg GALAEs per g extract for BChE, 13.40 mg KAEs per g extract for tyrosinase, 1.13 mmol ACEs per g extract for α-amylase and 2.20 mmol ACEs per g extract for α-glucosidase) were observed in GRM, which had the highest concentrations of phenolics (37.32 mg GAEs g(-1) extract). Again, Ganoderma extracts possess weak antibacterial and antifungal activities. Apigenin and protocatechuic acid were determined as the main components in GRM (1761 μg per g extract) and GAM (165 μg per g extract), respectively. The results suggest that the Ganoderma species may be considered as a candidate for preparing new food supplements and can represent a good model for the development of new drug formulations.

  4. Effects of angiotensin-converting enzyme inhibition and bradykinin peptides in rats with myocardial infarction.

    Science.gov (United States)

    Qu, Zhe; Xu, Hongxin; Tian, Yihao

    2015-01-01

    Angiotensin-converting enzyme (ACE) inhibitors have been reported to decrease myocardial remodeling and faciliate cardiac function improvement in the setting myocardial infarction by affecting bradykinin. The purpose of this study was to evaluate the combination effects of perindopril and bradykinin (BK) in rats with myocardial infarction. Wistar Rats underwent to left anterior descending (LAD) coronary artery ligation were allocated into MI group (n=6); Perindopril group (n=7); Perindopril+BK group (n=7). An additional sham operation group (Sham group, n=6) were also established. After 4 weeks, the left ventricle function, myocardial tissue morphology, myocardial collagen volume faction, infracted ventricular wall thickness, myocardial infarction area and neovascular formation were evaluated. Combination treatment with perindopril and BK were showed significant improvement on LVEDV, LVEF and LVFS than MI group. Moreover, a significant improvement on LVEF was found in Perindopril+BK group than Perindopril group but not on LVEDV and LVFS between these two groups. Furthermore, neo-vessel density was significantly increased in Perindopril+BK group than other groups while no significant improvement on vessel density was found after the treatment of perindopril. In addition, myocardial infarction thickness improvement was found in Perindopril and group than MI group while combination treatment with perindopril and BK can significant improve the myocardial infarction thickness than perindopril only. Combination treatment with ACE inhibitor perindopril and BK can significantly improve the ventricle function in the rat model of myocardial infarction. Our data suggest BK can serve as adjuvant treatment in myocardial infarction treatment.

  5. Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater

    Science.gov (United States)

    Wang, Tao; Cheng, Yongzhou; Chen, Xiaoyan; Liu, Zhaopu; Long, Xiaohua

    2017-01-01

    Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of different dietary additives [w/w: 2% small peptides, 0.01% probiotics ( Bacillus licheniformis) and 0.2% prebiotics (inulin)] on growth performance, digestive enzyme activities, and oxidative stress in juvenile Epinephelus coioides reared in artificial seawater of two salt concentrations (13.5 vs. 28.5). Weight gain rate was significantly higher in fish fed the diet supplemented with small peptides, B. licheniformis, inulin, or synbiotics than that in fish fed the basal diet; the greatest weight gain rate was found in fish fed the small peptide treatment [56.0% higher than basal diet]. Higher feed efficiency was detected in fish fed the diet supplemented with small peptides than that of fish in the other dietary treatments. Total protease activity in the stomach and intestines was highest in fish fed the small peptide-treated diet, whereas lipase activity was highest in those fed synbiotics (combination of Bacillus licheniformis and inulin) than that in fish fed the other treatments. Antioxidant enzyme (total superoxide dismutase and catalase) activities and hepatic malondialdehyde content were higher in fish receiving the dietary supplements and maintained in artificial seawater containing 13.5 salinity compared with those in the control (28.5). Hepatic catalase activity in grouper fed the diets with small peptides or synbiotics decreased significantly compared with that in control fish. Overall, the three types of additives improved growth rate of juvenile grouper and digestive enzymes activities to varying degrees but did not effectively improve antioxidant capacity under low-salinity stress conditions.

  6. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.

    Science.gov (United States)

    Jang, Eun Kyeong; Kim, Nam Yeun; Ahn, Hyung Jin; Ji, Geun Eog

    2015-08-01

    To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30°C and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

  7. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5′-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Soon-Sang Kwon

    2016-04-01

    Full Text Available Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca2+-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP and uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes of human liver microsomes to determine if mechanistic aschantin–enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4′-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4′-hydroxylation, and CYP3A4-mediated midazolam 1′-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1′-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4.

  8. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  9. Analysis of frankincense from various Boswellia species with inhibitory activity on human drug metabolising cytochrome P450 enzymes using liquid chromatography mass spectrometry after automated on-line extraction.

    Science.gov (United States)

    Frank, Andreas; Unger, Matthias

    2006-04-21

    In our search for herbal remedies with inhibitory activity on cytochrome P450 (CYP) enzymes, we identified extracts of the gum-resin of Boswellia carteri, Boswellia frereana, Boswellia sacra and Boswellia serrata as equally potent, non-selective inhibitors of the major drug metabolising CYP enzymes 1A2/2C8/2C9/2C19/2D6 and 3A4. LC/LC/ESI-MS fingerprint analyses of the boswellic acids 11-keto-beta-boswellic acid, alpha-boswellic acid, beta-boswellic acid and their 3-O-acylated derivatives were used for the authentication of the commercially obtained frankincense samples. Although the boswellic acids could be identified as moderate to potent inhibitors of the applied CYP enzymes, they are not the major CYP inhibitory principle of frankincense.

  10. Inhibitory Activities of Zygophyllum album: A Natural Weight-Lowering Plant on Key Enzymes in High-Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Kais Mnafgui

    2012-01-01

    Full Text Available Obesity is a serious health problem that increased risk for many complications, including diabetes and cardiovascular disease. The results showed EZA, which found rich in flavonoids and phenolic compounds, exhibited an inhibitory activity on pancreatic lipase in vitro with IC50 of 91.07 μg/mL. In vivo administration of this extract to HFD-rats lowered body weight and serum leptin level; and inhibited lipase activity of obese rats by 37% leading to notable decrease of T-Ch, TGs and LDL-c levels accompanied with an increase in HDL-c concentration in serum and liver of EZA treated HFD-rats. Moreover, the findings revealed that EZA helped to protect liver tissue from the appearance of fatty cysts. Interestingly, supplementation of EZA modulated key enzyme related to hypertension such as ACE by 36% in serum of HFD animals and improve some of serum electrolytes such as Na+, K+, Cl−, Ca2+ and Mg2+. Moreover, EZA significantly protected the liver-kidney function by reverted back near to normal the values of the liver-kidney dysfunction indices AST&ALT, ALP, CPK and GGT activities, decreased T-Bili, creat, urea and uric acid rates. In conclusion, these results showed a strong antihypelipidemic effect of EZA which can delay the occurrence of dislipidemia and hypertension.

  11. Inhibitory Activities of Zygophyllum album: A Natural Weight-Lowering Plant on Key Enzymes in High-Fat Diet-Fed Rats

    Science.gov (United States)

    Mnafgui, Kais; Hamden, Khaled; Ben Salah, Hichem; Kchaou, Mouna; Nasri, Mbarek; Slama, Sadok; Derbali, Fatma; Allouche, Noureddine; Elfeki, Abdelfattah

    2012-01-01

    Obesity is a serious health problem that increased risk for many complications, including diabetes and cardiovascular disease. The results showed EZA, which found rich in flavonoids and phenolic compounds, exhibited an inhibitory activity on pancreatic lipase in vitro with IC50 of 91.07 μg/mL. In vivo administration of this extract to HFD-rats lowered body weight and serum leptin level; and inhibited lipase activity of obese rats by 37% leading to notable decrease of T-Ch, TGs and LDL-c levels accompanied with an increase in HDL-c concentration in serum and liver of EZA treated HFD-rats. Moreover, the findings revealed that EZA helped to protect liver tissue from the appearance of fatty cysts. Interestingly, supplementation of EZA modulated key enzyme related to hypertension such as ACE by 36% in serum of HFD animals and improve some of serum electrolytes such as Na+, K+, Cl−, Ca2+ and Mg2+. Moreover, EZA significantly protected the liver-kidney function by reverted back near to normal the values of the liver-kidney dysfunction indices AST&ALT, ALP, CPK and GGT activities, decreased T-Bili, creat, urea and uric acid rates. In conclusion, these results showed a strong antihypelipidemic effect of EZA which can delay the occurrence of dislipidemia and hypertension. PMID:23258993

  12. Effect of Allium sativum and fish collagen on the proteolytic and angiotensin-I converting enzyme-inhibitory activities in cheese and yogurt.

    Science.gov (United States)

    Shori, A B; Baba, A S; Keow, J N

    2012-12-15

    There is an increasing demand of functional foods in developed countries. Yogurt plays an important role in the management of blood pressure. Several bioactive peptides isolated from Allium sativum or fish collagen have shown antihypertensive activity. Thus, in the present study the effects of A. sativum and/or Fish Collagen (FC) on proteolysis and ACE inhibitory activity in yogurt (0, 7 and 14 day) and cheese (0, 14 and 28 day) were investigated. Proteolytic activities were the highest on day 7 of refrigerated storage in A. sativum-FC-yogurt (337.0 +/- 5.3 microg g(-1)) followed by FC-yogurt (275.3 +/- 2.0 microg g(-1)), A. sativum-yogurt (245.8 +/- 4.2 microg g(-1)) and plain-yogurt (40.4 +/- 1.2 microg g(-1)). On the other hand, proteolytic activities in cheese ripening were the highest (p sativum-cheeses (411.4 +/- 4.3 and 528.7 +/- 1.6 microg g(-1), respectively). However, the presence of FC increased the proteolysis to the highest level on day 28 of storage for FC- and A. sativum-FC cheeses (641.2 +/- 0.1 and 1128.4 +/- 4.5 microg g(-1), respectively). In addition, plain- and A. sativum-yogurts with or without FC showed maximal inhibition of ACE on day 7 of storage. Fresh plain- and A. sativum-cheeses showed ACE inhibition (72.3 +/- 7.8 and 50.4 +/- 1.6 % respectively), the presence of FC in both type of cheeses reduced the ACE inhibition to 62.9 +/- 0.8 and 44.5 +/- 5.0%, respectively. However, refrigerated storage increased ACE inhibition in cheeses (p sativum-yogurt or cheese enhanced the proteolytic activity. Thus, it has potential in the development of an effective dietary strategy for hypertension associated cardiovascular diseases.

  13. Activité inhibitrice et peptides inhibiteurs de l'ACE dans différentes sortes de fromage

    OpenAIRE

    Sieber, Robert; Bütikofer, Ueli; Egger, Charlotte; Portmann, Reto; Walther, Barbara; Wechsler, Daniel

    2010-01-01

    International audience; During the ripening of cheese, a large number of peptides are formed from casein. Some of these peptides have been shown to exert an antihypertensive effect due to their angiotensin-I-converting enzyme (ACE)-inhibitory activity. Recently, several studies have investigated the ACE-inhibiting potential of cheese, and various ACE-inhibiting peptides have been isolated and identified from different cheese varieties. The present review focuses on the occurrence of two tripe...

  14. Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors.

    Science.gov (United States)

    Channar, Pervaiz Ali; Saeed, Aamer; Larik, Fayaz Ali; Rafiq, Muhammad; Ashraf, Zaman; Jabeen, Farukh; Fattah, Tanzeela Abdul

    2017-11-01

    The present article describes the synthesis and enzyme inhibitory kinetics of methyl[2-(arylmethylene-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates 5a-j as mushroom tyrosinase inhibitors. The title compounds were synthesized via cyclocondensation of thiosemicarbazones 3a-j with dimethyl but-2-ynedioate (DMAD) 4 in good yields under solvent-free conditions. The synthesized compounds were evaluated for their potential to inhibit the activity of mushroom tyrosinase. It was unveiled that compounds 5i showed excellent enzyme inhibitory activity with IC 50 3.17µM while IC 50 of standard kojic acid is 15.91µM. The presence of heterocyclic pyridine ring in compound 5i play important role in enzyme inhibitory activity as rest of the functional groups are common in all synthesized compounds. The enzyme inhibitory kinetics of the most potent derivative 5i determined by Lineweaver-Burk plots and Dixon plots showed that it is non-competitive inhibitor with Ki value 1.5µM. It was further investigated that the wet lab results are in good agreement with the computational results. The molecular docking of the synthesized compounds was performed against tyrosinase protein (PDBID 2Y9X) to delineate ligand-protein interactions at molecular level. The docking results showed that the major interacting residues are His244, His85, His263, Val 283, His 296, Asn260, Val248, His260, His261 and Phe264 which are located in active binding site of the protein. The molecular modeling demonstrates that the oxygen atom of the compound 5i coordinated with the key residues in the active site of mushroom tyrosinase contribute significantly against inhibitory ability and diminishing the human melanin synthesis. These results evident that compound 5i is a lead structure in developing most potent mushroom tyrosinase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Role of the C-terminal extension peptide of plastid located glutamine synthetase from Medicago truncatula: Crucial for enzyme activity and needless for protein import into the plastids.

    Science.gov (United States)

    Ferreira, Maria João; Vale, Diogo; Cunha, Luis; Melo, Paula

    2017-02-01

    Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is encoded by a small family of highly homologous nuclear genes that produce cytosolic (GS1) and plastidic (GS2) isoforms. Compared to GS1, GS2 proteins have two extension peptides, one at the N- and the other at the C-terminus, which show a high degree of conservation among plant species. It has long been known that the N-terminal peptide acts as a transit peptide, targeting the protein to the plastids however, the function of the C-terminal extension is still unknown. To investigate whether the C-terminal extension influences the activity of the enzyme, we produced a C-terminal truncated version of Medicago truncatula GS2a in Escherechia coli and studied its catalytic properties. The activity of the truncated protein was found to be lower than that of MtGS2a and with less affinity for glutamate. The importance of the C-terminal extension for the protein import into the chloroplast was also assessed by transient expression of fluorescently-tagged MtGS2a truncated at the C-terminus, which was correctly detected in the chloroplast. The results obtained in this work demonstrate that the C-terminal extension of M. truncatula GS2a is important for the activity of the enzyme and does not contain crucial information for the import process. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Angiotensin I-converting enzyme (ACE) inhibitory activity of Fucus spiralis macroalgae and influence of the extracts storage temperature-A short report.

    Science.gov (United States)

    Paiva, Lisete; Lima, Elisabete; Neto, Ana Isabel; Baptista, José

    2016-11-30

    Recently, increasing attention has been paid to the marine algae as a natural source of novel angiotensin-I converting enzyme (ACE) inhibitors, such as the phlorotannins that are the predominant polyphenols in brown algae. This study reports, for the first time, the ACE inhibition of methanol extract/fractions from Azorean brown algae Fucus spiralis (Fs) determined by HPLC-UV method, their total phenolic content (TPC) quantified as phloroglucinol equivalents (PE) and the effect of the Fs dry powder methanol extracts (Fs-DME) storage temperature on ACE inhibition. The results indicate that the ACE inhibition of Fs-DME decreased by 28.8% and 78.2% when stored during 15days at -80°C and -13°C, respectively, as compared with the activity of Fs-DME at a refrigerated temperature of 6°C and assayed immediately after extraction that showed a value of 80.1±2.1%. This Fs-DME sample was fractionated by ultrafiltration membranes into three molecular weight ranges (3kDa), presenting the fraction>3kDa remarkably high ACE inhibition (88.8±2.4%), TPC value (156.6±1.4mg PE/g of dry weight fraction) and yield. Furthermore, chromatographic and spectrophotometric analyses corroborate that phenolic compounds were present in Fs methanol extract/fractions, and also revealed that phloroglucinol occurs in Fs. The results seem to suggest that Azorean Fs can be a source of powerful ACE-inhibitory phlorotannins with potential impact on public health, particularly on hypertensive patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Marine-Derived Bioactive Peptides with Pharmacological Activities- A Review

    Directory of Open Access Journals (Sweden)

    Sana Rabiei

    2017-10-01

    Full Text Available Some nutritional factors are related to chronic disease. In response to increased concern regarding nutrition and health, the functional and nutraceuticals food markets have been developed. During food digestion, proteins are hydrolyzed and a wide range of peptides are formed. Some of these peptides have special structures which permit them to confer particular biological functions. Marine animals which involve more than half of the world biological varieties are a wide source of bioactive proteins and peptides. Marine derived peptides show various physiologic functions such as anti-oxidant, antimicrobial, anti-cancer, Angiotensin1-Converting Enzyme (ACE glucosidase and a-amylase inhibitory effects in vitro. Before application of marine bioactive peptides as nutraceuticals or functional food ingredients, their efficacy should be approved through pre-clinical animal and then clinical studies. The aim of this study was to review the studies conducted on the pharmacological effect of marine bioactive peptides in animal models and humans.

  18. Analysis of the endogenous peptide profile of milk: identification of 248 mainly casein-derived peptides.

    Science.gov (United States)

    Baum, Florian; Fedorova, Maria; Ebner, Jennifer; Hoffmann, Ralf; Pischetsrieder, Monika

    2013-12-06

    Milk is an excellent source of bioactive peptides. However, the composition of the native milk peptidome has only been partially elucidated. The present study applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) directly or after prefractionation of the milk peptides by reverse-phase high-performance liquid chromatography (RP-HPLC) or OFFGEL fractionation for the comprehensive analysis of the peptide profile of raw milk. The peptide sequences were determined by MALDI-TOF/TOF or nano-ultra-performance liquid chromatography-nanoelectrospray ionization-LTQ-Orbitrap-MS. Direct MALDI-TOF-MS analysis led to the assignment of 57 peptides. Prefractionation by both complementary methods led to the assignment of another 191 peptides. Most peptides originate from α(S1)-casein, followed by β-casein, and α(S2)-casein. κ-Casein and whey proteins seem to play only a minor role as peptide precursors. The formation of many, but not all, peptides could be explained by the activity of the endogenous peptidases, plasmin or cathepsin D, B, and G. Database searches revealed the presence of 22 peptides with established physiological function, including those with angiotensin-converting-enzyme (ACE) inhibitory, immunomodulating, or antimicrobial activity.

  19. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130

    DEFF Research Database (Denmark)

    Rathje, Mette; Pankratova, Stanislava; Nielsen, Janne

    2011-01-01

    Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor a (CNTFRa), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has...... that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF...... similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential....

  20. Distinctive binding modes and inhibitory mechanisms of two peptidic inhibitors of urokinase-type plasminogen activator with isomeric P1 residues

    DEFF Research Database (Denmark)

    Jiang, Longguang; Zhao, Baoyu; Xu, Peng

    2015-01-01

    similar sequence. These results demonstrate how the subtle difference in P1 residue can dictate the exosite interactions and the potencies of peptidic inhibitors, and highlight the importance of P1 residue for protease inhibition. This study provides important information for the development of peptidic...

  1. Identification of distinct nisin leader peptide regions that determine interactions with the modification enzymes NisB and NisC.

    Science.gov (United States)

    Khusainov, Rustem; Moll, Gert N; Kuipers, Oscar P

    2013-01-01

    Nisin is the most prominent and applied bacteriocin that serves as a model for class I lantibiotics. The nisin leader peptide importantly determines interactions between precursor nisin and its modification enzymes NisB and NisC that mature nisin posttranslationally. NisB dehydrates serines and threonines, while NisC catalyzes the subsequent coupling of the formed dehydroamino acids to form lanthionines. Currently, little is known about how the nisin leader interacts with NisB and even less is known about its interactions with NisC. To investigate the nisin leader peptide requirements for functional interaction with the modification enzymes NisB and NisC, we systematically replaced six regions, of 2-4 amino acids each, with all-alanine regions. By performing NisB and NisC co-purification studies with these mutant leader peptides, we demonstrate that the nisin leader regions STKD(-22-19), FNLD(-18-15) and PR(-2-1) importantly contribute to the interactions of precursor nisin with both NisB and NisC, whereas the nisin leader region LVSV(-14-11) additionally contributes to the interaction of precursor nisin with NisC.

  2. Two enzymes which catalyze the amidation of peptide C-terminals are synthesized by a single mRNA. Peptide C mattan amid ka hanno wo shokubaisuru futatsu no koso wa ippon no mRNA yori goseisareru

    Energy Technology Data Exchange (ETDEWEB)

    Kato, I.; Yonekura, H.; Okamoto, H. (Tohoku Univ., Sendai (Japan))

    1991-10-25

    Recent findings by the authors are reviewed on the amidation that forms amid structure essential to physiological activities in C-terminals of peptide hormones such as oxytocin,VIP,PP. It is noted that the amidation had been considered to be catalyzed by peptidylglycine{alpha} -amidating monooxyganase ( PAM ) and that the authors investigated the PAM function by expression of PAM cDNA isolated from rat pituitary and its deletion mutant into COS-7 cells, reaching to the important findings of a singl PMA mRNA encoding two enzymes, namely one at 5 {prime} side, peptidylglicine {alpha} hydroxylase which catalyses the conversion of C-termianl glycine on peptide to the hydroxylated form ( the first step of amidation ),and another at 3{prime} side, {alpha}- hydroxylglycine amidating dealkylase which catalyzes the conversion of hydroxylated glycine to the amidated form ( the second step of amidation). 19 refs., 4 figs.

  3. Ultra-high-pressure processing improves proteolysis and release of bioactive peptides with activation activities on alcohol metabolic enzymes in vitro from mushroom foot protein.

    Science.gov (United States)

    Zhao, Rui-Jie; Huo, Chun-Yan; Qian, Yang; Ren, Di-Feng; Lu, Jun

    2017-09-15

    This study was to find an effective process to extract bioactive peptides from mushroom foot and determine their effects on activation of alcohol metabolic enzymes in vitro. The optimum extraction assisted by ultra-high-pressure processing of mushroom foot peptides was obtained with a pressure of 400MPa and a processing time of 10min. After ultrafiltration, peptides with molecular weight of 0-3kDa had the highest activity to activate alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) by 70.79% and 71.35%, respectively. Following dextran gel chromatography, two peaks (p-I and p-II) appeared and the activation activities on ADH and ALDH of p-I were 72.00% and 73.43%, both higher than p-II. Nine peptides were found in p-I as determined by LC-MS/MS, and two of them (IPLH and IPIVLL) were synthesized. IPLH activated ADH and ALDH by 42.7% and 29.2% respectively, which were higher than IPIVLL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bioactive proteins and peptides in foods.

    Science.gov (United States)

    Walther, Barbara; Sieber, Robert

    2011-03-01

    Increasing amounts of data demonstrate a bioactive role of proteins and peptides above and beyond their nutritional impact. The focus of the investigations has mainly been on vitamin- and mineral-binding proteins, on antimicrobial, immunosuppressing/-modulatory proteins, and on proteins with enzyme inhibitory activity as well as on hormones and growth factors from different food proteins; most research has been performed on milk proteins. Because of their molecular size, intact absorption of proteins in the human gastrointestinal tract is limited. Therefore, most of the proteins with biological functions show physiological activity in the gastrointestinal tract by enhancing nutrient absorption, inhibiting enzymes, and modulating the immune system to defend against pathogens. Peptides are released during fermentation or digestion from food proteins by proteolytic enzymes; such peptides have been found mainly in milk. Some of these released peptides exert biological activities such as opiate-like, antihypertensive, mineral-binding, antioxidative, antimicrobial, immuno-, and cytomodulating activity. Intact absorption of these smaller peptides is more likely than that of the larger proteins. Consequently, other organs than the gastrointestinal tract are possible targets for their biological functions. Bioactive proteins as well as bioactive peptides are part of a balanced diet. It is possible to accumulate bioactive peptides in food, for example by using specific microorganisms in fermented dairy products. Although bioactive peptides have been the subject of several studies in vitro and in vivo, their health potential is still under investigation. Up to now, the Commission of European Communities has not (yet) authorized any health claims for bioactive proteins and peptides from food.

  5. Apricot and other seed stones: amygdalin content and the potential to obtain antioxidant, angiotensin I converting enzyme inhibitor and hypocholesterolemic peptides.

    Science.gov (United States)

    García, M C; González-García, E; Vásquez-Villanueva, R; Marina, M L

    2016-11-09

    Stones from olives and Prunus genus fruits are cheap and sustainable sources of proteins and could be potential sources of bioactive peptides. The main limitation to the use of these seeds is the presence of amygdalin. This work proposes to determine amygdalin in olive and Prunus seeds and in protein isolates obtained from them. Moreover, antioxidant, angiotensin I converting enzyme (ACE) inhibitor, and hypocholesterolemic properties will be evaluated in hydrolysates obtained from these seeds. Despite some seeds contained amygdalin, all protein isolates were free of this substance. Two different procedures to obtain bioactive peptides from protein isolates were examined: gastrointestinal digestion and processing with Alcalase, Flavourzyme or Thermolysin. Higher antioxidant, ACE inhibitor and hypocholesterolemic activities were observed when proteins were processed with Alcalase, Flavourzyme or Thermolysin. The highest antioxidant and ACE inhibitor capacities were observed for the Prunus genus seed hydrolysates while the highest capacity to reduce micellar cholesterol solubility was observed for the apricot and olive seed hydrolysates.

  6. Enzymatic Release and Characterization of Novel Bioactive Peptides from Milk Proteins

    DEFF Research Database (Denmark)

    De Gobba, Cristian

    -inhibitory, antioxidant and antimicrobial peptides) released from milk proteins by mean of enzyme-catalysed hydrolysis. Goat milk fractions (produced using microfiltration membranes) and bovine casein were used as substrates. The goat milk fractions (retentate, permeate and skimmed milk) were hydrolysed with two...

  7. A ubiquitin-like peptide from the mushroom Pleurotus sajor-caju exhibits relatively potent translation-inhibitory and ribonuclease activities.

