WorldWideScience

Sample records for enzyme family lacking

  1. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  2. The Amborella vacuolar processing enzyme family

    Directory of Open Access Journals (Sweden)

    Valérie ePoncet

    2015-08-01

    Full Text Available Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs. In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type of seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013. In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella’s genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations of in New Caledonia.

  3. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes

    International Nuclear Information System (INIS)

    Stanley, Lesley A.; Skare, Julie A.; Doyle, Edward; Powrie, Robert; D'Angelo, Diane; Elcombe, Clifford R.

    2005-01-01

    p-Phenylenediamine (PPD) is a widely used ingredient in permanent hair dyes; however, little has been published on its metabolism, especially with respect to hepatic cytochrome P450 (CYP)-mediated oxidation. This is regarded as a key step in the activation of carcinogenic arylamines that ultimately leads to the development of bladder cancer. Most epidemiology studies show no significant association between personal use of hair dyes and bladder cancer, but one recent study reported an increased risk of bladder cancer in women who were frequent users of permanent hair dyes. The aim of the present study was to use intact human hepatocytes, human liver microsomes, and heterologously expressed human CYPs to determine whether PPD is metabolised by hepatic CYPs to form an N-hydroxylamine. p-Phenylenediamine was N-acetylated by human hepatocytes to form N-acetylated metabolites, but there was no evidence for the formation of mono-oxygenated metabolites or for enzyme-mediated covalent binding of 14 C-PPD to microsomal protein. In contrast, 2-aminofluorene underwent CYP-mediated metabolism to ≥4 different hydroxylated metabolites. The lack of evidence for hepatic CYP-mediated metabolism of PPD is inconsistent with the hypothesis that this compound plays a causal role in the development of bladder cancer via a mode of action involving hepatic metabolism to an N-hydroxyarylamine

  5. Independent Evolution of Six Families of Halogenating Enzymes.

    Science.gov (United States)

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.

  6. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.

    Science.gov (United States)

    Daniel, Bastian; Konrad, Barbara; Toplak, Marina; Lahham, Majd; Messenlehner, Julia; Winkler, Andreas; Macheroux, Peter

    2017-10-15

    Biological oxidations form the basis of life on earth by utilizing organic compounds as electron donors to drive the generation of metabolic energy carriers, such as ATP. Oxidative reactions are also important for the biosynthesis of complex compounds, i.e. natural products such as alkaloids that provide vital benefits for organisms in all kingdoms of life. The vitamin B 2 -derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) enable an astonishingly diverse array of oxidative reactions that is based on the versatility of the redox-active isoalloxazine ring. The family of FAD-linked oxidases can be divided into subgroups depending on specific sequence features in an otherwise very similar structural context. The sub-family of berberine bridge enzyme (BBE)-like enzymes has recently attracted a lot of attention due to the challenging chemistry catalyzed by its members and the unique and unusual bi-covalent attachment of the FAD cofactor. This family is the focus of the present review highlighting recent advancements into the structural and functional aspects of members from bacteria, fungi and plants. In view of the unprecedented reaction catalyzed by the family's namesake, BBE from the California poppy, recent studies have provided further insights into nature's treasure chest of oxidative reactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes

    NARCIS (Netherlands)

    Meng, Xiangfeng; Gangoiti, Joana; Bai, Yuxiang; Pijning, Tjaard; Van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2016-01-01

    Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their

  8. Systems biological approach to investigate the lack of familial link between Down's Syndrome & Neural Tube Disorders.

    Science.gov (United States)

    Ragunath, Pk; Abhinand, Pa

    2013-01-01

    Systems Biology involves the study of the interactions of biological systems and ultimately their functions. Down's syndrome (DS) is one of the most common genetic disorders which are caused by complete, or occasionally partial, triplication of chromosome 21, characterized by cognitive and language dysfunction coupled with sensory and neuromotor deficits. Neural Tube Disorders (NTDs) are a group of congenital malformations of the central nervous system and neighboring structures related to defective neural tube closure during the first trimester of pregnancy usually occurring between days 18-29 of gestation. Several studies in the past have provided considerable evidence that abnormal folate and methyl metabolism are associated with onset of DS & NTDs. There is a possible common etiological pathway for both NTDs and Down's syndrome. But, various research studies over the years have indicated very little evidence for familial link between the two disorders. Our research aimed at the gene expression profiling of microarray datasets pertaining to the two disorders to identify genes whose expression levels are significantly altered in these conditions. The genes which were 1.5 fold unregulated and having a p-value disorders were recognized and over representation analysis was carried out for each of the constituent genes. The comprehensive manual analysis of these genes yields a hypothetical understanding of the lack of familial link between DS and NTDs. There were no genes involved with folic acid present in the dense cliques. Only - CBL, EGFR genes were commonly present, which makes the allelic variants of these genes - good candidates for future studies regarding the familial link between DS and NTDs. NTD - Neural Tube Disorders, DS - Down's Syndrome, MTHFR - Methylenetetrahydrofolate reductase, MTRR- 5 - methyltetrahydrofolate-homocysteine methyltransferase reductase.

  9. [High prevalence of work-family conflict among female physicians: lack of social support as a potential antecedent].

    Science.gov (United States)

    Adám, Szilvia

    2009-12-13

    According to stress theory, social support from work and non-work-related sources may influence the level of perceived work-family conflict. Despite the high prevalence of work-family conflict as a source of distress among female physicians, no information is available on the associations between work-family conflict and social support in a traditional, family-centric cultural setting, where female role expectations are demanding. The author hypothesized that high prevalence of work-family conflict could be attributed to the lack of social support among female physicians. To investigate the prevalence and psychosocial characteristics of social support and its relations to work-family conflict among female physicians. Quantitative and qualitative study using questionnaires ( n = 420) and in-depth interviews ( n = 123) among female and male physicians. Female physicians reported significantly higher mean level and prevalence of work-family conflict compared to men. The predominant form of work-family was work-to-family conflict among physicians; however, significantly more female physicians experienced family-to-work conflict and strain-based work-family conflict compared to men (39% vs. 18% and 68% vs. 20%, respectively). Significantly more male physicians experienced time-based work-family conflict compared to women. Content analyses of interview data revealed that provision of support to physicians manifested itself in parental support in career selection, spousal support with household duties, peer support with enabling access to professional role models-mentors, peer support to ensure gender equity, and organizational support with family-centric policies. Female physicians reported significantly less parental, spousal, and peer support compared to men. Female physicians lacking parental, peer, or organizational support experienced significantly higher level of work-family conflict compared to appropriate control. In regression analyses, high job demands, job

  10. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  11. Familial LCAT deficiency: from renal replacement to enzyme replacement

    NARCIS (Netherlands)

    Stoekenbroek, R. M.; van den Bergh Weerman, M. A.; Hovingh, G. K.; Potter van Loon, B. J.; Siegert, C. E. H.; Holleboom, A. G.

    2013-01-01

    Familial LCAT deficiency (FLD) is a recessive lipid disorder ultimately leading to end-stage renal disease (ESRD). We present two brothers with considerable variation in the age at which they developed ESRD. Kidney biopsies revealed both tubular and glomerular pathology. To date, no causal therapy

  12. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases

    DEFF Research Database (Denmark)

    Janeček, Štefan; Svensson, Birte; MacGregor, E. Ann

    2014-01-01

    of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α...... investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases....

  13. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    DEFF Research Database (Denmark)

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively....... The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been...... be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation...

  14. Structure and mechanism of dimethylsulfoxide reductase, a molybdopterin-containing enzyme of DMSO reductase family

    International Nuclear Information System (INIS)

    McEwan, A.G.; Ridge, J.P.; McDevitt, C.A.; Hanson, G.R.

    2001-01-01

    Full text: Apart from nitrogenase, enzymes containing molybdenum are members of a superfamily, the molybdopterin-containing enzymes. Most of these enzymes catalyse an oxygen atom transfer and two electron transfer reaction. During catalysis the Mo at the active site cycles between the Mo(VI) and Mo(IV) states. The DMSO reductase family of molybdopterin-containing enzymes all contain a bis(molybdopterin guanine dinucleotide)Mo cofactor and over thirty examples have now been described. Over the last five years crystal structures of dimethylsulfoxide (DMSO) reductase and four other enzymes of the DMSO reductase family have revealed that enzymes of this family have a similar tertiary structure. The Mo atom at the active site is coordinated by four thiolate ligands provided by the dithiolene side chains of the two MGD molecules of the bis(MGD)Mo cofactor as well as a ligand provided by an amino acid side chain. In addition, an oxygen atom in the form of an oxo, hydroxo or aqua group is also coordinated to the Mo atom. In the case of dimethylsulfoxide reductase X-ray crystallography of the product-reduced species and Raman spectroscopy has demonstrated that the enzyme contains a single exchangeable oxo group that is H-bonded to W116

  15. Characteristic single glucosinolates from Moringa oleifera: Induction of detoxifying enzymes and lack of genotoxic activity in various model systems.

    Science.gov (United States)

    Förster, Nadja; Mewis, Inga; Glatt, Hansruedi; Haack, Michael; Brigelius-Flohé, Regina; Schreiner, Monika; Ulrichs, Christian

    2016-11-09

    Leaves of Moringa oleifera are used by tribes as biological cancer medicine. Scientific investigations with M. oleifera conducted so far have almost exclusively used total plant extracts. Studies on the activity of single compounds are missing. Therefore, the biological effects of the two main aromatic multi-glycosylated glucosinolates of M. oleifera were investigated in the present study. The cytotoxic effects of M. oleifera glucosinolates were identified for HepG2 cells (NRU assay), for V79-MZ cells (HPRT assay, SCE assay), and for two Salmonella typhimurium strains (Ames test). Genotoxic effects of these glucosinolates were not observed (Ames test, HPRT assay, and SCE assay). Reporter gene assays revealed a significant increase in the ARE-dependent promoter activity of NQO1 and GPx2 indicating an activation of the Nrf2 pathway by M. oleifera glucosinolates. Since both enzymes can also be induced via activation of the AhR, plasmids containing promoters of both enzymes mutated in the respective binding sites (pGL3enh-hNQO1-ARE, pGL3enh-hNQO1-XRE, pGL3bas-hGPX2-mutARE, pGL3bas-hGPX2-mutXRE) were transfected. Analyses revealed that the majority of the stimulating effects was mediated by the ARE motif, whereas the XRE motif played only a minor role. The stimulating effects of M. oleifera glucosinolates could be demonstrated both at the transcriptional (reporter gene assay, real time-PCR) and translational levels (enzyme activity) making them interesting compounds for further investigation.

  16. Lack of GNAQ and GNA11 germ-line mutations in familial melanoma pedigrees with uveal melanoma or blue nevi

    Directory of Open Access Journals (Sweden)

    Jason Ezra Hawkes

    2013-06-01

    Full Text Available Approximately 10% of melanoma cases are familial, but only 25-40% of familial melanoma cases can be attributed to germ-line mutations in the CDKN2A - the most significant high-risk melanoma susceptibility locus identified to date. The pathogenic mutation(s in most of the remaining familial melanoma pedigrees have not yet been identified. The most common mutations in nevi and sporadic melanoma are found in BRAF and NRAS, both of which result in constitutive activation of the MAPK pathway. However, these mutations are not found in uveal melanomas or the intradermal melanocytic proliferations known as blue nevi. Rather, multiple studies report a strong association between these lesions and somatic mutations in Guanine nucleotide-binding protein G(q subunit alpha (GNAQ, Guanine nucleotide-binding protein G(q subunit alpha-11 (GNA11 and BRCA1 associated protein-1 (BAP1. Recently, germ-line mutations in BAP1, the gene encoding a tumor suppressing deubiquitinating enzyme, have been associated with predisposition to a variety of cancers including uveal melanoma, but no studies have examined the association of germ-line mutations in GNAQ and GNA11 with uveal melanoma and blue nevi. We have now done so by sequencing exon 5 of both of these genes in 13 unique familial melanoma pedigrees, members of which have had either uveal or cutaneous melanoma and/or blue nevi. Germ-line DNA from a total of 22 individuals was used for sequencing; however no deleterious mutations were detected. Nevertheless, such candidate gene studies and the discovery of novel germ-line mutations associated with an increased MM susceptibility can lead to a better understanding of the pathways involved in melanocyte transformation, formulation of risk assessment, and the development of specific drug therapies.

  17. Structural and Biochemical Characterization of Xylella fastidiosa DsbA Family Members: New insightsinto the Enzyme-Substrate Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, F.; Meza, A; Gulmarges, B

    2009-01-01

    Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determination of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.

  18. Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient.

