WorldWideScience

Sample records for enzyme immobilized electrodes

  1. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    Science.gov (United States)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  2. Thermal Stabilization of Enzymes Immobilized within Carbon Paste Electrodes.

    Science.gov (United States)

    Wang, J; Liu, J; Cepra, G

    1997-08-01

    In this note we report on the remarkable thermal stabilization of enzymes immobilized in carbon paste electrodes. Amperometric biosensors are shown for the first time to withstand a prolonged high-temperature (>50 °C) stress. Nearly full activity of glucose oxidase is retained over periods of up to 4 months of thermal stress at 60-80 °C. Dramatic improvements in the thermostability are observed for polyphenol oxidase, lactate oxidase, alcohol oxidase, horseradish peroxidase, and amino acid oxidase. Such resistance to heat-induced denaturation is attributed to the conformational rigidity of these biocatalysts within the highly hydrophobic (mineral oil or silicone grease) pasting liquid. While no chemical stabilizer is needed for attaining such protective action, it appears that low humidity (i.e., low water content) is essential for minimizing the protein mobility. Besides their implications for electrochemical biosensors, such observations should lead to a new generation of thermoresistant enzyme reactors based on nonpolar semisolid supports.

  3. A new amperometric enzyme electrode for alcohol determination.

    Science.gov (United States)

    Gülce, H; Gülce, A; Kavanoz, M; Coşkun, H; Yildiz, A

    2002-06-01

    A new enzyme electrode for the determination of alcohols was developed by immobilizing alcohol oxidase in polvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of enzymatically generated H(2)O(2) was measured at a constant potential of +0.70 V versus SCE. The effects of substrate, buffer and enzyme concentrations, pH and temperature on the response of the electrode were investigated. The optimum pH was found to be pH 8.0 at 30 degrees C. The steady-state current of this enzyme electrode was reproducible within +/-5.0% of the relative error. The sensitivity of the enzyme electrode decreased in the following order: methanol>ethanol>n-butanol>benzyl alcohol. The linear response was observed up to 3.7 mM for methanol, 3.0 mM for ethanol, 6.2 mM for n-butanol, and 5.2 mM for benzyl alcohol. The apparent Michaelis-Menten constant (K(Mapp)) value and the activation energy, E(a), of this immobilized enzyme system were found to be 5.78 mM and 38.07 kJ/mol for methanol, respectively.

  4. A novel ethanol/oxygen microfluidic fuel cell with enzymes immobilized onto cantilevered porous electrodes

    Science.gov (United States)

    Desmaële, D.; Nguyen-Boisse, T. T.; Renaud, L.; Tingry, S.

    2016-11-01

    This paper introduces a novel design of membraneless microfluidic biofuel cell that incorporates three-dimensional porous electrodes containing immobilized enzymes to catalyze redox reactions occurring in the presence of ethanol/O2 co-laminar flows. In order to maximize the penetration depth of the reactants inside the porous medium, we report on the preliminary evaluation of cantilevered bioelectrodes, namely the fibrous electrodes protrude along the internal walls of the miniature electrochemical chamber. As a first proof-of-concept, we demonstrate the integration of a bioanode and a biocathode into a lamination-based microfluidic cell fabricated via rapid prototyping. With enzymes deposited into the fibrous structure of 25 mm long, 1 mm wide and 0.11 mm thick carbon paper electrodes, the volumetric power density reached 1.25 mW cm-3 at 0.43 V under a flow rate of 50 μL min-1. An advantage of the presented microfluidic biofuel cell is that it can be adapted to include a larger active electrode volume via the vertical stacking of multiple thin bioelectrodes. We therefore envision that our design would be amenable to reach the level of net power required to supply energy to a plurality of low-consumption electronic devices.

  5. High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Ditsayut Phokharatkul

    2009-10-01

    Full Text Available In this report, a new cholesterol sensor is developed based on a vertically aligned CNT electrode with two-step electrochemical polymerized enzyme immobilization. Vertically aligned CNTs are selectively grown on a 1 mm2 window of gold coated SiO2/Si substrate by thermal chemical vapor deposition (CVD with gravity effect and water-assisted etching. CNTs are then simultaneously functionalized and enzyme immobilized by electrochemical polymerization of polyaniline and cholesterol enzymes. Subsequently, ineffective enzymes are removed and new enzymes are electrochemically recharged. Scanning electron microscopic characterization indicates polymer-enzyme nanoparticle coating on CNT surface. Cyclic voltammogram (CV measurements in cholesterol solution show the oxidation and reduction peaks centered around 450 and −220 mV, respectively. An approximately linear relationship between the cholesterol concentration and the response current could be observed in the concentration range of 50–300 mg/dl with a sensitivity of approximately 0.22 μA/mg·dl−1, which is considerably higher compared to previously reported CNT bioprobe. In addition, good specificity toward glucose, uric acid acetaminophen and ascorbic acid have been obtained. Moreover, sensors have satisfactory stability, repeatability and life time. Therefore, the electropolymerized CNT bioprobe is promising for cholesterol detection in normal cholesterol concentration in human blood.

  6. Carbon Nanotube Modified Screen Printed Electrodes: Pyranose Oxidase Immobilization Platform for Amperometric Enzyme Sensors

    Directory of Open Access Journals (Sweden)

    Dilek ODACI DEMIRKOL

    2017-03-01

    Full Text Available Here, a novel enzymatic biosensor was developed using multiwalled carbon nanotube including screen printed electrodes (MWCNT-SPE. Pyranose oxidase (PyOx was immobilized on the electrode surface by way of gelatin membrane and then cross-linked using glutaraldehyde. Glucose was detected at -0.7 V (vs. Ag/AgCl by watching consumed oxygen in enzymatic reaction after addition substrate. After optimization of pH and enzyme loading, the linearity was found in the range of 0.1–1.0 mM of glucose. After that, the effect of MCNT on the current was tested. Also the enzymatic biosensor including glucose oxidase instead of pyranose oxidase was prepared and the biosensor response followed for glucose. Furthermore, this system was tested for glucose analysis in soft drinks.

  7. Enzyme-immobilized SiO2-Si electrode: Fast interfacial electron transfer with preserved enzymatic activity

    Science.gov (United States)

    Wang, Gang; Yau, Siu-Tung

    2005-12-01

    The enzyme, glucose oxidase (GOx), is immobilized using electrostatic interaction on the native oxide of heavily doped n-type silicon. Voltammetric measurement shows that the immobilized GOx gives rise to a very fast enzyme-silicon interfacial electron transfer rate constant of 7.9s-1. The measurement also suggests that the enzyme retains its native conformation when immobilized on the silicon surface. The preserved native conformation of GOx is further confirmed by testing the enzymatic activity of the immobilized GOx using glucose. The GOx-immobilized silicon is shown to behave as a glucose sensor that detects glucose with concentrations as low as 50μM.

  8. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    Science.gov (United States)

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  9. BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. 1. POTENTIOMETRIC ENZYME ELECTRODE. (R823663)

    Science.gov (United States)

    A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)nerve agents was developed. The basic element of this enzyme electrode was a pH electrodemodified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linkingOPH ...

  10. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  11. Application of silicalite for improvement of enzyme adsorption on the stainless steel electrodes

    Directory of Open Access Journals (Sweden)

    Pyeshkova V. N.

    2014-11-01

    Full Text Available Aim. Improvement of analytical characteristics of an enzyme biosensor based on new inexpensive perspective stainless steel electrodes using silicalite nanoparticles. Methods. Conductometric enzyme biosensor was used. Results. Three methods of glucose oxidase (GOx immobilization were studied and compared: GOx adsorption on silicalite modified electrodes (GOx-SME; cross-linking by glutaraldehyde without silicalite (GOx-GA; GOx adsorption on SME along with cross-linking by glutaraldehyde (GOx-SME-GA. The GOx-SME-GA biosensors based on stainless steel electrodes were characterized by 12–25-fold higher sensitivity comparing with other biosensors. The developed GOx-SME-GA biosensors were characterized by good reproducibility of glucose biosensors construction (relative standard deviation (RSD – 18 %, improved signal reproducibility (RSD of glucose determination was 7 % and good storage stability (29 % loss of activity after 18 days. Conclusions. The method of enzyme immobilization using silicalite together with GA cross-linking sufficiently enhances the enzyme adsorption on the stainless steel electrodes and improves the analytical parameters of biosensors. This method is found to be promising for further creation of other enzyme biosensors.

  12. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  13. Improved immobilization of laccase on a glassy carbon electrode by oriented covalent attachment

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2014-01-01

    Full Text Available A laccase from Thermus thermophilus HB27 was reported to be potentially useful in the design of a temperature controlled biofuel cell. For enhancing its application in different thermal conditions, we engineered a laccase-oriented immobilized electrode. A site-directed mutant N323C of the laccase was constructed. A photometric assay was employed in order to compare the catalytic properties of wild-type laccase and mutant. The mutant was attached to a glass carbon electrode by covalent cross-linking. The electrochemical properties of the immobilized laccase were investigated by cyclic voltammetry. This immobilization allowed the active electrode to function at temperatures up to 95°C. The thermal and pH dependence profiles were similar to those of the soluble enzyme investigated by spectrophotometry.

  14. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    Directory of Open Access Journals (Sweden)

    Mambo Moyo

    2012-01-01

    Full Text Available Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.

  15. Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Beneyton, T.; El Harrak, A.; Griffiths, A.D.; Taly, V. [Institut de Science et d' Ingenierie Supramoleculaire, CNRS UMR, Strasbourg (France); Hellwig, P. [Institut de Chimie, Universite de Strasbourg, CNRS UMR, Strasbourg (France)

    2011-01-15

    Thanks to their high stability over a wide range of experimental conditions, extremophilic enzymes represent an interesting alternative to mesophilic enzymes as catalysts for biofuel cell applications. In the present work, we report for the first time the immobilization of a thermophilic laccase (CotA from Bacillus subtilis endospore coat) on glassy carbon electrodes functionalized via electrochemical reduction of in situ generated aminophenyl monodiazonium salts. We compare the performance of CotA-modified electrodes for the reduction of O{sub 2} to mutant variants and demonstrate that the measured electrical current is directly correlated to the catalytic efficiencies (k{sub cat}/K{sub m}) of the immobilized enzyme. CotA-modified electrodes showed an optimal operation temperature of 45-50 C and stable catalytic activity for at least 7 weeks. (author)

  16. Effect of mediator added to modified paste carbon electrodes with immobilized laccase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Marcelo Silva Ferreira

    2015-05-01

    Full Text Available Carbon paste electrodes based on the immobilization of laccase from Aspergillus oryzae were developed and voltammetric measurements were performed to evaluate the amperometric response. The 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid diammonium salt  (ABTS functions as substrate and mediator for the laccase enzyme. Electrodes were modified  in two different conditions: without mediator (EPC/laccase and with mediator (EPC/laccase/ABTS. The addition of ABTS as a mediator increased eight-fold the amperometric response. The electrode was sensitive to pH variation with best response at pH 4.0. Studies on different concentrations of laccase and ABTS at different pH rates revealed that the composition 187 U mL-1 in laccase and 200 µL of ABTS obtained the highest amperometric response. The carbon paste electrode modified with ABTS proved to be a good base for the immobilization of the laccase enzyme. Moreover, it is easy to manufacture and inexpensive to produce a modified electrode with potential application in biosensors.

  17. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    International Nuclear Information System (INIS)

    Alonso, Jose Maria; Bielen, Abraham A.M.; Olthuis, Wouter; Kengen, Servé W.M.; Zuilhof, Han; Franssen, Maurice C.R.

    2016-01-01

    Highlights: • Three different oxidases are covalently attached to alkene based SAMs on PtOx. • Attached enzymes remain active and their activity is assessed by chronoamperometry. • Functionalized PtOx allows electron mediator free chronoamperometry measurements. • The thus formed enzyme electrodes are useful as biosensors for glucose and lactate. • Immobilization of human HAOX foresees in vivo lactate monitoring in humans. - Abstract: Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH_2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  18. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose Maria; Bielen, Abraham A.M. [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands); Olthuis, Wouter [BIOS Lab on a Chip Group, MESA+ and MIRA Institutes, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kengen, Servé W.M. [Laboratory of Microbiology, Wageningen University, 6703HB Wageningen (Netherlands); Zuilhof, Han, E-mail: han.zuilhof@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands); Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 22254 (Saudi Arabia); Franssen, Maurice C.R., E-mail: maurice.franssen@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen (Netherlands)

    2016-10-15

    Highlights: • Three different oxidases are covalently attached to alkene based SAMs on PtOx. • Attached enzymes remain active and their activity is assessed by chronoamperometry. • Functionalized PtOx allows electron mediator free chronoamperometry measurements. • The thus formed enzyme electrodes are useful as biosensors for glucose and lactate. • Immobilization of human HAOX foresees in vivo lactate monitoring in humans. - Abstract: Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH{sub 2}-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  19. Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

    Science.gov (United States)

    Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.

    2014-03-01

    Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.

  20. The development, characterization, and application of biomimetic nanoscale enzyme immobilization

    Science.gov (United States)

    Haase, Nicholas R.

    antimicrobial silver ions. It is demonstrated that these two antimicrobial agents work in a synergistic manner for enhanced antimicrobial efficacy. Evidence of the proposed mechanism of synergy, namely enhanced release of silver ions by reaction of H2O2 with silver nanoparticles, is provided. Finally, the deployment of these materials in silk fibroins for development as wound dressings is also presented. Protamine cross-linking was then extended to the oxygen-reducing enzyme laccase to explore the use of this modified enzyme in an enzymatic biocathode. In this application laccase accepts electrons from the electrode and uses them to reduce oxygen to water molecules. The protamine-cross-linked enzyme exhibits a higher degree of immobilization, better retention of activity once immobilized, and superior electrochemical activity versus the native enzyme. Finally, preliminary research on the structure-function relationships of 16-mer peptides which adsorb to surfaces and deposit titanium oxide is presented. Specifically, the effect of content and distribution of arginine residues on the ability of peptides to adsorb to surfaces and subsequently deposit mineral oxides was investigated. The data demonstrate that surface adsorption of the peptides relies on both a critical number of arginine residues and their position within the peptide. Furthermore, the exchange of serine against arginine residues in surface-adsorbed peptides is detrimental to Ti-O deposition.

  1. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  2. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and {beta}-lactamase on glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Bi; Ma Ming [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Su Xiaoli, E-mail: xsu@hunnu.edu.cn [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2010-07-26

    An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and {beta}-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 {mu}g L{sup -1}) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.

  3. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode

    International Nuclear Information System (INIS)

    Chen Bi; Ma Ming; Su Xiaoli

    2010-01-01

    An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and β-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 μg L -1 ) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.

  4. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    International Nuclear Information System (INIS)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-01-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive

  5. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei, E-mail: djw@suda.edu.cn

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive.

  6. Amperometric pyruvate sensor based on a pyruvate dehydrogenase-immobilized carbon paste electrode containing vitamin K3 as a mediator

    Energy Technology Data Exchange (ETDEWEB)

    Miki, K. [Nara National College of Technology, Nara (Japan); Kinoshita, H. [Kawassui Women`s College, Nagasaki (Japan); Yamamoto, Y. [Kyoto Municipal Junior College of Nursing, Kyoto (Japan); Taniguchi, N. [Kyoto Research Center for Hygiene, Kyoto (Japan); Ikeda, T. [Kyoto University, Kyoto (Japan). Faculty of Agriculture

    1995-12-05

    Pyruvate dehydrogenase (PDH) was immobilized on the surface of a carbon paste electrode containing vitamin K3 (2-Methyl-1,4-naphthoquinone, VK), and the electrode surface was covered with a dialysis membrane. The enzyme electrode produced an anodic current starting from -0.2 V to reach a limiting current at +0.1 V vs. Ag/AgCl due to the enzyme-catalyzed oxidation of pyruvate in a phosphate buffer solution of pH 7.0. The current response to pyruvate depended on the amounts of both the immobilized-PDH and VK mixed in the carbon paste electrode at low amount of the enzyme and VK, and became independent at above 0.15 mg PDH and 0.65% (w/w) VK. The electrode with 0.15mg PDH and 0.65% (w/w) VK could be used as a pyruvate sensor to measure in the range of 2 ,{mu}M to 3mM. The response time was about 60 sec, and the current was independent of pH in the range of 5.7 - 7.2. The presence of L-ascorbic acid didn`t interfere with this measurement. Phosphate ion could also be determined with this electrode in a citrate buffer solution. 14 refs., 6 figs., 1 tab.

  7. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  8. Ceramic membrane microfilter as an immobilized enzyme reactor.

    Science.gov (United States)

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  9. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  10. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  11. Application of magnetic nanoparticles in smart enzyme immobilization.

    Science.gov (United States)

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin

    2016-02-01

    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.

  12. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  13. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  14. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  15. Immobilization of olfactory receptors onto gold electrodes for electrical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Casuso, Ignacio [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: icasuso@pcb.ub.es; Pla-Roca, Mateu [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Gomila, Gabriel [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: ggomila@pcb.ub.es; Samitier, Josep [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Minic, Jasmina; Persuy, Marie A.; Salesse, Roland; Pajot-Augy, Edith [INRA, Neurobiologie de l' Olfaction et de la Prise Alimentaire, Equipe Recepteurs et Communication Chimique, Domaine de Vilvert, Jouy en Josas Cedex (France)

    2008-07-01

    We investigate the immobilization of native nanovesicles containing functional olfactory receptors onto gold electrodes by means of atomic force microscopy in liquid. We show that nanovesicles can be adsorbed without disrupting them presenting sizes once immobilized ranging from 50 nm to 200 nm in diameter. The size of the nanovesicles shows no dependence on the electrode hydrophobicity being constant in a height/width ratio close to 1:3. Nevertheless, electrode hydrophobicity does affect the surface coverage, the surface coverage is five times higher in hydrophilic electrodes than on hydrophobic ones. Surface coverage is also affected by nanovesicles dimensions in suspension, the size homogenization to around 50 nm yields a further five fold increment in surface coverage achieving a coverage of about 50% close to the hard spheres jamming limit (54.7%). A single layer of nanovesicles is always formed with no particle overlap. Present results provide insights into the immobilization on electrodes of olfactory receptors for further olfactory electrical biosensor development.

  16. Enzyme electrode configurations : for application in biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoju

    2012-07-01

    The conducting polymer, poly (3,4-ethylenedioxythiophene) (PEDOT) film is a suitable matrix material for the enzymes, due to its outstanding properties, specifically, high electrical conductivity and excellent inherent environmental stability. The counter ions for PEDOT have a significant effect on the structural features and morphology of the polymer film produced by electropolymerization. Different carbon-based materials, ranging from paper-like carbon ink paper or carbon paper to reticulated vitreous carbon foam (RVC foam), were explored as substrate materials for PEDOT film generation by electropolymerization. The immobilization of Trametes hirsuta laccase (ThL) in the PEDOT film was facilitated via in situ entrapment during electropolymerization. When 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonate) (ABTS{sup 2-}) was used as the mediator, the immobilized ThL exhibited catalytic activity for the reduction of O{sub 2} to water. The amount of ThL in the PEDOT matrix is tunable by controlling the manufacturing parameters, including the charge density used for the electropolymerization of the EDOT monomer and the ThL concentration in the electropolymerization electrolyte. The use of a porous material, e.g., RVC foam, as the PEDOT supporting template was tested to improve the current density per unit area/volume generated by biocathodes. These RVC foam-based biocathodes produced a large current density, reaching 1 mA/cm{sup 3} at 0.45 V when 19.5 {mu}g/ml of ThL was used in the electropolymerization electrolyte. In addition, direct electron transfer (DET) type biocatalysis was accomplished for ThL by immobilizing ThL into a fine-tuned dual-layer-architecture of PEDOT films. In a PEDOTNO{sub 3}/ ThL/PEDOT-PSS enzyme electrode, the reduction of O{sub 2} to water was catalyzed by ThL with the T1 Cu site as the primary electron acceptor. The fabrication parameters included different combinations of PEDOT films, ThL loadings, and thicknesses of both PEDOT layers

  17. Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme

    Science.gov (United States)

    Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.

    2018-05-01

    Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.

  18. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  19. Studies of the immobilization of enzymes and microorganism pt.1

    International Nuclear Information System (INIS)

    Kim, S.K.

    1979-01-01

    A new method of immobilization of glucose oxidase by the aerobic gamma radiation of synthetic monomers was developed. The radiocopolymerization was conducted aerobically at -70 to-80 degC with the mixture of several polyfunctional esters, acrylates and native enzyme. The retained activity of immobilized glucoseoxidase was about 50 to 55% when a NK 23G ester, acrylamide-bis and water mixture (1:1:2) in cold toluene treated with 450 Krad of gamma radiation. The radiation dose did not influence significantly to the enzyme activity. The solvents used to prepare the beads of glucose oxidase and monomers were toluene, n-hexane, petoleum ether and chloroform. 0.05M tris-gycerol(pH 7.0) was a more suitable buffer solution for immobilizing the enzyme than was 0.02M phosphate. Immobilization of glucose oxidase shifted the optimum pH for its reaction from 6.0 to 6.5. The pH profile for the immobilized enzyme showed a broad range of optimum activity while the native enzyme gave a sharp pick for its optimum pH value. The immobilized enzyme reaction temperature was at the range of 30-40 degreesC. (Author)

  20. Horseradish Peroxidase (HRP Immobilized Poly(aniline-co-m-aminophenol Film Electrodes–fabrication and Evaluation as Hydrogen Peroxide Sensor

    Directory of Open Access Journals (Sweden)

    Seong-Ho Choi

    2007-05-01

    Full Text Available Enzyme modified electrodes were fabricated with poly(aniline-co-m-aminophenol. Electrochemical polymerization of aniline and m-aminophenol wasperformed to get the film of copolymer on the surface of gold electrode. Modifiedelectrodes were fabricated by two methods, physical entrapment and covalent cross-linking.In one of the method, gold nanoparticles were loaded into the copolymer film andhorseradish peroxidase (HRP was immobilized into the Au nanoparticle loaded copolymerfilm through physical entrapment. In the other method, the amino and -OH groups in thecopolymer are utilized to form covalent functionalization with HRP via glutaric dialdehydeas cross-linker/mediator. The conducting copolymer/enzyme modified electrodes preparedby physical entrapment/covalent functionalization of enzyme were tested forelectrocatalytic activities towards sensing of H2O2. Amperometric results indicate thatenzyme modified electrode via physical entrapment possesses better electrocatalyticperformance over covalent functionalized enzyme electrode.

  1. Electrode-immobilized compounds through γ radiation

    International Nuclear Information System (INIS)

    De Castro, E.S.

    1983-01-01

    Chemically Modified Electrodes (CMEs) are used as substrates in heterogeneous catalysis and as sensors. This work demonstrates a new strategy for immobilizing polyelectrolytes and electroactive agents on electrode surfaces. The success of this method lies in cross-linking water soluble polymer chains through the ionizing radiation of γ emissions from a 60 Co source. Cross-linking can create a continuous network out of the polymer macromolecules which then makes the network insoluble on the electrode surface. Bonds between the network and the substrate are also possible. Redox species mixed with the polymer network and irradiated become part of the insoluble network, and are permanently attached. The use of γ radiation to make electrochemical sensors is demonstrated. The immobilized network poly[diallyl dimethyl ammonium chloride] (DDAC) is placed in a solution of potassium ferricyanide and ionicly exchanges the anion into the network. An electroactive network is created from irradiating a mixture of DDAC and 2,6-dichlorophenolindophenol (DCIP). Using the amount of electroactive DCIP remaining in the film as the optimization parameter, variables such as polymer:DCIP ratio, film thickness, and dosage employed are shown to be relevant

  2. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Direct electrochemistry of dopamine on gold-Agaricus bisporus laccase enzyme electrode: characterization and quantitative detection.

    Science.gov (United States)

    Shervedani, Reza Karimi; Amini, Akbar

    2012-04-01

    Direct electrochemistry of a new laccase enzyme immobilized on gold and its application as a biosensor for dopamine (DA) are investigated by voltammetry and electrochemical impedance spectroscopy. The sensor demonstrated a redox adsorption behavior with E(0') = + 180 mV vs. Ag/AgCl for immobilized Agaricus bisporus laccase (LacAB) enzyme. The MPA platform was assembled on Au with and without utilization of ultrasounds. Excellent results were obtained by using the enzyme electrode fabricated based on MPA assembled with sonication. The LacAB immobilized in this condition showed a large electrocatalytic activity for oxidation of DA. Accordingly, a third-generation (mediator free) biosensor was constructed for DA. The DA concentration could be measured in the linear range of 0.5 to 13.0 and 47.0 to 430.0 μmol L(-1) with correlation coefficients of 0.999 and 0.989, respectively, and a detection limit of 29.0 nmol L(-1). The biosensor was successfully tested for determination of DA in human blood plasma and pharmaceutical samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  5. Studies on the preparation of immobilized enzymes by radio-polymerization, 10

    International Nuclear Information System (INIS)

    Amarakone, S.P.; Hayashi, Toru; Kawashima, Koji.

    1983-01-01

    β-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3 % lactose in the sample. (author)

  6. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.

    Science.gov (United States)

    Wicklein, Bernd; Darder, Margarita; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2011-11-01

    Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.

  7. Immobilized enzymes in blood plasma exchangers via radiation grafting

    Science.gov (United States)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  8. Bio-functionalization of conductive textile materials with redox enzymes

    Science.gov (United States)

    Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.

    2017-10-01

    In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.

  9. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.

    Science.gov (United States)

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E

    2012-11-01

    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Design and Properties of an Immobilization Enzyme System for Inulin Conversion.

    Science.gov (United States)

    Hang, Hua; Wang, Changbao; Cheng, Yiqun; Li, Ning; Song, Liuli

    2018-02-01

    A commercial inulinase could convert inulin into fructose, which was optimized to be entrapped in the calcium alginate-gelatin beads with the immobilization yield of 86% for free inulinase activities. The optimum pH values and temperatures were 4.5 and 40 °C for the free enzyme and 5.0-5.5 and 45-50 °C for the immobilized enzyme. The kinetic parameters of V max and K m were 5.24 μmol/min and 57.6 mg/mL for the free inulinase and 4.32 μmol/min and 65.8 mg/mL for the immobilized inulinase, respectively. The immobilized enzyme retained 80% of its initial activities at 45 °C for 4 days, which could exhibit better thermal stability. The reuse of immobilized inulinase throughout the continuous batch operations was explored, which had better reusability of the immobilized biocatalyst. At the same time, the stability of immobilized enzyme in the continuous packed-bed bioreactor was estimated, which showed the better results and had its potential scale-up fructose production for inulin conversion.

  11. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita

    2014-01-01

    enzymatic reaction efficiency were evaluated in terms of enzyme loading, conversion rate and biocatalytic stability. Alcohol dehydrogenase (ADH) was selected as a model enzyme. Lower pressure, higher enzyme concentration and lower pH resulted in higher irreversible fouling resistance and lower permeate flux....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...... loading but generated more permeability loss, while cake layer formation increased enzyme stability but resulted in low loading rate. Low pH (near isoelectric point) favored hydrophobic and electrostatic adsorption of enzymes on the membrane, which reduced the enzyme stability. Neutral pH, however...

  12. Substrate Specificity and Enzyme Recycling Using Chitosan Immobilized Laccase

    Directory of Open Access Journals (Sweden)

    Everton Skoronski

    2014-10-01

    Full Text Available The immobilization of laccase (Aspergillus sp. on chitosan by cross-linking and its application in bioconversion of phenolic compounds in batch reactors were studied. Investigation was performed using laccase immobilized via chemical cross-linking due to the higher enzymatic operational stability of this method as compared to immobilization via physical adsorption. To assess the influence of different substrate functional groups on the enzyme’s catalytic efficiency, substrate specificity was investigated using chitosan-immobilized laccase and eighteen different phenol derivatives. It was observed that 4-nitrophenol was not oxidized, while 2,5-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, syringaldazine, 2,6-dimetoxyphenol and ethylphenol showed reaction yields up 90% at 40 °C. The kinetic of process, enzyme recyclability and operational stability were studied. In batch reactors, it was not possible to reuse the enzyme when it was applied to syringaldazne bioconversion. However, when the enzyme was applied to bioconversion of 2,6-DMP, the activity was stable for eight reaction batches.

  13. Electron beam technology for production of preparations of immobilized enzymes

    International Nuclear Information System (INIS)

    Gonchar, A.M.; Auslender, V.L.; Polyakov, V.A.

    1995-01-01

    Possibility of electron beam usage for proteases immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease is done due to free-radical linking of enzyme and carrier with formation of mycelium-like structures. Immobilization improves heat resistance of enzyme up to 60 centigrade without substrate and up to 80 centigrade in presence of substrate, widens range pH activity in comparison with non-immobilized forms. Immobilized proteases does not contain peroxides and long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology

  14. Approaching Immobilization of Enzymes onto Open Porous Basotect®

    Directory of Open Access Journals (Sweden)

    Peter J. Allertz

    2017-11-01

    Full Text Available For the first time, commercial macroporous melamine formaldehyde foam Basotect® (BT was used as a basic carrier material for both adsorptive and covalent enzyme immobilization. In order to access inherent amino groups, the Basotect® surface was pretreated with hydrochloric acid. The resulting material revealed 6 nmol of superficial amino groups per milligram Basotect®. Different optimized strategies for tethering the laccase from Trametes versicolor and the lipase from Thermomyces lanuginosus onto the pre-treated Basotect® surface were studied. Particularly, for covalent immobilization, two different strategies were pursued: lipase was tethered via a cross-linking method using 1-ethyl-3-(3-dimethylaminopropylcarbodiimide, and laccase was bound after functionalizing Basotect® with hydrophilic copolymer poly(ethylene-alt-maleic anhydride (PEMA. Prior to laccase immobilization, the PEMA coating of Basotect® was verified by ATR-FTIR analysis. Subsequent quantification of available high-reactive PEMA anhydride moieties revealed an amount of 1028 ± 73 nmol per mg Basotect®. The surface-bound enzyme amounts were quantified as 4.1–5.8 μg per mg Basotect®. A theoretical surface-covered enzyme mass for the ideal case that an enzyme monolayer was immobilized onto the Basotect® surface was calculated and compared to the amount of adsorptive and covalently bound enzymes before and after treatment with SDS. Furthermore, the enzyme activities were determined for the different immobilization approaches, and the stability during storage over time and against sodium dodecyl sulfate treatment was monitored. Additionally, PEMA-BT-bound laccase was tested for the elimination of anthropogenic micropollutant bisphenol A from contaminated water in a cost-effective and environmentally-friendly way and resulted in a degradation rate higher than 80%.

  15. Immobilization of antibodies and enzyme-labeled antibodies by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.; Suzuki, M.; Adachi, S.

    1983-01-01

    Immobilization of antibodies and enzyme-labeled antibodies by radiation polymerization at low temperatures was studied. The antibody activity of antibody was not affected by irradiation at an irradiation dose of below 8 MR and low temperatures. Immobilization of peroxidase-labeled anti-rabbit IgG goat IgG, anti-peroxidase, peroxidase, and anti-alpha-fetoprotein was carried out with hydrophilic and hydrophobic monomers. The activity of the immobilized enzyme-labeled antibody membranes varied with the thickness of the membranes and increased with decreasing membrane thickness. The activity of the immobilized antibody particles was varied by particle size. Immobilized anti-alpha-fetoprotein particles and membranes can be used for the assay of alpha-fetoprotein by the antigen-antibody reaction, such as a solid-phase sandwich method with high sensitivity

  16. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    Science.gov (United States)

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  17. Catalytic properties of immobilized tannase produced from Aspergillus aculeatus compared with the free enzyme

    Directory of Open Access Journals (Sweden)

    A. B El-Tanash

    2011-09-01

    Full Text Available Aspergillus aculeatus tannase was immobilized on several carriers by entrapment and covalent binding with cross - linking. Tannase immobilized on gelatin with cross - linking agent showed the highest activity and immobilization yield. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme (from pH 5.5 to pH 5.0. The optimum temperature of the reaction was determined to be 50ºC for the free enzyme and 60ºC for the immobilized form. The thermal stability, as well as stability over a wide range of pH, was significantly improved by the immobilization process. The calculated Km of the immobilized tannase (11.8 mg ml-1 is higher than that of the free tannase (6.5 mg ml-1, while Vmax of the immobilized enzyme (0.32 U (µg protein-1 is lower than that of the free tannase (2.7 U (µg protein-1. The immobilized enzyme was able to retain 84 % of the initial catalytic activity after 5.0 cycles.

  18. Simultaneously and separately immobilizing incompatible dual-enzymes on polymer substrate via visible light induced graft polymerization

    Science.gov (United States)

    Zhu, Xing; He, Bin; Zhao, Changwen; Ma, Yuhong; Yang, Wantai

    2018-04-01

    Developing facile and mild strategy to construct multi-enzymes immobilization system has attracted considerable attentions in recent years. Here a simple immobilization strategy called visible light induced graft polymerization that can simultaneously and separately encapsulate two kinds of enzymes on one polymer film was proposed. Two incompatible enzymes, trypsin and transglutaminase (TGase) were selected as model dual-enzymes system and simultaneously immobilized on two sides of low-density polyethylene (LDPE) film. After immobilization, it was found that more than 90% of the enzymes can be embedded into dual-enzymes loaded film without leakage. And the activities of both separately immobilized enzymes were higher than the activities of mixed co-immobilized enzymes or the sequential immobilized ones. This dual-enzymes loaded film (DEL film) showed excellent recyclability and can retain >87% activities of both enzymes after 4 cycles of utilization. As an example, this DEL film was used to conjugate a prodrug of cytarabine with a target peptide. The successful preparation of expected product demonstrated that the separately immobilized two enzymes can worked well together to catalyze a two-step reaction.

  19. Immobilization of enzyme and antibody by low energy electron beam polymerization

    International Nuclear Information System (INIS)

    Kaetsu, Isao; Kumakura, Minoru

    1987-01-01

    Immobilization of glucoamylase and AFP-antibody was studied using an electron beam of relatively low energy. A thin polymer membrane formed by irradiation of monomer enzyme mixture in a buffer, which had a considerable enzymatic activity. A membrane of almost the same thickness and activity was obtained by repeated irradiation. The effect of irradiation conditions on the immobilization and the variations of irradiation method for immobilization were investigated. The immobilization of antibody was carried out in similar ways as for enzyme, and the product also showed a considerable activity. (author)

  20. Amperometric Determination of Glucose at Parts per Million Levels with Immobilized Glucose Oxidase.

    Science.gov (United States)

    Sittampalam, G.; Wilson, G. S.

    1982-01-01

    An experiment on the operation and utility of an amperometric immobilized enzyme electrode (or probe) is described, including advantages of the experiment, equipment, reagents, preparation of phosphate buffer, enzyme immobilization techniques, laboratory procedures, precautions, and discussion of experimental results. (SK)

  1. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart.

    Science.gov (United States)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-02-02

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4-9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. © 2016 Authors.

  2. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Higa, O.Z.; Mastro, N.L. del; Castagnet, A.C.G.

    1986-01-01

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author) [pt

  3. Zanamivir immobilized magnetic beads for voltammetric measurement of neuraminidase at gold-modified boron doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wahyuni, Wulan Tri, E-mail: wulantriws@gmail.com [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Darmaga, Bogor 16680 (Indonesia); Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Ivandini, Tribidasari A.; Saepudin, Endang [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Yokohama 223-8522 (Japan); CREST, JST, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2016-04-19

    Biomolecule modified magnetic beads has been widely used in separation and sensing process. This study used streptavidin modified magnetic beads to immobilize biotin modified zanamivir. Biotin-streptavidin affinity facilitates immobilization of zanamivir on magnetic beads. Then interaction of zanamivir and neuraminidase was adopted as basic for enzyme detection. Detection of neuraminidase was performed at gold modified BDD using cyclic voltammetry technique. The measurement was carried out based on alteration of electrochemical signals of working electrode as neuraminidase response. The result showed that zanamivir was successfully immobilized on magnetic beads. The optimum amount of magnetic beads for zanamivir immobilization was 120 ug. Linear responses of neuraminidase were detected in concentration range of 0-15 mU. Detection limit (LOD) of measurement was 2.32 mU (R2 = 0.959) with precision as % RSD of 1.41%. Measurement of neuraminidase on magnetic beads could be also performed in the presence of mucin matrix. The linearity range was 0-8 mU with LOD of 0.64 mU (R2 = 0.950) and % RSD of 7.25%.

  4. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Amit R. [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); Saurakhiya, Neelam; Deva, Dinesh [DST Unit on Nanosciences, Kanpur, 208016 (India); Sharma, Ashutosh [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); DST Unit on Nanosciences, Kanpur, 208016 (India); Verma, Nishith, E-mail: nishith@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); Center for Environmental Science and Engineering, Kanpur 208016 (India)

    2013-10-15

    This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes. - Graphical abstract: A novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode is synthesized for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers are grown on activated carbon microfibers by

  5. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications

    International Nuclear Information System (INIS)

    Hood, Amit R.; Saurakhiya, Neelam; Deva, Dinesh; Sharma, Ashutosh; Verma, Nishith

    2013-01-01

    This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes. - Graphical abstract: A novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode is synthesized for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers are grown on activated carbon microfibers by

  6. Enzymes activities involving bacterial cytochromes incorporated in clays

    International Nuclear Information System (INIS)

    Lojou, E.; Giudici-Orticoni, M.Th.; Bianco, P.

    2005-01-01

    With the development of bio electrochemistry, researches appeared on the enzymes immobilization at the surface of electrodes for the realization of bioreactors and bio sensors. One of the main challenges is the development of host matrix able to immobilize the protein material preserving its integrity. In this framework the authors developed graphite electrodes modified by clay films. These electrodes are examined for two enzyme reactions involving proteins of sulfate-reduction bacteria. Then in the framework of the hydrogen biological production and bioreactors for the environmental pollution de-pollution, the electrochemical behavior of the cytochrome c3 in two different clays deposed at the electrode is examined

  7. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode.

    Science.gov (United States)

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl4, and the electrochemical reduction of HAuCl4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl4 along with FeCl3 and/or CuCl2, the NCPF remained selective toward the electrochemical reduction of HAuCl4 into the metallic state. The chemical reduction of HAuCl4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29±1.45 mg g(-1) at 60°C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Co-immobilized Coupled Enzyme Systems in Biotechnology

    Science.gov (United States)

    2010-01-01

    coimmobilized by ~n­ capsulation in silica spheres that were formed by a polymer -templated silicificatiOn reaction (Betancor et al., 2006). Nitrobenzene...F. , FERNANDEZ-LAFUENTE, R. , GUISAN J. M. (2005). Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol... polymer monoliths in microftuidic devices for steady- state kinetic analysis and spatially separated multi-enzyme reactions. Analytical Chemistry, 79

  9. Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials

    DEFF Research Database (Denmark)

    Sigurdardóttir, Sigyn Björk; Lehmann, Jonas; Ovtar, Simona

    2018-01-01

    Enzyme immobilization is an established method for the enhancement of enzyme stability and reusability, two factors that are of great importance for industrial biocatalytic applications. Immobilization can be achieved by different methods and on a variety of carrier materials, both organic and in...

  10. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-01

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes. PMID:23306150

  11. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-10

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

  12. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    Science.gov (United States)

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Carbon paste electrode with covalently immobilized thionine for electrochemical sensing of hydrogen peroxide

    Science.gov (United States)

    Thenmozhi, K.; Sriman Narayanan, S.

    2017-11-01

    A water-soluble redox mediator, thionin was covalently immobilized to the functionalized graphite powder and a carbon paste electrode was fabricated from this modified graphite powder. The immobilization procedure proved to be effective in anchoring the thionin mediator in the graphite electrode setup without any leakage problem during the electrochemical studies. The covalent immobilization of the thionin mediator was studied with FT-IR and the electrochemical response of the thionin carbon paste electrode was optimized on varying the supporting electrolyte, pH and scan rate. The modified electrode exhibited well-defined electrocatalytic activity towards the reduction of H2O2 at a lower potential of -0.266 V with good sensitivity. The developed amperometric sensor was efficient towards H2O2 in the linear range from 2.46 × 10-5 M to 4.76 × 10-3 M, with a detection limit of 1.47 × 10-5 M respectively. Important advantages of this sensor are its excellent electrochemical performance, simple fabrication, easy renewability, reproducible analytical results, acceptable accuracy and good operational and long-term stability.

  14. Chitosan coated on the layers' glucose oxidase immobilized on cysteamine/Au electrode for use as glucose biosensor.

    Science.gov (United States)

    Zhang, Yawen; Li, Yunqiu; Wu, Wenjian; Jiang, Yuren; Hu, Biru

    2014-10-15

    A glucose biosensor was developed via direct immobilization of glucose oxidase (GOD) by self-assembled cysteamine monolayer on Au electrode surface followed by coating chitosan on the surface of electrode. In this work, chitosan film was coated on the surface of GOD as a protection film to ensure the stability and biocompatibility of the constructed glucose biosensor. The different application ranges of sensors were fabricated by immobilizing varied layers of GOD. The modified surface film was characterized by a scanning electron microscope (SEM) and the fabrication process of the biosensor was confirmed through electrochemical impedance spectroscopy (EIS) of ferrocyanide. The performance of cyclic voltammetry (CV) in the absence and presence of 25 mM glucose and ferrocenemethanol showed a diffusion-controlled electrode process and reflected the different maximum currents between the different GOD layers. With the developed glucose biosensor, the detection limits of the two linear responses are 49.96 μM and 316.8 μM with the sensitivities of 8.91 μA mM(-1)cm(-2) and 2.93 μA mM(-1)cm(-2), respectively. In addition, good stability (up to 30 days) of the developed biosensor was observed. The advantages of this new method for sensors construction was convenient and different width ranges of detection can be obtained by modified varied layers of GOD. The sensor with two layers of enzyme displayed two current linear responses of glucose. The present work provided a simplicity and novelty method for producing biosensors, which may help design enzyme reactors and biosensors in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nano tubes-Chitosan Modified Electrode

    International Nuclear Information System (INIS)

    Zhang, Sh.; Li, Sh.; Ma, J.; Xiong, F.; Qu, S.; Zhang, Sh.; Li, Sh.

    2013-01-01

    A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE) to MWNTs-modified glassy carbon electrode (GCE) with chitosan (CS) by layer-by-layer (LBL) technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from 10 -10  g/L to 10 -3  g/L with a detection limit of 10 -12  g/L. This biosensor is a promising new method for pesticide analysis

  16. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  17. Immobilized enzyme studies in a microscale bioreactor.

    Science.gov (United States)

    Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B

    2004-01-01

    Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.

  18. Nickel electrodes as a cheap and versatile platform for studying structure and function of immobilized redox proteins

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiao Xia [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Li, Junbo [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Öner, Ibrahim Halil [Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Zhao, Bing [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Leimkühler, Silke [Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht Straße 24-25, H. 25, Golm D-14476 (Germany); Hildebrandt, Peter [Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Weidinger, Inez M., E-mail: i.weidinger@mailbox.tu-berlin.de [Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin (Germany)

    2016-10-19

    Practical use of many bioelectronic and bioanalytical devices is limited by the need of expensive materials and time consuming fabrication. Here we demonstrate the use of nickel electrodes as a simple and cheap solid support material for bioelectronic applications. The naturally nanostructured electrodes showed a surprisingly high electromagnetic surface enhancement upon light illumination such that immobilization and electron transfer reactions of the model redox proteins cytochrome b{sub 5} (Cyt b{sub 5}) and cytochrome c (Cyt c) could be followed via surface enhanced resonance Raman spectroscopy. It could be shown that the nickel surface, when used as received, promotes a very efficient binding of the proteins upon preservation of their native structure. The immobilized redox proteins could efficiently exchange electrons with the electrode and could even act as an electron relay between the electrode and solubilized myoglobin. Our results open up new possibility for nickel electrodes as an exceptional good support for bioelectronic devices and biosensors on the one hand and for surface enhanced spectroscopic investigations on the other hand. - Highlights: • Nickel electrodes were used without further functionalization as supports for various redox proteins. • It was possible to monitor the immobilized proteins via surface enhanced Raman spectroscopy. • The native structure of the immobilized proteins was preserved and they could exchange electrons with the Ni electrode. • The immobilized redox proteins worked as an electron relay between electrode and solubilized myoglobin.

  19. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Banu, Khaleda, E-mail: kbanu@ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States); Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Shimura, Takayoshi [Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 (Japan); Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University (Japan); Sadeghi, Saman, E-mail: samsadeghi@mednet.ucla.edu [Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 (United States)

    2015-01-01

    Highlights: • Selective detection of gold at non-conducting (NC) polymer modified electrode. • Mimosa tannin oxidized on glassy carbon electrode surface as NC polymeric film. • Permselective diffusion and mediated electron transfer at NC electrode surface. • Chemical recovery of gold is due to the reducing ability of the NC polymeric film. • Adsorption capacity of Au(III) on carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. - Abstract: A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl{sub 4}, and the electrochemical reduction of HAuCl{sub 4} to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl{sub 4} along with FeCl{sub 3} and/or CuCl{sub 2}, the NCPF remained selective toward the electrochemical reduction of HAuCl{sub 4} into the metallic state. The chemical reduction of HAuCl{sub 4} into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29 ± 1.45 mg g{sup −1} at 60 °C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes.

  20. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode

    International Nuclear Information System (INIS)

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    Highlights: • Selective detection of gold at non-conducting (NC) polymer modified electrode. • Mimosa tannin oxidized on glassy carbon electrode surface as NC polymeric film. • Permselective diffusion and mediated electron transfer at NC electrode surface. • Chemical recovery of gold is due to the reducing ability of the NC polymeric film. • Adsorption capacity of Au(III) on carbon fiber was 29 ± 1.45 mg g −1 at 60 °C. - Abstract: A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl 4 , and the electrochemical reduction of HAuCl 4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl 4 along with FeCl 3 and/or CuCl 2 , the NCPF remained selective toward the electrochemical reduction of HAuCl 4 into the metallic state. The chemical reduction of HAuCl 4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29 ± 1.45 mg g −1 at 60 °C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes

  1. Polyketone polymer: a new support for direct enzyme immobilization.

    Science.gov (United States)

    Agostinelli, E; Belli, F; Tempera, G; Mura, A; Floris, G; Toniolo, L; Vavasori, A; Fabris, S; Momo, F; Stevanato, R

    2007-01-20

    Polyketone polymer -[-CO-CH(2)-CH(2)-](n)-, obtained by copolymerization of ethene and carbon monoxide, is utilized for immobilization of three different enzymes, one peroxidase from horseradish (HRP) and two amine oxidases, from bovine serum (BSAO) and lentil seedlings (LSAO). The easy immobilization procedure is carried out in diluted buffer, at pH 7.0 and 3 degrees C, gently mixing the proteins with the polymer. No bifunctional reagents and spacer arms are required for the immobilization, which occurs exclusively via a large number of hydrogen bonds between the carbonyl groups of the polymer and the -NH groups of the polypeptidic chain. Experiments demonstrate a high linking capacity of polymer for BSAO and an extraordinary strong linkage for LSAO. Moreover, activity measurements demonstrate that immobilized LSAO totally retains the catalytic characteristics of the free enzyme, where only a limited increase of K(M) value is observed. Finally, the HRP-activated polymer is successfully used as active packed bed of an enzymatic reactor for continuous flow conversion and flow injection analysis of hydrogen peroxide containing solutions.

  2. Analytical systems as a basis for immobilized enzymes. 3. Use of a glucose enzyme electrode to determine carbohydrates in biological solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kulys, J; Pesliakiene, M

    1981-01-01

    A method is described for determination of glucose, sucrose, and lactose in biological solutions using a glucose enzyme electrode characterized by high sensitivity and selectivity. The enzyme membrane (15 nm thick) is prepared from glucose oxidase isolated from Penicillium vitale. Glucose is determined in one minute (using static currents) or in 12 s (using registered current in a kinetic regime). Phosphate buffer (5-10 mM) is the only reagent required for analysis. Determination of sucrose and lactose require prior hydrolysis with 17.8% HCl at 70 degrees Celcius for O.5 and lO.7 minutes, respectively.