    Science.gov (United States)

    Ng, T B; Lam, S K; Chan, S Y

    2002-08-01

    The fruiting bodies of the edible mushroom Pleurotus sajor-caju were extracted with an aqueous buffer and then subjected to affinity chromatography on Affi-gel Blue gel, ion exchange chromatography on DEAE-cellulose and gel filtration on Superdex 75. From the fraction of the extract adsorbed on Affi-gel Blue gel and unadsorbed on DEAE-cellulose, a 9.5 kDa peptide with an N-terminal sequence similar to ubiquitin was isolated with a yield of 0.25 mg/kg mushroom. The peptide inhibited cell-free translation with an IC(50) of 30 nM. It exhibited a ribonuclease activity of 450 U/mg toward yeast transfer RNA. The activities were substantially more potent than those of previously isolated mushroom ubiquitin-like protein and peptide. Copyright 2002 Elsevier Science Inc.

  8. Role of low-affinity nerve growth factor receptor inhibitory antibody in reducing pain behavior and calcitonin gene-related Peptide expression in a rat model of wrist joint inflammatory pain.

    Science.gov (United States)

    Iwakura, Nahoko; Ohtori, Seiji; Orita, Sumihisa; Yamashita, Masaomi; Takahashi, Kazuhisa; Kuniyoshi, Kazuki

    2010-02-01

    Nerve growth factor (NGF), via the high-affinity receptor, tyrosine kinase A, has been widely reported as a mediator of pain caused by inflammation. A clinical trial has suggested that anti-NGF antibody is effective for pain caused by osteoarthritis of the knee. However, adverse events such as headache (8.9%), upper respiratory tract infection (7.3%), and paresthesia (6.8%) were reported. We hypothesized that inhibition of the low-affinity NGF receptor, p75 neurotrophin receptor (p75NTR), is also effective for joint pain and may reduce side effects. This study examined suppression of pain behavior and expression of pain-inducing neuropeptides such as calcitonin gene-related peptide (CGRP) and p75NTR in dorsal root ganglia neurons by a p75NTR inhibitory antibody in a rat model of wrist joint inflammatory pain. We injected complete Freund's adjuvant (CFA) into the wrist joint of rats and used this as a model of inflammatory pain. We applied 10 microL of saline (CFA + saline group; n = 20) or 1, 10, or 50 microL of a p75NTR inhibitory antibody (CFA + p75NTR inhibitory antibody group; n = 40) directly to the inflamed joint in the rats. Mechanical hyperalgesia was measured for 2 weeks using von Frey filaments. We assessed CGRP and p75NTR expression in C8 dorsal root ganglia immunochemically. Adverse events such as loss of weight and/or appetite, constipation, and infection were examined. p75NTR inhibitory antibody reduced mechanical hyperalgesia caused by CFA (pwrist inflammation (p<.01). p75NTR inhibition may be a therapeutic target for inflamed joint pain treatment with reduced adverse events. Copyright 2010. Published by Elsevier Inc.

  9. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors.

    Directory of Open Access Journals (Sweden)

    Yuichi Ikeda

    Full Text Available Identification of cognate ligands for G protein-coupled receptors (GPCRs provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS. In a reporter cell, complementary fragments of β-lactamase (α and ω were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω, and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3. We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR and neuromedin B receptor (NMBR. Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.

  10. Prion Fragment Peptides Are Digested with Membrane Type Matrix Metalloproteinases and Acquire Enzyme Resistance through Cu2+-Binding

    Directory of Open Access Journals (Sweden)

    Aya Kojima

    2014-05-01

    Full Text Available Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP from a normal cellular protein (PrPC to a protease-resistant isoform (PrPSc is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS were also tested as control. hPrP61-90, from the octapeptide-repeat region, was cleaved by HS but not by the MMPs tested here. On the other hand, hPrP92-168 from the central region was cleaved by MT1-MMP and MT3-MMP at various sites. These cleavages were inhibited by treatment with Cu2+. The C-terminal peptides had higher resistance than the central region. The data obtained from this study suggest that MT-MMPs expressed in the brain might possess PrPC-degrading activity.

  11. Structural Analysis of the Dimerization Domain of the Human Estrogen Receptor and a Peptide Inhibitor of Dimerization

    Science.gov (United States)

    1998-08-01

    peptides as inactivators of multimeric enzymes: inhibitory and conformational properties of three fragments from Lactobacillus casei thymidylate ... synthase . Biochemistry 37, 6883-93. Renaud, J. P., Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H. & Moras, D. (1995) Crystal structure of the

  12. The Blockade of NF-κB Activation by a Specific Inhibitory Peptide Has a Strong Neuroprotective Role in a Sprague-Dawley Rat Kernicterus Model*

    Science.gov (United States)

    Li, Mengwen; Song, Sijie; Li, Shengjun; Feng, Jie; Hua, Ziyu

    2015-01-01

    Kernicterus, the permanent nerve damage occurring as a result of bilirubin precipitation, still occurs worldwide and may lead to death or permanent neurological impairments. However, the underlying mechanisms remain unclear, and effective therapeutic strategies are lacking. The present study aims to investigate the activation of NF-κB and to identify the effect of NF-κB inhibition on the newborn rat kernicterus model. The NF-κB essential modifier-binding domain peptide (NBD), coupled with the HIV trans-activator of transcription peptide (TAT) was used to inhibit NF-κB. NF-κB was significantly activated in the cerebrum at 1 and 3 h (p kernicterus model rats in vivo. Thus, inhibiting NF-κB activation might be a potential therapeutic approach for kernicterus. PMID:26499797

  13. The Blockade of NF-κB Activation by a Specific Inhibitory Peptide Has a Strong Neuroprotective Role in a Sprague-Dawley Rat Kernicterus Model.

    Science.gov (United States)

    Li, Mengwen; Song, Sijie; Li, Shengjun; Feng, Jie; Hua, Ziyu

    2015-12-11

    Kernicterus, the permanent nerve damage occurring as a result of bilirubin precipitation, still occurs worldwide and may lead to death or permanent neurological impairments. However, the underlying mechanisms remain unclear, and effective therapeutic strategies are lacking. The present study aims to investigate the activation of NF-κB and to identify the effect of NF-κB inhibition on the newborn rat kernicterus model. The NF-κB essential modifier-binding domain peptide (NBD), coupled with the HIV trans-activator of transcription peptide (TAT) was used to inhibit NF-κB. NF-κB was significantly activated in the cerebrum at 1 and 3 h (p kernicterus model rats in vivo. Thus, inhibiting NF-κB activation might be a potential therapeutic approach for kernicterus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. HIV-1 gp41-targeting fusion inhibitory peptides enhance the gp120-targeting protein-mediated inactivation of HIV-1 virions

    OpenAIRE

    Qi, Qianqian; Wang, Qian; Chen, Weizao; Du, Lanying; Dimitrov, Dimiter S; Lu, Lu; Jiang, Shibo

    2017-01-01

    Protein- or peptide-based viral inactivators are being developed as novel antiviral drugs with improved efficacy, pharmacokinetics and toxicity profiles because they actively inactivate cell-free human immunodeficiency virus type 1 (HIV-1) virions before attachment to host cells. By contrast, most clinically used antiviral drugs must penetrate host cells to inhibit viral replication. In this study, we pre-treated HIV-1 particles with a gp120-targeting bispecific multivalent protein, 2Dm2m or ...

  15. In vitro COX-1 and COX-2 enzyme inhibitory activities of iridoids from Penstemon barbatus, Castilleja tenuiflora, Cresentia alata and Vitex mollis.

    Science.gov (United States)

    Ramírez-Cisneros, M Ángeles; Rios, María Yolanda; Aguilar-Guadarrama, A Berenice; Rao, Praveen P N; Aburto-Amar, Rola; Rodríguez-López, Verónica

    2015-10-15

    A group of sixteen iridoids isolated from plants used as anti-inflammatory remedies in Mexican folk medicine were evaluated for their potential to inhibit cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes. From these assays, loganic acid (10) was identified as the most promising compound with both COX-1 (36.0 ± 0.6%) and COX-2 (80.8 ± 4.0%) inhibition at 10 μM. Compound 10 shows a better inhibition against the COX-2 enzyme. Other iridoids tested in the present study showed weak or no inhibition against these enzymes. Furthermore, herein are presented key interactions of iridoid 10 with COX-1 and COX-2 enzymes through molecular docking studies. These studies suggest that 10 exhibits anti-inflammatory activity due to COX inhibition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enzyme-Instructed Self-Assembly of Small D-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Yamagata, Natsuko; Xu, Bing

    2016-03-23

    Selective inhibition of cancer cells remains a challenge in chemotherapy. Here we report the molecular and cellular validation of enzyme-instructed self-assembly (EISA) as a multiple step process for selectively killing cancer cells that overexpress alkaline phosphatases (ALPs). We design and synthesize two kinds of D-tetrapeptide containing one or two phosphotyrosine residues and with the N-terminal capped by a naphthyl group. Upon enzymatic dephosphorylation, these D-tetrapeptides turn into self-assembling molecules to form nanofibers in water. Incubating these D-tetrapeptides with several cancer cell lines and one normal cell line, the unphosphorylated D-tetrapeptides are innocuous to all the cell lines, the mono- and diphosphorylated D-tetrapeptides selectively inhibit the cancer cells, but not the normal cell. The monophosphorylated D-tetrapeptides exhibit more potent inhibitory activity than the diphosphorylated D-tetrapeptides do; the cancer cell lines express higher level of ALPs are more susceptible to inhibition by the phosphorylated D-tetrapeptides; the precursors of D-tetrapeptides that possess higher self-assembling abilities exhibit higher inhibitory activities. These results confirm the important role of enzymatic reaction and self-assembly. Using uncompetitive inhibitors of ALPs and fluorescent D-tetrapeptides, we delineate that the enzyme catalyzed dephosphorylation and the self-assembly steps, together, result in the localization of the nanofibers of D-tetrapeptides for killing the cancer cells. We find that the cell death modality likely associates with the cell type and prove the interactions between nanofibers and the death receptors. This work illustrates a paradigm-shifting and biomimetic approach and contributes useful molecular insights for the development of spatiotemporal defined supramolecular processes/assemblies as potential anticancer therapeutics.

  17. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme

    OpenAIRE

    Yan, Wei; Wu, Faye; Morser, John; Wu, Qingyu

    2000-01-01

    Atrial natriuretic peptide (ANP) is a cardiac hormone essential for the regulation of blood pressure. In cardiac myocytes, ANP is synthesized as a precursor, pro-ANP, that is converted to biologically active ANP by an unknown membrane-associated protease. Recently, we cloned a transmembrane serine protease, corin, that is highly expressed in the heart. In this study, we examine effects of corin on pro-ANP processing. Our results show that recombinant human corin converts pro-ANP to ANP and th...

  18. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130.

    Science.gov (United States)

    Rathje, Mette; Pankratova, Stanislava; Nielsen, Janne; Gotfryd, Kamil; Bock, Elisabeth; Berezin, Vladimir

    2011-12-01

    Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor α (CNTFRα), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has been suggested to be important for the cytokine interaction with LIFR. We designed a peptide, termed cintrofin, that encompasses this region. Surface plasmon resonance analysis demonstrated that cintrofin bound to LIFR and gp130, but not to CNTFRα, with apparent KD values of 35 nM and 1.1 nM, respectively. Cintrofin promoted the survival of cerebellar granule neurons (CGNs), in which cell death was induced either by potassium withdrawal or H2O2 treatment. Cintrofin induced neurite outgrowth from CGNs, and this effect was inhibited by specific antibodies against both gp130 and LIFR, indicating that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell signaling properties similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites.

    Science.gov (United States)

    Sichaem, Jirapast; Aree, Thammarat; Lugsanangarm, Kiattisak; Tip-Pyang, Santi

    2017-12-01

    Previous studies have shown that extracts of Zizyphus rugosa Lam. (Rhamnaceae) bark contained phytoconstituents with antidiabetic potential to lower blood glucose levels in diabetic rats. However, there has been no report on the active compounds in this plant as potential antidiabetic inhibitors. We evaluated the α-glucosidase inhibitory and antioxidant activities of Z. rugosa extract. Moreover, the active phytochemical constituents were isolated and characterized. The α-glucosidase inhibition of crude ethanol extract obtained from the bark of Z. rugosa was assayed as well as the antioxidant activity. Active compounds (1-6) were isolated, the structures were determined, and derivatives (2a-2 l) were prepared. All compounds were tested for their α-glucosidase inhibitory (yeast and rat intestine) and antioxidant (DPPH) activities. The active α-glucosidase inhibitors (1-6) were isolated from Z. rugosa bark and 12 derivatives (2a-2 l) were prepared. Compound 2 showed the most powerful yeast α-glucosidase inhibitory activity (IC50 16.3 μM), while compounds 3 and 4 display only weak inhibition toward rat intestinal α-glucosidase. Moreover, compound 6 showed the most potent antioxidant activity (IC50 42.8 μM). The molecular docking results highlighted the role of the carboxyl moiety of 2 for yeast α-glucosidase inhibition through H-bonding. These results suggest the potential of Z. rugosa bark for future application in the treatment of diabetes and active compounds 1 and 2 have emerged as promising molecules for therapy.

  20. Biological properties of angiotensin-converting enzyme inhibitor derived from tuna muscle.

    Science.gov (United States)

    Kohama, Y; Oka, H; Matsumoto, S; Nakagawa, T; Miyamoto, T; Mimura, T; Nagase, Y; Satake, M; Takane, T; Fujita, T

    1989-09-01

    A novel inhibitor of angiotensin-converting enzyme (ACE) derived from tuna muscle, Pro-Thr-His-Ile-Lys-Trp-Gly-Asp (tuna AI), was chemically synthesized, and its biological properties were investigated. Synthetic tuna AI was found to be chemically and biologically indistinguishable from the native one. Tuna AI inhibited rabbit lung ACE non-competitively with Ki values of 1.7 and 5.7 microM with substrates, hippuryl-L-histidyl-L-leucine and angiotensin I, respectively. This peptide (5.3 microM) also doubled the effect of bradykinin in the contraction of isolated guinea pig ileum. The peptide did not show zinc chelating activity and carboxypeptidase A inhibitory activity. Thus, tuna AI was found to be a unique ACE inhibitory peptide with non-competitive manner, differing from many naturally occurring peptide ACE-inhibitors.

  1. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension

    Directory of Open Access Journals (Sweden)

    Stephen A. Adefegha

    2016-07-01

    Conclusion: The inhibitory properties of phenolic rich extracts on α-amylase, α-glucosidase, ACE, and Fe2+- and sodium nitroprusside-induced lipid peroxidation in the pancreas could be attributed to the antioxidant properties of the extracts and their phenolic composition. The stronger action of the bound phenolic extract on α-glucosidase may provide the possible bioactivity at the brush border end of the intestinal wall. This study may thus suggest that leaves represent a functional food and nutraceutical in the management of non-insulin dependent diabetes mellitus and hypertension.

  2. Inhibitory effects of oxytocin and oxytocin receptor antagonist atosiban on the activities of carbonic anhydrase and acetylcholinesterase enzymes in the liver and kidney tissues of rats.

    Science.gov (United States)

    Kocyigit, Umit M; Taşkıran, Ahmet Şevki; Taslimi, Parham; Yokuş, Ahmet; Temel, Yusuf; Gulçin, İlhami

    2017-11-01

    The aim of this study was to investigate the effects of oxytocin (OT), atosiban, which is an OT receptor antagonist, and OT-atosiban chemicals injected to rats on the activities of carbonic anhydrase (CA) and acetylcholinesterase (AChE) enzymes in liver and kidney tissues of rats. For this purpose, four different groups, each consisting of six rats (n = 6), were formed (control group, OT administered group, atosiban administered group, and both OT and atosiban administered group). The rats were necropsied 60 min after intraperitoneal injection of chemicals into the rats. Liver tissues of rats were extracted. CA and AChE enzyme activities were measured for each tissue by using hydratase, esterase, and acetylcholiniodide methods. Activity values for each enzyme obtained were statistically calculated. © 2017 Wiley Periodicals, Inc.

  3. Transport of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide Ala-His-Leu-Leu Across Human Intestinal Epithelial Caco-2 Cells.

    Science.gov (United States)

    Li, Ying; Zhao, Jiangtao; Liu, Xiaoli; Xia, Xiudong; Wang, Ying; Zhou, Jianzhong

    2017-03-01

    The transport behavior and absorption mechanism of Ala-His-Leu-Leu (AHLL) intestinal absorption in Caco-2 cell monolayers were clarified systemically. The safe absorptive concentration of AHLL was 200 μg/mL, which was determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. The permeation of AHLL was concentration dependent in a bidirectional transfer and reached a plateau at 90 min. The efflux ratio was above 0.5, suggesting that AHLL was absorbed by both active transport and passive diffusion. The apparent permeability coefficients (Papp) of AHLL both from the apical (AP) to basolateral (BL) side (PappAB) and from the BL to AP side (PappBA) decreased when the temperature was lowered from 37°C to 4°C.The uptake of AHLL was more at pH 7.4 than at other pHs. Both verapamil and (E)-3-[[[3-[2-(7-chloro-2- quinolinyl) ethenyl] phenyl]-[[(3-dimethyl amino)-3-oxopropyl]thio] methyl] thio]-propanoic acid (MK571) inhibited the absorption of AHLL, indicating that P-glycoprotein and multi-drug resistant proteins (MRPs) were all involved in AHLL secretion, especially multi-drug resistant protein 2 (MRP2). AHLL was transported through both trans- and paracellular pathways across the Caco-2 cell monolayer. This work first elucidates the AHLL absorption mechanism in Caco-2 cells and provides the basis for future studies on the improvement of bioavailability.

  4. Some Brain Peptides Regulating the Secretion of Digestive Enzymes in the Indian Meal Moth, Plodia Interpunctella (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Sajjadian Seyede Minoo

    2014-07-01

    Full Text Available The Indian meal moth, Plodia interpunctella (Hübner (Lepidoptera: Pyralidae is a destructive polyphagous pest of many stored products. To interfere with the physiological processes, especially digestion, of the larval pest, more information on the regulatory mechanisms is needed. The brain extract from 1-day-old last instar larvae of P. interpunctella was examined. In the bioassays, the midguts were treated with the brain extract, and the carbohydrase and protease activities were measured. The brain extract showed increasing dose-dependent effects on α-amylase, α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase, and trypsin secretion in the larval midgut. The extract was further characterised and partially purified using high performance liquid chromatography (HPLC. Several peptides were determined in the brain extract regulating hydrolase activities in the larval midgut of the pest.

  5. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  6. Serodiagnosis of cutaneous leishmaniasis: assessment of an enzyme-linked immunosorbent assay using a peptide sequence from gene B protein

    DEFF Research Database (Denmark)

    Jensen, A T; Gaafar, A; Ismail, A

    1996-01-01

    An enzyme-linked immunosorbent assay (ELISA) using a 28 amino acid sequence of the repetitive element of gene B protein (GBP) from Leishmania major was developed for serodiagnosis of cutaneous leishmaniasis (CL). The assay was compared to ELISAs using crude amastigote and promastigote antigens from...... samples from healthy Sudanese individuals living in an area endemic for malaria but free of leish-maniasis were negative in all the assays. Significantly higher levels of antibodies were found in the patients who had suffered from the disease for more than eight weeks than in patients with a shorter...

  7. Alteration of starch hydrolyzing enzyme inhibitory properties, antioxidant activities, and phenolic profile of clove buds (Syzygium aromaticum L.) by cooking duration.

    Science.gov (United States)

    Adefegha, Stephen A; Oboh, Ganiyu; Oyeleye, Sunday I; Osunmo, Kolawole

    2016-03-01

    This study assessed the effect of cooking duration on starch hydrolyzing enzyme (α-amylase and α-glucosidase) activities, antioxidant (1,1-diphenyl-2 picrylhydrazyl [DPPH*], hydroxyl [OH*] radicals scavenging abilities and reducing power) properties, and phenolic profile of clove buds. Clove buds (raw) were cooked for 10 (SC 10) and 20 min (SC 20) and subsequently, their effects were assessed on enzyme activities, antioxidant properties, and phenolic profile. Inhibition of α-amylase and α-glucosidase activities and radicals scavenging abilities were altered by cooking in the trend; raw SC 20, with IC 50 values ranging from 0.25 to 0.52 mg/mL and 0.10 to 1.50 mg/mL respectively. HPLC phenolic profile of the clove buds revealed significant (P clove bud by activation and/or deactivation of redox-active metabolites.

  8. The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Marin, O

    1992-01-01

    phosphorylated by either CK2 holoenzyme or the recombinant alpha subunit with 5.8-fold and 2.8-fold stimulation by polylysine, respectively. The recombinant beta subunit of CK2 is itself a good exogenous substrate for the enzyme, its phosphorylation, however, is inhibited rather than enhanced by polylysine......, moreover, is variably accounted for by changes in Vmax and/or Km, depending on the structure of the peptide substrate. Maximum stimulation with all protein/peptide substrates tested requires the presence of the beta subunit, since the recombinant alpha subunit is much less responsive than CK2 holoenzyme......The mechanism by which polybasic peptides stimulate the activity of casein kinase 2 (CK2) has been studied by comparing the effect of polylysine on the phosphorylation of a variety of protein and peptide substrates by the native CK2 holoenzyme and by its recombinant catalytic alpha subunit, either...

  9. Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion.

    Science.gov (United States)

    Jin, Yan; Yu, Yang; Qi, Yanxia; Wang, Fangjun; Yan, Jiaze; Zou, Hanfa

    2016-06-01

    This study investigated the relationship between peptide profiles and the bioactivity character of yogurt in simulated gastrointestinal trials. A total of 250, 434 and 466 peptides were identified by LC-MS/MS analyses of yogurt, gastric digest and pancreatic digest. Forty peptides of yogurt survived in gastrointestinal digestion. κ-CN and β-CN contributed the diversity of peptides during the fermentation process and gastrointestinal digestion, respectively. The favorite of κ-CN by lactic acid bacteria complemented gut digestion by hydrolyzing κ-CN, the low abundance milk proteins. The potential bioactivities were evaluated by in vitro ACE and DPP-IV inhibition assays. The ACE inhibition rate of the pancreatic digests was ~4 - and ~2 - fold greater than that of yogurt and the gastric digests. The ACE inhibitory peptides generated during gastrointestinal digestion improved the ACE inhibitory activity of the gastric and pancreatic digests. The DPP-IV inhibition rate of the pancreatic digest was ~6 - and ~3 - fold greater than that of yogurt and the gastric digest. The numbers of potential DPP-IV inhibitory peptides were positively correlated to the DPP-IV inhibitory activity of the gastric and pancreatic digests. The present study describes the characters and bioactivities of peptides from yogurt in a simulated gastrointestinal digestion. The number of peptides identified from yogurt and gastrointestinal digests by LC-MS/MS increased in the simulated gastrointestinal trials. The in vitro ACE and DPP-IV inhibition bioactivities revealed that the bioactivity of yogurt was enhanced during gastrointestinal digestion. The correlation between peptides and bioactivity in vitro indicated that not only the peptides amount but also the proportion of peptides with high bioactivities contributed to increased bioactivity during gastrointestinal digestion. The study of peptides identified from yogurt and digests revealed that the number of released peptides was not determined

  10. Quantitative analysis of the flavonoid glycosides and terpene trilactones in the extract of Ginkgo biloba and evaluation of their inhibitory activity towards fibril formation of β-amyloid peptide.

    Science.gov (United States)

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-10

    The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer's Disease (AD), and the inhibition of Aβ aggregation and destabilization of the preformed fibrils represent viable approaches for the prevention and treatment of AD. Flavonoid glycosides and terpene trilactones (TTLs) are the two main components of EGb761 which represent 24 and 6% of the overall content, respectively. In our research, seven abundant flavonoid glycosides 1-7 were isolated from the extract of Ginkgo biloba leaves and characterized by spectroscopic analysis. Furthermore, an ultra-high performance liquid chromatography method was established for the simultaneous quantification of these seven flavonoids. The inhibitory activities of these flavonoids, as well as four TTLs, i.e., ginkgolides A, B, and C and bilobalide (compounds 8-11), were evaluated towards Aβ42 fibril formation using a thioflavin T fluorescence assay. It was found that three flavonoids 1, 3 and 4 exhibited moderate inhibitory activities, whereas the other four flavonoids 2, 5, 6 and 7, as well as the four terpene trilactones, showed poor activity. This is the first report of the inhibition of Aβ fibril formation of two characteristic acylated flavonoid glycosides 6, 7 in Ginkgo leaves, on the basis of which the structure-activity relationship of these flavonoids 1-7 was discussed.

  11. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase.

    Science.gov (United States)

    Siah, Siem D; Konczak, Izabela; Agboola, Samson; Wood, Jennifer A; Blanchard, Christopher L

    2012-08-01

    The functional properties, including antioxidant and chemopreventative capacities as well as the inhibitory effects on angiotensin-converting enzyme (ACE), α-glucosidase and pancreatic lipase, of three Australian-grown faba bean genotypes (Nura, Rossa and TF(Ic*As)*483/13) were investigated using an array of in vitro assays. Chromatograms of on-line post column derivatisation assay coupled with HPLC revealed the existence of active phenolics (hump) in the coloured genotypes, which was lacking in the white-coloured breeding line, TF(Ic*As)*483/13. Roasting reduced the phenolic content, and diminished antioxidant activity by 10-40 % as measured by the reagent-based assays (diphenylpicrylhydrazyl, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and oxygen radical absorbance capacity) in all genotypes. Cell culture-based antioxidant activity assay (cellular antioxidant activity) showed an increase of activity in the coloured genotypes after roasting. Faba bean extracts demonstrated cellular protection ability against H₂O₂-induced DNA damage (assessed using RAW264.7 cells), and inhibited the proliferation of all human cancer cell lines (BL13, AGS, Hep G2 and HT-29) evaluated. However, the effect of faba bean extracts on the non-transformed human cells (CCD-18Co) was negligible. Flow cytometric analyses showed that faba bean extracts successfully induced apoptosis of HL-60 (acute promyelocytic leukaemia) cells. The faba bean extracts also exhibited ACE, α-glucosidase and pancreatic lipase inhibitory activities. Overall, extracts from Nura (buff-coloured) and Rossa (red-coloured) were comparable, while TF(Ic*As)*483/13 (white-coloured) contained the lowest phenolic content and exhibited the least antioxidant and enzyme inhibition activities. These results are important to promote the utilisation of faba beans in human diets for various health benefits.