    Directory of Open Access Journals (Sweden)

    Anna Bachmann

    Full Text Available BACKGROUND: To avoid spleen-dependent killing mechanisms parasite-infected erythrocytes (IE of Plasmodium falciparum malaria patients have the capacity to bind to endothelial receptors. This binding also known as sequestration, is mediated by parasite proteins, which are targeted to the erythrocyte surface. Candidate proteins are those encoded by P. falciparum multicopy gene families, such as var, rif, stevor or PfMC-2TM. However, a direct in vivo proof of IE sequestration and expression of multicopy gene families is still lacking. Here, we report on the analysis of IE from a black African immigrant, who received the diagnosis of a malignant lymphoproliferative disorder and subsequently underwent splenectomy. Three weeks after surgery, the patient experienced clinical falciparum malaria with high parasitemia and circulating developmental parasite stages usually sequestered to the vascular endothelium such as late trophozoites, schizonts or immature gametocytes. METHODOLOGY/PRINCIPAL FINDINGS: Initially, when isolated from the patient, the infected erythrocytes were incapable to bind to various endothelial receptors in vitro. Moreover, the parasites failed to express the multicopy gene families var, A-type rif and stevor but expression of B-type rif and PfMC-2TM genes were detected. In the course of in vitro cultivation, the parasites started to express all investigated multicopy gene families and concomitantly developed the ability to adhere to endothelial receptors such as CD36 and ICAM-1, respectively. CONCLUSION/SIGNIFICANCE: This case strongly supports the hypothesis that parasite surface proteins such as PfEMP1, A-type RIFIN or STEVOR are involved in interactions of infected erythrocytes with endothelial receptors mediating sequestration of mature asexual and immature sexual stages of P. falciparum. In contrast, multicopy gene families coding for B-type RIFIN and PfMC-2TM proteins may not be involved in sequestration, as these genes were

  19. Poor financial support and lack of knowledge, and neglect among female elders who lived in extended families

    Directory of Open Access Journals (Sweden)

    Setho Hadisuyatmana

    2016-11-01

    Full Text Available Introduction: Elder neglect remains as unreported case that involved old women in Ampenan West Nusa Tenggara. Despite the paucity of evidence to report the significance, an earlier pilot study showed that elders who lived with their family in Ampenan were found dirty, skin dry, and malnourished. The purpose of this study was to explore the correlating factors to the unreported cases of neglect among these elders. Method: This study was a cross sectional conducted using analytic descriptive approach. Thirty-four extended families lived with female elders in the working area of Puskesmas Ampenan were purposively involved as participants to this study. Family’s awareness of abuse was collected using a questionnaire developed based on Elder Abuse Instrument component checklist and the suspicion to neglect among the elders were collected using the 13-item checklist from Elder Abuse Instrument. The data were then analyzed using Spearman’s rho (α ≤ 0,05. Result:  The results show that family’s lack of knowledge has a strong correlation with elder neglect (p= 0,000 with r= 0,643. Discussion: The analysis to this finding suggests that not only were the families lack of knowledge, but they were also being burden by the poor economic situation that trigger the unnecessary neglect to their female elders. These results abridge the paucity of evidence to explain the correlating factors with the incidence of elder abuse in eastern Indonesia. Further research is necessary to explain the size and the impact of neglect toward the elders. It is suggested that local department of health, Puskesmas and health professionals to educate the community as the first step to improve the elders’ quality of life and promote healthy ageing.

  20. Elevated liver enzymes in women with a family history of diabetes.

    Science.gov (United States)

    Inoue, Kazuo; Matsumoto, Masatoshi; Miyoshi, Yuji; Kobayashi, Yasuki

    2008-03-01

    Both elevated liver enzymes and a family history of diabetes mellitus (FHDM) are independent risk factors for type 2 diabetes. This study evaluates the epidemiological association between elevated liver enzymes and FHDM. Subjects included 3512 women workers without diabetes, hepatitis, a smoking habit, or a history of alcohol intake. Blood samples and personal data were collected from all subjects. Subjects with FHDM had a higher mean body mass index (BMI: 23.9kg/m(2) vs. 23.4kg/m(2); p=0.003). Laboratory testing also revealed higher mean fasting plasma glucose (FPG: 5.67mmol/L vs. 5.22mmol/L; penzymes were associated with FHDM. In particular, elevated GGT was related to FHDM, independent of the other variables. Elevated liver enzymes, probably due to fat deposition in the liver, may play a role in increasing the risk of diabetes in individuals with FHDM.

  1. Lack of chart reminder effectiveness on family medicine resident JNC-VI and NCEP III guideline knowledge and attitudes

    Directory of Open Access Journals (Sweden)

    Upshur Ross EG

    2004-07-01

    Full Text Available Abstract Background The literature demonstrates that medical residents and practicing physicians have an attitudinal-behavioral discordance concerning their positive attitudes towards clinical practice guidelines (CPG, and the implementation of these guidelines into clinical practice patterns. Methods A pilot study was performed to determine if change in a previously identified CPG compliance factor (accessibility would produce a significant increase in family medicine resident knowledge and attitude toward the guidelines. The primary study intervention involved placing a summary of the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC VI and the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (NCEP III CPGs in all patient (>18 yr. charts for a period of three months. The JNC VI and NCEP III CPGs were also distributed to each Wayne State family medicine resident, and a copy of each CPG was placed in the preceptor's area of the involved clinics. Identical pre- and post- intervention questionnaires were administered to all residents concerning CPG knowledge and attitude. Results Post-intervention analysis failed to demonstrate a significant difference in CPG knowledge. A stastically significant post-intervention difference was found in only on attitude question. The barriers to CPG compliance were identified as 1 lack of CPG instruction; 2 lack of critical appraisal ability; 3 insufficient time; 4 lack of CPG accessibility; and 5 lack of faculty modeling. Conclusion This study demonstrated no significant post intervention changes in CPG knowledge, and only one question that reflected attitude change. Wider resident access to dedicated clinic time, increased faculty modeling, and the implementation of an electronic record/reminder system that uses a team-based approach are compliance factors that

  2. Lack of Association between SLC30A8 Variants and Type 2 Diabetes in Mexican American Families

    Directory of Open Access Journals (Sweden)

    Hemant Kulkarni

    2016-01-01

    Full Text Available SLC30A8 encodes zinc transporter 8 which is involved in packaging and release of insulin. Evidence for the association of SLC30A8 variants with type 2 diabetes (T2D is inconclusive. We interrogated single nucleotide polymorphisms (SNPs around SLC30A8 for association with T2D in high-risk, pedigreed individuals from extended Mexican American families. This study of 118 SNPs within 50 kb of the SLC30A8 locus tested the association with eight T2D-related traits at four levels: (i each SNP using measured genotype approach (MGA; (ii interaction of SNPs with age and sex; (iii combinations of SNPs using Bayesian Quantitative Trait Nucleotide (BQTN analyses; and (iv entire gene locus using the gene burden test. Only one SNP (rs7817754 was significantly associated with incident T2D but a summary statistic based on all T2D-related traits identified 11 novel SNPs. Three SNPs and one SNP were weakly but interactively associated with age and sex, respectively. BQTN analyses could not demonstrate any informative combination of SNPs over MGA. Lastly, gene burden test results showed that at best the SLC30A8 locus could account for only 1-2% of the variability in T2D-related traits. Our results indicate a lack of association of the SLC30A8 SNPs with T2D in Mexican American families.

  3. First glycoside hydrolase family 2 enzymes from Thermus antranikianii and Thermus brockianus with β-glucosidase activity

    Directory of Open Access Journals (Sweden)

    Carola eSchröder

    2015-06-01

    Full Text Available Two genes tagh2 and tbgh2 coding for enzymes with hydrolytic activity towards esculin were identified from the extreme thermophilic, aerobic bacteria Thermus antranikianii (Ta and T. brockianus (Tb. Shortened conserved domains predicted a membership of the enzymes of glycoside hydrolase (GH family 2. At present, β-galactosidase activity is found frequently in GH family 2 but β-glucosidase activity has not been reported in this family before. The enzymes TaGH2 and TbGH2 preferred hydrolysis of nitrophenol-linked β-D-glucopyranosides with specific activities of 3,966 U/mg and 660 U/mg, respectively. Residual activities of 40 % (TaGH2 and 51 % (TbGH2 towards 4-NP-β-D-galactopyranoside were observed. Furthermore, TaGH2 hydrolyzed cellobiose. TbGH2, however, showed no activity on cellobiose or lactose. The enzymes exhibited highest activity at 95 °C (TaGH2 and 90 °C (TbGH2 at pH 6.5. Both enzymes were extremely thermostable and thermal activation up to 250 % was observed at temperatures between 50 and 60 °C. Accordingly, the first thermoactive glycoside hydrolase family 2 enzymes with β glucosidase activity have been identified and characterized. The hydrolysis of cellobiose is a unique property of TaGH2 when compared to the enzymes of GH family 2.

  4. Influence of the lack of a standard definition of “family business” on research into their international strategies☆

    Directory of Open Access Journals (Sweden)

    Myriam Cano-Rubio

    2017-09-01

    Full Text Available Research into the internationalisation strategies of family businesses is plagued by the excessive use of many and varied concepts to define these companies, and often leads to diverse and disparate results. The conceptual spectrum used by researchers is very broad, ranging from the simplest definition, in which a company is classified as a family business on the basis of the perception of its owners and/or managers, to others which consider variables such as ownership, management, involvement of the family in the business, continuity and combinations thereof. The results obtained highlight the need for those researching family business internationalisation strategies to use a standard definition of family business, so enabling us to continue advancing in our knowledge of this topic and avoid coming to different conclusions merely as a result of having based our research on different definitions.

  5. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox family of enzymes

    Directory of Open Access Journals (Sweden)

    Lambeth J David

    2007-07-01

    Full Text Available Abstract Background NADPH-oxidases (Nox and the related Dual oxidases (Duox play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS. Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to

  6. Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family

    DEFF Research Database (Denmark)

    Skov, L K; Mirza, Osman Asghar; Henriksen, A

    2001-01-01

    Amylosucrase (E.C. 2.4.1.4) is a member of Family 13 of the glycoside hydrolases (the alpha-amylases), although its biological function is the synthesis of amylose-like polymers from sucrose. The structure of amylosucrase from Neisseria polysaccharea is divided into five domains: an all helical N...... of amylosucrase is at the bottom of a pocket at the molecular surface. A substrate binding site resembling the amylase 2 subsite is not found in amylosucrase. The site is blocked by a salt bridge between residues in the second and eight loops of the (beta/alpha)(8)-barrel. The result is an exo-acting enzyme. Loop......-terminal domain that is not similar to any known fold, a (beta/alpha)(8)-barrel A-domain, B- and B'-domains displaying alpha/beta-structure, and a C-terminal eight-stranded beta-sheet domain. In contrast to other Family 13 hydrolases that have the active site in the bottom of a large cleft, the active site...

  7. Influence of the lack of a standard definition of “family business” on research into their international strategies☆

    OpenAIRE

    Myriam Cano-Rubio; Guadalupe Fuentes-Lombardo; Manuel Carlos Vallejo-Martos

    2017-01-01

    Research into the internationalisation strategies of family businesses is plagued by the excessive use of many and varied concepts to define these companies, and often leads to diverse and disparate results. The conceptual spectrum used by researchers is very broad, ranging from the simplest definition, in which a company is classified as a family business on the basis of the perception of its owners and/or managers, to others which consider variables such as ownership, management, involvemen...

  8. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    Directory of Open Access Journals (Sweden)

    Zylicz-Stachula Agnieszka

    2009-05-01

    Full Text Available Abstract Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases, however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase and methyltransferase (MTase activities of wild type (wt TspGWI (either recombinant or isolated from Thermus sp. are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/EXK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module

  9. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family

    International Nuclear Information System (INIS)

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin; Bang, Won Gi; Kim, Hye-Yeon; Kim, Kyoung Heon; Choi, In-Geol

    2015-01-01

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad, is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr"1"3"6 and Thr"3"3"0) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys"8"4 as the catalytic base to polarize the Ser"1"8"7 nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr"1"3"6 and Thr"3"3"0 mediates ligand-binding and substrate.

  10. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  11. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin; Bang, Won Gi [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-713 (Korea, Republic of); Kim, Hye-Yeon [Protein Structure Research Team, Korea Basic Science Institute, Ochang, Chungbuk, 363-883 (Korea, Republic of); Kim, Kyoung Heon [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-713 (Korea, Republic of); Choi, In-Geol, E-mail: igchoi@korea.ac.kr [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-713 (Korea, Republic of)

    2015-11-13

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad, is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr{sup 136} and Thr{sup 330}) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys{sup 84} as the catalytic base to polarize the Ser{sup 187} nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr{sup 136} and Thr{sup 330} mediates ligand-binding and substrate.

  12. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose

    NARCIS (Netherlands)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    Transglucosidases belonging to the glycoside hydrolase (GH) family 70 are promising enzymatic tools for the synthesis of α-glucans with defined structures from renewable sucrose and starch substrates. Depending on the GH70 enzyme specificity, α-glucans with different structures and physicochemical

  13. Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance.