  3. Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ardhaoui, Malika, E-mail: malika.ardhaoui@ucd.ie [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France); Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Surface Engineering Research Group, School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4 (Ireland); Bhatt, Sudhir [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France); Zheng, Meihui [Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Dowling, Denis [Surface Engineering Research Group, School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4 (Ireland); Jolivalt, Claude [Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Khonsari, Farzaneh Arefi [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France)

    2013-08-01

    In this work, a simple and rapid method was used to functionalize carbon electrode in order to efficiently immobilize laccase for biosensor application. A stable allylamine coating was deposited using a low pressure inductively excited RF tubular plasma reactor under mild plasma conditions (low plasma power (10 W), few minutes) to generate high density amine groups (N/C ratio up to 0.18) on rough carbon surface electrodes. The longer was the allylamine plasma deposition time; the better was the surface coverage. Laccase from Trametes versicolor was physisorbed and covalently bound to these allylamine modified carbon surfaces. The laccase activities and current outputs measured in the presence of 2,2′-azinobis-(3-ethylbenzothiazole-6-sulfonic acid) (ABTS) showed that the best efficiency was obtained for electrode plasma coated during 30 min. They showed also that for all the tested electrodes, the activities and current outputs of the covalently immobilized laccases were twice higher than the physically adsorbed ones. The sensitivity of these biocompatible bioelectrodes was evaluated by measuring their catalytic efficiency for oxygen reduction in the presence of ABTS as non-phenolic redox substrate and 2,6-dimethoxyphenol (DMP) as phenolic one. Sensitivities of around 4.8 μA mg{sup −1} L and 2.7 μA mg{sup −1} L were attained for ABTS and DMP respectively. An excellent stability of this laccase biosensor was observed for over 6 months. - Highlights: • Low pressure plasma was used to generate stable allylamine coating. • Laccase from Trametes versicolor was physisorbed and covalently immobilized. • Best biosensor efficiency obtained for the covalently immobilized laccases • Sensitivities of 4.8 μA mg{sup −1} L and 2.7 μA mg{sup −1} L for ABTS and DMP respectively.

  4. Development of a thiol-ene based screening platform for enzyme immobilization demonstrated using horseradish peroxidase

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Pinelo, Manuel; Woodley, John

    2017-01-01

    Efficient immobilization of enzymes on support surfaces requires an exact match between the surface chemistry and the specific enzyme. A successful match would normally be identified through time consuming screening of conventional resins in multiple experiments testing individual immobilization...... strategies. In this study we present a versatile strategy that largely expands the number of possible surface functionalities for enzyme immobilization in a single, generic platform. The combination of many individual surface chemistries and thus immobilization methods in one modular system permits faster...... functionalization by thiol-ene chemistry (TEC) resulted in the formation of a functional monolayer in each well, whereas, polymer surface grafts were introduced through surface chain transfer free radical polymerization (SCT-FRP). Enzyme immobilization on the modified surfaces was evaluated by using a rhodamine...

  5. Effect of immobilization conditions on the properties of β-galactosidase immobilized in xanthan/chitosan multilayers

    International Nuclear Information System (INIS)

    Yovcheva, T; Viraneva, A; Bodurov, I; Marudova, M; Vasileva, T; Cholev, D; Bivolarski, V; Iliev, I

    2017-01-01

    The effect of lactose concentration on the activity of the immobilised enzyme β-galactosidase from Aspergillus niger has been evaluated, considering future applications for the production of galactooligosaccahrides with prebiotic potential. The following enzyme was immobilized in xanthan and chitosan polyelectrolyte multilayers (PEMs) deposited by dip coating method on polylactic acid positively corona charged pads. The pads were charged in a corona discharge system, consisting of a corona electrode (needle), a grounded plate, and a metal grid placed between them. Positive 5 kV voltage was applied to the corona electrode. 1 kV voltage of the same polarity as that of the corona electrode was applied to the grid. The chitosan layers were crosslinked with sodium tripolyphosphate (Na-TPP). The enzyme showed a temperature optimum at 50 °C and a pH optimum at 5.0. The immobilization was carried out over the different adsorption time and optimum conditions were determined. These results give insights for further optimization of transgalactosydase reactions in order to produce galactooligosaccharides with specific structure and having pronounced better prebiotic properties. For the determination of the surface morphology of the investigated samples an atomic force microscope was used and root mean square roughness was obtained. (paper)

  6. Enzyme immobilization and biocatalysis of polysiloxanes

    Science.gov (United States)

    Poojari, Yadagiri

    Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to p

  7. Immobilization of leachable toxic soil pollutants by using oxidative enzymes

    International Nuclear Information System (INIS)

    Shannon, M.J.R.; Bartha, R.

    1988-01-01

    Screening of leachable toxic chemicals in a horseradish peroxidase-H 2 O 2 immobilization system established that immobilization was promising for most phenolic pollutants but not for benzoic acid, 2,6-dinitrocresol, or dibutyl phthalate. The treatment did not mobilize inherently nonmobile pollutants such as anilines and benzo[a]pyrene. In a separate study, an extracellular laccase in the culture filtrate of Geotrichum candidum was selected from five fungal enzymes evaluated as a cost-effective substitute for horseradish peroxidase. This enzyme was used in demonstrating the immobilization and subsequent fate of 14 C-labeled 4-methylphenol and 2,4-dichlorophenol in soil columns. When applied to Lakewood sand, 98.1% of 4-methylpheno was leached through with distilled water. Two days after immobilization treatment with the G. candidum culture filtrate, only 9.1% of the added 4-methylphenol was leached with the same volume of water. Of the more refractory test pollutant 2,4-dichlorophenol, 91.6% had leached at time zero and 48.5% had leached 1 day after the immobilization treatment. However, 2 weeks after immobilization, only 12.0% of the 2,4-dichlorophenol was leached compared with 61.7% from the control column that received no immobilization treatment. No remobilization of the bound pollutants was detected during 3- and 4-week incubation periods

  8. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized in a silica cavity array electrode.

    Science.gov (United States)

    Tian, Shu; Zhou, Qun; Gu, Zhuomin; Gu, Xuefang; Zhao, Lili; Li, Yan; Zheng, Junwei

    2013-03-30

    Hydrogen peroxide biosensor based on the silica cavity array modified indium-doped tin oxide (ITO) electrode was constructed. An array of silica microcavities was fabricated by electrodeposition using the assembled polystyrene particles as template. Due to the resistance gradient of the silica cavity structure, the silica cavity exhibits a confinement effect on the electrochemical reactions, making the electrode function as an array of "soft" microelectrodes. The covalently immobilized microperoxidase-11(MP-11) inside these SiO2 cavities can keep its physiological activities, the electron transfer between the MP-11 and electrode was investigated through electrochemical method. The cyclic voltammetric curve shows a quasi-reversible electrochemical redox behavior with a pair of well-defined redox peaks, the cathodic and anodic peaks are located at -0.26 and -0.15V. Furthermore, the modified electrode exhibits high electrocatalytic activity toward the reduction of hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2×10(-6) to 6×10(-4)M. The good reproducibility and long-term stability of this novel electrode not only offer an opportunity for the detection of H2O2 in low concentration, but also provide a platform to construct various biosensors based on many other enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  10. Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts.

    Science.gov (United States)

    Bernal, Claudia; Rodríguez, Karen; Martínez, Ronny

    2018-06-09

    Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, -thus not reusable- and their performance under real operational conditions is uncertain. Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts. In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel "immobilized biocatalyst engineering" research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications. Copyright © 2018. Published by Elsevier Inc.

  11. Preparation of immobilized enzyme membrane by radiation-cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1989-01-01

    The preparation of immobilized enzyme membranes was studied by radiation cast-polymerization at low temperatures using cellulase enzyme, hydrophilic and hydrophobic monomers. The enzyme activity of the membranes was affected by monomer concentration, membrane thickness, and hydrophilicity of monomer, in which the membranes with 100 μm thickness from high monomer concentration (80%) had high enzyme activity, which was similar to that of the membranes with 1.0 mm thickness from low monomer concentration (20%). (author)

  12. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    Science.gov (United States)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  13. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    Science.gov (United States)

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  14. Investigation of the Effect of Plasma Polymerized Siloxane Coating for Enzyme Immobilization and Microfluidic Device Conception

    Directory of Open Access Journals (Sweden)

    Kalim Belhacene

    2016-12-01

    Full Text Available This paper describes the impact of a physical immobilization methodology, using plasma polymerized 1,1,3,3, tetramethyldisiloxane, on the catalytic performance of β-galactosidase from Aspergillus oryzae in a microfluidic device. The β-galactosidase was immobilized by a polymer coating grown by Plasma Enhanced Chemical Vapor Deposition (PEVCD. Combined with a microchannel patterned in the silicone, a microreactor was obtained with which the diffusion through the plasma polymerized layer and the hydrolysis of a synthetic substrate, the resorufin-β-d-galactopyranoside, were studied. A study of the efficiency of the immobilization procedure was investigated after several uses and kinetic parameters of immobilized β-galactosidase were calculated and compared with those of soluble enzyme. Simulation and a modelling approach were also initiated to understand phenomena that influenced enzyme behavior in the physical immobilization method. Thus, the catalytic performances of immobilized enzymes were directly influenced by immobilization conditions and particularly by the diffusion behavior and availability of substrate molecules in the enzyme microenvironment.

  15. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2014-09-01

    Full Text Available Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides.

  16. Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H2O2 Detection

    Directory of Open Access Journals (Sweden)

    Wenbo Dong

    2017-07-01

    Full Text Available An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT and β-cyclodextrin-included-ferrocene (β-CD-FE complex for the determination of H2O2. Ferrocene (FE was included in β-cyclodextrin (β-CD to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.

  17. Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.Y.; Kang, M.S.; Shim, J.; Moon, S.H. [Gwangju Inst. of Science and Technology (Korea, Republic of). Dept. of Environmental Science and Engineering

    2008-07-01

    Enzyme electrodes are now being considered for use in the detection of pesticides. However, the electrodes do not have the sensitivity to detect low concentration pesticides, and external substrates are needed to measure changes in enzyme activity. This study discussed a chemical species designed to mimic a substrate in the preparation of a tyrosinase (TYR) electrode for use without substrate standard solutions. Pyrroloquinolone quinone (PQQ) was integrated within the tyrosinase electrode and used as an assimilated substrate for measuring the pesticide. Gold (Au) nanoparticles were also used to detect low concentration pesticides. The TYR was immobilized on the PQQ-anchored Au nanoparticles by a covalent bond. The tethered PQQ was then reduced by obtaining 2-electrons from the electrode. The study showed that the substrate-bound enzyme electrode can be used to detect pesticide without a substrate standard solution through the immobilization of the enzyme and the substrate on the Au nanoparticles.

  18. Effect of temperature and mixing speed on immobilization of crude enzyme from Aspergillus niger on chitosan for hydrolyzing cellulose

    Science.gov (United States)

    Hamzah, Afan; Gek Ela Kumala, P.; Ramadhani, Dwi; Maziyah, Nurul; Rahmah, Laila Nur; Soeprijanto, Widjaja, Arief

    2017-05-01

    Conversion of cellulose into reducing sugar through enzymatic hydrolysis has advantageous because it produces greater product yield, higher selectivity, require less energy, more moderate operating conditions and environment friendly. However, the nature of the enzyme that is difficult to separate and its expensive price become an obstacle. These obstacles can be overcome by immobilizing the enzyme on chitosan material so that the enzyme can be reused. Chitosan is chosen because it is cheap, inert, hydrophilic, and biocompatible. In this research, we use covalent attachment and combination between covalent attachment and cross-linking method for immobilizing crude enzyme. This research was focusing in study of Effect of temperature and mixing speed on Immobilization Enzyme From Aspergillus Niger on Chitosan For Hydrolyzing both soluble (Carboxymethylcellulose) and insoluble Cellulose (coconut husk). This Research was carried out by three main step. First, coconut husk was pre-treated mechanically and chemically, Second, Crude enzyme from Aspergillus niger strain was immobilized on chitosan in various immobilization condition. At last, the pre-treated coconut husk and Carboxymetylcellulose (CMC) were hydrolyzed by immobilized cellulose on chitosan for reducing sugar production. The result revealed that the most reducing sugar produced by immobilized enzyme on chitosan+GDA with immobilization condition at 30 °C and 125 rpm. Enzyme immobilized on chitosan cross-linked with GDA produced more reducing sugar from preteated coconut husk than enzyme immobilized on chitosan.

  19. Drying of enzyme immobilized on eco-friendly supports | Costa-Silva ...

    African Journals Online (AJOL)

    Immobilized derivatives obtained had decreased enzyme activity (≈ 30.0%) during a storage period of six months; and retained an average of 50.0% of the initial activity after five reuse cycles. Water content in immobilized derivatives varied between 4.2 and 6.1% and the water activities ranged from 0.14 to 0.30. Key words: ...

  20. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

    Science.gov (United States)

    Bhattacharya, Abhishek; Pletschke, Brett I

    2014-01-01

    The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Synthesis of magnetic thermosensitive microcontainers for enzyme immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianzhi; Zhao, Guanghui, E-mail: zhaogh@lzu.edu.cn; Wang, Xinyu, E-mail: wangxy08@lzu.cn; Peng, Xiaomen; Li, Yanfeng, E-mail: liyf@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering (China)

    2015-05-15

    We present a new approach for the fabrication of magnetic thermoresponsive polymer microcapsules with mobile magnetic spherical cores. The microcontainers form fried-egg-like structures with a polymer shell layer of 50 nm due to the existence of hollow cavities. The microcontainers undergo a temperature-induced volume phase transition upon changing the temperature and present an impressive magnetic response. The magnetic saturation of these smart microcontainers (42 emu/g) is high enough to meet most requirements of bioapplications. To further investigate the potential application of these smart microcontainers in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. The adsorption/release of the lipase from the microcontainers can be controlled by the environmental temperature and magnetic force, thus, offering new potential applications such as in controlled drug delivery, bioseparation, and catalysis.

  2. Synthesis of magnetic thermosensitive microcontainers for enzyme immobilization

    International Nuclear Information System (INIS)

    Wang, Jianzhi; Zhao, Guanghui; Wang, Xinyu; Peng, Xiaomen; Li, Yanfeng

    2015-01-01

    We present a new approach for the fabrication of magnetic thermoresponsive polymer microcapsules with mobile magnetic spherical cores. The microcontainers form fried-egg-like structures with a polymer shell layer of 50 nm due to the existence of hollow cavities. The microcontainers undergo a temperature-induced volume phase transition upon changing the temperature and present an impressive magnetic response. The magnetic saturation of these smart microcontainers (42 emu/g) is high enough to meet most requirements of bioapplications. To further investigate the potential application of these smart microcontainers in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. The adsorption/release of the lipase from the microcontainers can be controlled by the environmental temperature and magnetic force, thus, offering new potential applications such as in controlled drug delivery, bioseparation, and catalysis

  3. Amperometric inhibition biosensors based on horseradish peroxidase and gold sononanoparticles immobilized onto different electrodes for cyanide measurements.

    Science.gov (United States)

    Attar, Aisha; Cubillana-Aguilera, Laura; Naranjo-Rodríguez, Ignacio; de Cisneros, José Luis Hidalgo-Hidalgo; Palacios-Santander, José María; Amine, Aziz

    2015-02-01

    New biosensors based on inhibition for the detection of cyanide and the comparison of the analytical performances of nine enzyme biosensor designs by using three different electrodes: Sonogel-Carbon, glassy carbon and gold electrodes were discussed. Three different horseradish peroxidase immobilization procedures with and without gold sononanoparticles were studied. The amperometric measurements were performed at an applied potential of -0.15V vs. Ag/AgCl in 50mM sodium acetate buffer solution pH=5.0. The apparent kinetic parameters (Kmapp, Vmaxapp) of immobilized HRP were calculated in the absence of inhibitor (cyanide) by using caffeic acid, hydroquinone, and catechol as substrates. The presence of gold sononanoparticles enhanced the electron transfer reaction and improved the analytical performance of the biosensors. The HRP kinetic interactions reveal non-competitive binding of cyanide with an apparent inhibition constant (Ki) of 2.7μM and I50 of 1.3μM. The determination of cyanide can be achieved in a dynamic range of 0.1-58.6μM with a detection limit of 0.03μM which is lower than those reported by previous studies. Hence this biosensing methodology can be used as a new promising approach for detecting cyanide. Copyright © 2014. Published by Elsevier B.V.

  4. Enzyme production in immobilized Trichoderma reesei cells with hydrophobic polymers prepared by radiation polymerization method

    International Nuclear Information System (INIS)

    Luzhao Xin; Kumakura, Minoru; Kaetsu, Isao

    1993-01-01

    Trichoderma reesei cells were immobilized on paper covered with hydrophobic monomer, trimethylpropane triacrylate by radiation polymerization. The effect of immobilization condition on enzyme productivity was studied by measuring filter paper and cellobiose activity. The cells were adhered and grew on the surface of the carrier with the polymer giving high enzyme productivity in the immobilized cells in comparison with the free cells. Optimum concentration and volume of the coating monomer for the preparation of the immobilized cells were obtained. (author)

  5. Immobilization of cellulases on magnetic particles to enable enzyme recycling during hydrolysis of lignocellulose

    DEFF Research Database (Denmark)

    Alftrén, Johan

    feedstocks containing insolubles. This could potentially be overcome by immobilizing the cellulases on magnetically susceptible particles. Consequently, the immobilized cellulases could be magnetically recovered and recycled for a new cycle of enzymatic hydrolysis of cellulose. The main objective...... of this thesis was to examine the possibility of immobilizing cellulases on magnetic particles in order to enable enzyme re-use. Studies at lab and pilot scale (20 L) were conducted using model and real substrates. In paper I and III beta-glucosidase or a whole cellulase mixture was covalently immobilized...... on commercial, but expensive, magnetic particles activated with different chemistries. It was observed that the highest immobilized enzyme activities were obtained using magnetic particles activated with cyanuric chloride. In paper II biotinylated recombinant beta-glucosidase was produced and immobilized...

  6. activity of enzyme trypsin immobilized onto macroporous poly(epoxy

    African Journals Online (AJOL)

    dell

    consequential effects of covalent immobilization. EXPERIMENTAL. Materials .... immersed into water bath. ... storage stability of the enzyme was studied ... pore size range of about 10 to 150 µm. ... figures, the differences in activities (slopes.

  7. Silica-Immobilized Enzyme Reactors; Application to Cholinesterase-Inhibition Studies

    National Research Council Canada - National Science Library

    Luckarift, Heather R; Johnson, Glenn R; Spain, Jim C

    2006-01-01

    ...) using silica-encapsulated equine butyrycholinestearse (BuChE) as a model system. Peptide-mediated silica formation was used to encapsulate BuChE, directly immobilizing the enzyme within a commercial pre-packed column...

  8. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Yu, Chunmei; Wang, Li; Zhu, Zhenkun; Bao, Ning; Gu, Haiying

    2014-01-01

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s ) of Hb in RBCs is 0.42 s −1 , and <1.13 s −1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  9. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  10. Conductimetric Biosensor for the Detection of Uric Acid by Immobilization Uricase on Nata de Coco Membrane—Pt Electrode

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2011-01-01

    Full Text Available A conductimetric enzyme biosensor for uric acid detection has been developed. The uricase, as enzyme, is isolated from Candida utilis and immobilized on a nata de coco membrane-Pt electrode. The biosensor demonstrates a linear response to urate over the concentration range 1-6 ppm and has good selectivity properties. The response is affected by the membrane thickness and pH change in the range 7.5-9.5. The response time is three minutes in aqueous solutions and in human serum samples. Application of the biosensor to the determination of uric acid in human serum gave results that compared favourably with those obtained by medical laboratory. The operational stability of the biosensor was not less than three days and the relative error is smaller than 10%.

  11. Facile direct electron transfer in glucose oxidase modified electrodes

    International Nuclear Information System (INIS)

    Wang Dan; Chen Liwei

    2009-01-01

    Glucose oxidase (GOx) is widely used in the glucose biosensor industry. However, mediatorless direct electron transfer (DET) from GOx to electrode surfaces is very slow. Recently, mediatorless DET has been reported via the incorporation of nanomaterials such as carbon nanotubes and nanoparticles in the modification of electrodes. Here we report GOx electrodes showing DET without the need for any nanomaterials. The enzyme after immobilization with poly-L-lysine (PLL) and Nafion retains the biocatalytic activities and oxidizes glucose efficiently. The amperometric response of Nafion-PLL-GOx modified electrode is linearly proportional to the concentration of glucose up to 10 mM with a sensitivity of 0.75 μA/mM at a low detection potential (-0.460 V vs. Ag/AgCl). The methodology developed in this study will have impact on glucose biosensors and biofuel cells and may potentially simplify enzyme immobilization in other biosensing systems.

  12. Specific and Reversible Immobilization of Proteins Tagged to the Affinity Polypeptide C-LytA on Functionalized Graphite Electrodes

    Science.gov (United States)

    Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M.; Climent, Víctor; Sanz, Jesús M.

    2014-01-01

    We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field. PMID:24498237

  13. Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes.

    Directory of Open Access Journals (Sweden)

    Daniel Bello-Gil

    Full Text Available We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.

  14. A fine pointed glucose oxidase immobilized electrode for low-invasive amperometric glucose monitoring.

    Science.gov (United States)

    Li, Jiang; Koinkar, Pankaj; Fuchiwaki, Yusuke; Yasuzawa, Mikito

    2016-12-15

    A low invasive type glucose sensor, which has a sensing region at the tip of a fine pointed electrode, was developed for continuous glucose monitoring. Platinum-iridium alloy electrode with a surface area of 0.045mm(2) was settled at the middle of pointed PEEK (Polyetheretherketone) tubing and was employed as sensing electrode. Electrodeposition of glucose oxidase in the presence of surfactant, Triton X-100, was performed for high-density enzyme immobilization followed by the electropolymerization of o-phenylenediamine for the formation of functional entrapping and permselective polymer membrane. Ag/AgCl film was coated on the surface of PEEK tubing as reference electrode. Amperometric responses of the prepared sensors to glucose were measured at a potential of 0.60V (vs. Ag/AgCl). The prepared electrode showed the sensitivity of 2.55μA/cm(2) mM with high linearity of 0.9986, within the glucose concentration range up to 21mM. The detection limit (S/N=3) was determined to be 0.11mM. The glucose sensor properties were evaluated in phosphate buffer solution and in vivo monitoring by the implantation of the sensors in rabbit, while conventional needle type sensors as a reference were used. The results showed that change in output current of the proposed sensor fluctuated similar with one in output current of the conventional needle type sensors, which was also in similar accordance with actual blood sugar level measured by commercially glucose meter. One-point calibration method was used to calibrate the sensor output current. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air.

    Science.gov (United States)

    Quan, De; Shim, Jun Ho; Kim, Jong Dae; Park, Hyung Soo; Cha, Geun Sig; Nam, Hakhyun

    2005-07-15

    Nitrate monitoring biosensors were prepared by immobilizing nitrate reductase derived from yeast on a glassy carbon electrode (GCE, d = 3 mm) or screen-printed carbon paste electrode (SPCE, d = 3 mm) using a polymer (poly(vinyl alcohol)) entrapment method. The sensor could directly determine the nitrate in an unpurged aqueous solution with the aid of an appropriate oxygen scavenger: the nitrate reduction reaction driven by the enzyme and an electron-transfer mediator, methyl viologen, at -0.85 V (GCE vs Ag/AgCl) or at -0.90 V (SPCE vs Ag/AgCl) exhibited no oxygen interference in a sulfite-added solution. The electroanalytical properties of optimized biosensors were measured: the sensitivity, linear response range, and detection limit of the sensors based on GCE were 7.3 nA/microM, 15-300 microM (r2 = 0.995), and 4.1 microM (S/N = 3), respectively, and those of SPCE were 5.5 nA/microM, 15-250 microM (r2 = 0.996), and 5.5 microM (S/N = 3), respectively. The disposable SPCE-based biosensor with a built-in well- or capillary-type sample cell provided high sensor-to-sensor reproducibility (RSD sensor system was demonstrated by determining nitrate in real samples.

  16. Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer

    Directory of Open Access Journals (Sweden)

    G. A. Rivas

    2005-11-01

    Full Text Available In this work we present a critical study of the nucleic acid layer immobilized atglassy carbon electrodes. Different studies were performed in order to assess the nature of theinteraction between DNA and the electrode surface. The adsorption and electrooxidation of DNAdemonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. TheDNA layer immobilized at a freshly polished glassy carbon electrode was very stable even afterapplying highly negative potentials. The electron transfer of potassium ferricyanide, catechol anddopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlledpotential conditions and thick (obtained by casting the glassy carbon surface with highly concentratedDNA solutions DNA layers was slower than that at the bare glassy carbon electrode, although thiseffect was dependent on the thickness of the layer and was not charge selective. Raman experimentsshowed an important decrease of the vibrational modes assigned to the nucleobases residues,suggesting a strong interaction of these residues with the electrode surface. The hybridization ofoligo(dG21 and oligo(dC21 was evaluated from the guanine oxidation signal and the reduction of theredox indicator Co(phen33+ . In both cases the chronopotentiometric response indicated that thecompromise of the bases in the interaction of DNA with the electrode surface is too strong, preventingfurther hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in adirect and very sensitive way, but not to be used for the preparation of biorecognition layers by directadsorption of the probe sequence on the electrode surface for detecting the hybridization event.

  17. Effect of immobile isolated enzymes from rumen liquid by using alginate matrices on the bay leaf extraction

    Science.gov (United States)

    Paramita, Vita; Yulianto, Mohammad Endy; Yohana, Eflita; Arifan, Fahmi; Hanifah, Amjad, Muhammad Taqiyuddin

    2015-12-01

    This research aims to develop the enzymatically of bay leaves phytochemical extraction process. The novelty and the main innovations of this research is the development of extraction process by using enzymatic extractor and isolate the enzymes from rumen liquid to shift the equilibrium phase, increase the extraction rate and increase the extraction yield. The activity of rumen liquid enzyme was represented by the activity of cellulase and protease. The analyze of total flavonoid content was performed by using UV-Vis Spectrofometry. The activity of immobilized enzyme of cellulase (0.08±0.00 U/ml) was lower than the un-immobilized one (0.23±0.00 U/ml). However, there was no difference activity of the immobilized (0.75±0.00 U/ml) and un-immobilized (0.76±0.01 U/ml) of protease. The model of mass transfer of un-immobilized enzyme can be fitted on the experimental data, however the model of mass transfer of immobilized enzyme did not match with the experimental data. The mass transfer coefficient of enzymatic extraction flavonoids bay leaf without immobilization was 0.17167 s-1 which greater than the reported value of obtained KLa from extraction by using electric heating.

  18. A facile and efficient method of enzyme immobilization on silica particles via Michael acceptor film coatings: immobilized catalase in a plug flow reactor.

    Science.gov (United States)

    Bayramoglu, Gulay; Arica, M Yakup; Genc, Aysenur; Ozalp, V Cengiz; Ince, Ahmet; Bicak, Niyazi

    2016-06-01

    A novel method was developed for facile immobilization of enzymes on silica surfaces. Herein, we describe a single-step strategy for generating of reactive double bonds capable of Michael addition on the surfaces of silica particles. This method was based on reactive thin film generation on the surfaces by heating of impregnated self-curable polymer, alpha-morpholine substituted poly(vinyl methyl ketone) p(VMK). The generated double bonds were demonstrated to be an efficient way for rapid incorporation of enzymes via Michael addition. Catalase was used as model enzyme in order to test the effect of immobilization methodology by the reactive film surface through Michael addition reaction. Finally, a plug flow type immobilized enzyme reactor was employed to estimate decomposition rate of hydrogen peroxide. The highly stable enzyme reactor could operate continuously for 120 h at 30 °C with only a loss of about 36 % of its initial activity.

  19. COVALENT IMMOBILIZATION OF INVERTASE ON EPOXY-ACTIVATED POLYANILINE FILMS

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2013-08-01

    Full Text Available The growing interest in manufacturing and use of biosensors is their rapid and selective detection of the target analyte. The immobilization of the enzymes, onto the appropriate matrix is the key-step in the construction of biosensing devices, considerably affecting its performance. In this study, new polyaniline bearing epoxy groups was synthesized by electrochemical polymerization reactions, as adherent, green film deposited on electrode surface, and was further used as immobilization matrix for invertase enzyme. The immobilization was carried out by condensation reactions between the amino groups of the enzyme molecules and the epoxy groups of polyaniline film. The covalent attachment was achieved by simple immersing the epoxy-activated polyaniline in acetate buffer solution (10 mM, pH 6.0 containing 2mg/mL invertase, for 24 h at 4 ºC, by continuous stirring. The polyaniline films thus obtained were analyzed before and after the invertase attachment, by using FT-IR spectroscopy and SEM microscopy. The presence of the invertase was evaluated by measuring their activity, using UV-Vis spectroscopy, in the presence of a known amount of sucrose as a substrate. These tests, performed for three times under the same conditions, revealed that even after five washes of the polyaniline /invertase electrode to remove the unbounded enzyme, the enzyme remain attached on the polyaniline film, being able to hydrolyze the sucrose presented in the assay solutions.

  20. Efficient immobilization of AGE and NAL enzymes onto functional amino resin as recyclable and high-performance biocatalyst.

    Science.gov (United States)

    Cheng, Jian; Zhuang, Wei; Tang, Chenglun; Chen, Yong; Wu, Jinglan; Guo, Ting; Ying, Hanjie

    2017-03-01

    N-Acetylglucosamine-2-epimerase (AGE) and N-acetylneuraminic acid lyase (NAL) were immobilized for synthesis of N-acetylneuraminic acid (Neu5Ac) on three resins: Amberzyme oxirane resin (AOR), poly (styrene-co-DVB)-Br resin (PBR) and amino resin (AR). The loading capacity and immobilized enzyme activity showed that AR was the best carrier. Three methods of glutaraldehyde cross-linking were tested and simultaneous cross-linking and immobilization was demonstrated to be the best method. The functional properties of immobilized AGE and NAL were studied and compared to those of the free enzyme. The highest enzyme activities of free and immobilized AGE were obtained in 0.1 M potassium phosphate buffer at pH 7.5 and a temperature of 37 °C. Comparatively, the highest NAL activities were at pH 8.5. Meanwhile, an increase in K m (from 1.14 to 1.31 mg·mL -1 for AGE and from 1.05 to 1.25 mg·mL -1 for NAL) and a decrease in V max (from 177.53 to 106.37 µg·min -1 mL -1 for AGE and from 126.41 to 95.96 µg·min -1 mL -1 for NAL) were recorded after immobilization. The AR-glutaraldehyde-enzyme system exhibited better thermal stability than the free enzyme, and retained 72% of its initial activity even after eight repeated runs. The apparent activation energy (E a ) of the free and immobilized AGE (NAL) was 117.14 kJ·mol -1 (124.21 kJ·mol -1 ) and 78.45 kJ·mol -1 (66.64 kJ·mol -1 ), respectively, implying that the catalytic efficiency of the immobilized enzyme was restricted by mass-transfer rather than kinetic limit. Subsequently, Neu5Ac production from GlcNAc using immobilized enzymes in one reactor was carried out resulting 101.45 g·L -1 of Neu5Ac and the highest conversion ratio of 82%. This method of enzyme immobilization may have a promising future for Neu5Ac production in industry.

  1. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  2. Study on Electrochemical Insulin Sensing Utilizing a DNA Aptamer-Immobilized Gold Electrode

    Directory of Open Access Journals (Sweden)

    Izumi Kubo

    2015-07-01

    Full Text Available We investigated an insulin-sensing method by utilizing an insulin-binding aptamer IGA3, which forms an anti-parallel G-quadruplex with folded single strands. Spectroscopic observation indicates that some anti-parallel G-quadruplex bind hemin and show peroxidase activity. In this study, the peroxidase activity of IGA3 with hemin was confirmed by spectrophotometric measurements, i.e., the activity was three-times higher than hemin itself. IGA3 was then immobilized onto a gold electrode to determine its electrochemical activity. The peroxidase activity of the immobilized IGA3-hemin complex was determined by cyclic voltammetry, and a cathodic peak current of the electrode showed a dependence on the concentration of H2O2. The cathodic peak current of the IGA3-hemin complex decreased by binding it to insulin, and this decrease depended on the concentration of insulin.

  3. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  4. Co-Immobilization of Enzymes and Magnetic Nanoparticles by Metal-Nucleotide Hydrogelnanofibers for Improving Stability and Recycling

    Directory of Open Access Journals (Sweden)

    Chunfang Li

    2017-01-01

    Full Text Available In this paper we report a facile method for preparing co-immobilized enzyme and magnetic nanoparticles (MNPs using metal coordinated hydrogel nanofibers. Candida rugosa lipase (CRL was selected as guest protein. For good aqueous dispersity, low price and other unique properties, citric acid-modified magnetic iron oxide nanoparticles (CA-Fe3O4 NPs have been widely used for immobilizing enzymes. As a result, the relative activity of CA-Fe3O4@Zn/AMP nanofiber-immobilized CRL increased by 8-fold at pH 10.0 and nearly 1-fold in a 50 °C water bath after 30 min, compared to free CRL. Moreover, the immobilized CRL had excellent long-term storage stability (nearly 80% releative activity after storage for 13 days. This work indicated that metal-nucleotide nanofibers could efficiently co-immobilize enzymes and MNPs simultaneously, and improve the stability of biocatalysts.

  5. Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: Enhanced antibacterial, permeable and mechanical properties

    International Nuclear Information System (INIS)

    Duan, Linlin; Wang, Yuanming; Zhang, Yatao; Liu, Jindun

    2015-01-01

    Graphical abstract: - Highlights: • Lysozyme was immobilized on the surface of graphene oxide (GO) and reduced GO (RGO). • The novel hybrid membranes based on lysozyme and graphene were fabricated firstly. • These membranes showed good antibacterial and mechanical performance. - Abstract: Enzyme immobilization has been developed to address lots of issues of free enzyme, such as instability, low activity and difficult to retain. In this study, graphene was used as an ideal carrier for lysozyme immobilization, including graphene oxide (GO) immobilized lysozyme (GO-Ly) and chemically reduced graphene oxide (CRGO) immobilized lysozyme (CRGO-Ly). Herein, lysozyme as a bio-antibacterial agent has excellent antibacterial performance and the products of its catalysis are safety and nontoxic. Then the immobilized lysozyme materials were blended into polyethersulfone (PES) casting solution to prepare PES ultrafiltration membrane via phase inversion method. GO and CRGO were characterized by Fourier transform infrared spectroscopy (FTIR), Ultraviolet–visible spectrum (UV), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and the immobilized lysozyme composites were observed by fluorescent microscopy. The results revealed that GO and CRGO were successfully synthesized and lysozyme was immobilized on their surfaces. The morphology, hydrophilicity, mechanical properties, separation properties and antibacterial activity of the hybrid membranes were characterized in detail. The hydrophilicity, water flux and mechanical strength of the hybrid membranes were significantly enhanced after adding the immobilized lysozyme. In the antibacterial experiment, the hybrid membranes exhibited an effective antibacterial performance against Escherichia coli (E. coli).

  6. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  7. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.

    Science.gov (United States)

    Scherbahn, V; Putze, M T; Dietzel, B; Heinlein, T; Schneider, J J; Lisdat, F

    2014-11-15

    Two types of carbon nanotube electrodes (1) buckypaper (BP) and (2) vertically aligned carbon nanotubes (vaCNT) have been used for elaboration of glucose/O2 enzymatic fuel cells exploiting direct electron transfer. For the anode pyrroloquinoline quinone dependent glucose dehydrogenase ((PQQ)GDH) has been immobilized on [poly(3-aminobenzoic acid-co-2-methoxyaniline-5-sulfonic acid), PABMSA]-modified electrodes. For the cathode bilirubin oxidase (BOD) has been immobilized on PQQ-modified electrodes. PABMSA and PQQ act as promoter for enzyme bioelectrocatalysis. The voltammetric characterization of each electrode shows current densities in the range of 0.7-1.3 mA/cm(2). The BP-based fuel cell exhibits maximal power density of about 107 µW/cm(2) (at 490 mV). The vaCNT-based fuel cell achieves a maximal power density of 122 µW/cm(2) (at 540 mV). Even after three days and several runs of load a power density over 110 µW/cm(2) is retained with the second system (10mM glucose). Due to a better power exhibition and an enhanced stability of the vaCNT-based fuel cells they have been studied in human serum samples and a maximal power density of 41 µW/cm(2) (390 mV) can be achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode

    Directory of Open Access Journals (Sweden)

    Li Yuanting

    2012-09-01

    Full Text Available Abstract Background Biosensors have attracted increasing attention as reliable analytical instruments in in situ monitoring of public health and environmental pollution. For enzyme-based biosensors, the stabilization of enzymatic activity on the biological recognition element is of great importance. It is generally acknowledged that an effective immobilization technique is a key step to achieve the construction quality of biosensors. Results A novel disposable biosensor was constructed by immobilizing laccase (Lac with silica spheres on the surface of multi-walled carbon nanotubes (MWCNTs-doped screen-printed electrode (SPE. Then, it was characterized in morphology and electrochemical properties by scanning electron microscopy (SEM and cyclic voltammetry (CV. The characterization results indicated that a high loading of Lac and a good electrocatalytic activity could be obtained, attributing to the porous structure, large specific area and good biocompatibility of silica spheres and MWCNTs. Furthermore, the electrochemical sensing properties of the constructed biosensor were investigated by choosing dopamine (DA as the typical model of phenolic compounds. It was shown that the biosensor displays a good linearity in the range from 1.3 to 85.5 μM with a detection limit of 0.42 μM (S/N = 3, and the Michaelis-Menten constant (Kmapp was calculated to be 3.78 μM. Conclusion The immobilization of Lac was successfully achieved with silica spheres to construct a disposable biosensor on the MWCNTs-doped SPE (MWCNTs/SPE. This biosensor could determine DA based on a non-oxidative mechanism in a rapid, selective and sensitive way. Besides, the developed biosensor could retain high enzymatic activity and possess good stability without cross-linking reagents. The proposed immobilization approach and the constructed biosensor offer a great potential for the fabrication of the enzyme-based biosensors and the analysis of phenolic compounds.

  9. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    International Nuclear Information System (INIS)

    Fernandes, Kátia F.; Cortijo-Triviño, David; Batista, Karla A.; Ulhoa, Cirano J.; García-Ruiz, Pedro A.

    2013-01-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na 2 SO 4 . Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na 2 SO 4 was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h

  10. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Kátia F., E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Cortijo-Triviño, David [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Batista, Karla A.; Ulhoa, Cirano J. [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); García-Ruiz, Pedro A. [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain)

    2013-07-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na{sub 2}SO{sub 4}. Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na{sub 2}SO{sub 4} was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h.

  11. Synthesis and application of a triazene-ferrocene modifier for immobilization and characterization of oligonucleotides at electrodes.

    Science.gov (United States)

    Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V

    2010-04-16

    A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.

  12. Utilization of ionizing radiation to obtention of polymeric supports for the enzyme immobilization with clinical potential use

    International Nuclear Information System (INIS)

    Rodas, Andrea Cecilia Dorion

    1997-01-01

    In the development of polymers with biological activity, it was studied the grafting of acrylic acid monomer onto polyethylene and polypropylene pellets by mutual radiation grafting technique. The effect of dose rate, irradiation total dose, and monomer concentration were studied. With the Pp pellets the best grafting yield occurred at dose rate of 0.25 kGy/h and with the PE pellets the dose rate was lower. The irradiation dose from 8 to 10 kGy was sufficient to obtain the highest grafting degree, and the AA concentration of 40% v/v was suitable. The graft of poly (acrylic acid) was chemically modified for the immobilization of two enzymes, the glucose oxidase and the urease. For both enzymes the increasing of grafting degree onto the pellets, increased the enzyme immobilization yield. The immobilized glucose oxidase showed the best activity when immobilized onto Pp-A A supports with grafting degree around 2%. The optimum p H and temperature profiles, and the Km and Vmax for free and immobilized enzyme were determined. The supports grafted with A A were not suitable for the chemical immobilization of urease. (author)

  13. Covalent immobilization of redox protein within the mesopores of transparent conducting electrodes

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rathouský, Jiří; Fattakhova-Rohlfing, D.

    2014-01-01

    Roč. 116, JAN 2014 (2014), s. 1-8 ISSN 0013-4686 R&D Projects: GA ČR GA104/08/0435 Institutional support: RVO:61388955 Keywords : Covalent immobilization * Porous electrodes * Redox proteins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.504, year: 2014

  14. Development of Cellulose Nano fibre (CNF) Derived From Kenaf Bast Fibre and Its Potential in Enzyme Immobilization Support

    International Nuclear Information System (INIS)

    Safwan Sulaiman; Mohd Noriznan Mokhtar; Mohd Nazli Naim; Azhari Samsu Baharuddin

    2016-01-01

    This research mainly focuses on developing a natural cellulose nano fibre (CNF) from kenaf bast fibre and its potential for enzyme immobilization support. CNF was isolated by using a combination between chemical and mechanical treatments such as alkaline process and high-intensity ultrasonication process to increase the efficiency of hemicelluloses and lignin removal, and to reduce its size into nano-order. The morphological study was carried out by using scanning electron microscope (SEM), indicating most of CNF diameter in range of 50-90 nm was obtained. The result of chemical analysis shows that cellulose content of raw bast fibre, bleached pulp fibre and CNF are 66.4 %, 83.7 % and 90.0 %, respectively. By decreasing the size of cellulose fibre, it increases the number of (O-H) group on the surface that plays as important role in enzyme immobilization. Covalent immobilization of cyclodextrin glucanotransferase (CGTase) onto CNF support resulted in about 95.0 % of protein loading with 69.48 % of enzyme activity, indicating high immobilization yield of enzyme. The enzymatic reaction of immobilized CGTase was able to produce more than 40 % yield of α-CD. Reusability profile of immobilized CGTase resulted in more than 60 % of retained activity up to 7 cycles. Therefore, the CNF is highly potential to be applied as enzyme immobilization support. (author)

  15. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seok; Niazi, Javed H [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Gu, Man Bock [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)], E-mail: mbgu@korea.ac.kr

    2009-02-23

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates.

  16. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    International Nuclear Information System (INIS)

    Kim, Yeon Seok; Niazi, Javed H.; Gu, Man Bock

    2009-01-01

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates

  17. Modification of an enzyme electrode by electrodeposition of hydroquinone for use as the anode of a glucose fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Takashi; Yamazaki, Hiraku; Kondo, Mizuki [Department of Bioengineering, Faculty of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka 940-2188 (Japan); Shimomura, Masato, E-mail: smasato@vos.nagaokaut.ac.jp [Department of Bioengineering, Faculty of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka 940-2188 (Japan)

    2012-06-15

    An electrode having immobilized glucose oxidase (GOx) was modified with polyhydroquinone (PHQ), which was employed as an electron-transferring mediator, by a simple electrochemical method and used as the anode of a glucose fuel cell. The GOx-immobilized electrode was fabricated by attaching polyallylamine (PAAm) and then GOx covalently onto a gold electrode covered with a monolayer formed with 3-mercaptopropionic acid. Subsequently, the GOx-immobilized electrode (GOx/PAAm electrode) was modified with PHQ by electrodeposition of hydroquinone. The cyclic voltammogram of the modified electrode (PHQ/GOx/PAAm electrode) in a phosphate buffer solution (0.10 M, pH 7.0) showed redox peaks due to the electrodeposited PHQ, whereas no redox peaks were found for the GOx/PAAm electrode in the buffer solution containing p-benzoquinone (BQ). The onset potential of glucose oxidation with the PHQ/GOx/PAAm electrode became ca. 0.2 V more negative than that observed with the GOx/PAAm electrode in the presence of BQ. The glucose fuel cell equipped with the PHQ/GOx/PAAm electrode as an anode gave a 3 times larger power output than the cell with the GOx/PAAm electrode using dissolved quinone as the mediator.

  18. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15

    International Nuclear Information System (INIS)

    Wang Kunqi; Yang Hua; Zhu Lin; Ma Zhongsu; Xing Shenyang; Lv Qiang; Liao Jianhui; Liu Changpeng; Xing Wei

    2009-01-01

    In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s -1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the presence of O 2 , GOD immobilized on Nafion and MC-FDU-15 matrices could produce a linear response to glucose. Thus, Nafion/GOD-MC-FDU-15/GC electrode is hopeful to be used in glucose biosensor. In addition, GOD immobilized on MC-FDU-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O 2 . So, the Nafion/GOD-MC-FDU-15/GC electrode can be utilized as the cathode in biofuel cell.

  19. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  20. Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing.

    Science.gov (United States)

    Huang, Ting; Liu, Zaichun; Li, Yunlong; Li, Yanqiu; Chao, Long; Chen, Chao; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo; Wu, Yuping

    2018-07-12

    Poly(5-hydroxytryptamine) (poly(5-HT)) is exploited as a new and efficient enzyme-immobilization matrix for amperometric and biofuel cell (BFC)-based biosensing. A GOx-poly(5-HT)-Pd nanoparticles (PdNPs) bionanocomposite is prepared by Na 2 PdCl 4 -initiated oxidized polymerization of 5-hydroxytryptamine (5-HT) in a neutral aqueous solution containing glucose oxidase (GOx), and this bionanocomposite and then chitosan (CS) are cast-coated on a Pd-plated Au electrode to yield a CS/GOx-poly(5-HT)-PdNPs/Pd plate /Au enzyme electrode. Scanning/transmission electron microscopy, UV-vis spectrophotometry and electrochemical quartz crystal microbalance are employed for material characterization and/or process monitoring. Under optimized conditions, the amperometric response of the enzyme electrode is linear with glucose concentration from 2.0 μM to 6.66 mM with a sensitivity of 110 μA mM -1  cm -2 , a limit of detection of 0.2 μM, and excellent operation/storage stability in the first-generation biosensing mode. The sensitivity is larger than those of some conventional electrodes under identical conditions. The enzyme electrode also works well in the second-generation biosensing mode. By using the enzyme electrode as the anode for glucose oxidation and a Pd plate /Au electrode as the cathode for KMnO 4 reduction, a monopolar BFC is constructed as a self-powered biosensor, the current response of which is linear with glucose concentration from 50 μM to 34.5 mM. Experiments also show that poly(5-HT) is a physical and chemical dual-immobilization matrix of enzyme, since the abundant amino groups in poly(5-HT) can be used for chemical bonding of GOx. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Study on immobilization enzyme using radiation grafting and condensation covalent

    International Nuclear Information System (INIS)

    Cao Jin; Su Zongxian; Gao Jianfeng

    1989-01-01

    The immobilization of gluecose oxidase (GOD) on polyethylene and F 46 is described by radiation grafting and condensation covalent. The GOD on polyethylene film is characterized with IR-spectrum. The results show that the enzyme activity on F 46 film is high when dose rate and covalent yield are low. When covalent yield is 4.3% the enzyme relative activity achieves the greatest value for F 46 film. The experiment also demonstrates that acrylic acid affects the relative activity of enzyme and the method of IR-pectrum character is convenient and efficient for GOD on polyethylene film

  2. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection.

    Science.gov (United States)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-21

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.

  3. {sup 125}I Labelling of Protein Using Immobilized Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Rok; Park, Kyung Bae; Awh, Ok Doo [Korea Advanced Energy Research Institute, Daejeon (Korea, Republic of)

    1984-03-15

    For an effective solid-phase labelling of protein with {sup 125}I, studies on the immobilization of lactoperoxidase (LPO) on the inner wall of polystyrene tubes were carried out. Labelling of bovine serum albumin (BSA) and insulin was also practiced using the LPO immobilized tubes. The immobilized enzyme of about 2.5 mu g/tube was sufficient for small scale labelling since the results of radio-paper chromatography of the labelling mixture of insulin indicated that the yields were sufficiently high (80%) even in the reactions conducted at room temperature for 60 sec. The results of the Sephadex column chromatography indicated that the labelled products were not contaminated with LPO-{sup 125}I, and the radiochemical purity of the products was more than 90%. In considering the general trend that the {sup 125}I labelled protein obtained by using LPO maintains its intactness better than those obtained by using chloramine-T, together with the tendency of yield enhancing with increase of reactants-concentration, the LPO immobilized tube method is estimated to be one of the simple methods of labelling. The product might be applicable without further purification.