  12. Peptides Derived from Soy and Lupin Protein as Dipeptidyl-Peptidase IV Inhibitors: In Vitro Biochemical Screening and in Silico Molecular Modeling Study.

    Science.gov (United States)

    Lammi, Carmen; Zanoni, Chiara; Arnoldi, Anna; Vistoli, Giulio

    2016-12-28

    Dipeptidyl peptidase IV (DPP-IV) is a new molecular target correlated with the development of type 2 diabetes. Literature describes the identification of some inhibitory peptides from the hydrolysis of different food proteins. This article reports a study on six peptides from soybean and lupin proteins, i.e., Soy 1 (IAVPTGVA), Soy 2 (YVVNPDNDEN), Soy 3 (YVVNPDNNEN), Lup 1 (LTFPGSAED), Lup 2 (LILPKHSDAD), and Lup 3 (GQEQSHQDEGVIVR), which were screened for their capacity to inhibit the activity of DPP-IV, using an in vitro bioassay against human recombinant DPP-IV. Two peptides Soy 1 and Lup 1 resulted to be efficient inhibitors with IC50 values equal to 106 and 228 μM, respectively. A molecular docking analysis predicted the key molecular interactions, stabilizing the active peptides within DPP-IV enzyme. Soy and lupin proteins may be sources of DPP-IV inhibitory peptides potentially useful for the prevention of type 2 diabetes.

  13. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer's Beta-Amyloid Peptide 25-35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds.

    Directory of Open Access Journals (Sweden)

    Balakrishnan Shanmuganathan

    Full Text Available Inhibition of β-amyloid (Aβ aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer's disease (AD. Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25-35 by acetone extracts of P. gymnospora (ACTPG was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM analysis and Fourier transform infrared (FTIR spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml with Aβ 25-35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml and support its use for the treatment of neurological disorders.

  14. Binding of histone H1e-c variants to CpG-rich DNA correlates with the inhibitory effect on enzymic DNA methylation.

    Science.gov (United States)

    Santoro, R; D'Erme, M; Mastrantonio, S; Reale, A; Marenzi, S; Saluz, H P; Strom, R; Caiafa, P

    1995-01-01

    Within the H1 histone family, only some fractions enriched in the H1e-c variants are effective in causing a marked inhibition, in vitro, of enzymic DNA methylation and, in gel retardation and Southwestern blot experiments, in binding double-stranded (ds) CpG-rich oligonucleotides. Both the 6-CpG ds-oligonucleotide and the DNA purified from chromatin fractions enriched in 'CpG islands' are good competitors for the binding of H1e-c to 6-meCpG ds-oligonucleotide. Because of their ability to bind any DNA sequence and to suppress the enzymic methylation in any sequence containing CpG dinucleotides, these particular H1 variants could play some role in maintaining linker DNA at low methylation levels and even in preserving the unmethylated state of the CpG-rich islands which characterize the promoter regions of housekeeping genes. Images Figure 1 Figure 3 Figure 4 PMID:7848272

  15. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains.

    Science.gov (United States)

    Ebner, Jennifer; Aşçı Arslan, Ayşe; Fedorova, Maria; Hoffmann, Ralf; Küçükçetin, Ahmet; Pischetsrieder, Monika

    2015-03-18

    Kefir has a long tradition in human nutrition due to its presupposed health promoting effects. To investigate the potential contribution of bioactive peptides to the physiological effects of kefir, comprehensive analysis of the peptide profile was performed by nano-ESI-LTQ-Orbitrap MS coupled to nano-ultrahigh-performance liquid chromatography. Thus, 257 peptides were identified, mainly released from β-casein, followed by αS1-, κ-, and αS2-casein. Most (236) peptides were uniquely detected in kefir, but not in raw milk indicating that the fermentation step does not only increase the proteolytic activity 1.7- to 2.4-fold compared to unfermented milk, but also alters the composition of the peptide fraction. The influence of the microflora was determined by analyzing kefir produced from traditional kefir grains or commercial starter culture. Kefir from starter culture featured 230 peptide sequences and showed a significantly, 1.4-fold higher proteolytic activity than kefir from kefir grains with 127 peptides. A match of 97 peptides in both varieties indicates the presence of a typical kefir peptide profile that is not influenced by the individual composition of the microflora. Sixteen of the newly identified peptides were previously described as bioactive, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, immunomodulating, opioid, mineral binding, antioxidant, and antithrombotic effects. The present study describes a comprehensive peptide profile of kefir comprising 257 sequences. The peptide list was used to identify 16 bioactive peptides with ACE-inhibitory, antioxidant, antithrombotic, mineral binding, antimicrobial, immunomodulating and opioid activity in kefir. Furthermore, it was shown that a majority of the kefir peptides were not endogenously present in the raw material milk, but were released from milk caseins by proteases of the microbiota and are therefore specific for the product. Consequently, the proteolytic activity and the

  16. Development of a Spectrophotometric Method for Monitoring Angiotensin-Converting Enzyme in Dairy Products

    Directory of Open Access Journals (Sweden)

    Julijana Tomovska*, S. Presilski, N. Gjorgievski, N. Tomovska1, M. S. Qureshi2 and N. P. Bozinovska3

    2013-01-01

    Full Text Available The angiotensin-converting enzyme (ACE regulates the levels of blood pressure through generation of angiotensin-II from angiotensin-I. It is of great importance to have a reliable and yet simple method for a quantitative determination ACE inhibitory peptides in whey of milk products. A rapid, simple, sensitive and accurate spectrophotometric kinetic method has been developed for determination of ACE inhibitory peptides, using competitive inhibition. Samples of dairy product from the market were used for the determination of ACE inhibitory peptides in whey. Holmquist’s kinetic method was used for determining ACE inhibitory activity in blood serum and Ronca-Testoni method was used for the determination of ACE inhibitory activity in whey. Enzymatic inhibition activity was determined using 0.8 mmol/L FAPGG (N-[3-(Furyl –Acryloyl]-L-Phenylalanyl Glycyl Glycyne as the substrate in 50 mmol/L Tris buffer at pH 8.2 at 37°C and a standard serum containing ACE. First, a solution of whey was mixed in a 1 to 10 ratio with serum (elevation containing high ACE activity. The enzymatic activity was determined by monitoring the decrease in absorbance at 340 nm as result of hydrolysis of the substrate. The concentration of ACE inhibitory peptides was determined from a standard curve of inhibitor concentration versus percent of ACE inhibition. The study suggests that the method possesses good reproducibility and accuracy. The linear range enabled determination of high enzymatic activity of ACE and all ACE inhibitory peptides from dairy products act as competitive inhibitors.

  17. Vasoactive intestinal peptide-induced expression of cytochrome P450 cholesterol side-chain cleavage and 17 alpha-hydroxylase enzyme activity in hen granulosa cells.

    Science.gov (United States)

    Johnson, A L; Li, Z; Gibney, J A; Malamed, S

    1994-08-01

    Experiments were conducted to determine whether vasoactive intestinal peptide (VIP) can regulate expression of cytochrome P450 side-chain cleavage (P450scc) and P450 17 alpha-hydroxylase (P450 17 alpha-OH) mRNA levels and enzyme activity in granulosa cells from nonhierarchal (6-8-mm) follicles. Initial studies demonstrated that immunoreactive VIP is localized within the theca (but not granulosa) layer of both resting (< 0.5-mm follicles) and 6-8-mm follicles, thus providing a potential paracrine mechanism of action for VIP. While short-term (3 h) incubation of granulosa cells with VIP (0.001-1.0 microM) failed to stimulate progesterone production from 6-8-mm follicle granulosa cells, a 4-h culture period in the presence of VIP resulted in increased cyclic AMP (cAMP) accumulation, and a 24-h culture period resulted in progesterone synthesis and increased P450scc mRNA levels; control levels of each endpoint measurement were not altered within the period observed. By contrast, culture with the growth factor transforming growth factor alpha (TGF alpha) in the presence of VIP (1 microM) prevented increases in P450scc mRNA levels and progesterone production. Similar effects of VIP and TGF alpha in the presence of VIP were demonstrated for P450 17 alpha-OH mRNA levels and enzyme activity. Finally, there was an additive effect of VIP (0.1 microM) plus recombinant human (rh) FSH (100 mIU) on the initiation of progesterone production in cultured 6-8-mm follicle granulosa cells compared to the addition of VIP or rhFSH alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells.

    Science.gov (United States)

    Li, Jinming; Liu, Fang; Shao, Qing; Min, Yuanzeng; Costa, Marianne; Yeow, Edwin K L; Xing, Bengang

    2014-08-01

    Here, a set of novel and personalized nanocarriers are presented for controlled nucleus-targeted antitumor drug delivery and real-time imaging of intracellular drug molecule trafficking by integrating an enzyme activatable cell penetrating peptide (CPP) with mesoporous silica coated quantum dots nanoparticles. Upon loading of antitumor drug, doxorubicin (DOX) and further exposure to proteases in tumor cell environment, the enzymatic cleavage of peptide sequence activates oligocationic TAT residues on the QDs@mSiO2 surface and direct the DOX delivery into cellular nucleus. The systematic cell imaging and cytotoxicity studies confirm that the enzyme responsive DOX-loaded CPP-QDs@mSiO2 nanoparticles can selectively release DOX in the tumor cells with high cathepsin B enzyme expression and greatly facilitate DOX accumulation in targeted nucleus, thus exhibiting enhanced antitumor activity in these cells. As contrast, there is limited nuclear-targeted drug accumulation and lower tumor cytotoxicity observed in the cells without enzyme expression. More importantly, significant antitumor DOX accumulation and higher tumor inactivation is also found in the drug resistant tumor cells with targeted enzyme expression. Such simple and specific enzyme responsive mesoporous silica-QDs nanoconjugates provide great promise for rational design of targeted drug delivery into biological system, and may thus greatly facilitate the medical theranostics in the near future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oral activity of FMRFamide-related peptides on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut.

    Science.gov (United States)

    Down, Rachel E; Matthews, H June; Audsley, Neil

    2011-11-10

    Insect myosuppressins and myosuppressin analogues were tested for oral toxicity against the pea aphid Acyrthosiphon pisum (Harris) by incorporation into an artificial diet. Acyrthosiphon pisum myosuppressin (Acypi-MS) and leucomyosuppressin (LMS) had significant dose-dependent effects (0.1-0.5μg peptide/μl diet) on feeding suppression, mortality, reduced growth and fecundity compared with control insects, but Acypi-MS was more potent than LMS. One hundred percent of aphids had died after 10days of feeding on 0.5μg Acypi-MS/μl diet whereas 40% of aphids feeding on 0.5μg LMS/μl diet were still alive after 13days. Myosuppressins were degraded by aphid gut enzymes; degradation was most likely due to a carboxypeptidase-like protease, an aminopeptidase and a cathepsin L cysteine protease. The estimated half-life of Acypi-MS in a gut extract was 30min, whereas LMS was degraded more slowly (t½=54min). No toxicity was observed when the analogues δR(9) LMS and citrolline(9) Acypi-MS or FMRFamide were fed to the pea aphid. These findings not only help to better understand the biological effects of myosuppressins in aphids but also demonstrate the potential use of myosuppressins in a strategy to control aphid pests. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  20. Nitric oxide-mediated vasorelaxation effects of anti-angiotensin I-converting enzyme (ACE) peptide from Styela clava flesh tissue and its anti-hypertensive effect in spontaneously hypertensive rats.

    Science.gov (United States)

    Ko, Seok-Chun; Kim, Dong Geon; Han, Chang-Hoon; Lee, Young Jae; Lee, Jung-Kwon; Byun, Hee-Guk; Lee, Seung-Cheol; Park, Sun-Joo; Lee, Dae-Ho; Jeon, You-Jin

    2012-09-15

    In our previous study, an anti-angiotensin I converting enzyme (ACE) peptide (Ala-His-Ile-Ile-Ile, MW: 565.3Da) was isolated from Styela clava flesh tissue. In this study the fractions obtained during the isolation process and the finally purified peptide were examined to see if they had vasorelaxation effects in isolated rat aortas, and then the peptide was investigated for anti-hypertensive effect in spontaneously hypertensive rats (SHRs). The induction of vasorelaxation in the rat aortas was observed with the isolated fractions and the peptide from the enzymatic hydrolysate of S. clava flesh tissue and could be markedly blocked by pretreatment with the nitric oxide synthase (NOS) inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME). In human endothelial cells, NO synthesis was found to be increased and eNOS phosphorylation was upregulated when the cells were cultured with the purified peptide. Furthermore, systolic blood pressure was reduced by administration of the potent vasorelaxation peptide in SHRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Food protein-derived bioactive peptides in management of type 2 diabetes.

    Science.gov (United States)

    Patil, Prasad; Mandal, Surajit; Tomar, Sudhir Kumar; Anand, Santosh

    2015-09-01

    Type 2 diabetes (T2D), one of the major common human health problems, is growing at an alarming rate around the globe. Alpha-glucosidase and dipeptidyl peptidase IV (DPP-IV) enzymes play a significant role in development of T2D. Hence, reduction or inhibition of their activity can be one of the important strategies in management of T2D. Studies in the field of bioactive peptides have shown that dietary proteins could be natural source of alpha-glucosidase and DPP-IV inhibitory peptides. The purpose of this review is to provide an overview of food protein-derived peptides as potential inhibitors of alpha-glucosidase and DPP-IV with major focus on milk proteins. Efforts have been made to review the available information in literature on the relationship between food protein-derived peptides and T2D. This review summarizes the current data on alpha-glucosidase and dipeptidyl peptidase IV inhibitory bioactive peptides derived from proteins and examines the potential value of these peptides in the treatment and prevention of T2D. In addition, the proposed modes of inhibition of peptide inhibitors are also discussed. Studies revealed that milk and other food proteins-derived bioactive peptides play a vital role in controlling T2D through several mechanisms, such as the satiety response, regulation of incretin hormones, insulinemia levels, and reducing the activity of carbohydrate degrading digestive enzymes. The bioactive peptides could be used in prevention and management of T2D through functional foods or nutraceutical supplements. Further clinical trials are necessary to validate the findings of in vitro studies and to confirm the efficiency of these peptides for applications.

  2. Process development for the enrichment of curcuminoids in turmeric spent oleoresin and its inhibitory potential against LDL oxidation and angiotensin-converting enzyme.

    Science.gov (United States)

    Nampoothiri, Suresh V; Praseetha, E K; Venugopalan, V V; Nirmala Menon, A

    2012-09-01

    Turmeric (Curcuma longa) contains biologically active colouring constituents, curcuminoids, which are isolated from the turmeric rhizome by solvent extraction. The mother liquor left after the separation of curcuminoids is known as turmeric spent oleoresin (SOT). The present study developed a method for the enrichment of curcuminoids in SOT. By using this method, curcuminoids in the SOT (8.4%) were doubled (17.5%). Presence of curcuminoids in enriched fraction was confirmed by high performance liquid chromatography (HPLC) and liquid chromatography coupled with mass spectroscopy analysis. Further studies on this fraction showed that it can effectively inhibit angiotensin-converting enzyme and low-density lipoprotein oxidation with IC(50) values of 19.45 μg/ml and 30.52 μg/ml, respectively. The results showed that curcuminoids enriched fraction (CEF) can reduce the risk of hypertension and cardiovascular diseases. In addition to this fraction, a turmerone-rich hexane fraction was also separated from the spent oleoresin.

  3. The inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet B-induced pigmentation via the suppression of endothelin-converting enzyme-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Hachiya, Akira; Kobayashi, Akemi; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori [Kao Biological Science Lab., Ichikai, Tochigi (Japan)

    2001-06-01

    Endothelin-1 (ET-1) has been reported to be expressed in human epidermis at both the gene and protein levels. ET-1 plays a pivotal role in ultraviolet B (UVB)-induced pigmentation due to its accentuated secretion after UVB irradiation and its function as a mitogen and as a melanogen for human melanocytes. We have recently found that endothelin-converting enzyme (ECE)-1{alpha} plays a constitutive role in the secretion of ET-1 by human keratinocytes and that an extract of Sanguisorba officinalis L. inhibits ECE activity in human endothelial cells, which predominantly express ECE-1{alpha}. In this report, to clarify the potential use of this botanical extract as a whitening agent, we examined whether this extract inhibits UVB-induced pigmentation in vivo. When this extract was applied to human keratinocytes after UVB irradiation, secretion of ET-1 by those cells was reduced, and this was accompanied by a concomitant increase in the secretion of inactive precursor Big endothelin-1. When hairless mice were exposed to UVB light and were treated with the extract, it suppressed the induction of ET-1 in the UVB-irradiated epidermis. In the course of UVB-induced pigmentation of brownish guinea pig skin, this extract significantly diminished pigmentation in UVB-exposed areas. These findings indicate that ECE-1{alpha} in keratinocytes plays a pivotal role in the induction of pigmentation following UVB irradiation and that an extract of S. officinalis, which inhibits ET-1 production in human keratinocytes, is a good ingredient for a whitening agent. (author)

  4. Antioxidative activity of the hydrolytic enzyme treated Sorbus commixta Hedl. and its inhibitory effect on matrix metalloproteinase-1 in UV irradiated human dermal fibroblasts.

    Science.gov (United States)

    Bae, Jun-Tae; Sim, Gwan-Sub; Kim, Jin-Hwa; Pyo, Hyeong-Bae; Yun, Jong-Won; Lee, Bum-Chun

    2007-09-01

    Superoxide radical scavenging activity and DPPH radical scavenging activity were assessed in order to evaluate the antioxidant effect of the Sorbus commixta Hedl. extract (SCoE). SCoE was also treated with several carbohydrate-hydrolytic enzymes that significantly increased the total phenol and flavonoid composition of SCoE. The enzymatically treated SCoE was then assessed for antioxidative activity. The most efficient radical scavenging activity was observed when SCoE was treated with -glucanase. The radical scavenging activity of beta-glucanase-treated SCoE (beta-GSCoE) enhanced the viability of human dermal fibroblasts (HDFs) exposed to ultraviolet (UV) light. The intracellular reactive oxygen species (ROS) scavenging activity of beta-GSCoE was assessed using UVB (20 mJ/cm2)-irradiated HDFs. UVB irradiation increased dichlorofluorescein (DCF) fluorescence, which was measured by a 5-(6-)chloromethyl-2',7'- dichlorodihydrofluorescein diacetate (CM-H2DCFDA). DCF-fluorescence was significantly decreased in the beta-GSCoE-containing culture medium, suggesting that beta-GSCoE scavenges free radicals. The protective effect was further verified by assessing the expression of matrix metalloproteinase-1 (MMP-1) in UVA-irradiated HDFs. The treatment of UVA-irradiated HDFs with beta-GSCoE resulted in a dose-dependent decrease in the expression level of MMP-1 protein and mRNA. These results suggest that beta-GSCoE may mitigate the effects of photoaging in skin by reducing UV-induced adverse skin reactions.

  5. First report on isolation of methyl gallate with antioxidant, anti-HIV-1 and HIV-1 enzyme inhibitory activities from a mushroom (Pholiota adiposa).

    Science.gov (United States)

    Wang, Chang Rong; Zhou, Rong; Ng, Tzi Bun; Wong, Jack Ho; Qiao, Wen Tao; Liu, Fang

    2014-03-01

    In this study, a compound with antioxidant and anti-HIV activities designated as HEB was first isolated from the edible mushroom Pholiota adiposa by extraction with ethanol and ethyl acetate. HEB was then purified by high performance liquid chromatography (HPLC) and identified to be methyl gallate (C8H8O5, 184.1 Da) based on data from its mass spectrum (MS) and nuclear magnetic resonance (NMR) spectrum. HEB displayed strong antioxidant potency in inhibiting, at 1.36 mM concentration, erythrocyte hemolysis and scavenging DPPH radicals and superoxide anion (O2(-)) by 82.4%, 85.6% and 71.4%, respectively. Besides exhibiting a low cytotoxicity, compound HEB demonstrated significant anti-HIV activity in that it inhibited HIV-1 replication in TZM-BL cells infected by pseudovirus with an IC50 value of 11.9 μM. Further study disclosed that HEB inhibited the viral entry process and activities of key enzymes essential for the HIV-1 life cycle. HEB inhibited HIV-1 reverse transcriptase and integrase activities with an IC50 value of 80.1 μM and 228.5 μM, respectively, and at 10 mM concentration inhibited HIV-1 protease activity by 17.1% which was higher than that achieved by the positive control pepstatin A. Interestingly, this study first revealed that H2O2 stimulation not only activated cell oxidative stress responses, but also accelerated HIV-1 long terminal repeat (LTR) promotion in TZM-BL cells, which was significantly reduced by HEB from 18.2% to about 2%. It implied a direct relationship between the antioxidant and anti-HIV activities of the natural active constituent HEB. Nuclear transcription factor kappa B (NF-κB) signal pathways plays an important role in oxidative stress responses. Meanwhile, there is κB target sequence in HIV promoter LTR which is significant for virus replication and gene expression. In this study, Western Blot assay showed that HEB could inhibit the activation of NF-κB signal pathway stimulated by H2O2 in mouse spleen cells through

  6. Anti-Hypertensive Peptides Derived from Caseins: Mechanism of Physiological Action, Production Bioprocesses, and Challenges for Food Applications.

    Science.gov (United States)

    de Oliveira, Mara Rose; Silva, Thaís Jordânia; Barros, Edvaldo; Guimarães, Valéria Monteze; Baracat-Pereira, Maria Cristina; Eller, Monique Renon; Dos Reis Coimbra, Jane Sélia; de Oliveira, Eduardo Basílio

    2018-01-25

    This review is focused on the state-of-art of peptides with inhibitory activity towards angiotensin I-converting enzyme (ACE) - thus, with anti-hypertensive potential - derived from enzymatic hydrolysis of caseins. Firstly, molecular characteristics of caseins relevant to a better understanding of this subject were concisely commented. Next, a brief description of the pathophysiology of hypertension was explained, focusing on the ACE role in regulation of blood pressure in human body. Then, casein-derived peptides with ACE inhibitory capacity were specifically addressed. The main in vitro and in vivo bioassays often reported in literature to assess the anti-hypertensive potential of peptides were presented, illustrated with recently published studies, and discussed in terms of advantages and limitations of both approaches. Characteristics related to amino acid composition and sequence of peptides with high ACE-inhibitory potential were also commented. Process parameters of enzymatic hydrolysis (types and origins of casein substrates, types of enzymes, pH, temperature, and times of reactions) were discussed. Patents dealing with casein-derived anti-hypertensive peptides were examined not only in terms of amino acid sequences, but also regarding their novelty claims in hydrolysis process parameters. Finally, some trends, challenges, and opportunities inferred from this literature analysis were commented, emphasizing the importance of this research topic in food products development.

  7. Enzyme Nanorings

    OpenAIRE

    Chou, Tsui-Fen; So, Christopher; White, Brian R.; Carlson, Jonathan C.T.; Sarikaya, Mehmet; Wagner, Carston

    2008-01-01

    We have demonstrated that nanostructures, and in particular nanorings incorporating a homodimeric enzyme, can be prepared by chemically induced self-assembly of dihydrofolate reductase (DHFR)-histidine triad nucleotide binding 1(Hint1) fusion proteins. The dimensions of the nanorings were found by static light scattering and atomic force microscopy studies to be dependent on the length and composition of the peptide linking the fusion proteins, ranging in size from 10 to 70 nm in diameter and...

  8. Peptides derived from the copper-binding region of lysyl oxidase exhibit antiangiogeneic properties by inhibiting enzyme activity: an in vitro study.

    Science.gov (United States)

    Mohankumar, Arun; Renganathan, Bhuvanasundar; Karunakaran, Coral; Chidambaram, Subbulakshmi; Konerirajapuram Natarajan, Sulochana

    2014-11-01

    Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  9. Characterization of the peptide profile in Spanish Teruel, Italian Parma and Belgian dry-cured hams and its potential bioactivity.

    Science.gov (United States)

    Mora, Leticia; Escudero, Elizabeth; Toldrá, Fidel

    2016-11-01

    Dry-cured hams are appreciated products in many European countries. One of the most important processes taking place during ham processing and responsible for its unique taste and flavour is the proteolysis of muscle proteins. Muscle peptidases play an important role in breaking down muscle proteins and generating small peptides and free amino acids. It is known that changes in genetics and processing conditions can result in differences in the action of endopeptidases and exopeptidases. In this study, the peptides generated in Spanish Teruel, Italian Parma and Belgian dry-cured hams have been identified and quantified using a label-free methodology to assess main differences in proteolysis between the 3 types of hams. The identification of the peptides resulted in differential peptide sequences according to the type of ham. On the other hand, an aqueous peptide extract fractionated by size-exclusion chromatography was assayed for Angiotensin-Converting Enzyme (ACE) inhibitory and antioxidant activity. Peptide fractions of Teruel ham exhibited 93% ACE inhibition while those from Parma and Belgian hams had ACE inhibitory activity of 70% and 76%, respectively. The investigated peptide fractions exhibited similar values of DPPH scavenging activity whereas an important Fe2+ reducing power was also detected in the same fractions, suggesting the important presence of peptides with antioxidant activity in the three studied types of dry-cured hams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Progress in the preparation of peptide aldehydes via polymer supported IBX oxidation and scavenging by threonyl resin.

    Science.gov (United States)

    Sorg, Gerhard; Thern, Bernd; Mader, Oliver; Rademann, Jörg; Jung, Günther

    2005-03-01

    Peptide aldehydes are of interest due to their inhibitory properties toward numerous classes of proteolytic enzymes such as caspases or the proteasome. A novel access to peptide aldehydes is described using a combination of solid phase peptide synthesis with polymer-assisted solution phase synthesis based on the oxidation of peptide alcohols with a mild and selective polymer-bound IBX derivative. The oxidation is followed by selective purification via scavenging the peptide aldehyde in a capture-release procedure using threonine attached to an aminomethyl resin. Peptide aldehydes are obtained in excellent purity and satisfying yield. The optical integrity of the C-terminal residue is conserved in a high degree. The procedures are compatible with the use of common side-chain protecting groups. The potential for using the method in parallel approaches is very advantageous. A small collection of new and known peptide aldehydes has been tested for inhibitory activity against caspases 1 and 3. Copyright (c) 2004 European Peptide Society and John Wiley & Sons, Ltd.