    Science.gov (United States)

    Schama, Renata; Pedrini, Nicolás; Juárez, M Patricia; Nelson, David R; Torres, André Q; Valle, Denise; Mesquita, Rafael D

    2016-02-01

    Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process - carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) - are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than

  14. S-phase checkpoint elements of the E2F-1 family increase radiosensitivity in fibrosarcoma cells lacking p53

    International Nuclear Information System (INIS)

    Bodis, Stephan; Pruschy, Martin; Wirbelauer, Christiane; Glanzmann, Christoph; Krek, Wilhelm

    1997-01-01

    Purpose: Correct advance of cells through the S-phase of the mammalian cell cycle depends on the timely controlled activity of the E2F-1 transcription factor by cyclin A-cdk2. We are studying the reproductive integrity and radiosensitation of isogenic mouse fibrosarcoma cells, differing only in their p53 status, after expression of E2F-1 wildtype (wt) and specific E2F-1 mutants (mt) lacking the cyclin-A-binding domain. In this tumor model system only p53 wild-type expressing tumor cells are sensitive to ionizing radiation in vitro and in vivo. Material and Methods: Either wild-type p53 or genetically engineered p53 'null' mouse embryo fibroblasts were transfected with the oncogenes E1A and ras. These otherwise isogenic fibrosarcoma cells, with a malignant phenotype and tumorigenic in nude mice, were transfected with retroviruses containing either E2F-1 wild-type or specific E2F-1 mutants lacking the cyclin-A binding domain. Reproductive integrity after E2F-1 transfection with or without ionizing radiation (RT) was tested using the clonogenic assay. Tumor cell morphology of treated cells is analyzed for cell death mechanism. Results: E2F-1 wild-type expression in fibrosarcoma cells induced a clear p53 dependent cell death. While clonogenic survival of p53 'null' tumor cells was only slightly reduced with the expression of E2F-1 wild type (survival fraction of 0.5), the clonogenic survival of p53 wild-type fibrosarcoma tumor cells was reduced by at least one logarithm (survival fraction of 0.05). However, expression of the specific E2F-1 mutant lacking the cyclin-A binding domain reduced clonogenic survival in both the p53 'null' and the p53 wild-type fibrosarcoma cells by at least 2 logarithms (survival fraction 0.01 for p53 'null' and 0.002 for p53 wild-type). The mean values of the survival fractions after 2 and 5 Gy radiation alone in p53 'null' fibrosarcoma cells (SF 2 and SF 5) were SF 2 0.7, SF 5 = 0.15, respectively. The combination of ionizing RT in the p53

  15. Association of liver enzymes and computed tomography markers of liver steatosis with familial longevity.

    Directory of Open Access Journals (Sweden)

    Michiel Sala

    Full Text Available OBJECTIVE: Familial longevity is marked by enhanced peripheral but not hepatic insulin sensitivity. The liver has a critical role in the pathogenesis of hepatic insulin resistance. Therefore we hypothesized that the extent of liver steatosis would be similar between offspring of long-lived siblings and control subjects. To test our hypothesis, we investigated the extent of liver steatosis in non-diabetic offspring of long-lived siblings and age-matched controls by measuring liver enzymes in plasma and liver fat by computed tomography (CT. RESEARCH DESIGN AND METHODS: We measured nonfasting alanine transaminase (ALT, aspartate aminotransferase (AST, and Υ-glutamyl transferase (GGT in 1625 subjects (736 men, mean age 59.1 years from the Leiden Longevity Study, comprising offspring of long-lived siblings and partners thereof. In a random subgroup, fasting serum samples (n = 230 were evaluated and CT was performed (n = 268 for assessment of liver-spleen (L/S ratio and the prevalence of moderate-to-severe non-alcoholic fatty liver disease (NAFLD. Linear mixed model analysis was performed adjusting for age, gender, body mass index, smoking, use of alcohol and hepatotoxic medication, and correlation of sibling relationship. RESULTS: Offspring of long-lived siblings had higher nonfasting ALT levels as compared to control subjects (24.3 mmol/L versus 23.2 mmol/L, p = 0.03, while AST and GGT levels were similar between the two groups. All fasting liver enzyme levels were similar between the two groups. CT L/S ratio and prevalence of moderate-to-severe NAFLD was similar between groups (1.12 vs 1.14, p = 0.25 and 8% versus 8%, p = 0.91, respectively. CONCLUSIONS: Except for nonfasting levels of ALT, which were slightly higher in the offspring of long-lived siblings compared to controls, no differences were found between groups in the extent of liver steatosis, as assessed with liver biochemical tests and CT. Thus, our data indicate that the extent of liver

  16. Association of liver enzymes and computed tomography markers of liver steatosis with familial longevity.

    Science.gov (United States)

    Sala, Michiel; Kroft, Lucia J M; Röell, Boudewijn; van der Grond, Jeroen; Slagboom, P Eline; Mooijaart, Simon P; de Roos, Albert; van Heemst, Diana

    2014-01-01

    Familial longevity is marked by enhanced peripheral but not hepatic insulin sensitivity. The liver has a critical role in the pathogenesis of hepatic insulin resistance. Therefore we hypothesized that the extent of liver steatosis would be similar between offspring of long-lived siblings and control subjects. To test our hypothesis, we investigated the extent of liver steatosis in non-diabetic offspring of long-lived siblings and age-matched controls by measuring liver enzymes in plasma and liver fat by computed tomography (CT). We measured nonfasting alanine transaminase (ALT), aspartate aminotransferase (AST), and Υ-glutamyl transferase (GGT) in 1625 subjects (736 men, mean age 59.1 years) from the Leiden Longevity Study, comprising offspring of long-lived siblings and partners thereof. In a random subgroup, fasting serum samples (n = 230) were evaluated and CT was performed (n = 268) for assessment of liver-spleen (L/S) ratio and the prevalence of moderate-to-severe non-alcoholic fatty liver disease (NAFLD). Linear mixed model analysis was performed adjusting for age, gender, body mass index, smoking, use of alcohol and hepatotoxic medication, and correlation of sibling relationship. Offspring of long-lived siblings had higher nonfasting ALT levels as compared to control subjects (24.3 mmol/L versus 23.2 mmol/L, p = 0.03), while AST and GGT levels were similar between the two groups. All fasting liver enzyme levels were similar between the two groups. CT L/S ratio and prevalence of moderate-to-severe NAFLD was similar between groups (1.12 vs 1.14, p = 0.25 and 8% versus 8%, p = 0.91, respectively). Except for nonfasting levels of ALT, which were slightly higher in the offspring of long-lived siblings compared to controls, no differences were found between groups in the extent of liver steatosis, as assessed with liver biochemical tests and CT. Thus, our data indicate that the extent of liver steatosis is similar between offspring of long-lived siblings and

  17. Rapid changes in transcription profiles of the Plasmodium yoelii yir multigene family in clonal populations: lack of epigenetic memory?

    Directory of Open Access Journals (Sweden)

    Deirdre Cunningham

    Full Text Available The pir multigene family, found in the genomes of Plasmodium vivax, P. knowlesi and the rodent malaria species, encode variant antigens that could be targets of the immune response. Individual parasites of the rodent malaria Plasmodium yoelii, selected by micromanipulation, transcribe only 1 to 3 different pir (yir suggesting tight transcriptional control at the level of individual cells. Using microarray and quantitative RT-PCR, we show that despite this very restricted transcription in a single cell, many yir genes are transcribed throughout the intra-erythrocytic asexual cycle. The timing and level of transcription differs between genes, with some being more highly transcribed in ring and trophozoite stages, whereas others are more highly transcribed in schizonts. Infection of immunodeficient mice with single infected erythrocytes results in populations of parasites each with transcriptional profiles different from that of the parent parasite population and from each other. This drift away from the original 'set' of transcribed genes does not appear to follow a preset pattern and "epigenetic memory" of the yir transcribed in the parent parasite can be rapidly lost. Thus, regulation of pir gene transcription may be different from that of the well-characterised multigene family, var, of Plasmodium falciparum.

  18. KIR And HLA Haplotype Analysis in a Family Lacking The KIR 2DL1-2DP1 Genes

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2015-06-01

    Full Text Available The killer cell immunoglobulin-like receptor (KIR gene cluster exhibits extensive allelic and haplotypic diversity that is observed as presence/absence of genes, resulting in expansion and contraction of KIR haplotypes and by allelic variation of individual KIR genes. We report a case of KIR pseudogene 2DP1 and 2DL1 gene absence in members of one family with the children suffering from acute myelogenous leukemia (AML. Killer cell immunoglo-bulin-like receptor low resolution genotyping was performed by the polymerase chain reaction (PCR-sequencespecific primers (SSP/sequence-specific oligonucleotide (SSO method and haplotype assignment was done by gene content analysis. Both parents and the maternal grandfather, shared the same Cen-B2 KIR haplotype, containing KIR 3DL3, -2DS2, -2DL2 and -3DP1 genes. The second haplotype in the KIR genotype of the mother and grandfather was Tel-A1 with KIR 2DL4 (normal and deleted variant, -3DL1, -22 bp deletion variant of the 2DS4 gene and -3DL2, while the second haplotype in the KIR genotype of the father was Tel-B1 with 2DL4 (normal variant, -3DS1, -2DL5, -2DS5, -2DS1 and 3DL2 genes. Haplotype analysis in all three offsprings revealed that the children inherited the Cen-B2 haplotype with the same gene content but two of the children inherited a deleted variant of the 2DL4 gene, while the third child inherited a normal one. The second haplotype of all three offspring contained KIR 2DL4, -2DL5, -2DS1, -2DS4 (del 22bp variant, -2DS5, -3DL1 and -3DL2 genes, which was the basis of the assumption that there is a hybrid haplotype and that the present 3DL1 gene is a variant of the 3DS1 gene. Due to consanguinity among the ancestors, the results of KIR segregation analysis showed the existence of a very rare KIR genotype in the offspring. The family who is the subject of this case is even more interesting because the father was 10/10 human leukocyte antigen (HLA-matched to his daughter, all members of the family have

  19. Lack of MEF2A Delta7aa mutation in Irish families with early onset ischaemic heart disease, a family based study.

    LENUS (Irish Health Repository)

    Horan, Paul G

    2006-01-01

    BACKGROUND: Ischaemic heart disease (IHD) is a complex disease due to the combination of environmental and genetic factors. Mutations in the MEF2A gene have recently been reported in patients with IHD. In particular, a 21 base pair deletion (Delta7aa) in the MEF2A gene was identified in a family with an autosomal dominant pattern of inheritance of IHD. We investigated this region of the MEF2A gene using an Irish family-based study, where affected individuals had early-onset IHD. METHODS: A total of 1494 individuals from 580 families were included (800 discordant sib-pairs and 64 parent-child trios). The Delta7aa region of the MEF2A gene was investigated based on amplicon size. RESULTS: The Delta7aa mutation was not detected in any individual. Variation in the number of CAG (glutamate) and CCG (proline) residues was detected in a nearby region. However, this was not found to be associated with IHD. CONCLUSION: The Delta7aa mutation was not detected in any individual within the study population and is unlikely to play a significant role in the development of IHD in Ireland. Using family-based tests of association the number of tri-nucleotide repeats in a nearby region of the MEF2A gene was not associated with IHD in our study group.

  20. Sequence-based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families.

    Directory of Open Access Journals (Sweden)

    Janine Maimanakos

    2016-08-01

    Full Text Available Arylmalonate-Decarboxylases (AMDases, EC 4.1.1.76 are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta- and Gammaproteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the TTT family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99% of the (R-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes.

  1. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    Science.gov (United States)

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  2. Lack of relationship between an insertion/deletion polymorphism in the angiotensin I-converting enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients

    DEFF Research Database (Denmark)

    Tarnow, L; Cambien, Francois; Rossing, P

    1995-01-01

    Genotypic abnormalities of the renin-angiotensin system have been suggested as a risk factor for the development of diabetic nephropathy and proliferative retinopathy. We studied the relationship between an insertion(I)/deletion (D) polymorphism in the angiotensin-converting enzyme (ACE) gene...... (40%) had proliferative retinopathy, and 67 patients (17%) had no diabetic retinopathy. There was no difference in genotype distribution between IDDM patients with diabetic nephropathy and those with normalbuminuria: 63 (32%)/95 (48%)/40 (20%) vs. 67 (35%)/77 (41%)/46 (24%) had DD/ID/II genotypes...... by ACE/ID polymorphism, mean arterial blood pressure, and glomerular filtration rate (r2 = 0.30, P retinopathy and those without diabetic retinopathy: 52 (34%)/74 (48%)/29 (19%) vs. 26 (39%)/25 (37...

  3. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation

    NARCIS (Netherlands)

    Molven, Anders; Matre, Guri E.; Duran, Marinus; Wanders, Ronald J.; Rishaug, Unni; Njølstad, Pål R.; Jellum, Egil; Søvik, Oddmund

    2004-01-01

    Inappropriately elevated insulin secretion is the hallmark of persistent hyperinsulinemic hypoglycemia of infancy (PHHI), also denoted congenital hyperinsulinism. Causal mutations have been uncovered in genes coding for the beta-cell's ATP-sensitive potassium channel and the metabolic enzymes

  4. Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes.

    Science.gov (United States)

    Duan, Cheng-Jie; Huang, Ming-Yue; Pang, Hao; Zhao, Jing; Wu, Chao-Xing; Feng, Jia-Xun

    2017-07-01

    In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest V max and catalytic efficiency (k cat /K M ) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.

  5. Familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... lack an enzyme called lipoprotein lipase. Without this enzyme, the body cannot break down fat from digested food. Fat particles called chylomicrons build up in the blood. Risk factors include a family history of lipoprotein lipase deficiency. The condition is usually ...