  4. Electron paramagnetic resonance spin label titration: a novel method to investigate random and site-specific immobilization of enzymes onto polymeric membranes with different properties

    International Nuclear Information System (INIS)

    Butterfield, D. Allan; Colvin, Joshua; Liu Jiangling; Wang Jianquan; Bachas, Leonidas; Bhattacharrya, Dibakar

    2002-01-01

    The immobilization of biological molecules onto polymeric membranes to produce biofunctional membranes is used for selective catalysis, separation, analysis, and artificial organs. Normally, random immobilization of enzymes onto polymeric membranes leads to dramatic reduction in activity due to chemical reactions involved in enzyme immobilization, multiple-point binding, etc., and the extent of activity reduction is a function of membrane hydrophilicity (e.g. activity in cellulosic membrane >> polysulfone membrane). We have used molecular biology to effect site-specific immobilization of enzymes in a manner that orients the active site away from the polymeric membrane surface, thus resulting in higher enzyme activity that approaches that in solution and in increased stability of the enzyme relative to the enzyme in solution. A prediction of this site-specific method of enzyme immobilization, which in this study with subtilisin and organophosphorus hydrolase consists of a fusion tag genetically added to these enzymes and subsequent immobilization via the anti-tag antibody and membrane-bound protein A, is that the active site conformation will more closely resemble that of the enzyme in solution than is the case for random immobilization. This hypothesis was confirmed using a new electron paramagnetic resonance (EPR) spin label active site titration method that determines the amount of spin label bound to the active site of the immobilized enzyme. This value nearly perfectly matched the enzyme activity, and the results suggested: (a) a spectroscopic method for measuring activity and thus the extent of active enzyme immobilization in membrane, which may have advantages in cases where optical methods can not be used due to light scattering interference; (b) higher spin label incorporation (and hence activity) in enzymes that had been site-specifically immobilized versus random immobilization; (c) higher spin label incorporation in enzymes immobilized onto hydrophilic

  5. Determination of cyanide in wastewaters using modified glassy carbon electrode with immobilized silver hexacyanoferrate nanoparticles on multiwall carbon nanotube

    International Nuclear Information System (INIS)

    Noroozifar, Meissam; Khorasani-Motlagh, Mozhgan; Taheri, Aboozar

    2011-01-01

    Research highlights: → GC electrode modified with silver hexacyanoferrate nanoparticles (SHFNPs) immobilized on MWCNT. → Modified electrode use for determination of Cyanide in waste water. → The detection limit of the sensor is 8.3 nM. → The linear range is from 40.0 nM to 150.0 μM. - Abstract: The sensitive determination of cyanide in wastewaters using modified GC electrode with silver hexacyanoferrate nanoparticles (SHFNPs) immobilized on multiwall carbon nanotube (MWCNT) was reported. The immobilization of SHFNPs on MWCNT was confirmed by transmission electron microscopy (TEM). The TEM image showed that the SHFNPs retained the spherical morphology after immobilized on MWCNT. The size of SHFNPs was examined around 27 nm. The GC/MWCNT-SHFNPs was used for the determination of cyanide in borax buffer (BB) solution (pH 8.0). Using square wave voltammetry, the current response of cyanide increases linearly while increasing its concentration from 40.0 nM to 150.0 μM and a detection limit was found to be 8.3 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 5.0 μM cyanide in the presence of common contaminants at levels presenting in industrial wastewaters. The practical application of the present modified electrode was demonstrated by measuring the concentration of cyanide in industrial wastewater samples. Moreover, the studied sensor exhibited high sensitivity, good reproducibility and long-term stability.

  6. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, P. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul, Tamilnadu (India); John, S. Abraham, E-mail: abrajohn@yahoo.co.in [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul, Tamilnadu (India)

    2010-03-24

    We are reporting the highly sensitive determination of hydroxylamine (HA) using 2-mercapto-4-methyl-5-thiazoleacetic acid (TAA) capped fused spherical gold nanoparticles (AuNPs) modified Au electrode. The fused TAA-AuNPs were immobilized on (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film, which was pre-assembled on Au electrode. The immobilization of fused TAA-AuNPs on MPTS sol-gel film was confirmed by UV-vis absorption spectroscopy and atomic force microscopy (AFM). The AFM image showed that the AuNPs retained the fused spherical morphology after immobilized on sol-gel film. The fused TAA-AuNPs on MPTS modified Au electrode were used for the determination of HA in phosphate buffer (PB) solution (pH = 7.2). When compared to bare Au electrode, the fused AuNPs modified electrode not only shifted the oxidation potential of HA towards less positive potential but also enhanced its oxidation peak current. Further, the oxidation of HA was highly stable at fused AuNPs modified electrode. Using amperometric method, determination of 17.5 nM HA was achieved for the first time. Further, the current response of HA increases linearly while increasing its concentration from 17.5 nM to 22 mM and a detection limit was found to be 0.39 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 17.5 nM HA in the presence of 200-fold excess of common interferents such as urea, NO{sub 2}{sup -}, NH{sub 4}{sup +}, oxalate, Mn{sup 2+}, Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+} and Cu{sup 2+}. The practical application of the present modified electrode was demonstrated by measuring the concentration of HA in ground water samples.

  7. Enzyme immobilization by fouling in ultrafiltration membranes: Impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2014-01-01

    Enzyme-immobilization in membranes accomplished by fostering membrane fouling was evaluated. Four different membrane configurations and five membranes were compared for immobilization of alcohol dehydrogenase (ADH) in terms of enzyme loading, permeate flux and final biocatalytic conversion...... and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations...... for the different results. The work confirms that fouling-induced enzyme immobilization is a promising option for enhancing biocatalytic productivity, and highlights the significance of the membrane type and configuration for optimal performance....

  8. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor

    International Nuclear Information System (INIS)

    Qiu Cuicui; Wang Xia; Liu Xueying; Hou Shifeng; Ma Houyi

    2012-01-01

    Highlights: ► Au thin films are formed by electrodeposition and galvanic replacement technology. ► Glucose oxidase is stably immobilized via a simple physical adsorption method. ► The direct electrochemical behavior is obtained on the immobilized glucose oxidase. ► An amperometric sensor of glucose with an excellent sensing capability is achieved. - Abstract: Glucose oxidase (GOx) was stably immobilized via a simple physical adsorption method onto the nanostructured Au thin films fabricated by using electrodeposition and galvanic replacement technology, which provides a facile method to prepare morphology-controllable Au films and also facilitates the preparation and application of enzyme modified electrodes. An obvious advantage of the as-prepared enzyme electrode (denoted as GOx/Au/GCE) is that the nano-Au films provide a favorable microenvironment for GOx and facilitate the electron transfer between the active center of GOx and electrodes. Cyclic voltammetry (CV) results indicate that the immobilized GOx displayed a direct, reversible and surface-confined redox reaction in the phosphate buffer solution. Furthermore, the enzyme modified electrode was used as a glucose bioelectrochemical sensor, exhibiting a linear relationship in the concentration ranges of 2.5–32.5 μmol L −1 and 60–130 μmol L −1 with a detection limit of 0.32 μmol L −1 (S/N = 3) at an applied potential of −0.55 V. Due to the excellent stability, sensitivity and anti-interference ability, the Au thin films are hopeful in the construction of glucose biosensors.

  9. Electron transfer between a quinohemoprotein alcohol dehydrogenase and an electrode via a redox polymer network

    NARCIS (Netherlands)

    Stigter, E.C.A.; Jong, G.A.H. de; Jongejan, J.A.; Duine, J.A.; Lugt, J.P. van der; Somers, W.A.C.

    1996-01-01

    A quinohemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni was immobilized on an electrode in a redox polymer network consisting of a polyvinylpyridine partially N-complexed with osmiumbis-(bipyridine)chloride. The enzyme effectively transfers electrons to the electrode via the

  10. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  11. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  12. Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant

    Science.gov (United States)

    Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.

    2017-07-01

    Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.

  13. Immobilization of the Enzyme Glucose Oxidase on Both Bulk and Porous SiO2 Surfaces

    Directory of Open Access Journals (Sweden)

    Fulvia Sinatra

    2008-09-01

    Full Text Available Silicon dioxide surfaces, both bulk and porous, were used to anchor the enzyme glucose oxidase. The immobilization protocol was optimized and the samples characterized using X-ray Photoelectron Spectroscopy, Energy Dispersive X-rays coupled to scanning electron microscopy and enzymatic activity measurements. We show that a uniform layer was obtained by activating the oxide before immobilization. X-ray Photoelectron Spectroscopy measurements carried out on bulk oxide showed that the silicon substrate signal was fully screened after the enzyme deposition showing the absence of uncovered surface regions. The enzyme presence was detected monitoring both the C 1s and N 1s signals. Finally, enzymatic activity measurements confirmed that the glucose oxidase activity was preserved after immobilization and maintained after three months of shelf life if the sample was properly stored. The importance of using porous silicon oxide to maximize the surface area was also evidenced.

  14. Calix[6]arene mono-diazonium salt synthesis and covalent immobilization onto glassy carbon electrodes

    International Nuclear Information System (INIS)

    Cannizzo, Caroline; Jasmin, Jean-Philippe; Vautrin-Ul, Christine; Chausse, Annie; Wagner, Mathieu; Doizi, Denis; Lamouroux, Christine

    2014-01-01

    This Letter describes the fast synthesis of a mono-aminated calix[6]arene. The immobilization of this macrocycle onto glassy carbon electrodes via diazonium salt chemistry and the electrochemical characterization of the grafted organic layer are also reported. (authors)

  15. Synthesis and effect of modification on methacylate - acrylate microspheres for Trametes versicolor laccase enzyme immobilization

    Science.gov (United States)

    Mazlan, Siti Zulaikha; Hanifah, Sharina Abu

    2014-09-01

    Immobilization of laccase on the modified copolymer methacrylate-acrylate microspheres was studied. A poly (glycidyl methacrylate-co-n-butyl acrylate) microsphere consists of epoxy groups were synthesized using suspension photocuring technique. The epoxy group in poly (GMA-nBA) microspheres were converted into amino groups with aldehyde group. Laccase immobilization is based on having the amino groups on the enzyme surface and aldehyde group on the microspheres via covalent binding. Fourier transform infrared spectroscopy (FT-IR) analysis proved the successful surface modification on microspheres. The FTIR spectrum shows the characteristic peaks at 1646 cm-1 assigned to the conformation of the polymerization that took place between monomer GMA and nBA respectively. In addition, after modification, FTIR peaks that assigned to the epoxy ring (844 cm-1 and 904 cm-1) were decreased. The results obtained from FTIR method signify good agreement with the epoxy content method. Hence, the activity of the laccase-immobilized microspheres increased upon increasing the epoxy content. Furthermore, poly (GMA-nBA) exhibited uniform microspheres with below 2 μm surface. Immobilized enzyme showed a broader pH profile and higher temperature compared native enzyme.

  16. Continuous glycerolysis in an immobilized enzyme packed reactor for industrial monoacylglycerol production

    DEFF Research Database (Denmark)

    . In spite of optimal reaction conditions a complex heterogeneous reactant mixture with a glycerol in oil emulsion occurs. Hence, the movement of material from phase to phase as well as through the catalyst pores becomes important since it can influence the performance of the immobilized enzyme reactor...... and sunflower oil dissolved in a binary tert-butanol:tert-pentanol medium. Practical design-related issues such as required reaction time, enzyme capacity, expansion of the enzyme during wetting, and the effect of different column length-to-diameter ratios, fluid velocities and particle sizes of the enzymes...

  17. Comparative study of different alcohol sensors based on Screen-Printed Carbon Electrodes.

    Science.gov (United States)

    Costa Rama, Estefanía; Biscay, Julien; González García, María Begoña; Julio Reviejo, A; Pingarrón Carrazón, José Manuel; Costa García, Agustín

    2012-05-30

    Different very simple single-use alcohol enzyme sensors were developed using alcohol oxidase (AOX) from three different yeast, Hansenula sp., Pichia pastoris and Candida boidinii, and employing three different commercial mediator-based Screen-Printed Carbon Electrodes as transducers. The mediators tested, Prussian Blue, Ferrocyanide and Co-phthalocyanine were included into the ink of the working electrode. The procedure to obtain these sensors consists of the immobilization of the enzyme on the electrode surface by adsorption. For the immobilization, an AOX solution is deposited on the working electrode and left until dried (1h) at room temperature. The best results were obtained with the biosensor using Screen-Printed Co-phthalocyanine/Carbon Electrode and AOX from Hansenula sp. The reduced cobalt-phthalocyanine form is amperometrically detected at +0.4V (vs. Ag pseudo reference electrode). This sensor shows good sensitivity (1211 nA mM(-1)), high precision (2.1% RSD value for the slope value of the calibration plot) and wide linear response (0.05-1.00 mM) for ethanol determination. The sensor provides also accurate results for ethanol quantification in alcoholic drinks. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. An Electrochemical Enzyme Biosensor for 3-Hydroxybutyrate Detection Using Screen-Printed Electrodes Modified by Reduced Graphene Oxide and Thionine

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-García

    2017-11-01

    Full Text Available A biosensor for 3-hydroxybutyrate (3-HB involving immobilization of the enzyme 3-hydroxybutyrate dehydrogenase onto a screen-printed carbon electrode modified with reduced graphene oxide (GO and thionine (THI is reported here. After addition of 3-hydroxybutyrate or the sample in the presence of NAD+ cofactor, the generated NADH could be detected amperometrically at 0.0 V vs. Ag pseudo reference electrode. Under the optimized experimental conditions, a calibration plot for 3-HB was constructed showing a wide linear range between 0.010 and 0.400 mM 3-HB which covers the clinically relevant levels for diluted serum samples. In addition, a limit of detection of 1.0 µM, much lower than that reported using other biosensors, was achieved. The analytical usefulness of the developed biosensor was demonstrated via application to spiked serum samples.

  19. Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2013-01-01

    Roč. 96, č. 2 (2013), s. 545-548 ISSN 0144-8617 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : Chitosan * Magnetite * Microwave irradiation * Enzymes immobilization Subject RIV: CE - Biochemistry Impact factor: 3.916, year: 2013

  20. Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1979-01-01

    The effect of cooling rate of a monomeric system on the porosity and activity of an immobilized enzyme prepared by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperatures has been studied. Slow cooling gave the same effect on porosity of the polymer as decreasing the monomer concentration. A glass-forming solvent such as diethylene glycol was added to water to study the effect of the supercooling tendency of the solvent. Addition of diethylene glycol decreased porosity and also enzymic activity. Water was replaced by the miscible solvent p-dioxane and the immiscible solvent n-decane in order to clarify the effect of solvent. p-Dioxane had a similar effect to water on the relation between the monomer concentration, porosity and activity. On the other hand, polymer prepared from the system containing n-decane showed different immobilization properties owing to the presence of independent pores in the matrix. (author)

  1. Enzyme-Catalyzed Oxidation of 17β-Estradiol Using Immobilized Laccase from Trametes versicolor

    Science.gov (United States)

    Cardinal-Watkins, Chantale; Nicell, Jim A.

    2011-01-01

    Many natural and synthetic estrogens are amenable to oxidation through the catalytic action of oxidative enzymes such as the fungal laccase Trametes versicolor. This study focused on characterizing the conversion of estradiol (E2) using laccase that had been immobilized by covalent bonding onto silica beads contained in a bench-scale continuous-flow packed bed reactor. Conversion of E2 accomplished in the reactor declined when the temperature of the system was changed from room temperature to just above freezing at pH 5 as a result of a reduced rate of reaction rather than inactivation of the enzyme. Similarly, conversion increased when the system was brought to warmer temperatures. E2 conversion increased when the pH of the influent to the immobilized laccase reactor was changed from pH 7 to pH 5, but longer-term experiments showed that the enzyme is more stable at pH 7. Results also showed that the immobilized laccase maintained its activity when treating a constant supply of aqueous E2 at a low mean residence time over a 12-hour period and when treating a constant supply of aqueous E2 at a high mean residence time over a period of 9 days. PMID:21869925

  2. Production of immobilized cellulase enzyme by some microorganisms from the rice straw agro-waste using γ-irradiation

    International Nuclear Information System (INIS)

    Mohamed, M.A.Z.

    2014-01-01

    Studies were carried out using 14 fungal cultures screened for their ability to produce cellulase enzymes. A .hortai was selected for the present research as a potent cellulase producer. Cultural and nutritional factors affecting cellulase production were also investigated in order to optimize the fermentation conditions for the maximization of production. The obtained results revealed that, the maximum cellulase production (0.23 U/ml) was achieved after 96 h in a liquid medium (Ph 7.0) inoculated with 10% v/v inoculum size, at temperature 37 ºC, containing (gL -1 ) CMC, 5.0; yeast extract, 0.1; (NH 4 ) 2 SO 4 , 0.5; KH 2 PO 4 , 10.0; MgSO 4 .7H 2 O, 0.1 and NaCl, 0.2. The activity remained almost stable between ph 6.0 and 7.0. The highest cellulase activity (1.18 U/ml) was obtained at a lactose concentration of (5.0 gL -1 ). Partial purification of the crude cellulase by ammonium sulphate 70% saturation showed the highest specific enzyme activity and purification fold (2.3 U/mg protein and 2.12 fold, respectively). Different carriers and methods were used to select the suitable one for cellulase immobilization. Poly (acrylamide-co-acrylic acid) prepared by diazotization method increase S.E.A and the amount of immobilized enzyme to be (2.3 U/mg protein and 2.8 mg), respectively. The immobilized cellulase shows better operational stability, including wider ph and thermal ranges. The immobilized cellulase remained fully active up to 60°C. The kinetic parameters Km and Vmax were determined. The increase of the apparent Km after immobilization clearly indicates an apparent lower affinity of the immobilized enzyme for its substrate than the free enzyme. The resulting immobilized cellulase exhibited good reusability on degradation of rice straw agricultural wastes and also show good storage stability, that it lost only 17 % of its initial activity after 6 weeks.

  3. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor

    International Nuclear Information System (INIS)

    Zhang Fenfen; Wang Xiaoli; Ai Shiyun; Sun Zhengdong; Wan Qiao; Zhu Ziqiang; Xian Yuezhong; Jin Litong; Yamamoto, Katsunobu

    2004-01-01

    A reagentless uric acid (UA) biosensor based on uricase immobilized on ZnO nanorods was developed. Direct electrochemistry and thermal stability of immobilized uricase were studied. The ZnO nanorods derived electrode retained the enzyme bioactivity and could enhance the electron transfer between the enzyme and the electrode. This sensor showed a high thermal stability up to 85 deg. C and an electrocatalytic activity to the oxidation of uric acid without the presence of an electron mediator. The electrocatalytic response showed a linear dependence on the uric acid concentration ranging from 5.0 x 10 -6 to 1.0 x 10 -3 mol L -1 with a detection limit of 2.0 x 10 -6 mol L -1 at 3σ. The apparent K M app value for the uric acid sensor was estimated to be 0.238 mM, showing a high affinity

  4. FT-IR microspectroscopy characterization of supports for enzyme immobilization in biosensing applications

    Science.gov (United States)

    Portaccio, M.; Della Ventura, B.; Gabrovska, K.; Marinov, I.; Godjevargova, T.; Mita, D. G.; Lepore, M.

    2010-04-01

    The investigation of materials suitable for enzyme immobilization in biosensing applications has a widespread interest. There are many studies on physico-chemical properties of these materials at macroscopic level but few studies have been devoted to examine and correlate these properties at microscopic level. FT-IR spectroscopy with Micro-Attenuated Total Reflection (Micro-ATR) approach can be extremely useful for understanding a variety of aspects of materials which can be used for optimising immobilization procedures. Moreover, this experimental approach is particularly simple to use (no sample preparation is required) and minimally invasive. Using a Perkin Elmer Spectrum One FT-IR spectrometer equipped with a mercury-cadmium-telluride detector and a micro-ATR element we investigated different materials used for immobilization procedures with various enzymes widely used for biosensing in environmental and clinical applications. In particular, composite membranes constituted by a chemically modified poly-acrylonitrile (PAN) membrane plus layers of tethered chitosan of different molecular weight have been examined. Also silica gel matrices without and with glucose oxidase have been investigated. Spectra have been analysed and the contribution of principal functional groups has been evidenced.

  5. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Ladakis, Dimitrios; Kookos, Ioannis K. [Department of Chemical Engineering, University of Patras, 26504 Patras, Rio (Greece); Koutinas, Apostolis A. [Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855 (Greece); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: safarik@nh.cas.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388 mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. - Highlights: • Bacterial cellulose was magnetically modified with magnetic fluid. • Magnetic cellulose is an efficient carrier for affinity ligands. • Enzymes and cells can be efficiently immobilized to magnetic cellulose.

  6. Immobilization of enzymes on radiation-modified gelatine gel by using a chemical cross-linking agent

    International Nuclear Information System (INIS)

    Bachmann, S.; Gebicka, L.; Galant, S.

    1981-01-01

    Investigations into the effect of ionizing radiation on the gelatine gels have shown that water-insoluble gel can be formed under suitable irradiation conditions. To establish the optimal conditions for the processing of the insoluble gel, the yield of cross-linking has been determined for gelatine solutions and its gels irradiated with various doses in the absence and in the presence of oxygen. Glucose isomerase (GI) was used as a test enzyme for immobilization on the gelatine gel. This enzyme which catalyses the isomerization of glucose to fructose has been used on the commercial-scale production of high fructose syrups. The support matrix chosen for the enzyme immobilization has been obtained by irradiating 4% wt/vol. de-aerated gelatine gel at a dose of 1.5 x 10 4 kGy at 15 0 C. Actinoplanes missouriensis cells containing GI were mixed with gelatine gel particles and cross-linked with glutaraldehyde. It was found that the immobilized GI can be successfully applied in the continuous isomerization of glucose to fructose. (author)

  7. Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode

    International Nuclear Information System (INIS)

    Sivanesan, A.; Kannan, P.; Abraham John, S.

    2007-01-01

    This paper describes the electrocatalytic oxidation of ascorbic acid (AA) in phosphate buffer solution by the immobilized citrate capped gold nanoparticles (AuNPs) on 1,6-hexanedithiol (HDT) modified Au electrode. X-ray photoelectron spectrum (XPS) of HDT suggests that it forms a monolayer on Au surface through one of the two -SH groups and the other -SH group is pointing away from the electrode surface. The free -SH groups of HDT were used to covalently attach colloidal AuNPs. The covalent attachment of AuNPs on HDT monolayer was confirmed from the observed characteristic carboxylate ion stretching modes of citrate attached with AuNPs in the infra-red reflection absorption spectrum (IRRAS) in addition to a higher reductive desorption charges obtained for AuNPs immobilized on HDT modified Au (Au/HDT/AuNPs) electrode in 0.1 M KOH when compared to HDT modified Au (Au/HDT) electrode. The electron transfer reaction of [Fe(CN) 6 ] 4-/3- was markedly hindered at the HDT modified Au (Au/HDT) electrode while it was restored with a peak separation of 74 mV after the immobilization of AuNPs on Au/HDT (Au/HDT/AuNPs) electrode indicating a good electronic communication between the immobilized AuNPs and the underlying bulk Au electrode through a HDT monolayer. The Cottrell slope obtained from the potential-step chronoamperometric measurements for the reduction of ferricyanide at Au/HDT/AuNPs was higher than that of bare Au electrode indicating the increased effective surface area of AuNPs modified electrode. The Au/HDT/AuNPs electrode exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid (AA) by enhancing the oxidation peak current to more than two times with a 210 mV negative shift in the oxidation potential when compared to a bare Au electrode. The standard heterogeneous electron transfer rate constant (k s ) calculated for AA oxidation at Au/HDT/AuNPs electrode was 5.4 x 10 -3 cm s -1 . The oxidation peak of AA at Au/HDT/AuNPs electrode was

  8. Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes.

    Science.gov (United States)

    Mulchandani, A; Bassi, A S

    1996-01-01

    Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.

  9. Immobilization of β-glucosidase onto mesoporous silica support: Physical adsorption and covalent binding of enzyme

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This paper investigates β-glucosidase immobilization onto mesoporous silica support by physical adsorption and covalent binding. The immobilization was carried out onto micro-size silica aggregates with the average pore size of 29 nm. During physical adsorption the highest yield of immobilized β-glucosidase was obtained at initial protein concentration of 0.9 mg ml-1. Addition of NaCl increased 1.7-fold, while Triton X-100 addition decreased 6-fold yield of adsorption in comparison to the one obtained without any addition. Covalently bonded β-glucosidase, via glutaraldehyde previously bonded to silanized silica, had higher yield of immobilized enzyme as well as higher activity and substrate affinity in comparison to the one physically adsorbed. Covalent binding did not considerably changed pH and temperature stability of obtained biocatalyst in range of values that are commonly used in reactions in comparison to unbounded enzyme. Furthermore, covalent binding provided biocatalyst which retained over 70% of its activity after 10 cycles of reuse. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  10. Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors.

    Science.gov (United States)

    Müntze, Gesche Mareike; Baur, Barbara; Schäfer, Wladimir; Sasse, Alexander; Howgate, John; Röth, Kai; Eickhoff, Martin

    2015-02-15

    Penicillinase-modified AlGaN/GaN field-effect transistors (PenFETs) are utilized to systematically investigate the covalently immobilized enzyme penicillinase under different experimental conditions. We demonstrate quantitative evaluation of covalently immobilized penicillinase layers on pH-sensitive field-effect transistors (FETs) using an analytical kinetic PenFET model. This kinetic model is explicitly suited for devices with thin enzyme layers that are not diffusion-limited, as it is the case for the PenFETs discussed here. By means of the kinetic model it was possible to extract the Michaelis constant of covalently immobilized penicillinase as well as relative transport coefficients of the different species associated with the enzymatic reaction which, exempli gratia, give information about the permeability of the enzymatic layer. Based on this analysis we quantify the reproducibility and the stability of the analyzed PenFETs over the course of 33 days as well as the influence of pH and buffer concentration on the properties of the enzymatic layer. Thereby the stability measurements reveal a Michalis constant KM of (67 ± 13)μM while the chronological development of the relative transport coefficients suggests a detachment of physisorbed penicillinase during the first two weeks since production. Our results show that AlGaN/GaN PenFETs prepared by covalent immobilization of a penicillinase enzyme layer present a powerful tool for quantitative analysis of enzyme functionality. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  12. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    International Nuclear Information System (INIS)

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D; Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R; McLamore, Eric S; Calvo-Marzal, Percy

    2011-01-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 μA mM -1 cm -2 ), linear range (0.0037-12 mM), detection limit (3.7 μM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H 2 O 2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  13. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D [Weldon School of Biomedical Engineering, Purdue University (United States); Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R [Physiological Sensing Facility, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University (United States); McLamore, Eric S [Department of Agricultural and Biological Engineering, University of Florida (United States); Calvo-Marzal, Percy, E-mail: porterf@purdue.edu [Department of Chemistry, Purdue University (United States)

    2011-09-02

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 {+-} 0.5 {mu}A mM{sup -1} cm{sup -2}), linear range (0.0037-12 mM), detection limit (3.7 {mu}M), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H{sub 2}O{sub 2} response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  14. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Science.gov (United States)

    Shi, Jin; Claussen, Jonathan C.; McLamore, Eric S.; Haque, Aeraj ul; Jaroch, David; Diggs, Alfred R.; Calvo-Marzal, Percy; Rickus, Jenna L.; Porterfield, D. Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM - 1 cm - 2), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  15. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    Science.gov (United States)

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  16. Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor.

    Science.gov (United States)

    Ruhal, A; Rana, J S; Kumar, S; Kumar, A

    2012-12-22

    An amperometric malic acid biosensor was developed by immobilizing malate dehydrogenase on multi-walled carbon nanotubes (MWCNT) coated on screen printed carbon electrode. The screen printed carbon electrode is made up of three electrodes viz., carbon as working, platinum as counter and silver as reference electrode. Detection of L-malic acid concentration provides important information about the ripening and shelf life of the fruits. The NADP specific malate dehydrogenase was immobilized on carboxylated multiwalled carbon nanotubes using cross linker EDC [1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide] on screen printed carbon electrode. An amperometric current was measured by differential pulse voltammetry (DPV) which increases with increasing concentrations of malic acid at fixed concentration of NADP. Enzyme electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The detection limit of malic acid by the sensor was 60 - 120 μM and sensitivity of the sensor was 60 μM with a response time of 60s. The usual detection methods of malic acid are nonspecific, time consuming and less sensitive. However, an amperometric malic acid nanosensor is quick, specific and more sensitive for detection of malic acid in test samples.

  17. Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method

    International Nuclear Information System (INIS)

    Tu, X.; Zhao, Y.; Luo, S.; Luo, X.; Feng, L.

    2012-01-01

    We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0. 59 s -1 . The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01 mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10 days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins. (author)

  18. Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis.

    Science.gov (United States)

    Ahmad, Razi; Khare, Sunil Kumar

    2018-03-01

    In present study, Aspergillus niger cellulase was immobilized onto functionalized multiwalled carbon nanotubes (MWCNTs) via carbodiimide coupling. MWCNTs offer unique advantages including enhanced electronics properties, a large edge to basal plane ratio, rapid electrode kinetics and it's possess higher tensile strength properties due to their structural arrangements. The immobilization was confirmed by FTIR (Fourier transform infrared spectroscopy) and SEM (scanning electron microscope). The bionanoconjugates prepared under optimized condition retained 85% activity with improved pH and thermal stability. The t 1/2 of immobilized cellulase at 70 °C was four fold higher than free enzyme. The Km value indicates that affinity of bionanoconjugates towards substrate has increased by two times. The preparation could be reused ten times without much loss in enzyme activity. The enhanced catalytic efficiency, stability and reusability makes it useful for efficient cellulose hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Optimizing electrode-attached redox-peptide systems for kinetic characterization of protease action on immobilized substrates. Observation of dissimilar behavior of trypsin and thrombin enzymes.

    Science.gov (United States)

    Anne, Agnès; Chovin, Arnaud; Demaille, Christophe

    2012-06-12

    In this work, we experimentally address the issue of optimizing gold electrode attached ferrocene (Fc)-peptide systems for kinetic measurements of protease action. Considering human α-thrombin and bovine trypsin as proteases of interest, we show that the recurring problem of incomplete cleavage of the peptide layer by these enzymes can be solved by using ultraflat template-stripped gold, instead of polished polycrystalline gold, as the Fc-peptide bearing electrode material. We describe how these fragile surfaces can be mounted in a rotating disk configuration so that enzyme mass transfer no longer limits the overall measured cleavage kinetics. Finally, we demonstrate that, once the system has been optimized, in situ real-time cyclic voltammetry monitoring of the protease action can yield high-quality kinetic data, showing no sign of interfering effects. The cleavage progress curves then closely match the Langmuirian variation expected for a kinetically controlled surface process. Global fit of the progress curves yield accurate values of the peptide cleavage rate for both trypsin and thrombin. It is shown that, whereas trypsin action on the surface-attached peptide closely follows Michaelis-Menten kinetics, thrombin displays a specific and unexpected behavior characterized by a nearly enzyme-concentration-independent cleavage rate in the subnanomolar enzyme concentration range. The reason for this behavior has still to be clarified, but its occurrence may limit the sensitivity of thrombin sensors based on Fc-peptide layers.

  20. Immobilization of a mediator onto carbon cloth electrode and employment of the modified electrode to an electroenzymatic bioreactor.

    Science.gov (United States)

    Jeong, Eun-Seon; Sathishkumar, Muthuswamy; Jayabalan, Rasu; Jeong, Su-Hyeon; Park, Song-Yie; Mun, Sung-Phil; Yun, Sei-Eok

    2012-10-01

    5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) was selected as an electron transfer mediator and was covalently immobilized onto high porosity carbon cloth to employ as a working electrode in an electrochemical NAD(+)-regeneration process, which was coupled to an enzymatic reaction. The voltammetric behavior of DTNB attached to carbon cloth resembled that of DTNB in buffered aqueous solution, and the electrocatalytic anodic current grew continuously upon addition of NADH at different concentrations, indicating that DTNB is immobilized to carbon cloth effectively and the immobilized DTNB is active as a soluble one. The bioelectrocatalytic NAD+ regeneration was coupled to the conversion of L-glutamate into alpha-ketoglutarate by L-glutamate dehydrogenase within the same microreactor. The conversion at 3 mM monosodium glutamate was very rapid, up to 12 h, to result in 90%, and then slow up to 24 h, showing 94%, followed by slight decrease. Low conversion was shown when substrate concentration exceeding 4 mM was tested, suggesting that L-glutamate dehydrogenase is inhibited by alpha-ketoglutarate. However, our electrochemical NAD+ regeneration procedure looks advantageous over the enzymatic procedure using NADH oxidase, from the viewpoint of reaction time to completion.

  1. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode.

    Science.gov (United States)

    Palanisamy, Selvakumar; Karuppiah, Chelladurai; Chen, Shen-Ming

    2014-02-01

    The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Site-Specific, Covalent Immobilization of Dehalogenase ST2570 Catalyzed by Formylglycine-Generating Enzymes and Its Application in Batch and Semi-Continuous Flow Reactors

    Directory of Open Access Journals (Sweden)

    Hui Jian

    2016-07-01

    Full Text Available Formylglycine-generating enzymes can selectively recognize and oxidize cysteine residues within the sulfatase sub motif at the terminus of proteins to form aldehyde-bearing formylglycine (FGly residues, and are normally used in protein labeling. In this study, an aldehyde tag was introduced to proteins using formylglycine-generating enzymes encoded by a reconstructed set of the pET28a plasmid system for enzyme immobilization. The haloacid dehalogenase ST2570 from Sulfolobus tokodaii was used as a model enzyme. The C-terminal aldehyde-tagged ST2570 (ST2570CQ exhibited significant enzymological properties, such as new free aldehyde groups, a high level of protein expression and improved enzyme activity. SBA-15 has widely been used as an immobilization support for its large surface and excellent thermal and chemical stability. It was functionalized with amino groups by aminopropyltriethoxysilane. The C-terminal aldehyde-tagged ST2570 was immobilized to SBA-15 by covalent binding. The site-specific immobilization of ST2570 avoided the chemical denaturation that occurs in general covalent immobilization and resulted in better fastening compared to physical adsorption. The site-specific immobilized ST2570 showed 3-fold higher thermal stability, 1.2-fold higher catalytic ability and improved operational stability than free ST2570. The site-specific immobilized ST2570 retained 60% of its original activity after seven cycles of batch operation, and it was superior to the ST2570 immobilized to SBA-15 by physical adsorption, which loses 40% of its original activity when used for the second time. It is remarkable that the site-specific immobilized ST2570 still retained 100% of its original activity after 10 cycles of reuse in the semi-continuous flow reactor. Overall, these results provide support for the industrial-scale production and application of site-specific, covalently immobilized ST2570.

  3. Immobilization of Papain on Chitin and Chitosan and Recycling of Soluble Enzyme for Deflocculation of Saccharomyces cerevisiae from Bioethanol Distilleries

    Directory of Open Access Journals (Sweden)

    Douglas Fernandes Silva

    2015-01-01

    Full Text Available Yeast flocculation (Saccharomyces cerevisiae is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde (0.1–10% w·v−1, polyethyleneimine (0.5% v·v−1, and tripolyphosphate (1–10% w·v−1 inactivated the enzyme in this range, respectively. Glutaraldehyde inhibited all treatments of papain immobilization. The chitosan cross-linked with TPP in 5 h of reaction showed the yield of active immobilized enzyme of 15.7% and 6.07% in chitosan treated with 0.1% PEI. Although these immobilizations have been possible, these levels have not been enough to cause deflocculation of yeast cells. Free enzyme was efficient for yeast deflocculation in dosages of 3 to 4 g·L−1. Recycling of soluble papain by centrifugation was effective for 14 cycles with yeast suspension in time perfectly compatible to industrial conditions. The reuse of proteases applied after yeast suspension by additional yeast centrifugation could be an alternative to cost reduction of these enzymes.

  4. Electrospun Chitosan-Gelatin Biopolymer Composite Nanofibers for Horseradish Peroxidase Immobilization in a Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Siriwan Teepoo

    2017-10-01

    Full Text Available A biosensor based on chitosan-gelatin composite biopolymers nanofibers is found to be effective for the immobilization of horseradish peroxidase to detect hydrogen peroxide. The biopolymer nanofibers were fabricated by an electrospining technique. Upon optimization of synthesis parameters, biopolymers nanofibers, an average of 80 nm in diameter, were obtained and were then modified on the working electrode surface. The effects of the concentration of enzyme, pH, and concentration of the buffer and the working potential on the current response of the nanofibers-modified electrode toward hydrogen peroxide were optimized to obtain the maximal current response. The results found that horseradish peroxidase immobilization on chitosan-gelatin composite biopolymer nanofibers had advantages of fast response, excellent reproducibility, high stability, and showed a linear response to hydrogen peroxide in the concentration range from 0.1 to 1.7 mM with a detection limit of 0.05 mM and exhibited high sensitivity of 44 µA∙mM−1∙cm−2. The developed system was evaluated for analysis of disinfectant samples and showed good agreement between the results obtained by the titration method without significant differences at the 0.05 significance level. The proposed strategy based on chitosan-gelatin composite biopolymer nanofibers for the immobilization of enzymes can be extended for the development of other enzyme-based biosensors.

  5. Lipase from Aspergillus niger obtained from mangaba residue fermentation: biochemical characterization of free and immobilized enzymes on a sol-gel matrix

    Directory of Open Access Journals (Sweden)

    Elis Augusta Leite dos Santos

    2017-02-01

    Full Text Available In this study, mangaba residue (seeds was used as a substrate for Aspergillus niger lipase production by solid-state fermentation. The partially purified enzyme was efficiently immobilized in a sol-gel matrix by covalent bonding with an immobilization yield of 91.2%. The immobilized biocatalyst and free lipase had an optimum pH of 2.0 and 5.0, respectively. However, greater stability was obtained at pH 4.0 and 7.0, respectively. The biocatalysts showed stability at the optimum temperature of 55°C, where the residual activity was above 87% after 240 min., of incubation. The lower deactivation constant (kd and higher half-life of the immobilized biocatalyst indicated greater thermal stability than those obtained with the free enzyme. The Michaelis Constant (Km (77 and 115 mM for free and immobilized lipase, respectively and maximum reaction rate (Vmax (1250 and 714 U mg-1 for free and immobilized lipase, respectively indicated that the immobilization process reduced enzyme-substrate affinity. Regarding the operational stability, the biocatalyst showed relative activity above 50% until seven cycles of reuse in olive oil hydrolysis. This novel biocatalyst obtained from a tropical fruit residue showed biochemical characteristics that support its application in future biocatalysis studies.

  6. Immobilization of HRP Enzyme on Layered Double Hydroxides for Biosensor Application

    Directory of Open Access Journals (Sweden)

    Zouhair M. Baccar

    2011-01-01

    Full Text Available We present a new biosensor for hydrogen peroxide (H2O2 detection. The biosensor was based on the immobilization of horseradish peroxidase (HRP enzyme on layered double hydroxides- (LDH- modified gold surface. The hydrotalcite LDH (Mg2Al was prepared by coprecipitation in constant pH and in ambient temperature. The immobilization of the peroxidase on layered hybrid materials was realized via electrostatic adsorption autoassembly process. The detection of hydrogen peroxide was successfully observed in PBS buffer with cyclic voltammetry and the chronoamperometry techniques. A limit detection of 9 μM of H2O2 was obtained with a good reproducibility. We investigate the sensitivity of our developed biosensor for H2O2 detection in raw milk.

  7. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability.

    Science.gov (United States)

    Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali

    2018-01-31

    A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.

  8. AMPEROMETRIC THICK-FILM STRIP ELECTRODES FOR MONITORING ORGANOPHOSPHATE NERVE AGENTS BASED ON IMMOBILIZED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    Science.gov (United States)

    An amperometric biosensor based on the immobilization of organophosphorus hydrolase(OPH) onto screen-printed carbon electrodes is shown useful for the rapid, sensitive, and low-costdetection of organophosphate (OP) nerve agents. The sensor relies upon the sensitive and ra...

  9. Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode

    Energy Technology Data Exchange (ETDEWEB)

    Verduyn, C.; Zomerdijk, T.P.L.; Dijken, J.P. van; Scheffers, W.A.

    1984-03-01

    An alcohol electrode was constructed which consisted of an oxygen probe onto which alcohol oxidase was immobilized. This enzyme electrode was used, in combination with a reference oxygen electrode, to study the short-term kinetics of alcoholic fermentation by aerobic yeast suspensions after pulsing with glucose. The results demonstrate that this device is an excellent tool in obtaining quantitative data on the short-term expression of the Crabtree effect in yeasts. Samples from aerobic glucose-limited chemostat cultures of Saccharomyces cerevisiae not producing ethanol, immediately (within 2 min) exhibited aerobic alcohol fermentation after being pulsed with excess glucose. With chemostat-grown Candida utilis, however, ethanol production was not detactable even at high sugar concentrations. The Crabtree effect in S. cerevisiae was studied in more detail with commercial baker's yeast. Ethanol formation occurred only at initial glucose concentrations exceeding 150 mgx1/sup -1/, and the rate of alcoholic fermentation increased with increasing glucose concentrations up to 1,000 mgx1/sup -1/ glucose. Similar experiments with batch cultures of certain ''non-fermentative'' yeasts revealed that these organisms are capable of alcoholic fermentation. Thus, even under fully aerobic conditions, Hansenula nonfermentans and Candida buffonii produced ethanol after being pulsed with glucose. In C. buffonii ethanol formation was already apparent at very low glucose concentrations (10 mgx1/sup -1/) and alcoholic fermentation even proceeded at a higher rate than in S. cerevisiae. With Rhodotorula rubra, however, the rate of ethanol formation was below the detection limit, i.e., less than 0.1 mmolxg cells/sup -1/xh/sup -1/.

  10. Preparation of biosensors by immobilization of polyphenol oxidase in conducting copolymers and their use in determination of phenolic compounds in red wine.

    Science.gov (United States)

    Böyükbayram, A Elif; Kiralp, Senem; Toppare, Levent; Yağci, Yusuf

    2006-10-01

    Electrochemically produced graft copolymers of thiophene capped polytetrahydofuran (TPTHF1 and TPTHF2) and pyrrole were achieved by constant potential electrolysis using sodium dodecylsulfate (SDS) as the supporting electrolyte. Characterizations were based on Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Electrical conductivities were measured by the four-probe technique. Novel biosensors for phenolic compounds were constructed by immobilizing polyphenol oxidase (PPO) into conducting copolymers prepared by electropolymerization of pyrrole with thiophene capped polytetrahydrofuran. Kinetic parameters, maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) and optimum conditions regarding temperature and pH were determined for the immobilized enzyme. Operational stability and shelf-life of the enzyme electrodes were investigated. Enzyme electrodes of polyphenol oxidase were used to determine the amount of phenolic compounds in two brands of Turkish red wines and found very useful owing to their high kinetic parameters and wide pH working range.

  11. Studies on the preparation of immobilized enzymes by radio-polymerization, 10. Preparation of. beta. -galactosidase and its utilization for the continuous determination of lactose. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Amarakone, S P [Ceylon Inst. of Scientific and Industrial Research, Colombo (Sri Lanka); Hayashi, Toru; Kawashima, Koji

    1983-03-01

    ..beta..-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3% lactose in the sample.

  12. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  13. Characteristics of Immobilized Urease on Grafted Alginate Bead Systems

    Directory of Open Access Journals (Sweden)

    Enas N. Danial

    2015-04-01

    Full Text Available This study evaluated the biological importance of immobilized urease enzyme over the free urease. The support material used for urease immobilization was alginate. Generally, the immobilization of urease in alginate gel showed a marked increase in Km and Vmax. However, the immobilized urease showed higher thermal stability than that of free enzyme. The rate of thermal inactivation of the immobilized enzyme decreased due to entrapment in gel matrix. Also, the activity of the immobilized urease was more stable in retention than that of the free enzyme during the storage in solution, although the activity of the immobilized enzyme was lower in comparison with the free enzyme. A stable immobilized system and long storage life are convenient for applications that would not be feasible with a soluble enzyme system. These results highlighted the technical and biochemical benefits of immobilized urease over the free enzyme.

  14. Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies

    International Nuclear Information System (INIS)

    ElKaoutit, Mohammed; Naranjo-Rodriguez, Ignacio; Dominguez, Manuel; Hidalgo-Hidalgo-de-Cisneros, Jose Luis

    2011-01-01

    Use of a mixture of Nafion and glutaraldehyde as new immobilization matrix was described. The percentage of Nafion was optimized to prevent denaturation of horseradish peroxidase enzyme after its crosslinkage with glutaraldehyde on electro-synthesized polypyrrole surface. Topographic study by Atomic Force Microscopy (AFM) shows that the enzyme seems to have been introduced inside the ionic cluster of Nafion. The characterization of the resulting bio-interfaces by UV-vis and FT-IR shows that the intra-crosslinkage phenomena caused by the use of glutaraldehyde can be eliminated by the optimization of the concentration of Nafion additive. The secondary structure contents of native and immobilized enzyme were analyzed by a Gaussian curve fitting of the respective FT-IR spectra in the amide I region. Immobilized enzyme presented notable increasing percentages of globular and short helical structure compared with native enzyme. This indicates that immobilized enzyme was folded which is in accordance with AFM studies and supports the enzyme entrance inside ionic clutter of Nafion. Thanks to synergic effects of the polypyrrole conducting polymer and the perfluorosulfonic acid polymer Nafion, HRP enzyme was immobilized in its 'native' state, the resulting biosensor was able to sense peroxide without any chemical mediator and can be categorized as third generation.

  15. Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies

    Energy Technology Data Exchange (ETDEWEB)

    ElKaoutit, Mohammed, E-mail: elkaoutit@uca.es [Departamento de Quimica Analitica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Naranjo-Rodriguez, Ignacio [Departamento de Quimica Analitica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Dominguez, Manuel [Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Hidalgo-Hidalgo-de-Cisneros, Jose Luis [Departamento de Quimica Analitica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain)

    2011-10-01

    Use of a mixture of Nafion and glutaraldehyde as new immobilization matrix was described. The percentage of Nafion was optimized to prevent denaturation of horseradish peroxidase enzyme after its crosslinkage with glutaraldehyde on electro-synthesized polypyrrole surface. Topographic study by Atomic Force Microscopy (AFM) shows that the enzyme seems to have been introduced inside the ionic cluster of Nafion. The characterization of the resulting bio-interfaces by UV-vis and FT-IR shows that the intra-crosslinkage phenomena caused by the use of glutaraldehyde can be eliminated by the optimization of the concentration of Nafion additive. The secondary structure contents of native and immobilized enzyme were analyzed by a Gaussian curve fitting of the respective FT-IR spectra in the amide I region. Immobilized enzyme presented notable increasing percentages of globular and short helical structure compared with native enzyme. This indicates that immobilized enzyme was folded which is in accordance with AFM studies and supports the enzyme entrance inside ionic clutter of Nafion. Thanks to synergic effects of the polypyrrole conducting polymer and the perfluorosulfonic acid polymer Nafion, HRP enzyme was immobilized in its 'native' state, the resulting biosensor was able to sense peroxide without any chemical mediator and can be categorized as third generation.

  16. CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Miura, Yuko; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2008-07-20

    We report the electro-enzymatic reduction of O{sub 2} to water at a current density controlled by the diffusion of the dissolved O{sub 2} in rotating disk electrode experiments under a broad pH range between 2 and 8. The electrocatalyst is CueO from Escherichia coli, which belongs to the family of multi-copper oxidases, immobilized on mesoporous carbon supports. The electrons are transferred from the electrode to CueO without an electron transfer mediator. The current density reached a value as high as 12 mA cm{sup -2} at 1 atm O{sub 2}, 25 deg. C, and 10,000 rpm on the CueO-modified electrodes. The CueO-modified mesoporous carbon cathode is quite superior to the smooth CueO cathode in the current density, electrode kinetics, pH tolerance, and thermal stability.

  17. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    -Aminophenol, a product of an enzymatic reaction of Alkaline Phosphatase with p-Aminophenyl Phosphate. Subsequently this reaction was observed at CdS/Au electrode, by enzyme-substrate reaction within the electrolyte solution, and also by immobilizing the enzyme on top of QDs via LbL assembly of polyelectrolytes. With another kind of CdS-FePt dimer QDs, detection of hydrogen peroxide (H{sub 2}O{sub 2}) was demonstrated. Only at CdS/Au electrode there was no impact made by H{sub 2}O{sub 2} but with the presence of Pt within QDs H{sub 2}O{sub 2} was detected via reduction even at a bias potential of -100 mV. (orig.)

  18. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads

    International Nuclear Information System (INIS)

    Bayramoglu, Guelay; Arica, M. Yakup

    2008-01-01

    Horseradish peroxidase was immobilized on the magnetic poly(glycidylmethacrylate-co-methylmethacrylate) (poly(GMA-MMA)), via covalent bonding and used for the treatment of phenolic wastewater in continuous systems. For this purposes, horseradish peroxidase (HRP) was covalently immobilized onto magnetic poly(GMA-MMA) beds using glutaraldehyde (GA) as a coupling agent. The maximum HRP immobilization capacity of the magnetic poly(GMA-MMA)-GA beads was 3.35 mg g -1 . The immobilized HRP retained 79% of the activity of the free HRP used for immobilization. The immobilized HRP was used for the removal of phenol and p-chlorophenol via polymerization of dissolved phenols in the presence of hydrogen peroxide (H 2 O 2 ). The effect of pH and temperature on the phenol oxidation rate was investigated. The results were compared with the free HRP, which showed that the optimum pH value for the immobilized HRP is similar to that for the free HRP. The optimum pH value for free and immobilized HRP was observed at pH 7.0. The optimum temperature for phenols oxidation with immobilized HRP was between 25 and 35 deg. C and the immobilized HRP has more resistance to temperature inactivation than that of the free form. Finally, the immobilized HRP was operated in a magnetically stabilized fluidized bed reactor, and phenols were successfully removed in the enzyme reactor

  19. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode.