  11. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides.

    Science.gov (United States)

    Oparin, Peter B; Mineev, Konstantin S; Dunaevsky, Yakov E; Arseniev, Alexander S; Belozersky, Mikhail A; Grishin, Eugene V; Egorov, Tsezi A; Vassilevski, Alexander A

    2012-08-15

    A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg(19). The inhibition constant was determined for BWI-2c against trypsin (1.7×10(-1)0 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.

  12. Met-Lys-bradykinin-Ser-Ser, a peptide produced by the neutrophil from kininogen, is metabolically activated by angiotensin converting enzyme in vascular tissue.

    Science.gov (United States)

    Gera, Lajos; Roy, Caroline; Bawolak, Marie-Thérèse; Bouthillier, Johanne; Adam, Albert; Marceau, François

    2011-11-01

    Bradykinin (BK) is a vasoactive nonapeptide cleaved from circulating kininogens and that is degraded by angiotensin converting enzyme (ACE). It has been reported that the PR3 protease from human neutrophil releases an alternate peptide of 13 amino acids, Met-Lys-BK-Ser-Ser, from high molecular weight kininogen. We have studied vascular actions of this kinin. Its affinity for recombinant B₁ and B₂ receptors is very low, as assessed by the binding competition of [³H]Lys-des-Arg⁹-BK and [³H]BK, respectively, but Met-Lys-BK-Ser-Ser effectively displaced a fraction of [³H]enalaprilat binding to recombinant ACE. Mutant recombinant ACE constructions revealed that affinity gap between BK and Met-Lys-BK-Ser-Ser is larger for the N-terminal catalytic site than for the C-terminal one, based on competition for the substrate Abz-Phe-Arg-Lys(Dnp)-Pro-OH in an enzymatic assay. Met-Lys-BK-Ser-Ser is a low potency stimulant of the rabbit aorta (bioassay for B₁ receptors), but the human isolated umbilical vein, a contractile bioassay for the B₂ receptors, responded to Met-Lys-BK-Ser-Ser more than expected from the radioligand binding assay, this agonist being ∼30-fold less potent than BK in the vein. Venous tissue treatment with the ACE inhibitor enalaprilat reduced the apparent potency of Met-Lys-BK-Ser-Ser by 15-fold, while not affecting that of BK. In the rabbit isolated jugular vein, Met-Lys-BK-Ser-Ser is nearly as potent as BK as a contractile stimulant of endogenous B₂ receptors (EC₅₀ values of 16.3 and 10.5 nM, respectively), but enalaprilat reduced the potency of Met-Lys-BK-Ser-Ser 13-fold while increasing that of BK 5.3-fold. In vascular tissue, ACE assumes a paradoxical activating role for Met-Lys-BK-Ser-Ser. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance.

    Science.gov (United States)

    Bose, Biswajit; Choudhury, Hiranjit; Tandon, Pramod; Kumaria, Suman

    2017-08-01

    Malaxis acuminata D. Don., a small, terrestrial orchid, is endemic to tropical Himalayas at an altitude of 1200-2000m asl. The dried pseudobulbs are important ingredients of century old ayurvedic drug 'Ashtavarga' and a polyherbal immune-booster nutraceutical 'Chyavanprash', known to restore vigour, vitality and youthfulness. Considering tremendous medicinal importance of this threatened orchid species, a detailed study was undertaken for the first time to address its antioxidant potential, secondary metabolite contents and biological activities against skin-aging related enzymes (anti-collagenase, anti-elastase, anti-tyrosinase and xanthine oxidase) and anti-inflammatory activity (5-lipoxygenase and hyaluronidase) in different plant parts of wild and in vitro-derived plants of M. acuminata. Methanolic leaf and stem extracts were further evaluated for in vitro photoprotective activity against UV-B and UV-A radiations. Furthermore, secondary metabolite profiling of various plant parts was carried out by Gas Chromatography Mass Spectrometry (GC-MS). A significantly higher antioxidant potential (DPPH, metal chelating and ABTS(•+)) with a comparative higher yield of secondary metabolites was observed in in vitro-derived plantlets as compared to the wild plants. Among various solvent systems used, methanolic leaf and stem extracts showed promising inhibitory activity against major skin aging-related enzymes and anti-inflammatory potential. Methanolic leaf and stem extracts of both wild and in vitro-derived plants showed promising photoprotective activity against UV-B and UV-A radiations in vitro with comparatively higher sun protection factor (SPF). Furthermore, GC-MS analysis of methanolic extracts of leaves and stems of wild as well as in vitro-derived plantlets revealed presence of many bioactive metabolites such as, dietary fatty acids, α-hydroxy acids, phenolic acids, sterols, amino acids, sugars and glycosides which substantially explain the use of M. acuminata

  14. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein

    Directory of Open Access Journals (Sweden)

    Cheng-Liang Xie

    2014-01-01

    Full Text Available Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50 of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR. The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  15. Flavanol concentrations do not predict dipeptidyl peptidase-IV inhibitory activities of four cocoas with different processing histories.

    Science.gov (United States)

    Ryan, Caroline M; Khoo, Weslie; Stewart, Amanda C; O'Keefe, Sean F; Lambert, Joshua D; Neilson, Andrew P

    2017-02-22

    Cocoa and its constituent bioactives (particularly flavanols) have reported anti-diabetic and anti-obesity activities. One potential mechanism of action is inhibition of dipeptidyl peptidase-IV (DPP4), the enzyme that inactivates incretin hormones such as glucagon-like peptide-1 and gastric inhibitory peptide. The objective of this study was to determine the DPP4 inhibitory activities of cocoas with different processing histories, and identify processing factors and bioactive compounds that predict DPP4 inhibition. IC25 values (μg mL-1) were 4.82 for Diprotin A (positive control), 2135 for fermented bean extract, 1585 for unfermented bean extract, 2871 for unfermented liquor extract, and 1076 for fermented liquor extract This suggests mild inhibitory activity. Surprisingly, protein binding activity, total polyphenol, total flavanol, individual flavanol and complex fermentation/roasting product levels were all positively correlated to IC25 concentrations (greater levels correspond to less potent inhibition). For the representative samples studied, fermentation appeared to improve inhibition. This study suggests that cocoa may possess mild DPP4 inhibitory activity, and that processing steps such as fermentation may actually enhance activity. Furthermore, this activity and the variation between samples were not easily explainable by traditional putative bioactives in cocoa. The compounds driving this activity, and the associated mechanism(s) by which this inhibition occurs, remain to be elucidated.

  16. Enhanced Antimicrobial Activity of AamAP1-Lysine, a Novel Synthetic Peptide Analog Derived from the Scorpion Venom Peptide AamAP1

    Directory of Open Access Journals (Sweden)

    Ammar Almaaytah

    2014-04-01

    Full Text Available There is great interest in the development of antimicrobial peptides as a potentially novel class of antimicrobial agents. Several structural determinants are responsible for the antimicrobial and cytolytic activity of antimicrobial peptides. In our study, a new synthetic peptide analog, AamAP1-Lysine from the naturally occurring scorpion venom antimicrobial peptide AamAP1, was designed by modifying the parent peptide in order to increase the positive charge and optimize other physico-chemical parameters involved in antimicrobial activity. AamAP1-Lysine displayed potent antibacterial activity against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration was in the range of 5 to 15 µM with a 10 fold increase in potency over the parent peptide. The hemolytic and antiproliferative activity of AamAP1-Lysine against eukaryotic mammalian cells was minimal at the concentration range needed to inhibit bacterial growth. The antibacterial mechanism analysis indicated that AamAP1-Lysine is probably inducing bacterial cell death through membrane damage and permeabilization determined by the release of β-galactosidase enzyme from peptide treated E. coli cells. DNA binding studies revealed that AamAP1-Lysine caused complete retardation of DNA migration and could display intracellular activities in addition to the membrane permeabilization mode of action reported earlier. In conclusion, AamAP1-Lysine could prove to be a potential candidate for antimicrobial drug development in future studies.

  17. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays.

    Science.gov (United States)

    Kumada, Yoichi

    2014-11-01

    The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus) Pepsin/Pancreatin Hydrolysates

    Science.gov (United States)

    Montoya-Rodríguez, Alvaro; Milán-Carrillo, Jorge; Reyes-Moreno, Cuauhtémoc; González de Mejía, Elvira

    2015-01-01

    The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH) and extruded amaranth hydrolysates (EAH) and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM) (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da) of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da), 120 min (802 Da) and 180 min (567 Da) in UAH. EAH showed high intensity at 10 min (2034 Da) and 120 min (984, 1295 and 1545 Da). Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases. PMID:25894223

  19. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus Pepsin/Pancreatin Hydrolysates

    Directory of Open Access Journals (Sweden)

    Alvaro Montoya-Rodríguez

    2015-04-01

    Full Text Available The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH and extruded amaranth hydrolysates (EAH and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da, 120 min (802 Da and 180 min (567 Da in UAH. EAH showed high intensity at 10 min (2034 Da and 120 min (984, 1295 and 1545 Da. Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases.

  20. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Naoto, E-mail: nemoto@fms.saitama-u.ac.jp [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Innovation Center for Startups, National Institute of Advanced Industrial Science and Technology, 2-2-2 Marunouchi, Chiyoda-ku, Tokyo 100-0005 (Japan); Janusys Corporation, 508, Saitama Industrial Technology Center, Skip City, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844 (Japan); Tsutsui, Chihiro [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Yamaguchi, Junichi [Innovation Center for Startups, National Institute of Advanced Industrial Science and Technology, 2-2-2 Marunouchi, Chiyoda-ku, Tokyo 100-0005 (Japan); Applied Gene Technology, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Ueno, Shingo [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Machida, Masayuki [Applied Gene Technology, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Kobayashi, Toshikatsu [Innovation Center for Startups, National Institute of Advanced Industrial Science and Technology, 2-2-2 Marunouchi, Chiyoda-ku, Tokyo 100-0005 (Japan); Janusys Corporation, 508, Saitama Industrial Technology Center, Skip City, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844 (Japan); Sakai, Takafumi [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Disulfide-rich peptide aptamer inhibits IL-6-dependent cell proliferation. Black-Right-Pointing-Pointer Disulfide bond of peptide aptamer is essential for its affinity to IL-6R. Black-Right-Pointing-Pointer Inhibitory effect of peptide depends on number and pattern of its disulfide bonds. -- Abstract: Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library by in vitro peptide selection using the evolutionary molecular engineering method 'cDNA display'. In this report, the antagonistic activity of the peptide aptamers were examined by an in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody.

  1. Intervention with Serine Protease Activity with Small Peptides

    DEFF Research Database (Denmark)

    Xu, Peng

    2015-01-01

    Serine proteases perform proteolytic reactions in many physiological and metabolic processes and have been certified as targets for therapeutics. Small peptides can be used as potent antagonists to target serine proteases and intervene with their activities. Urokinase-type plasminogen activator (u...... before, we elucidated the binding and inhibitory mechanism by using multiple techniques, like X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and surface plasmon resonance analysis. By studying the peptide-enzyme interaction, we discovered an unusual inhibitor-protease...... discovered that the mupain-1 scaffold is highly versatile, based on which mupain-1 is potentially able to be retargeted to other serine proteases in the trypsin-like clan. With the scaffold of mupain-1, we rationally designed three inhibitors with high affinity and specificity for another serine protease...

  2. Enzyme-responsive polyion complex (PIC) nanoparticles for the targeted delivery of antimicrobial polymers† †Electronic supplementary information (ESI) available: Peptide synthesis, further details of PIC nanoparticle characterisation and full data from microbiology assays. See DOI: 10.1039/c6py00146g Click here for additional data file.

    Science.gov (United States)

    Insua, Ignacio; Liamas, Evangelos; Zhang, Zhenyu; Peacock, Anna F. A.; Krachler, Anne Marie

    2016-01-01

    Here we present new enzyme-responsive polyion complex (PIC) nanoparticles prepared from antimicrobial poly(ethylene imine) and an anionic enzyme-responsive peptide targeting Pseudomonas aeruginosa's elastase. The synthetic conditions used to prepare these nanomaterials allowed us to optimise particle size and charge, and their stability under physiological conditions. We demonstrate that these enzyme responsive PIC nanoparticles are selectively degraded in the presence of P. aeruginosa elastase without being affected by other endogenous elastases. This enzyme-responsive PIC particle can exert an elastase-specific antimicrobial effect against P. aeruginosa without affecting non-pathogenic strains of these bacteria. These targeted enzyme-responsive PIC nanoparticles constitute a novel platform for the delivery of antimicrobial peptides and polymers, and can be a powerful tool in the current race against antimicrobial resistance. PMID:27148427

  3. Milk-derived angiotensin-I-converting enzymeinhibitory peptides generated by Lactobacillus delbrueckii subsp. lactis CRL 581

    Directory of Open Access Journals (Sweden)

    Villegas Josefina M.

    2014-01-01

    Full Text Available Several strains of Lactobacillus helveticus and Lactobacillus delbrueckii subsp. lactis were evaluated for their ability to release angiotensin-I-converting enzyme (ACE inhibitory peptides from α-casein (α-CN and β-casein (β-CN. Casein peptides resulting from L. delbrueckii subsp. lactis CRL 581-mediated hydrolysis exhibited the highest ACE-inhibitory (ACEI activities, with values of 53 and 40% for α-CN and β-CN, respectively. The casein hydrolysates were fractionated by reversedphase high pressure liquid chromatography and some of the active peptides were identified by mass spectrometry. The fraction with the highest ACEI activity arose from β-CN and contained a mixture of the β-CN f194-206 (QEPVLGPVRGPFP and f198-206 (LGPVRGPFP peptides. Furthermore, the ACEI tripeptide IPP was identified in all β-CN hydrolysates; L. delbrueckii subsp. lactis CRL 581 produced the highest amount of this peptide. The bioactive peptides released by CRL 581 strain may be used in the formulation of functional foods and nutraceuticals, representing a healthier and natural alternative for regulating blood pressure.

  4. [Development of an antigen 'sandwich' enzyme immunoassay for the detection of antibodies against HIV-2 by using a biotinylated synthetic peptide of gp36 protein].

    Science.gov (United States)

    Delahanty-Fernández, Aurora; Bequer-Ariza, Dunia Clara; Hernández-Marín, Milenen; Zulueta-Rodríguez, Orlando; Pozo-Peña, Lilliam; Hernández-Spengler, Idialis; Ramos-Martínez, Grisell; Valdespino-Díaz, Marcos Antonio; Ventura-Paz, Julio

    2015-01-01

    Among the several existing methods for the detection of antibodies to HIV, the 'sandwich' ELISA is currently the most used. This study aims to assess a biotinylated monomeric synthetic peptide of the glycoprotein trans-membrane gp36 from HIV-2, in a sandwich assay, for the detection of antibodies against this HIV-2 protein. To perform the assay, plates coated with recombinant protein gp36 at 0.5μg/mL and synthetic peptide gp36(5) at 1μg/mL were used. The concentration of the biotinylated synthetic peptide (gp36(5)-B) used was 0.1μg/mL prepared with a Tris-BSA-NaCl buffer solution and the Streptavidin- Alkaline Phosphatase conjugate diluted 1:30000 prepared with a PBS-Sucrose-BSA solution. Positive serum samples to antibodies against HIV-1 and HIV-2 viruses (88 and 34, respectively) were tested, with 483 negative samples from blood donors and 96 serum samples to assess the analytical specificity. All the samples were tested using the UMELISA HIV 1+2 RECOMBINANT assay, and all positives were confirmed using a DAHIV-BLOT assay. Thirty four samples with antibodies against HIV-2 were assessed as positive for both coating variants. The highest specificity was obtained with the variant using the synthetic peptide gp36(5) in its coating. The antigen 'sandwich' assay developed by using gp36(5)-B enables the detection of antibodies against gp36 protein of HIV-2. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  5. Development of new peptide synthetic method of enzyme using the extraction reactivity; Chushutsu hanno wo mochiita shiki pepuchido koso goseiho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Makoto [Oita University, Oita (Japan)

    1999-03-05

    Recently, taste and bioactivation of large number of oligopeptide become clear, and the development of the efficient synthetic method becomes the urgency. In the production process by conventional enzyme reaction which combined the crystallization, because the solubility of the product to the water which is reaction solvent is low, the yield remained at about 60%, and the problem of reaction inhibition of the product by the crystal had also been indicated. In the enzyme synthesis of the aspartame in which he is the representative oligopeptide, it aimed at the establishment of the new synthesis method which can improve yield and reaction rate, while the segregation enzyme was continuously utilized. In this synthetic method, supply of organic solvent which dissolved the substrate, extraction of the substrate from organic solvent to water phase, synthesis reaction by the segregation enzyme in water phase, extraction of the aspartame which is a product from water phase to organic solvent progress, and they continuously progress by one complete mixing reactor. The process which controlled these speeds and yields was quantitatively analyzed, and material balance style considering substrate, enzyme and mass transfer of the product and enzyme reaction speed was deduced. The optimum operating condition for improving yield and productivity of the purpose product using this solution was examined, and optimum supply concentration and agitation speed of aspartic acid which was a substrate were started, and the optimum operating condition which realizes the improvement in high yield and productivity over 90% of the aspartame was clarified. Like this, it is that this research adopts features of liquid Citrus nobilis two-phase partition for the enzyme synthesis of the aspartame, and it is considered that there is a value, because it is the creative research which verified that the productivity can be greatly improved by the utilization of the chemical-engineering technique, and

  6. Bioactive peptides identified in thornback ray skin's gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens.

    Science.gov (United States)

    Lassoued, Imen; Mora, Leticia; Barkia, Ahmed; Aristoy, M-Concepción; Nasri, Moncef; Toldrá, Fidel

    2015-10-14

    Thornback ray skin gelatin has been hydrolyzed with two different proteases in order to obtain peptides with ACE inhibitory and antioxidant activity. Hydrolysates with protease from Bacillus subtilis A26 (TRGH-A26) displayed ACE inhibitory activity with an IC50 value of 0.94 μg/μL whereas Neutrase® hydrolysate from Bacillus amyloliquefaciens (TRGH-Neutrase) showed an IC50 value of 2.07 μg/μL. Regarding antioxidant activity, IC50 values of 1.98 and 21.2 μg/μL in TRGH-A26 and TRGH-Neutrase, respectively, were obtained using the DPPH radical-scavenging assay. The most active fractions identified by size-exclusion chromatography were further purified by RP-HPLC and analysed using nanoESI-LC-MS/MS to identify the sequence of the peptides. APGAP was the most active peptide inTRGH-A26 for ACE inhibitory activity with an IC50 value of 170 μM, whereas GIPGAP showed the best ACE inhibitory activity in TRGH-Neutrase sample with an IC50 value of 27.9 μM. The highest antioxidant activity was identified in peptide AVGAT, showing a 33% of activity at 3mg/mL using the DPPH radical-scavenging assay. The obtained results proved the potential of thornback ray skin gelatin hydrolysates as a source of bioactive peptides. This study describes a peptidomic approach for the identification of ACE-inhibitory and antioxidant peptides generated from thornback ray gelatin (Raja clavata) hydrolysates from Bacillus subtilis A26 and Bacillus amyloliquefaciens Neutrase® enzymes and expose the potential of thornback ray gelatin hydrolysate as a source of bioactive peptides. In this sense, the decrease of systolic blood pressure is one of the main measurements considered in public health for the treatment of cardiovascular diseases, stroke and even end-stage renal disease. Traditionally, synthetic drugs such as captopril and enalapril have been used as ACE inhibitors despite their secondary effects, but the finding of new sources for the generation of natural bioactive peptides such as

  7. A phage display delected 7-mer peptide inhibitor of the tannerella forsythia metalloprotease-like enzyme karilysin can be truncated to ser-trp-phe-pro

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Sørensen, Grete; Ksiazek, Miroslaw

    2012-01-01

    Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a l...

  8. Serodiagnosis of Leishmania donovani infections: assessment of enzyme-linked immunosorbent assays using recombinant L. donovani gene B protein (GBP) and a peptide sequence of L. donovani GBP

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Moller, T

    1999-01-01

    The repetitive sequence of Leishmania major gene B protein (GBP) has previously been shown to be a useful tool in the diagnosis of cutaneous leishmaniasis (CL). Here, we have assessed enzyme-linked immunosorbent assays (ELISAs) using recombinant L. donovani GBP (rGBP) and a peptide sequence of L....... donovani GBP (GBPP) in the diagnosis of L. donovani infections in Sudan. The sensitivity of the rGBP ELISA in diagnosing visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL) was 92% and 93%, respectively. In contrast, the sensitivity of the GBPP ELISA was 55% for VL and 63% for PKDL...... for malaria but free of leishmaniasis was negative in both assays....

  9. Insight into the mechanism of chemical modification of antibacterial agents by antibiotic resistance enzyme O-phosphotransferase-IIIA.

    Science.gov (United States)

    Power, Blake Hollett; Smith, Nathan; Downer, Brandon; Alisaraie, Laleh

    2017-01-01

    In the present work, the mechanism of resistance to aminoglycoside antibiotics was investigated. We examined the conformational changes of the O-phosphotransferase-IIIa enzyme, complexed with the antibiotics using MD simulations. The inhibitory effects of a group of antibacterial peptides against the enzyme were also examined, among which CP10A showed the highest affinity and the results correlated with the measured IC50 values. The regioselectivity of the phosphorylation reaction was shown to be in favor of the OH at the 5″ position versus the 3' of the antibiotic. The binding mode of CP10A was evaluated by means of MD simulation that resulted in recognizing its Trp8 and Arg13 residues binding near to where residues at the 3' and 5″ positions of the antibiotic would bind; thus, they are essential for the peptide inhibitory effect. The major open, semi-open, and closed conformations of the binding sites were identified throughout the MD trajectory, which enable the enzyme to regulate the influx of molecules into these sites. Based on the enzyme crystal structure, it was assumed that the 'antibiotic loop' of the enzyme is stable in its liganded mode; however, MD results revealed that the loop is highly flexible in both liganded and ligand-free modes. © 2016 John Wiley & Sons A/S.

  10. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...

  11. Inhibition of angiotensin I converting enzyme by subtilisin NAT (nattokinase) in natto, a Japanese traditional fermented food.

    Science.gov (United States)

    Murakami, Keiko; Yamanaka, Naoki; Ohnishi, Katsunori; Fukayama, Minoru; Yoshino, Masataka

    2012-06-01

    Angiotensin I converting enzyme (ACE) was inhibited by the culture medium of Bacillus subtilis subsp. natto, which ferments boiled soy beans to natto, a Japanese traditional food. Subtilisin NAT (nattokinase) produced by B. subtilis also inhibited ACE, and the inhibition was markedly stimulated by heat treatment of subtilisin at 120 °C for 15 min. Inhibition of ACE by subtilisin was of a mixed type: the decrease in V(max) and the increase in K(m) value. SDS-polyacrylamide gel electrophoresis showed that heat treatment of subtilisin caused inactivation with fragmentation of the enzyme protein into small peptides. The inhibitory action of subtilisin was not due to an enzymatic action of protease, but may be ascribed to the potent ACE-inhibitory peptides such as LY and FY, amino acid sequences in subtilisin. HPLC-MS analysis of heat-inactivated subtilisin confirmed that LY and FY were liberated by fragmentation of the enzyme. Inhibition of ACE by subtilisin and its degradation peptides such as LY and FY may participate in the suppression of blood pressure by ingestion of natto.

  12. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    National Research Council Canada - National Science Library

    Abdullahi, A; Hamzah, RU; Jigam, AA; Yahya, A; Kabiru, AY; Muhammad, H; Sakpe, S; Adefolalu, FS; Isah, MC; Kolo, MZ

    2012-01-01

    ...: Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation...

  13. Milk derived bioactive peptides and their impact on human health – A review

    Directory of Open Access Journals (Sweden)

    D.P. Mohanty

    2016-09-01

    Full Text Available Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.

  14. Milk derived bioactive peptides and their impact on human health - A review.

    Science.gov (United States)

    Mohanty, D P; Mohapatra, S; Misra, S; Sahu, P S

    2016-09-01

    Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.

  15. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Lakshmanane, E-mail: p.lakshmanane@imb.uq.edu.au; Heras, Begoña; Duprez, Wilko; Walden, Patricia; Halili, Maria; Kurth, Fabian; Fairlie, David P.; Martin, Jennifer L., E-mail: p.lakshmanane@imb.uq.edu.au [University of Queensland, St Lucia, QLD 4067 (Australia)

    2013-10-01

    The gene product of M. tuberculosis Rv2969c is shown to be a disulfide oxidase enzyme that has a canonical DsbA-like fold with novel structural and functional characteristics. The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited

  16. The E6AP binding pocket of the HPV16 E6 oncoprotein provides a docking site for a small inhibitory peptide unrelated to E6AP, indicating druggability of E6.