  6. Production of the bioactive compounds violacein and indolmycin is conditional in a maeA mutant of Pseudoalteromonas luteoviolacea S4054 lacking the malic enzyme

    Directory of Open Access Journals (Sweden)

    Mariane S. Thøgersen

    2016-09-01

    Full Text Available It has previously been reported that some strains of the marine bacterium Pseudoalteromonas luteoviolacea produce the purple bioactive pigment violacein as well as the antibiotic compound indolmycin, hitherto only found in Streptomyces. The purpose of the present study was to determine the relative role of each of these two compounds as antibacterial compounds in P. luteoviolacea S4054. Using Tn10 transposon mutagenesis, a mutant strain that was significantly reduced in violacein production in mannose-containing substrates was created. Full genome analyses revealed that the vio-biosynthetic gene cluster was not interrupted by the transposon; instead the insertion was located to the maeA gene encoding the malic enzyme. Supernatant of the mutant strain inhibited Vibrio anguillarum and Staphylococcus aureus in well diffusion assays and in MIC assays at the same level or even more pronounced as the wild type strain. The mutant strain killed V. anguillarum in co-culture experiments as efficiently as the wild type. Using UHPLC-UV/Vis analyses, we quantified violacein and indolmycin, and the mutant strain only produced 7-10% the amount of violacein compared to the wildtype strain. In contrast, the amount of indolmycin produced by the mutant strain was about 300% that of the wildtype. Since inhibition of V. anguillarum and S. aureus by the mutant strain was similar to that of the wild type, it is concluded that violacein is not the major antibacterial compound in P. luteoviolacea. We furthermore propose that production of violacein and indolmycin may be metabolically linked and that yet unidentified antibacterial compound(s may be play a role in the antibacterial activity of P. luteoviolacea.

  7. Multigene families encode the major enzymes of antioxidant metabolism in Eucalyptus grandis L

    Directory of Open Access Journals (Sweden)

    Felipe Karam Teixeira

    2005-01-01

    Full Text Available Antioxidant metabolism protects cells from oxidative damage caused by reactive oxygen species (ROS. In plants, several enzymes act jointly to maintain redox homeostasis. Moreover, isoform diversity contributes to the fine tuning necessary for plant responses to both exogenous and endogenous signals influencing antioxidant metabolism. This study aimed to provide a comprehensive view of the major classes of antioxidant enzymes in the woody species Eucalyptus grandis. A careful survey of the FORESTs data bank revealed 36 clusters as encoding antioxidant enzymes: six clusters encoding ascorbate peroxidase (APx isozymes, three catalase (CAT proteins, three dehydroascorbate reductase (DHAR, two glutathione reductase (GR isozymes, four monodehydroascorbate reductase (MDHAR, six phospholipid hydroperoxide glutathione peroxidases (PhGPx, and 12 encoding superoxide dismutases (SOD isozymes. Phylogenetic analysis demonstrated that all clusters (identified herein grouped with previously characterized antioxidant enzymes, corroborating the analysis performed. With respect to enzymes involved in the ascorbate-glutathione cycle, both cytosolic and chloroplastic isoforms were putatively identified. These sequences were widely distributed among the different ESTs libraries indicating a broad gene expression pattern. Overall, the data indicate the importance of antioxidant metabolism in eucalyptus.

  8. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  9. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes.

    NARCIS (Netherlands)

    Boyer, L.A.; Logie, C.; Bonte, E; Becker, P.B.; Wade, P.A.; Wolff, A.P.; Wu, C.; Imbalzano, A.N.; Peterson, C.L.

    2000-01-01

    ATP-dependent chromatin remodeling enzymes antagonize the inhibitory effects of chromatin. We compare six different remodeling complexes: ySWI/SNF, yRSC, hSWI/SNF, xMi-2, dCHRAC, and dNURF. We find that each complex uses similar amounts of ATP to remodel nucleosomal arrays at nearly identical rates.

  10. An enzyme family reunion - similarities, differences and eccentricities in actions on alpha-glucans

    DEFF Research Database (Denmark)

    Seo, Eun-Seong; Christiansen, Camilla; Abou Hachem, Maher

    2008-01-01

    alpha-Glucans in general, including starch, glycogen and their derived oligosaccharides are processed by a host of more or less closely related enzymes that represent wide diversity in structure, mechanism, specificity and biological role. Sophisticated three-dimensional structures continue to em...

  11. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Tahiliani, Mamta; Rao, Anjana; Aravind, L

    2009-06-01

    Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase super-family, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a

  12. Magnetic resonance imaging in familial hypertrophic cardiomyopathy associated with abnormal thallium perfusion and cardiac enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Nagata, Seiki; Sakakibara, Hiroshi

    1988-05-01

    Gated magnetic resonance imaging (MRI) was performed in 6 patients with familial hypertrophic cardiomyopathy associated with abnormal thallium perfusion, and 12 patients with ordinary hypertrophic cardiomyopathy. The patients with ordinary hypertrophic cardiomyopathy and abnormal thickening of the septal wall and normal left ventricular dimensions, while the patients with familial hypertrophic cardiomyopathy had focal wall thinning (usually involving the apical-septal wall) and dilated left ventricle in addition to hypertrophied heart. The quantitative measurement for cardiac dimensions using MRI was similar to that found on echocardiography in all cases. In addition, inhomogeneous signal intensities at left ventricular wall were observed in 3 cases of familial hypertrophic cardiomyopathy, which may suggest the existence of myocardial fibrosis. Gated MRI should be performed for early detection and follow-up of hypertrophic cardiomyopathy, since some patients will progress from hypertrophic cardiomyopathy to dilated cardiomyopathy.

  13. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    Science.gov (United States)

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  14. Evolutionary Loss of Activity in De-Ubiquitylating Enzymes of the OTU Family.

    Directory of Open Access Journals (Sweden)

    Marcell Louis

    Full Text Available Understanding function and specificity of de-ubiquitylating enzymes (DUBs is a major goal of current research, since DUBs are key regulators of ubiquitylation events and have been shown to be mutated in human diseases. Most DUBs are cysteine proteases, relying on a catalytic triad of cysteine, histidine and aspartate to cleave the isopeptide bond between two ubiquitin units in a poly-ubiquitin chain. We have discovered that the two Drosophila melanogaster homologues of human OTUD4, CG3251 and Otu, contain a serine instead of a cysteine in the catalytic OTU (ovarian tumor domain. DUBs that are serine proteases instead of cysteine- or metallo-proteases have not been described. In line with this, neither CG3251 nor Otu protein were active to cleave ubiquitin chains. Re-introduction of a cysteine in the catalytic center did not render the enzymes active, indicating that further critical features for ubiquitin binding or cleavage have been lost in these proteins. Sequence analysis of OTUD4 homologues from various other species showed that within this OTU subfamily, loss of the catalytic cysteine has occurred frequently in presumably independent events, as well as gene duplications or triplications, suggesting DUB-independent functions of OTUD4 proteins. Using an in vivo RNAi approach, we show that CG3251 might function in the regulation of Inhibitor of Apoptosis (IAP-antagonist-induced apoptosis, presumably in a DUB-independent manner.

  15. Structure of Human cGAS Reveals a Conserved Family of Second-Messenger Enzymes in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Philip J. Kranzusch

    2013-05-01

    Full Text Available Innate immune recognition of foreign nucleic acids induces protective interferon responses. Detection of cytosolic DNA triggers downstream immune signaling through activation of cyclic GMP-AMP synthase (cGAS. We report here the crystal structure of human cGAS, revealing an unanticipated zinc-ribbon DNA-binding domain appended to a core enzymatic nucleotidyltransferase scaffold. The catalytic core of cGAS is structurally homologous to the RNA-sensing enzyme, 2′-5′ oligo-adenylate synthase (OAS, and divergent C-terminal domains account for specific ligand-activation requirements of each enzyme. We show that the cGAS zinc ribbon is essential for STING-dependent induction of the interferon response and that conserved amino acids displayed within the intervening loops are required for efficient cytosolic DNA recognition. These results demonstrate that cGAS and OAS define a family of innate immunity sensors and that structural divergence from a core nucleotidyltransferase enables second-messenger responses to distinct foreign nucleic acids.

  16. The angiotensin-converting enzyme (ACE) gene family of Bombyx mori.

    Science.gov (United States)

    Yan, Hai-Yan; Mita, Kazuei; Zhao, Xia; Tanaka, Yoshikazu; Moriyama, Minoru; Wang, Huabin; Iwanaga, Masashi; Kawasaki, Hideki

    2017-04-15

    We previously reported regarding an ecdysone-inducible angiotensin-converting enzyme (ACE) gene. We found another four ACE genes in the Bombyx genome. The present study was undertaken to clarify the evolutionally changed function of the ACE of Bombyx mori. Core regions of deduced amino acid sequences of ACE genes were compared with those of other insect ACE genes. Five Bombyx genes have the conserved Zn 2+ -binding-site motif (HEXXH); however, BmAcer4 has only one and BmAcer3 has no catalytic ligand. BmAcer1 and BmAcer2 were expressed in several organs. BmAcer3 was expressed in testes, and BmAcer4 and BmAcer5 were expressed in compound eyes; however, the transcription levels of these three genes were very low. Quantitative RT-PCR and Western analysis were conducted to determine the tissue distribution and developmental expression of BmAcer1and BmAcer2. Transcripts of BmAcer1 and BmAcer2 were found in the reproductive organs during the larval and pupal stages. BmAcer1 was dominant in fat bodies during the feeding stage and showed high expression in the epidermis, wing discs, and pupal wing tissues after the wandering stage. Its expression patterns in epidermis, wing discs, and wing tissues resembled the hemolymph ecdysteroid titer in the larval and pupal stages. Acer1 was observed in the hemolymph at all stages, appearing to be the source of it are fat bodies, wings, and epidermis, and functioning after being secreted into the hemolymph. BmAcer2 was abundant in the midgut during the feeding stage and after the wandering stage and in silk glands after the pupal stage. We conclude that the evolution of BmAcer occurred through duplication, and, thereafter, functional diversification developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase.

    Science.gov (United States)

    Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi

    2016-12-01

    Glycoside hydrolases are divided into two groups, known as inverting and retaining enzymes, based on their hydrolytic mechanisms. Glycoside hydrolase family 63 (GH63) is composed of inverting α-glycosidases, which act mainly on α-glucosides. We previously found that Escherichia coli GH63 enzyme, YgjK, can hydrolyze 2-O-α-d-glucosyl-d-galactose. Two constructed glycosynthase mutants, D324N and E727A, which catalyze the transfer of a β-glucosyl fluoride donor to galactose, lactose, and melibiose. Here, we determined the crystal structures of D324N and E727A soaked with a mixture of glucose and lactose at 1.8- and 2.1-Å resolutions, respectively. Because glucose and lactose molecules are found at the active sites in both structures, it is possible that these structures mimic the enzyme-product complex of YgjK. A glucose molecule found at subsite -1 in both structures adopts an unusual 1 S 3 skew-boat conformation. Comparison between these structures and the previously determined enzyme-substrate complex structure reveals that the glucose pyranose ring might be distorted immediately after nucleophilic attack by a water molecule. These structures represent the first enzyme-product complex for the GH63 family, as well as the structurally-related glycosidases, and it may provide insight into the catalytic mechanism of these enzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. "But I wasn't told to": lack of education and workplace policy as barriers in the provision of family planning information.

    Science.gov (United States)

    Bell, Melissa M

    2015-01-01

    Access to family planning has been identified as critical to public health. Improving the linkage between medical and social services could result in improved access to care for those most at risk of unintended pregnancy. This study used a survey based on Alfred Bandura's social cognitive theory (1986) to increase the understanding of the barriers social workers confront in the provision of family planning information to clients. Although moral disagreement with family planning presented a barrier for some, workplace policy, participation in family planning trainings, and working in an urban setting were of greater value in understanding barriers.

  19. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme.

    Science.gov (United States)

    Nascimento, Alessandro S; Muniz, Joao Renato C; Aparício, Ricardo; Golubev, Alexander M; Polikarpov, Igor

    2014-09-01

    Hemicellulose is an important part of the plant cell wall biomass, and is relevant to cellulosic ethanol technologies. β-Mannosidases are enzymes capable of cleaving nonreducing residues of β-d-mannose from β-d-mannosides and hemicellulose mannose-containing polysaccharides, such as mannans and galactomannans. β-Mannosidases are distributed between glycoside hydrolase (GH) families 1, 2, and 5, and only a handful of the enzymes have been structurally characterized to date. The only published X-ray structure of a GH family 2 mannosidase is that of the bacterial Bacteroides thetaiotaomicron enzyme. No structures of eukaryotic mannosidases of this family are currently available. To fill this gap, we set out to solve the structure of Trichoderma harzianum GH family 2 β-mannosidase and to refine it to 1.9-Å resolution. Structural comparisons of the T. harzianum GH2 β-mannosidase highlight similarities in its structural architecture with other members of GH family 2, reveal the molecular mechanism of β-mannoside binding and recognition, and shed light on its putative galactomannan-binding site. Coordinates and observed structure factor amplitudes have been deposited with the Protein Data Bank (4CVU and 4UOJ). The T. harzianum β-mannosidase 2A nucleotide sequence has GenBank accession number BankIt1712036 GeneMark.hmm KJ624918. © 2014 FEBS.

  20. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.