    Science.gov (United States)

    Dagar, Kusum; Pundir, C S

    2017-01-01

    An improved amperometric l-lactate biosensor was constructed based on covalent immobilization of lactate oxidase (LOx) from Pediococcus species onto carboxylated multiwalled carbon nanotubes (cMWCNT)/copper nanoparticles (CuNPs)/polyaniline (PANI) hybrid film electrodeposited on the surface of a pencil graphite electrode (PGE). The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS), while CuNPs synthesized by chemical reduction method, were characterized by transmission electron microscopy (TEM), UV spectrascopy and X-ray diffraction (XRD). The biosensor showed maximum response within 5s at pH 8.0 in 0.05M sodium phosphate buffer and 37°C, when operated at 20mVs -1 . The biosensor had a detection limit of 0.25μM with a wide working range between 1μM-2500μM. The biosensor was employed for measurement of l-lactic acid level in plasma of apparently healthy and diseased persons. Analytical recovery of added lactic acid in plasma was 95.5%. Within- and between-batch coefficients of variations were 6.24% and 4.19% respectively. There was a good correlation (R 2 =0.97) between plasma lactate values as measured by standard enzymatic spectrophotometric method and the present biosensor. The working enzyme electrode was used 180 times over a period of 140 days, when stored at 4°C. Copyright © 2016. Published by Elsevier Inc.

  20. Reversible thermal denaturation of immobilized rhodanese

    International Nuclear Information System (INIS)

    Horowitz, P.; Bowman, S.

    1987-01-01

    For the first time, the enzyme rhodanese had been refolded after thermal denaturation. This was previously not possible because of the strong tendency for the soluble enzyme to aggregate at temperatures above 37 degrees C. The present work used rhodanese that was covalently coupled to a solid support under conditions that were found to preserve enzyme activity. Rhodanese was immobilized using an N-hydroxymalonimidyl derivative of Sepharose containing a 6-carbon spacer. The number of immobilized competent active sites was measured by using [ 35 S]SO 3 (2-) to form an active site persulfide that is the obligatory catalytic intermediate. Soluble enzyme was irreversibly inactivated in 10 min at 52 degrees C. The immobilized enzyme regained at least 30% of its original activity even after boiling for 20 min. The immobilized enzyme had a Km and Vmax that were each approximately 3 times higher than the corresponding values for the native enzyme. After preincubation at high temperatures, progress curves for the immobilized enzyme showed induction periods of up to 5 min before attaining apparently linear steady states. The pH dependence of the activity was the same for both the soluble and the immobilized enzyme. These results indicate significant stabilization of rhodanese after immobilization, and instabilities caused by adventitious solution components are not the sole reasons for irreversibility of thermal denaturation seen with the soluble enzyme. The results are consistent with models for rhodanese that invoke protein association as a major cause of inactivation of the enzyme. Furthermore, the induction period in the progress curves is consistent with studies which show that rhodanese refolding proceeds through intermediate states

  1. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor

    International Nuclear Information System (INIS)

    Limbut, Warakorn; Thavarungkul, Panote; Kanatharana, Proespichaya; Wongkittisuksa, Booncharoen; Asawatreratanakul, Punnee; Limsakul, Chusak

    2010-01-01

    Cost-effective disposable electrodes were fabricated from copper clad laminate, usually used for printed circuit board (PCB) in electronic industries, by using dry film photoresist. Electro-oxidation (anodisation) was employed to obtain a good formation of thiourea film on the electrode surface. The affinity binding pair of carcinoembryonic antigen (CEA) and anti-carcinoembryonic antigen (anti-CEA) was used as a model system. Anti-CEA was immobilized on thiourea film via covalent coupling. This modified electrode was incorporated with a capacitive system for CEA analysis. This capacitive immunosensor provided a linear range between 0.01 and 10 ng ml -1 with a detection limit of 10 pg ml -1 . When applied to analyze CEA in serum samples, the results agreed well with the enzyme linked fluorescent assay (ELFA) technique (P > 0.05). The proposed strategy for the preparation of disposable modified copper electrode is very cost effective and simple. Moreover, it provides good reproducibility. This technique can easily be applied to immobilize other biological sensing elements for biosensors development.

  2. Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microsphere-attached l-glycine.

    Science.gov (United States)

    Donmez, Soner; Arslan, Fatma; Sarı, Nurşen; Hasanoğlu Özkan, Elvan; Arslan, Halit

    2017-09-01

    In the present study, a novel biosensor that is sensitive to glucose was prepared using the microspheres modified with (4-formyl-3-methoxyphenoxymethyl)polystyrene (FMPS) with l-glycine. Polymeric microspheres having Schiff bases were prepared from FMPS using the glycine condensation method. Glucose oxidase enzyme was immobilized onto modified carbon paste electrode by cross-linking with glutaraldehyde. Oxidation of enzymatically produced H 2 O 2 (+0.5 V vs. Ag/AgCl) was used for determination of glucose. Optimal temperature and pH were found as 50 °C and 8.0, respectively. The glucose biosensor showed a linear working range from 5.0 × 10 -4 to 1.0 × 10 -2 M, R 2 = 0.999. Storage and operational stability of the biosensor were also investigated. The biosensor gave perfect reproducible results after 20 measurements with 3.3% relative standard deviation. It also had good storage stability. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  3. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    Science.gov (United States)

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  4. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  5. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin.

    Science.gov (United States)

    Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2013-09-10

    Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effect of immobilization stress on gene expression of catecholamine biosynthetic enzymes in heart auricles of socially isolated rats

    Directory of Open Access Journals (Sweden)

    L. Gavrilovic

    2009-12-01

    Full Text Available Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH, dopamine-β-hydroxylase (DBH and phenylethanolamine N-methyltransferase (PNMT and protein levels in the right and left heart auricles of naive control and long-term (12 weeks socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70% compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62% and left (about 81% auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%, DBH (about 37% and PNMT (about 60% only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.

  7. Enzymatic Cellulose Hydrolysis: Enzyme Reusability and Visualization of beta-Glucosidase Immobilized in Calcium Alginate

    DEFF Research Database (Denmark)

    Tsai, Chien Tai; Meyer, Anne S.

    2014-01-01

    by confocal laser scanning microscopy (CLSM). The CLSM images, which we believe are the first to be published, corroborate that more BG aggregates were entrapped in the matrix when the enzymes were cross-linked by glutaraldehyde as opposed to when they are not cross-linked. The particles with the immobilized...

  8. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  9. Obtaining of Fibers and granules of carbon for the Immobilization of Enzymes

    International Nuclear Information System (INIS)

    Malagon M, Martha L; Rico R, Yolanda Rico R; Lopez de, Helda A; Caicedo M, Luis Alfonso

    2002-01-01

    Fibers and pellets of carbon were prepared from coal tar. The tar was filtrated and stabilized in a nitrogen atmosphere at 330 degrades Celsius. Extrusion and pellets prepared the fibers by injection on water. Lactase was immobilized by adsorption process. Pellets were better support than fibers, because produced lower pressure drop and upper enzyme retention. Pellets showed the following characteristics: density 2,407 g/cm3, porosity 81,69% and diameter 3 mm

  10. Properties of immobilized papain by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1984-01-01

    Papain was immobilized by the radiation polymerization of various monomers at low temperatures and the effects of the polymer matrix on the enzyme activity and thermal stability of the immobilized enzymes were studied. The activity of the immobilized enzymes prepared from monofunctional (acrylate and methacrylate) monomers was higher than that from bifunctional (bismethacrylate) monomers and that from polyoxyethylene dimethacrylate monomers increased with an increase in the number of oxyethylene units. The thermal stability of the immobilized enzymes prepared from hydrophilic monomers was higher than that from hydrophobic monomers and increased markedly with increasing monomer concentration. (author)

  11. Electrochemical and electrophoretic deposition of enzymes : Principles, differences and application in miniaturized biosensor and biofuel cell electrodes

    NARCIS (Netherlands)

    Ammam, Malika

    2014-01-01

    Recent advances in nano-biotechnology have made it possible to realize a great variety of enzyme electrodes suitable for sensing and energy applications. In coating miniaturized electrodes with enzymes, there is no doubt that most of the available deposition processes suffer from the difficulty in

  12. Halloysite Clay Nanotubes for Enzyme Immobilization.

    Science.gov (United States)

    Tully, Joshua; Yendluri, Raghuvara; Lvov, Yuri

    2016-02-08

    Halloysite clay is an aluminosilicate nanotube formed by rolling flat sheets of kaolinite clay. They have a 15 nm lumen, 50-70 nm external diameter, length of 0.5-1 μm, and different inside/outside chemistry. Due to these nanoscale properties, they are used for loading, storage, and controlled release of active chemical agents, including anticorrosions, biocides, and drugs. We studied the immobilization in halloysite of laccase, glucose oxidase, and lipase. Overall, negatively charged proteins taken above their isoelectric points were mostly loaded into the positively charged tube's lumen. Typical tube loading with proteins was 6-7 wt % from which one-third was released in 5-10 h and the other two-thirds remained, providing enhanced biocatalysis in nanoconfined conditions. Immobilized lipase showed enhanced stability at acidic pH, and the optimum pH shifted to more alkaline pH. Immobilized laccase was more stable with respect to time, and immobilized glucose oxidase showed retention of enzymatic activity up to 70 °C, whereas the native sample was inactive.

  13. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    Science.gov (United States)

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.

  14. Electrochemistry of glucose oxidase immobilized on the carbon nanotube wrapped by polyelectrolyte

    International Nuclear Information System (INIS)

    Wen, Dan; Liu, Ying; Yang, Guocheng; Dong, Shaojun

    2007-01-01

    A more stably dispersing of multi-wall carbon nanotube composite (noted as PDDA-MWNT), which was obtained by wrapping the MWNT with poly(diallydimethylammonium) chloride (PDDA), was used for the immobilization of glucose oxidase (GOD) and its bioelectrochemical studies. The morphologies and structures of the PDDA-MWNT composite were characterized by environment scanning electron microscopy (ESEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were used to feature the GOD adsorbed onto the electrode modified by PDDA-MWNT composite. The immobilized GOD at the PDDA-MWNT films exhibited a pair of well-defined nearly reversible redox peaks and a fast heterogeneous electron transfer rate with the rate constant (k s ) of 2.76 s -1 . In addition, GOD immobilized in this way retained its bioelectrocatalytic activity for the oxidation of glucose. The method of immobilizing GOD without any additional cross-linking agents presented here is easy and facile, which provides a model for other redox enzymes and proteins

  15. Immobilization of cellulase using porous polymer matrix

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    A new method is discussed for the immobilization of cellulase using porous polymer matrices, which were obtained by radiation polymerization of hydrophilic monomers. In this method, the immobilized enzyme matrix was prepared by enzyme absorbtion in the porous polymer matrix and drying treatment. The enzyme activity of the immobilized enzyme matrix varied with monomer concentration, cooling rate of the monomer solution, and hydrophilicity of the polymer matrix, takinn the change of the nature of the porous structure in the polymer matrix. The leakage of the enzymes from the polymer matrix was not observed in the repeated batch enzyme reactions

  16. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase

    Energy Technology Data Exchange (ETDEWEB)

    Konwarh, Rocktotpal; Karak, Niranjan [Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur-784028, Assam (India); Rai, Sudhir Kumar; Mukherjee, Ashis Kumar [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784028, Assam (India)], E-mail: karakniranjan@yahoo.com

    2009-06-03

    Nanotechnology holds the prospect for avant-garde changes to improve the performance of materials in various sectors. The domain of enzyme biotechnology is no exception. Immobilization of industrially important enzymes onto nanomaterials, with improved performance, would pave the way to myriad application-based commercialization. Keratinase produced by Bacillus subtilis was immobilized onto poly(ethylene glycol)-supported Fe{sub 3}O{sub 4} superparamagnetic nanoparticles. The optimization process showed that the highest enzyme activity was noted when immobilized onto cyanamide-activated PEG-assisted MNP prepared under conditions of 25 deg. C and pH 7.2 of the reaction mixture before addition of H{sub 2}O{sub 2} (3% w/w), 2% (w/v) PEG{sub 6000} and 0.062:1 molar ratio of PEG to FeCl{sub 2}{center_dot}4H{sub 2}O. Further statistical optimization using response surface methodology yielded an R{sup 2} value that could explain more than 94% of the sample variations. Along with the magnetization studies, the immobilization of the enzyme onto the PEG-assisted MNP was characterized by UV, XRD, FTIR and TEM. The immobilization process had resulted in an almost fourfold increase in the enzyme activity over the free enzyme. Furthermore, the immobilized enzyme exhibited a significant thermostability, storage stability and recyclability. The leather-industry-oriented application of the immobilized enzyme was tested for the dehairing of goat-skin.

  17. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase

    International Nuclear Information System (INIS)

    Konwarh, Rocktotpal; Karak, Niranjan; Rai, Sudhir Kumar; Mukherjee, Ashis Kumar

    2009-01-01

    Nanotechnology holds the prospect for avant-garde changes to improve the performance of materials in various sectors. The domain of enzyme biotechnology is no exception. Immobilization of industrially important enzymes onto nanomaterials, with improved performance, would pave the way to myriad application-based commercialization. Keratinase produced by Bacillus subtilis was immobilized onto poly(ethylene glycol)-supported Fe 3 O 4 superparamagnetic nanoparticles. The optimization process showed that the highest enzyme activity was noted when immobilized onto cyanamide-activated PEG-assisted MNP prepared under conditions of 25 deg. C and pH 7.2 of the reaction mixture before addition of H 2 O 2 (3% w/w), 2% (w/v) PEG 6000 and 0.062:1 molar ratio of PEG to FeCl 2 ·4H 2 O. Further statistical optimization using response surface methodology yielded an R 2 value that could explain more than 94% of the sample variations. Along with the magnetization studies, the immobilization of the enzyme onto the PEG-assisted MNP was characterized by UV, XRD, FTIR and TEM. The immobilization process had resulted in an almost fourfold increase in the enzyme activity over the free enzyme. Furthermore, the immobilized enzyme exhibited a significant thermostability, storage stability and recyclability. The leather-industry-oriented application of the immobilized enzyme was tested for the dehairing of goat-skin.

  18. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase

    Science.gov (United States)

    Konwarh, Rocktotpal; Karak, Niranjan; Rai, Sudhir Kumar; Mukherjee, Ashis Kumar

    2009-06-01

    Nanotechnology holds the prospect for avant-garde changes to improve the performance of materials in various sectors. The domain of enzyme biotechnology is no exception. Immobilization of industrially important enzymes onto nanomaterials, with improved performance, would pave the way to myriad application-based commercialization. Keratinase produced by Bacillus subtilis was immobilized onto poly(ethylene glycol)-supported Fe3O4 superparamagnetic nanoparticles. The optimization process showed that the highest enzyme activity was noted when immobilized onto cyanamide-activated PEG-assisted MNP prepared under conditions of 25 °C and pH 7.2 of the reaction mixture before addition of H2O2 (3% w/w), 2% (w/v) PEG6000 and 0.062:1 molar ratio of PEG to FeCl2·4H2O. Further statistical optimization using response surface methodology yielded an R2 value that could explain more than 94% of the sample variations. Along with the magnetization studies, the immobilization of the enzyme onto the PEG-assisted MNP was characterized by UV, XRD, FTIR and TEM. The immobilization process had resulted in an almost fourfold increase in the enzyme activity over the free enzyme. Furthermore, the immobilized enzyme exhibited a significant thermostability, storage stability and recyclability. The leather-industry-oriented application of the immobilized enzyme was tested for the dehairing of goat-skin.

  19. Impedimetric Urea Biosensor Based on Modified Gold Electrode with Urease Immobilized on Glutathione Layer

    Directory of Open Access Journals (Sweden)

    Houcine BARHOUMI

    2014-05-01

    Full Text Available In this work, a glutathione (GSH modified gold microelectrode was used for the covalent immobilization of urease biomolecules via the glutaraldehyde-coupling agent. The self- assembled monolayers (SAMs onto the gold surface was investigated by using the electrochemical impedance spectroscopy measurements (EIS. Before urease grafting, a significant interaction was noticed between urea and the glutathione layer by forming hydrogen bonds. The H-NMR analysis was carried out to highlight the possibility of having a covalent link between urea and the GSH deposited layer. In addition, contact angle measurements were carried out to determine the hydrophobic/hydrophilic feature of the modified gold surface electrode. After urease immobilization a stable and high sensitive impedimetric urea biosensors was obtained with a sensitivity of 8.73´10- 8 W-1mM-1 for the low concentrations range and a sensitivity of 7.03´10-9 W-1mM-1 for the high concentrations range.

  20. Guest-Host Complex Formed between Ascorbic Acid and β-Cyclodextrin Immobilized on the Surface of an Electrode

    Directory of Open Access Journals (Sweden)

    María Teresa Ramírez-Silva

    2014-05-01

    Full Text Available This work deals with the formation of supramolecular complexes between ascorbic acid (AA, the guest, and β-cyclodextrin (β-CD, the host, that was first potentiodynamically immobilized on the surface of a carbon paste electrode (CPE throughout the formation of a β-CD-based conducting polymer (poly-β-CD. With the bare CPE and the β-CD-modified CPE, an electrochemical study was performed to understand the effect of such surface modification on the electrochemical response of the AA. From this study it was shown that on the modified-CPE, the AA was surface-immobilized through formation of an inclusion complex with β-CD, which provoked the adsorption of AA in such a way that this stage became the limiting step for the electrochemical oxidation of AA. Moreover, from the analysis of the experimental voltammetric plots recorded during AA oxidation on the CPE/poly-β-CD electrode surfaces, the Gibbs’ standard free energy of the inclusion complex formed by the oxidation product of AA and β-CD has been determined for the first time, ∆G0inclus = −36.4 kJ/mol.

  1. Thermal stability of the immobilized fructosyltransferase from Rhodotorula sp

    Directory of Open Access Journals (Sweden)

    E Aguiar-Oliveira

    2011-09-01

    Full Text Available The thermal stability of the extracellular fructosyltransferase (FTase from Rhodotorula sp., recovered from cultivation medium by ethanol precipitation and immobilized onto niobium ore, was studied by Arrhenius plot, half - life profile, half - inactivation temperature (T50 and thermodynamic parameters. The Arrhenius plot showed two different behaviors with different deactivation energies (Ead only after immobilization, the transition occurring in the temperature interval between 51 and 52ºC. T50 for the free enzyme was estimated to be around 62ºC and, after immobilization, 66ºC. After 15 minutes at 52ºC, it was also possible to observe enzymatic activation for both the free and immobilized forms, but greater activation was achieved at pH 4.5 with the immobilized enzyme. Between 47 - 51ºC the immobilized enzyme was more stable than the free enzyme, with pH 6.0 being the more stable condition for the immobilized enzyme. However, above 52ºC the free form was more stable.

  2. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants - A review.

    Science.gov (United States)

    Bilal, Muhammad; Asgher, Muhammad; Parra-Saldivar, Roberto; Hu, Hongbo; Wang, Wei; Zhang, Xuehong; Iqbal, Hafiz M N

    2017-01-15

    In the twenty-first century, chemical and associated industries quest a transition prototype from traditional chemical-based concepts to a greener, sustainable and environmentally-friendlier catalytic alternative, both at the laboratory and industrial scale. In this context, bio-based catalysis offers numerous benefits along with potential biotechnological and environmental applications. The bio-based catalytic processes are energy efficient than conventional methodologies under moderate processing, generating no and negligible secondary waste pollution. Thanks to key scientific advances, now, solid-phase biocatalysts can be economically tailored on a large scale. Nevertheless, it is mandatory to recover and reprocess the enzyme for their commercial feasibility, and immobilization engineering can efficiently accomplish this challenge. The first part of the present review work briefly outlines the immobilization of lignin-modifying enzymes (LMEs) including lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase of white-rot fungi (WRF). Whereas, in the second part, a particular emphasis has been given on the recent achievements of carrier-immobilized LMEs for the degradation, decolorization, or detoxification of industrial dyes and dye-based industrial wastewater effluents. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DNA-modified electrodes (Ⅶ)——Preparation and characterization of DNA-bonded and DNA-adsorbed SAM/Au electrodes

    Institute of Scientific and Technical Information of China (English)

    陆琪; 庞代文; 胡深; 程介克; 蔡雄伟; 施财辉; 毛秉伟; 戴鸿平

    1999-01-01

    Two kinds of DNA-modified electrodes were prepared by covalent and adsorptive immobilization of DNA onto self-assembled monolayers of 2, 2’-dithiodiethanol on gold electrodes and characterized by cyclic voltammetry, Xray photoelectron spectroscopy and scanning tunneling microscopy. The results suggest that the methods are satisfactory for the immobilization of DNA on electrodes.

  4. Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiol modified Au electrode

    International Nuclear Information System (INIS)

    Nair, Santhosh S.; John, S. Abraham; Sagara, Takamasa

    2009-01-01

    Tetraoctylammonium bromide stabilized gold nanoparticles (TOAB-AuNPs) attached to 1,6-hexanedithiol (HDT) modified Au electrode was used for the simultaneous determination of paracetamol (PA) and ascorbic acid (AA) at physiological pH. The attachment of TOAB-AuNPs on HDT modified Au surface was confirmed by attenuated total reflectance (ATR)-FT-IR spectroscopy and atomic force microscope (AFM). The ATR-FT-IR spectrum of TOAB-AuNPs attached to the HDT monolayer showed a characteristic stretching modes corresponding to -CH 2 and -CH 3 of TOAB, confirming the immobilization of AuNPs with surface-protecting TOAB ions on the surface of the AuNPs after being attached to HDT modified Au electrode. AFM image showed that the immobilized AuNPs were spherical in shape and densely packed to a film of ca. 7 nm thickness. Interestingly, TOAB-AuNPs modified electrode shifted the oxidation potential of PA towards less positive potential by 70 mV and enhanced its oxidation current twice when compared to bare Au electrode. In addition, the AuNPs modified electrode separated the oxidation potentials of AA and PA by 210 mV, whereas bare Au electrode failed to resolve them. The amperometry current of PA was increased linearly from 1.50 x 10 -7 to 1.34 x 10 -5 M with a correlation coefficient of 0.9981 and the lowest detection limit was found to be 2.6 nM (S/N = 3). The present method was successfully used to determine the concentration of PA in human blood plasma and commercial drugs.

  5. Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiol modified Au electrode

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Santhosh S. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul (India); John, S. Abraham [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul (India)], E-mail: abrajohn@yahoo.co.in; Sagara, Takamasa [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul (India)], E-mail: sagara@nagasaki-u.ac.jp

    2009-11-30

    Tetraoctylammonium bromide stabilized gold nanoparticles (TOAB-AuNPs) attached to 1,6-hexanedithiol (HDT) modified Au electrode was used for the simultaneous determination of paracetamol (PA) and ascorbic acid (AA) at physiological pH. The attachment of TOAB-AuNPs on HDT modified Au surface was confirmed by attenuated total reflectance (ATR)-FT-IR spectroscopy and atomic force microscope (AFM). The ATR-FT-IR spectrum of TOAB-AuNPs attached to the HDT monolayer showed a characteristic stretching modes corresponding to -CH{sub 2} and -CH{sub 3} of TOAB, confirming the immobilization of AuNPs with surface-protecting TOAB ions on the surface of the AuNPs after being attached to HDT modified Au electrode. AFM image showed that the immobilized AuNPs were spherical in shape and densely packed to a film of ca. 7 nm thickness. Interestingly, TOAB-AuNPs modified electrode shifted the oxidation potential of PA towards less positive potential by 70 mV and enhanced its oxidation current twice when compared to bare Au electrode. In addition, the AuNPs modified electrode separated the oxidation potentials of AA and PA by 210 mV, whereas bare Au electrode failed to resolve them. The amperometry current of PA was increased linearly from 1.50 x 10{sup -7} to 1.34 x 10{sup -5} M with a correlation coefficient of 0.9981 and the lowest detection limit was found to be 2.6 nM (S/N = 3). The present method was successfully used to determine the concentration of PA in human blood plasma and commercial drugs.

  6. Effect of enzyme location on activity and stability of trypsin and urease immobilized on porous membranes by using layer-by-layer self-assembly of polyelectrolyte

    OpenAIRE

    Guedidi, Sadika; Yürekli, Yılmaz; Deratani, André; Déjardin, Philippe; Innocent, Christophe; Altınkaya, Sacide; Roudesli, Sadok; Yemenicioğlu, Ahmet

    2010-01-01

    The layer-by-layer (LbL) self-assembly of polyelectrolyte is one of the simplest ways to immobilize enzyme on membrane. In this paper, the immobilization of trypsin (TRY) and urease (URE) on polyacrylonitrile based membranes using the LbL assembly technique was presented. The studied systems consisted in bilayered assemblies with the enzyme layer as the outer layer and trilayered assemblies with the enzyme layer as the inner sandwiched layer. The membrane pore size was chosen so that the smal...

  7. A Urea Biosensor from Stacked Sol-Gel Films with Immobilized Nile Blue Chromoionophore and Urease Enzyme

    OpenAIRE

    Alqasaimeh, Muawia Salameh; Heng, Lee Yook; Ahmad, Musa

    2007-01-01

    An optical urea biosensor was fabricated by stacking several layers of sol-gel films. The stacking of the sol-gel films allowed the immobilization of a Nile Blue chromoionophore (ETH 5294) and urease enzyme separately without the need of any chemical attachment procedure. The absorbance response of the biosensor was monitored at 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel film format enabled higher enzyme loading in the biosensor to be achieved. The urea op...

  8. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    International Nuclear Information System (INIS)

    Liu Xianggang; Cheng Ziqiang; Fan Hai; Ai Shiyun; Han Ruixia

    2011-01-01

    Highlights: → A sensitive electrochemical biosensor for the detection of gene sequence was developed. → The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. → The hybrid nanomaterials could provide a porous structure with good properties. → The biosensor has highly selectivity and sensitivity. → The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10 -12 to 1.0 x 10 -9 M (R = 0.9863) with a detection limit of 4.3 x 10 -13 M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  9. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianggang [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Cheng Ziqiang, E-mail: czqsd@126.com [College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong (China); Fan Hai [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Han Ruixia [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-07-15

    Highlights: > A sensitive electrochemical biosensor for the detection of gene sequence was developed. > The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. > The hybrid nanomaterials could provide a porous structure with good properties. > The biosensor has highly selectivity and sensitivity. > The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10{sup -12} to 1.0 x 10{sup -9} M (R = 0.9863) with a detection limit of 4.3 x 10{sup -13} M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  10. OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization

    Science.gov (United States)

    Cai, Yuankun; Shinar, Ruth; Shinar, Joseph

    2009-08-01

    Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.

  11. Immobilization of Isolated Lipase From Moldy Copra (Aspergillus Oryzae)

    OpenAIRE

    Dali, Seniwati; Patong, A. B. D. Rauf; Jalaluddin, M. Noor; Pirman; Hamzah, Baharuddin

    2011-01-01

    Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase from Aspergillus oryzae. Lipase was partially purified from the culture supernatant of Aspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum ...

  12. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  13. Properties and Gamma Radiation Stability of Immobilized Alpha Amylase on Synthetic and Natural Polymer Blends

    International Nuclear Information System (INIS)

    Ismaill, S.A.; Mobasher, E.F.; Shousha, M.A.

    2009-01-01

    αAmylase was immobilized onto two different copolymers. One of them was chitosan/alginate copolymer. The other copolymer was N- isopropyl acrylamide and alginate. αAmylase was immobilized by entrapment method. The optimum temperature and thermal inactivation of the free enzyme and the immobilized one were investigated. The activity of the immobilized enzyme was stable at higher temperature. Immobilized enzyme was stable under different ph. The immobilized enzymes showed a slight decrease in the relative activity after being used 12 times. Storage of the free and immobilized enzymes for 2 months showed that the free αamylase lost most of its catalytic activity after storage at this period. The storage of the immobilized enzyme in dry state was much better than that in the wet state. Storage at room temperature showed much less stability of the immobilized enzyme than in 4 degree C. Exposure the free and immobilized enzymes to gamma- radiation at doses (0-50 kGy) showed complete loss in activity of free enzyme at 5 kGy, while the immobilized enzyme showed high resistance to gamma- radiation. The kinetic studies of free and immobilized enzymes showed that the immobilization process increased Km and decreased V m ax values of the enzyme

  14. Properties and Gamma Radiation Stability of Immobilized Alpha Amylase on Synthetic and Natural Polymer Blends

    International Nuclear Information System (INIS)

    Ismaill, S.A.; Mobasher, E.F.; Shousha, M.A.

    2008-01-01

    αAmylase was immobilized onto two different copolymers. One of them was chitosan/alginate copolymer. The other copolymer was N- isopropyl acrylamide and alginate. αAmylase was immobilized by entrapment method. The optimum temperature and thermal inactivation of the free enzyme and the immobilized one were investigated. The activity of the immobilized enzyme was stable at higher temperature. Immobilized enzyme was stable under different ph. The immobilized enzymes showed a slight decrease in the relative activity after being used 12 times. Storage of the free and immobilized enzymes for 2 months showed that the free αamylase lost most of its catalytic activity after storage at this period. The storage of the immobilized enzyme in dry state was much better than that in the wet state. Storage at room temperature showed much less stability of the immobilized enzyme than in 4 degree C. Exposure the free and immobilized enzymes to gamma- radiation at doses (0-50 kGy) showed complete loss in activity of free enzyme at 5 kGy, while the immobilized enzyme showed high resistance to gamma- radiation. The kinetic studies of free and immobilized enzymes showed that the immobilization process increased Km and decreased V m ax values of the enzyme

  15. ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications.

    Science.gov (United States)

    Yang, Chi; Xu, Chunxiang; Wang, Xuemei

    2012-03-06

    Unique structured nanomaterials can facilitate the direct electron transfer between redox proteins and the electrodes. Here, in situ directed growth on an electrode of a ZnO/Cu nanocomposite was prepared by a simple corrosion approach, which enables robust mechanical adhesion and electrical contact between the nanostructured ZnO and the electrodes. This is great help to realize the direct electron transfer between the electrode surface and the redox protein. SEM images demonstrate that the morphology of the ZnO/Cu nanocomposite has a large specific surface area, which is favorable to immobilize the biomolecules and construct biosensors. Using glucose oxidase (GOx) as a model, this ZnO/Cu nanocomposite is employed for immobilization of GOx and the construction of the glucose biosensor. Direct electron transfer of GOx is achieved at ZnO/Cu nanocomposite with a high heterogeneous electron transfer rate constant of 0.67 ± 0.06 s(-1). Such ZnO/Cu nanocomposite provides a good matrix for direct electrochemistry of enzymes and mediator-free enzymatic biosensors.

  16. Determination of Patulin Using Amperometric Tyrosinase Biosensors Based on Electrodes Modified with Carbon Nanotubes and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    R.M. Varlamova

    2016-06-01

    Full Text Available New amperometric biosensors based on platinum screen printed electrodes modified with multi-walled carbon nanotubes, gold nanoparticles, and immobilized enzyme – tyrosinase have been developed for determination of patulin in the concentrations of 1·10–6 – 8·10–12 mol/L with an error of no more than 0.063. The best conditions for obtaining gold nanoparticles have been chosen. The conditions for immobilization of multi-walled carbon nanotubes and gold nanoparticles on the surface of the planar electrode have been revealed. The conditions for functioning of the proposed biosensors have been identified. The results have been used to control the content of patulin in food products within and lower than the maximum allowable levels.

  17. Development of high-performance functional materials for enzyme immobilization by the use of ionizing radiation

    International Nuclear Information System (INIS)

    SALIM, R.D.M.

    2013-01-01

    Isomerization of glucose to fructose was carried out using Glucose isomerase (GI) that immobilized by entrapment into Poly (acrylic acid) P (AA) and Poly (acrylic acid-co- 2-Acrylamido 2- methyl Propane sulfonic acid) P (AA-co-AMPS) polymer networks, the enzyme carriers were prepared by radiation induced co-polymerization in presence of (Methylene- bis acrylamide) (MBAA) as a crosslinking agent. Effects of immobilization conditions such as irradiation dose, methylene bis acrylamide concentration, comonomer composition, and amount of GI were investigated. The influence of reaction conditions on the activity of immobilized GI were studied, the optimum ph value of reaction solution is 7.5 and reaction temperature is 65 degree C. The immobilized GI into P (AA-co-AMPS) and P (AA) polymer networks retained 81% and 69%,respectively, of its initial activity after recycled for 15 times while it retained 87% and 71% ,respectively ,of its initial activity after stored at 4 degree C for 48 days , The Km values of free and immobilized GI onto P(AA-co-AMPS) and onto P(AA) matrices were found to be 34, 29.2 , 14.5 mg/ml respectively while the Vmax Values calculated to be 3.87 ,1.6,0.79 mg/ml.min, respectively, Therefore , the bio conversion of glucose to fructose can be successfully performed by GI entrapped into P (AA-co-AMPS) hydrogel .

  18. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors.

    Science.gov (United States)

    Zhang, Peng; Gao, Mingxia; Zhu, Shaochun; Lei, Jie; Zhang, Xiangmin

    2011-11-25

    In this report, laser radiation (808nm) for the first time was employed to enhance the efficiency of proteolysis through immobilized enzyme reactor (IMER). IMER based monolithic support was prepared in the fused-silica capillary via a simple two-step procedure including acryloylation on trypsin surface and in situ aqueous polymerization/immobilization. The feasibility and high efficiency of the laser-assisted IMER were demonstrated by the digestion of bovine serum albumin (BSA), cytochrome c (Cyt-c) and β-casein. The digestion process was achieved in 60s. The peptides were identified by MALDI-TOF-MS, yielding the sequence coverage of 33% for BSA, 73% for Cyt-c and 22% for β-casein. The comparisons between the in-solution digestion and on IMER reaction with/without laser assistance were made. To further confirm its efficiency in proteome analysis, the laser-assisted IMER was also applied to the analysis of one fraction of human serum sample through two-dimensional (2-D) separation of strong anion exchange/reversed-phase liquid chromatography (SAX/RPLC). After a database search, 49 unique peptides corresponding to 5 proteins were identified. The results showed that the laser-assisted IMER provides a promising platform for the high-throughput protein identification. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Porous chitosan beads of superior mechanical properties for the covalent immobilization of enzymes.

    Science.gov (United States)

    Wahba, Marwa I

    2017-12-01

    Porous chitosan beads of superior mechanical properties were produced via a two stepped treatment process. First, the chitosan ionotropic gelation solution was supplemented with Na 2 CO 3 , which acted as a porogen. Afterwards, the beads were chemically cross-linked with glutaraldehyde. This treatment also caused the produced porous chitosan beads to acquire higher observed activities of immobilized β-d-galactosidase (β-gal). The observed activities of the β-gal immobilized onto the 0.2M and the 0.35M Na 2 CO 3 treated beads were 1.63 and 1.91 fold respectively, higher than the activity offered by the control beads. Nevertheless, both the control beads and the 0.2M Na 2 CO 3 beads caused the optimum pH range of β-gal to shift from 4.6-5.1 to ∼2.7-5. The enzyme's optimum temperature shifted from 55 to 60°C after its immobilization onto the control chitosan beads whereas the β-gal immobilized onto the 0.2M Na 2 CO 3 chitosan beads exhibited a temperature optimum of 55-60°C. The reusability study revealed the superiority of the 0.2M Na 2 CO 3 treated beads which retained 59.1% of their initial activity during the 13th enzymatic cycle. On the other hand, the control chitosan beads were fragmented and lost their activity after only four enzymatic cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Biosensor for metal analysis and speciation

    Science.gov (United States)

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  1. Advantages of the Pre-Immobilization of Enzymes on Porous Supports for Their Entrapment in Sol-Gels

    Czech Academy of Sciences Publication Activity Database

    Betancor, L.; López-Gallego, F.; Hidalgo, A.; Fuentes, M.; Podrazký, Ondřej; Kuncová, Gabriela; Guisán, J.M.; Fernández-Lafuente, R.

    2005-01-01

    Roč. 6, č. 2 (2005), s. 1027-1030 ISSN 1525-7797 Grant - others:CICYT(ES) BIO2000/0747/C05/02; CICYT(ES) BIO2001/2259 Institutional research plan: CEZ:AV0Z40720504 Keywords : immobilization * enzymes * sol-gel Subject RIV: CE - Biochemistry Impact factor: 3.618, year: 2005

  2. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  3. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Noorbakhsh, Abdollah

    2011-01-01

    Highlights: → Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. → In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. → Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. → The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. → Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k s ) and Michaelis-Menten constant (K M ), of immobilized GOx were 1.50 x 10 -12 mol cm -2 , 9.2 ± 0.5 s -1 and 3.42(±0

  4. Molecular view of the interaction between iota-carrageenan and a phospholipid film and its role in enzyme immobilization.

    Science.gov (United States)

    Nobre, Thatyane M; de Sousa e Silva, Heurison; Furriel, Rosa P M; Leone, Francisco A; Miranda, Paulo B; Zaniquelli, Maria Elisabete D

    2009-05-28

    Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the

  5. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c

    Science.gov (United States)

    Katsiaounis, Stavros; Tiflidis, Christina; Tsekoura, Christina; Topoglidis, Emmanuel

    2018-03-01

    In this work three different mesoporous TiO2 film electrodes were prepared and used for the immobilization of Cytochrome c (Cyt-c). Films prepared via a standard sol-gel route (SG-films) were compared with commercially available benchmark nanotitania materials, namely P25 Degussa (P25-films) and Dyesol nanopaste (Dyesol films). Their properties, film deposition characteristics and their abilities to adsorb protein molecules in a stable and functional way were examined. We investigated whether it is possible, rather than preparing TiO2 films using multistep, lengthy and not always reproducible sol-gel procedures, to use commercially available nanotitania materials and produce reproducible films faster that exhibit all the properties that make TiO2 films ideal for protein immobilization. Although these materials are formulated primarily for dye-sensitized solar cell applications, in this study we found out that protein immobilization is facile and remarkably stable on all of them. We also investigated their electrochemical properties by using cyclic voltammetry and spectroelectrochemistry and found out that not only direct reduction of Fe(III)-heme to Fe(II)-heme of immobilized Cyt-c was possible on all films but that the adsorbed protein remained electroactive.

  6. Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity

    International Nuclear Information System (INIS)

    Haghighi, Nasibeh; Hallaj, Rahman; Salimi, Abdollah

    2017-01-01

    In this work a new organic–inorganic nanocomposite has been introduced for enzyme immobilization. The composite consisting of graphene oxide (GO) and titanium oxide nanoparticles (TiO 2 ) modified with 2, 2′-dithioxo-3, 3′-bis (3-(triethoxysilyl) propyl)-2H, 2′H-[5, 5′-bithiazolylidene]-4, 4′(3H, 3′H)-dione as Organic-Inorganic Supporting Ligand (OISL). The OISL was covalently attached to TiO 2 nanoparticles and employed for obtaining a suitable solid surface to enzyme attachment. The glucose oxidase (GOD) was irreversibly loaded on the GC/GO/TiO 2 -OISL using consecutive cyclic voltammetry. The enzyme immobilization and the enzymatic activity were determined by electrochemical methods. The cyclic voltammogram displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of − 0.465 V and an apparent electron transfer rate constant of 1.74 s −1 . The GO/TiO 2 -OISL can catalyze the electroreduction and electrooxidation of hydrogen peroxide. The GC/GO/TiO 2 -OISL/GOD electrode was used in the hydrogen peroxide determination. The fabricated nanobiocomposite shows dramatic photoelectrocatalytic activity which evaluated by studying the electrocatalytic activity of the fabricated electrode toward hydrogen peroxide in darkness and in the presences of light. - Highlights: • In this work a novel platform used to successful immobilization of glucose oxidase. Due to its large functional group this modified nanoparticles load enzyme (GOD) and remain enzyme whit out denaturation for a long time. • The loaded enzyme shows direct electron transfer and excellent charge transfer kinetic. Also the fabricated nano-bio-composite has good catalytic activity toward hydrogen peroxide during electrooxidation and electro reduction process. • The nano-bio-composite shows excellent photocatalytic activity.

  7. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    International Nuclear Information System (INIS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-01-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  8. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    Science.gov (United States)

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  9. Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell applications

    International Nuclear Information System (INIS)

    Toit, Hendrik du; Di Lorenzo, Mirella

    2014-01-01

    Highlights: • Electrochemical adsorption of glucose oxidase (GOx) on highly porous gold (hPG); • Rapid one-step immobilisation protocol with no use of expensive and/or harsh reagents; • Linear response to glucose in the range 50 μM -10 mM; • Lower detection limit, stable over 5 days: 25 μM. • The use of the GOx-hPG in a fuel cell lead to the peak power density of 6 μW cm −2 . - Abstract: The successful implementation of redox-enzyme electrodes in biosensors and enzymatic biofuel cells has been the subject of extensive research. For high sensitivity and high energy-conversion efficiency, the effective electron transfer at the protein-electrode interface has a key role. This is difficult to achieve in the case of glucose oxidase, due to the fact that for this enzyme the redox centre is buried inside the structure, far from any feasible electrode binding sites. This study reports, a simple and rapid methodology for the direct immobilisation of glucose oxidase into highly porous gold electrodes. When the resulting electrode was tested as glucose sensor, a Michaelis-Menten kinetic trend was observed, with a detection limit of 25 μM. The bioelectrode sensitivity, calculated against the superficial surface area of the bioelectrode, was of 22.7 ± 0.1 μA mM −1 cm −2 . This glucose oxidase electrode was also tested as an anode in a glucose/O 2 enzymatic biofuel cell, leading to a peak power density of 6 μW cm −2 at a potential of 0.2 V

  10. Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides.

    Science.gov (United States)

    Wu, Chao; Liu, Xueying; Li, Yufei; Du, Xiaoyu; Wang, Xia; Xu, Ping

    2014-03-15

    For triglycerides biosensor design, protein immobilization is necessary to create the interface between the enzyme and the electrode. In this study, a glassy carbon electrode (GCE) was modified with lipase-nanoporous gold (NPG) biocomposite (denoted as lipase/NPG/GCE). Due to highly conductive, porous, and biocompatible three-dimensional structure, NPG is suitable for enzyme immobilization. In cyclic voltammetry experiments, the lipase/NPG/GCE bioelectrode displayed surface-confined reaction in a phosphate buffer solution. Linear responses were obtained for tributyrin concentrations ranging from 50 to 250 mg dl(-1) and olive oil concentrations ranging from 10 to 200 mg dl(-1). The value of apparent Michaelis-Menten constant for tributyrin was 10.67 mg dl(-1) and the detection limit was 2.68 mg dl(-1). Further, the lipase/NPG/GCE bioelectrode had strong anti-interference ability against urea, glucose, cholesterol, and uric acid as well as a long shelf-life. For the detection of triglycerides in human serum, the values given by the lipase/NPG/GCE bioelectrode were in good agreement with those of an automatic biochemical analyzer. These properties along with a long self-life make the lipase/NPG/GCE bioelectrode an excellent choice for the construction of triglycerides biosensor. © 2013 Elsevier B.V. All rights reserved.

  11. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization

    Science.gov (United States)

    Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad

    2018-02-01

    Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.

  12. Production of cellulase from immobilized Trichoderma reesei

    International Nuclear Information System (INIS)

    Kasai, Noboru; Tamada, Masao; Kumakura, Minoru

    1989-05-01

    This report completed the results that obtained on the study of the enzyme activity in the culture of immobilized Trichoderma reesei cells in flask scale (100ml) and bench scale (30l). In the flask scale culture, the batch and repeated batch culture were carried out, and in the bench scale culture, the batch, repeated batch and continuous culture were done by using a culture equipment that is an unit process of the bench scale test plant for saccharification of cellulosic wastes. The enzyme activity of the immobilized cells was higher than that of the intact cells in the flask scale culture and it was confirmed that the enzyme activity was not decreased on the repeated batch culture of six times even. In the bench scale culture, it was found that a optimum culture condition of the immobilized cells was not different from that of the free cells and the immobilized cells gave the enzyme solution with a high enzyme activity in the culture condition of 450rpm stirring speed and air supply of 0.1v/v/m above. The technique of the repeated batch and continuous culture for long times in bench scale without contamination was established. The enzyme activity of the immobilized cells in continuous culture became to be 85 % to that in batch culture and it was found that the enzyme solution with high enzyme activity was continuously obtained in the continuous culture for long times. (author)

  13. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  14. Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction

    International Nuclear Information System (INIS)

    Di Bari, Chiara; Goñi-Urtiaga, Asier; Pita, Marcos; Shleev, Sergey; Toscano, Miguel D.; Sainz, Raquel; De Lacey, Antonio L.

    2016-01-01

    High surface area graphene electrodes were prepared by simultaneous electrodeposition and electroreduction of graphene oxide. The electrodeposition process was optimized in terms of pH and conductivity of the solution and the obtained graphene electrodes were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy and electrochemical methods (cyclic voltammetry and impedance spectroscopy). Electrodeposited electrodes were further functionalized to carry out covalent immobilization of two oxygen-reducing multicopper oxidases: laccase and bilirubin oxidase. The enzymatic electrodes were tested as direct electron transfer based biocathodes and catalytic currents as high as 1 mA/cm 2 were obtained. Finally, the mechanism of the enzymatic oxygen reduction reaction was studied for both enzymes calculating the Tafel slopes and transfer coefficients.

  15. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid

    Science.gov (United States)

    Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-04-01

    This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.

  16. Immobilization of glucose oxidase onto a novel platform based on modified TiO{sub 2} and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Nasibeh, E-mail: Haghighi.nasibeh@yahoo.com [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman, E-mail: Rhallaj@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2017-04-01

    In this work a new organic–inorganic nanocomposite has been introduced for enzyme immobilization. The composite consisting of graphene oxide (GO) and titanium oxide nanoparticles (TiO{sub 2}) modified with 2, 2′-dithioxo-3, 3′-bis (3-(triethoxysilyl) propyl)-2H, 2′H-[5, 5′-bithiazolylidene]-4, 4′(3H, 3′H)-dione as Organic-Inorganic Supporting Ligand (OISL). The OISL was covalently attached to TiO{sub 2} nanoparticles and employed for obtaining a suitable solid surface to enzyme attachment. The glucose oxidase (GOD) was irreversibly loaded on the GC/GO/TiO{sub 2}-OISL using consecutive cyclic voltammetry. The enzyme immobilization and the enzymatic activity were determined by electrochemical methods. The cyclic voltammogram displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of − 0.465 V and an apparent electron transfer rate constant of 1.74 s{sup −1}. The GO/TiO{sub 2}-OISL can catalyze the electroreduction and electrooxidation of hydrogen peroxide. The GC/GO/TiO{sub 2}-OISL/GOD electrode was used in the hydrogen peroxide determination. The fabricated nanobiocomposite shows dramatic photoelectrocatalytic activity which evaluated by studying the electrocatalytic activity of the fabricated electrode toward hydrogen peroxide in darkness and in the presences of light. - Highlights: • In this work a novel platform used to successful immobilization of glucose oxidase. Due to its large functional group this modified nanoparticles load enzyme (GOD) and remain enzyme whit out denaturation for a long time. • The loaded enzyme shows direct electron transfer and excellent charge transfer kinetic. Also the fabricated nano-bio-composite has good catalytic activity toward hydrogen peroxide during electrooxidation and electro reduction process. • The nano-bio-composite shows excellent photocatalytic activity.

  17. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    International Nuclear Information System (INIS)

    Haghighi, Behzad; Tabrizi, Mahmoud Amouzadeh

    2011-01-01

    Highlights: → A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. → A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. → The apparent electron transfer rate constant was measured to be 5.27 s -1 . → A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E o ') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k s ) was calculated to be 5.27 s -1 . The dependence of E o ' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  18. Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Tabrizi, Mahmoud Amouzadeh [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A direct electron transfer reaction of glucose oxidase was observed on the surface of a nano-porous glassy carbon electrode. > A pair of well-defined and reversible redox peaks was observed at the formal potential of approximately -0.439 V. > The apparent electron transfer rate constant was measured to be 5.27 s{sup -1}. > A mechanism for the observed direct electron transfer reaction was proposed, which consists of a two-electron and a two-proton transfer. - Abstract: A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E{sup o}') of -0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (k{sub s}) was calculated to be 5.27 s{sup -1}. The dependence of E{sup o}' on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.

  19. Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Lin eChen

    2015-11-01

    Full Text Available The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled 7 times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.