    Directory of Open Access Journals (Sweden)

    Katia Zanier

    Full Text Available The HPV E6 oncoprotein maintains the malignant phenotype of HPV-positive cancer cells and represents an attractive therapeutic target. E6 forms a complex with the cellular E6AP ubiquitin ligase, ultimately leading to p53 degradation. The recently elucidated x-ray structure of a HPV16 E6/E6AP complex showed that HPV16 E6 forms a distinct binding pocket for E6AP. This discovery raises the question whether the E6AP binding pocket is druggable, i. e. whether it provides a docking site for functional E6 inhibitors. To address these issues, we performed a detailed analysis of the HPV16 E6 interactions with two small peptides: (i E6APpep, corresponding to the E6 binding domain of E6AP, and (ii pep11**, a peptide that binds to HPV16 E6 and, in contrast to E6APpep, induces apoptosis, specifically in HPV16-positive cancer cells. Surface plasmon resonance, NMR chemical shift perturbation, and mammalian two-hybrid analyses coupled to mutagenesis indicate that E6APpep contacts HPV16 E6 amino acid residues within the E6AP pocket, both in vitro and intracellularly. Many of these amino acids were also important for binding to pep11**, suggesting that the binding sites for the two peptides on HPV16 E6 overlap. Yet, few E6 amino acids were differentially involved which may contribute to the higher binding affinity of pep11**. Data from the HPV16 E6/pep11** interaction allowed the rational design of single amino acid exchanges in HPV18 and HPV31 E6 that enabled their binding to pep11**. Taken together, these results suggest that E6 molecular surfaces mediating E6APpep binding can also accommodate pro-apoptotic peptides that belong to different sequence families. As proof of concept, this study provides the first experimental evidence that the E6AP binding pocket is druggable, opening new possibilities for rational, structure-based drug design.

  17. Effect of a cheese rich in angiotensin-converting enzyme-inhibiting peptides (Gamalost®) and a Gouda-type cheese on blood pressure: results of a randomised trial

    Science.gov (United States)

    Nilsen, Rita; Pripp, Are H.; Høstmark, Arne T.; Haug, Anna; Skeie, Siv

    2016-01-01

    Background High blood pressure (BP) is the leading risk factor for global disease burden, contributing to 7% of global disability adjusted life years. Angiotensin converting enzyme (ACE)-inhibiting bioactive peptides have the potential to reduce BP in humans. These peptides have been identified in many dairy products and have been associated with significant reductions in BP. Objective The objective of this trial was to examine whether a cheese rich in ACE-inhibiting peptides (Gamalost®), or a standard Gouda-type cheese could lower BP. Design A total of 153 healthy participants were randomised to one of three parallel arms: Gamalost® (n=53, 50 g/day for 8 weeks), Gouda-type cheese (n=50, 80 g/day for 8 weeks), and control (n=50). BP and anthropometric measurements were taken at the baseline and at the end, with an additional BP measurement midway. Based on BP at baseline, participants were categorised as having optimal BP (140/>90 mmHg). Questionnaires about lifestyle, health, and dietary habits were completed at baseline, midway and end. Results In total, 148 participants (mean age 43, 52% female) completed the intervention. There were no differences among the three groups in relevant baseline characteristics. BP was reduced in the entire study population, but the cheese groups did not differ from control. However, in a subgroup of participants with slightly elevated BP, BP at 4 weeks of intervention seemed to be borderline significantly more reduced in the Gamalost® group compared with the control group (Dunnett test: diastolic BP −3.5 mmHg, 95% confidence interval (CI) −7.3, 0.4, systolic BP: −4.3 mmHg, 95% CI −9.8, 1.1). Conclusion An intention-to-treat analysis of the data showed no cheese effect upon BP compared to control, but Gamalost® seemed to have a small, non-significant lowering effect on diastolic BP after 4 weeks in people with a normal-high BP. PMID:27495734

  18. Effect of a cheese rich in angiotensin-converting enzyme-inhibiting peptides (Gamalost® and a Gouda-type cheese on blood pressure: results of a randomised trial

    Directory of Open Access Journals (Sweden)

    Rita Nilsen

    2016-08-01

    Full Text Available Background: High blood pressure (BP is the leading risk factor for global disease burden, contributing to 7% of global disability adjusted life years. Angiotensin converting enzyme (ACE-inhibiting bioactive peptides have the potential to reduce BP in humans. These peptides have been identified in many dairy products and have been associated with significant reductions in BP. Objective: The objective of this trial was to examine whether a cheese rich in ACE-inhibiting peptides (Gamalost®, or a standard Gouda-type cheese could lower BP. Design: A total of 153 healthy participants were randomised to one of three parallel arms: Gamalost® (n=53, 50 g/day for 8 weeks, Gouda-type cheese (n=50, 80 g/day for 8 weeks, and control (n=50. BP and anthropometric measurements were taken at the baseline and at the end, with an additional BP measurement midway. Based on BP at baseline, participants were categorised as having optimal BP (140/>90 mmHg. Questionnaires about lifestyle, health, and dietary habits were completed at baseline, midway and end. Results: In total, 148 participants (mean age 43, 52% female completed the intervention. There were no differences among the three groups in relevant baseline characteristics. BP was reduced in the entire study population, but the cheese groups did not differ from control. However, in a subgroup of participants with slightly elevated BP, BP at 4 weeks of intervention seemed to be borderline significantly more reduced in the Gamalost® group compared with the control group (Dunnett test: diastolic BP −3.5 mmHg, 95% confidence interval (CI −7.3, 0.4, systolic BP: −4.3 mmHg, 95% CI −9.8, 1.1. Conclusion: An intention-to-treat analysis of the data showed no cheese effect upon BP compared to control, but Gamalost® seemed to have a small, non-significant lowering effect on diastolic BP after 4 weeks in people with a normal-high BP.

  19. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin.

    Science.gov (United States)

    Do, Nhung; Weindl, Günther; Grohmann, Lisa; Salwiczek, Mario; Koksch, Beate; Korting, Hans Christian; Schäfer-Korting, Monika

    2014-05-01

    Cationic antimicrobial peptides are ancient natural broad-spectrum antibiotics, and several compounds also exhibit anticancer activity. However, most applications pertain to bacterial infections, and treatment for skin cancer is less frequently considered. The cytotoxicity of melittin, cecropin A, protegrin-1 and histatin 5 against squamous skin cancer cell lines and normal human keratinocytes was evaluated and compared to established drugs. The results show that melittin clearly outperforms 5-fluorouracil regarding antitumor activity. Importantly, combined melittin and 5-fluorouracil enhanced cytotoxic effects on cancer cells and reduced toxicity on normal keratinocytes. Additionally, minimum inhibitory concentrations indicate that melittin also shows superior activity against clinical and laboratory strains of Candida albicans compared to amphotericin B. To evaluate its potential for topical applications, human skin penetration of melittin was investigated ex vivo and compared to two non-toxic cell-penetrating peptides (CPPs), low molecular weight protamine (LMWP) and penetratin. The stratum corneum prevents penetration into viable epidermis over 6 h; however, the peptides gain access to the viable skin after 24 h. Inhibition of digestive enzymes during skin penetration significantly enhances the availability of intact peptide. In conclusion, melittin may represent an innovative agent for non-melanoma skin cancer and infectious skin diseases. In order to develop a drug candidate, skin absorption and proteolytic digestion by skin enzymes need to be addressed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-β 1-42 peptide in human plasma with utility for studies of Alzheimer's disease therapeutics.

    Science.gov (United States)

    Song, Linan; Lachno, D Richard; Hanlon, David; Shepro, Adam; Jeromin, Andreas; Gemani, Dipika; Talbot, Jayne A; Racke, Margaret M; Dage, Jeffrey L; Dean, Robert A

    2016-12-15

    Amyloid-β 1-42 peptide (Aβ1-42) is associated with plaque formation in the brain of patients with Alzheimer's disease (AD). Pharmacodynamic studies of AD therapeutics that lower the concentrations of Aβ1-42 in peripheral blood require highly sensitive assays for its measurement. A digital enzyme-linked immunosorbent assay (ELISA) using single molecule array (Simoa) technology has been developed that provides improved sensitivity compared with conventional ELISA methods using the same antibody reagents. A sensitive digital ELISA for measurement of Aβ1-42 using antibodies 3D6 and 21F12 was developed. Assay performance was evaluated by repeated testing of pooled human plasma and buffer diluent quality control samples to determine relative accuracy, intra- and inter-assay precision, limit of detection (LOD), lower limit of quantification (LLOQ), dilutional linearity, and spike recovery. The optimized assay was used to quantify Aβ1-42 in clinical samples from patients treated with the β-site amyloid precursor protein cleaving enzyme 1 inhibitor LY2886721. The prototype assay measured Aβ1-42 with an LOD of 0.3 pg/ml and an LLOQ of 2.8 pg/ml in plasma, calibrated using an Aβ1-42 peptide standard from Fujirebio. Assay precision was acceptable with intra- and inter-assay coefficients of variation both being ≤10%. Dilutional linearity was demonstrated in sample diluent and immunodepleted human plasma. Analyte spike recovery ranged from 51% to 93% with a mean of 80%. This assay was able to quantify Aβ1-42 in all of the 84 clinical samples tested. A rapid reduction in levels of Aβ1-42 was detected within 1 h after drug treatment, and a dose-dependent decrease of Aβ1-42 levels was also observed over the time course of sample collection. This digital ELISA has potential utility in clinical applications for quantification of Aβ1-42 in plasma where high sensitivity and precision are required.

  1. Egg white-derived peptides prevent cardiovascular disorders induced by mercury in rats: Role of angiotensin-converting enzyme (ACE) and NADPH oxidase.

    Science.gov (United States)

    Rizzetti, Danize Aparecida; Martín, Ángela; Corrales, Patricia; Fernandez, Francisca; Simões, Maylla Ronacher; Peçanha, Franck Maciel; Vassallo, Dalton Valentim; Miguel, Marta; Wiggers, Giulia Alessandra

    2017-11-05

    The study aimed to investigate the effects of egg white hydrolysate (EWH) on vascular disorders induced by mercury (Hg). For this, male Wistar rats were treated for 60days: Untreated (saline, i.m.); Mercury (HgCl2, i.m., 1st dose 4.6μg/kg, subsequent doses 0.07μg/kg/day); Hydrolysate (EWH, gavage, 1g/kg/day); Hydrolysate-Mercury. Systolic (SBP) and diastolic (DBP) blood pressure measurement and vascular reactivity experiments in aorta were performed. We analyzed endothelial dependent and independent vasodilator responses and vasoconstrictor response to phenylephrine (Phe) in absence and presence of endothelium, a NOS inhibitor, a NADPH oxidase inhibitor, the superoxide dismutase, a non-selective COX inhibitor, a selective COX-2 inhibitor, an AT-1 receptors blocker. In situ superoxide anion production, SOD-1, NOX-4, p22phox, COX-2 and AT-1 mRNA levels and NOX-1 protein expression were performed in aorta while the determination of angiotensin converting enzyme (ACE) activity was measured in plasma. As results, EWH prevented the increase in SBP and Phe responses and the endothelial dysfunction elicited by Hg, which was related to decreased ACE activity and NOX activation by EWH and, subsequently, alleviated ROS production and improved NO bioavailability in aorta. In conclusion, EWH could be considered as alternative or complementary treatment tools for Hg-induced cardiovascular damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides.

    Science.gov (United States)

    Pokora, M; Zambrowicz, A; Dąbrowska, A; Eckert, E; Setner, B; Szołtysik, M; Szewczuk, Z; Zabłocka, A; Polanowski, A; Trziszka, T; Chrzanowska, J

    2014-05-15

    The aim of this study was to (i) examine how enzymatic hydrolysis with a non-commercially available proteinase of fig-leaf gourd fruit (Cucurbita ficifolia) increased the use value of egg white protein preparations, generated as byproducts in the industrial process of lysozyme and cystatin isolation from egg white, and (ii) evaluate the inhibition of angiotensin I-converting enzyme (ACE) by the obtained hydrolysates. Purification procedures including membrane filtration, gel filtration chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) led to the production of several peptide fractions. Two novel ovalbumin-derived tetrapeptides: SWVE (f 148-151) and DILN (f 86-89) with ACE inhibitory activity were obtained. Study of their inhibitory kinetics revealed a non-competitive binding mode, with an IC50 value against ACE of 33.88 and 73.44 μg for SWVE and DILN, respectively. Synthetic peptides which were designed on the basis of peptide SWVE were examined. A tripeptide sequence of SWV revealed the strongest ACE-inhibitory activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. [Peptides: a new class of anticancer drugs].

    Science.gov (United States)

    Smolarczyk, Ryszard; Cichoń, Tomasz; Szala, Stanisław

    2009-07-22

    Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  4. Peptides: A new class of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Ryszard Smolarczyk

    2009-07-01

    Full Text Available Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  5. Inhibitory effect of a novel peptide, H-RN, on keratitis induced by LPS or poly(I:C) in vitro and in vivo via suppressing NF-κB and MAPK activation.

    Science.gov (United States)

    Zhu, Shaopin; Xu, Xun; Wang, Lili; Su, Li; Gu, Qing; Wei, Fang; Liu, Kun

    2017-01-26

    Keratitis is a common cause of blindness. Current anti-inflammatory drugs used in keratitis have profound side effects. Small peptides derived from endogenous proteins potentially display both desired efficiency and safety. We identified an 11-amino-acid peptide, H-RN, from hepatocyte growth factor (HGF), an endogenous protein with anti-inflammatory properties. We evaluated the effects of H-RN in keratitis in vitro and in vivo. In vitro, corneal fibroblasts were stimulated with LPS or poly(I:C), surrogates for bacteria and viruses. Inflammatory cytokines, intercellular cell adhesion molecule-1 (ICAM-1), translocation of NF-κB p65, activation of IκBα, NF-κB, and MAPKs were detected. In vivo, keratitis in rats was induced by LPS. Clinical, histological observation, and quantification of cytokines in the cornea were conducted. H-RN safety was measured by cell viability, clinical, histological, and microstructural observations. H-RN inhibited IL-6, monocyte chemotactic protein-1(MCP-1), Interferon- γ(IFN-γ), and ICAM-1 expression triggered by LPS or poly(I:C), alleviated the clinical manifestation and reduced the clinical score in keratitis in vivo. The histological disorder and proinflammatory cytokines of the cornea were also reduced. The translocation of NF-κB and phosphorylation of IκBα, NF-κB, p38, JNK, and ERK were significantly inhibited by H-RN. No sign of toxicity was observed. H-RN effectively attenuated keratitis in vivo and in vitro induced by LPS or poly(I:C) through blocking NF-κB and MAPK signaling pathways. It may be a promising and safe agent in treating keratitis.

  6. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats.

    Science.gov (United States)

    Cyr, Nicole E; Steger, Jennifer S; Toorie, Anika M; Yang, Jonathan Z; Stuart, Ronald; Nillni, Eduardo A

    2014-07-01

    In the periphery, the nutrient-sensing enzyme Sirtuin 1 (silent mating type information regulation 2 homolog 1 [Sirt1]) reduces body weight in diet-induced obese (DIO) rodents. However, the role of Sirt1 in the brain, particularly the hypothalamus, in body weight and energy balance regulation is debated. Among the first studies to reveal that central Sirt1 regulates body weight came from experiments in our laboratory using Sprague Dawley rats. In that study, central inhibition of Sirt1 decreased body weight and food intake as a result of a Forkhead box protein O1 (FoxO1)-mediated increase in the anorexigenic proopiomelanocortin (POMC) and decrease in the orexigenic Agouti-related peptide in the hypothalamic arcuate nucleus. Here, we demonstrate that central inhibition of Sirt1 in DIO decreased body weight and increased energy expenditure at higher levels as compared with the lean counterpart. Brain Sirt1 inhibition in DIO increased acetylated FoxO1, which, in turn, increased phosphorylated FoxO1 via improved insulin/pAKT signaling. Elevated acetylated FoxO1 and phosphorylated FoxO1 increased POMC along with the α-MSH maturation enzyme carboxypeptidase E, which resulted in more of the bioactive POMC product α-MSH released into the paraventricular nucleus. Increased in α-MSH led to augmented TRH levels and circulating T3 levels (thyroid hormone). These results indicate that inhibiting hypothalamic Sirt1 in DIO enhances the activity of the hypothalamic-pituitary-thyroid axis, which stimulates energy expenditure. Because we show that blocking central Sirt1 causes physiological changes that promote a negative energy balance in an obese individual, our results support brain Sirt1 as a significant target for weight loss therapeutics.

  7. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats.

    Science.gov (United States)

    Cyr, Nicole E; Steger, Jennifer S; Toorie, Anika M; Yang, Jonathan Z; Stuart, Ronald; Nillni, Eduardo A

    2015-03-01

    In the periphery, the nutrient-sensing enzyme Sirtuin 1 (silent mating type information regulation 2 homolog 1 [Sirt1]) reduces body weight in diet-induced obese (DIO) rodents. However, the role of hypothalamic Sirt1 in body weight and energy balance regulation is debated. The first studies to reveal that central Sirt1 regulates body weight came from experiments in our laboratory using Sprague-Dawley rats. Central inhibition of Sirt1 decreased body weight and food intake as a result of a forkhead box protein O1 (FoxO1)-mediated increase in the anorexigenic proopiomelanocortin (POMC) and decrease in the orexigenic Agouti-related peptide in the hypothalamic arcuate nucleus. Here, we demonstrate that central inhibition of Sirt1 in DIO decreased body weight and increased energy expenditure at higher levels as compared with the lean counterpart. Brain Sirt1 inhibition in DIO increased acetylated FoxO1, which in turn increased phosphorylated FoxO1 via improved insulin/phosphorylated AKT signaling. Elevated acetylated FoxO1 and phosphorylated FoxO1 increased POMC along with the α-melanocyte-stimulating hormone (α-MSH) maturation enzyme carboxypeptidase E, which resulted in more of the bioactive POMC product α-MSH released into the paraventricular nucleus. Increased in α-MSH led to augmented TRH levels and circulating T3 levels (triiodothyronine, thyroid hormone). These results indicate that inhibiting hypothalamic Sirt1 in DIO enhances the activity of the hypothalamic-pituitary-thyroid axis, which stimulates energy expenditure. Because we show that blocking central Sirt1 causes physiological changes that promote a negative energy balance in an obese individual, our results support brain Sirt1 as a significant target for weight loss therapeutics.

  8. Regulation of Neuropeptide Processing Enzymes by Catecholamines in Endocrine Cells

    Science.gov (United States)

    Helwig, Michael; Vivoli, Mirella; Fricker, Lloyd D.

    2011-01-01

    Treatment of cultured bovine adrenal chromaffin cells with the catecholamine transport blocker reserpine was shown previously to increase enkephalin levels severalfold. To explore the biochemical mechanism of this effect, we examined the effect of reserpine treatment on the activities of three different peptide precursor processing enzymes: carboxypeptidase E (CPE) and the prohormone convertases (PCs) PC1/3 and PC2. Reserpine treatment increased both CPE and PC activity in extracts of cultured chromaffin cells; total protein levels were unaltered for any enzyme. Further analysis showed that the increase in CPE activity was due to an elevated Vmax, with no change in the Km for substrate hydrolysis or the levels of CPE mRNA. Reserpine activation of endogenous processing enzymes was also observed in extracts prepared from PC12 cells stably expressing PC1/3 or PC2. In vitro experiments using purified enzymes showed that catecholamines inhibited CPE, PC1/3, and PC2, with dopamine quinone the most potent inhibitor (IC50 values of ∼50–500 μM); dopamine, norepinephrine, and epinephrine exhibited inhibition in the micromolar range. The inhibition of purified CPE with catecholamines was time-dependent and, for dopamine quinone, dilution-independent, suggesting covalent modification of the protein by the catecholamine. Because the catecholamine concentrations found to be inhibitory to PC1/3, PC2, and CPE are well within the physiological range found in chromaffin granules, we conclude that catecholaminergic transmitter systems have the potential to exert considerable dynamic influence over peptidergic transmitter synthesis by altering the activity of peptide processing enzymes. PMID:21540292

  9. Synthesis, biological evaluation and docking of novel bisamidinohydrazones as NON-peptide inhibitors of furin

    Directory of Open Access Journals (Sweden)

    V. K. Kibirev

    2015-02-01

    Full Text Available A series of novel non-peptidic furin inhibitors with values of inhibitory constants (Ki in the range of 0.74-1.54 μM was obtained by interactions of aminoguanidine hydrocarbonate with three diaryldicarbaldehydes. Correspondingly p-hydroquinone, piperazine and adipic acid were used as linkers between their benzene moieties. Docking studies of these new inhibitors into recently published 3D-structure of human furin (PDB code 4OMC showed that they were able to interact with subsites S1 and S4 of the enzyme. The overall arrangement of bisamidinohydrazones into furin active site was similar to the position of the ligand co-crystallized with a protease. Observations obtained with molecular modeling allowed further guidance into chemical modifications of the synthesized inhibitors which improve their inhibitory activity.

  10. Significant inhibitory impact of dibenzyl trisulfide and extracts of Petiveria alliacea on the activities of major drug-metabolizing enzymes in vitro: An assessment of the potential for medicinal plant-drug interactions.

    Science.gov (United States)

    Murray, J; Picking, D; Lamm, A; McKenzie, J; Hartley, S; Watson, C; Williams, L; Lowe, H; Delgoda, R

    2016-06-01

    Dibenzyl trisulfide (DTS) is the major active ingredient expressed in Petiveria alliacea L., a shrub widely used for a range of conditions, such as, arthritis, asthma and cancer. Given its use alone and concomitantly with prescription medicines, we undertook to investigate its impact on the activities of important drug metabolizing enzymes, the cytochromes P450 (CYP), a key family of enzymes involved in many adverse drug reactions. DTS and seven standardized extracts from the plant were assessed for their impact on the activities of CYPs 1A2, 2C19, 2C9, 2D6 and 3A4 on a fluorometric assay. DTS revealed significant impact against the activities of CYPs 1A2, 2C19 and 3A4 with IC50 values of 1.9, 4.0 and 3.2μM, respectively, which are equivalent to known standard inhibitors of these enzymes (furafylline, and tranylcypromine), and the most potent interaction with CYP1A2 displayed irreversible enzyme kinetics. The root extract, drawn with 96% ethanol (containing 2.4% DTS), displayed IC50 values of 5.6, 3.9 and 4.2μg/mL respectively, against the same isoforms, CYPs 1A2, 2C19 and 3A4. These investigations identify DTS as a valuable CYP inhibitor and P. alliacea as a candidate plant worthy of clinical trials to confirm the conclusions that extracts yielding high DTS may lead to clinically relevant drug interactions, whilst extracts yielding low levels of DTS, such as aqueous extracts, are unlikely to cause adverse herb-drug interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of temperature on the stability of various peptidases during peptide-enriched soy sauce fermentation.

    Science.gov (United States)

    Nakahara, Takeharu; Yamaguchi, Hitomi; Uchida, Riichiro

    2012-03-01

    We previously developed a peptide-enriched soy sauce-like seasoning called Fermented Soybean Seasoning (FSS) with high-temperature fermentation, and we have reported the antihypertensive effects of FSS. Seryl-tyrosine (Ser-Tyr) and glycyl-tyrosine (Gly-Tyr) were identified from FSS as active constituents in the antihypertensive effects. They were found to be particularly enriched in FSS; more so than in regular soy sauce. In the present study, we clarified one of the mechanisms underlying the accumulation of these bioactive peptides during high temperature soy sauce brewing. Crude enzyme extracts were prepared from model soy sauce mash (moromi) fermented at various temperatures. Leucine aminopeptidase-I, II, and seryl-tyrosine hydrolytic activity were found to decrease in the moromi incubated at the fermentation temperature of FSS whereas almost no decrease was observed in that of regular soy sauce. The concentrations of ACE inhibitory peptides, Ser-Tyr and Gly-Tyr, in the moromi incubated at high temperature were revealed to be higher than those at low temperature through quantitative LC-MS/MS analysis. These results suggested that the peptidases responsible for degrading low molecular weight bioactive peptides were inactivated during the high temperature fermentation, thus, these peptides would be likely to remain in the high temperature fermentation. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk.

    Science.gov (United States)

    Sun, Yazhou; Zhou, Yahui; Liu, Xiao; Zhang, Fan; Yan, Linping; Chen, Ling; Wang, Xing; Ruan, Hongjie; Ji, Chenbo; Cui, Xianwei; Wang, Jiaqin

    2017-02-26

    Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.

    Science.gov (United States)

    Elkhtab, Ebrahim; El-Alfy, Mohamed; Shenana, Mohamed; Mohamed, Abdelaty; Yousef, Ahmed E

    2017-12-01

    Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography-mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Zhang, Yan; Liu, Jingbo

    2015-09-23

    The objective of this study was to investigate the transepithelial transport of RVPSL (Arg-Val-Pro-Ser-Leu), an egg-white-derived peptide with angiotensin I-converting enzyme (ACE) inhibitory and antihypertensive activity, in human intestinal Caco-2 cell monolayers. Results revealed that RVPSL could be passively transported across Caco-2 cell monolayers. However, during the process of transport, 36.31% ± 1.22% of the initial RVPSL added to the apical side was degraded, but this degradation decreased to 23.49% ± 0.68% when the Caco-2 cell monolayers were preincubated with diprotin A (P Caco-2 cell monolayers was studied by mutation of RVPSL. It was found that N-terminal Pro residues were more beneficial for transport of pentapeptides across Caco-2 cell monolayers than Arg and Val. Furthermore, RVPSL could be more easily transported as smaller peptides, especially in the form of dipeptides and tripeptides.

  15. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation.