    Science.gov (United States)

    Nelson, Cassandra E; Attia, Mohamed A; Rogowski, Artur; Morland, Carl; Brumer, Harry; Gardner, Jeffrey G

    2017-12-01

    Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1→3)/β(1→4) mixed-linkage glucan (MLG) and β(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1→3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features.

    Science.gov (United States)

    Lu, Haiqiang; Zhang, Huitu; Shi, Pengjun; Luo, Huiying; Wang, Yaru; Yang, Peilong; Yao, Bin

    2013-09-01

    A novel β-mannanase gene, man5XZ7, was cloned from thermophilic fungus Thielavia arenaria XZ7, and successfully expressed in Pichia pastoris. The gene (1,110 bp) encodes a 369-amino acid polypeptide with a molecular mass of approximately 40.8 kDa. The deduced sequence of Man5XZ7 consists of a putative 17-residue signal peptide and a catalytic module belonging to glycoside hydrolase (GH) family 5, and displays 76 % identity with the experimentally verified GH 5 endo-β-1,4-mannanase from Podospora anserina. Recombinant Man5XZ7 was optimally active at 75 °C and pH 5.0 and exhibited high activity at a wide temperature range (>50.0 % activity at 50-85 °C). Moreover, it had good adaptability to acidic to basic pH (>74.1 % activity at pH 4.0-7.0 and 25.6 % even at pH 9.0) and good stability from pH 3.0 to 10.0. These enzymatic properties showed that Man5XZ7 was a new thermophilic and alkali-tolerant β-mannanase. Further amino acid composition analysis indicated that Man5XZ7 has several characteristic features of thermophilic enzymes.

  2. Comprehensive functional characterization of the Glycoside Hydrolase Family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification

    International Nuclear Information System (INIS)

    Nelson, Cassandra E.; Attia, Mohamed A.; Rogowski, Artur; Morland, Carl; Brumer, Harry; Gardner, Jeffrey G.

    2017-01-01

    Here, lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1!3)/β(1!4) mixed-linkage glucan (MLG), and β(1!3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active Enzymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach we have delineated the physiological roles of the four C. japonicus Glycoside Hydrolase Family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1!3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1!3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.

  3. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  4. Lack of expansion of triplet repeats in the FMR1, FRAXE, and FRAXF loci in male multiplex families with autism and pervasive developmental disorders

    Energy Technology Data Exchange (ETDEWEB)

    Holden, J.J.A.; Julien-Inalsingh, C. [Queen`s Univ., Kingston (Canada); Wing, M. [Ongwanada Resource Centre, Kingston (Canada)] [and others

    1996-08-09

    Sib, twin, and family studies have shown that a genetic cause exists in many cases of autism, with a portion of cases associated with a fragile X chromosome. Three folate-sensitive fragile sites in the Xq27{r_arrow}Xq28 region have been cloned and found to have polymorphic trinucleotide repeats at the respective sites; these repeats are amplified and methylated in individuals who are positive for the different fragile sites. We have tested affected boys and their mothers from 19 families with two autistic/PDD boys for amplification and/or instability of the triplet repeats at these loci and concordance of inheritance of alleles by affected brothers. In all cases, the triplet repeat numbers were within the normal range, with no individuals having expanded or premutation-size alleles. For each locus, there was no evidence for an increased frequency of concordance, indicating that mutations within these genes are unlikely to be responsible for the autistic/PDD phenotypes in the affected boys. Thus, we think it is important to retest those autistic individuals who were cytogenetically positive for a fragile X chromosome, particularly cases where there is no family history of the fragile X syndrome, using the more accurate DNA-based testing procedures. 29 refs., 1 fig., 1 tab.

  5. Lack of concordance and linkage disequilibrium among brothers for androgenetic alopecia and CAG/GGC haplotypes of the androgen receptor gene in Mexican families.

    Science.gov (United States)

    Arteaga-Vázquez, Jazmín; López-Hernández, María A; Svyryd, Yevgeniya; Mutchinick, Osvaldo M

    2015-12-01

    Androgenetic alopecia (AGA) or common baldness is the most prevalent form of hair loss in males. Familial predisposition has been recognized, and heritability estimated in monozygotic twins suggests an important genetic predisposition. Several studies indicate that the numbers of CAG/GGC repeats in exon 1 of the androgen receptor gene (AR) maybe associated with AGA susceptibility. To investigate a possible correlation between AR CAG/GGC haplotypes and the presence or not of alopecia in sibships with two or more brothers among them at least one of them has AGA. Thirty-two trios including an alopecic man, one brother alopecic or not, and their mother were enrolled. Sanger sequencing of the exon 1 of the AR gene was conducted to ascertain the number of CAG/GGC repeats in each individual. Heterozygous mother for the CAG/GGC haplotypes was an inclusion criterion to analyze the segregation haplotype patterns in the family. Concordance for the number of repeats and AGA among brothers was evaluated using kappa coefficient and the probability of association in the presence of genetic linkage between CAG and GGC repeats and AGA estimated by means of the family-based association test (FBAT). The median for the CAG and GGC repeats in the AR is similar to that reported in other populations. The CAG/GGC haplotypes were less polymorphic than that reported in other studies, especially due to the GGC number of repeats found. Kappa coefficient resulted in a concordance of 37.3% (IC 95%, 5.0-69.0%) for the AGA phenotype and identical CAG/GGC haplotypes. There was no evidence of linkage disequilibrium. Our results do not confirm a possible correlation or linkage disequilibrium between the CAG/GGC haplotypes of the AR gene and androgenetic alopecia in Mexican brothers. © 2015 Wiley Periodicals, Inc.

  6. Functional Analyses of Resurrected and Contemporary Enzymes Illuminate an Evolutionary Path for the Emergence of Exolysis in Polysaccharide Lyase Family 2.

    Science.gov (United States)

    McLean, Richard; Hobbs, Joanne K; Suits, Michael D; Tuomivaara, Sami T; Jones, Darryl R; Boraston, Alisdair B; Abbott, D Wade

    2015-08-28

    Family 2 polysaccharide lyases (PL2s) preferentially catalyze the β-elimination of homogalacturonan using transition metals as catalytic cofactors. PL2 is divided into two subfamilies that have been generally associated with secretion, Mg(2+) dependence, and endolysis (subfamily 1) and with intracellular localization, Mn(2+) dependence, and exolysis (subfamily 2). When present within a genome, PL2 genes are typically found as tandem copies, which suggests that they provide complementary activities at different stages along a catabolic cascade. This relationship most likely evolved by gene duplication and functional divergence (i.e. neofunctionalization). Although the molecular basis of subfamily 1 endolytic activity is understood, the adaptations within the active site of subfamily 2 enzymes that contribute to exolysis have not been determined. In order to investigate this relationship, we have conducted a comparative enzymatic analysis of enzymes dispersed within the PL2 phylogenetic tree and elucidated the structure of VvPL2 from Vibrio vulnificus YJ016, which represents a transitional member between subfamiles 1 and 2. In addition, we have used ancestral sequence reconstruction to functionally investigate the segregated evolutionary history of PL2 progenitor enzymes and illuminate the molecular evolution of exolysis. This study highlights that ancestral sequence reconstruction in combination with the comparative analysis of contemporary and resurrected enzymes holds promise for elucidating the origins and activities of other carbohydrate active enzyme families and the biological significance of cryptic metabolic pathways, such as pectinolysis within the zoonotic marine pathogen V. vulnificus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  8. Family history, not lack of medication use, is associated with the development of postpartum depression in a high-risk sample.

    Science.gov (United States)

    Kimmel, Mary; Hess, Edward; Roy, Patricia S; Palmer, Jennifer Teitelbaum; Meltzer-Brody, Samantha; Meuchel, Jennifer M; Bost-Baxter, Emily; Payne, Jennifer L

    2015-02-01

    We sought to determine clinical predictors of postpartum depression (PPD), including the role of medication, in a sample of women followed prospectively during and after pregnancy. Women with a history of mood disorder were recruited and evaluated during each trimester and 1 week, 1 month, and 3 months postpartum. DSM-IV criteria for a major depressive episode were assessed by a psychiatric interview at each time point. Sixty-three women with major depression and 30 women with bipolar disorder entered the study and 75.4 % met DSM-IV criteria for a MDE during pregnancy, postpartum, or both. We modeled depression in a given time period (second trimester, third trimester, or 1 month postpartum) as a function of medication use during the preceding period (first, second, or third trimester). The odds of being depressed for those who did not use medication in the previous period was approximately 2.8 times that of those who used medication (OR 2.79, 95 % CI 1.38-5.66, p = 0.0048). Of 38 subjects who were psychiatrically well during the third trimester, 39.5 % (N = 15) met the criteria for a MDE by 4 weeks postpartum. In women who developed PPD, there was a high rate of a family history of PPD (53.3 %) compared to women who did not develop PPD (11.8 %, p = 0.02). While the use of psychiatric medications during pregnancy reduced the odds of being depressed overall, the use of psychiatric medications during pregnancy may not protect against PPD in women at high risk, particularly those with a family history of PPD.

  9. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia.

    Science.gov (United States)

    Sun, Lianli; Ruppert, Martin; Sheludko, Yuri; Warzecha, Heribert; Zhao, Yu; Stöckigt, Joachim

    2008-07-01

    Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a "reverse-genetic" approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His(6)-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids.

  10. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    Science.gov (United States)

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species.

    Science.gov (United States)

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J; Paton, Lois; Woof, Jenny M; von Pawel-Rammingen, Ulrich

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use.

  12. Lack of association of apolipoprotein E (Apo E) polymorphism with the prevalence of metabolic syndrome: the National Heart, Lung and Blood Institute Family Heart Study.

    Science.gov (United States)

    Lai, Lana Y H; Petrone, Andrew B; Pankow, James S; Arnett, Donna K; North, Kari E; Ellison, R Curtis; Hunt, Steven C; Rosenzweig, James L; Djoussé, Luc

    2015-09-01

    Metabolic syndrome (MetS), characterized by abdominal obesity, atherogenic dyslipidaemia, elevated blood pressure and insulin resistance, is a major public health concern in the United States. The effects of apolipoprotein E (Apo E) polymorphism on MetS are not well established. We conducted a cross-sectional study consisting of 1551 participants from the National Heart, Lung and Blood Institute Family Heart Study to assess the relation of Apo E polymorphism with the prevalence of MetS. MetS was defined according to the American Heart Association-National Heart, Lung and Blood Institute-International Diabetes Federation-World Health Organization harmonized criteria. We used generalized estimating equations to estimate adjusted odds ratios (ORs) for prevalent MetS and the Bonferroni correction to account for multiple testing in the secondary analysis. Our study population had a mean age (standard deviation) of 56.5 (11.0) years, and 49.7% had MetS. There was no association between the Apo E genotypes and the MetS. The multivariable adjusted ORs (95% confidence interval) were 1.00 (reference), 1.26 (0.31-5.21), 0.89 (0.62-1.29), 1.13 (0.61-2.10), 1.13 (0.88-1.47) and 1.87 (0.91-3.85) for the Ɛ3/Ɛ3, Ɛ2/Ɛ2, Ɛ2/Ɛ3, Ɛ2/Ɛ4, Ɛ3/Ɛ4 and Ɛ4/Ɛ4 genotypes, respectively. In a secondary analysis, Ɛ2/Ɛ3 genotype was associated with 41% lower prevalence odds of low high-density lipoprotein [multivariable adjusted ORs (95% confidence interval) = 0.59 (0.36-0.95)] compared with Ɛ3/Ɛ3 genotype. Our findings do not support an association between Apo E polymorphism and MetS in a multicentre population-based study of predominantly White US men and women. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers.

    Science.gov (United States)

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-10-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Work-family conflict, lack of time for personal care and leisure, and job strain in migraine: Results of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    Science.gov (United States)

    Griep, Rosane Härter; Toivanen, Susanna; Santos, Itamar S; Rotenberg, Lucia; Juvanhol, Leidjaira Lopes; Goulart, Alessandra C; Aquino, Estela M; Benseñor, Isabela

    2016-11-01

    Work-family conflict and time scarcity may affect health. We investigated the association between these issues and migraine, taking into account job strain. Baseline data from ELSA-Brasil (6,183 women; 5,664 men) included four indicators of work-family conflict: time- and strain-based interference of work with family (TB-WFC, SB-WFC), interference of family with work (FWC) and lack of time for personal care and leisure (LOT). Migraine was classified according to International Headache Society criteria. Among women, definite migraine was associated with SB-WFC (odds ratio [OR] = 1.28; 95% confidence interval [CI] 1.06-1.55), FWC (OR = 1.32; 1.00-1.75), and LOT (OR = 1.30; 1.08-1.58). Probable migraine was associated with SB-WFC (OR = 1.17; 1.00-1.36). High psychological job demands and low social support interacted with LOT in association with definite migraine. Among men, probable migraine was associated with LOT (OR = 1.34; 1.09-1.64), and there were interactions between job strain and WFC for probable migraine. Balancing the demands of professional and domestic spheres could be highly relevant in the management of migraines. Am. J. Ind. Med. 59:987-1000, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Production of the Bioactive Compounds Violacein and Indolmycin Is Conditional in a maeA Mutant of Pseudoalteromonas luteoviolacea S4054 Lacking the Malic Enzyme

    DEFF Research Database (Denmark)

    Schmidt Thøgersen, Mariane; Delpin, Marina; Melchiorsen, Jette

    2016-01-01

    cluster was not interrupted by the transposon; instead the insertion was located to the maeA gene encoding the malic enzyme. Supernatant of the mutant strain inhibited Vibrio anguillarum and Staphylococcus aureus in well diffusion assays and in MIC assays at the same level as the wild type strain...... of violacein and indolmycin may be metabolically linked and that yet unidentified antibacterial compound(s) may be play a role in the antibacterial activity of P. luteoviolacea....