  20. Electrically conductive, immobilized bioanodes for microbial fuel cells

    International Nuclear Information System (INIS)

    Ganguli, R; Dunn, B

    2012-01-01

    The power densities of microbial fuel cells with yeast cells as the anode catalyst were significantly increased by immobilizing the yeast in electrically conductive alginate electrodes. The peak power densities measured as a function of the electrical conductivity of the immobilized electrodes show that although power increases with rising electrical conductivity, it tends to saturate beyond a certain point. Changing the pH of the anode compartment at that point seems to further increase the power density, suggesting that proton transport limitations and not electrical conductivity will limit the power density from electrically conductive immobilized anodes. (paper)

  1. Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode

    International Nuclear Information System (INIS)

    Cui, Min; Xu, Bing; Hu, Chuangang; Shao, Hui Bo; Qu, Liangti

    2013-01-01

    Direct electrochemistry of glucose oxidase (GOD) on three-dimensional (3D) interpenetrating porous graphene electrodes has been reported, which have been fabricated by one-step electrochemical reduction of graphene oxide (GO) from its aqueous suspension. The electrochemically reduced GO (ERGO) modified electrodes exhibited excellent electron transfer properties for GOD and enhanced the enzyme activity and stability by the assistance of chitosan. The immobilized GOD shows a fast electron transfer with the rate constant (k s ) of 6.05 s −1 . It is worth mentioning that in the air-saturated phosphate buffer solution without any mediator, the resultant modified electrodes exhibited low detection limit of 1.7 μM with wide linear range of 0.02–3.2 mM and high sensitivity and high selectivity for measuring glucose. It would also be extended to various enzymes and bioactive molecules to develop the biosensor or other bio-electrochemical devices

  2. Cascade catalysis in membranes with enzyme immobilization for multienzymatic conversion of CO2 to methanol

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina

    2015-01-01

    .e. by directing membrane fouling formation), without any addition of organic solvent. Such coimmobilization and sequential immobilization systems were examined for the production of methanol from CO2 with formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH). Enzyme...... for multi-enzymatic cascade systems, but also reveals the reaction bottleneck and provides possible solutions for the bioconversion of CO2 to methanol....

  3. Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments

    Czech Academy of Sciences Publication Activity Database

    Korecká, L.; Bílková, Z.; Holčapek, M.; Královský, J.; Beneš, Milan J.; Lenfeld, Jiří; Minc, N.; Cecal, R.; Viovy, J.-L.; Przybylski, M.

    2004-01-01

    Roč. 808, č. 1 (2004), s. 15-24 ISSN 1570-0232. [International Symposium on Polymer Design for BioSeparation and Nanobiotechnology /8./. Compiegne, 27.11.2003-29.11.2003] Grant - others:GA ČR(CZ) GA203/02/0023 Program:GA Institutional research plan: CEZ:AV0Z4050913 Keywords : immobilized enzyme reactors * immunoglobulin G Subject RIV: CE - Biochemistry Impact factor: 2.176, year: 2004

  4. Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation

    Directory of Open Access Journals (Sweden)

    Soldatkin O. O.

    2014-07-01

    Full Text Available Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical characteristics were obtained for the biosensors based on nano beta zeolite. It has been found that an increase in the amount of zeolite on the surface of amperometric transducer may change such biosensor parameters as sensitivity to the substrate and duration of the analysis. Conclusions. The proposed method of enzyme immobilization by adsorption on zeolites is shown to be quite promising in the development of amperometric biosensors and therefore should be further investigated.

  5. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim; Errico, Massimiliano

    This study aims to compare the efficiency of the transesterification of castor oil with methanol and ethanol as part of the biodiesel production, using immobilized enzyme Lipozyme IM as catalyst. Different reaction conditions were evaluated and optimized, including the reaction temperature, alcohol...

  6. Immobilization of Chloroperoxidase on Aminopropyl-Glass

    Science.gov (United States)

    Kadima, Tenshuk A.; Pickard, Michael A.

    1990-01-01

    Chloroperoxidase (CPO) purified from Caldariomyces fumago CMI 89362 was covalently bound to aminopropyl-glass by using a modification of an established method. Acid-washed glass was derivatized by using aminopropyltriethoxysilane, and the enzyme was ionically bound at low ionic strength. Further treatment with glutaraldehyde covalently linked the enzyme to the glass beads in an active form. No elution of bound activity from glass beads could be detected with a variety of washings. The loading of enzyme protein to the glass beads was highest, 100 mg of CPO per g of glass, at high reaction ratios of CPO to glass, but the specific activity of the immobilized enzyme was highest, 36% of theoretical, at low enzyme-to-carrier ratios. No differences in the properties of the soluble and immobilized enzymes could be detected by a number of criteria: their pH-activity and pH-stability profiles were similar, as were their thermal stabilities. After five uses, the immobilized enzyme retained full activity between pH 6.0 and 6.7. PMID:16348352

  7. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt

    International Nuclear Information System (INIS)

    Nasri, Zahra; Shams, Esmaeil

    2013-01-01

    Graphical abstract: - Abstract: This study reports a novel, simple and fast approach for construction of a highly stable glucose biosensor based on the immobilization of glucose oxidase (GOx) onto a glassy carbon electrode (GCE) electrografted with 4-aminophenyl (AP) by diazonium chemistry. Aminophenyl was used as cross-linker for covalent attachment of glucose oxidase to the electrode surface. Cyclic voltammograms of the GOx-modified GCE in phosphate buffer solution exhibited a pair of well-defined redox peaks, attesting the direct electron transfer (DET) of GOx with the underlying electrode. The proposed biosensor could be used to detect glucose based on the consumption of O 2 with the oxidation of glucose catalyzed by GOx and exhibited a wide linear range of glucose from 0.05 mM to 4.5 mM and low detection limit of 10 μM. The surface coverage of active GOx, heterogeneous electron transfer rate constant (k s ) and Michaelis–Menten constant (K M ) of immobilized GOx were 1.23 × 10 −12 mol cm −2 , 4.25 s −1 and 2.95 mM, respectively. The great stability of this biosensor, technically simple and possibility of preparation at short period of time make this method suitable for fabrication of low-cost glucose biosensors

  8. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction

    International Nuclear Information System (INIS)

    Xu Qin; Zhu Junjie; Hu Xiaoya

    2007-01-01

    Ordered mesoporous polyaniline film has been fabricated by electrodepositing from the hexagonal lyotropic liquid crystalline (LCC). Horseradish peroxidase (HRP), as a symbol biomolecule, was successfully immobilized on the film to construct a new kind of hydrogen peroxide biosensor. The biosensor combined the advantages of the good conductivity of polyaniline and the higher surface area of the ordered mesoporous film. Polyaniline could be served as a wire to relay electron between HRP and the electrode. The high surface area of the film supplied more sites for HRP immobilization, therefore increased the catalytic activity of the biosensor. The ordered mesoporous character of the film increased the rate of mass transport, which resulted in the improvement of sensor response and linearity. The biosensor displayed excellent electrocatalytic response to the detection of H 2 O 2 in a concentration range from 1.0 μM to 2.0 mM with a detection limit of 0.63 μM. Good reproducibility, stability, high precision, wide linearity and low detection limit were assessed for the biosensor

  9. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    Science.gov (United States)

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  10. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    Directory of Open Access Journals (Sweden)

    Abril Flores-Maltos

    2011-01-01

    Full Text Available A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. KM and Vmax values for free enzyme were very similar for both substrates. But, after immobilization, KM and Vmax values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  11. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.

    Science.gov (United States)

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V; Renovato, Jacqueline; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K(M) and V(max) values for free enzyme were very similar for both substrates. But, after immobilization, K(M) and V(max) values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  12. Design and modelling of enzyme/poly-pyrrole modified electrodes for bio-catalyzed electro-synthesis processes

    International Nuclear Information System (INIS)

    Gros, Pierre

    1996-01-01

    This research thesis reports a study which aims at developing, analyzing and integrating an electrode-enzyme interface within an electro-enzymatic reactor to develop electrochemical biosensors. The adopted method comprises a confinement of the enzyme at the electrode surface by means of an electro-formed poly-pyrrole film. The author reports an experimental and theoretical study of the coupling between electrochemical reaction, enzymatic reaction and matter transfer in the polymer in order to better understand the operation of so-modified electrodes. Different parameters have an influence on the reaction rate. A numerical model (validated by experiments) allows the identification of the reaction limiting stages. A new elaboration protocol allows the polymer permeability to be increased. The interface is first applied to the reduction of the NAD coenzyme, and the process is also applied to the production of gluconic acid [fr

  13. A bioinspired copper 2,2-bipyridyl complex immobilized MWCNT modified electrode prepared by a new strategy for elegant electrocatalytic reduction and sensing of hydrogen peroxide

    International Nuclear Information System (INIS)

    Mayuri, Pinapeddavari; Saravanan, Natarajan; Senthil Kumar, Annamalai

    2017-01-01

    Owing to facile electron-transfer reaction, metal complex based molecular architecture has attracted much interest in electrochemistry, especially for bioinspired electrocatalytic and electrochemical sensor applications. Indeed, preparation of stable surface-confined molecular system is a challenging task. In general, derivatization methodology, in which, a specific functional groups such as thiol, carboxylic acid, pyrene and amino bearing inorganic complexes synthesized discreetly by chemical approach have been attached suitably on electrode surface via any one of the following techniques; self-assembly, covalent immobilization, electrostatic interaction, ionic exchange and encapsulation. Herein, we report a copper-bipyridyl complex immobilized multiwalled carbon nanotube (MWCNT)-Nafion (Nf) modified glassy carbon electrode (GCE/Nf-MWCNT@bpy-Cu"2"+) prepared by a new strategy in which sequential modification of bipyridyl (bpy) ligand on MWCNT via π-π interaction followed by in-situ complexation with copper ion for efficient electrochemical reduction of H_2O_2. The copper species chemically modified electrode showed highly stable and well-defined surface-confined Cu"2"+"/"1"+ redox peak response, without any Cu"1"+"/"0 redox transition, at an equilibrium potential, E_1_/_2 = −135 mV vs Ag/AgCl in a pH 7 phosphate buffer solution. Detailed physico-chemical characterization by SEM, FT-IR, Raman and ESI-MS and electrochemical characterization reveals that [Cu(bpy)_2(H_2O)_2]"+ (molecular weight 413.4) like species was immobilized as a major species on the modified electrode. A bioinspired electro-catalytic reduction of H_2O_2 was studied using cyclic voltammetric and rotating disc electrode techniques. In further, electrochemical sensing of H_2O_2 by amperometric i-t and flow injection analysis methods with a detection limit values 4.5 and 0.49 μM respectively were demonstrated.

  14. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions.

    Science.gov (United States)

    Vazquez-Ortega, Perla Guadalupe; Alcaraz-Fructuoso, Maria Teresa; Rojas-Contreras, Juan A; López-Miranda, Javier; Fernandez-Lafuente, Roberto

    2018-03-01

    The dimeric enzyme β-glucosidase from Aspergillus niger has been immobilized on different amino-agarose beads at pH 5 and 7, exploiting the versatility of glutaraldehyde. The stability of the free enzyme depended on enzyme concentration. Immobilization via ion exchange improved enzyme stability/activity, depending on the immobilization pH. However, the enzyme was desorbed in 75 mM NaCl at pH 7 and some stability/enzyme concentration dependence still existed. of these biocatalysts with glutaraldehyde increased enzyme stability (e.g. at pH 5, after incubation under conditions where the enzyme just ionically exchanged was fully inactivated, the activity of the glutaraldehyde treated enzyme remained unaltered). Immobilization on glutaraldehyde pre-activated supports yielded a higher increase in enzyme activity, but the stabilization was lower. While when measuring the enzyme activity at pH 4 there were no changes after immobilization, all immobilized enzymes were more active than the free enzyme at pH 6 and 7 (2-3 times). The Ki/Km ratio did not significantly decrease in any immobilized biocatalysts, and in some cases it worsened in a significant way (by a 9 fold factor using preactivated supports). The new biocatalysts are significantly more stable and avoid enzyme subunit desorption, being the immobilization pH a key point in their design. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Characteristics of immobilized aminoacylase from Aspergillus oryzae on macroporous copolymers.

    Science.gov (United States)

    He, B L; Jiang, P; Qiu, Y B

    1990-01-01

    Aminoacylase from Aspergillus oryzae was adsorbed on functionallized macroporous copolymers where the enzyme showed excellent catalyzing activity and operation stability. Various factors which effect the activity of the immobilized aminoacylase such as temperature, pH and ionic strength were investigated. The continuous operation of the enzyme immobilized on macroporous copolymers was compared with that of the enzyme immobilized on DEAE-Sephadex.

  16. PREPARATION AND CHARACTERIZATION OF BIOCATALYSTS BASED ON IMMOBILIZED GLYCOSIDASES

    Directory of Open Access Journals (Sweden)

    O. L. Meshcheriakova

    2014-01-01

    Full Text Available Summary. Enzymes subclass glycosidases cleaving poly- and oligosaccharides to simple sugars, are of great practical importance for a variety of industries. Such enzymes include α-L-fucosidase and β-fructofuranosidase. α-L-fucosidase splits fucoidan kelp to fucose and fucooligosaccharides. Fucose has prebiotic, immunotropic action, and a wide spectrum of biological activity in vertebrates, fucooligosaccharides - antioxidant and prebiotic properties. In this regard, and fucose polymers may be demanded in the food, feed and pharmaceutical industry. β-fructofuranosidase sucrose hydrolysis with the formation of invert syrup high quality and biological value that is of interest to the sugar industry. In order to intensify the processes of hydrolysis of fucoidan and sucrose due to the higher stability and reusability of enzyme preparations carried immobilization α-L-fucosidase on chitosan and β-fructofuranosidase of ion exchange brand FIBAN A-6 adsorption method. Activity of the immobilized α-L-fucosidase and β-fructofuranosidase were 80 and 70% of the activity of the free enzyme, respectively. Found that immobilized β-fructofuranosidase exhibits maximal activity at pH 4,0-4,1, the immobilized α-L-fucosidase - at pH 7,0. The optimal pH of immobilized enzymes similar to those for the free enzyme. Optimal temperature hydrolysis substrates immobilized α-L-fucosidase and β-fructofuranosidase was 50 and 70 ° C respectively, 10 ° C and 20 ° C higher compared to free enzymes. Studies have shown sufficient stability of immobilized glycosidases, so at 4-fold using their enzymatic activity decreased by 1.5 times; Biocatalysts obtained in storage in the refrigerator for 4-6 months retained 80% of the catalytic activity of enzymes.

  17. Immobilization of Isolated Lipase From Moldy Copra (Aspergillus Oryzae

    Directory of Open Access Journals (Sweden)

    Seniwati Dali

    2011-01-01

    Full Text Available Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase from Aspergillus oryzae. Lipase was partially purified from the culture supernatant of Aspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum temperature, thermal stability and reusability were carried out. The results showed that free lipase had optimum pH 8,2 and optimum temperature 35 °C while the immobilized lipase had optimum 8,2 and optimum temperature 45 °C. The thermal stability of the immobilized lipase, relative to that of the free lipase, was markedly increased. The immobilized lipase can be reused for at least six times.

  18. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants.

    Science.gov (United States)

    Mohiuddin, M; Arbain, D; Islam, A K M Shafiqul; Ahmad, M S; Ahmad, M N

    2016-12-01

    A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α-D-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), and Kedondong (Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.

  19. Effect of acidic treatment on carbon nano tubes for immobilization of cellulase enzyme

    International Nuclear Information System (INIS)

    Al-Khatib, M.F.R.; Mohd Zahangir Alam; Rasha Mohammed

    2009-01-01

    Full text: The effect of acidic treatment on MWCNTs functionalization was studied by mixing different ratios (1:1, 1:2, and 1:3 v/v %) of nitric acid and sulphuric acid, respectively. The effect of these treatments on the structure of MWCNTs was characterized by Fourier transform infrared spectroscopy (FTIR) and Filed emission scanning electron microscopy (FESEM). Results showed that the optimum ratio 1:3 (v/v %) is best suitable in imparting carboxylic acid and hydroxyl groups which are required for immobilization of cellulase enzyme on functionalized CNTs. (author)

  20. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility

    DEFF Research Database (Denmark)

    Zdarta, Jakub; Meyer, Anne S.; Jesionowski, Teofil

    2018-01-01

    on the properties of the produced catalytic system. A large variety of inorganic and organic as well as hybrid and composite materials may be used as stable and efficient supports for biocatalysts. This review provides a general overview of the characteristics and properties of the materials applied for enzyme...... immobilization. For the purposes of this literature study, support materials are divided into two main groups, called Classic and New materials. The review will be useful in selection of appropriate support materials with tailored properties for the production of highly effective biocatalytic systems for use...

  1. A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres

    Directory of Open Access Journals (Sweden)

    Lee Yook Heng

    2010-11-01

    Full Text Available A new alcohol oxidase (AOX enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide [poly(nBA-NAS] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE. Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor’s analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3–316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R2 = 0.9776, n = 3. The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation and 1.11% RSD, respectively (n = 3. The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor’s performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.

  2. Digital simulation of chronoamperometry at an electrode within a hemispherical polymer drop containing an enzyme: comparison of a hemispherical with a flat disk electrode

    DEFF Research Database (Denmark)

    Britz, Dieter; Strutwolf, Jörg

    2013-01-01

    . As well, a cylindrical electrode with length much greater than its diameter and coated with a layer of polymer/enzyme was treated. The ratio of steady state currents at the hemispherical to the disk electrode is not, as has sometimes been assumed, always equal to π/2; indeed this is only approached...

  3. Adsorptive control of water in esterification with immobilized enzymes: II. fixed-bed reactor behavior.

    Science.gov (United States)

    Mensah, P; Gainer, J L; Carta, G

    1998-11-20

    Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity. Copyright 1998 John Wiley & Sons, Inc.

  4. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination.

    Science.gov (United States)

    Manjunatha, Revanasiddappa; Shivappa Suresh, Gurukar; Melo, Jose Savio; D'Souza, Stanislaus F; Venkatesha, Thimmappa Venkatarangaiah

    2012-09-15

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto functionalized graphene (FG) modified graphite electrode. Enzymes modified electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FG accelerates the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx. A well defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH(2) of ChOx. The electron transfer coefficient (α) and electron transfer rate constant (K(s)) were calculated and their values are found to be 0.31 and 0.78 s(-1), respectively. For the free cholesterol determination, ChOx-FG/Gr electrode exhibits a sensitive response from 50 to 350 μM (R=-0.9972) with a detection limit of 5 μM. For total cholesterol determination, co-immobilization of ChEt and ChOx on modified electrode, i.e. (ChEt/ChOx)-FG/Gr electrode showed linear range from 50 to 300 μM (R=-0.9982) with a detection limit of 15 μM. Some common interferents like glucose, ascorbic acid and uric acid did not cause any interference, due to the use of a low operating potential. The FG/Gr electrode exhibits good electrocatalytic activity towards hydrogen peroxide (H(2)O(2)). A wide linear response to H(2)O(2) ranging from 0.5 to 7 mM (R=-0.9967) with a sensitivity of 443.25 μA mM(-1) cm(-2) has been obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: Application to nanomolar detection of bromate, periodate and iodate

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Kavosi, Begard; Babaei, Ali; Hallaj, Rahman

    2008-01-01

    A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl 2 ).ClO 4 , irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (k s ) of the immobilized Os-complex on SWCNTs were 3.07 x 10 -9 mol cm -2 , 5.5 (±0.2) s -1 , 2.94 x 10 -9 mol cm -2 , 7.3 (±0.3) s -1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO 3 - , IO 3 - and IO 4 - in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) x 10 3 , 7.32 (±0.2) x 10 3 and 1.75 (±0.2) x 10 3 M -1 s -1 , respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor

  6. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Rafiq, Muhammad; Seo, Sung-Yum [Department of Biology, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Lee, Ki Hwan, E-mail: khlee@kongju.ac.kr [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of)

    2014-07-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  7. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2014-01-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  8. Fungal laccase: copper induction, semi-purification, immobilization ...

    African Journals Online (AJOL)

    Fungal laccase: copper induction, semi-purification, immobilization, phenolic effluent treatment and electrochemical measurement. ... In order to apply in an effluent treatment, laccase was immobilized on different vitroceramics supports, pyrolytic graphite and also on a carbon fiber electrode as biosensor. The maximum ...

  9. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-05

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.

    Science.gov (United States)

    Garg, Seema; De, Arnab; Mozumdar, Subho

    2015-05-01

    Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability, and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple, and reliable immobilization strategy for the enzyme. In this study, the carboxyl terminated surface of glutathione-capped gold nanoparticles have been utilized as a solid support for the covalent attachment of urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bioactivity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like ultraviolet-visible spectroscopy, intrinsic steady state fluorescence, and circular dichorism. The bioactivity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nanoconjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. © 2014 Wiley Periodicals, Inc.

  11. Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase

    International Nuclear Information System (INIS)

    Saadaoui, Maroua; Sánchez, Alfredo; Díez, Paula; Raouafi, Noureddine; Pingarrón, José M.; Villalonga, Reynaldo

    2016-01-01

    Glassy carbon electrodes were modified with silica materials such as silica nanoparticles, mesoporous silica nanoparticles and mesoporous silica thin films with the aim to introduce scaffolds suitable for the immobilization of enzymes. Xanthine oxidase was selected as a model enzyme, and xanthine as the target analyte. A comparison of the modified electrodes showed the biosensor prepared with mesoporous silica nanoparticles to perform best. By using the respective biosensor, xanthine can be amperometrically determined (via measurement of enzymatically formed hydrogen peroxide) at a working voltage of 0.7 V (vs. Ag/AgCl) with a 0.28 μM detection limit. The biosensor was evaluated in terms of potential interferences, reproducibility and stability, and applied to the determination of fish freshness via sensing of xanthine. (author)

  12. Production of Biodiesel Using Immobilized Lipase and the Characterization of Different Co-Immobilizing Agents and Immobilization Methods

    Directory of Open Access Journals (Sweden)

    Kang Zhao

    2016-08-01

    Full Text Available Lipase from Candida sp. 99–125 is widely employed to catalyzed transesterification and can be used for biodiesel production. In this study, the lipase was immobilized by combined adsorption and entrapment to catalyze biodiesel production from waste cooking oil (WCO via transesterification, and investigating co-immobilizing agents as additives according to the enzyme activity. The addition of the mixed co-immobilizing agents has positive effects on the activities of the immobilized lipase. Three different immobilizing methods were compared by the conversion ratio of biodiesel and structured by Atom Force Microscopy (AFM and Scanning Electron Microscopy (SEM, respectively. It was found that entrapment followed by adsorption was the best method. The effect of the co-immobilizing agent amount, lipase dosage, water content, and reuse ability of the immobilized lipase was investigated. By comparison with previous research, this immobilized lipase showed good reuse ability: the conversion ratio excesses 70% after 10 subsequent reactions, in particular, was better than Novozym435 and TLIM on waste cooking oil for one unit of lipase.

  13. Physical immobilization of 60 kDa chaperonin linked lipase from pseudomonas aeruginosa BN-1

    International Nuclear Information System (INIS)

    Syed, M.N.; Mehmood, S.; Bashir, A.; Ashraf, F.

    2012-01-01

    Abstract: The 60 kDa chaperone linked lipase from Pseudomonas aeruginosa was subjected to physical adsorption on silica 60 and acrylic beads. It was found that higher enzyme loading was achieved on silica gel than acrylic bead. The half life of immobilized enzyme was greater compared to the free enzyme. The adsorption of the enzyme onto a solid phase also resulted in increased thermo and solvent stability. It was observed that soluble enzyme showed maximum stability at 70 degree C while immobilized enzyme showed stability up to 80 degree C for 45 minutes. The stability of immobilized enzyme increased up to 48 hours from 24 hours against different organic solvent at 1.0 M concentration. It was noted that enzyme immobilized on acrylic beads have greater reusability compared to silica immobilized enzyme. (author)

  14. Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Sobczak, Janusz W. [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Opallo, Marcin, E-mail: mopallo@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland)

    2011-10-01

    Highlights: > We introduced ITO nanoparticulate films for enzyme immobilization. > The material promotes mediatorless bioelectrocatalysis towards dioxygen reduction. > The electrocatalytical current increase with the thickness of nanoparticulate film. > There is no difference in electrocatalytic current in the presence or absence of mediator. > The stability of the electrode can be improved by crosslinking of the enzyme with bovine serum albumin and glutaraldehyde. - Abstract: Bilirubin oxidase was immobilised on ITO electrodes: bare or covered by ITO nanoparticulate film. The latter material was obtained by immersion and withdrawal of the substrate into ITO nanoparticles suspension. Formation of a protein deposit was confirmed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The electrode surface is covered by a protein film in the form of globular aggregates and it exhibits mediatorless electrocatalytic activity towards dioxygen reduction to water at pH 4.8. Modification of the electrode with ITO particles increases its catalytic activity about ten times up to 110 {mu}A cm{sup -2} seen for electrodes prepared by twelve immersion and withdrawal steps into ITO nanoparticle suspension. The catalytic activity is almost unaffected by addition of mediator to solution. The stability of the electrodes is increased by cross-linking of the enzyme with bovine serum albumin and glutaraldehyde. This electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 mol dm{sup -3} McIlvaine buffer (pH 4.8).

  15. Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes

    International Nuclear Information System (INIS)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Sobczak, Janusz W.; Opallo, Marcin

    2011-01-01

    Highlights: → We introduced ITO nanoparticulate films for enzyme immobilization. → The material promotes mediatorless bioelectrocatalysis towards dioxygen reduction. → The electrocatalytical current increase with the thickness of nanoparticulate film. → There is no difference in electrocatalytic current in the presence or absence of mediator. → The stability of the electrode can be improved by crosslinking of the enzyme with bovine serum albumin and glutaraldehyde. - Abstract: Bilirubin oxidase was immobilised on ITO electrodes: bare or covered by ITO nanoparticulate film. The latter material was obtained by immersion and withdrawal of the substrate into ITO nanoparticles suspension. Formation of a protein deposit was confirmed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The electrode surface is covered by a protein film in the form of globular aggregates and it exhibits mediatorless electrocatalytic activity towards dioxygen reduction to water at pH 4.8. Modification of the electrode with ITO particles increases its catalytic activity about ten times up to 110 μA cm -2 seen for electrodes prepared by twelve immersion and withdrawal steps into ITO nanoparticle suspension. The catalytic activity is almost unaffected by addition of mediator to solution. The stability of the electrodes is increased by cross-linking of the enzyme with bovine serum albumin and glutaraldehyde. This electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 mol dm -3 McIlvaine buffer (pH 4.8).

  16. Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis.

    Science.gov (United States)

    Alftrén, Johan; Hobley, Timothy John

    2013-04-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter. The performance and recyclability of immobilized β-glucosidase on more complex substrate (pretreated spruce) was also studied. It was shown that adding immobilized β-glucosidase (16 U/g dry matter) to free cellulases (8 FPU/g dry matter) increased the hydrolysis yield of pretreated spruce from ca. 44 % to ca. 65 %. In addition, it was possible to re-use the immobilized β-glucosidase in the spruce and retain activity for at least four cycles. The immobilized enzyme thus shows promise for lignocellulose hydrolysis.

  17. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Parmjit S. Panesar

    2010-01-01

    Full Text Available The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry.

  18. Properties of Immobilized Candida antarctica Lipase B on Highly Macroporous Copolymer

    International Nuclear Information System (INIS)

    Handayani, N.; Achmad, S.; Wahyuningrum, D.

    2011-01-01

    In spite of their excellent catalytic properties, enzymes should be improved before their implementation both in industrial and laboratorium scales. Immobilization of enzyme is one of the ways to improve their properties. Candida antarctica lipase B (Cal-B) has been reported in numerous publications to be a particularly useful enzyme catalizing in many type of reaction including regio- and enantio- synthesis. For this case, cross-linking of immobilized Cal-B with 1,2,7,8 diepoxy octane is one of methods that proved significantly more stable from denaturation by heat, organic solvents, and proteolysis than lyophilized powder or soluble enzymes. More over, the aim of this procedure is to improve the activity and reusability of lipase. Enzyme kinetics test was carried out by transesterification reaction between 4-nitrophenyl acetate (pNPA) and methanol by varying substrate concentrations, and the result is immobilized enzymes follows the Michaelis-Menten models and their activity is match with previous experiment. Based on the V max values, the immobilized enzymes showed higher activity than the free enzyme. Cross-linking of immobilized lipase indicate that cross-linking by lower concentration of cross-linker, FIC (immobilized lipase that was incubated for 24 h) gave the highest activity and cross-linking by higher concentration of cross-linker, PIC (immobilized lipase that was incubated for 2 h) gives the highest activity. However, pore size and saturation level influenced their activity. (author)

  19. Enhancing Activity and Stability of Uricase from Lactobacillus plantarum by Zeolite immobilization

    Science.gov (United States)

    Iswantini, D.; Nurhidayat, N.; Sarah

    2017-03-01

    Lactobacillus plantarum has been known be able to produce uricase for uric acid biosensor. Durability and stability of L. plantarum in generating uricase enzyme was low. Hence, we tried to enhance its durability and stability by immobilizing it onto activated 250 mg zeolite at room temperature using 100 μL L.plantarum suspension and 2.87 mM uric acid, while Michaelis-Menten constant (KM) and Vmax were obtained at 6.7431 mM and 0.9171 µA consecutively, and the linearity range was 0.1-3.3 mM (R2 = 0.9667). Limit of detection (LOD) and limit of quantification (LOQ) value of the measurement were 0.4827 mM and 1.6092 mM respectively. Biosensor stability treatment was carried out in two different treatments, using the same electrode and using disposable electrode. The disposable electrode stability showed better result based on repeated measurements, but stability was still need improvement.

  20. Characterization of cellulose acetate micropore membrane immobilized acylase I.

    Science.gov (United States)

    Guo, Yong-Sheng; Wang, Jie; Song, Xi-Jin

    2004-12-01

    This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was obtained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90 degrees C, which is higher than that of free acylase I (60 degrees C). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.

  1. Immobilization of anode-attached microbes in a microbial fuel cell.

    KAUST Repository

    Wagner, Rachel C

    2012-01-03

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs.

  2. Immobilization of anode-attached microbes in a microbial fuel cell.

    KAUST Repository

    Wagner, Rachel C; Porter-Gill, Sikandar; Logan, Bruce E

    2012-01-01

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs.

  3. Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles.

    Science.gov (United States)

    Lv, Yongqin; Lin, Zhixing; Tan, Tianwei; Svec, Frantisek

    2014-01-01

    Porcine lipase has been reversibly immobilized on a monolithic polymer support containing thiol functionalities prepared within confines of a fused silica capillary and functionalized with gold nanoparticles. Use of gold nanoparticles enabled rejuvenation of the activity of the deactivated reactor simply by stripping the inactive enzyme from the nanoparticles using 2-mercaptoethanol and subsequent immobilization of fresh lipase. This flow through enzymatic reactor was then used to catalyze the hydrolysis of glyceryl tributyrate (tributyrin). The highest activity was found within a temperature range of 37-40°C. The reaction kinetics is characterized by Michaelis-Menten constant, Km  = 10.9 mmol/L, and maximum reaction rate, Vmax  = 5.0 mmol/L min. The maximum reaction rate for the immobilized enzyme is 1,000 times faster compared to lipase in solution. The fast reaction rate enabled to achieve 86.7% conversion of tributyrin in mere 2.5 min and an almost complete conversion in 10 min. The reactor lost only less than 10% of its activity even after continuous pumping through it a solution of substrate equaling 1,760 reactor volumes. Finally, potential application of this enzymatic reactor was demonstrated with the transesterification of triacylglycerides from kitchen oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2013 Wiley Periodicals, Inc.

  4. Immobilization of α-amylase onto poly(glycidyl methacrylate) grafted electrospun fibers by ATRP

    International Nuclear Information System (INIS)

    Oktay, Burcu; Demir, Serap; Kayaman-Apohan, Nilhan

    2015-01-01

    In this study, novel α-amylase immobilized poly(vinyl alcohol) (PVA) nanofibers were prepared. The PVA nanofiber surfaces were functionalized with 2-bromoisobutyryl bromide (BiBBr) and followed by surface initiated atom transfer radical polymerization (SI-ATRP) of glycidyl methacrylate (GMA). The morphology of the poly(glycidyl methacrylate) (PGMA) grafted PVA nanofibers was characterized by scanning electron microscopy (SEM). Also PGMA brushes were confirmed by X-ray photo electron microscopy (XPS). α-Amylase was immobilized in a one step process onto the PGMA grafted PVA nanofiber. The characteristic properties of the immobilized and free enzymes were examined. The thermal stability of the enzyme was improved and showed maximum activity at 37 °C by immobilization. pH values of the maximum activity of the free and immobilized enzymes were also found at 6.0 and 6.5, respectively. Free enzyme lost its activity completely within 15 days. The immobilized enzyme lost only 23.8% of its activity within 30 days. - Highlights: • Electrospun photocrosslinkable PVA nanofiber was prepared. • PGMA brushes were conducted on PVA nanofiber via SI-ATRP. • The immobilized enzyme showed maximum activity at pH 6.0 and at 37 °C. • Functionalized nanofibers may be used as promising supports for enzyme immobilization

  5. Nucleic Acids and Enzymes at Electrodes: Electrochemical Nanomedical Biosensors and Biofuel Cell Development

    DEFF Research Database (Denmark)

    Ferapontova, Elena

    Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice,...... perspectives of the biosensor research and such biotechnological applications as enzyme electrodes for sustainable energy production (6) will be discussed.......Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice......, by offering extremely sensitive and accurate yet simple, rapid, and inexpensive biosensing platforms (1). In this talk, I will discuss the developed at iNANO reagentless enzymatic biosensors, in which the enzyme is directly electronically coupled to the electrode (1-3), and advanced genosensor platforms...

  6. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Ren, J.; Kang, T.F.; Xue, R.; Ge, C.N.; Cheng, S.Y.

    2011-01-01

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  7. An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Guilin, Ren; Tatsumi, Hirosuke

    2012-01-01

    An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi-crystalline and amorphous......, can be monitored directly and in real-time by an enzyme-modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross-linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current...... of the reduced mediator, hydroquinone, produced by the CDH-catalyzed reaction with cellobiose, was recorded under constant-potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH-biosensors showed high sensitivity (87.7 µA mM−1 cm−2), low detection limit (25 nM), and fast response time (t95% ∼ 3 s...

  8. Determination of some properties of free and immobilized urease from aspergillus fumigatus and its application in urea assay

    International Nuclear Information System (INIS)

    Tetiker, A.T.; Ertan, F.

    2016-01-01

    Urease enzyme was extracted from Apergillus fumigatus and immobilized in calcium alginate beads. The immobilization efficiency was calculated as 82.5 %. Optimum pH and temperature for free and immobilized enzymes were found to be 7.0 and 40 degree C, respectively. The immobilized urease had a better Km value but, catalytic efficiencies (kcat/Km) were very similar. Immobilized enzyme maintained 44% of its initial activity after 5 repeated use of enzyme. It was found that storage stability of immobilized enzyme was better than that of the free enzyme. Immobilized urease enzyme was used for the determination of urea amounts in animal feed. (author)

  9. Immobilization of urease on grafted starch by radiation method

    International Nuclear Information System (INIS)

    Nguyenanh Dung; Nguyendinh Huyen

    1995-01-01

    The acrylamide was grafted by radiation onto starch which is a kind of polymeric biomaterial. The urease was immobilized on the grafted starch. Some experiments to observe the quantitative relationships between the percent graft and the activity of immobilized enzyme were determined. The enzyme activity was maintained by more than seven batch enzyme reactions. (author)

  10. Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ndangili, Peter M. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Waryo, Tesfaye T., E-mail: twaryo@uwc.ac.z [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Muchindu, Munkombwe; Baker, Priscilla G.L. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Ngila, Catherine J. [School of Chemistry, University of KwaZulu-Natal, P. Bag X541001 Westville, Durban 4000 (South Africa); Iwuoha, Emmanuel I. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa)

    2010-05-30

    The formation of nanofibrillar polyaniline-polyvinyl sulfonate (Pani-PVS) composite by electropolymerization of aniline in the presence of ferrocenium hexafluorophophate (FcPF{sub 6}) and its application in mediated-enzyme biosensor using the horseradish peroxidase/hydrogen peroxide (HRP/H{sub 2}O{sub 2}) enzyme-substrate system is reported. The electropolymerization was carried out at glassy carbon electrodes (GCE) and screen printed carbon electrodes (SPCE) in a strongly acidic medium (HCl). Scanning electron microscopy (SEM) images showed that 100 nm diameter nanofibrils were formed on the SPCE in contrast to the 800-1000 nm cauliflower-shaped clusters which were formed in the absence of FcPF{sub 6}. A model biosensor (GCE//Pani-PVS/BSA/HRP/Glu), consisting of horseradish peroxidase (HRP) immobilized by drop coating atop the GCE//Pani-PVS in the presence of bovine serum albumin (BSA) and glutaraldehyde (glu) in the enzyme layer casting solution, exhibited voltammetric responses characteristic of a mediated-enzyme system. The biosensor response to H{sub 2}O{sub 2} was very fast (5 s) and it exhibited a detection limit of 30 muM (3sigma) and a linearity of up to 2 mM (R{sup 2} = 0.998). The relatively high apparent Michaelis-Menten constant value (K{sub M}{sup app}=1.7mM) of the sensor indicated that the immobilized enzyme was in a biocompatible microenvironment. The freshly prepared biosensor was successfully applied in the determination of the H{sub 2}O{sub 2} content of a commercial tooth whitening gel with a very good recovery rate (97%).

  11. Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor

    International Nuclear Information System (INIS)

    Ndangili, Peter M.; Waryo, Tesfaye T.; Muchindu, Munkombwe; Baker, Priscilla G.L.; Ngila, Catherine J.; Iwuoha, Emmanuel I.

    2010-01-01

    The formation of nanofibrillar polyaniline-polyvinyl sulfonate (Pani-PVS) composite by electropolymerization of aniline in the presence of ferrocenium hexafluorophophate (FcPF 6 ) and its application in mediated-enzyme biosensor using the horseradish peroxidase/hydrogen peroxide (HRP/H 2 O 2 ) enzyme-substrate system is reported. The electropolymerization was carried out at glassy carbon electrodes (GCE) and screen printed carbon electrodes (SPCE) in a strongly acidic medium (HCl). Scanning electron microscopy (SEM) images showed that 100 nm diameter nanofibrils were formed on the SPCE in contrast to the 800-1000 nm cauliflower-shaped clusters which were formed in the absence of FcPF 6 . A model biosensor (GCE//Pani-PVS/BSA/HRP/Glu), consisting of horseradish peroxidase (HRP) immobilized by drop coating atop the GCE//Pani-PVS in the presence of bovine serum albumin (BSA) and glutaraldehyde (glu) in the enzyme layer casting solution, exhibited voltammetric responses characteristic of a mediated-enzyme system. The biosensor response to H 2 O 2 was very fast (5 s) and it exhibited a detection limit of 30 μM (3σ) and a linearity of up to 2 mM (R 2 = 0.998). The relatively high apparent Michaelis-Menten constant value (K M app =1.7mM) of the sensor indicated that the immobilized enzyme was in a biocompatible microenvironment. The freshly prepared biosensor was successfully applied in the determination of the H 2 O 2 content of a commercial tooth whitening gel with a very good recovery rate (97%).

  12. A highly sensitive electrochemical glucose sensor structuring with nickel hydroxide and enzyme glucose oxidase

    International Nuclear Information System (INIS)

    Mathew, Manjusha; Sandhyarani, N.

    2013-01-01

    Graphical abstract: A combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has successfully been exploited for the realization of a highly sensitive glucose sensor for the first time. -- Highlights: • A multilayered glucose biosensor with enhanced sensitivity was fabricated. • Combination of Ni 2+ /Ni 3+ redox couple and glucose oxidase has been exploited for the first time. • Exhibits a lower detection limit of 100 nM with a high sensitivity of 16,840 μA mM −1 cm −2 . • The surface shows a low Michaelis–Menten constant value of 2.4 μM. • Detailed mechanism of sensing was proposed and justified. -- Abstract: A multilayered glucose biosensor with enhanced electron transport was fabricated via the sequential electrodeposition of chitosan gold nanocomposite (CGNC) and nickel hydroxide (Ni(OH) 2 ) on a bare gold electrode and subsequent immobilization of glucose oxidase. A thin film of Ni(OH) 2 deposited on CGNC modified gold electrode serves as an electrochemical redox probe as well as a matrix for the immobilization of glucose oxidase retaining its activity. Electron transport property of CGNC has been exploited to enhance the electron transport between the analyte and electrode. Electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. Under optimal conditions the biosensor exhibits a linear range from 1 μM to 100 μM with a limit of detection (lod) down to 100 nM. The sensor shows a low Michaelis-Menten constant value of 2.4 μM indicates the high affinity of enzyme to the analyte points to the retained activity of enzyme after immobilization. The present glucose sensor with the high selectivity, sensitivity and stability is promising for practical clinical applications

  13. Immobilization of Glucose Oxidase on a Carbon Nanotubes/Dendrimer-Ferrocene Modified Electrode for Reagentless Glucose Biosensing.

    Science.gov (United States)

    Zhou, Juan; Li, Huan; Yang, Huasong; Cheng, Hui; Lai, Guosong

    2017-01-01

    Ferrocene-grafted dendrimer was covalently linked to the surface of a carbon nanotubes (CNTs)-chitosan (CS) nanocomposite modified electrode for immobilizing high-content glucose oxidase (GOx), which resulted in the successful development a novel reagentless glucose biosensor. Electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry were used to characterize the preparation process and the enzymatically catalytic response of this biosensor. Due to the excellent electron transfer acceleration of the CNTs and the high-content loading of the GOx biomolecule and ferrocene mediator on the electrode matrix, this biosensor showed excellent analytical performance such as fast response time less than 10 s, wide linear range from 0.02 to 2.91 mM and low detection limit down to 7.5 μM as well as satisfactory stability and reproducibility toward the amperometric glucose determination. In addition, satisfactory result was obtained when it was used for the glucose measurements in human blood samples. Thus this biosensor provides great potentials for practical applications.

  14. A Biosensor Based on Immobilization of Horseradish Peroxidase in Chitosan Matrix Cross-linked with Glyoxal for Amperometric Determination of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Gui-Xiang Wang

    2005-05-01

    Full Text Available An amperometric biosensor for hydrogen peroxide (H2O2 was developed viaan easy and effective enzyme immobilization method with the “sandwich” configuration:ferrocene-chitosan: HRP: chitosan-glyoxal using a glassy carbon electrode as the basicelectrode. In order to prevent the loss of immobilized HRP under optimized conditions,the biosensor surface was cross-linked with glyoxal. Ferrocene was selected andimmobilized on the glassy carbon electrode surface as a mediator. The fabricationprocedure was systematically optimized to improve the biosensor performance. Thebiosensor had a fast response of less than 10 s to H2O2, with a linear range of 3.5×10-5 to1.1×10-3 M, and a detection limit of 8.0×10-6 M based on S/N = 3.

  15. Studies on the preparation of immobilized enzymes by radiopolymerization, (9)

    International Nuclear Information System (INIS)

    Kawashima, Koji; Fujino, Satomi; Hayashi, Toru; Kim, Sung-K.

    1982-01-01

    Glucose Oxidase (GOD, EC 1, 1, 3, 4) was immobilized in the form of the beads by the radiation polymerization method under low temperature and the enzymatic characteristics were investigated. 1) Polyethyleneglycol dimethacrylate and acrylamide were favorable compounds for the immobilization of GOD. 2) Neither optimum pH nor pH stability was changed after immobilization treatment. 3) Optimum reaction temperature was shifted by 5 0 C to the higher side and heat stability was improved. 4) Immobilized GOD showed activity up to 60U per gram of dried polymer. 5) The small beads had retained high activities (10 - 80%) 6) The immobilized GOD was not leached out from the polymer matrix. (author)

  16. An amperometric H2O2 biosensor based on hemoglobin nanoparticles immobilized on to a gold electrode.

    Science.gov (United States)

    Narwal, Vinay; Yadav, Neelam; Thakur, Manisha; Pundir, Chandra S

    2017-08-31

    The nanoparticles (NPs) of hemoglobin (Hb) were prepared by desolvation method and characterized by transmission electron microscopy (TEM), UV spectroscopy and Fourier-transform IR (FTIR) spectroscopy. An amperometric H 2 O 2 biosensor was constructed by immobilizing HbNPs covalently on to a polycrystalline Au electrode (AuE). HbNPs/AuE were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) before and after immobilization of HbNPs. The HbNPs/AuE showed optimum response within 2.5 s at pH 6.5 in 0.1 M sodium phosphate buffer (PB) containing 100 μM H 2 O 2 at 30°C, when operated at -0.2 V against Ag/AgCl. The HbNPs/AuE exhibited V max of 5.161 ± 0.1 μA cm -2 with apparent Michaelis-Menten constant ( K m ) of 0.1 ± 0.01 mM. The biosensor showed lower detection limit (1.0 μM), high sensitivity (129 ± 0.25 μA cm -2 mM -1 ) and wider linear range (1.0-1200 μM) for H 2 O 2 as compared with earlier biosensors. The analytical recoveries of added H 2 O 2 in serum (0.5 and 1.0 μM) were 97.77 and 98.01% respectively, within and between batch coefficients of variation (CV) were 3.16 and 3.36% respectively. There was a good correlation between sera H 2 O 2 values obtained by standard enzymic colorimetric method and the present biosensor (correlation coefficient, R 2 =0.99). The biosensor measured H 2 O 2 level in sera of apparently healthy subjects and persons suffering from diabetes type II. The HbNPs/AuE lost 10% of its initial activity after 90 days of regular use, when stored dry at 4°C. © 2017 The Author(s).

  17. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  18. Immobilization of cellulase by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Immobilization of cellulase by radiation polymerization at low temperatures was studied. The enzymatic activity of immobilized cellulase pellets varied with the monomer, enzyme concentration, and the thickness of immobilized cellulase pellets. The optimum monomer concentration in the immobilization of cellulase was 30-50% at the pellet thickness of 1.0 mm, in which the enzymatic activity was 50%. The enzymatic activity of immobilized cellulase pellets was examined using various substrates such as cellobiose, carboxymethylcellulose, and paper pretreated by radiation. It was found that irradiated paper can be hydrolyzed by immobilized cellulase pellets. (author)

  19. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer.

    Science.gov (United States)

    Mizutani, F; Yabuki, S; Sato, Y

    1997-01-01

    A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.

  20. Novel regenerative large-volume immobilized enzyme reactor: preparation, characterization and application.

    Science.gov (United States)

    Ruan, Guihua; Wei, Meiping; Chen, Zhengyi; Su, Rihui; Du, Fuyou; Zheng, Yanjie

    2014-09-15

    A novel large-volume immobilized enzyme reactor (IMER) on small column was prepared with organic-inorganic hybrid silica particles and applied for fast (10 min) and oriented digestion of protein. At first, a thin enzyme support layer was formed in the bottom of the small column by polymerization with α-methacrylic acid and dimethacrylate. After that, amino SiO2 particles was prepared by the sol-gel method with tetraethoxysilane and 3-aminopropyltriethoxysilane. Subsequently, the amino SiO2 particles were activated by glutaraldehyde for covalent immobilization of trypsin. Digestive capability of large-volume IMER for proteins was investigated by using bovine serum albumin (BSA), cytochrome c (Cyt-c) as model proteins. Results showed that although the sequence coverage of the BSA (20%) and Cyt-c (19%) was low, the large-volume IMER could produce peptides with stable specific sequence at 101-105, 156-160, 205-209, 212-218, 229-232, 257-263 and 473-451 of the amino sequence of BSA when digesting 1mg/mL BSA. Eight of common peptides were observed during each of the ten runs of large-volume IMER. Besides, the IMER could be easily regenerated by reactivating with GA and cross-linking with trypsin after breaking the -C=N- bond by 0.01 M HCl. The sequence coverage of BSA from regenerated IMER increased to 25% comparing the non-regenerated IMER (17%). 14 common peptides. accounting for 87.5% of first use of IMER, were produced both with IMER and regenerated IMER. When the IMER was applied for ginkgo albumin digestion, the sequence coverage of two main proteins of ginkgo, ginnacin and legumin, was 56% and 55%, respectively. (Reviewer 2) Above all, the fast and selective digestion property of the large-volume IMER indicated that the regenerative IMER could be tentatively used for the production of potential bioactive peptides and the study of oriented protein digestion. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Production and immobilization of alpha amylase using biotechnology techniques for use in biological and medical applications

    International Nuclear Information System (INIS)

    Mobasher, E.E.F.