    Science.gov (United States)

    Acar, Handan; Samaeekia, Ravand; Schnorenberg, Mathew R; Sasmal, Dibyendu K; Huang, Jun; Tirrell, Matthew V; LaBelle, James L

    2017-09-20

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein-protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a Förster resonance energy transfer (FRET)-based tracking system. Using this platform, we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  16. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  17. Production of the blood pressure lowing peptides from brown alga ( Undaria pinnatifida)

    Science.gov (United States)

    Minoru, Sato; Takashi, Oba; Takao, Hosokawa; Toshiyasu, Yamaguchi; Toshiki, Nakano; Tadao, Saito; Koji, Muramoto; Takashi, Kahara; Katsura, Funayama; Akio, Kobayashi; Takahisa, Nakano

    2005-07-01

    Brown alga ( Undaria pinnatifida) was treated with alginate lyase and hydrolyzed using 17 kinds of proteases and the inhibitory activity of the hydrolysates for the angiotensin-I-converting enzyme (ACE) was measured. Four hydrolysates with potent ACE-inhibitory activity were administered singly and orally to spontaneously hypertensive rats (SHRs). The systolic blood pressure of SHRs decreases significantly after single oral administration of the brown alga hydrolysates by protease S ‘Amano’ (from Bacillus stearothermophilus) at the concentration of 10 (mg protein) (kg body weight)-1. In the 17 weeks of feeding experiment, 7-week-old SHRs were fed standard diet supplemented with the brown alga hydrolysates for 10 weeks. In SHRs fed 1.0 and 0.1% brown alga hydrolysates, elevating of systolic bloodpressure was significantly suppressed for 7 weeks. To elucidate the active components, the brown alga hydrolysates were fractionated by 1-butanol extraction and HPLC on a reverse-phase column. Seven kinds of ACE-inhibitory peptides were isolated and identified by amino acid composition analysis, sequence analysis, and LC-MS with the results Val-Tyr, Ile-Tyr, Ala-Trp, Phe-Tyr, Val-Trp, Ile-Trp, and Leu-Trp. Each peptide was determined to have an antihypertensive effect after a single oral administration in SHRs. The brown alga hydrolysates were also confirmed to decrease the blood pressure in humans.

  18. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kumar G.; Swaminathan S.; Kumaran, D.; Ahmed, S. A.

    2012-05-01

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.

  19. PACE4-Based Molecular Targeting of Prostate Cancer Using an Engineered 64Cu-Radiolabeled Peptide Inhibitor

    Directory of Open Access Journals (Sweden)

    Frédéric Couture

    2014-08-01

    Full Text Available The potential of PACE4 as a pharmacological target in prostate cancer has been demonstrated as this proprotein convertase is strongly overexpressed in human prostate cancer tissues and its inhibition, using molecular or pharmacological approaches, results in reduced cell proliferation and tumor progression in mouse tumor xenograft models. We developed a PACE4 high-affinity peptide inhibitor, namely, the multi-leucine (ML, and sought to determine whether this peptide could be exploited for the targeting of prostate cancer for diagnostic or molecular imaging purposes. We conjugated a bifunctional chelator 1,4,7-triazacyclononane-1,4,7- triacetic acid (NOTA to the ML peptide for copper-64 (64Cu labeling and positron emission tomography (PET– based prostate cancer detection. Enzyme kinetic assays against recombinant PACE4 showed that the NOTA-modified ML peptide displays identical inhibitory properties compared to the unmodified peptide. In vivo biodistribution of the 64Cu/NOTA-ML peptide evaluated in athymic nude mice bearing xenografts of two human prostate carcinoma cell lines showed a rapid and high uptake in PACE4-expressing LNCaP tumor at an early time point and in PACE4-rich organs. Co-injection of unlabeled peptide confirmed that tumor uptake was target-specific. PACE4-negative tumors displayed no tracer uptake 15 minutes after injection, while the kidneys, demonstrated high uptake due to rapid renal clearance of the peptide. The present study supports the feasibility of using a 64Cu/NOTA-ML peptide for PACE4-targeted prostate cancer detection and PACE4 status determination by PET imaging but also provides evidence that ML inhibitor–based drugs would readily reach tumor sites under in vivo conditions for pharmacological intervention or targeted radiation therapy.

  20. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells.

    Directory of Open Access Journals (Sweden)

    Ilona Hromadnikova

    Full Text Available Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450-463 plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1 and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A by CD3+CD56+ (NKT, CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by

  1. Pancreatic Enzymes

    Science.gov (United States)

    ... NOW HONOR/MEMORIAL GENERAL DONATION MONTHLY PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  2. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  3. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    OpenAIRE

    A Abdullahi; RU Hamzah; AA Jigam; Yahya, A.; AY Kabiru; Muhammad, H.; S Sakpe; FS Adefolalu; MC Isah; MZ Kolo

    2012-01-01

    Objective: To study the inhibitory effect of various extracts from Crateva adansonii (C. adansonii) used traditionally against several inflammatory diseases such as rheumatism, arthritis, and gout, was investigated on purified bovine milk xanthine oxidase (XO) activity. Methods: Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Enzy...

  4. [Biosynthesis of opioid peptides].

    Science.gov (United States)

    Rossier, J

    1988-01-01

    The endogenous opioid peptides all contain the enkephalin sequence Tyr-Gly-Gly-Phe-Met and Tyr-Gly-Gly-Phe-Leu at their aminoterminus. Three distinct families of these peptides (endorphins, enkephalins and dynorphins) are present in different neuronal pathways within the central nervous system. Molecular genetics have shown that these three families of opioid peptides are derived from three distinct precursors. Pro-opiomelanocortin gives rise to the endorphins, as well as adrenocorticotropic hormone (ACTH) and the melanotropic hormones (MSH's). [Met] enkephalin, [Leu] enkephalin and the related heptapeptide [Met] enkephalin-Arg6-Phe7 and octapeptide [Met] enkephalin-Arg6-Gly7-Leu8 are derived from proenkephalin. The third family is derived from prodynorphin and includes dynorphin A, dynorphin B (also known as rimorphin) and alpha- and beta-neo-endorphin. The structure of the genes coding for these precursors are similar, suggesting the possibility of one common ancestral gene. The most common scheme for enzymatic maturation of precursors proposes the action of a trypsin-like endopeptidase followed by a carboxypeptidase B-like exopeptidase. However, we have provided evidence that this combination of trypsin-like and carboxypeptidase B-like enzymes may not be the only mechanism for liberating enkephalin from low molecular weight enkephalin-containing peptides. Indeed, endo-oligopeptidase A, an enzyme, known to hydrolyze the Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin, has been shown to produce, by a single cleavage, [Leu] enkephalin or [Met] enkephalin from small enkephalin-containing peptides, (Camargo et al., 1987, J. Neurochem. 48, 1258-1263).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Eric Banan-Mwine Daliri

    2017-04-01

    Full Text Available The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  6. Bioactive Peptides.

    Science.gov (United States)

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  7. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  8. Soybean peptide: optimal preparatory conditions, chemical and ...

    African Journals Online (AJOL)

    The study investigated the optimal condition for preparing soybean peptide from soybean isolates using digestive enzyme systems, comprising pepsin, trypsin and α-chymotrypsin set at different pH and temperatures. It was evaluated for closeness of characteristics to the control peptide (a TEK® oligopeptide, designated ...

  9. Structure based design and synthesis of peptide inhibitor of human LOX-12: in vitro and in vivo analysis of a novel therapeutic agent for breast cancer.

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Singh

    Full Text Available Human breast cancer cell proliferation involves a complex interaction between growth factors, steroid hormones and peptide hormones. The interaction of growth factors, such as epidermal growth factor (EGF, with their receptors on breast cancer cells can lead to the hydrolysis of phospholipids and release of fatty acid such as arachidonic acid, which can be further metabolized by cyclooxygenase (COX and lipoxygenase (LOX pathways to produce prostaglandins. The high concentration of prostaglandins has been associated with chronic inflammatory diseases and several types of human cancers. This is due to the over expression COX, LOX and other inflammatory enzymes. Ten peptides were designed and synthesized by solid phase peptide synthesis and analyzed in vitro for enzyme inhibition. Out of these peptides, YWCS had shown significant inhibitory effects. The dissociation constant (K(D was determined by surface plasmon resonance (SPR analysis and was found to be 3.39 × 10(-8 M and 8.6 × 10(-8 M for YWCS and baicalein (positive control, respectively. The kinetic constant Ki was 72.45 × 10(-7 M as determined by kinetic assay. The peptide significantly reduced the cell viability of estrogen positive MCF-7 and estrogen negative MDA-MB-231 cell line with the half maximal concentration (IC(50 of 75 µM and 400 µM, respectively. The peptide also induced 49.8% and 20.8% apoptosis in breast cancer cells MCF-7 and MDA-MB-231, respectively. The YWCS was also found to be least hemolytic at a concentration of 358 µM. In vivo studies had shown that the peptide significantly inhibits tumor growth in mice (p<0.017. This peptide can be used as a lead compound and complement for ongoing efforts to develop differentiation therapies for breast cancer.

  10. A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides.

    Science.gov (United States)

    Manikkam, V; Vasiljevic, T; Donkor, O N; Mathai, M L

    2016-01-01

    Bioactive peptides are food derived components, usually consisting of 3-20 amino acids, which are inactive when incorporated within their parent protein. Once liberated by enzymatic or chemical hydrolysis, during food processing and gastrointestinal transit, they can potentially provide an array of health benefits to the human body. Owing to an unprecedented increase in the worldwide incidence of obesity and hypertension, medical researchers are focusing on the hypotensive and anti-obesity properties of nutritionally derived bioactive peptides. The role of the renin-angiotensin system has long been established in the aetiology of metabolic diseases and hypertension. Targeting the renin-angiotensin system by inhibiting the activity of angiotensin-converting enzyme (ACE) and preventing the formation of angiotensin II can be a potential therapeutic approach to the treatment of hypertension and obesity. Fish-derived proteins and peptides can potentially be excellent sources of bioactive components, mainly as a source of ACE inhibitors. However, increased use of marine sources, poses an unsustainable burden on particular fish stocks, so, the underutilized fish species and by-products can be exploited for this purpose. This paper provides an overview of the techniques involved in the production, isolation, purification, and characterization of bioactive peptides from marine sources, as well as the evaluation of the ACE inhibitory (ACE-I) activity and bioavailability.

  11. Soymilk-Cow's milk ACE-inhibiting enzyme modified cheese.

    Science.gov (United States)

    Ali, Barkat; Khan, Kiran Yasmin; Majeed, Hamid; Abid, Muhammad; Xu, Lei; Wu, Fengfeng; Xu, Xueming

    2017-12-15

    In present study, we developed and optimized soymilk-cow's milk enzyme-modified cheese with angiotensin-I converting enzyme inhibitory activity. Bioactive peptide production was found to be a multivariable-dependent process. Maximum bioactivity of hydrolysates was obtained with prolonged curd proteolysis at an increased enzyme concentration. This bioactive cheese paste was subsequently spray-dried under different drying conditions to determine the powder sorption isotherm properties. Higher drying temperatures resulted in cheese powder with weak thermal stability and lower browning indices. Experiments aimed at optimizing thermal stability and physical properties revealed that optimal conditions for producing cheese powder were an inlet air temperature of 150°C, a feeding rate of 10%, and an air flow rate of 600Lh-1. Moreover, in addition to flavour, the bioactive cheese powders produced from a combination of soymilk-cow's milk are of potential source and can be used in the dietary management of hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antimicrobial activity of synthetic salivary peptides against voice prosthetic microorganisms

    NARCIS (Netherlands)

    Elving, GJ; van der Mei, HC; Busscher, HJ; Amerongen, AV; Veerman, ECI; Van Weissenbruch, R; Albers, FWJ

    Objectives: To investigate whether synthetic salivary antimicrobial peptides have an inhibitory effect on the growth of bacteria and yeasts isolated from used silicone rubber voice prostheses. Methods: The antimicrobial activities of six synthetic salivary peptides (histatin 5, dhvar1, dhvar4,

  13. Peptide YY.

    Science.gov (United States)

    Chandarana, Keval; Batterham, Rachel

    2008-02-01

    This review discusses recent studies examining the effects of peptide YY on energy homeostasis, highlights the emerging hedonic effects of peptide YY and evaluates the therapeutic potential of the peptide YY system. A role for exogenous PYY3-36 as an anorectic agent in obese humans and rodents has been established and weight loss effects demonstrated in obese rodents. New lines of evidence support a role for endogenous peptide YY in regulating energy homeostasis. The NPY-Y2 receptor mediates the anorectic actions of PYY3-36 with rodent studies implicating the hypothalamus, vagus and brainstem as key target sites. Functional imaging in humans has confirmed that PYY3-36 activates brainstem and hypothalamic regions. The greatest effects, however, were observed within the orbitofrontal cortex, a brain region involved in reward processing. Further evidence for a hedonic role for PYY3-36 is supported by rodent studies showing that PYY3-36 decreases the motivation to seek high-fat food. Rodent studies using selective Y2 agonists and strategies combining PYY3-36/Y2 agonists with other anorectic agents have revealed increased anorectic and weight-reducing effects. Peptide YY plays a role in the integrative regulation of metabolism. The emerging hedonic effects of peptide YY together with the weight-reducing effects observed in obese rodents suggest that targeting the peptide YY system may offer a therapeutic strategy for obesity.

  14. The effects of duodenal peptides on glucagon-like peptide-1 secretion from the ileum. A duodeno--ileal loop?

    DEFF Research Database (Denmark)

    Hansen, Lene; Holst, Jens Juul

    2002-01-01

    is regulated by local somatostatin secretion. In search for an endocrine pathway, we studied the effect of a range of concentrations of cholecystokinin octapeptide (26-33) (CCK 8), gastric inhibitory peptide 1-42 (GIP), secretin, motilin, calcitonin gene-related peptide (CGRP), and the modified amino acid, 5...... agents from the duodenum regulate GLP-1 secretion in pigs....

  15. MILK PROTEINS-DERIVED BIOACTIVE PEPTIDES

    Directory of Open Access Journals (Sweden)

    Özer KINIK

    2002-02-01

    Full Text Available Milk proteins are a source of various biologically active peptides, which are formed enzymatically either by digestive enzymes or during milk fermentation. These peptides have been shown to have different biochemical and physiological effects, such as binding to opioid receptors, inhibition of angiotensin I-converting enzyme (ACE, antimicrobial, antihypertensive, antioxidative, antithrombotic, immunomodulatory and mineral binding effects. This review will focus on chemical structure, physiological properties, production and formation mechanisms in dairy food of milk-derived bioactive peptides and their usage potential as functional food ingredient.

  16. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly......, the disulfide bridge was replaced with amide bonds of various lengths. The novel peptides did not retain their inhibitory activity, but formed the basis for another strategy. Second, bicyclic peptides were obtained by creating head-to-tail cyclized peptides that were made bicyclic by the addition of a covalent...... bond across the ring. The second bridge was made by a disulfide bridge, amide bond formation or via ring-closing metathesis. A, with upain-2 equipotent, bicyclic inhibitor was obtained and its binding to uPA was studied by ITC, NMR and X-ray. The knowledge of how selective inhibitors bind uPA has been...

  18. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  19. Enzyme assays

    OpenAIRE

    Bisswanger, Hans

    2014-01-01

    The essential requirements for enzyme assays are described and frequently occurring errors and pitfalls as well as their avoidance are discussed. The main factors, which must be considered for assaying enzymes, are temperature, pH, ionic strength and the proper concentrations of the essential components like substrates and enzymes. Standardization of these parameters would be desirable, but the diversity of the features of different enzymes prevents unification of assay conditions. Neverthele...

  20. Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase.

    Science.gov (United States)

    Thompson, Stephen; Fleming, Ian N; O'Hagan, David

    2016-03-21

    The substrate scope of fluorinase enzyme mediated transhalogenation reactions is extended. Substrate tolerance allows a peptide cargo to be tethered to a 5'-chloro-5'-deoxynucleoside substrate for transhalogenation by the enzyme to a 5'-fluoro-5'-deoxynucleoside. The reaction is successfully extended from that previously reported for a monomeric cyclic peptide (cRGD) to cargoes of dendritic scaffolds carrying two and four cyclic peptide motifs. The RGD peptide sequence is known to bind upregulated αVβ3 integrin motifs on the surface of cancer cells and it is demonstrated that the fluorinated products have a higher affinity to αVβ3 integrin than their monomeric counterparts. Extending the strategy to radiolabelling of the peptide cargoes by tagging the peptides with [(18)F]fluoride was only moderately successful due to the poor water solubility of these higher order peptide scaffolds although the strategy holds promise for peptide constructs with improved solubility.

  1. Halogenation of glycopeptide antibiotics occurs at the amino acid level during non-ribosomal peptide synthesis† †Electronic supplementary information (ESI) available: Southern blot analyses of wildtype and the truncation mutants CK2.1 and CK2.2; LC-MS analysis of dipeptides from in vivo expression experiments together with authentic standards; SDS-PAGE and spectral analysis of Tcp21 and BhaA halogenase enzymes. See DOI: 10.1039/c7sc00460e Click here for additional data file.

    Science.gov (United States)

    Kittilä, Tiia; Kittel, Claudia; Tailhades, Julien; Butz, Diane; Schoppet, Melanie; Büttner, Anita; Goode, Rob J. A.; Schittenhelm, Ralf B.; van Pee, Karl-Heinz; Süssmuth, Roderich D.; Wohlleben, Wolfgang

    2017-01-01

    Halogenation plays a significant role in the activity of the glycopeptide antibiotics (GPAs), although up until now the timing and therefore exact substrate involved was unclear. Here, we present results combined from in vivo and in vitro studies that reveal the substrates for the halogenase enzymes from GPA biosynthesis as amino acid residues bound to peptidyl carrier protein (PCP)-domains from the non-ribosomal peptide synthetase machinery: no activity was detected upon either free amino acids or PCP-bound peptides. Furthermore, we show that the selectivity of GPA halogenase enzymes depends upon both the structure of the bound amino acid and the PCP domain, rather than being driven solely via the PCP domain. These studies provide the first detailed understanding of how halogenation is performed during GPA biosynthesis and highlight the importance and versatility of trans-acting enzymes that operate during peptide assembly by non-ribosomal peptide synthetases. PMID:28989629

  2. DESIGN AND SYNTHESIS OF 4-[2-(5- NITRO)] IMIDAZOLYL BENZOYL (N-METHYL) AMINO ACIDS AND PEPTIDES

    OpenAIRE

    PARAMITA DAS; M.HIMAJA

    2010-01-01

    In the past two decades, a wide variety of bioactive peptides have been discovered. Condensation of heterocyclic moieties viz nicotinic acid, thiazole coumarin, quinolin, furan, imidazole etc. with amino acids and peptides resulted in compounds with potent biological activities. Many of the heterocyclic found to exhibit antifungal, antibacterial, cytotoxic, antineoplastic, insectisidal, antiinflammatory, anthelmintic, tyrosinase inhibitory and melanin production inhibitory activities. Metroni...

  3. Antioxidant properties and inhibitory effect of ethanolic extract of ...

    African Journals Online (AJOL)

    Recent studies have shown that vegetables consumption could lower the risk of diabetes mellitus. Therefore, this study sought to investigate the inhibitory effect of Struchium sparganophora (Ewuro Odo) leaf on key enzyme linked to type-2 diabetes (á-amylase and á-glucosidase) as well as assessing the effect of blanching ...

  4. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  5. Synthesis of Some Phenylpropanoid Glycosides (PPGs and Their Acetylcholinesterase/Xanthine Oxidase Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Jin-Hui Wang

    2011-04-01

    Full Text Available In this research, three categories of phenylpropanoid glycosides (PPGs were designed and synthesized with PPGs isolated from Rhodiola rosea L. as lead compounds. Their inhibitory abilities toward acetylcholinesterase (AChE and xanthine oxidase (XOD were also tested. Some of the synthetic PPGs exhibited excellent enzyme inhibitory abilities.

  6. Hydrogen sulfide plays a key role in the inhibitory neurotransmission to the pig intravesical ureter.

    Science.gov (United States)

    Fernandes, Vítor S; Ribeiro, Ana S F; Martínez, Pilar; López-Oliva, María Elvira; Barahona, María Victoria; Orensanz, Luis M; Martínez-Sáenz, Ana; Recio, Paz; Benedito, Sara; Bustamante, Salvador; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2014-01-01

    According to previous observations nitric oxide (NO), as well as an unknown nature mediator are involved in the inhibitory neurotransmission to the intravesical ureter. This study investigates the hydrogen sulfide (H2S) role in the neurogenic relaxation of the pig intravesical ureter. We have performed western blot and immunohistochemistry to study the expression of the H2S synthesis enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), measurement of enzymatic production of H2S and myographic studies for isometric force recording. Immunohistochemical assays showed a high CSE expression in the intravesical ureter muscular layer, as well as a strong CSE-immunoreactivity within nerve fibres distributed along smooth muscle bundles. CBS expression, however, was not consistently observed. On ureteral strips precontracted with thromboxane A2 analogue U46619, electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked frequency- and concentration-dependent relaxations. CSE inhibition with DL-propargylglycine (PPG) reduced EFS-elicited responses and a combined blockade of both CSE and NO synthase (NOS) with, respectively, PPG and NG-nitro-L-arginine (L-NOARG), greatly reduced such relaxations. Endogenous H2S production rate was reduced by PPG, rescued by addition of GYY4137 and was not changed by L-NOARG. EFS and GYY4137 relaxations were also reduced by capsaicin-sensitive primary afferents (CSPA) desensitization with capsaicin and blockade of ATP-dependent K+ (KATP) channels, transient receptor potential A1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide (VIP/PACAP) and calcitonin gene-related peptide (CGRP) receptors with glibenclamide, HC030031, AMG9810, PACAP6-38 and CGRP8-37, respectively. These results suggest that H2S, synthesized by CSE, is involved in the inhibitory neurotransmission to

  7. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    Science.gov (United States)

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. © International & American Associations for Dental Research 2015.

  8. Enzyme Informatics

    OpenAIRE

    Alderson, Rosanna G.; De Ferrari, Luna; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B O; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCa...

  9. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by cod (Gadus morhua protein hydrolysates and their antihypertensive effects in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Abraham T. Girgih

    2015-12-01

    Full Text Available Background: Cod muscle has a balanced protein profile that contains potentially bioactive amino acid sequences. However, there is limited information on release of these peptides from the parent proteins and their ability to modulate mammalian blood pressure. Objective: The aim of this study was to generate cod antihypertensive peptides with potent in vitro inhibitory effects against angiotensin-converting enzyme (ACE and renin. The most active peptides were then tested for systolic blood pressure (SBP-reducing ability in spontaneously hypertensive rats (SHRs. Design: Cod protein hydrolysate (CPH was produced by subjecting the muscle proteins to proteolysis first by pepsin and followed by trypsin+chymotrypsin combination. In order to enhance peptide activity, the CPH was subjected to reverse-phase (RP-HPLC separation to yield four fractions (CF1, CF2, CF3, and CF4. The CPH and RP-HPLC fractions were each tested at 1 mg/mL for ability to inhibit in vitro ACE and renin activities. CPH and the most active RP-HPLC fraction (CF3 were then used for enzyme inhibition kinetics assays followed by oral administration (200 and 30 mg/kg body weight for CPH and CF3, respectively to SHRs and SBP measurements within 24 h. Results: The CPH, CF3, and CF4 had similar ACE-inhibitory activities of 84, 85, and 87%, which were significantly (p<0.05 higher than the values for CF1 (69% and CF2 (79%. Conversely, the CF3 had the highest (63% renin-inhibitory activity (p<0.05 when compared to CPH (43%, CF1 (15%, and CF4 (44%. CPH and CF3 exhibited uncompetitive mode of ACE inhibition, whereas renin inhibition was non-competitive. Even at a 6.7-fold lower dosage, the CF3 significantly (p<0.05 reduced SBP (maximum −40.0 mmHg better than CPH (maximum −19.1 mmHg. Conclusions: RP-HPLC fractionation led to enhanced antihypertensive effects of cod peptides, which may be due to a stronger renin-inhibitory activity.

  10. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by cod (Gadus morhua) protein hydrolysates and their antihypertensive effects in spontaneously hypertensive rats.

    Science.gov (United States)

    Girgih, Abraham T; Nwachukwu, Ifeanyi D; Hasan, Fida; Fagbemi, Tayo N; Gill, Tom; Aluko, Rotimi E

    2015-01-01

    Cod muscle has a balanced protein profile that contains potentially bioactive amino acid sequences. However, there is limited information on release of these peptides from the parent proteins and their ability to modulate mammalian blood pressure. The aim of this study was to generate cod antihypertensive peptides with potent in vitro inhibitory effects against angiotensin-converting enzyme (ACE) and renin. The most active peptides were then tested for systolic blood pressure (SBP)-reducing ability in spontaneously hypertensive rats (SHRs). Cod protein hydrolysate (CPH) was produced by subjecting the muscle proteins to proteolysis first by pepsin and followed by trypsin+chymotrypsin combination. In order to enhance peptide activity, the CPH was subjected to reverse-phase (RP)-HPLC separation to yield four fractions (CF1, CF2, CF3, and CF4). The CPH and RP-HPLC fractions were each tested at 1 mg/mL for ability to inhibit in vitro ACE and renin activities. CPH and the most active RP-HPLC fraction (CF3) were then used for enzyme inhibition kinetics assays followed by oral administration (200 and 30 mg/kg body weight for CPH and CF3, respectively) to SHRs and SBP measurements within 24 h. The CPH, CF3, and CF4 had similar ACE-inhibitory activities of 84, 85, and 87%, which were significantly (p<0.05) higher than the values for CF1 (69%) and CF2 (79%). Conversely, the CF3 had the highest (63%) renin-inhibitory activity (p<0.05) when compared to CPH (43%), CF1 (15%), and CF4 (44%). CPH and CF3 exhibited uncompetitive mode of ACE inhibition, whereas renin inhibition was non-competitive. Even at a 6.7-fold lower dosage, the CF3 significantly (p<0.05) reduced SBP (maximum -40.0 mmHg) better than CPH (maximum -19.1 mmHg). RP-HPLC fractionation led to enhanced antihypertensive effects of cod peptides, which may be due to a stronger renin-inhibitory activity.

  11. Identification and partial characterization of a bacteriocin-like inhibitory substance (BLIS) from Lb. Bulgaricus K41 isolated from indigenous yogurts.