  16. Evolution of Enzymatic Activities in the Enolase Superfamily: Stereochemically Distinct Mechanisms in Two Families of cis,cis-Muconate Lactonizing Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, A.; Fedorov, A; Fedorov, E; Schnoes, A; Glasner, M; Burley, S; Babbitt, P; Almo, S; Gerlt, J

    2009-01-01

    The mechanistically diverse enolase superfamily is a paradigm for elucidating Nature's strategies for divergent evolution of enzyme function. Each of the different reactions catalyzed by members of the superfamily is initiated by abstraction of the a-proton of a carboxylate substrate that is coordinated to an essential Mg2+. The muconate lactonizing enzyme (MLE) from Pseudomonas putida, a member of a family that catalyzes the syn-cycloisomerization of cis,cis-muconate to (4S)-muconolactone in the e-ketoadipate pathway, has provided critical insights into the structural bases for evolution of function within the superfamily. A second, divergent family of homologous MLEs that catalyzes anti-cycloisomerization has been identified. Structures of members of both families liganded with the common (4S)-muconolactone product (syn, Pseudomonas fluorescens, gi 70731221; anti, Mycobacterium smegmatis, gi 118470554) document that the conserved Lys at the end of the second e-strand in the (e/a)7e-barrel domain serves as the acid catalyst in both reactions. The different stereochemical courses (syn and anti) result from different structural strategies for determining substrate specificity: although the distal carboxylate group of the cis,cis-muconate substrate attacks the same face of the proximal double bond, opposite faces of the resulting enolate anion intermediate are presented to the conserved Lys acid catalyst. The discovery of two families of homologous, but stereochemically distinct, MLEs likely provides an example of 'pseudoconvergent' evolution of the same function from different homologous progenitors within the enolase superfamily, in which different spatial arrangements of active site functional groups and substrate specificity determinants support catalysis of the same reaction.

  17. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    Science.gov (United States)

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  18. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  19. Crystallization and preliminary X-ray analysis of formate oxidase, an enzyme of the glucose–methanol–choline oxidoreductase family

    International Nuclear Information System (INIS)

    Maeda, Yoshifumi; Doubayashi, Daiju; Ootake, Takumi; Oki, Masaya; Mikami, Bunzo; Uchida, Hiroyuki

    2010-01-01

    Formate oxidase from A. oryzae RIB40 was crystallized and diffraction data were collected to a resolution of 2.4 Å. Formate oxidase (FOD), which catalyzes the oxidation of formate to yield carbon dioxide and hydrogen peroxide, belongs to the glucose–methanol–choline oxidoreductase (GMCO) family. FOD from Aspergillus oryzae RIB40, which has a modified FAD as a cofactor, was crystallized at 293 K by the hanging-drop vapour-diffusion method. The crystal was orthorhombic and belonged to space group C222 1 . Diffraction data were collected from a single crystal to 2.4 Å resolution

  20. The Ubiquitin-Conjugating Enzyme Gene Family in Longan (Dimocarpus longan Lour.: Genome-Wide Identification and Gene Expression during Flower Induction and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Dengwei Jue

    2018-03-01

    Full Text Available Ubiquitin-conjugating enzymes (E2s or UBC enzymes play vital roles in plant development and combat various biotic and abiotic stresses. Longan (Dimocarpus longan Lour. is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes (DlUBCs, which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar “Sijimi” (SJ, suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid treatment, seven under methyl jasmonate (MeJA treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.

  1. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes.

    Directory of Open Access Journals (Sweden)

    Nele Ilmberger

    Full Text Available A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic diversity regarding the use of polymers and aromatic and non-aromatic compounds. In line with the high phylogenetic diversity, a surprising and not previously described biodiversity of glycoside hydrolase (GH genes was found. Enzymes of 84 GH families were detected. Polysaccharide utilization loci (PULs, which are found in Bacteroidetes, were highly abundant in the dataset; some of these comprised cellulase genes. Furthermore the highest coverage for GH5 and GH9 family enzymes was detected for Bacteroidetes, suggesting that bacteria of this phylum are mainly responsible for the degradation of cellulose in the Asian elephant. Altogether, this study delivers insight into the biomass conversion by one of the largest plant-fed and land-living animals.

  2. The DUB/USP17 deubiquitinating enzymes: A gene family within a tandemly repeated sequence, is also embedded within the copy number variable Beta-defensin cluster

    Directory of Open Access Journals (Sweden)

    Scott Christopher J

    2010-04-01

    Full Text Available Abstract Background The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A. Subsequently we have identified a number of human family members and shown that one of these (DUB-3 is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1. Results Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating. Conclusions The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.

  3. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction.

    Science.gov (United States)

    Elshawadfy, Ashraf M; Keith, Brian J; Ee Ooi, H'Ng; Kinsman, Thomas; Heslop, Pauline; Connolly, Bernard A

    2014-01-01

    The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the "forked-point" (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the "forked-point" and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms.

  4. A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes.

    Science.gov (United States)

    Saburi, Wataru; Morimoto, Naoki; Mukai, Atsushi; Kim, Dae Hoon; Takehana, Toshihiko; Koike, Seiji; Matsui, Hirokazu; Mori, Haruhide

    2013-01-01

    α-Amylases (EC 3.2.1.1) hydrolyze internal α-1,4-glucosidic linkages of starch and related glucans. Bacillus sp. AAH-31 produces an alkalophilic thermophilic α-amylase (AmyL) of higher molecular mass, 91 kDa, than typical bacterial α-amylases. In this study, the AmyL gene was cloned to determine its primary structure, and the recombinant enzyme, produced in Escherichia coli, was characterized. AmyL shows no hydrolytic activity towards pullulan, but the central region of AmyL (Gly395-Asp684) was similar to neopullulanase-like α-amylases. In contrast to known neopullulanase-like α-amylases, the N-terminal region (Gln29-Phe102) of AmyL was similar to carbohydrate-binding module family 20 (CBM20), which is involved in the binding of enzymes to starch granules. Recombinant AmyL showed more than 95% of its maximum activity in a pH range of 8.2-10.5, and was stable below 65 °C and from pH 6.4 to 11.9. The kcat values for soluble starch, γ-cyclodextrin, and maltotriose were 103 s(-1), 67.6 s(-1), and 5.33 s(-1), respectively, and the Km values were 0.100 mg/mL, 0.348 mM, and 2.06 mM, respectively. Recombinant AmyL did not bind to starch granules. But the substitution of Trp45 and Trp84, conserved in site 1 of CBM20, with Ala reduced affinity to soluble starch, while the mutations did not affect affinity for oligosaccharides. Substitution of Trp61, conserved in site 2 of CBM20, with Ala enhanced hydrolytic activity towards soluble starch, indicating that site 2 of AmyL does not contribute to binding to soluble long-chain substrates.

  5. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  6. The gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch

    NARCIS (Netherlands)

    Gangoiti, Joana; van Leeuwen, Sander S; Vafiadi, Christina; Dijkhuizen, Lubbert

    BACKGROUND: Originally the glycoside hydrolase (GH) family 70 only comprised glucansucrases of lactic acid bacteria which synthesize α-glucan polymers from sucrose. Recently we have identified 2 novel subfamilies of GH70 enzymes represented by the Lactobacillus reuteri 121 GtfB and the

  7. Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity.

    Science.gov (United States)

    Miyazaki, Takatsugu; Ichikawa, Megumi; Yokoi, Gaku; Kitaoka, Motomitsu; Mori, Haruhide; Kitano, Yoshikazu; Nishikawa, Atsushi; Tonozuka, Takashi

    2013-09-01

    Proteins belonging to glycoside hydrolase family 63 (GH63) are found in bacteria, archaea and eukaryotes. Although the eukaryotic GH63 proteins have been identified as processing α-glucosidase I, the substrate specificities of the bacterial and archaeal GH63 proteins are not clear. Here, we converted a bacterial GH63 enzyme, Escherichia coli YgjK, to a glycosynthase to probe its substrate specificity. Two mutants of YgjK (E727A and D324N) were constructed, and both mutants showed glycosynthase activity. The reactions of E727A with β-D-glucosyl fluoride and monosaccharides showed that the largest amount of glycosynthase product accumulated when galactose was employed as an acceptor molecule. The crystal structure of E727A complexed with the reaction product indicated that the disaccharide bound at the active site was 2-O-α-D-glucopyranosyl-α-D-galactopyranose (Glc12Gal). A comparison of the structures of E727A-Glc12Gal and D324N-melibiose showed that there were two main types of conformation: the open and closed forms. The structure of YgjK adopted the closed form when subsite -1 was occupied by glucose. These results suggest that sugars containing the Glc12Gal structure are the most likely candidates for natural substrates of YgjK. © 2013 FEBS.

  8. Estrategia educativa de orientación familiar para la atención a las carencias afectivas en el desarrollo del escolar ecuatoriano / Educational strategy of family orientation for the attention to the affective lacks in the Ecuadorian student's development

    Directory of Open Access Journals (Sweden)

    María Magdalena Lucas Vidal

    2017-05-01

    Full Text Available To learn how to live together, besides being one of the objectives of all educational systems, is considered as one of the fundamental challenges of the education in the 21stcentury. For this reason, studing students problems and conflicts at educational institutions and developing possible solutions or preventing them has become a focus of attention of any educational community. According to this, the UNESCO (2008 has pointed out that the enormous affective lacks of children, as well as the presence of in nefective models of communication, have motivated professionals to rely on ethic education and social abilities. This article is aimed at devising and educational strategy of family counseling to face affective lacks. The research starts by constructing a framework and collecting information leading to the identification of Ecuadorian affective lacks and the procedures for family counseling. The findings is an strategy tailored to meet the counseling need of community families

  9. Energy brands lack vitality

    International Nuclear Information System (INIS)

    Godri, S.; Wilders, E.

    2004-01-01

    The three Dutch energy companies (Nuon, Essent and Eneco Energie) have relatively little brand strength. The brands are not perceived to be sufficiently different from one another and are not valued by consumers. With liberalisation imminent, this is hardly a strong starting point. How can you win over consumers if it is not clear what is on offer? In the business market, decision-makers are better placed to distinguish between brands. However, the brands lack vitality in this sector of the market too. The only consolation is that the situation is by no means exclusive to the Netherlands [nl

  10. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme

    Directory of Open Access Journals (Sweden)

    Karla Ramirez-Estrada

    2017-06-01

    Full Text Available Sterol glycosyltransferases (SGTs catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic

  11. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  12. Family Violence and Family Physicians

    Science.gov (United States)

    Herbert, Carol P.

    1991-01-01

    The acronym IDEALS summarizes family physicians' obligations when violence is suspected: to identify family violence; document injuries; educate families and ensure safety for victims; access resources and coordinate care; co-operate in the legal process; and provide support for families. Failure to respond reflects personal and professional experience and attitudes, fear of legal involvement, and lack of knowledge. Risks of intervention include physician burnout, physician overfunctioning, escalation of violence, and family disruption. PMID:21228987

  13. Crystallization and preliminary X-ray crystallographic analysis of strictosidine synthase from Rauvolfia: the first member of a novel enzyme family.

    Science.gov (United States)

    Ma, Xueyan; Koepke, Juergen; Fritzsch, Günter; Diem, Ralf; Kutchan, Toni M; Michel, Hartmut; Stöckigt, Joachim

    2004-10-01

    Strictosidine synthase is a central enzyme involved in the biosynthesis of almost all plant monoterpenoid indole alkaloids. Strictosidine synthase from Rauvolfia serpentina was heterologously expressed in Escherichia coli. Crystals of the purified recombinant enzyme have been obtained by the hanging-drop technique at 303 K with potassium sodium tartrate tetrahydrate as precipitant. The crystals belong to the space group R3 with cell dimensions of a=b=150.3 A and c=122.4 A. Under cryoconditions (120 K), the crystals diffract to about 2.95 A.

  14. Molecular dynamics investigations of regioselectivity of anionic/aromatic substrates by a family of enzymes: a case study of diclofenac binding in CYP2C isoforms.