    2009-01-01

    The immobilized enzymes on polymeric supports are prepared for purpose of repeated use and the possibilities of continuous reaction system. One of the most important properties is the stability of proteins when they are used in some medical and industrial applications. The immobilization of the enzymes improves this property as well as many other properties.In this study, alpha amylase was purified and immobilized onto two different polymers. α- amylase was used in this study for its biological and industrial applications. It is used in paper textile, pharmaceutical applications, food, and detergent industries. α- amylase was found in plants, animals, and microorganisms. Purification of α-amylase from microorganisms is the main source of α-amylase because it was excreted from many bacteria and fungi. In this study, α-amylase was purified from Aspergillus niger. Fractional precipitation of the α- amylase produced by A. niger with 80% ammonium sulphate saturation. The crude enzyme was applied on column chromatography packed with Sephadex G 100 for purification. The active eluents containing partially purified enzyme were collected for further investigation. The specific activity of α-amylase was (34.9 U/mg) which was corresponding to 2.09 fold purification for the tested organism. The purified α-amylase was immobilized by entrapment method into two types of polymers. One of them was natural consist of chitosan and alginate. The other polymer was synthetic consist of N- isopropyl acrylamide and alginate. The temperature optimum and thermal inactivation showed a severe loss in the activity of the free enzymes, while the temperature profile of the immobilized enzymes was much broader at higher temperatures demonstrating the effectiveness of the polymer protecting the enzymes. Also, the immobilized enzymes (natural polymer and synthetic polymer) showed higher thermal stability. Optimum ph and stability showed that immobilization of enzymes resulted in more

  2. Electrochemical behavior of rhodium acetamidate immobilized on a carbon paste electrode: a hydrazine sensor

    Directory of Open Access Journals (Sweden)

    Gil Eric de S.

    2000-01-01

    Full Text Available The electrochemical behavior of rhodium acetamidate immobilized in carbon paste electrode and the consequences for sensor construction were evaluated. The electrode showed good stability and redox properties. Two reversible redox couples with midpoint potentials between 0.15 and 0.55 V vs SCE were observed. However, peak resolution in voltammetric studies was very dependent on the supporting electrolyte. The correlation between coordinating power of the electrolyte and peak potential suggests that the electrolyte can coordinate through the axial position of the complexes. Furthermore, the axial position may be also the catalytic site, as a catalytical response was observed for hydrazine oxidation. A good linear response range for hydrazine was fit by the equation i = 23.13 (± 0.34 c , where i = current in mA and c = concentration in mol dm-3 in the range of 10-5 up to 10-2 mol dm-3. The low applied potential (<300 mV indicates a good device for hydrazine sensor, minimizing interference problems. The short response time (~1 s may be useful in flow injection analysis. Furthermore, this system was very stable presenting good repeatability even after 30 measurements with a variance of 0.5 %.

  3. Immobilization of alpha-amylase from Bacillus circulans GRS 313 on coconut fiber.

    Science.gov (United States)

    Dey, Gargi; Nagpal, Varima; Banerjee, Rintu

    2002-01-01

    A simple and inexpensive method for immobilizing alpha-amylase from Bacillus circulans GRS 313 on coconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30 degrees C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48 degrees C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48 degrees C. The reutilization capacity of the immobilized enzyme was up to three cycles.

  4. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    Science.gov (United States)

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme.

  5. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Uzun, K.; Cevik, E.; Senel, M.; Soezeri, H.; Baykal, A.; Abasiyanik, M. F.; Toprak, M. S.

    2010-01-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate (V max ) and Michaelis-Menten constant (K m ) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  6. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    Science.gov (United States)

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  7. Electrografting of carboxyphenyl thin layer onto gold for DNA and enzyme immobilization

    International Nuclear Information System (INIS)

    Nowicka, Anna M.; Fau, Michal; Kowalczyk, Agata; Strawski, Marcin; Stojek, Zbigniew

    2014-01-01

    The convenient functionalization of metal surfaces by carboxyphenyl groups in aprotic media is not possible for two reasons. First, carboxy derivatives of diazonium salts are very unstable and, second, the electroreduction product is soluble in the solvent. So, the optimization of the conditions of the electrografting of the metal surfaces by applying aqueous solutions is much needed. Compared to earlier cyclic voltammetry approaches we have shown that the chronoamperometric deposition is more convenient. The constant potential equal to the voltammetric peak potential and the molar ratio 1:1 for the substrates: 4-aminobenzoic acid and NaNO 2 as the diazotization agent, in 0.5 M HCl, appeared to be very satisfying conditions for the deposition of a thin layer of deposit of perpendicularly oriented carboxyphenyl groups at the Au surface and for maximal elimination of the influence of the side-reactions products. Under the determined conditions the immobilization of DNA strands was optimal and the deposited laccase layer was tightly packed and very efficient toward the electroreduction of oxygen. Electrochemical impedance spectroscopy, electrochemical quartz crystal microbalance, cyclic voltammetry, chronocoulometry, atomic force microscopy, contact angle measurements and UV–Vis spectroscopy of the solution were used to characterize the electrografted carboxyphenyl layers and subsequent oligonucleotide and enzyme immobilization process

  8. Preparation and characterization of two types of covalently immobilized amyloglucosidase

    Directory of Open Access Journals (Sweden)

    ZORAN VUJCIC

    2005-05-01

    Full Text Available Amyloglucosidase from A. niger was covalently immobilized onto poly (GMA-co-EGDMA by the glutaraldehyde and periodate method. The immobilization of amyloglucosidase after periodate oxidation gave a preparate with the highest specific activity reported so far on similar polymers. The obtained immobilized preparates show the same pH optimum, but a higher temperature optimum compared with the soluble enzyme. The kinetic parameters for the hydrolysis of soluble starch by free and both immobilized enzymes were determined.

  9. Immobilization of Candida antarctica Lipase B by Adsorption to Green Coconut Fiber

    Science.gov (United States)

    Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Gonçalves, Luciana R. B.

    An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.

  10. Influences of apolipoprotein E on soluble and heparin-immobilized hepatic lipase

    International Nuclear Information System (INIS)

    Landis, B.A.; Rotolo, F.S.; Meyers, W.C.; Clark, A.B.; Quarfordt, S.H.

    1987-01-01

    The effect of human apolipoprotein E (apoE), either alone or in combination with apoC, on the lipolysis of a radiolabeled triglyceride emulsion was studied with hepatic lipase in solution and immobilized on heparin-Sepharose. The soluble hepatic lipase was inhibited, whereas the heparin-immobilized lipase was stimulated by apoE. This stimulation was attenuated by combining apoE with either apoC-II or C-III. The heparin-immobilized lipase demonstrated much less lipolysis of the zwitterionic phosphatidylcholine-stabilized triglyceride emulsion than did the soluble enzyme. This difference was less when the emulsion was stabilized by a nonionic detergent. apoE inhibited lipase activity when assayed under conditions (0.4 M NaCl) of bound enzyme and unbound substrate. Increasing the emulsion apoE content beyond optimum inhibited lipolysis by the immobilized enzyme. Kinetic analysis of phosphatidylcholine-stabilized triglyceride emulsions revealed a significant decrease in immobilized enzyme K/sub m/ and an increase in V/sub max/ when the emulsion was supplemented with apoE. Distributing the immobilized lipase in clustered aggregates produced more lipolysis than when the same enzyme content was uniformly bound

  11. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion

    Directory of Open Access Journals (Sweden)

    Fernando Segato

    2016-07-01

    Full Text Available Current cellulosic biomass hydrolysis is based on the one-time use of cellulases. Cellulases immobilized on magnetic nanocarriers offer the advantages of magnetic separation and repeated use for continuous hydrolysis. Most immobilization methods focus on only one type of cellulase. Here, we report co-immobilization of two types of cellulases, β-glucosidase A (BglA and cellobiohydrolase D (CelD, on sub-20 nm superparamagnetic nanoparticles. The nanoparticles demonstrated 100% immobilization efficiency for both BglA and CelD. The total enzyme activities of immobilized BglA and CelD were up to 67.1% and 41.5% of that of the free cellulases, respectively. The immobilized BglA and CelD each retained about 85% and 43% of the initial immobilized enzyme activities after being recycled 3 and 10 times, respectively. The effects of pH and temperature on the immobilized cellulases were also investigated. Co-immobilization of BglA and CelD on MNPs is a promising strategy to promote synergistic action of cellulases while lowering enzyme consumption.

  12. Immobilization and characterization of inulinase from Ulocladium

    Indian Academy of Sciences (India)

    Ulocladium atrum inulinase was immobilized on different composite membranes composed of chitosan/nonwoven fabrics. Km values of free and immobilized U. atrum inulinase on different composite membranes were calculated. The enzyme had optimum pH at 5.6 for free and immobilized U. atrum inulinase on polyester ...

  13. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    OpenAIRE

    Abril Flores-Maltos; Luis V. Rodríguez-Durán; Jacqueline Renovato; Juan C. Contreras; Raúl Rodríguez; Cristóbal N. Aguilar

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methy...

  14. Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization.

    Science.gov (United States)

    Abdel Wahab, Walaa A; Karam, Eman A; Hassan, Mohamed E; Kansoh, Amany L; Esawy, Mona A; Awad, Ghada E A

    2018-07-01

    Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 2 4 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Novel, reagentless, amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase.

    Science.gov (United States)

    Gilmartin, M A; Hart, J P

    1994-05-01

    Amperometry in stirred solution has been used for the systematic evaluation of modified screen-printed carbon electrodes (SPCEs) with a view to developing a reagentless biosensor for uric acid. The developed system consists of a base cobalt phthalocyanine (CoPC) electrode tailored to the electrocatalytic oxidation of H2O2 by means of a cellulose acetate (CA)-uricase bilayer. Uricase was immobilized by drop-coating the enzyme onto the CA membrane covering the CoPC-SPCE. The device exploits the near-universal H2O2-generating propensity of oxidases, the permselectivity of the CA film towards H2O2 and the electrocatalytic oxidation of this product at the CoPC-SPCE. The electrochemical oxidation of the resulting Co+ species was used as the analytical signal, facilitating the application of a greatly reduced operating potential when compared with that required for direct oxidation of H2O2 at unmodified electrodes. The time required to achieve 95% of the steady-state current (t95i(ss)) was 44 s [relative standard deviation = 7.5% (n = 10)]. Amperometric calibrations were linear over the range from 13 x 10(-6) to 1 x 10(-3) mol dm-3, with the former representing the limit of detection. The CA membrane extended the linear range of the biosensor by over two orders of magnitude, when apparent Michaelis-Menten constants (Km') of immobilized and free enzymes are compared. This suggests that the process is diffusion-controlled and not governed by the kinetics of the enzyme. The precision of electrode fabrication was determined by cyclic voltammetry to be 4.9% (n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Effective immobilization of DNA for development of polypyrrole nanowires based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Luyen; Chu, Thi Xuan, E-mail: xuan@itims.edu.vn; Huynh, Dang Chinh; Pham, Duc Thanh; Luu, Thi Hoai Thuong; Mai, Anh Tuan, E-mail: tuan.maianh@hust.edu.vn

    2014-09-30

    Highlights: • Effective technique to immobilize probe DNA to the conducting polymer Polypyrrole nanowires (PPy NWs). • The PPy-NWs were electrochemically synthesized on the surface of the Pt electrodes using gelatin as the soft mold. • The DNA probe sequences were immobilized easily on the PPy NWs/Pt electrode using the adsorption method. • The DNA sensor has a low detection limit. - Abstract: This paper reports an easy technique for immobilization of the DNA to the conducting polymer polypyrrole nanowires (PPy NWs). The nanowires were electrochemically synthesized on the surface of working electrode in the presence of gelatin as a soft mold. The structure of obtained PPy NWs was investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and Surface Enhanced Raman Spectroscopy (SERS). The DNA strands were directly immobilized on the PPy NWs. The amino groups at the up-end of the PPy nanowires facilitate the linkage with the phosphate groups of the probe DNA. The DNA immobilization and hybridization were characterized by Electrochemical Impedance Spectroscopy (EIS). The initial results show that the sensor responses to 10 pM of DNA sequence in the solution.

  17. Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support.

    Science.gov (United States)

    Preety; Hooda, Vinita

    2014-01-01

    A novel hybrid epoxy/nano CaCO3 composite matrix for catalase immobilization was prepared by polymerizing epoxy resin in the presence of CaCO3 nanoparticles. The hybrid support was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Catalase was successfully immobilized onto epoxy/nano CaCO3 support with a conjugation yield of 0.67 ± 0.01 mg/cm(2) and 92.63 ± 0.80 % retention of activity. Optimum pH and optimum temperature of free and immobilized catalases were found to be 7.0 and 35 °C. The value of Km for H2O2 was higher for immobilized enzyme (31.42 mM) than native enzyme (27.73 mM). A decrease in Vmax value from 1,500 to 421.10 μmol (min mg protein)(-1) was observed after immobilization. Thermal and storage stabilities of catalase improved immensely after immobilization. Immobilized enzyme retained three times than the activity of free enzyme when kept at 75 °C for 1 h and the half-life of enzyme increased five times when stored in phosphate buffer (0.01 M, pH 7.0) at 5 °C. The enzyme could be reused 30 times without any significant loss of its initial activity. Desorption of catalase from the hybrid support was minimum at pH 7.0.

  18. Sol-gel immobilization of serine proteases for application in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2001-01-01

    The serine proteases α-chymotrypsin, trypsin, and subtilisin Carlsberg were immobilized in a sol-gel matrix and the effects on the enzyme activity in organic media are evaluated. The percentage of immobilized enzyme is 90% in the case of α-chymotrypsin and the resulting specific enzyme activity in

  19. Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: An inexpensive and efficient process.

    Science.gov (United States)

    Nishida, Verônica S; de Oliveira, Roselene F; Brugnari, Tatiane; Correa, Rúbia Carvalho G; Peralta, Rosely A; Castoldi, Rafael; de Souza, Cristina G M; Bracht, Adelar; Peralta, Rosane M

    2018-05-01

    In this work, a β-glucosidase of Aspergillus awamori with a molecular weight of 180 kDa was produced in solid-state cultures using a mixture of pineapple crown leaves and wheat bran. Maximum production of the enzyme (820 ± 30 U/g substrate) was obtained after 8 days of culture at 28 °C and initial moisture of 80%. The crude enzyme was efficiently immobilized on glutaraldehyde cross-linked commercial gelatin. Immobilization changed the kinetics of the enzyme, whose behavior could no longer be described by a saturation function of the Michaelis-Menten type. Comparative evaluation of the free and immobilized enzyme showed that the immobilized enzyme was more thermostable and less inhibited by glucose than the free form. In consequence of these properties, the immobilized enzyme was able to hydrolyze cellobiose more extensively. In association with Trichoderma reesei cellulase, the free and immobilized β-glucosidase increased the liberation of glucose from cellulose 3- and 5-fold, respectively. Immobilization of the A. awamori β-glucosidase on glutaraldehyde cross-linked commercial gelatin is an efficient and cheap method allowing the reuse of the enzyme by at least 10 times. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles

    International Nuclear Information System (INIS)

    Su, Shao; Sun, Haofan; Xu, Fei; Yuwen, Lihui; Wang, Lianhui; Fan, Chunhai

    2014-01-01

    An electrochemical glucose biosensor was developed by immobilizing glucose oxidase (GOx) on a glass carbon electrode that was modified with molybdenum disulfide (MoS 2 ) nanosheets that were decorated with gold nanoparticles (AuNPs). The electrochemical performance of the modified electrode was investigated by cyclic voltammetry, and it is found that use of the AuNPs-decorated MoS 2 nanocomposite accelerates the electron transfer from electrode to the immobilized enzyme. This enables the direct electrochemistry of GOx without any electron mediator. The synergistic effect the MoS 2 nanosheets and the AuNPs result in excellent electrocatalytic activity. Glucose can be detected in the concentration range from 10 to 300 μM, and down to levels as low as 2.8 μM. The biosensor also displays good reproducibility and long-term stability, suggesting that it represents a promising tool for biological assays. (author)

  1. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India); Pundir, Chandra Shekhar, E-mail: pundircs@rediffmail.com [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India)

    2011-09-02

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: {center_dot} Constructed a novel composite material using Fe{sub 3}O{sub 4}NP and c-MWCNT at Au electrode for electrocatalysis. {center_dot} The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. {center_dot} The biosensor exhibited good sensitivity (0.475 mA {mu}M{sup -1}) {center_dot} The half life of electrode was 2 months. {center_dot} The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe{sub 3}O{sub 4}NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe{sub 3}O{sub 4}/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe{sub 3}O{sub 4}NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 {mu}M substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The

  2. Improvement of thermal-stability of enzyme immobilized onto mesoporous zirconia

    Directory of Open Access Journals (Sweden)

    Yuichi Masuda

    2014-03-01

    Thereafter, FDH immobilized on MPZ showed higher catalytic activity than that on MPS. Enhancement of catalytic activity was obtained by improving the substrate affinity derived from interparticle voids of MPZ. In addition, the FDH immobilized on MPZ had a very great higher thermal stability. Further investigation using transmittance Infrared spectroscopy indicated that the high-order structure of the FDH immobilized on MPZ did not get altered after the heat-treatment.

  3. Three-dimensional immobilization of beta-galactosidase on a silicon surface.

    Science.gov (United States)

    Betancor, Lorena; Luckarift, Heather R; Seo, Jae H; Brand, Oliver; Spain, Jim C

    2008-02-01

    Many alternative strategies to immobilize and stabilize enzymes have been investigated in recent years for applications in biosensors. The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity and enhanced mechanical stability. Here we report a strategy for chemically associating silica nanospheres containing entrapped enzyme to a silicon support. beta-galactosidase from E. coli was used as a model enzyme due to its versatility as a biosensor for lactose. The immobilization strategy resulted in a three-dimensional network of silica attached directly at the silicon surface, providing a significant increase in surface area and a corresponding 3.5-fold increase in enzyme loading compared to enzyme attached directly at the surface. The maximum activity recovered for a silicon square sample of 0.5 x 0.5 cm was 0.045 IU using the direct attachment of the enzyme through glutaraldehyde and 0.16 IU when using silica nanospheres. The immobilized beta-galactosidase prepared by silica deposition was stable and retained more than 80% of its initial activity after 10 days at 24 degrees C. The ability to generate three-dimensional structures with enhanced loading capacity for biosensing molecules offers the potential to substantially amplify biosensor sensitivity. (c) 2007 Wiley Periodicals, Inc.

  4. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  5. Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Cortez, Iván E. [Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna # 140, San José de los Cerritos, Saltillo, Coahuila 25100, México (Mexico); Universidad Autónoma de Nuevo León (UANL), Fac. de Ingeniería Mecánica y Eléctrica (FIME), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450, México (Mexico); Universidad Autónoma de Nuevo León (UANL), Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT), Apodaca, Nuevo León, México (Mexico); Romero-García, Jorge, E-mail: jromero@ciqa.mx [Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna # 140, San José de los Cerritos, Saltillo, Coahuila 25100, México (Mexico); and others

    2015-07-01

    In this paper, papain enzyme (E.C. 3.4.22.2, 1.6 U/mg) was successfully immobilized in poly(vinyl alcohol) (PVA) nanofibers prepared by electrospinning. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy (SEM) and the diameter distribution was in the range of 80 to 170 nm. The presence of the enzyme within the PVA nanofibers was confirmed by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS) analyses. The maximum catalytic activity was reached when the enzyme loading was 13%. The immobilization of papain in the nanofiber membrane was achieved by chemical crosslinking with a glutaraldehyde vapor treatment (GAvt). The catalytic activity of the immobilized papain was 88% with respect to the free enzyme. The crosslinking time by GAvt to immobilize the enzyme onto the nanofiber mat was 24 h, and the enzyme retained its catalytic activity after six cycles. The crosslinked samples maintained 40% of their initial activity after being stored for 14 days. PVA electrospun nanofibers are excellent matrices for the immobilization of enzymes due to their high surface area and their nanoporous structure. - Highlights: • Successfully attempt to immobilize the papain enzyme in electrospun nanofibers • The morphology of nanofibers did not change at moderate enzyme concentrations. • The retained activity of the immobilized enzyme was 88% relative to the free enzyme. • The immobilized enzyme retains 40% of the initial activity after 14 days of storage. • Potential application of this work in the fabrication of biosensors specialized in the detection of metal ions.

  6. Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor

    International Nuclear Information System (INIS)

    Moreno-Cortez, Iván E.; Romero-García, Jorge

    2015-01-01

    In this paper, papain enzyme (E.C. 3.4.22.2, 1.6 U/mg) was successfully immobilized in poly(vinyl alcohol) (PVA) nanofibers prepared by electrospinning. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy (SEM) and the diameter distribution was in the range of 80 to 170 nm. The presence of the enzyme within the PVA nanofibers was confirmed by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS) analyses. The maximum catalytic activity was reached when the enzyme loading was 13%. The immobilization of papain in the nanofiber membrane was achieved by chemical crosslinking with a glutaraldehyde vapor treatment (GAvt). The catalytic activity of the immobilized papain was 88% with respect to the free enzyme. The crosslinking time by GAvt to immobilize the enzyme onto the nanofiber mat was 24 h, and the enzyme retained its catalytic activity after six cycles. The crosslinked samples maintained 40% of their initial activity after being stored for 14 days. PVA electrospun nanofibers are excellent matrices for the immobilization of enzymes due to their high surface area and their nanoporous structure. - Highlights: • Successfully attempt to immobilize the papain enzyme in electrospun nanofibers • The morphology of nanofibers did not change at moderate enzyme concentrations. • The retained activity of the immobilized enzyme was 88% relative to the free enzyme. • The immobilized enzyme retains 40% of the initial activity after 14 days of storage. • Potential application of this work in the fabrication of biosensors specialized in the detection of metal ions

  7. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks

    Directory of Open Access Journals (Sweden)

    Jordan Chapman

    2018-06-01

    Full Text Available Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are required for optimal biocatalytic processes in the energy sector for biofuel production and in natural gas conversion. The technical barriers associated with the implementation of immobilized enzymes suggest that a multidisciplinary approach is necessary for the development of immobilized biocatalysts applicable in such industrial-scale processes. Specifically, the overlap of technical expertise in enzyme immobilization, protein and process engineering will define the next generation of immobilized biocatalysts and the successful scale-up of their induced processes. This review discusses how biocatalysis has been successfully deployed, how enzyme immobilization can improve industrial processes, as well as focuses on the analysis tools critical for the multi-scale implementation of enzyme immobilization for increased product yield at maximum market profitability and minimum logistical burden on the environment and user.

  8. Enhanced thermostability of silica-immobilized lipase from Bacillus coagulans BTS-3 and synthesis of ethyl propionate.

    Science.gov (United States)

    Kumar, Satyendra; Pahujani, Shweta; Ola, R P; Kanwar, S S; Gupta, Reena

    2006-06-01

    A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55 degrees C, respectively. The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70 degrees C. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55 degrees C.

  9. An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods

    International Nuclear Information System (INIS)

    Yang, Zhanjun; Xu, Youbao; Li, Juan; Jian, Zhiqin; Yu, Suhua; Zhang, Yongcai; Hu, Xiaoya; Dionysiou, Dionysios D.

    2015-01-01

    We describe a highly sensitive electrochemical enzymatic glucose biosensor. A glassy carbon electrode was modified with cylinder-shaped titanium dioxide nanorods (TiO 2 -NRs) for the immobilization of glucose oxidase. The modified nanorods and the enzyme biosensor were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The glucose oxidase on the TiO 2 -NRs displays a high activity and undergoes fast surface-controlled electron transfer. A pair of well-defined quasi-reversible redox peaks was observed at −0.394 and −0.450 V. The TiO 2 -NRs provide a good microenvironment to facilitate the direct electron transfer between enzyme and electrode surface. The biosensor has two linear response ranges, viz. from 2.0 to 52 μM, and 0.052 to 2.3 mM. The lower detection limit is 0.5 μM, and the sensitivity is 68.58 mA M −1 cm −2 . The glucose biosensor is selective, well reproducible, and stable. In our perception, the cylindrically shaped TiO 2 -NRs provide a promising support for the immobilization of proteins and pave the way to the development of high-performance biosensors. (author)

  10. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Directory of Open Access Journals (Sweden)

    Małgorzata Cieńska

    Full Text Available Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA by immobilized tyrosinase in the presence of ascorbic acid (AH2, which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native to 30% (immobilized enzyme. To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme and 70% (immobilized. A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  11. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Science.gov (United States)

    Cieńska, Małgorzata; Labus, Karolina; Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  12. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    Science.gov (United States)

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  13. Electron Transfer of Myoglobin Immobilized in Au Electrodes Modified with a RAFT PMMA-Block-PDMAEMA Polymer

    Directory of Open Access Journals (Sweden)

    Carla N. Toledo

    2014-01-01

    Full Text Available Myoglobin was immobilized with poly(methyl methacrylate-block-poly[(2-dimethylaminoethyl methacrylate]PMMA-block-PDMAEMA polymer synthesized by reversible addition-fragmentation chain transfer technique (RAFT. Cyclic voltammograms gave direct and slow quasireversible heterogeneous electron transfer kinetics between Mb-PMMA-block-PDMAEMA modified electrode and the redox center of the protein. The values for electron rate constant (Ks and transfer coefficient (α were 0.055±0.01·s−1 and 0.81±0.08, respectively. The reduction potential determined as a function of temperature (293–328 K revealed a value of reaction center entropy of ΔS0 of 351.3±0.0002 J·mol−1·K−1 and enthalpy change of -76.8±0.1 kJ·mol−1, suggesting solvent effects and charge ionization atmosphere involved in the reaction parallel to hydrophobic interactions with the copolymer. The immobilized protein also exhibits an electrocatalytical response to reduction of hydrogen peroxide, with an apparent Km of 114.7±58.7 μM. The overall results substantiate the design and use of RAFT polymers towards the development of third-generation biosensors.

  14. Catalytic Properties and Immobilization Studies of Catalase from Malva sylvestris L.

    Directory of Open Access Journals (Sweden)

    G. Arabaci

    2013-01-01

    Full Text Available Catalase was partially purified from Malva sylvestris L. and immobilized onto chitosan. Then, its catalytic properties were investigated. (NH42SO4 precipitation and dialysis were performed in the extracted enzyme. Further purification was performed with sephadex G-200 column. Kinetic studies of the purified enzyme activity were measured and characterized. The inhibitory effects of KCN, NaN3, CuSO4, and EDTA on M. sylvestris L. catalase activity were observed except NaCl. Furthermore, M. sylvestris L. catalase was immobilized covalently with glutaraldehyde onto chitosan particles. The pH and temperature optima as well as the changes in the kinetics (Km, Vmax of the immobilized and free M. sylvestris L. catalase were determined. The Km value for immobilized catalase (23.4 mM was higher than that of free enzyme (17.6 mM. Optimum temperature was observed higher than that of the free enzyme. The optimum pH was the same for both free and immobilized catalases (pH 7.50. Immobilized catalase showed higher storage and thermal stabilities than free catalases. Free catalase lost all its activity within 60 days whereas immobilized catalase lost 45% of its activity during the same incubation period at 4°C. The remaining immobilized catalase activity was about 70% after 8 cycles of batch operations.

  15. Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis.

    Science.gov (United States)

    Sugimoto, Yu; Kitazumi, Yuki; Tsujimura, Seiya; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2015-01-15

    Effects of the electrode poential on the activity of an adsorbed enzyme has been examined by using copper efflux oxidase (CueO) as a model enzyme and by monitoring direct electron transfer (DET)-type bioelectrocatalysis of oxygen reduction. CueO adsorbed on bare Au electrodes at around the point of zero charge (E(pzc)) shows the highest DET activity, and the activity decreases as the adsorption potential (E(ad); at which the enzyme adsorbs) is far from E(pzc). We propose a model to explain the phenomena in which the electrostatic interaction between the enzyme and electrodes in the electric double layer affects the orientation and the stability of the adsorbed enzyme. The self-assembled monolayer of butanethiol on Au electrodes decreases the electric field in the outside of the inner Helmholtz plane and drastically diminishes the E(ad) dependence of the DET activity of CueO. When CueO is adsorbed on bare Au electrodes under open circuit potential and then is held at hold potentials (E(ho)) more positive than E(pzc), the DET activity of the CueO rapidly decreases with the hold time. The strong electric field with positive surface charge density on the metallic electrode (σ(M)) leads to fatal denaturation of the adsorbed CueO. Such denaturation effect is not so serious at E(ho)

  16. An Amperometric Biosensor for Uric Acid Determination Prepared From Uricase Immobilized in Polyaniline-Polypyrrole Film

    Directory of Open Access Journals (Sweden)

    Fatma Arslan

    2008-09-01

    Full Text Available A new amperometric uric acid biosensor was developed by immobilizing uricase by a glutaraldehyde crosslinking procedure on polyaniline-polypyrrole (pani-ppy composite film on the surface of a platinum electrode. Determination of uric acid was performed by the oxidation of enzymatically generated H2O2 at 0.4 V vs. Ag/AgCl. The linear working range of the biosensor was 2.5×10-6 – 8.5×10-5 M and the response time was about 70 s. The effects of pH, temperature were investigated and optimum parameters were found to be 9.0, 55 oC, respectively. The stability and reproducibility of the enzyme electrode have been also studied.

  17. Preparation of immobilized growing cells and enzymatic hydrolysis of sawdust

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization using porous materials such as non-woven material and sawdust, and the enzymatic hydrolysis of sawdust with the enzyme solution from the immobilized growing cells was studied. The filter paper activity, which shows the magnitude of cellulase production in the immobilized cells, was comparable with that in the intact cells. The filter paper activity was affected by addition concentration of monomer and porous materials. The cells in the immobilized cells grew to be adhered on the surface of the fibrous polymers. Sawdust, which was pretreated by irradiation technique, was effectively hydrolyzed with the enzyme solution resulting from the culture of the immobilized cells, in which the glucose yield increased increasing the culture time of the immobilized cells. (author)

  18. Immobilization of Mucor miehei Lipase onto Macroporous Aminated Polyethersulfone Membrane for Enzymatic Reactions

    NARCIS (Netherlands)

    Handayani, Nurrahmi; Loos, Katja; Wahyuningrum, Deana; Buchari, [No Value; Zulfikar, Muhammad Ali

    2012-01-01

    Immobilization of enzymes is one of the most promising methods in enzyme performance enhancement, including stability, recovery, and reusability. However, investigation of suitable solid support in enzyme immobilization is still a scientific challenge. Polyethersulfone (PES) and aminated PES

  19. An amperometric biosensor for glucose detection from glucose oxidase immobilized in polyaniline-polyvinylsulfonate-potassium ferricyanide film.

    Science.gov (United States)

    Arslan, Fatma; Beskan, Umut

    2014-08-01

    In this study, a novel amperometric glucose biosensor with immobilization of glucose oxidase on electrochemically polymerized polyaniline-polyvinylsulphonate-potassium ferricyanide (Pani-Pvs-Fc) films has been accomplished via the entrapment technique. Potassium ferricyanide was used as the mediator. Determination of glucose was carried out by the oxidation of potassium ferrocyanide at 0.3 V vs. Ag/AgCl. The effects of pH and temperature were investigated, and the optimum pH value was found to be 7.5. The storage stability and the operational stability of the enzyme electrode were also studied.

  20. Screen-printable sol-gel enzyme-containing carbon inks.

    Science.gov (United States)

    Wang, J; Pamidi, P V; Park, D S

    1996-08-01

    Enzymes usually cannot withstand the high-temperature curing associated with the thick-film fabrication process and require a separate immobilization step in connection with the production of single-use biosensors. We report on the development of sol-gel-derived enzyme-containing carbon inks that display compatibility with the screen-printing process. Such coupling of sol-gel and thick-film technologies offers a one-step fabrication of disposable enzyme electrodes, as it obviates the need for thermal curing. The enzyme-containing sol-gel carbon ink, prepared by dispersing the biocatalyst, along with the graphite powder and a binder, within the sol-gel precursors, is cured very rapidly (10 min) at low temperature (4 °C). The influence of the ink preparation conditions is explored, and the sensor performance is evaluated in connection with the incorporation of glucose oxidase or horseradish peroxidase. The resulting strips are stable for at least 3 months. Such sol-gel-derived carbon inks should serve as hosts for other heat-sensitive biomaterials in connection with the microfabrication of various thick-film biosensors.

  1. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  2. Characterization of immobilized post-carbohydrate meal salivary α ...

    African Journals Online (AJOL)

    The effect of experimental parameters like pH, temperature and substrate concentration on the activity of the immobilized post-carbohydrate meal salivary ... of immobilized post-carbohydrate meal salivary α-amylase in this study show that immobilization had no significant effect on the enzyme and compared to kinetic ...

  3. Preparation of carbon paste electrodes including poly(styrene) attached glycine-Pt(IV) for amperometric detection of glucose.

    Science.gov (United States)

    Dönmez, Soner; Arslan, Fatma; Sarı, Nurşen; Kurnaz Yetim, Nurdan; Arslan, Halit

    2014-04-15

    In this study, a novel carbon paste electrode that is sensitive to glucose was prepared using the nanoparticles modified (4-Formyl-3-methoxyphenoxymethyl) with polystyren (FMPS) with L-Glycine-Pt(IV) complexes. Polymeric nanoparticles having Pt(IV) ion were prepared from (4-Formyl-3-methoxyphenoxymethyl) polystyren, glycine and PtCl4 by template method. Glucose oxidase enzyme was immobilized to a modified carbon paste electrode (MCPE) by cross-linking with glutaraldehyde. Determination of glucose was carried out by oxidation of enzymatically produced H2O2 at 0.5 V vs. Ag/AgCl. Effects of pH and temperature were investigated, and optimum parameters were found to be 8.0 and 55°C, respectively. Linear working range of the electrode was 5.0×10(-6)-1.0×10(-3) M, R(2)=0.997. Storage stability and operational stability of the enzyme electrode were also studied. Glucose biosensor gave perfect reproducible results after 10 measurements with 2.3% relative standard deviation. Also, it had good storage stability (gave 53.57% of the initial amperometric response at the end of 33th day). © 2013 Published by Elsevier B.V.

  4. Characterization on glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies

    Czech Academy of Sciences Publication Activity Database

    Biederman, H.; Boyaci, I. H.; Bílková, P.; Slavinská, D.; Mutlu, S.; Zemek, Josef; Trchová, M.; Klimovič, J.; Mutlu, M.

    2001-01-01

    Roč. 81, - (2001), s. 1341-1352 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z1010914 Keywords : cellulose acetate membrane * plasma polymerization * surface treatment * enzyme electrodes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.992, year: 2001

  5. Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone Synthesis

    Directory of Open Access Journals (Sweden)

    Hui Ren

    2016-06-01

    Full Text Available Developing an efficient immobilized enzyme is of great significance for improving the operational stability of enzymes in poly(ε-caprolactone synthesis. In this paper, a thermophilic esterase AFEST from the archaeon Archaeoglobus fulgidus was successfully immobilized on the epoxy support Sepabeads EC-EP via covalent attachment, and the immobilized enzyme was then employed as a biocatalyst for poly(ε-caprolactone synthesis. The enzyme loading and recovered activity of immobilized enzyme was measured to be 72 mg/g and 10.4 U/mg using p-nitrophenyl caprylate as the substrate at 80 °C, respectively. Through the optimization of reaction conditions (enzyme concentration, temperature, reaction time and medium, poly(ε-caprolactone was obtained with 100% monomer conversion and low number-average molecular weight (Mn < 1300 g/mol. Further, the immobilized enzyme exhibited excellent reusability, with monomer conversion values exceeding 75% during 15 batch reactions. Finally, poly(ε-caprolactone was enzymatically synthesized with an isolated yield of 75% and Mn value of 3005 g/mol in a gram-scale reaction.

  6. Immobilization of Ni–Pd/core–shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection

    International Nuclear Information System (INIS)

    Yu, Huicheng; Ma, Zhenzhen; Wu, Zhaoyang

    2015-01-01

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni–Pd/core–shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni–Pd/core–shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM"−"1 cm"−"2), and a wide, useful linear range (0.1–500 μM). No interference from potential interfering species such as L-cysteine, ascorbic acid, and L-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages. - Highlights: • Ni–Pd/core–shell nanoparticles were synthesized. • Nanoparticles were immobilized onto electrodes through thermal polymerization. • The modified sensor exhibited excellent stability and sensitivity for glutamate detection. • The biosensor exhibited remarkable electrocatalytic activity toward glutamate. • The sensor successfully detected glutamate in tomato soup samples.

  7. Immobilization of Ni–Pd/core–shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Huicheng, E-mail: doyhc@126.com [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008 (China); School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008 (China); Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008 (China); Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Guangxi University for Nationalities, Nanning, 530008 (China); Ma, Zhenzhen [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhaoyang, E-mail: zywu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)

    2015-10-08

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni–Pd/core–shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni–Pd/core–shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM{sup −1} cm{sup −2}), and a wide, useful linear range (0.1–500 μM). No interference from potential interfering species such as L-cysteine, ascorbic acid, and L-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages. - Highlights: • Ni–Pd/core–shell nanoparticles were synthesized. • Nanoparticles were immobilized onto electrodes through thermal polymerization. • The modified sensor exhibited excellent stability and sensitivity for glutamate detection. • The biosensor exhibited remarkable electrocatalytic activity toward glutamate. • The sensor successfully detected glutamate in tomato soup samples.

  8. Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres

    International Nuclear Information System (INIS)

    Bergamasco, Juliana; Araujo, Marcelo V. de; Vasconcellos, Adriano de; Luizon Filho, Roberto A.; Hatanaka, Rafael R.; Giotto, Marcus V.; Aranda, Donato A.G.; Nery, José G.

    2013-01-01

    Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg −1 ), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg −1 ). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23 Na- and 13 C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. Highlights: • Rhizomucor miehei lipase was immobilized on PVA microspheres (PVA4, PVA12, PVA25). • Polymer-enzyme complex was characterized by XDR, SEM, ATR-FTIR, 13 C-CPMAS-NMR, 23 Na-MAS-NMR. • Polymer-enzymes (PVA12 and PVA25) enzymes yielded considerable amount of ethyl esters. • Synergistic effect was observed for the polymer-enzyme complexes

  9. Study on the immobilization of alpha-amylase by radiation-induced polymerization at low-temperature, (2)

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1975-07-01

    The immobilization α-amylase in low concentration (50-250μg) by radiation induced polymerization at low temperature, with HEMA has been studied. The immobilization was performed in the temperature range of -196 0 C to +40 0 C. Activity of the immobilized enzyme decreases at temperatures above 0 0 C. The optimum temperatures for immobilization of α-amylase are -78 0 C - -24 0 C, where only the polymerization by irradiation is effective. HEMA is a suitable monomer as the immobilization carrier, because of its high polymerization rate of 100% in the temperature range. The suitable concentration of HEMA is less than 30%, and above this concentration the activity of enzyme decreases considerably. The optimum irradiation dose for immobilization is 1 x 10 6 R, and the activity of enzyme decreases at 5 x 10 6 R. The polymerization composition is porous gel structure, so the enzymatic reaction can be carried out merely by introducing a substrate to the composition. The activity attained in the immobilized enzyme is 75-80% that of the native α-amylase. The immobilized enzyme is more heat-resistant than the native one. (auth.)

  10. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    Science.gov (United States)

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  11. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen

    Directory of Open Access Journals (Sweden)

    Om Parkash

    2014-11-01

    Full Text Available An electrochemical immunosensor modified with the streptavidin/biotin system on screen printed carbon electrodes (SPCEs for the detection of the dengue NS1 antigen was developed in this study. Monoclonal anti-NS1 capture antibody was immobilized on streptavidin-modified SPCEs to increase the sensitivity of the assay. Subsequently, a direct sandwich enzyme linked immunosorbent assay (ELISA format was developed and optimized. An anti-NS1 detection antibody conjugated with horseradish peroxidase enzyme (HRP and 3,3,5,5'-tetramethybezidine dihydrochloride (TMB/H2O2 was used as an enzyme mediator. Electrochemical detection was conducted using the chronoamperometric technique, and electrochemical responses were generated at −200 mV reduction potential. The calibration curve of the immunosensor showed a linear response between 0.5 µg/mL and 2 µg/mL and a detection limit of 0.03 µg/mL. Incorporation of a streptavidin/biotin system resulted in a well-oriented antibody immobilization of the capture antibody and consequently enhanced the sensitivity of the assay. In conclusion, this immunosensor is a promising technology for the rapid and convenient detection of acute dengue infection in real serum samples.

  12. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres

    DEFF Research Database (Denmark)

    Guo, Zheng; Bai, Shu; Sun, Yan

    2003-01-01

    H for the immobilized CCL were determined. Activity amelioration of the immobilized CCL for the hydrolysis of olive oil was observed, indicating an interfacial activation of the enzyme after immobilization. Moreover, the immobilized CCL showed enhanced thermal stability and good durability in the repeated use after...

  13. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    Science.gov (United States)

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDsascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples. © 2013 Elsevier B.V. All rights reserved.

  14. Covalent Immobilization of β-Glucosidase on Magnetic Particles for Lignocellulose Hydrolysis

    DEFF Research Database (Denmark)

    Alftrén, Johan; Hobley, Timothy John

    2013-01-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found...... that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead......-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter...

  15. Immobilization of xanthine oxidase on a polyaniline silicone support.

    Science.gov (United States)

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  16. Immobilization of indigenous holocellulase on iron oxide (Fe2O3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw.

    Science.gov (United States)

    Kumar, Ajay; Singh, Surender; Tiwari, Rameshwar; Goel, Renu; Nain, Lata

    2017-03-01

    The holocellulase from Aspergillus niger SH3 was characterized and found to contain 125 proteins including cellulases (26), hemicellulases (21), chitinases (10), esterases (6), amylases (4) and hypothetical protein (32). The crude enzyme was immobilized on five different nanoparticles (NPs) via physical adsorption and covalent coupling methods. The enzyme-nanoparticle complexes (ENC) were screened for protein binding, enzymatic activities and immobilization efficiency. Magnetic enzyme-nanoparticle complexes (MENC) showed higher immobilization efficiency (60-80%) for most of the enzymes. MENC also showed better catalytic efficiencies in term of higher V max and lower K m than free enzyme. Saccharification yields from alkali treated paddy straw were higher (375.39mg/gds) for covalently immobilized MENC than free enzyme (339.99mg/gds). The immobilized enzyme was used for two cycles of saccharification with 55% enzyme recovery. Hence, this study for the first time demonstrated the immobilization of indigenous enzyme and its utilization for saccharification of paddy straw. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Luais, E. [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); IMN, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); PCI, Universite du Maine, CNRS, rue Aristote, 72085 Le Mans cedex 9 (France); Thobie-Gautier, C. [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); Tailleur, A.; Djouadi, M.-A.; Granier, A.; Tessier, P.Y. [IMN, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); Debarnot, D.; Poncin-Epaillard, F. [PCI, Universite du Maine, CNRS, rue Aristote, 72085 Le Mans cedex 9 (France); Boujtita, M., E-mail: mohammed.boujtita@univ-nantes.f [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France)

    2010-11-30

    An electrochemical transducer based on vertically aligned carbon nanotubes (CNT) was prepared as a platform for biosensor development. Prior to enzyme immobilization, the CNT were treated using a microwave plasma system (CO{sub 2} and N{sub 2}/H{sub 2}) in order to functionalize the CNT surface with oxygenated and aminated groups. The morphological aspect of the electrode surface was examined by SEM and its chemical structure was also elucidated by XPS analysis. It was found out that microwave plasma system (CO{sub 2} and N{sub 2}/H{sub 2}) not only functionalizes the CNT but also permits to avoid the collapse phenomena retaining thus the alignment structure of the electrode surface. The electrochemical properties of the resulting new material based on CNT were carried out by cyclic voltammetry and were found suitable to develop high sensitive enzyme (HRP) biosensors operating on direct electron transfer process.

  18. NOVEL APPLICATION OF POROUS AND CELLULAR MATERIALS FOR COVALENT IMMOBILIZATION OF PEPSIN

    Directory of Open Access Journals (Sweden)

    K. Szałapata

    Full Text Available Abstract Pepsin was immobilized via covalent bonds on different carriers: a silica gel carrier, acrylic beads, and a cellulose-based carrier - Granocel. All carriers were functionalized through the presence of -OH, -COOH, -NH2, or glycidyl groups on their surfaces. Three different cross-linkers were used for activation thereof. The results showed that Granocel activated by glutaraldehyde or carbodiimide and silica gel activated by glutaraldehyde were suitable carriers for the expression of enzyme activity. The optimum pH range for the native enzyme was 2.5-3.5 and this range was extended to the value 6.5 in the case of enzyme immobilized on the silica gel carrier and on Granocel. The optimum temperature values for the native and immobilized enzyme were in the range 37-40 °C and 40-50 °C, respectively. The activity of the immobilized pepsin at different values of pH and temperature was higher in comparison with the activity of the free enzyme.

  19. Sodium bicarbonate-gelled chitosan beads as mechanically stable carriers for the covalent immobilization of enzymes.

    Science.gov (United States)

    Wahba, Marwa I

    2018-03-01

    The poor mechanical stability of chitosan has long impeded its industrial utilization as an immobilization carrier. In this study, the mechanical properties of chitosan beads were greatly improved through utilizing the slow rate of the sodium bicarbonate-induced chitosan gelation and combining it with the chemical cross-linking action of glutaraldehyde (GA). The GA-treated sodium bicarbonate-gelled chitosan beads exhibited much better mechanical properties and up to 2.45-fold higher observed activity of the immobilized enzyme (β-D-galactosidase (β-gal)) when compared to the GA-treated sodium tripolyphosphate (TPP)-gelled chitosan beads. The differences between the sodium bicarbonate-gelled and the TPP-gelled chitosan beads were proven visually and also via scanning electron microscopy, elemental analysis, and differential scanning calorimetry. Moreover, the optimum pH, the optimum temperature, the apparent K m , and the apparent V max of the β-gals immobilized onto the two aforementioned types of chitosan beads were determined and compared. A reusability study was also performed. This study proved the superiority of the sodium bicarbonate-gelled chitosan beads as they retained 72.22 ± 4.57% of their initial observed activity during the 13 th reusability cycle whereas the TPP-gelled beads lost their activity during the first four reusability cycles, owing to their fragmentation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:347-361, 2018. © 2017 American Institute of Chemical Engineers.

  20. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently

  1. Biogenic porous silica and silicon sourced from Mexican Giant Horsetail (Equisetum myriochaetum) and their application as supports for enzyme immobilization.

    Science.gov (United States)

    Sola-Rabada, Anna; Sahare, Padma; Hickman, Graham J; Vasquez, Marco; Canham, Leigh T; Perry, Carole C; Agarwal, Vivechana

    2018-06-01

    Porous silica-based materials are attractive for biomedical applications due to their biocompatibility and biodegradable character. In addition, inorganic supports such as porous silicon are being developed due to integrated circuit chip compatibility and tunable properties leading to a wide range of multidisciplinary applications. In this contribution, biosilica extracted from a rarely studied plant material (Equisetum Myriochaetum), its conversion to silicon and the potential for both materials to be used as supports for enzyme immobilization are investigated. E. myriochaetum was subject to conventional acid digestion to extract biogenic silica with a% yield remarkably higher (up to 3 times) than for other Equisetum sp. (i.e. E. Arvense). The surface area of the isolated silica was ∼400 m 2 /g, suitable for biotechnological applications. Biogenic silicon was obtained by magnesiothermic reduction. The materials were characterized by SEM-EDX, XRD, FT-IR, ICP-OES, TGA and BET analysis and did not contain significant levels of class 1 heavy elements (such as Pb, Cd, Hg and As). Two commercial peroxidases, horseradish peroxidase (HRP) and Coprinus cinereus peroxidase (CiP) were immobilized onto the biogenic materials using three different functionalization routes: (A) carbodiimide, (B) amine + glutaraldehyde and (C) amine + carbodiimide. Although both biogenic silica and porous silicon could be used as supports differences in behaviour were observed for the two enzymes. For HRP, loading onto biogenic silica via the glutaraldehyde immobilization technique (route B) was most effective. The loading of CiP showed a much higher peroxidase activity onto porous silicon than silica functionalized by the carbodiimide method (route A). From the properties of the extracted materials obtained from Equisetum Myriochaetum and the immobilization results observed, these materials appear to be promising for industrial and biomedical applications. Copyright © 2018 Elsevier

  2. Covalent immobilization of lipase from Candida rugosa on Eupergit®

    Directory of Open Access Journals (Sweden)

    Bezbradica Dejan I.

    2005-01-01

    Full Text Available An approach is presented for the stable covalent immobilization of Upase from Candida rugosa on Eupergit® with a high retention of hydrolytic activity. It comprises covalent bonding via lipase carbohydrate moiety previously modified by periodate oxidation, allowing a reduction in the involvement of the enzyme functional groups that are probably important in the catalytic mechanism. The hydrolytic activities of the lipase immobilized on Eupergif1 by two conventional methods (via oxirane group and via glutaralde-hyde and with periodate method were compared. Results of lipase assays suggest that periodate method is superior for lipase immobilization on Eupergit® among methods applied in this study with respect to both, yield of immobilization and hydrolytic activity of the immobilized enzyme.

  3. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate.

    Science.gov (United States)

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2016-07-15

    An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration.