    Science.gov (United States)

    Zaeim, Davood; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud

    2014-01-01

    Forty-two strains of Lactobacillus bulgaricus isolated from locally made yogurts were examined and compared for bacteriocin producing ability using spot on lawn assay which improved by taking photo and image processing. Lb. bulgaricus K41 exhibited the highest inhibition level against indicators. K41 Bacteriocin-like inhibitory substance is sensitive to proteolytic enzymes (proteinase K, pepsin, and trypsin) but α-amylase makes slight reduction in its activity and it is resistant to lipase. This antibacterial peptide is extremely heat-stable (121 °C for 15 min) and remains active over a wide pH range (pH = 2 to 10); also nonionic detergents (Tween-20, Tween-80, and Triton X100) showed no effect on its activity. The inhibitory spectrum is against Gram-positive bacteria (except Staphylococcus aureus) with extremely antilisterial activity and it is almost ineffective against Gram-negative bacteria. The mode of its action was identified as bactericidal against Listeria monocytogenes. The properties of K41 bacteriocin-like inhibitory substance add to its safety as a biopreservative produced by a generally recognized as safe (GRAS) bacterium suggesting it can be used in hurdle technology for ready-to-eat foods as one of the main sources of Listeria contaminations. © 2013 Institute of Food Technologists®

  12. Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources.

    Science.gov (United States)

    Ma, Chunling; Ni, Xiumei; Chi, Zhenming; Ma, Liyan; Gao, Lingmei

    2007-01-01

    The extracellular alkaline protease in the supernatant of cell culture of the marine yeast Aureobasidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 45 degrees C, respectively. The enzyme was activated by Cu(2+) (at a concentration of 1.0 mM) and Mn(2+) and inhibited by Hg(2+), Fe(2+), Fe(3+), Zn(2+), and Co(2+). The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, but weakly inhibited by EDTA, 1-10-phenanthroline, and iodoacetic acid. The K(m) and V(max) values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 micromol/min/mg of protein, respectively. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.

  13. Peptide B12: emerging trends at the interface of inorganic chemistry, chemical biology and medicine.

    Science.gov (United States)

    Zelder, Felix; Zhou, Kai; Sonnay, Marjorie

    2013-01-28

    The sophisticated and efficient delivery of vitamin B(12) ("B(12)") into cells offers promise for B(12)-bioconjugates in medicinal diagnosis and therapy. It is therefore surprising that rather little attention is presently paid to an alternative strategy in drug design: the development of structurally perfect, but catalytically inactive semi-artificial B(12) surrogates. Vitamin B(12) cofactors catalyse important biological transformations and are indispensible for humans and most other forms of life. This strong metabolic dependency exhibits enormous medicinal opportunities. Inhibitors of B(12) dependent enzymes are potential suppressors of fast proliferating cancer cells. This perspective article focuses on the design and study of backbone modified B(12) derivatives, particularly on peptide B(12) derivatives. Peptide B(12) is a recently introduced class of biomimetic cobalamins bearing an artificial peptide backbone with adjustable coordination and redox-properties. Pioneering biological studies demonstrated reduced catalytic activity, combined with inhibitory potential that is encouraging for future efforts in turning natural cofactors into new anti-proliferative agents.

  14. Acyl peptide hydrolase degrades monomeric and oligomeric amyloid-beta peptide

    Directory of Open Access Journals (Sweden)

    O'Connor Peter B

    2009-07-01

    Full Text Available Abstract Background The abnormal accumulation of amyloid-beta peptide is believed to cause malfunctioning of neurons in the Alzheimer's disease brain. Amyloid-beta exists in different assembly forms in the aging mammalian brain including monomers, oligomers, and aggregates, and in senile plaques, fibrils. Recent findings suggest that soluble amyloid-beta oligomers may represent the primary pathological species in Alzheimer's disease and the most toxic form that impairs synaptic and thus neuronal function. We previously reported the isolation of a novel amyloid-beta-degrading enzyme, acyl peptide hydrolase, a serine protease that degrades amyloid-beta, and is different in structure and activity from other amyloid-beta-degrading enzymes. Results Here we report the further characterization of acyl peptide hydrolase activity using mass spectrometry. Acyl peptide hydrolase cleaves the amyloid-beta peptide at amino acids 13, 14 and 19. In addition, by real-time PCR we found elevated acyl peptide hydrolase expression in brain areas rich in amyloid plaques suggesting that this enzyme's levels are responsive to increases in amyloid-beta levels. Lastly, tissue culture experiments using transfected CHO cells expressing APP751 bearing the V717F mutation indicate that acyl peptide hydrolase preferentially degrades dimeric and trimeric forms of amyloid-beta. Conclusion These data suggest that acyl peptide hydrolase is involved in the degradation of oligomeric amyloid-beta, an activity that, if induced, might present a new tool for therapy aimed at reducing neurodegeneration in the Alzheimer's brain.

  15. Absolute Side-chain Structure at Position 13 Is Required for the Inhibitory Activity of Bromein*

    Science.gov (United States)

    Sawano, Yoriko; Hatano, Ken-ichi; Miyakawa, Takuya; Tanokura, Masaru

    2008-01-01

    Bromelain isoinhibitor (bromein), a cysteine proteinase inhibitor from pineapple stem, has a unique double-chain structure. The bromein precursor protein includes three homologous inhibitor domains, each containing an interchain peptide between the light and heavy chains. The interchain peptide in the single-chain precursor is immediately processed by bromelain, a target proteinase. In the present study, to clarify the essential inhibitory site of bromein, we constructed 44 kinds of site-directed and deletion mutants and investigated the inhibitory activity of each toward bromelain. As a result, the complete chemical structure of Leu13 in the light chain was revealed to be essential for inhibition. Pro12 prior to the leucine residue was also involved in the inhibitory activity and would control the location of the leucine side chain by the fixed φ dihedral angle of proline. Furthermore, the five-residue length of the interchain peptide was strictly required for the inhibitory activity. On the other hand, no inhibitory activity against bromelain was observed by the substitution of proline for the N terminus residue Thr15 of the interchain peptide. In summary, these mutational analyses of bromein demonstrated that the appropriate position and conformation of Leu13 are absolutely crucial for bromelain inhibition. PMID:18948264

  16. Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients.

    Science.gov (United States)

    López-Barrios, Lidia; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2014-03-01

    Bioactive peptides (BPs) are amino acid sequences derived from food proteins. Their relevance lies in the biological activities they have once they are released from the parent protein. BPs or protein hydrolysates can be commercialized as nutraceutical products or functional ingredients according to their activities. Different food protein sources have been researched for their potential to generate BPs. However, with the exception of lunasin (derived from soy), animal protein sources have been predominantly exploited as commercial BPs sources. On the other hand, pulses have shown diverse BP contents without further impact on their commercialization. Pulses are a rich source of protein in the human diet and their consumption has been associated with the prevention of chronic diseases. The beneficial effect in human health has been related to their micronutrients, phytochemical bioactive compounds, and recently BPs. This article reviews the current literature about pulse protein hydrolysates and BPs with proved angiotensin converting enzyme inhibitory, antioxidant, cancer preventing, and other health promoting activities. Proteolysis process is commonly achieved by digestive and microorganism enzymes. BP purification and identification has consisted mainly on size segregation procedures followed by mass spectrometry techniques. Hydrolysis time, peptide size, and hydrophobicity are employed as process variants and structural features relevant for the BP activities. Finally, some considerations about industrial processing and BPs used as functional food ingredients were reviewed. © 2014 Institute of Food Technologists®

  17. Enzymatic Release and Characterization of Novel Bioactive Peptides from Milk Proteins

    DEFF Research Database (Denmark)

    De Gobba, Cristian

    -inhibitory, antioxidant and antimicrobial peptides) released from milk proteins by mean of enzyme-catalysed hydrolysis. Goat milk fractions (produced using microfiltration membranes) and bovine casein were used as substrates. The goat milk fractions (retentate, permeate and skimmed milk) were hydrolysed with two...... protein hydrolysates made in other studies. Regarding radical scavenging activity, the bovine casein hydrolysates also showed a positive correlation between extent of hydrolysis and activity, although the difference between the unhydrolysed sample and the hydrolysates was less marked. The goat milk....... The bovine casein did not show an increase in iron chelation capacity after hydrolysis, while the goat milk hydrolysates showed again a difference in the substrates and not in degree of hydrolysis, with the permeate as the most active substrate. Partial hydrolysis of the bovine casein increased...

  18. Angiotensin-I-Converting Enzyme (ACE Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry

    Directory of Open Access Journals (Sweden)

    Isuru Wijesekara

    2010-03-01

    Full Text Available Hypertension or high blood pressure is one of the major independent risk factors for cardiovascular diseases. Angiotensin-I-converting enzyme (EC 3.4.15.1; ACE plays an important physiological role in regulation of blood pressure by converting angiotensin I to angiotensin II, a potent vasoconstrictor. Therefore, the inhibition of ACE activity is a major target in the prevention of hypertension. Recently, the search for natural ACE inhibitors as alternatives to synthetic drugs is of great interest to prevent several side effects and a number of novel compounds such as bioactive peptides, chitooligosaccharide derivatives (COS and phlorotannins have been derived from marine organisms as potential ACE inhibitors. These inhibitory derivatives can be developed as nutraceuticals and pharmaceuticals with potential to prevent hypertension. Hence, the aim of this review is to discuss the marine-derived ACE inhibitors and their future prospects as novel therapeutic drug candidates for treat hypertension.

  19. Comparative analysis of new peptide conjugates of antitubercular drug candidates-Model membrane and in vitro studies.

    Science.gov (United States)

    Ábrahám, Á; Baranyai, Zs; Gyulai, G; Pári, E; Horváti, K; Bősze, Sz; Kiss, É

    2016-11-01

    Novel peptide conjugates of two antitubercular drug candidates were synthesised and characterised using new tuftsin peptide derivative (OT14) as carrier moiety. As antitubercular drug candidates two pyridopyrimidine derivatives, TB803 (2-allylamino-4-oxopyrido[1,2-a]pyrimidine-3-carbaldehyde) and TB820 (4-oxo-2-(pyrrolidin-1-yl)-pyrido[1,2-a]pyrimidin-3-carbaldehyde) inhibiting vital enzyme of Mycobacterium tuberculosis were applied. Membrane affinity of the compounds TB803 and TB820 and their peptide conjugates was evaluated using experimental lipid mono- and bilayer models. Penetration ability was assessed tensiometrically from Langmuir monolayer study and applying quartz crystal microbalance for the supported lipid bilayer (SLB) system. Minimal inhibitory concentration (MIC) values remained in a similar micromolar range for both of the conjugates while their cellular uptake rate was improved significantly compared to the drug candidates. A correlation was found between membrane affinity properties and results of in vitro biological investigations. Analysis of physical/structural properties of SLB in contact with bioactive components and visualization of the structural change by atomic-force microscopy (AFM) provided information on the type and route of molecular interaction of drug construction with lipid layers. The possible role of electrostatic interactions between lipid layer and drug candidates was tested in Langmuir-balance experiments using negatively charged lipid mixture (DPPC+DPPG). Especially the peptide conjugates presented increased membrane affinity due to cationic character of the peptide sequence selected for the conjugate formation. That is supposed to be one reason for the enhanced cellular uptake observed in vitro on MonoMac6 cell line. The conjugation of antitubercular agents to a peptidic carrier is a promising approach to enhance membrane affinity, cellular uptake rate and in vitro selectivity. Copyright © 2016 Elsevier B.V. All rights

  20. Antimicrobial Activity and Stability of Short and Long Based Arachnid Synthetic Peptides in the Presence of Commercial Antibiotics

    Directory of Open Access Journals (Sweden)

    Ivan Arenas

    2016-02-01

    Full Text Available Four antimicrobial peptides (AMPs named Pin2[G], Pin2[14], P18K and FA1 were chemically synthesized and purified. The four peptides were evaluated in the presence of eight commercial antibiotics against four microorganisms of medical importance: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The commercial antibiotics used were amoxicillin, azithromycin, ceftriaxone, gentamicin, levofloxacin, sulfamethoxazole, trimethoprim and vancomycin. The best AMP against P. aeruginosa was the peptide FA1, and the best AMP against S. aureus was Pin2[G]. Both FA1 and Pin2[G] were efficient against E. coli, but they were not effective against K. pneumoniae. As K. pneumoniae was resistant to most of the commercial antibiotics, combinations of the AMPs FA1 and Pin2[G] were prepared with these antibiotics. According to the fractional inhibitory concentration (FIC index, the best antimicrobial combinations were obtained with concomitant applications of mixtures of FA1 with levofloxacin and sulfamethoxazole. However, combinations of FA1 or Pin2[G] with other antibiotics showed that total inhibitory effect of the combinations were greater than the sum of the individual effects of either the antimicrobial peptide or the antibiotic. We also evaluated the stability of the AMPs. The AMP Pin2[G] manifested the best performance in saline buffer, in supernatants of bacterial growth and in human blood plasma. Nevertheless, all AMPs were cleaved using endoproteolytic enzymes. These data show advantages and disadvantages of AMPs for potential clinical treatments of bacterial infections, using them in conjunction with commercial antibiotics.

  1. Enzyme cofactors: Double-edged sword for catalysis

    Science.gov (United States)

    Ivanov, Ivaylo

    2013-01-01

    The metal cofactors responsible for the activity of CDK2 -- a representative member of the kinase superfamily of enzymes -- have now been shown to also have inhibitory effects during the catalytic cycle.

  2. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity......Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type...

  3. Screening And Optimizing Antimicrobial Peptides By Using SPOT-Synthesis

    Science.gov (United States)

    López-Pérez, Paula M.; Grimsey, Elizabeth; Bourne, Luc; Mikut, Ralf; Hilpert, Kai

    2017-04-01

    Peptide arrays on cellulose are a powerful tool to investigate peptide interactions with a number of different molecules, for examples antibodies, receptors or enzymes. Such peptide arrays can also be used to study interactions with whole cells. In this review, we focus on the interaction of small antimicrobial peptides with bacteria. Antimicrobial peptides (AMPs) can kill multidrug-resistant (MDR) human pathogenic bacteria and therefore could be next generation antibiotics targeting MDR bacteria. We describe the screen and the result of different optimization strategies of peptides cleaved from the membrane. In addition, screening of antibacterial activity of peptides that are tethered to the surface is discussed. Surface-active peptides can be used to protect surfaces from bacterial infections, for example implants.

  4. Major amyloid-β-degrading enzymes, endothelin-converting enzyme-2 and neprilysin, are expressed by distinct populations of GABAergic interneurons in hippocampus and neocortex.

    Science.gov (United States)

    Pacheco-Quinto, Javier; Eckman, Christopher B; Eckman, Elizabeth A

    2016-12-01

    Impaired clearance of amyloid-β peptide (Aβ) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aβ in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aβ that may be functionally significant. To better understand the differential regulation of Aβ concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease. In contrast to the broader distribution of ECE-1, ECE-2 and NEP were found enriched in GABAergic neurons. ECE-2 was majorly expressed by somatostatin-expressing interneurons and was active in isolated synaptosomes. NEP messenger RNA was found mainly in parvalbumin-expressing interneurons, with NEP protein localized to perisomatic parvalbuminergic synapses. The identification of somatostatinergic and parvalbuminergic synapses as hubs for Aβ degradation is consistent with the possibility that Aβ may have a physiological function related to the regulation of inhibitory signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Endogenous Opioid Peptides and Epilepsy: Quieting the Seizing Brain?

    Science.gov (United States)

    1988-08-01

    H. K. etal. (1988) Brain Res. 441, 381-385; "Lee, P. H K. etal. J. Neurosc. (in press) n.t., not tested masticatory jaw movements have activity and...there may be an increased model) (Table IV) opioid peptide- the brain. It seems possible that functional effect of the peptide2’. induced seizure...protection can be these general inhibitory properties Numerous preclinical studies have selectivity mediated by g- and on CNS neurons could function

  6. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...... to peptide transporters, as well as their role in drug delivery and in potential future drug design and targeted tissue delivery of peptides and peptidomimetics....

  7. Archaeal lipids in oral delivery of therapeutic peptides

    DEFF Research Database (Denmark)

    Jacobsen, Ann-Christin; Jensen, Sara M; Fricker, Gert

    2017-01-01

    types of liposomes are promising to protect their drug cargo, such as therapeutic peptides, against the acidic environment of the stomach and proteolytic degradation in the intestine. They appear to withstand lipolytic enzymes and bile salts and may thus deliver orally administered therapeutic peptides...

  8. Peptide synthesis in neat organic solvents with novel thermostable proteases

    NARCIS (Netherlands)

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J L M; Wu, Bian; Janssen, Dick B

    Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the

  9. Computational design of disulfide cyclic peptide as potential ...

    African Journals Online (AJOL)

    This research studied and evaluated the interaction of ligands and the enzyme in the hydrate state using molecular dynamics simulations at two different temperatures. Simulations were performed using two disulfide cyclic peptide inhibitors KRK and RKR, along with one linear peptide Bz-Nle-K-R-R-H as standard ligand.

  10. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential.

    Science.gov (United States)

    Mojica, Luis; de Mejía, Elvira González

    2016-02-01

    The aim was to optimize the production of bioactive peptides from black bean (Phaseolus vulgaris L.) protein isolate and to determine their biological potential using biochemical and in silico approaches. Protein fractions were generated using eight commercially available proteases after 2, 3 and 4 h and 1:20, 1:30 and 1:50 enzyme/substrate (E/S) ratios. The best combination of conditions to generate anti-diabetic peptides was with alcalase for 2 h and E/S of 1:20; with inhibition values for dipeptidyl peptidase IV (DPP-IV, 96.7%), α-amylase (53.4%) and α-glucosidase (66.1%). Generated peptides were characterized using LC-ESI-MS/MS. Molecular docking analysis was performed to predict individual peptide biological potential using DockingServer®. Peptides EGLELLLLLLAG, AKSPLF and FEELN inhibited DPP-IV more efficiently in silico through free energy interactions of -9.8, -9.6 and -9.5 kcal mol(-1), respectively, than the control sitagliptin (-8.67 kcal mol(-1)). The peptide TTGGKGGK (-8.97 kcal mol(-1)) had higher inhibitory potential on α-glucosidase compared to the control acarbose (-8.79 kcal mol(-1)). Peptides AKSPLF (-10.2 kcal mol(-1)) and WEVM (-10.1 kcal mol(-1)) generated a lower free energy interaction with the catalytic site of α-amylase in comparison with acarbose (-9.71 kcal mol(-1)). Bean peptides inhibited the tested enzymes through hydrogen bonds, polar and hydrophobic interactions. The main bindings on the catalytic site were with ASP192, GLU192 and ARG 253 on DPP-IV; TYR151, HIS201 and ILE235 on α-amylase; and ASP34, THR83 and ASN32 on α-glucosidase. For the first time, a systematic evaluation and characterization of the anti-diabetic peptides from black bean protein isolate is presented with the potential for inhibiting important molecular markers related to diabetes.

  11. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  12. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  13. Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions.

    Science.gov (United States)

    Kim, Sung-Kun; Castro, Aaron; Kim, Edward S; Dinkel, Austin P; Liu, Xiaoyun; Castro, Miguel

    2016-01-01

    Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2',4'-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2',4'-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2',4'-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2',4'-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2',4'-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2',4'-bridged thymidine. Molecular dynamics (MD) simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD) values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor) as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2',4'-bridged thymidine suggests the potential of bridged nucleosides as drug candidates.

  14. Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions.

    Directory of Open Access Journals (Sweden)

    Sung-Kun Kim

    Full Text Available Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2',4'-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2',4'-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2',4'-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2',4'-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2',4'-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2',4'-bridged thymidine. Molecular dynamics (MD simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2',4'-bridged thymidine suggests the potential of bridged nucleosides as drug candidates.

  15. Bioactive peptides of animal origin: a review.

    Science.gov (United States)

    Bhat, Z F; Kumar, Sunil; Bhat, Hina Fayaz

    2015-09-01

    Bioactive peptides are specific protein fragments which, above and beyond their nutritional capabilities, have a positive impact on the body's function or condition which may ultimately influence health. Although, inactive within the sequence of the parent proteins, these peptides can be released during proteolysis or fermentation and play an important role in human health by affecting the digestive, endocrine, cardiovascular, immune and nervous systems. Several peptides that are released in vitro or in vivo from animal proteins have been attributed to different health effects, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, opioid activities, enhancement of mineral absorption and/or bioavailability, cytomodulatory and immunomodulatory effects, antiobesity, and anti-genotoxic activity. Several functional foods based on the bioactivities of these peptides with scientifically evidenced health claims are already on the market or under development by food companies. Consumer's increasing interest in these products has given an impetus to the food industry and scientific sector who are continuously exploring the possibilities for the development of new functional products based on these peptides. In this review, we describe above stated properties of bioactive peptides of animal origin.

  16. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    Directory of Open Access Journals (Sweden)

    N. L. Rukavina Mikusic

    2016-01-01

    Full Text Available Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP and Ang-(1-7 may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7 was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7 and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7 stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7 on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7 was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7 on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7 enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  17. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Alice P. McCloskey

    2014-10-01

    Full Text Available Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.

  18. Human milk peptides differentiate between the preterm and term infant and across varying lactational stages

    NARCIS (Netherlands)

    Dingess, Kelly A.; Waard, de Marita; Boeren, Sjef; Vervoort, Jacques; Lambers, Tim T.; Goudoever, van Johannes B.; Hettinga, Kasper

    2017-01-01

    Variations in endogenous peptide profiles, functionality, and the enzymes responsible for the formation of these peptides in human milk are understudied. Additionally, there is a lack of knowledge regarding peptides in donor human milk, which is used to feed preterm infants when mother's own milk is

  19. Application of mimotope peptides of fumonisin b1 in Peptide ELISA.

    Science.gov (United States)

    Liu, Xing; Xu, Yang; He, Qing-hua; He, Zhen-yun; Xiong, Zheng-ping

    2013-05-22

    Anti-fumonisin B(1) (FB(1)) McAb 1D11 was used as the target for biopanning from a phage random loop-constrained heptapeptide library. After three cycles of panning, seven phages with three mimotope peptides were selected to mimic the binding of FB(1) to 1D11. After the identification of phage ELISA, the phage clone that showed the best linear range of detection was chosen for further research. One peptide with the inserted peptide sequence of the phage was synthetized, named CT-452. An indirect competitive ELISA (peptide ELISA) for detecting FB(1) was established using the CT-452-bovine serum albumin conjugate as coating antigen. The linear range of the inhibition curve was 1.77-20.73 ng/mL. The half inhibitory concentration (IC50) was 6.06 ng/mL, and the limit of detection was 1.18 ng/mL. This method was compared with conventional indirect ELISA (commercial ELISA kit) and high-performance liquid chromatography (HPLC), and the results showed the reliability of the peptide ELISA for the determination of FB(1) in cereal samples. The relationship between the CT-452 and FB(1) standard concentrations in peptide ELISA was evaluated. The results indicated that synthetic peptide CT-452 can replace the FB(1) standard to establish an immunoassay free of FB(1).

  20. Angiotensin I-converting enzyme inhibitor derived from cottonseed ...

    African Journals Online (AJOL)

    Six proteolytic enzymes, including alcalase, flavourzyme, trypsin, neutrase, papain and pepsin, were employed to hydrolyze cottonseed protein to produce the hydrolysates of Angiotensin I-converting enzyme (ACE) inhibitory activity. The result indicated that the cottonseed protein hydrolysate (CPH) produced by papain had ...

  1. Antimicrobial peptides in action

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert J.

    2006-01-01

    Molecular dynamics simulations of the magainin MG-H2 peptide interacting with a model phospholipid membrane have been used to investigate the mechanism by which antimicrobial peptides act. Multiple copies of the peptide were randomly placed in solution close to the membrane. The peptide readily

  2. Chlorinated Glycopeptide Antibiotic Peptide Precursors Improve Cytochrome P450-Catalyzed Cyclization Cascade Efficiency.

    Science.gov (United States)

    Peschke, Madeleine; Brieke, Clara; Goode, Rob J A; Schittenhelm, Ralf B; Cryle, Max J

    2017-03-07

    The activity of glycopeptide antibiotics (GPAs) depends upon important structural modifications to their precursor heptapeptide backbone: specifically, the cytochrome P450-catalyzed oxidative cross-linking of aromatic side chains as well as the halogenation of specific residues within the peptide. The timing of halogenation and its effect on the cyclization of the peptide are currently unclear. Our results show that chlorination of peptide precursors improves their processing by P450 enzymes in vitro, which provides support for GPA halogenation occurring prior to peptide cyclization during nonribosomal peptide synthesis. We could also determine that the activity of the second enzyme in the oxidative cyclization cascade, OxyA, remains higher for chlorinated peptide substrates even when the biosynthetic GPA product possesses an altered chlorination pattern, which supports the role of the chlorine atoms in orienting the peptide substrate in the active site of these enzymes.

  3. Peptides extracted from Artemisia herba alba have antimicrobial ...

    African Journals Online (AJOL)

    Key words: Ammonium sulfate precipitation, Artemisia herba alba, chromatography, Listeria monocytogenes, proteases, ultra-filtration. Abbreviations: AS-P: ammonium sulfate precipitate; MIC: minimum inhibitory concentration; PAMP: plant antimicrobial peptides ; PBC-E: phosphate buffer crude extract; RP-HPLC: reverse ...

  4. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  5. The leader peptide of mutacin 1140 has distinct structural components compared to related class I lantibiotics.

    Science.gov (United States)

    Escano, Jerome; Stauffer, Byron; Brennan, Jacob; Bullock, Monica; Smith, Leif

    2014-12-01

    Lantibiotics are ribosomally synthesized peptide antibiotics composed of an N-terminal leader peptide that promotes the core peptide's interaction with the post translational modification (PTM) enzymes. Following PTMs, mutacin 1140 is transported out of the cell and the leader peptide is cleaved to yield the antibacterial peptide. Mutacin 1140 leader peptide is structurally unique compared to other class I lantibiotic leader peptides. Herein, we further our understanding of the structural differences of mutacin 1140 leader peptide with regard to other class I leader peptides. We have determined that the length of the leader peptide is important for the biosynthesis of mutacin 1140. We have also determined that mutacin 1140 leader peptide contains a novel four amino acid motif compared to related lantibiotics. PTM enzyme recognition of the leader peptide appears to be evolutionarily distinct from related class I lantibiotics. Our study on mutacin 1140 leader peptide provides a basis for future studies aimed at understanding its interaction with the PTM enzymes. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Antimicrobial Peptides: Mechanisms of Action and Resistance.