    Science.gov (United States)

    Cui, Ying-Lu; Xu, Fang; Wu, Rongling

    2016-06-29

    The CYP2C subfamily is of particular importance in the metabolism of drugs, food toxins, and procarcinogens. Like other P450 subfamilies, 2C enzymes share a high sequence identity, but significantly contribute in different ways to hepatic capacity to metabolize drugs. They often metabolize the same substrate to more than one product with different catalytic sites. Because it is challenging to characterize experimentally, much still remains unknown about the reason for why the substrate regioselectivity of these closely related subfamily members is different. Here, we have investigated the structural features of CYP2C8, CYP2C9, and CYP2C19 bound with their shared substrate diclofenac to elucidate the underlying molecular mechanism for the substrate regioselectivity of CYP2C subfamily enzymes. The obtained results demonstrate how a sequence divergence for the active site residues causes heterogeneous variations in the secondary structures and in major tunnel selections, and further affects the shape and chemical properties of the substrate-binding site. Structural analysis and free energy calculations showed that the most important determinants of regioselectivity among the CYP2C isoforms are the geometrical features of the active sites, as well as the hydrogen bonds and the hydrophobic interactions, mainly presenting as the various locations of Arg108 and substitutions of Phe205 for Ile205 in CYP2C8. The MM-GB/SA calculations combined with PMF results accord well with the experimental KM values, bridging the gap between the theory and the experimentally observed results of binding affinity differences. The present study provides important insights into the structure-function relationships of CYP2C subfamily enzymes, the knowledge of ligand binding characteristics and key residue contributions could guide future experimental and computational work on the synthesis of drugs with better pharmacokinetic properties so that CYP interactions could be avoided.

  15. Solution Structure of Archaeoglobus fulgidis Peptidyl-tRNA Hydrolase(Pth2) Provides Evidence for an Extensive Conserved Family of Pth2 Enzymes in Archaea, Bacteria and Eukaryotes.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Robert; Mirkovic, Nebojsa; Goldsmith-Fischman, Sharon; Acton, Thomas; Chiang, Yiwen; Huang, Yuanpeng; Ma, LiChung; Rajan, Paranji K.; Cort, John R.; Kennedy, Michael A.; Liu, Jinfeng; Rost, Burkhard; Honig, Barry; Murray, Diana; Montelione, Gaetano

    2005-11-01

    The solution structure of protein AF2095 from the thermophilic archaea Archaeglobus fulgidis, a 123-residue (13.6 kDa) protein, has been determined by NMR methods. The structure of AF2095 is comprised of four a-helices and a mixed b-sheet consisting of four parallel and anti-parallel b-strands, where the a-helices sandwich the b-sheet. Sequence and structural comparison of AF2095 with proteins from Homo sapiens, Methanocaldococcus jannaschii and Sulfolobus solfataricus, reveals that AF2095 is a peptidyl-tRNA hydrolase (Pth2). This structural comparison also identifies putative catalytic residues and a tRNA interaction region for AF2095. The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Database but not functionally annotated. The NMR structure of AF2095 has been further leveraged to obtain good quality structural models for 55 other proteins. Although earlier studies have proposed that the Pth2 protein family is restricted to archeal and eukaryotic organisms, the similarity of the AF2095 structure to human Pth2, the conservation of key active-site residues, and the good quality of the resulting homology models demonstrate a large family of homologous Pth2 proteins that are conserved in eukaryotic, archaeal and bacterial organisms, providing novel insights in the evolution of the Pth and Pth2 enzyme families.

  16. The inhibitory effect of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members on the activity of cellular microRNAs.

    Science.gov (United States)

    Zhang, Hui

    2010-01-01

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or APOBEC3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. However, the cellular function of APOBEC3G remains to be further clarified. It has been reported that APOBEC3s can restrict the mobility of endogenous retroviruses and LTR-retrotransposons, suggesting that they can maintain stability in host genomes. However, APOBEC3G is normally cytoplasmic. Further studies have demonstrated that it is associated with an RNase-sensitive high molecular mass (HMM) and located in processing bodies (P-bodies) of replicating T-cells, indicating that the major cellular function of APOBEC3G seems to be related to P-body-related RNA processing and metabolism. As the function of P-body is closely related to miRNA activity, APOBEC3G could affect the miRNA function. Recent studies have demonstrated that APOBEC3G and its family members counteract miRNA-mediated repression of protein translation. Further, APOBEC3G enhances the association of miRNA-targeted mRNA with polysomes, and facilitates the dissociation of miRNA-targeted mRNA from P-bodies. As such, APOBEC3G regulate the activity of cellular miRNAs. Whether this function is related to its potent antiviral activity remains to be further determined.

  17. Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families.

    Science.gov (United States)

    García-García, Erick; Prado-Alvarez, Maria; Novoa, Beatriz; Figueras, Antonio; Rosales, Carlos

    2008-01-01

    Various hemocyte cell types have been described in invertebrates, but for most species a functional characterization of different hemocyte cell types is still lacking. In order to characterize some immunological properties of mussel (Mytilus galloprovincialis) hemocytes, cells were separated by flow cytometry and their capacity for phagocytosis, production of reactive oxygen species (ROS), and production of nitric oxide (NO), was examined. Phosphatidylinositol 3-kinase (PI 3-K), protein kinase C (PKC), and extracellular signal-regulated kinase (ERK) inhibitors were also used to biochemically characterize these cell responses. Four morphologically distinct subpopulations, designated R1-R4, were detected. R1, R2, and R3 cells presented different levels of phagocytosis towards zymosan, latex beads, and two bacteria species. Similarly, R1 to R3, but not R4, cells produced ROS, while all subpopulations produced NO, in response to zymosan. Internalization of all phagocytic targets was blocked by PI 3-K inhibition. In addition, internalization of latex particles, but not of bacteria, was partially blocked by PKC or ERK inhibition. Interestingly, phagocytosis of zymosan was impaired by PKC, or ERK inhibitors, only in R2 cells. Zymosan-induced ROS production was blocked by PI 3-K inhibition, but not by PKC, or ERK inhibition. In addition, zymosan-stimulated NO production was affected by PI 3-K inhibition in R1 and R2, but not in R3 or R4 cells. NO production in all cell types was unaffected by PKC inhibition, but ERK inhibition blocked it in R2 cells. These data reveal the existence of profound functional and biochemical differences in mussel hemocytes and indicate that M. galloprovincialis hemocytes are specialized cells fulfilling specific tasks in the context of host defense.

  18. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  19. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  20. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome.

    Science.gov (United States)

    Noda-García, Lianet; Juárez-Vázquez, Ana L; Ávila-Arcos, María C; Verduzco-Castro, Ernesto A; Montero-Morán, Gabriela; Gaytán, Paul; Carrillo-Tripp, Mauricio; Barona-Gómez, Francisco

    2015-06-10

    Current sequence-based approaches to identify enzyme functional shifts, such as enzyme promiscuity, have proven to be highly dependent on a priori functional knowledge, hampering our ability to reconstruct evolutionary history behind these mechanisms. Hidden Markov Model (HMM) profiles, broadly used to classify enzyme families, can be useful to distinguish between closely related enzyme families with different specificities. The (βα)8-isomerase HisA/PriA enzyme family, involved in L-histidine (HisA, mono-substrate) biosynthesis in most bacteria and plants, but also in L-tryptophan (HisA/TrpF or PriA, dual-substrate) biosynthesis in most Actinobacteria, has been used as model system to explore evolutionary hypotheses and therefore has a considerable amount of evolutionary, functional and structural knowledge available. We searched for functional evolutionary intermediates between the HisA and PriA enzyme families in order to understand the functional divergence between these families. We constructed a HMM profile that correctly classifies sequences of unknown function into the HisA and PriA enzyme sub-families. Using this HMM profile, we mined a large metagenome to identify plausible evolutionary intermediate sequences between HisA and PriA. These sequences were used to perform phylogenetic reconstructions and to identify functionally conserved amino acids. Biochemical characterization of one selected enzyme (CAM1) with a mutation within the functionally essential N-terminus phosphate-binding site, namely, an alanine instead of a glycine in HisA or a serine in PriA, showed that this evolutionary intermediate has dual-substrate specificity. Moreover, site-directed mutagenesis of this alanine residue, either backwards into a glycine or forward into a serine, revealed the robustness of this enzyme. None of these mutations, presumably upon functionally essential amino acids, significantly abolished its enzyme activities. A truncated version of this enzyme (CAM2

  1. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  2. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  3. Lack of pre-antiretroviral care and competition from traditional ...

    African Journals Online (AJOL)

    Lack of family support tripled the risk of initiating ART very late (AOR 3.3, 95% CI: 1.6-6.6). Conclusion: Policy makers should prevent ARV stock-outs though effective ARV procurement and supply chain management. New HIV clients should seek pre-ARV care for routine monitoring and determination of ART eligibility.

  4. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A. (Sungkyunkwan); (UTSMC)

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  5. The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes.

    Science.gov (United States)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    2016-01-15

    The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (β/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  7. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  8. Diversity of beetle genes encoding novel plant cell wall degrading enzymes.

    Directory of Open Access Journals (Sweden)

    Yannick Pauchet

    Full Text Available Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.

  9. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  10. Families and family therapy in Hong Kong.

    Science.gov (United States)

    Tse, Samson; Ng, Roger M K; Tonsing, Kareen N; Ran, Maosheng

    2012-04-01

    Family therapy views humans not as separate entities, but as embedded in a network of relationships, highlighting the reciprocal influences of one's behaviours on one another. This article gives an overview of family demographics and the implementation of family therapy in Hong Kong. We start with a review of the family demographics in Hong Kong and brief notes on families in mainland China. Demographics show that the landscape has changed markedly in the past decade, with more cross-border marriages, an increased divorce rate, and an ageing overall population - all of which could mean that there is increasing demand for professional family therapy interventions. However, only a limited number of professionals are practising the systems-based approach in Hong Kong. Some possible reasons as to why family therapy is not well disseminated and practised are discussed. These reasons include a lack of mental health policy to support family therapy, a lack of systematic family therapy training, and a shortage of skilled professionals. Furthermore, challenges in applying the western model in Chinese culture are also outlined. We conclude that more future research is warranted to investigate how family therapy can be adapted for Chinese families.

  11. Structure and function of α-glucan debranching enzymes

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Henriksen, Anette; Svensson, Birte

    2016-01-01

    α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α......-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12–14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains......_39 enzymes could represent a “missing link” between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference....

  12. Male-like sexual behavior of female mouse lacking fucose mutarotase

    Directory of Open Access Journals (Sweden)

    Lim Dae-sik

    2010-07-01

    Full Text Available Abstract Background Mutarotases are recently characterized family of enzymes that are involved in the anomeric conversions of monosaccharides. The mammalian fucose mutarotase (FucM was reported in cultured cells to facilitate fucose utilization and incorporation into protein by glycosylation. However, the role of this enzyme in animal has not been elucidated. Results We generated a mutant mouse specifically lacking the fucose mutarotase (FucM gene. The FucM knockout mice displayed an abnormal sexual receptivity with a drastic reduction in lordosis score, although the animals were fertile due to a rare and forced intromission by a typical male. We examined the anteroventral periventricular nucleus (AVPv of the preoptic region in brain and found that the mutant females showed a reduction in tyrosine hydoxylase positive neurons compared to that of a normal female. Furthermore, the mutant females exhibited a masculine behavior, such as mounting to a normal female partner as well as showing a preference to female urine. We found a reduction of fucosylated serum alpha-fetoprotein (AFP in a mutant embryo relative to that of a wild-type embryo. Conclusions The observation that FucM-/- female mouse exhibits a phenotypic similarity to a wild-type male in terms of its sexual behavior appears to be due to the neurodevelopmental changes in preoptic area of mutant brain resembling a wild-type male. Since the previous studies indicate that AFP plays a role in titrating estradiol that are required to consolidate sexual preference of female mice, we speculate that the reduced level of AFP in FucM-/- mouse, presumably resulting from the reduced fucosylation, is responsible for the male-like sexual behavior observed in the FucM knock-out mouse.

  13. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei.

    Directory of Open Access Journals (Sweden)

    Olivier Biner

    Full Text Available Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis.Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well

  14. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei

    Science.gov (United States)

    Trachsel, Christian; Moser, Aline; Kopp, Lukas; Langenegger, Nicolas; Kämpfer, Urs; von Ballmoos, Christoph; Nentwig, Wolfgang; Schürch, Stefan; Schaller, Johann

    2015-01-01

    Structure of Cupiennius salei venom hyaluronidase Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40–60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Function of venom hyaluronidases Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes

  15. Generation and characterization of koi herpesvirus recombinants lacking viral enzymes of nucleotide metabolism.

    Science.gov (United States)

    Fuchs, Walter; Fichtner, Dieter; Bergmann, Sven M; Mettenleiter, Thomas C

    2011-06-01

    Koi herpesvirus (KHV) causes a fatal disease in koi and common carp, but no reliable and genetically characterized vaccines are available up to now. Therefore, we generated KHV recombinants possessing deletions within the viral ribonucleotide reductase (RNR), thymidine kinase (TK), dUTPase, or TK and dUTPase genes, and their corresponding rescuants. All KHV mutants were replication competent in cultured cells. Whereas plaque sizes and titers of RNR-negative KHV were reduced, replication of the other mutants was not affected. Experimental infection of carp indicated attenuation of TK- or dUTPase-deleted KHV, and PCR analysis of tissue samples permitted differentiation of mutant from wild-type virus.

  16. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  17. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  18. Protein Kinase C Enzymes in the Hematopoietic and Immune Systems.