    Science.gov (United States)

    Gupta, Kapish; Jana, Asim Kumar; Kumar, Sandeep; Maiti, Mithu

    2013-11-01

    α-Amylase was immobilized on Dowex MAC-3 with 88 % yield and amyloglucosidase on Amberlite IRA-400 ion-exchange resin beads with 54 % yield by adsorption process. Immobilized enzymes were characterized to measure the kinetic parameters and optimal operational parameters. Optimum substrate concentration and temperature were higher for immobilized enzymes. The thermal stability of the enzymes enhanced after the immobilization. Immobilized enzymes were used in the hydrolysis of the natural starch at high concentration (35 % w/v). The time required for liquefaction of starch to 10 dextrose equivalent (DE) and saccharification of liquefied starch to 96 DE increased. Immobilized enzymes showed the potential for use in starch hydrolysis as done in industry.

  5. Crosslinked Enzyme Aggregates in Hierarchically-Ordered Mesoporous Silica: A Simple and Effective Method for Enzyme Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Il; Kim, Jungbae; Lee, Jinwoo; Jia, Hongfei; Na, Hyon Bin; Youn, Jongkyu; Kwak, Ja Hun; Dohnalkova, Alice; Grate, Jay W.; Wang, Ping; Hyeon, Taeghwan; Park, Hyun-Gyu; Chang, Ho Nam

    2007-02-01

    alpha-chymotrypsin (CT) and lipase (LP) were immobilized in hierarchically-ordered mesocellular mesoporous silica (HMMS) in a simple but effective way for the enzyme stabilization, which was achieved by the enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of nanometer scale crosslinked enzyme aggregates (CLEAs) entrapped in the mesocellular pores of HMMS (37 nm), which did not leach out of HMMS through narrow mesoporous channels (13 nm). CLEA of alpha-chymotrypsin (CLEA-CT) in HMMS showed a high enzyme loading capacity and significantly increased enzyme stability. No activity decrease of CLEA-CT was observed for two weeks under even rigorously shaking condition, while adsorbed CT in HMMS and free CT showed a rapid inactivation due to the enzyme leaching and presumably autolysis, respectively. With the CLEA-CT in HMMS, however, there was no tryptic digestion observed suggesting that the CLEA-CT is not susceptible to autolysis. Moreover, CLEA of lipase (CLEA-LP) in HMMS retained 30% specific activity of free lipase with greatly enhanced stability. This work demonstrates that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity.

  6. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP-CVD.

    Science.gov (United States)

    Ida; Matsuyama; Yamamoto

    2000-07-01

    Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.

  7. Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone) Synthesis.

    Science.gov (United States)

    Ren, Hui; Xing, Zhen; Yang, Jiebing; Jiang, Wei; Zhang, Gang; Tang, Jun; Li, Quanshun

    2016-06-18

    Developing an efficient immobilized enzyme is of great significance for improving the operational stability of enzymes in poly(ε-caprolactone) synthesis. In this paper, a thermophilic esterase AFEST from the archaeon Archaeoglobus fulgidus was successfully immobilized on the epoxy support Sepabeads EC-EP via covalent attachment, and the immobilized enzyme was then employed as a biocatalyst for poly(ε-caprolactone) synthesis. The enzyme loading and recovered activity of immobilized enzyme was measured to be 72 mg/g and 10.4 U/mg using p-nitrophenyl caprylate as the substrate at 80 °C, respectively. Through the optimization of reaction conditions (enzyme concentration, temperature, reaction time and medium), poly(ε-caprolactone) was obtained with 100% monomer conversion and low number-average molecular weight (Mn enzyme exhibited excellent reusability, with monomer conversion values exceeding 75% during 15 batch reactions. Finally, poly(ε-caprolactone) was enzymatically synthesized with an isolated yield of 75% and Mn value of 3005 g/mol in a gram-scale reaction.

  8. Immobilization/Stabilization of Ficin Extract on Glutaraldehyde-Activated Agarose Beads. Variables That Control the Final Stability and Activity in Protein Hydrolyses

    Directory of Open Access Journals (Sweden)

    El-Hocine Siar

    2018-04-01

    Full Text Available Ficin extract has been immobilized on different 4% aminated-agarose beads. Using just ion exchange, immobilization yield was poor and expressed activity did not surpass 10% of the offered enzyme, with no significant effects on enzyme stability. The treatment with glutaraldehyde of this ionically exchanged enzyme produced an almost full enzyme inactivation. Using aminated supports activated with glutaraldehyde, immobilization was optimal at pH 7 (at pH 5 immobilization yield was 80%, while at pH 9, the immobilized enzyme became inactivated. At pH 7, full immobilization was accomplished maintaining 40% activity versus a small synthetic substrate and 30% versus casein. Ficin stabilization upon immobilization could be observed but it depended on the inactivation pH and the substrate employed, suggesting the complexity of the mechanism of inactivation of the immobilized enzyme. The maximum enzyme loading on the support was determined to be around 70 mg/g. The loading has no significant effect on the enzyme stability or enzyme activity using the synthetic substrate but it had a significant effect on the activity using casein; the biocatalysts activity greatly decreased using more than 30 mg/g, suggesting that the near presence of other immobilized enzyme molecules may generate some steric hindrances for the casein hydrolysis.

  9. Immobilization of glucose oxidase on sepharose by UV-initiated graft copolymerization

    International Nuclear Information System (INIS)

    D'Angiuro, L.; Cremonesi, P.

    1982-01-01

    The performance of a new method of enzyme immobilization based on photochemically initiated direct graft copolymerization was recently investigated. The immobilization reaction can be carried out in a simple way and by carefully selecting the reaction conditions, the enzyme-graft copolymer can be obtained as the main reaction product. Coupling efficiency of glucose oxidase has been found to depend only on the amount of photocatalyst (FeCl 3 ) fixed on Sepharose used as polysaccharide support. Small quantities of glycidylmethacrylate (GMA) (0.25 g/g dry Sepharose) are sufficient but necessary to achieve the best enzyme coupling efficiency (20-40%). Enzyme immobilization occurs very rapidly and the entire reaction occurs within 60 min. Reaction patterns and physicochemical characteristics of the obtained enzyme-graft copolymers exclude the glucose oxidase entrapment: therefore a covalent attachment mechanism may be proposed. The kinetic parameters of immobilized glucose oxidase (K/sub m/' = 2.0 x 10 -2 M) are quite similar to those of free enzyme (K/sub m/ = 1.93 x 10 -2 M), and no diffusion limitation phenomena are evidenced in samples having different enzyme or polymer content. Lyophilization, thermostability, and long-term continuous operation also have been investigated. The advantages of this method over that using vinylenzyme copolymerization are discussed

  10. Stabilization of penicillin G acylase by immobilization on glutaraldehyde-activated chitosan

    Directory of Open Access Journals (Sweden)

    W. S. Adriano

    2005-12-01

    Full Text Available The objective of this work was to study enzyme immobilization on chitosan activated with glutaraldehyde, aiming to produce a cheap biocatalyst. Two different immobilization strategies were studied: one-point and multipoint covalent attachment to the solid matrix. The multipoint covalent attachment derivative had an 82% immobilization yield. It was 4.9-fold more stable than the free enzyme at 50°C and 4.5-fold more stable than soluble enzyme at pH 10.0. The one-point derivative had an 85% immobilization yield. It was 2.7-fold more stable than the free enzyme at 50°C and 3.8-fold more stable than soluble PGA at pH 10.0. Results indicated that chitosan can be loaded with PGA above 330 IU/g. Intraparticle diffusive effects, however, limited hydrolysis of penicillin G catalyzed by those derivatives at 37°C and 25°C. Operational stability assays were performed and the multipoint derivative exhibited a half-life of 40 hours.

  11. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature.

    Science.gov (United States)

    Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong

    2015-10-01

    The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.

  12. Silver nanoparticle (AgNPs) doped gum acacia-gelatin-silica nanohybrid: an effective support for diastase immobilization.

    Science.gov (United States)

    Singh, Vandana; Ahmed, Shakeel

    2012-03-01

    An effective carrier matrix for diastase alpha amylase immobilization has been fabricated by gum acacia-gelatin dual templated polymerization of tetramethoxysilane. Silver nanoparticle (AgNp) doping to this hybrid could significantly enhance the shelf life of the impregnated enzyme while retaining its full bio-catalytic activity. The doped nanohybrid has been characterized as a thermally stable porous material which also showed multipeak photoluminescence under UV excitation. The immobilized diastase alpha amylase has been used to optimize the conditions for soluble starch hydrolysis in comparison to the free enzyme. The optimum pH for both immobilized and free enzyme hydrolysis was found to be same (pH=5), indicating that the immobilization made no major change in enzyme conformation. The immobilized enzyme showed good performance in wide temperature range (from 303 to 323 K), 323 K being the optimum value. The kinetic parameters for the immobilized, (K(m)=10.30 mg/mL, V(max)=4.36 μmol mL(-1)min(-1)) and free enzyme (K(m)=8.85 mg/mL, V(max)=2.81 μmol mL(-1)min(-1)) indicated that the immobilization improved the overall stability and catalytic property of the enzyme. The immobilized enzyme remained usable for repeated cycles and did not lose its activity even after 30 days storage at 40°C, while identically synthesized and stored silver undoped hybrid lost its ~31% activity in 48 h. Present study revealed the hybrids to be potentially useful for biomedical and optical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch.

    Science.gov (United States)

    Guo, Hui; Tang, Yi; Yu, Yang; Xue, Lu; Qian, Jun-Qing

    2016-06-01

    Enzyme immobilized on magnetic particles can be used as efficient recoverable biocatalysts under strong magnetic response. To enable re-use of enzyme, modified Fe3O4 particles were used as carrier to immobilize α-amylase in this paper. Firstly, the surface of Fe3O4 particles were coated with amino groups by direct using TEOS (tetraethoxysilane) followed by treatment with APTES (3-aminopropyltriethoxysilane) and then carboxylated by reacting it with succinic anhydride. In addition, the effect of the immobilization condition on enzyme activity recovery and immobilization efficiency were investigated. The results showed that the optimal immobilization occurred under following conditions: pH 5.5, 40°C, enzyme concentration of 20mgmL(-1), reaction time for 36h. Using immobilized α-amylase as biocatalyst, the optimum pH and temperature for hydrolysis were observed to be 6.5 and 60°C. The kinetics of hydrolysis reaction were studied using Michaelis-Menten equation. The affinity constant (Km) and maximum reaction rate (vmax) of magnetic particles immobilization α-amylase (MPIA) was 0.543mgmL(-1) and 1.321mgmin(-1) compared to those of 0.377mgmL(-1) and 6.859mgmin(-1) of free enzyme. After immobilization, enzymatic activity, storage stability, thermo-stability, and reusability of MPIA were found superior to those of the free one. MPIA maintained 86% enzyme activity after 30 days and maintained 78% enzyme activity after recycling six times. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics.

    Science.gov (United States)

    Güleç, Hacı Ali

    2013-04-01

    The aim of this study was to investigate the effects of surface characteristics of plain and plasma modified cellulose acetate (CA) membranes on the immobilization yield of β-galactosidases from Kluyveromyces lactis (KLG) and its galacto-oligosaccharide (GOS) yield, respectively. Low pressure plasma treatments involving oxygen plasma activation, plasma polymerization (PlsP) of ethylenediamine (EDA) and PlsP of 2-mercaptoethanol were used to modify plain CA membrane surfaces. KLG enzyme was immobilized onto plain and oxygen plasma treated membrane surfaces by simple adsorption. Oxygen plasma activation increased the hydrophylicity of CA membrane surfaces and it improved the immobilization yield of the enzyme by 42%. KLG enzyme was also immobilized onto CA membrane surfaces through amino groups created by PlsP of EDA via covalent binding. Plasma action at 60W plasma power and 15 min. exposure time improved the amount of membrane bounded enzyme by 3.5-fold. The enrichment of the amount of amino groups via polyethyleneimine (PEI) addition enhanced this increase from 3.5-fold to 4.5-fold. Although high enzyme loading was achived (65-83%), both of the methods dramatically decreased the enzyme activity (11-12%) and GOS yield due to probably negative effects of active amino groups. KLG enzyme was more effectively immobilized onto thiolated CA membrane surface created by PlsP of 2-mercaptoethanol with high immobilization yield (70%) and especially high enzyme activity (46%). Immobilized enzymes on the CA membranes treated by PlsP were successively reutilized for 5-8 cycles at 25°C and enzymatic derivatives retained approximately 75-80% of their initial activites at the end of the reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Radiation-induced polymerization for the immobilization of penicillin acylase

    International Nuclear Information System (INIS)

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-01-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix

  16. Immobilization of microbial cells on cellulose-polymer surfaces by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Streptomyces phaeochromogens cells were immobilized on cellulose-polymer surfaces by radiation polymerization using hydrophilic monomers and paper. The enzyme activity of immobilized cell sheets was higher than that of immobilized cell composites obtained by the usual radiation polymerization technique. The enzyme activity of the sheets was affected by monomer concentration, the thickness of paper, and the degree of polymerization of paper. The copolymerization of hydroxyethyl methacrylate and methoxytetraethyleneglycol methacrylate in the sheets led to a further increase of the enzyme activity due to the increase of the hydrophilicity of the polymer matrix. The Michaelis constant of the sheets from low monomer concentration was close to that of intact cells

  17. Alginate Immobilization of Metabolic Enzymes (AIME) for High ...

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti

  18. Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Natália G. Graebin

    2016-08-01

    Full Text Available Glycoside hydrolases (GH are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.

  19. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  20. Flow-through 3D biofuel cell anode for NAD+-dependent enzymes

    International Nuclear Information System (INIS)

    Rincon, Rosalba A.; Lau, Carolin; Garcia, Kristen E.; Atanassov, Plamen

    2011-01-01

    NAD + -dependent enzymes require the presence of catalysts for cofactor regeneration in order to be employed in enzymatic biofuel cells. Poly-(methylene green) catalysts have proven to help the oxidation reaction of NADH allowing for the use of such enzymes in electrocatalytic oxidation reactions. In this paper we present the development of 3D anode based on NAD + -dependent malate dehydrogenase. The 3D material chosen was reticulated vitreous carbon (RVC) which was modified with poly-(MG) for NADH oxidation and it also accommodated the porous immobilization matrix for MDH consisting of MWCNTs embedded in chitosan; allowing for mass transport of the substrate to the electrode. Scanning electron microscopy was used in order to characterize the poly-(MG)-modified RVC, and electrochemical evaluation of the anode was performed.

  1. Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase

    International Nuclear Information System (INIS)

    Wen, H.; Nallathambi, V.; Chakraborty, D.; Barton, S.C.

    2011-01-01

    Carboxylated carbon nanotubes were coated onto carbon microfiber electrodes to create a micron-scale bioelectrode. This material has a high surface area and can serve as a support for immobilization of enzymes such as glucose oxidase. A typical carbon nanotube loading of 13 μg cm -1 yields a coating thickness of 17 μm and a 2000-fold increase in surface capacitance. The modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, glucose oxidase, and a crosslinker to create a glucose bioelectrode. The current density on oxidation of glucose is 16.6 mA cm-2 at 0.5 V (vs. Ag/AgCl) in oxygen-free glucose solution. We consider this approach to be useful for designing and characterizing surface treatments for carbon mats and papers by mimicking their local microenvironment. (author)

  2. Immobilization of oxidases and their analytical applications

    International Nuclear Information System (INIS)

    Yasinzai, M.

    2007-01-01

    Immobilized enzymes are replacing their soluble counter-parts in nearly every field of application. These enzyme modifications have evolved from a research curiosity into an entire branch of Biotechnology. An immobilization method for flavin containing oxidases and their use in flow injection system is described. An electrochemical detector for H/sub 2/O/sub 2/ is assembled which is used effectively for the determination of glucose using more common glucose oxidase and the simultaneous determination of sugars. The combination of oxidases with hydrolases have been used for the determination of maltose and starch. (author)

  3. An amperometric enzyme electrode and its biofuel cell based on a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing.

    Science.gov (United States)

    Sun, Lingen; Ma, Yixuan; Zhang, Pei; Chao, Long; Huang, Ting; Xie, Qingji; Chen, Chao; Yao, Shouzhuo

    2015-06-01

    A new amperometric enzyme electrode and its biofuel cell were fabricated based on a glucose oxidase (GOx)-poly(3-anilineboronic acid) (PABA)-Pd nanoparticles (PdNPs) bionanocomposite for biosensing of glucose. Briefly, Pd was electroplated on a multiwalled carbon nanotubes (MWCNTs)-modified Au electrode, and the GOx-PABA-PdNPs bionanocomposite was prepared on the Pd(plate)/MWCNTs/Au electrode through the chemical oxidation of a GOx-3-anilineboronic acid adduct by Na2PdCl4, followed by electrode-modification with an outer-layer chitosan (CS) film. The thus-prepared CS/GOx-PABA-PdNPs/Pd(plate)/MWCNTs/Au electrode exhibited a linear amperometric response to glucose concentration from 2.0 μM to 4.5 mM with a sensitivity of 160 μA/mM/cm(2), sub-μM detection limit, and excellent operation/storage stability in the first-generation biosensing mode, as well as excellent analytical performance in the second-generation biosensing mode. The good recoveries of glucose obtained from spiked urine samples revealed the application potential of our amperometric enzyme electrode. In addition, a glucose/O2 biofuel cell was constructed using this enzyme electrode as the anode and a Pt/MWCNTs/Au electrode as the cathode, and this biofuel cell as a self-powered biosensing device showed a linear voltage response to glucose concentration from 100 μM to 13.5 mM with a sensitivity of 43.5 mV/mM/cm(2) and excellent operation/storage stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    International Nuclear Information System (INIS)

    Le, Thi Thanh Tuyen; Tran, Phu Duy; Pham, Xuan Tung; Tong, Duy Hien; Dang, Mau Chien

    2010-01-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO 2 , polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days

  5. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    Science.gov (United States)

    Thanh Tuyen Le, Thi; Duy Tran, Phu; Pham, Xuan Tung; Hien Tong, Duy; Chien Dang, Mau

    2010-09-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO2, polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days.

  6. Glucose oxidase immobilization onto carbon nanotube networking

    International Nuclear Information System (INIS)

    Karachevtsev, V.A.; Glamazda, A.Yu.; Zarudnev, E.S.; Karachevtsev, M.V.; Leontiev, V.S.; Linnik, A.S.; Plokhotnichenko, A.M.; Stepanian, S.G.; Lytvyn, O.S.

    2012-01-01

    The efficient immobilization of GOX onto a carbon nanotube network through the molecular interface formed by PSE is carried out. This conclusion is based on the analysis of AFM images of the network with the adsorbed enzyme, whose globules locate mainly along a nanotube. The band corresponding to the high-frequency component of the G mode in the RR spectrum of the nanotube with adsorbed PSE is downshifted by 0.7 cm -1 relative to this band in the spectrum of pristine nanotubes. The analysis of the intensities of bands assigned to the RBM of nanotubes with adsorbed PSE in comparison with the spectrum of pristine SWNTs revealed the intensity transformation, which can be explained by a change of the resonance condition with variation of the laser energy. Thus, we concluded that PSE molecules create nanohybrids with SWNTs, which ensures the further enzyme immobilization. As the RR spectrum of an SWNT:PSE:GOX film does not essentially differ from SWNT:PSE ones, this indicates that the molecular interface (PSE) isolates the enzyme from nanotubes strongly enough. Our studies on the conductive properties of a single walled carbon nanotube network sprayed onto a quartz substrate from a solution of nanotubes in dichlorobenzene demonstrated that the I(U) dependence has nonlinear character. Most likely, the nonlinearity is related to Schottky barriers, which originate on the contact between nanotubes and the gold electrode, as well as between nanotubes with different conductivities. The deposition of bioorganic compounds (PSE and GOX) on the carbon nanotube network is accompanied by a decrease of their conductivity. Most probably, such a decrease is caused by adsorbed PSE molecules, which induce the appearance of scattering centers for charge carriers on the nanotube surface. The following GOX adsorption has practically no effect on the conductivity of the nanotube network that evidences the reliable isolation of the nanotube surface from the enzyme by means of the molecular

  7. Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates.

    Science.gov (United States)

    Torabizadeh, Homa; Mahmoudi, Asieh

    2018-03-01

    Inulinase can produce a high amount of fructose syrup from inulin in a one-step enzymatic process. Inulinase from Aspergillus niger was immobilized covalently on Fe 3 O 4 magnetic nanoparticles functionalized with wheat gluten hydrolysates (WGHs). Wheat gluten was enzymatically hydrolyzed by two endopeptidases Alcalase and Neutrase and related nanoparticles were prepared by desolvation method. Magnetite nanoparticles were coated with WGHs nanoparticles and then inulinase was immobilized onto it using glutaraldehyde as crosslinking agent. Parallel studies employing differential scanning calorimetry and field emmision scanning electron microscopy were carried out to observe functional and structural variations in free inulinase during immobilization. Optimum temperature of immobilized inulinase was increased, while, pH and K m values were decreased compared to free enzyme. Overall, a 12.3 folds rise was detected in enzyme half-life value after Immobilization at 75 °C and enzyme preserved 70% of its initial activity after 12 cycles of hydrolysis with 75% of enzyme loading.

  8. A novel and efficient method for the immobilization of thermolysin using sodium chloride salting-in and consecutive microwave irradiation.

    Science.gov (United States)

    Chen, Feifei; Zhang, Fangkai; Du, Fangchuan; Wang, Anming; Gao, Weifang; Wang, Qiuyan; Yin, Xiaopu; Xie, Tian

    2012-07-01

    Sodium chloride salting-in and microwave irradiation were combined to drive thermolysin molecules into mesoporous support to obtain efficiently immobilized enzyme. When the concentration of sodium chloride was 3 M and microwave power was 40 W, 93.2% of the enzyme was coupled to the support by 3 min, and the maximum specific activity of the immobilized enzyme was 17,925.1 U mg(-1). This was a 4.5-fold increase in activity versus enzyme immobilized using conventional techniques, and a 1.6-fold increase versus free enzyme. Additionally, the thermal stability of the immobilized thermolysin was significantly improved. When incubated at 70°C, there was no reduction in activity by 3.5h, whereas free thermolysin lost most of its activity by 3h. Immobilization also protected the thermolysin against organic solvent denaturation. The microwave-assisted immobilization technique, combined with sodium chloride salting-in, could be applied to other sparsely soluble enzymes immobilization because of its simplicity and high efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Protein-based inverse opals: A novel support for enzyme immobilization.

    Science.gov (United States)

    Jiang, Yanjun; Sun, Wenya; Wang, Yaping; Wang, Lihui; Zhou, Liya; Gao, Jing; He, Ying; Ma, Li; Zhang, Xu

    2017-01-01

    In this study, protein-based inverse opals were prepared for the first time by using the colloidal crystal templating method. The preparation process involved three steps including filling the templates with protein molecules, crosslinking, and template removal. The obtained inverse opals were used to immobilize Penicillin G acylase (PGA) because of its intrinsic biocompatible property. The immobilization process was optimized and the properties of the immobilized PGA (PGA@IO) were investigated. PGA@IO exhibited improved thermal and pH stability compared with its free counterpart. After reusing nine times, it retained 70% of the initial activity. Besides, the PGA@IO retained high activity during the hydrolysis reactions in continuous catalysis in packed-bed reactor (PBR) after 15 days. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba

    2016-01-01

    Amine functionalized cobalt ferrite (AF-CoFe 2 O 4 ) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe 2 O 4 were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe 2 O 4 remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe 2 O 4 . The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe 2 O 4 surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe 2 O 4 MNPs can be considered as promising candidate for enzyme immobilization.

  11. MUCOADHESIVE GEL WITH IMMOBILIZED LYSOZYME: PREPARATION AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Dekina S. S.

    2015-08-01

    Full Text Available The study of non-covalent immobilized lysozyme, as well as physico-chemical and biochemical properties of obtained mucoadhesive gel was the aim of the research. Lysozyme activity was determined by bacteriolytic method (Micrococcus lysodeikticus cells acetone powder was a substrate. Lysozyme immobilization was conducted by the method of entrapment in gel. Enzyme carrier interaction was studied by viscometric, spectrophotometric and spectrofluorimetric methods. Mucoadhesive gel with immobilized lysozyme, possessing antiinflammatory and antimicrobial activities, was prepared. Due to immobilization, protein-polymer complex with the original enzymatic activity was formed. The product is characterized by high mucoadhesive properties, quantitative retaining of protein and bacteriolytic activity, prolonged release of the enzyme, improved biochemical characteristics (extended pH-activity profile, stability in acidic medium and during storage for 2 years, and it is perspective for further studies. The proposed method for lysozyme immobilization in the carboxymethyl cellulose sodium salt gel allows to obtain a stable, highly efficient product, with high adhesive properties for attachment to the mucous membranes, that is promising for use in biomedicine.

  12. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  13. Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system.

    Science.gov (United States)

    Singh, R S; Singh, R P; Kennedy, J F

    2017-02-01

    An extracellular inulinase was partially purified by ethanol precipitation and gel exclusion chromatography from a cell free extract of Kluyveromyces marxianus. Partially purified inulinase exhibited 420 IU/mg specific activity and it was immobilized on chitosan beads. Activity yield of immobilized inulinase was optimized with glutaraldehyde concentration (1-5%), glutaraldehyde treatment time (30-240min), enzyme coupling-time (2-16h) and enzyme loading (5-30 IU) as functions. Under the optimized conditions maximum yield 65.5% of immobilized inulinase was obtained. Maximum hydrolysis of inulin 84.5% and 78.2% was observed at 125rpm after 4h by immobilized and free enzyme, respectively. A retention-time of 4h and 5h was found optimal for the hydrolysis of inulin under agitation (125rpm) by free and immobilized enzyme, respectively. The recycling of the developed immobilized biocatalyst was carried out after 5h of inulin hydrolysis in a batch system. The developed immobilized biocatalyst was successfully used for the hydrolysis of inulin for 14 batches. This is the first report on the immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. New method for immobilization of biomolecules using preirradiation grafting at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liang Chang Dong; Hoffman, A.S.

    1986-01-01

    A new method of biomolecule immobilization is described in which a monomer-conjugated enzyme (asparaginase, Asp) is grafted together with free monomer (acrylamide, AAm) onto a cellulose sheet which had been preirradiated in a /sup 60/Co source. The preirradiation and grafting steps are carried out in air at - 78/sup 0/C and in vacuum at 0/sup 0/C respectively. The grafting is probably caused by trapped radicals. The immobilized enzyme retains significant activity and is stable to storage. The technique is applicable to immobilization of a wide variety of biomolecules, such as enzymes, antibodies and drugs. The products may be used for therapeutic or diagnostic applications.

  15. Immobilized cells of Candida rugosa possessing fumarase activity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Zhone, L.

    1980-01-01

    Immobilized cells of C. rugosa that possessed fumarase activity were prepared by different methods; the most active immobilized cells were entrapped in polyacrylamide gels. The effects of pH temperature, and divalent cations on the fumarase activity of both immobilized and native cells were the same. Mn/sup 2 +/, Mg/sup 2 +/, Ca/sup 2 +/, and Fe/sup 2 +/ did not protect the immobilized enzyme against thermal inactivation. The activity of immobilized fumarase remained constant during 91 days of storage of 4-6 degrees. The immobilized cell column was used for the continuous production of L-malic acid from 1M fumarate at 30 degrees and pH 8.5. The immobilized column operated steadily for 2 months. Half life of the immobilized fumarase at 30 degrees was 95 days.

  16. Preparation of Glutaraldehyde Cross-Linked Chitosan Beads Under Microwave Irradiation and Properties of Urease Immobilized onto the Beads

    Institute of Scientific and Technical Information of China (English)

    LIANG Zupei; FENG Yaqing; MENG Shuxian; ZHANG Weihong

    2005-01-01

    The glutaraldehyde cross-linked chitosan beads were prepared under microwave irradiation and urease was immobilized onto the beads. The activity and the yield of enzyme activity of the immobilized urease were 10.83 U/g carrier and 47.7%, respectively. The optimum conditions of immobilization were 1% of glutaraldehyde volume fraction, 10 mg/g of urease/beads weight ratio, 24 h of the processing time and pH 6.5 of the reaction medium for immobilization. The properties of the immobilized urease were investigated and compared with those of the free enzyme. The optimum pH values were 6.5 and 7.0 for the immobilized and free urease, respectively. The optimum temperature was 60 ℃ for the free urease, while it shifted to 65 ℃ for the immobilized enzyme. The Michaelis constant K m was 9.1 mmol/L for the immobilized and 12.5 mmol/L for the free urease. The immobilized urease retained 40% of its initial enzyme activity even after 10 repeated uses. The immobilized urease stored at 4 ℃ retained 46% of its initial activity even after 35 d.

  17. Flow-through 3D biofuel cell anode for NAD{sup +}-dependent enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Rosalba A.; Lau, Carolin; Garcia, Kristen E. [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States); Atanassov, Plamen, E-mail: plamen@unm.ed [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States)

    2011-02-01

    NAD{sup +}-dependent enzymes require the presence of catalysts for cofactor regeneration in order to be employed in enzymatic biofuel cells. Poly-(methylene green) catalysts have proven to help the oxidation reaction of NADH allowing for the use of such enzymes in electrocatalytic oxidation reactions. In this paper we present the development of 3D anode based on NAD{sup +}-dependent malate dehydrogenase. The 3D material chosen was reticulated vitreous carbon (RVC) which was modified with poly-(MG) for NADH oxidation and it also accommodated the porous immobilization matrix for MDH consisting of MWCNTs embedded in chitosan; allowing for mass transport of the substrate to the electrode. Scanning electron microscopy was used in order to characterize the poly-(MG)-modified RVC, and electrochemical evaluation of the anode was performed.

  18. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing

    International Nuclear Information System (INIS)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Aksay, Ilhan A.; Liu, Jun; Lin, Yuehe

    2009-01-01

    Direct electrochemistry of a glucose oxidase (GOD)/graphene/chitosan nanocomposite was studied. The immobilized enzyme retains its bioactivity, exhibits a surface confined, reversible two-proton and two-electron transfer reaction, and has good stability, activity and a fast heterogeneous electron transfer rate with the rate constant (k s ) of 2.83 s -1 . A much higher enzyme loading (1.12 x 10 -9 mol/cm 2 ) is obtained as compared to the bare glass carbon surface. This GOD/graphene/chitosan nanocomposite film can be used for sensitive detection of glucose. The biosensor exhibits a wider linearity range from 0.08 mM to 12 mM glucose with a detection limit of 0.02 mM and much higher sensitivity (37.93 (micro)A mM -1 cm -2 ) as compared with other nanostructured supports. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of graphene, and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes direct electron transfer between redox enzymes and the surface of electrodes.

  19. EUGENOL POLYMER MODIFIED TITANIUM ELECTRODE FOR THE ANALYSIS OF CARBOCYSTEINE

    OpenAIRE

    S. EL QOUATLI; R. T. NGONO; R. NAJIH; A. CHTAINI

    2012-01-01

    A eugenol polymer immobilized electrode was developed for the assay of the carbocysteine compound. The electrochemical sensor was made by in situ electropolymerization of eugenol at titanium electrode. Cyclic voltamperometry at prepared electrode permitted to point out a reversible pattern for carbocysteine electrooxidation.

  20. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane.

    Science.gov (United States)

    Vasileva, Nastya; Ivanov, Yavor; Damyanova, Stanka; Kostova, Iliana; Godjevargova, Tzonka

    2016-01-01

    The β-galactosidase was covalently immobilized onto a modified polypropylene membrane, using glutaraldehyde. The optimal conditions for hydrolysis of lactose (4.7%) by immobilized β-galactosidase in a batch process were determined 13.6 U enzyme activity, 40°C, pH 6.8 and 10h. The obtained degree of hydrolysis was compared with results received by a free enzyme. It was found, that the lactose hydrolysis by an immobilized enzyme was 1.6 times more effective than the lactose hydrolysis by a free enzyme. It was determined that the stability of the immobilized enzyme was 2 times higher in comparison with the stability of free enzyme. The obtained immobilized system β-galactosidase/polypropylene membrane was applied to produce glucose-galactose syrup from waste whey. The whey characteristics and the different preliminary treatments of the whey were investigated. Then the whey lactose hydrolysis in a bioreactor by an immobilized enzyme on a spirally wound membrane was performed. The optimal membrane surface and the optimal flow rate of the whey through the membrane module were determined, respectively 100 cm(2) and 1.0 mL min(-1). After 10h, the degree of lactose hydrolysis was increased to 91%. The operation stability was studied. After 20th cycle the yield of bioreactor was 69.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Urea Biosensor from Stacked Sol-Gel Films with Immobilized Nile Blue Chromoionophore and Urease Enzyme

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2007-10-01

    Full Text Available An optical urea biosensor was fabricated by stacking several layers of sol-gelfilms. The stacking of the sol-gel films allowed the immobilization of a Nile Bluechromoionophore (ETH 5294 and urease enzyme separately without the need of anychemical attachment procedure. The absorbance response of the biosensor was monitoredat 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel filmformat enabled higher enzyme loading in the biosensor to be achieved. The urea opticalbiosensor constructed from three layers of sol-gel films that contained urease demonstrateda much wider linear response range of up to 100 mM urea when compared with biosensorsthat constructed from 1-2 layers of films. Analysis of urea in urine samples with thisoptical urea biosensor yielded results similar to that determined by a spectrophotometricmethod using the reagent p-dimethylaminobenzaldehyde (R2 = 0.982, n = 6. The averagerecovery of urea from urine samples using this urea biosensor is approximately 103%.

  2. A Urea Biosensor from Stacked Sol-Gel Films with Immobilized Nile Blue Chromoionophore and Urease Enzyme.

    Science.gov (United States)

    Alqasaimeh, Muawia Salameh; Heng, Lee Yook; Ahmad, Musa

    2007-10-11

    An optical urea biosensor was fabricated by stacking several layers of sol-gelfilms. The stacking of the sol-gel films allowed the immobilization of a Nile Bluechromoionophore (ETH 5294) and urease enzyme separately without the need of anychemical attachment procedure. The absorbance response of the biosensor was monitoredat 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel filmformat enabled higher enzyme loading in the biosensor to be achieved. The urea opticalbiosensor constructed from three layers of sol-gel films that contained urease demonstrateda much wider linear response range of up to 100 mM urea when compared with biosensorsthat constructed from 1-2 layers of films. Analysis of urea in urine samples with thisoptical urea biosensor yielded results similar to that determined by a spectrophotometricmethod using the reagent p-dimethylaminobenzaldehyde (R² = 0.982, n = 6). The averagerecovery of urea from urine samples using this urea biosensor is approximately 103%.

  3. Optimization of Phospholipase A1 Immobilization on Plasma Surface Modified Chitosan Nanofibrous Mat

    Directory of Open Access Journals (Sweden)

    Zahra Beig Mohammadi

    2016-01-01

    Full Text Available Phospholipase A1 is known as an effective catalyst for hydrolysis of various phospholipids in enzymatic vegetable oil degumming. Immobilization is one of the most efficient strategies to improve its activity, recovery and functional properties. In this study, chitosan-co-polyethylene oxide (90:10 nanofibrous mat was successfully fabricated and modified with atmospheric plasma at different times (2, 6 and 10 min to interact with enzyme molecules. Scanning electron microscopy images revealed that the membranes retained uniform nanofibrous and open porous structures before and after the treatment. PLA1 was successfully immobilized onto the membrane surfaces via covalent bonds with the functional groups of chitosan nanofibrous mat. Response surface methodology was used to optimize the immobilization conditions for reaching the maximum immobilization efficiency. Enzyme concentration, pH, and immobilization time were found to be significant key factors. Under optimum conditions (5.03 h, pH 5.63, and enzyme dosage 654.36 UI, the atmospheric plasma surface modified chitosan nanofibers reached the highest immobilization efficiency (78.50%. Fourier transform infrared spectroscopy of the control and plasma surface-modified chitosan nanofibers revealed the functional groups of nanofibers and their reaction with the enzyme. The results indicated that surface modification by atmospheric plasma induced an increase in PLA1 loading on the membrane surfaces.

  4. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries

    International Nuclear Information System (INIS)

    Hosseinipour, Seyyedeh Leila; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Salehi, Roya

    2015-01-01

    Enzymes play an essential role in catalyzing various reactions. However, their instability upon repetitive/prolonged use, elevated temperature, acidic or alkaline pH remains an area of concern. α-Amylase, a widely used enzyme in food industries for starch hydrolysis, was covalently immobilized on the surface of two developed matrices, amino-functionalized silica-coated magnetite nanoparticles (AFSMNPs) alone and covered with chitosan. The synthesis steps and characterizations of NPs were examined by FT-IR, VSM, and SEM. Modified nanoparticles with average diameters of 20–80 nm were obtained. Enzyme immobilization efficiencies of 89 and 74 were obtained for AFSMNPs and chitosan-coated AFSMNPs, respectively. The optimum pH obtained was 6.5 and 8.0 for the enzyme immobilized on AFSMNPs and chitosan-coated AFSMNPs, respectively. Optimum temperature for the immobilized enzyme shifted toward higher temperatures. Considerable enhancements in thermal stabilities were observed for the immobilized enzyme at elevated temperatures up to 80 °C. A frequent use experiment demonstrated that the immobilized enzyme retained 74 and 85 % of its original activity even after 20 times of repeated use in AFSMNPs and chitosan-coated AFSMNPs, respectively. Storage stability demonstrated that free enzyme lost its activity completely within 30 days. But, immobilized enzyme on AFSMNPs and chitosan-coated AFSMNPs preserved 65.73 and 78.63 % of its initial activity, respectively, after 80 days of incubation. In conclusion, a substantial improvement in the performance of the immobilized enzyme with reference to the free enzyme was obtained. Furthermore, the relative activities of immobilized enzyme are superior than free enzyme over the broader pH and temperature ranges.

  5. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries

    Science.gov (United States)

    Hosseinipour, Seyyedeh Leila; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Salehi, Roya

    2015-09-01

    Enzymes play an essential role in catalyzing various reactions. However, their instability upon repetitive/prolonged use, elevated temperature, acidic or alkaline pH remains an area of concern. α-Amylase, a widely used enzyme in food industries for starch hydrolysis, was covalently immobilized on the surface of two developed matrices, amino-functionalized silica-coated magnetite nanoparticles (AFSMNPs) alone and covered with chitosan. The synthesis steps and characterizations of NPs were examined by FT-IR, VSM, and SEM. Modified nanoparticles with average diameters of 20-80 nm were obtained. Enzyme immobilization efficiencies of 89 and 74 were obtained for AFSMNPs and chitosan-coated AFSMNPs, respectively. The optimum pH obtained was 6.5 and 8.0 for the enzyme immobilized on AFSMNPs and chitosan-coated AFSMNPs, respectively. Optimum temperature for the immobilized enzyme shifted toward higher temperatures. Considerable enhancements in thermal stabilities were observed for the immobilized enzyme at elevated temperatures up to 80 °C. A frequent use experiment demonstrated that the immobilized enzyme retained 74 and 85 % of its original activity even after 20 times of repeated use in AFSMNPs and chitosan-coated AFSMNPs, respectively. Storage stability demonstrated that free enzyme lost its activity completely within 30 days. But, immobilized enzyme on AFSMNPs and chitosan-coated AFSMNPs preserved 65.73 and 78.63 % of its initial activity, respectively, after 80 days of incubation. In conclusion, a substantial improvement in the performance of the immobilized enzyme with reference to the free enzyme was obtained. Furthermore, the relative activities of immobilized enzyme are superior than free enzyme over the broader pH and temperature ranges.

  6. Computer-aided design of bromelain and papain covalent immobilization

    OpenAIRE

    Cutiño-Avila, Bessy; Gil Pradas, Dayrom; Aragón Abreu, Carlos; Fernández Marrero, Yuniel; Hernández de la Torre, Martha; Salas Sarduy, Emir; Chávez Planes, María de los Ángeles; Guisán Seijas, José Manuel; Díaz Brito, Joaquín; del Monte-Martínez, Alberto

    2014-01-01

    Enzymes as immobilized derivatives have been widely used in Food, Agrochemical, Pharmaceutical and Biotechnological industries. Protein immobilization is probably the most used technology to improve the operational stability of these molecules. Bromelain (Ananas comosus) and papain (Carica papaya) are cystein proteases extensively used as immobilized biocatalyst with several applications in therapeutics, racemic mixtures resolution, affinity chromatography and others industrial scenarios. The...

  7. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  8. Purification, immobilization, and characterization of nattokinase on PHB nanoparticles.

    Science.gov (United States)

    Deepak, Venkataraman; Pandian, Suresh babu Ram Kumar; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2009-12-01

    In this study, nattokinase was purified from Bacillus subtilis using ion exchange chromatography and immobilized upon polyhydroxybutyrate (PHB) nanoparticles. A novel strain isolated from industrial dairy waste was found to synthesize polyhydroxyalkanoates (PHA) and the strain was identified as Brevibacterium casei SRKP2. PHA granules were extracted from 48 h culture and the FT-IR analysis characterized them as PHB, a natural biopolymer from B. casei. Nanoprecipitation by solvent displacement technique was used to synthesize PHB nanoparticles. PHB nanoparticles were characterized using transmission electron microscopy and particle size ranged from 100-125 nm. Immobilization of nattokinase upon PHB nanoparticles resulted in a 20% increase in the enzyme activity. Immobilization also contributed to the enhanced stability of the enzyme. Moreover, the activity was completely retained on storage at 4 degrees C for 25 days. The method has proven to be highly simple and can be implemented to other enzymes also.

  9. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila

    2015-01-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk

  10. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand2013@gmail.com; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk.

  11. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... on their tailored surface modification in order to obtain improved enzyme-support systems. Firstly, an off-stoichiometric thiol-ene (OSTE) thermosetting material was used for the development of a screening platform allowing the investigation of micro-environmental effects and their impact on the activity...

  12. Optimization of Ligninolytic Enzyme Activity and Production Rate with Ceriporiopsis subvermispora for Application in Bioremediation by Varying Submerged Media Composition and Growth Immobilization Support

    Directory of Open Access Journals (Sweden)

    Janja Babič

    2012-09-01

    Full Text Available Response surface methodology (central composite design of experiments was employed to simultaneously optimize enzyme production and productivities of two ligninolytic enzymes produced by Ceriporiopsis subvermispora. Concentrations of glucose, ammonium tartrate and Polysorbate 80 were varied to establish the optimal composition of liquid media (OLM, where the highest experimentally obtained activities and productivities were 41 U L−1 and 16 U L−1 day−1 for laccase (Lac, and 193 U L−1 and 80 U L−1 day−1 for manganese peroxidase (MnP. Considering culture growth in OLM on various types of immobilization support, the best results were obtained with 1 cm beech wood cubes (BWCM. Enzyme activities in culture filtrate were 152 U L−1 for Lac and 58 U L−1 for MnP, since the chemical composition of this immobilization material induced higher Lac activity. Lower enzyme activities were obtained with polyurethane foam. Culture filtrates of OLM and BWCM were applied for dye decolorization. Remazol Brilliant Blue R (RBBR was decolorized faster and more efficiently than Copper(IIphthalocyanine (CuP with BWCM (80% and 60%, since Lac played a crucial role. Decolorization of CuP was initially faster than that of RBBR, due to higher MnP activities in OLM. The extent of decolorization after 14 h was 60% for both dyes.

  13. Digital simulation of chronoamperometry at a disk electrode under a flat polymer film containing an enzyme

    DEFF Research Database (Denmark)

    Britz, Dieter; Strutwolf, Jörg

    2015-01-01

    Current-time and steady state current behaviour were simulated for an ultramicrodisk electrode (UMDE) inlaid flush with an insulating plane and overlaid by a flat film of polymer containing an enzyme, of various film thicknesses and essentially infinite extent. Steady state currents go through a maxim...

  14. Immobilization of Trichoderma harzianum α-amylase on PPyAgNp/Fe3O4-nanocomposite: chemical and physical properties.

    Science.gov (United States)

    Mohamed, Saleh A; Al-Harbi, Majed H; Almulaiky, Yaaser Q; Ibrahim, Ibrahim H; Salah, Hala A; El-Badry, Mohamed O; Abdel-Aty, Azza M; Fahmy, Afaf S; El-Shishtawy, Reda M

    2018-03-26

    In this study, a new support has been developed by immobilization of α-amylase onto modified magnetic Fe 3 O 4 -nanoparticles. The characterization of soluble and immobilized α-amylases with regards to kinetic parameters, pH, thermal stability and reusability was studied. The effect of polypyrrole/silver nanocomposite (PPyAgNp) percentage on weight of Fe 3 O 4 and pH on the immobilization of α-amylase was studied. The highest immobilization efficiency (75%) was detected at 10% PPyAgNp/Fe 3 O 4 -nanocomposite and pH 7.0. Immobilization of α-amylase on PPyAgNp/Fe 3 O 4 -nanocomposite was characterized by FT-IR spectroscopy and scanning electron microscopy. The reusability of the immobilized enzyme activity was 80% of its initial activity after 10 reuses. The immobilized enzyme was more stable towards pH, temperature and metal ions compared with soluble enzyme. The kinetic study appeared higher affinity of immobilized enzyme (K m 2.5 mg starch) compared with soluble enzyme (K m 3.5 mg starch). In conclusion, the immobilization of α-amylase on PPyAgNp/Fe 3 O 4 -nanocomposite could successfully be used in industrial and medical applications.

  15. Applications of Immobilized Bio-Catalyst in Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2018-04-01

    Full Text Available Immobilization of bio-catalysts in solid porous materials has attracted much attention in the last few decades due to its vast application potential in ex vivo catalysis. Despite the high efficiency and selectivity of enzymatic catalytic processes, enzymes may suffer from denaturation under industrial production conditions, which, in turn, diminish their catalytic performances and long-term recyclability. Metal-organic frameworks (MOFs, as a growing type of hybrid materials, have been identified as promising platforms for enzyme immobilization owing to their enormous structural and functional tunability, and extraordinary porosity. This review mainly focuses on the applications of enzyme@MOFs hybrid materials in catalysis, sensing, and detection. The improvements of catalytic activity and robustness of encapsulated enzymes over the free counterpart are discussed in detail.

  16. The procedure of ethanol determination in wine by enzyme amperometric biosensor

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-08-01

    Full Text Available Aim. Development of the procedure of ethanol determination in wine by an enzyme amperometric biosensor. Methods. The amperometric biosensor method of ethanol analysis has been used in this work. Results. The paper presents comparative analysis of two methods of alcohol oxidase (AO immobilization for development of amperometric biosensor for ethanol determination in wine. The method of AO immobilization in glutaraldehyde vapour was chosen as optimal for this purpose. The selectivity, operational and storage stability, and pH-optimum for operation of the created biosensor were determined. The procedure of ethanol determination in wine by amperometric biosensor on the basis of platinum printed electrode SensLab and AO was optimized. The analysis of ethanol concentration in wine and must samples was carried out using the developed high-stable biosensor. A good correlation between the data obtained by the biosensor and densitometry methods was shown. Conclusion. The proposed method of ethanol analysis could be used in wine production

  17. Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine).

    Science.gov (United States)

    Bhakta, Samir A; Benavidez, Tomas E; Garcia, Carlos D

    2014-09-15

    A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to investigate the immobilization of glucose oxidase, a model enzyme for the development of biosensors. According to the results presented, the nanoporous films can provide significant increases in surface area of the substrate and the immobilization of larger amounts of active enzyme. The characterization of the substrate-enzyme interface discussed in the manuscript aims to provide critical information about relationship between the surface (material, geometry, and density of pores), the protein structure, and the immobilization conditions (pH, and protein concentration) required to improve the catalytic activity and stability of the enzymes. A maximum normalized activity of 3300±700 U m(-2) was achieved for the nanoporous film of PS-b-P2VP. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. EUGENOL POLYMER MODIFIED TITANIUM ELECTRODE FOR THE ANALYSIS OF CARBOCYSTEINE

    Directory of Open Access Journals (Sweden)

    S. EL QOUATLI

    2012-06-01

    Full Text Available A eugenol polymer immobilized electrode was developed for the assay of the carbocysteine compound. The electrochemical sensor was made by in situ electropolymerization of eugenol at titanium electrode. Cyclic voltamperometry at prepared electrode permitted to point out a reversible pattern for carbocysteine electrooxidation.

  19. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba [Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur (India)

    2016-01-15

    Amine functionalized cobalt ferrite (AF-CoFe{sub 2}O{sub 4}) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe{sub 2}O{sub 4} were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe{sub 2}O{sub 4} remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe{sub 2}O{sub 4}. The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe{sub 2}O{sub 4} surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe{sub 2}O{sub 4} MNPs can be considered as promising candidate for enzyme immobilization.