    Science.gov (United States)

    Bechinger, B; Gorr, S-U

    2017-03-01

    More than 40 antimicrobial peptides and proteins (AMPs) are expressed in the oral cavity. These AMPs have been organized into 6 functional groups, 1 of which, cationic AMPs, has received extensive attention in recent years for their promise as potential antibiotics. The goal of this review is to describe recent advances in our understanding of the diverse mechanisms of action of cationic AMPs and the bacterial resistance against these peptides. The recently developed peptide GL13K is used as an example to illustrate many of the discussed concepts. Cationic AMPs typically exhibit an amphipathic conformation, which allows increased interaction with negatively charged bacterial membranes. Peptides undergo changes in conformation and aggregation state in the presence of membranes; conversely, lipid conformation and packing can adapt to the presence of peptides. As a consequence, a single peptide can act through several mechanisms depending on the peptide's structure, the peptide:lipid ratio, and the properties of the lipid membrane. Accumulating evidence shows that in addition to acting at the cell membrane, AMPs may act on the cell wall, inhibit protein folding or enzyme activity, or act intracellularly. Therefore, once a peptide has reached the cell wall, cell membrane, or its internal target, the difference in mechanism of action on gram-negative and gram-positive bacteria may be less pronounced than formerly assumed. While AMPs should not cause widespread resistance due to their preferential attack on the cell membrane, in cases where specific protein targets are involved, the possibility exists for genetic mutations and bacterial resistance. Indeed, the potential clinical use of AMPs has raised the concern that resistance to therapeutic AMPs could be associated with resistance to endogenous host-defense peptides. Current evidence suggests that this is a rare event that can be overcome by subtle structural modifications of an AMP.

  7. Wide-Inhibitory Spectra Bacteriocins Produced by Lactobacillus gasseri K7.

    Science.gov (United States)

    Zorič Peternel, Metoda; Čanžek Majhenič, Andreja; Holo, Helge; Nes, Ingolf F; Salehian, Zhian; Berlec, Aleš; Rogelj, Irena

    2010-12-01

    The aim of our study was to determine the genetic characterization and classification of Lb. gasseri K7 bacteriocins, comparison with bacteriocins of the Lb. gasseri LF221 strain and other related strains. Bacteriocin-encoding genes were amplified by PCR, subjected to DNA sequencing, and BLAST sequence analysis was performed to search the database for homologous peptides. Lb. gasseri K7 produces two two-peptide bacteriocins, named gassericin K7 A and gassericin K7 B. Their nucleotide sequences were deposited at GenBank, under accession numbers EF392861 for the gassericin K7 A and AY307382 for the gassericin K7 B. Analysis of gene clusters of bacteriocins in Lb. gasseri K7 strain revealed a 100 percent sequence identity with bacteriocins in LF221 strain. An active peptide of gassericin K7 B is homologous to the complementary peptide of gassericin T, and a complementary peptide of gassericin K7 B is homologous to the active peptide of gassericin T. Another surprising finding was that the sakacin T-beta peptide is partly homologous to the active peptide of gassericin K7 A, while the other sakacin T peptide (alfa) is partly homologous to the complementary peptide of gassericin K7 B. Gassericins of Lb. gasseri K7 strain were both classified as two-peptide bacteriocins. Human probiotic strains Lb. gasseri K7 and LF221 are different isolates but with identical bacteriocin genes. They produce wide-inhibitory spectra bacteriocins that are new members of two-peptide bacteriocins with some homologies to other bacteriocins in this group. Described bacteriocins offer a great potential in applications in food industry, pharmacy and biomedicine.

  8. Inhibitory control in childhood stuttering

    NARCIS (Netherlands)

    Eggers, K.; de Nil, L.; Van den Bergh, B.R.H.

    2013-01-01

    Purpose The purpose of this study was to investigate whether previously reported parental questionnaire-based differences in inhibitory control (IC; Eggers, De Nil, & Van den Bergh, 2010) would be supported by direct measurement of IC using a computer task. Method Participants were 30 children who

  9. Meat and meat products as a source of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Alfonso Totosaus

    2016-12-01

    Full Text Available Meat is a high protein content food, with great nutritional and biological value. Meat protein hydrolysis begins with the muscle to meat conversion, during meat ageing. After slaughter, endogen enzymes are responsible of meat softening since myofibrillar anchorage proteins are degraded. Protein hydrolysis continues during food preparation. When meat reaches the stomach, pepsin is the first enzyme to interact. As the food travel trough out gastrointestinal tract, pancreatic enzymes degraded the remained protein and the peptidases made the final proteolysis process. The small proteins or peptides are the absorbed to the circulatory system and distributed to the rest of the body. Bioactive peptides activity of meat and meat products is anti-hypertensive mainly, where histidine, carnosine and anserine are the main peptides identified. Another peptide with anti-oxidant activity is glutathione. The content depends on animal species.

  10. The species-specific mode of action of the antimicrobial peptide subtilosin against Listeria monocytogenes Scott A

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Noll, K.S.; Chikindas, M.L.

    2012-01-01

    Aims: To elucidate the molecular mechanism of action of the antimicrobial peptide subtilosin against the foodborne pathogen Listeria monocytogenes Scott A. Methods and Results: Subtilosin was purified from a culture of Bacillus amylliquefaciens. The minimal inhibitory concentration of subtilosin

  11. Bifidobacteria possess inhibitory activity against dipeptidyl peptidase-IV.

    Science.gov (United States)

    Zeng, Z; Luo, J Y; Zuo, F L; Yu, R; Zhang, Y; Ma, H Q; Chen, S W

    2016-03-01

    The incretin hormones are extremely rapidly metabolized by the ubiquitous enzyme dipeptidyl peptidase IV (DPP-IV). Therefore, DPP-IV inhibitors which can prolong the incretin effect are the newest and promising drugs for management of type 2 diabetes. In this study, we investigated whether Bifidobacteria colonizing the human gut possess DPP-IV inhibitory activity. Cell-free intracellular extracts of 13 Bifidobacterium strains isolated from breast-fed infant faecal samples were prepared and screened for DPP-IV inhibitory activity, and two Bifidobacterium strains-Bif. longum BBMN68 and Bif. lactis Bb12-were used as reference strains. Most of the strains showed varying levels of DPP-IV inhibitory property (7-27%). Strains of Bifidobacterium adolescentis IF1-11 and Bifidobacterium bifidum IF3-211 showed the greatest DPP-IV inhibitory activity (27 and 25%) as well as good in vitro probiotic properties. This initial finding suggested that new beneficial function of Bifidobacteria is strain-dependent and the strains or their components may have the potential application for management of type 2 diabetes via inhibiting gastrointestinal DPP-IV activity. Further investigations into the isolation and identification of the bioactive components of Bifidobacteria are warranted. Our results show that Bifidobacteria isolated from breast-fed infants' faecal samples possess DPP-IV inhibitory activity. Strains of Bifidobacterium bifidum IF3-211 and Bifidobacterium adolescentis IF1-11, which showed excellent DPP-IV inhibitory properties as well as good in vitro probiotic properties, are expected to be beneficial for application as anti-diabetic probiotics. © 2015 The Society for Applied Microbiology.

  12. Physicochemical characteristics of homogeneous bovine lung angiotensin I-converting enzyme. Comparison with human serum enzyme.

    Science.gov (United States)

    Harris, R B; Wilson, I B

    1982-08-01

    Angiotensin I-converting enzyme was purified to electrophoretic homogeneity (12 units/mg) from bovine lung tissue and from human serum using an affinity gel described previously (Harris et al., (1981) Anal. Biochem. 111, 227-234). The isoelectric point (4.5), molecular weight (145 000), S20,W (8.1), amino acid composition and carbohydrate content of the lung enzyme are all similar to the values obtained for the human serum enzyme. The NH2-terminus of the lung enzyme (Ala) is different from that of the serum enzyme (Tyr) but the COOH-terminal sequences are identical (-Leu-Ser-OH). Pure bovine lung enzyme was reduced and carboxyamidomethylated with iodo (14C1) acetamide to the extent predicted by the number of cysteine residues. Since no radioactivity was incorporated into denatured enzyme that was not reduced, all of the cysteine residues must be in the form of disulfide bonds. Reverse-phase HPLC was used to separate peptides obtained from the lung enzyme after degradation with either trypsin or cyanogen bromide. The number of peptides resolved (42 after trypsin, 31 after cyanogen bromide), were only 20% fewer than the number predicted from the amino acid analysis and therefore the possibility that the converting enzyme (a single polypeptide chain) might be a fused dimer is excluded.

  13. Physiochemical characteristics of homogeneous bovine lung angiotensin I-converting enzyme. Comparison with human serum enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.B.; Wilson, I.B. (Colorado Univ., Boulder (USA). Dept. of Chemistry)

    1982-01-01

    Angiotensin I-converting enzyme was purified to electrophoretic homogeneity (12 units/mg) from bovine lung tissue from human serum using an affinity gel described previously. The isoelectric point (4.5), molecular weight (145 000) Ssub(20,w)(8.1), amino acid composition and carbohydrate content of the lung enzyme are all similar to the values obtained for the human serum enzyme. The NH/sub 2/-terminus of the lung enzyme (Ala) is different from that of the serum enzyme (Tyr) but the COOH-terminal sequences are identical (-Leu-Ser-OH). Pure bovine lung enzyme was reduced and carboxyamidomethylated with iodo (/sup 14/C/sub 1/) acetamide to the extent predicted by the number of cysteine residues. Since no radioactivity was incorporated into denatured enzyme that was not reduced, all of the cysteine residues must be in the form of disulfide bonds. Reverse-phase HPLC was used to separate peptides obtained from the lung enzyme after degradation with either trypsin or cyanogen bromide. The number of peptides resolved (42 after trypsin, 31 after cyanogen bromide), were only 20% fewer than the number predicted from the amino acid analysis and therefore the possibility that the converting enzyme ( a single polypeptide chain) might be a fused dimer is excluded.

  14. The foetal pig pineal gland is richly innervated by nerve fibres containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY, but it does not secrete melatonin.

    Science.gov (United States)

    Bulc, Michał; Lewczuk, Bogdan; Prusik, Magdalena; Całka, Jarosław

    2013-05-01

    Innervation of the mammalian pineal gland during prenatal development is poorly recognized. Therefore, immunofluorescence studies of the pineals of 70- and 90-day-old foetuses of the domestic pig were performed using antibodies against tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH), neuropeptide Y (NPY) and C-terminal flanking peptide of NPY (CPON). The investigated glands were supplied by numerous nerve fibres containing TH and DβH. The density of these fibres was higher in the distal and middle parts of the gland than in the proximal one. NPY and CPON were identified in the majority of DβH-positive fibres as well as in a small population of DβH-negative fibres localized mainly in the proximal part of the pineal. The immunoreactive fibres were more numerous in 90-day-old foetuses than in 70-day-old ones. The effect of norepinephrine on melatonin secretion by the foetal pineals in the short-term organ culture was studied to determine the role of DβH-positive fibres during prenatal life. For the same purpose melatonin was measured in the blood in the umbilical cords and in the jugular vein of the mother. The pineals of both groups of foetuses did not secrete melatonin in the organ culture, independently of the presence or absence of norepinephrine in the medium. Melatonin concentrations in the blood in the umbilical cords of foetuses from the same litter and in the jugular vein of their mother were similar. The presence of adrenergic nerve fibres in the pig pineal during gestation does not seem to be associated with the control of melatonin secretion.

  15. Enzyme actuated bioresponsive hydrogels

    Science.gov (United States)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  16. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D. (Florida)

    2016-11-11

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight into the unique protein–protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.

  17. Predicting the important enzymes in human breast milk digestion.

    Science.gov (United States)

    Khaldi, Nora; Vijayakumar, Vaishnavi; Dallas, David C; Guerrero, Andrés; Wickramasinghe, Saumya; Smilowitz, Jennifer T; Medrano, Juan F; Lebrilla, Carlito B; Shields, Denis C; German, J Bruce

    2014-07-23

    Human milk is known to contain several proteases, but little is known about whether these enzymes are active, which proteins they cleave, and their relative contribution to milk protein digestion in vivo. This study analyzed the mass spectrometry-identified protein fragments found in pooled human milk by comparing their cleavage sites with the enzyme specificity patterns of an array of enzymes. The results indicate that several enzymes are actively taking part in the digestion of human milk proteins within the mammary gland, including plasmin and/or trypsin, elastase, cathepsin D, pepsin, chymotrypsin, a glutamyl endopeptidase-like enzyme, and proline endopeptidase. Two proteins were most affected by enzyme hydrolysis: β-casein and polymeric immunoglobulin receptor. In contrast, other highly abundant milk proteins such as α-lactalbumin and lactoferrin appear to have undergone no proteolytic cleavage. A peptide sequence containing a known antimicrobial peptide is released in breast milk by elastase and cathepsin D.

  18. Dual effect of chloramphenicol peptides on ribosome inhibition.

    Science.gov (United States)

    Bougas, Anthony; Vlachogiannis, Ioannis A; Gatos, Dimitrios; Arenz, Stefan; Dinos, George P

    2017-05-01

    Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se. Additionally, we found that the same compound is a strong inhibitor of green fluorescent protein synthesis in a coupled in vitro transcription-translation assay as well as a potent inhibitor of lysine polymerization in a poly(A)-programmed ribosome, showing that an additional inhibitory effect may exist. Since chemical protection data supported the interaction of the antibiotic with bases A2058 and A2059 near the entrance of the tunnel, we concluded that the extra inhibition effect on the synthesis of longer peptides is coming from interactions of the peptide moiety of the drug with residues comprising the ribosomal tunnel, and by filling up the tunnel and blocking nascent chain progression through the restricted tunnel. Therefore, the dual interaction of the chloramphenicol peptide with the ribosome increases its inhibitory effect and opens a new window for improving the antimicrobial potency of classical antibiotics or designing new ones.

  19. Cortical neurodynamics of inhibitory control.

    Science.gov (United States)

    Hwang, Kai; Ghuman, Avniel S; Manoach, Dara S; Jones, Stephanie R; Luna, Beatriz

    2014-07-16

    The ability to inhibit prepotent responses is critical for successful goal-directed behaviors. To investigate the neural basis of inhibitory control, we conducted a magnetoencephalography study where human participants performed the antisaccade task. Results indicated that neural oscillations in the prefrontal cortex (PFC) showed significant task modulations in preparation to suppress saccades. Before successfully inhibiting a saccade, beta-band power (18-38 Hz) in the lateral PFC and alpha-band power (10-18 Hz) in the frontal eye field (FEF) increased. Trial-by-trial prestimulus FEF alpha-band power predicted successful saccadic inhibition. Further, inhibitory control enhanced cross-frequency amplitude coupling between PFC beta-band (18-38 Hz) activity and FEF alpha-band activity, and the coupling appeared to be initiated by the PFC. Our results suggest a generalized mechanism for top-down inhibitory control: prefrontal beta-band activity initiates alpha-band activity for functional inhibition of the effector and/or sensory system. Copyright © 2014 the authors 0270-6474/14/349551-11$15.00/0.

  20. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  1. Brain natriutetic peptide test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  2. Vasoactive intestinal peptide test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  3. TRH-like peptides.

    Science.gov (United States)

    Bílek, R; Bičíková, M; Šafařík, L

    2011-01-01

    TRH-like peptides are characterized by substitution of basic amino acid histidine (related to authentic TRH) with neutral or acidic amino acid, like glutamic acid, phenylalanine, glutamine, tyrosine, leucin, valin, aspartic acid and asparagine. The presence of extrahypothalamic TRH-like peptides was reported in peripheral tissues including gastrointestinal tract, placenta, neural tissues, male reproductive system and certain endocrine tissues. Work deals with the biological function of TRH-like peptides in different parts of organisms where various mechanisms may serve for realisation of biological function of TRH-like peptides as negative feedback to the pituitary exerted by the TRH-like peptides, the role of pEEPam such as fertilization-promoting peptide, the mechanism influencing the proliferative ability of prostatic tissues, the neuroprotective and antidepressant function of TRH-like peptides in brain and the regulation of thyroid status by TRH-like peptides.

  4. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  5. A liver metalloendopeptidase which degrades the circulating hypotensive peptide hormones bradykinin and atrial natriuretic peptide

    Directory of Open Access Journals (Sweden)

    Carvalho K.M.

    1999-01-01

    Full Text Available A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11 and angiotensin-converting enzyme (EC 3.4.15.1, respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM and for atrial natriuretic peptide (Km = 5 µM suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.

  6. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Science.gov (United States)

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  7. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells

    Science.gov (United States)

    Momordica charantia is a perennial plant with reported health benefits. BG-4, a novel peptide from Momordica charantia, was isolated, purified and characterized. The trypsin inhibitory activity of BG-4 is 8.6 times higher than purified soybean trypsin inhibitor. The high trypsin inhibitory activity ...

  8. Prediction of antimicrobial activity of synthetic peptides by a decision tree model.

    Science.gov (United States)

    Lira, Felipe; Perez, Pedro S; Baranauskas, José A; Nozawa, Sérgio R

    2013-05-01

    Antimicrobial resistance is a persistent problem in the public health sphere. However, recent attempts to find effective substitutes to combat infections have been directed at identifying natural antimicrobial peptides in order to circumvent resistance to commercial antibiotics. This study describes the development of synthetic peptides with antimicrobial activity, created in silico by site-directed mutation modeling using wild-type peptides as scaffolds for these mutations. Fragments of antimicrobial peptides were used for modeling with molecular modeling computational tools. To analyze these peptides, a decision tree model, which indicated the action range of peptides on the types of microorganisms on which they can exercise biological activity, was created. The decision tree model was processed using physicochemistry properties from known antimicrobial peptides available at the Antimicrobial Peptide Database (APD). The two most promising peptides were synthesized, and antimicrobial assays showed inhibitory activity against Gram-positive and Gram-negative bacteria. Colossomin C and colossomin D were the most inhibitory peptides at 5 μg/ml against Staphylococcus aureus and Escherichia coli. The methods described in this work and the results obtained are useful for the identification and development of new compounds with antimicrobial activity through the use of computational tools.

  9. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization.

    Science.gov (United States)

    Nielsen, Søren Drud; Beverly, Robert L; Qu, Yunyao; Dallas, David C

    2017-10-01

    During processing and digestion, milk proteins are disassembled into peptides with an array of biological functions, including antimicrobial, angiotensin-converting enzyme inhibition, antioxidant, opioid, and immunomodulation. These functions are summarized in numerous reviews, yet information on which peptides have which functions remains scattered across hundreds of research articles. We systematically searched the literature for all instances of bioactive peptides derived from milk proteins from any mammalian source. The data were compiled into a comprehensive database, which can be used to search for specific functions, peptides, or proteins (http://mbpdb.nws.oregonstate.edu). To review this large dataset, the bioactive peptides reported in the literature were visually mapped on the parent protein sequences, providing information on sites with highest abundance of bioactive peptides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  11. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  12. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  14. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  15. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. C-Peptide Test

    Science.gov (United States)

    ... Weisenberger, J. (2013 March) Why Does a C-Peptide Test Matter? Diabetes Forecast [On-line information]. Available online at http:// ... Updated). What is c-peptide? What do c-peptide levels mean? Misc.health.diabetes, diabetes FAQ [On-line information from newsgroup]. Available ...

  17. Peptide fibrils as monomer storage of the covalent HIV-1 integrase inhibitor.

    Science.gov (United States)

    Chandra, Koushik; Das, Priyadip; Metanis, Norman; Friedler, Assaf; Reches, Meital

    2017-02-01

    We have recently reported the covalent inhibition of HIV-1 integrase by an N-terminal succinimide-modified lens epithelium-derived growth factor (361-370) peptide. We also showed that this peptide is proteolytically stable. Here, we show that this inhibitor is stored as fibrils that serve as a stock for the inhibitory monomers. The fibrils increase the local concentration of the peptide at the target protein. When the monomers bind integrase, the equilibrium between the fibrils and their monomers shifts towards the formation of peptide monomers. The combination of fibril formation and subsequent proteolytic stability of the peptide may bring to new strategy for developing therapeutic agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  18. Antimicrobial peptides with stability toward tryptic degradation.

    Science.gov (United States)

    Svenson, Johan; Stensen, Wenche; Brandsdal, Bjørn-Olav; Haug, Bengt Erik; Monrad, Johnny; Svendsen, John S

    2008-03-25

    The inherent instability of peptides toward metabolic degradation is an obstacle on the way toward bringing potential peptide drugs onto the market. Truncation can be one way to increase the proteolytic stability of peptides, and in the present study the susceptibility against trypsin, which is one of the major proteolytic enzymes in the gastrointestinal tract, was investigated for several short and diverse libraries of promising cationic antimicrobial tripeptides. Quite surprisingly, trypsin was able to cleave very small cationic antimicrobial peptides at a substantial rate. Isothermal titration calorimetry studies revealed stoichiometric interactions between selected peptides and trypsin, with dissociation constants ranging from 1 to 20 microM. Introduction of hydrophobic C-terminal amide modifications and likewise bulky synthetic side chains on the central amino acid offered an effective way to increased half-life in our assays. Analysis of the degradation products revealed that the location of cleavage changed when different end-capping strategies were employed to increase the stability and the antimicrobial potency. This suggests that trypsin prefers a bulky hydrophobic element in S1' in addition to a positively charged side chain in S1 and that this binding dictates the mode of cleavage for these substrates. Molecular modeling studies supported this hypothesis, and it is shown that small alterations of the tripeptide result in two very different modes of trypsin binding and degradation. The data presented allows for the design of stable cationic antibacterial peptides and/or peptidomimetics based on several novel design principles.

  19. Identification, In Vitro Testing and Molecular Docking Studies of Microginins’ Mechanism of Angiotensin-Converting Enzyme Inhibition

    Directory of Open Access Journals (Sweden)

    Fernanda C. R. Paiva

    2017-12-01

    Full Text Available Cyanobacteria are able to produce a wide range of secondary metabolites, including toxins and protease inhibitors, with diverse biological activities. Microginins are small linear peptides biosynthesized by cyanobacteria species that act against proteases. The aim of this study was to isolate and identify microginins produced by the LTPNA08 strain of Microcystis aeruginosa, as well as to verify their potential to inhibit angiotensin-converting enzyme (ACE; EC. 3.4.15.1 using in vitro and in silico methods. The fractionation of cyanobacterial extracts was performed by liquid chromatography and the presence of microginins was monitored by both LC-MS and an ACE inhibition assay. Enzyme inhibition was assayed by ACE with hippuryl-histidyl-leucine as the substrate; monitoring of hippuric acid was performed by HPLC-DAD. Isolated microginins were confirmed by mass spectrometry and were used to carry out the enzymatic assay. Molecular docking was used to evaluate microginin 770 (MG 770 and captopril (positive control, in order to predict similar binding interactions and determine the inhibitory action of ACE. The enzyme assay confirmed that MG 770 can efficiently inhibit ACE, with an IC50 equivalent to other microginins. MG 770 presented with comparable interactions with ACE, having features in common with commercial inhibitors such as captopril and enalaprilate, which are frequently used in the treatment of hypertension in humans.

  20. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis

    DEFF Research Database (Denmark)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath

    2012-01-01

    present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin...

  1. Presence of cholinomimetic and acetylcholinesterase inhibitory constituents in betel nut.

    Science.gov (United States)

    Gilani, Anwar H; Ghayur, M Nabeel; Saify, Zafar S; Ahmed, Shahida P; Choudhary, M Iqbal; Khalid, Asaad

    2004-10-01

    In this investigation, we report the presence of cholinomimetic and acetylcholinesterase (AChE) inhibitory constituents in betel nut, the most commonly used drug in the world after tobacco, ethanol and caffeine. The crude extract of betel nuts or Areca catechu (Ac.Cr) caused a dose-dependent (0.3-300 microg/mL) spasmogenic effect in the isolated rabbit jejunum. The spasmogenic effect was blocked by atropine, similar to that of acetylcholine (ACh), suggestive of muscarinic receptor mediated effect. Both the extract (0.3-10 microg/mL) and physostigmine (0.1-3.0 microM) potentiated the effect of a fixed dose of ACh (10 microM) in a dose-dependent fashion, suggesting acetylcholinesterase (AChE) inhibitory effect. This effect was confirmed in the in vitro assay where both the crude extract (1-100 microg/mL) and physostigmine inhibited the enzyme. In the in vivo model of gastrointestinal transit, Ac.Cr (10-30 mg/kg) enhanced the travel of charcoal meal and also exhibited a laxative effect in mice. The plant extract was subjected to activity-directed fractionation and all resultant fractions showed atropine-sensitive spasmogenicity in rabbit jejunum and also AChE inhibitory effect at doses similar to that for the parent crude extract, the ethyl acetate fraction being slightly less potent. Some of the known constituents of betel nut, including arecoline, were tested for the possible inhibitory effect on AChE, none were found active. The study provides first evidence for the presence of AChE inhibitory constituents in betel nut, though additional direct muscarinic stimulatory effect cannot be ruled out and this study provides sound scientific basis for some of the folkloric uses associated with betel nut chewing.

  2. Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice.

    Science.gov (United States)

    Almaas, Hilde; Eriksen, Ellen; Sekse, Camilla; Comi, Irene; Flengsrud, Ragnar; Holm, Halvor; Jensen, Einar; Jacobsen, Morten; Langsrud, Thor; Vegarud, Gerd E

    2011-09-01

    Peptides in caprine whey were identified after in vitro digestion with human gastrointestinal enzymes in order to determine their antibacterial effect. The digestion was performed in two continuing steps using human gastric juice (pH 2·5) and human duodenal juice (pH 8) at 37°C. After digestion the hydrolysate was fractionated and 106 peptides were identified. From these results, twenty-two peptides, located in the protein molecules, were synthesised and antibacterial activity examined. Strong activity of the hydrolysates was detected against Escherichia coli K12, Bacillus cereus RT INF01 and Listeria monocytogenes, less activity against Staphylococcus aureus ATCC 25 923 and no effect on Lactobacillus rhamnosus GG. The pure