  20. A new method for immobilization of biomolecules using preirradiation grafting at low temperature

    International Nuclear Information System (INIS)

    Liang Chang Dong; Hoffman, A.S.

    1986-01-01

    A new method of biomolecule immobilization is described in which a monomer-conjugated enzyme (asparaginase, Asp) is grafted together with free monomer (acrylamide, AAm) onto a cellulose sheet which had been preirradiated in a 60 Co source. The preirradiation and grafting steps are carried out in air at - 78 0 C and in vacuum at 0 0 C respectively. The grafting is probably caused by trapped radicals. The immobilized enzyme retains significant activity and is stable to storage. The technique is applicable to immobilization of a wide variety of biomolecules, such as enzymes, antibodies and drugs. The products may be used for therapeutic or diagnostic applications. (author)

  1. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    Science.gov (United States)

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. preparation and properties of immobilized naringinase in polyvinyl alcohol copolymer carrier for debittering of citrus juices

    International Nuclear Information System (INIS)

    ElBatal, A.L.; Swailam, H.M.H.

    2003-01-01

    Naringin a bitter compound in citrus can be converted to a nonbiter fom by enzyme hydrolysis. Naringinase from gamma irradiated enhanced Aspergillus nigro-AH3. γ 20 isolate was partoally purified by various methods and the specificacitivty of 6.1 units per mg protein was obtained. The enzyme was immobilized by entrapment in polyvinyl alcohol / polyacrylamide (PVA/PAAm) copolymer hydrogel carrier produced by gamma radiation polymerization. The activity of the immobilized enzyme was elevated with increasing PVA content in the copolymer carrier to reach its maximum value at PVA/PAAm composition ratio of (60.40, v/v%). The yield of immobilization was highest 95% and yield of activity was 91.1%, when 1 mg naringinase enzyme was immobilized in 1 ml of hydrogel matrix. Some enzymatic and compared with those of the solube free enzyme. The optimal pH of the immobilized enzyme was shifted 0.5 pH units to the alkaline side of that of the soluble free enzyme. Also the optimum temperature was shifted from 50 C degree to 60 c degree and the activation energy of reaction (EA) was markedly decreased from 21.52 to 10.74kcal/mol by immobilization. The influence of the diffusion is reflected in the kinetic parameters Km and Vmax. The application of kinetic parameter of the immobilized enzyme optimized with pure naringin solution and bitter orange juice resuled in about 83.2% and 72.0% debittering after 8 h and 12 h incubation during batcheise operation, respectively. The process has operational versatility from the broad pH and temperature optima and affords highest efficiency and stability during application in debittering of bitter orange juice because it is recycled consecutively 14 times before retaining only about 50 % efficiency. These data can be used for future improvements in debittering of citrus fruits products

  3. Continuous synthesis of glucoamylase by immobilized fungal mycelium of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, T.E.; Jamuna, R.; Bansilal, C.V.; Ramakrishna, S.V. (Regional Research Lab., Trivandrum (India))

    1991-03-01

    The extracellular glucoamylase enzyme (EC 3.2.1.3) was synthesized continuously by the immobilized mycelial fragments of A. niger. Of the several polymeric matrices attempted for immobilization k-carrageenan and alginate were found to be the most effective. However, the enzyme activity exhibited by the immobilized mycelia (I.M.) was 15-20% lower than that of free cells under batch conditions. The immobilized cells have retained nearly the same enzymatic activity (120IU/g of I.M.) for 6 repeated batches and thereafter decline in activity was noticed. An aerated packed bed reactor with I.M. was operated continuously for 360 h. The volumetric productivity of the reactor was 1600IU/L/h for 192 h and reduced to 25% in 360 h. (orig.).

  4. Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase

    International Nuclear Information System (INIS)

    Ma, Hong-zhi; Xing, Yi; Yu, Miao; Wang, Qunhui

    2014-01-01

    Highlights: • Residue lactic acid in food waste could be converted to pyruvic acid. • Calcium alginate immobilized the lactate oxidase with high pH and thermal stability. • Immobilized enzyme could convert 70% lactic acid to pyruvic acid. • Ethanol yield could be increased by 20% with lactate oxidase added. - Abstract: Adoption of lactic acid bacteria (LAB) into ethanol fermentation from food waste can replace the sterilization process. However, LAB inoculation will convert part of the substrate into lactic acid (LA), not ethanol. This study adopted lactate oxidase to convert the produced LA to pyruvate, and then ethanol fermentation was carried out. The immobilization enzyme was utilized, and corresponding optimum conditions were determined. Results showed that calcium alginate could successfully immobilize the enzyme and improve pH and thermal stability. The optimum pH and temperature were 6.2 and 55 °C, respectively. The utilization of immobilized enzyme with catalytic time of 5 h could convert 70% LA to pyruvate, and the addition of enzyme increased the ethanol yield by 20% more than that of the control. The process could be applied in food waste storage and can help in reducing carbon source consumption

  5. Preparation and Properties of Urease Immobilized onto Glutaraldehyde Cross-linked Chitosan Beads

    Institute of Scientific and Technical Information of China (English)

    Zu Pei LIANG; Ya Qing FENG; Shu Xian MENG; Zhi Yan LIANG

    2005-01-01

    Urease was immobilized onto the glutaraldehyde cross-linked chitosan beads that were prepared under microwave irradiation. The activity and the yield of activity of immobilized urease was 10.83 U/g B and 47.7%, respectively. The conditions of urease immobilization were optimized. The properties of the immobilized urease were investigated and compared with that of the free enzyme.

  6. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    Science.gov (United States)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  7. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization.

    Science.gov (United States)

    Ulu, Ahmet; Noma, Samir Abbas Ali; Koytepe, Suleyman; Ates, Burhan

    2018-06-06

    l-Asparaginase (l-ASNase) is a vital enzyme for medical treatment and food industry. Here, we assessed the use of Fe 3 O 4 @Mobil Composition of Matter No. 41 (MCM-41) magnetic nanoparticles as carrier matrix for l-ASNase immobilization. In addition, surface of Fe 3 O 4 @MCM-41 magnetic nanoparticles was functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) to enhance stability of l-ASNase. The chemical structure, thermal properties, magnetic profile and morphology of the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and zeta-potential measurement. l-ASNase was covalently immobilized onto the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The properties of the immobilized enzyme, including optimum pH, temperature, kinetic parameters, thermal stability, reusability and storage stability were investigated and compared to free one. Immobilized enzyme was found to be stable over a wide range of pH and temperature range than free enzyme. The immobilized l-ASNase also showed higher thermal stability after 180 min incubation at 50 °C. The immobilized enzyme still retained 63% of its original activity after 16 times of reuse. The Km value for the immobilized enzyme was 1.15-fold lower than the free enzyme, which indicates increased affinity for the substrate. Additionally, the immobilized enzyme was active over 65% and 53% after 30 days of storage at 4 °C and room temperature (∼25 °C), respectively. Thereby, the results confirmed that thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles had high efficiency for l-ASNase immobilization and improved stability of L-ASNase.

  8. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.

    Science.gov (United States)

    Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-09-01

    The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Immobilization of bacterial proteases on water-solved polymer by means of electron beam

    Science.gov (United States)

    Gonchar, A. M.; Auslender, V. L.

    1996-12-01

    Possibility of electron beam usage for proteases' immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease takes place due to free-radical linking of enzyme and carrier with formation of mycellium-like structures. Immobilization improves heat resistance of enzyme up to 60°C without substrate and up to 80°C in presence of substrate, widens range of pH activity in comparison with non-immobilized forms. Immobilized proteases do not contain peroxides or long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology.

  10. Immobilization of bacterial proteases on water-solved polymer by means of electron beam

    International Nuclear Information System (INIS)

    Gonchar, A.M.; Auslender, V.L.

    1996-01-01

    Possibility of electron beam usage for proteases' immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease takes place due to free-radical linking of enzyme and carrier with formation of mycellium-like structures. Immobilization improves heat resistance of enzyme up to 60 o C without substrate and up to 80 o C in presence of substrate, widens range of pH activity in comparison with non-immobilized forms. Immobilized proteases do not contain peroxides or long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology. (Author)

  11. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe{sub 3}O{sub 4} nanoparticles for potential application in food industries

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinipour, Seyyedeh Leila [Tabriz University of Medical Sciences, Biotechnology Research Center (Iran, Islamic Republic of); Khiabani, Mahmoud Sowti [Tabriz University, Department of Food Science and Technology, Faculty of Agricultural Science (Iran, Islamic Republic of); Hamishehkar, Hamed, E-mail: hamishehkar.hamed@gmail.com [Tabriz University of Medical Sciences, Drug Applied Research Center (Iran, Islamic Republic of); Salehi, Roya, E-mail: salehiro@tbzmed.ac.ir [Tabriz University of Medical Sciences, Research Center for Pharmaceutical Nanotechnology and School of Advanced Medical Science (Iran, Islamic Republic of)

    2015-09-15

    Enzymes play an essential role in catalyzing various reactions. However, their instability upon repetitive/prolonged use, elevated temperature, acidic or alkaline pH remains an area of concern. α-Amylase, a widely used enzyme in food industries for starch hydrolysis, was covalently immobilized on the surface of two developed matrices, amino-functionalized silica-coated magnetite nanoparticles (AFSMNPs) alone and covered with chitosan. The synthesis steps and characterizations of NPs were examined by FT-IR, VSM, and SEM. Modified nanoparticles with average diameters of 20–80 nm were obtained. Enzyme immobilization efficiencies of 89 and 74 were obtained for AFSMNPs and chitosan-coated AFSMNPs, respectively. The optimum pH obtained was 6.5 and 8.0 for the enzyme immobilized on AFSMNPs and chitosan-coated AFSMNPs, respectively. Optimum temperature for the immobilized enzyme shifted toward higher temperatures. Considerable enhancements in thermal stabilities were observed for the immobilized enzyme at elevated temperatures up to 80 °C. A frequent use experiment demonstrated that the immobilized enzyme retained 74 and 85 % of its original activity even after 20 times of repeated use in AFSMNPs and chitosan-coated AFSMNPs, respectively. Storage stability demonstrated that free enzyme lost its activity completely within 30 days. But, immobilized enzyme on AFSMNPs and chitosan-coated AFSMNPs preserved 65.73 and 78.63 % of its initial activity, respectively, after 80 days of incubation. In conclusion, a substantial improvement in the performance of the immobilized enzyme with reference to the free enzyme was obtained. Furthermore, the relative activities of immobilized enzyme are superior than free enzyme over the broader pH and temperature ranges.

  12. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethylphosphine as an Optional Coupling Agent

    Directory of Open Access Journals (Sweden)

    Su-Ching Chen

    2015-06-01

    Full Text Available β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethylphosphine (THP. The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w·v−1 lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.

  13. b-GALACTOSIDASE IMMOBILIZATION ON CONTROLLED PORE SILICA

    Directory of Open Access Journals (Sweden)

    H. C. Trevisan

    1997-12-01

    Full Text Available The immobilization of b -galactosidase from Kluyveromyces fragilis on controlled pore silica was investigated. Immobilization was performed on amino silica activated with glutaraldehyde and the product was applied to the hydrolysis of lactose of whey. The behaviors of the soluble and immobilized enzyme were compared by using whey and a lactose solution as the substrate. With the aim of optimizing the method, parameters such as the amount of glutaraldehyde and the size of the particles were evaluated by comparing activities and stabilities on batch and continuously fluidized bed reactors

  14. A bimetallic nanocomposite electrode for direct and rapid ...

    Indian Academy of Sciences (India)

    A new label-free electrochemical DNA biosensor is presented based on carbon paste electrode (CPE) modified with gold (Au) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode. The proposed sensor was made by immobilization of 15-mer single stranded oligonucleotide probe related to ...

  15. Co-Immobilization of Superoxide Dismutase with Catalase on Soft Microparticles Formed by Self-Assembly of Amphiphilic Poly(Aspartic Acid

    Directory of Open Access Journals (Sweden)

    Siyu Mao

    2017-07-01

    Full Text Available Through genetic engineering technology, catalase (CAT and superoxide dismutase (SOD have been separately fused to an elastin-like polypeptide (ELP. Thus, the enzymes can be purified through phase transition. Hexadecylamine-modified poly(aspartic acid (HPASP is able to self-assemble, forming soft microparticles. The HPASP microparticles were used to co-immobilize SOD-ELP and CAT-ELP through amidation reaction. Circular dichroism (CD confirmed that the secondary structures of the co-immobilized enzymes have been preserved. Fluorescence spectra showed that the co-immobilized enzymes exhibited a higher stability than the free enzymes. Dismutation of superoxide by superoxide dismutase (SOD generates hydrogen peroxide. By using the co-immobilized enzymes (SOD-ELP/CAT-ELP@HPASP, the generated hydrogen peroxide of SOD-ELP can be decomposed in situ by CAT-ELP. Activity assay results demonstrated that the superoxide anion (•O2− scavenging ability is 63.15 ± 0.75% for SOD-ELP/CAT-ELP@HPASP. The advantages of the approach of enzyme co-immobilization include the fact that the soft support HPASP itself is a polypeptide in nature, the stability of immobilized enzymes is improved, and a high activity has been achieved. Potentially SOD-ELP/CAT-ELP@HPASP can be applied in the cosmetic industry.

  16. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    Science.gov (United States)

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  17. Flow synthesis of phenylserine using threonine aldolase (TA) immobilized on Eupergit support

    NARCIS (Netherlands)

    Tibhe, J.; Fu, Hui; Noel, T.; Wang, Q.; Meuldijk, J.; Hessel, V.

    2013-01-01

    Threonine aldolase (TA) from Thermotoga maritima was immobilized on Eupergit support by both a direct and an indirect method. The incubation time for the direct immobilization method was optimized for the highest amount of enzyme on the support. By introducing the immobilized TA in a packed-bed

  18. Chromatographic separation and continuously referenced, on-line monitoring of creatine kinase isoenzymes by use of an immobilized-enzyme microreactor

    International Nuclear Information System (INIS)

    Denton, M.S.; Bostick, W.D.; Dinsmore, S.R.; Mrochek, J.E.

    1978-01-01

    We describe a new concept in continuously referenced monitoring of the isoenzyme activities of creatine kinase (EC 2.7.3.2) after liquid-chromatographic separation. After separation on a diethylaminoethyl-Sephacel column, the three isoenzymes of creatine kinase undergo a series of upled enzyme reactions, ultimately resulting in the formation of ultraviolet-detectable NADPH. A major advantage of this detection system is the immobilized-enzyme microreactor (2 x 17 mm), which may be removed and stored refrigerated when not in use. A split-stream configuration allows self-blanking of endogenous ultraviolet-absorbing constituents in authentic sera samples, which would otherwise make definitive diagnosis and quantitation difficult or impossible. This detection system is applicable to the automated analysis of creatine kinase isoenzymes in the clinical laboratory. 5 figures; 42 references

  19. Synthesis of glycinamides using protease immobilized magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Abha Sahu

    2016-12-01

    Full Text Available In the present investigation, Bacillus subtilis was isolated from slaughterhouse waste and screened for the production of protease enzyme. The purified protease was successfully immobilized on magnetic nanoparticles (MNPs and used for the synthesis of series of glycinamides. The binding and thermal stability of protease on MNPs was confirmed by FTIR spectroscopy and TGA analysis. The surface morphology of MNPs before and after protease immobilization was carried out using SEM analysis. XRD pattern revealed no phase change in MNPs after enzyme immobilization. The processing parameters for glycinamides synthesis viz. temperature, pH, and time were optimized using Response Surface Methodology (RSM by using Design Expert (9.0.6.2. The maximum yield of various amides 2 butyramidoacetic acid (AMD-1,83.4%, 2-benzamidoacetic acid (AMD-2,80.5% and 2,2′((carboxymethyl amino-2-oxoethyl-2-hydroxysuccinylbis(azanediyldiacetic acid (AMD-3,80.8% formed was observed at pH-8, 50 °C and 30 min. The synthesized immobilized protease retained 70% of the initial activity even after 8 cycles of reuse.

  20. Immobilization of Lipase from Geobacillus sp. and Its Application in Synthesis of Methyl Salicylate.

    Science.gov (United States)

    Bhardwaj, Kamal Kumar; Saun, Nitin Kumar; Gupta, Reena

    2017-04-03

    The present study showed unique properties of an alkaline, thermophilic lipase of Geobacillus sp. which was isolated from soil of hot spring. The study was aimed to investigate the optimum immobilization conditions of lipase onto silica gel matrix (100-200 mesh) by surface adsorption method and its application in the synthesis of methyl salicylate. Lipase immobilized by surface adsorption onto silica pretreated with 4% glutaraldehyde showed 74.67% binding of protein and the optimum binding time for glutaraldehyde was found to be 2 h. The enzyme showed maximum activity at temperature 55°C, incubation time of 10 min at pH 9.5 of Tris buffer (0.1 M). Free as well as immobilized lipase was more specific to p-NPP (20 mM). All the metal ions and detergents used had inhibitory effect on free as well as immobilized enzyme. The silica immobilized enzyme was reused for hydrolysis and it retained almost 40.78% of its original activity up to 4 th cycle. On optimizing different parameters such as molar ratio, incubation time, temperature, amount of enzyme, amount of molecular sieve, the % yield of methyl salicylate was found to be 82.94.

  1. Three Dimensional Immobilization of Beta-Galactosidase on a Silicon Surface (Preprint)

    National Research Council Canada - National Science Library

    Luckarift, Heather R; Betancor, Lorena; Spain, Jim C

    2006-01-01

    .... The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity...

  2. Inclusion bodies of recombinant Epstein-Barr virus capsid antigen p18 as potential immobilized antigens in enzyme immunoassays for detection of nasopharyngeal carcinoma.

    Science.gov (United States)

    Lim, Chun Shen; Goh, Siang Ling; Kariapper, Leena; Krishnan, Gopala; Lim, Yat-Yuen; Ng, Ching Ching

    2015-08-25

    Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC). Thioredoxin fusion VCA p18 (VCA-Trx) and IBs of VCA p18 without fusion tags (VCA-IBs) were purified from E. coli. The diagnostic performances of IgG/VCA-IBs, IgG/VCA-Denat-IBs (using VCA-IBs coated in 8mol/l urea), IgG/VCA-Trx, and IgG/VCA-Peptide assays were compared by screening 100 NPC case-control pairs. The IgG/VCA-Denat-IBs assay showed the best area under the receiver operating characteristic curve (AUC: 0.802; p<0.05), while the AUCs for the IgG/VCA-IBs, IgG/VCA-Trx, and IgG/VCA-Peptide assays were comparable (AUC: 0.740, 0.727, and 0.741, respectively). We improved the diagnostic performance of the ELISA significantly using IBs of recombinant VCA p18. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  4. Fabrication and characterization of spiral interdigitated electrodes based biosensor for salivary glucose detection

    Science.gov (United States)

    Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Voon, C. H.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun

    2017-03-01

    This work introduces the non-invasive glucose monitoring technique by using the Complementary Metal Oxide Semiconductor (CMOS) technologically fabricated spiral Interdigitated Electrodes (IDE) based biosensor. Scanning Electron Microscopy (SEM) image explores the morphology of spiral IDE while Energy Dispersive X-Ray (EDX) determines the elements induced in spiral IDE. Oral saliva of two patients are collected and tested on the spiral IDE sensor with electrical characterization as glucose detection results. However, both patients exhibit their glucose level characteristics inconsistently. Therefore, this work could be extended and enhanced by adding Glutaraldehyde in between 3-Aminoproply)triethoxysilane (APTES) modified and glucose oxidase (GOD) enzyme immobilized layer with FTIR validation for bonding attachment.

  5. A Novel Process to Prepare Chitosan Macrospheres without Shrinkage and its Application to Immobilize β-Galactosidase

    Directory of Open Access Journals (Sweden)

    Su-Fang Sun

    2009-01-01

    Full Text Available A new process for the preparation of chitosan macrospheres, which was simple and practicable, was suggested in this paper and various chitosans with different molecular weight were used as materials to immobilize β-galactosidase and the chitosan macrospheres with the lowest molecular weight (500 000 was selected as enzyme immobilization carrier based on the highest enzyme activity. In order to overcome the shrinkage of chitosan during drying, the wet macrospheres obtained was treated by 30% glycerol solution for 1 h before drying and the results showed that the dried chitosan macrospheres obtained could keep almost the same structure as its wet form, which was very important for chitosan as enzyme carrier in industry. Finally, β-galactosidase from Aspergillus oryzae was immobilized on above dry chitosan macrospheres and a satisfactory result of the immobilized enzyme was obtained in enzyme activity yield, pH stability, thermal stability, operational stability, Michaelis constants Km and the maximum velocity (Vm

  6. Electrochemical quartz crystal impedance study on immobilization of glucose oxidase in a polymer grown from dopamine oxidation at an Au electrode for glucose sensing

    International Nuclear Information System (INIS)

    Li Mingrui; Deng Chunyan; Xie Qingji; Yang Yang; Yao Shouzhuo

    2006-01-01

    Glucose oxidase (GOD) was codeposited into a polymer grown from oxidation of dopamine (DA) at an Au electrode in a neutral phosphate aqueous solution for the first time. The electrochemical quartz crystal impedance analysis (EQCIA) method was used to monitor the GOD-immobilization process. Effects of concentrations of phosphate buffer, DA and GOD were investigated, and the optimal concentrations were found to be 20.0mM phosphate buffer (pH 7.0), 30.0mM DA and 5.00mgml -1 GOD. A glucose biosensor was thus constructed, and effects of various experimental parameters on the sensor performance, including applied potential, solution pH and electroactive interferents, were examined. At an optimal potential of 0.6V versus the KCl-saturated calomel electrode (SCE), the current response of the biosensor in the selected phosphate buffer (pH 7.0) was linear with the concentration of glucose from 0.05 to 9mM, with a lower detection limit of 3μM (S/N=3), short response time (within 15s) and good anti-interferent ability. The Michaelis constant (K m app ) was estimated to be 9.6mM. The biosensor exhibited good storage stability, i.e. 96% of its initial response was retained after 7-day storage in the selected phosphate buffer at 4deg. C, and even after another 3 weeks the biosensor retained 86% of its initial response. In addition, the enzymatic specific activity and enzymatic relative activity of the GOD immobilized in the polymer from dopamine oxidation (PFDO) were estimated from the EQCIA method to be 1.43kUg -1 and 3.7%, respectively, which were larger than the relevant values obtained experimentally using poly(o-aminophenol) and poly(N-methylpyrrole) matrices, suggesting that the PFDO is a better matrix to immobilize GOD

  7. Functionalized agarose as an effective and novel matrix for immobilizing Cicer arietinum β-galactosidase and its application in lactose hydrolysis

    Directory of Open Access Journals (Sweden)

    Rukhsana Satar

    Full Text Available Abstract The present study demonstrates the immobilization of β-galactosidase from Cicer arietinum on a simple and inexpensive matrix, glutaraldehyde functionalized agarose (GFA, to suggest its potential application in hydrolyzing whey lactose in biotechnology industries. The designed matrix provided large surface area for the immobilization of β-galactosidase, apart from exhibiting greater biocatalytic activity in terms of selectivity, loading and stability. GFA retained 83% enzyme activity as a result of immobilization. Soluble and GFA bound Cicer arietinum β-galactosidase showed the same pH and temperature-optima at pH 5.0 and at 50 °C, respectively. However, immobilized enzyme exhibited a greater fraction of activity at both acidic and basic pH, and at higher temperature ranges. GFA bound enzyme lost only 20 % enzyme in the presence of 3% galactose, and retained 70 % activity even after its sixth repeated use. Immobilized enzyme showed pronounced lactose hydrolysis from whey in batch processes at 55 °C as compared to enzyme in solution.

  8. Haloalkane hydrolysis with an immobilized haloalkane dehalogenase.

    Science.gov (United States)

    Dravis, B C; Swanson, P E; Russell, A J

    2001-11-20

    Haloalkane dehalogenase from Rhodococcus rhodochrous was covalently immobilized onto a polyethyleneimine impregnated gamma-alumina support. The dehalogenating enzyme was found to retain greater than 40% of its original activity after immobilization, displaying an optimal loading (max. activity/supported protein) of 70 to 75 mg/g with an apparent maximum (max. protein/support) of 156 mg/g. The substrate, 1,2,3-trichloropropane, was found to favorably partition (adsorb) onto the inorganic alumina carrier (10 to 20 mg/g), thereby increasing the local reactant concentration with respect to the catalyst's environment, whereas the product, 2,3-dichloropropan-1-ol, demonstrated no affinity. Additionally, the inorganic alumina support exhibited no adverse effects because of solvent/component incompatibilities or deterioration due to pH variance (pH 7.0 to 10.5). As a result of the large surface area to volume ratio of the support matrix and the accessibility of the bound protein, the immobilized biocatalyst was not subject to internal mass transfer limitations. External diffusional restrictions could be eliminated with simple agitation (mixing speed: 50 rpm; flux: 4.22 cm/min). The pH-dependence of the immobilized dehalogenase was essentially the same as that for the native enzyme. Finally, both the thermostability and resistance toward inactivation by organic solvent were improved by more than an order of magnitude after immobilization. Copyright 2001 John Wiley & Sons, Inc.

  9. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    International Nuclear Information System (INIS)

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-01-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe 3 O 4 –SiO 2 ) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g −1 . The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K m and the V max values (0.02 mM, 6.40 U·mg −1 enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg −1 enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity, reusability, and thermo-stability than

  10. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuan-Ting [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ren, Xiao-Yun [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liu, Yi-Ming [Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217 (United States); Wei, Ying [Changzhi Medical College, Changzhi 046000 (China); Qing, Lin-Sen [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liao, Xun, E-mail: liaoxun@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe{sub 3}O{sub 4}–SiO{sub 2}) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g{sup −1}. The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K{sub m} and the V{sub max} values (0.02 mM, 6.40 U·mg{sup −1} enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg{sup −1} enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity

  11. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review

    Directory of Open Access Journals (Sweden)

    Jahwarhar Izuan Abdul Rashid

    2017-11-01

    Full Text Available In recent years, electrochemical deoxyribonucleic acid (DNA sensor has recently emerged as promising alternative clinical diagnostic devices especially for infectious disease by exploiting DNA recognition events and converting them into an electrochemical signal. This is because the existing DNA diagnostic method possesses certain drawbacks such as time-consuming, expensive, laborious, low selectivity and sensitivity. DNA immobilization strategies and mechanism of electrochemical detection are two the most important aspects that should be considered before developing highly selective and sensitive electrochemical DNA sensor. Here, we focus on some recent strategies for DNA probes immobilization on the surface of electrochemical transducer such as adsorption, covalent bonding and Avidin/Streptavidin-Biotin interaction on the electrode surface for specific interaction with its complementary DNA target. A numerous approach for DNA hybridization detection based electrochemical technique that frequently used including direct DNA electrochemical detection and label based electrochemical (redox-active indicator, enzyme label and nanoparticles were also discussed in aiming to provide general guide for the design of electrochemical DNA sensor. We also discussed the challenges and suggestions to improve the application of electrochemical DNA sensor at point-care setting. Keywords: Electrochemical DNA sensor, DNA immobilization, DNA hybridization, Electrochemical mechanism

  12. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    Science.gov (United States)

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  13. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    International Nuclear Information System (INIS)

    Korecka, Lucie; Jezova, Jana; Bilkova, Zuzana; Benes, Milan; Horak, Daniel; Hradcova, Olga; Slovakova, Marcela; Viovy, Jean-Louis

    2005-01-01

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized

  14. Lactate Biosensor Based on Cellulose Acetate Membrane Bound Lactate Oxidase

    Directory of Open Access Journals (Sweden)

    Suman

    2007-05-01

    Full Text Available Lactate biosensor was fabricated by immobilizing lactate oxidase in cellulose acetate membrane and by mounting over the sensing part of Pt electrode (working and connected to Ag/AgCl electrode (reference along with auxillary electrode through potentiostat. The enzyme electrode was anodically polarized at +400 mV to generate electrons from H2O2, which was formed from oxidation of serum lactate by immobilized lactate oxidase. The minimum detection limit of the electrode was 0.1mmoles/L and sensitivity of the sensor was 0.008 mA/mM/L lactate. Assay coefficients of variation were < 2% .A good correlation (r=0.99 was found between lactate values obtained by colorimetric method and lactate biosensor. The self-life of the biosensor was 18 days at 4ºC and enzyme electrode can be re-used 150 times without any significant loss in enzyme activity.

  15. Smectite clays as solid supports for immobilization of beta-glucosidase : Synthesis, characterization, and biochemical properties

    NARCIS (Netherlands)

    Serefoglou, Evangelia; Litina, Kiriaki; Gournis, Dimitrios; Kalogeris, Emmanuel; Tzialla, Aikaterini A.; Pavlidis, Ioannis V.; Stamatis, Haralambos; Maccallini, Enrico; Lubomska, Monika; Rudolf, Petra

    2008-01-01

    Nanomaterials as solid supports can improve the efficiency of immobilized enzymes by reducing diffusional limitation as well as by increasing the surface area per mass unit and therefore improving enzyme loading. In this work, beta-glucosidase from almonds was immobilized on two smectite nanoclays.

  16. Immobilization of urease on copper chelated EC-Tri beads and ...

    African Journals Online (AJOL)

    Maximum reaction rate (Vmax) and Michaelis-Menten constant (km) were determined for the free and immobilized enzymes. Various characteristics of immobilized urease such as the temperature activity curve, thermal stability, operational stability and storage stability were evaluated. The results demonstrated that triazole ...

  17. Application of immobilized tannase from Aspergillus niger for the removal of tannin from myrobalan juice.

    Science.gov (United States)

    Srivastava, Anita; Kar, Rita

    2010-10-01

    Tannase produced optimally on an agroresidue by an Aspergillus niger isolate under submerged fermentation immobilized on sodium alginate beads with 93.6% efficiency was applied for tannin removal from myrobalan/aonla (Phyllanthus emblica) juice. The pH and temperature optima of the immobilized enzyme were found to be 5.4 and 40°C while the corresponding values of the soluble enzyme were 5.8 and 35°C. Maximum tannin removal of 73.6% was obtained at 40°C and 150 rpm in 180 min with 36.6 U/ml of immobilized enzyme while the same amount of the soluble enzyme removed 45.2% of tannin at 37°C and 150 rpm in the same time period. The immobilized beads could be used repeatedly till 7th cycle with 77% efficiency. When preserved at 6°C the beads retained 71.7% of enzyme activity after 60 days. Reduction in vitamin C content, which is responsible for antioxidant property of the fruit, was minimum at only 2% during the treatment.

  18. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  19. Immobilization of redox mediators on functionalized carbon nanotube

    Indian Academy of Sciences (India)

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) ...

  20. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  1. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode

    International Nuclear Information System (INIS)

    Fang Lanyun; Lue Zhaozi; Wei Hui; Wang Erkang

    2008-01-01

    A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged-signal-aptamer sandwich type was formed. Treating the resulting electrode surface with tri-n-propylamine (TPA) and applying a swept potential to the electrode, ECL response was generated which realized the detection of target protein. Spectroscopy and electrochemical impedance techniques were used to characterize and confirm the fabrication of the ECL aptasensor. AuNPs amplification and smart sensor fabrication art were implemented for the sensitive and cost-effective detection purpose. Signal-to-dose curve excellently followed a sandwich format equation and could be used to quantify the protein, and the detection limit was estimated to be 10 nM. Other forms of thrombin such as β- and γ-thrombins had negligible response, which indicated a high specificity of α-thrombin detection. The aptasensor opened up new fields of aptamer applications in ECL domain, a highly sensitive technique, and had a promising perspective to be applied in microarray analysis

  2. Study on the immobilization of alpha-amylase by radiation-induced polymerization at low-temperature, (4)

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1975-07-01

    The immobilization of α-amylase by radiation-induced polymerization at low-temperature in the presence of an adsorbent has been studied. In the previous method, part of the enzyme escapes from the immobilized composition of HEMA polymer with a few enzyme reactions. This is prevented, however, by the present method in which the adsorbent-HEMA-α-amylase mixtures is immobilized by the polymerization with HEMA. Anhydride of an inorganic salt such as calcium carbonate, sodium acetate, calcium acetate, or DRIERETE (composed mainly of calcium sulfate) is especially useful as the adsorbent. Use of an inorganic ion such as Ca ++ or Na + improves remarkably heat-stability of the immobilized composition. The most effective composition for immobilization is 200 μg of α-amylase, 1 ml of 30% HEMA solution (in 0.02M phosphate buffer solution, pH 6.9) and 0.3g of DRIERETE. Frozen and irradiated with γ-rays of Co-60 to a total dose 1 x 10 6 R at -24 0 C, the immobilized enzyme has the activity about 93% that of the native one. (auth.)

  3. Immobilization of NTPDase-1 from Trypanosoma cruzi and Development of an Online Label-Free Assay.

    Science.gov (United States)

    Calil, Felipe Antunes; Lima, Juliana Maria; de Oliveira, Arthur Henrique Cavalcante; Mariotini-Moura, Christiane; Fietto, Juliana Lopes Rangel; Cardoso, Carmen Lucia

    2016-01-01

    The use of IMERs (Immobilized Enzyme Reactors) as a stationary phase coupled to high performance chromatographic systems is an interesting approach in the screening of new ligands. In addition, IMERs offer many advantages over techniques that employ enzymes in solution. The enzyme nucleoside triphosphate diphosphohydrolase (NTPDase-1) from Trypanosoma cruzi acts as a pathogen infection facilitator, so it is a good target in the search for inhibitors. In this paper, immobilization of NTPDase-1 afforded ICERs (Immobilized Capillary Enzyme Reactors). A liquid chromatography method was developed and validated to monitor the ICER activity. The conditions for the application of these bioreactors were investigated, and excellent results were obtained. The enzyme was successfully immobilized, as attested by the catalytic activity detected in the Tc NTPDase-1-ICER chromatographic system. Kinetic studies on the substrate ATP gave K M of 0.317 ± 0.044 mmol·L -1 , which still presented high affinity compared to in solution. Besides that, the ICER was stable for 32 days, enough time to investigate samples of possible inhibitors, including especially the compound Suramin, that inhibited 51% the enzyme activity at 100  µ mol·L -1 , which is in accordance with the data for the enzyme in solution.

  4. Immobilization of NTPDase-1 from Trypanosoma cruzi and Development of an Online Label-Free Assay

    Directory of Open Access Journals (Sweden)

    Felipe Antunes Calil

    2016-01-01

    Full Text Available The use of IMERs (Immobilized Enzyme Reactors as a stationary phase coupled to high performance chromatographic systems is an interesting approach in the screening of new ligands. In addition, IMERs offer many advantages over techniques that employ enzymes in solution. The enzyme nucleoside triphosphate diphosphohydrolase (NTPDase-1 from Trypanosoma cruzi acts as a pathogen infection facilitator, so it is a good target in the search for inhibitors. In this paper, immobilization of NTPDase-1 afforded ICERs (Immobilized Capillary Enzyme Reactors. A liquid chromatography method was developed and validated to monitor the ICER activity. The conditions for the application of these bioreactors were investigated, and excellent results were obtained. The enzyme was successfully immobilized, as attested by the catalytic activity detected in the TcNTPDase-1-ICER chromatographic system. Kinetic studies on the substrate ATP gave KM of 0.317 ± 0.044 mmol·L−1, which still presented high affinity compared to in solution. Besides that, the ICER was stable for 32 days, enough time to investigate samples of possible inhibitors, including especially the compound Suramin, that inhibited 51% the enzyme activity at 100 µmol·L−1, which is in accordance with the data for the enzyme in solution.

  5. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.

    Science.gov (United States)

    Engel, A Both; Cherifi, A; Tingry, S; Cornu, D; Peigney, A; Laurent, Ch

    2013-06-21

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  6. Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes

    International Nuclear Information System (INIS)

    Nguyen, Le Huy; Nguyen, Ngoc Thinh; Nguyen, Hai Binh; Tran, Dai Lam; Nguyen, Tuan Dung

    2012-01-01

    Polyaniline-carboxylic multiwalled carbon nanotubes composite film (PANi-MWCNT) has been polymerized on the surface of interdigitated platinum electrode (fabricated by MEMS technology) which was compatibly connected to Autolab interface via universal serial bus (USB). An amperometric biosensor based on covalent immobilization of cholesterol oxidase (ChOx) on PANi–MWCNT film with potassium ferricyanide (FeCN) as the redox mediator was developed. The mediator helps to shuttle the electrons between the immobilized ChOx and the PANi-MWCNT electrode, therefore operating at a low potential of −0.3 V compared to the saturated calomel electrode (SCE). This potential precludes the interfering compounds from oxidization. The bio-electrode exhibits good linearity from 0.02 to 1.2 mM cholesterol concentration with a correlation coefficient of 0.9985

  7. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Immobilization of Na,K-ATPase isolated from rat brain synaptic plasma membranes

    Directory of Open Access Journals (Sweden)

    ANICA HROVAT

    2002-12-01

    Full Text Available Rat brain Na,K-ATPase partially purified by SDS from synaptic plasma membranes (SPM was immobilized by adsorption on nitrocellulose (NC, polyvinylidene fluoride (PVDF and glass fiber (GF membranes. Partial SDS solubilization increased the enzyme activity by 40 %. With regard to the preservation of the enzyme activity, nitrocellulose was shown to be the optimal support for the immobilization. The enzyme showed the highest percentage activity (14 % after 30 min of SPM adsorption, at 20°C under the vaccum, with 25 mg of proteins per NC disc filter. In addition, adsorption on NC stabilizes the Na,K-ATPase, since the activity was substantial 72 h after adsorption at 20°C. After adsorption, the sensitivity of the enzyme to HgCl2and CdCll2 inhibition was higher. The results show that immobilized Na,K-ATPase SPM can be used as a practical model for the detection of metal ions in different samples.

  9. Effect of immobilized lipase supplementation of diets on the performance of the Japanese quails

    International Nuclear Information System (INIS)

    Abu-Taleb, A.M.; Ezzat, I.E.; Saleh, M.

    2004-01-01

    In the present study, lipase was immobilized onto two different supports, agarose and gelatin. Some physico-chemical properties of the free and immobilized lipase such as optimum temperature, optimum ph and storage stability were studied. Storage of the enzymes for 2 months showed that the free enzyme lost its activity, while the immobilized on the gelatin showed better resistance towards ph and temperature variations than that immobilized onto agarose. Four experiments were conducted to test the effect of the immobilized lipase supplementation on the productive performance of the Japanese quails. During the first 3 weeks, the addition of lipase to poultry diets caused an increase in the body weight gain of birds than the enzyme-free diet. An obvious improvement in quail day egg production during the laying period was observed with the groups fed on a diet supplemented with 3000 and 2000 I U of immobilized lipase per kilogram feed. Blood cholesterol was not affected with lipase addition, while total lipids were significantly increased. Significant reduction was also observed in thyroid hormones (T 3 and T 4 ) as compared with the control group

  10. Covalent immobilization of penicillin G acylase on aminopropyl-functionalized mesostructured cellular foams.

    Science.gov (United States)

    Zhao, Junqi; Wang, Yujun; Luo, Guangsheng; Zhu, Shenlin

    2010-10-01

    Mesostructured cellular foams (MCFs) are suitable for biomolecular immobilization because of their relatively large-pore diameter and pore volume. Penicillin G acylase (PGA) was immobilized on aminopropyl-functionalized MCFs through Schiff base reaction. It is shown that PGA could be fixed more firmly through the covalent immobilization on aminopropyl-functionalized MCFs support than through the adsorption immobilization on blank MCFs. The PGA loading amount on the aminopropyl-functionalized MCFs could reach 443 mg/g (dry support), and the apparent activity could achieve up to 4138 U/g (dry support). The influence of the amount of grafted aminopropyl group was studied, and it is found that the optimal molar ratio of MCFs to APTS was 15/1; in addition, the suitable enzyme distribution density for the specific activity of the immobilized PGA was 0.7 mg enzyme per m(2) of specific area of MCFs. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Nano-Immobilized Biocatalysts for Biodiesel Production from Renewable and Sustainable Resources

    Directory of Open Access Journals (Sweden)

    Keon Hee Kim

    2018-02-01

    Full Text Available The cost of biodiesel production relies on feedstock cost. Edible oil is unfavorable as a biodiesel feedstock because of its expensive price. Thus, non-edible crop oil, waste oil, and microalgae oil have been considered as alternative resources. Non-edible crop oil and waste cooking oil are more suitable for enzymatic transesterification because they include a large amount of free fatty acids. Recently, enzymes have been integrated with nanomaterials as immobilization carriers. Nanomaterials can increase biocatalytic efficiency. The development of a nano-immobilized enzyme is one of the key factors for cost-effective biodiesel production. This paper presents the technology development of nanomaterials, including nanoparticles (magnetic and non-magnetic, carbon nanotubes, and nanofibers, and their application to the nano-immobilization of biocatalysts. The current status of biodiesel production using a variety of nano-immobilized lipase is also discussed.

  12. Catalase immobilized on a functionalized multi-walled carbon nanotubes–gold nanocomposite as a highly sensitive bio-sensing system for detection of hydrogen peroxide

    International Nuclear Information System (INIS)

    Hong, Jun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Yang, Tian; Ghourchian, Hedayatollah; Moosavi-Movahedi, Zainab; Sheibani, Nader; Li, Jian-Guo; Moosavi-Movahedi, Ali Akbar

    2013-01-01

    By immobilizing catalase on a nanocomposite containing functionalized multi-walled carbon nanotubes and L-cysteine modified gold nanoparticles, a third generation biosensor was developed for determination of the hydrogen peroxide. The cyclic voltammograms of catalase on the nanocomposite modified glassy carbon electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential of −441 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant was calculated to be 8.72 s −1 . The enzyme electrode response toward hydrogen peroxide was linear in the concentrations ranging from 1 nM to 1 μM, with a detection limit of 0.5 nM. The apparent Michaelis–Menten constant was calculated to be 0.34 μM

  13. Immobilization of α-Amylase from Anoxybacillus sp. SK3-4 on ReliZyme and Immobead Supports

    Directory of Open Access Journals (Sweden)

    Ummirul Mukminin Kahar

    2016-09-01

    Full Text Available α-Amylase from Anoxybacillus sp. SK3-4 (ASKA is a thermostable enzyme that produces a high level of maltose from starches. A truncated ASKA (TASKA variant with improved expression and purification efficiency was characterized in an earlier study. In this work, TASKA was purified and immobilized through covalent attachment on three epoxide (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A and an amino-epoxide (ReliZyme HFA403/M activated supports. Several parameters affecting immobilization were analyzed, including the pH, temperature, and quantity (mg of enzyme added per gram of support. The influence of the carrier surface properties, pore sizes, and lengths of spacer arms (functional groups on biocatalyst performances were studied. Free and immobilized TASKAs were stable at pH 6.0–9.0 and active at pH 8.0. The enzyme showed optimal activity and considerable stability at 60 °C. Immobilized TASKA retained 50% of its initial activity after 5–12 cycles of reuse. Upon degradation of starches and amylose, only immobilized TASKA on ReliZyme HFA403/M has comparable hydrolytic ability with the free enzyme. To the best of our knowledge, this is the first report of an immobilization study of an α-amylase from Anoxybacillus spp. and the first report of α-amylase immobilization using ReliZyme and Immobeads as supports.

  14. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  15. Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.

    Science.gov (United States)

    Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan

    2010-08-15

    For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Understanding the mechanism of direct electrochemistry of mitochondria-modified electrodes from yeast, potato and bovine sources at carbon paper electrodes

    International Nuclear Information System (INIS)

    Giroud, Fabien; Nicolo, Tera A.; Koepke, Sara J.; Minteer, Shelley D.

    2013-01-01

    Although mitochondria have been used for bio-electrochemistry for over 5 years, little is known about their direct electrochemistry mechanism. This paper focuses on developing a better understanding of the electron transfer mechanism of mitochondria from three different organisms at carbon electrodes. Yeast, potato and bovine mitochondria have been successfully isolated and immobilized onto Toray paper electrodes via vapor deposited silica. Organelle-modified electrodes were first characterized using cyclic voltammetry. Similar electrochemical signals were obtained for all organisms. Direct electron transfer was observed when a metabolite of the Krebs cycle was present in the buffer solution. Control experiments based on the immobilization of two electron carriers contained in mitochondria, cytochrome c and a quinone (coenzyme Q 10 ), tend to show the electron transfer mechanism to the carbon material comes from the quinone pool of the organelles. As quinones are known to be pH-dependent, we further investigated the response of the electrochemical signal of the three isolated mitochondria and the two electron carriers separately. The half wave potentials obtained from the organelles appeared to be pH-dependent and their variations are comparable to coenzyme Q 10 rather than cytochrome c. Finally, extraction of both the cytochrome c and the quinone pool from intact mitochondria was performed to validate our hypothesis that direct electrochemistry of mitochondria happens via the quinone pool. Electrochemistry of immobilized quinone-depleted mitochondria validated the hypothesis that the mitochondria are communicating with the electrodes through the quinone pool

  17. Amperometric biosensor for hydrogen peroxide based on Hemoglobin/DNA/Poly-2,6-pyridinediamine modified gold electrode

    International Nuclear Information System (INIS)

    Tong Zhongqiang; Yuan Ruo; Chai Yaqin; Chen Shihong; Xie Yi

    2007-01-01

    An amperometric biosensor for hydrogen peroxide (H 2 O 2 ) was fabricated based on immobilization of hemoglobin (Hb) on DNA/Poly-2,6-pyridinediamine (PPD) modified Au electrode. PPD thin films were firstly electro-deposited on Au electrode surface which provide a template to attach negatively charged DNA molecules by electrostatic attraction. The adsorbed DNA network provides a good microenvironment for the immobilization of biomolecules and promotes electron transfer between the immobilized Hb and the electrode surface. The fabrication process of the biosensor was characterized by electrochemical impedance spectroscopy. Experimental conditions influencing the biosensor performance such as pH, potential and temperature were assessed and optimized. The proposed biosensor displayed a good electrocatalytic response to the reduction of H 2 O 2 , its linear range is 1.7 μM to 3 mM with a detection limit of 1.0 μM based on the signal-to-noise ratio of 3 (S/N = 3) under the optimized conditions. The Michaelis-Menten constant K m app of Hb immobilized on the electrode surface was found to be 0.8 mM. The biosensor shows high sensitivity and stability. Importantly, this deposition methodology could be further developed for the immobilization of other proteins and biocompounds

  18. Cell immobilization by radiation polymerization-a comparative study

    International Nuclear Information System (INIS)

    Dahlan bin Hj Mohd; Abu Bakar bin Salleh; Che Nyonya binti Abd Razak; Meheran binti Hamenudin; Kamaruzaman bin Ampon; Wan Md Zin bin Wan Yunus; Mahiran binti Basri

    1991-01-01

    An extracellular lipase producing fungus, Rhizopus rhizopodi formis was immobilised using radiation-induced polyHEMA, alginate and k-carrageenan. Immobilizations were done on spores since they showed better resistance against gamma radiation. The simultaneous radiation immobilization technique was found to be unsuitable because of contamination. Post-radiation immobilization using polyHEMA yielded 2-3 times more enzyme than the free cells. The value, however was slightly lower than the ones given by the cells immobilised using alginate or k-carrageenan, but the radiation-induced polymer was stronger and less likely to disintegrate

  19. Co-immobilization of cyclohexanone monooxygenase and glucose-6-phosphate dehydrogenase onto polyethylenimine-porous agarose polymeric composite using γ irradiation to use in biotechnological processes

    International Nuclear Information System (INIS)

    Atia, K.S.

    2005-01-01

    The co-immobilization of cyclohexanone monooxygenase (CHMO) and glucose-6-phosphate dehydrogenase (G6PDH) was optimized by completely coating, via covalent immobilization, the surface aldehyde groups of porous agarose (glyoxyl-agarose) with amine groups of polyethylenimine (PEI). The highest immobilization efficiency (∼87%) (activity of enzyme per amount of immobilized enzyme) was obtained with a CHMO/G6PDH ratio 2:1. The effects of different ratios of the support to the amount of enzymes (CHMO:G6PDH=2:1), the optimum incubation pH and the incubation time on the enzymatic activity of the enzymes were determined and found to be 5:1, 8.5 and 30 min, respectively. Subjecting the co-immobilized enzymes to doses of γ-radiation (5-100 kGy) resulted in complete loss in the activity of the free enzymes at a dose of 40 kGy, while the co-immobilized ones showed relatively high resistance to γ-radiation up to a dose of 50 kGy

  20. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    International Nuclear Information System (INIS)

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen

    2012-01-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E°′) of − 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s −1 ; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M −1 cm −2 and an apparent Michaelis–Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: ► A film composed of MWCNT-ACS was used for biosensor application. ► High sensitivity and good selectivity were obtained for the detection of glucose. ► This approach is potential for fabrication of mediator-free biosensor.