    Science.gov (United States)

    Altman, Amnon; Kong, Kok-Fai

    2016-05-20

    The protein kinase C (PKC) family, discovered in the late 1970s, is composed of at least 10 serine/threonine kinases, divided into three groups based on their molecular architecture and cofactor requirements. PKC enzymes have been conserved throughout evolution and are expressed in virtually all cell types; they represent critical signal transducers regulating cell activation, differentiation, proliferation, death, and effector functions. PKC family members play important roles in a diverse array of hematopoietic and immune responses. This review covers the discovery and history of this enzyme family, discusses the roles of PKC enzymes in the development and effector functions of major hematopoietic and immune cell types, and points out gaps in our knowledge, which should ignite interest and further exploration, ultimately leading to better understanding of this enzyme family and, above all, its role in the many facets of the immune system.

  19. Children's Views on Family Communications in Families with their ...

    African Journals Online (AJOL)

    Mrs Afam

    perceived a low extent of adjustment in the families. It was therefore ... that adoptive parents should make personal efforts to improve their family communication in order to ... styles become laden with pride, lack of guilt, and lack of fearful inhibitions, resulting ..... Impact of open adoption and contact with biological mothers on.

  20. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family

    Directory of Open Access Journals (Sweden)

    Aronson Nathan N

    2007-06-01

    Full Text Available Abstract Background Chitinases (EC.3.2.1.14 hydrolyze the β-1,4-linkages in chitin, an abundant N-acetyl-β-D-glucosamine polysaccharide that is a structural component of protective biological matrices such as insect exoskeletons and fungal cell walls. The glycoside hydrolase 18 (GH18 family of chitinases is an ancient gene family widely expressed in archea, prokaryotes and eukaryotes. Mammals are not known to synthesize chitin or metabolize it as a nutrient, yet the human genome encodes eight GH18 family members. Some GH18 proteins lack an essential catalytic glutamic acid and are likely to act as lectins rather than as enzymes. This study used comparative genomic analysis to address the evolutionary history of the GH18 multiprotein family, from early eukaryotes to mammals, in an effort to understand the forces that shaped the human genome content of chitinase related proteins. Results Gene duplication and loss according to a birth-and-death model of evolution is a feature of the evolutionary history of the GH18 family. The current human family likely originated from ancient genes present at the time of the bilaterian expansion (approx. 550 mya. The family expanded in the chitinous protostomes C. elegans and D. melanogaster, declined in early deuterostomes as chitin synthesis disappeared, and expanded again in late deuterostomes with a significant increase in gene number after the avian/mammalian split. Conclusion This comprehensive genomic study of animal GH18 proteins reveals three major phylogenetic groups in the family: chitobiases, chitinases/chitolectins, and stabilin-1 interacting chitolectins. Only the chitinase/chitolectin group is associated with expansion in late deuterostomes. Finding that the human GH18 gene family is closely linked to the human major histocompatibility complex paralogon on chromosome 1, together with the recent association of GH18 chitinase activity with Th2 cell inflammation, suggests that its late expansion

  1. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  2. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  3. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  4. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  5. Who Lacks Support and Why? An Examination of Mothers' Personal Safety Nets

    Science.gov (United States)

    Harknett, Kristen S.; Hartnett, Caroline Sten

    2011-01-01

    We use data from the Fragile Families and Child Wellbeing Study (N = 12,140 person-waves) to identify characteristics associated with mothers' having or lacking "personal safety net" support from family and friends. We focus on characteristics that are likely to increase the importance of having support available but may also interfere with the…

  6. Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed.

    Science.gov (United States)

    Bothe, Hermann; Tripp, H James; Zehr, Jonathan P

    2010-10-01

    Some unicellular N(2)-fixing cyanobacteria have recently been found to lack a functional photosystem II of photosynthesis. Such organisms, provisionally termed UCYN-A, of the oceanic picoplanktion are major contributors to the global marine N-input by N(2)-fixation. Since their photosystem II is inactive, they can perform N(2)-fixation during the day. UCYN-A organisms cannot be cultivated as yet. Their genomic analysis indicates that they lack genes coding for enzymes of the Calvin cycle, the tricarboxylic acid cycle and for the biosynthesis of several amino acids. The carbon source in the ocean that allows them to thrive in such high abundance has not been identified. Their genomic analysis implies that they metabolize organic carbon by a new mode of life. These unicellular N(2)-fixing cyanobacteria of the oceanic picoplankton are evolutionarily related to spheroid bodies present in diatoms of the family Epithemiaceae, such as Rhopalodia gibba. More recently, spheroid bodies were ultimately proven to be related to cyanobacteria and to express nitrogenase. They have been reported to be completely inactive in all photosynthetic reactions despite the presence of thylakoids. Sequence data show that R. gibba and its spheroid bodies are an evolutionarily young symbiosis that might serve as a model system to unravel early events in the evolution of chloroplasts. The cell metabolism of UCYN-A and the spheroid bodies may be related to that of the acetate photoassimilating green alga Chlamydobotrys.

  7. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  8. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  9. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzymes are biocatalytic protein molecules that enhance the rates of ... to physical forces (hydrogen bonds, hydrophobic 1, electrostatic and Van der ... conformation. In 1995 ... surface against 14.7% in Klenow poll (some of the hydrophobic.

  10. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  11. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  12. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  13. A Phenomenological Study on Lack of Motivation

    Science.gov (United States)

    Educational Research and Reviews, 2013

    2013-01-01

    The aim of this research is to point out the underlying reasons about the lack of motivation at academic activities concerning Attribution Theory. Attribution Theory trys to understand how the people answer "why" question and how they do casual explanations. This research is a qualitative based research. It used the phenomenological…

  14. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  15. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  16. Conceptualising the lack of health insurance coverage.

    Science.gov (United States)

    Davis, J B

    2000-01-01

    This paper examines the lack of health insurance coverage in the US as a public policy issue. It first compares the problem of health insurance coverage to the problem of unemployment to show that in terms of the numbers of individuals affected lack of health insurance is a problem comparable in importance to the problem of unemployment. Secondly, the paper discusses the methodology involved in measuring health insurance coverage, and argues that the current method of estimation of the uninsured underestimates the extent that individuals go without health insurance. Third, the paper briefly introduces Amartya Sen's functioning and capabilities framework to suggest a way of representing the extent to which individuals are uninsured. Fourth, the paper sketches a means of operationalizing the Sen representation of the uninsured in terms of the disability-adjusted life year (DALY) measure.

  17. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  18. Maternity and family leave policies in rural family practices.

    Science.gov (United States)

    Mainguy, S; Crouse, B J

    1998-09-01

    To help recruit and retain physicians, especially women, rural family practice groups need to establish policies regarding maternity and other family leaves. Also important are policies regarding paternity leave, adoptive leave, and leave to care for elderly parents. We surveyed members of the American Academy of Family Physicians in rural practice in 1995 to assess the prevalence of leave policies, the degree to which physicians are taking family leave, and the characteristics of ideal policies. Currently, both men and women physicians are taking family leaves of absence, which indicates a need for leave policies. Furthermore, a lack of family leave policies may deter women from entering rural practice.

  19. Thermophilic archaeal enzymes and applications in biocatalysis.

    Science.gov (United States)

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  20. Family Therapy

    Science.gov (United States)

    Family therapy Overview Family therapy is a type of psychological counseling (psychotherapy) that can help family members improve communication and resolve conflicts. Family therapy is usually provided by a psychologist, ...

  1. Dissolved families

    DEFF Research Database (Denmark)

    Christoffersen, Mogens

    The situation in the family preceding a family separation is studied here, to identify risk factors for family dissolution. Information registers covering prospective statistics about health aspects, demographic variables, family violence, self-destructive behaviour, unemployment, and the spousal...

  2. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  3. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  4. Accidents in radiotherapy: Lack of quality assurance?

    International Nuclear Information System (INIS)

    Novotny, J.

    1997-01-01

    About 150 radiological accidents, involving more than 3000 patients with adverse effects, 15 patient's fatalities and about 5000 staff and public exposures have been collected and analysed. Out of 67 analysed accidents in external beam therapy 22% has been caused by wrong calculation of the exposure time or monitor units, 13% by inadequate review of patient's chart, 12% by mistakes in the anatomical area to be treated. The remaining 35% can be attributed to 17 different causes. The most common mistakes in brachytherapy were wrong activities of sources used for treatment (20%), inadequate procedures for placement of sources applicators (14%), mistakes in calculating the treatment time (12%), etc. The direct and contributing causes of radiological accidents have been deduced from each event, when it was possible and categorized into 9 categories: mistakes in procedures (30%), professional mistakes (17%), communication mistakes (15%), lack of training (8.5%), interpretation mistakes (7%), lack of supervision (6%), mistakes in judgement (6%), hardware failures (5%), software and other mistakes (5.5%). Three types of direct and contributing causes responsible for almost 62% of all accidents are directly connected to the quality assurance of treatment. The lessons learnt from the accidents are related to frequencies of direct and contributing factors and show that most of the accident are caused by lack, non-application of quality assurance (QA) procedures or by underestimating of QA procedures. The international system for collection of accidents and dissemination of lessons learnt from the different accidents, proposed by IAEA, can contribute to better practice in many radiotherapy departments. Most of the accidents could have been avoided, had a comprehensive QA programme been established and properly applied in all radiotherapy departments, whatever the size. (author)

  5. A TetR family transcriptional factor directly regulates the expression of a 3-methyladenine DNA glycosylase and physically interacts with the enzyme to stimulate its base excision activity in Mycobacterium bovis BCG.

    Science.gov (United States)

    Liu, Lei; Huang, Cheng; He, Zheng-Guo

    2014-03-28

    3-Methyladenine DNA glycosylase recognizes and excises a wide range of damaged bases and thus plays a critical role in base excision repair. However, knowledge on the regulation of DNA glycosylase in prokaryotes and eukaryotes is limited. In this study, we successfully characterized a TetR family transcriptional factor from Mycobacterium bovis bacillus Calmette-Guerin (BCG), namely BCG0878c, which directly regulates the expression of 3-methyladenine DNA glycosylase (designated as MbAAG) and influences the base excision activity of this glycosylase at the post-translational level. Using electrophoretic mobility shift assay and DNase I footprinting experiments, we identified two conserved motifs within the upstream region of mbaag specifically recognized by BCG0878c. Significant down-regulation of mbaag was observed in BCG0878c-overexpressed M. bovis BCG strains. By contrast, about 12-fold up-regulation of mbaag expression was found in bcg0878c-deleted mutant M. bovis BCG strains. β-Galactosidase activity assays also confirmed these results. Thus, BCG0878c can function as a negative regulator of mbaag expression. In addition, the regulator was shown to physically interact with MbAAG to enhance the ability of the glycosylase to bind damaged DNA. Interaction between the two proteins was further found to facilitate AAG-catalyzed removal of hypoxanthine from DNA. These results indicate that a TetR family protein can dually regulate the function of 3-methyladenine DNA glycosylase in M. bovis BCG both at the transcriptional and post-translational levels. These findings enhance our understanding of the expression and regulation of AAG in mycobacteria.

  6. Why does Colombia lack agricultural commodity futures?

    Directory of Open Access Journals (Sweden)

    Pablo Moreno-Alemay

    2015-11-01

    Full Text Available This article explores the reasons why futures contracts are not traded as an alternative to price hedging for agricultural goods in Colombia. Based on surveys, interviews and statistical analysis, this study identified that conceptual gaps in contract negotiation, lack of consensus in the agricultural sector regarding the use of financial mechanisms and the sector’s infrequent contact with Colombia’s financial institutions, are the main reasons why a futures contracts market has not emerged.

  7. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  8. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  9. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  11. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  12. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  13. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  14. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  15. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    Science.gov (United States)

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.

  16. Purification and crystallization of Bacillus subtilis NrnA, a novel enzyme involved in nanoRNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nelersa, Claudiu M.; Schmier, Brad J.; Malhotra, Arun (Miami-MED)

    2012-05-08

    The final step in RNA degradation is the hydrolysis of RNA fragments five nucleotides or less in length (nanoRNA) to mononucleotides. In Escherichia coli this step is carried out by oligoribonuclease (Orn), a DEDD-family exoribonuclease that is conserved throughout eukaryotes. However, many bacteria lack Orn homologs, and an unrelated DHH-family phosphoesterase, NrnA, has recently been identified as one of the enzymes responsible for nanoRNA degradation in Bacillus subtilis. To understand its mechanism of action, B. subtilis NrnA was purified and crystallized at room temperature using the hanging-drop vapor-diffusion method with PEG 4000, PEG 3350 or PEG MME 2000 as precipitant. The crystals belonged to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 50.62, b = 121.3, c = 123.4 {angstrom}, {alpha} = 90, {beta} = 91.31, {gamma} = 90{sup o}.

  17. The Enzyme Function Initiative†

    Science.gov (United States)

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID

  18. The Enzyme Function Initiative.

    Science.gov (United States)

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

  19. Reduced alcohol consumption in mice lacking preprodynorphin.

    Science.gov (United States)

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  20. [Lack of donor organs as an argument for living donors?].

    Science.gov (United States)

    Kirste, G

    2010-09-01

    In Germany more than 12,000 patients are presently waiting for an organ donation. Living donation makes sense for the long waiting time for a kidney, but it is not a permanent solution for the lack of organ donations. In the future topics which should be discussed are intensified public relations, a better family care and the allocation of rights and duties at the German coordinating agency. For all the prospects of success after a living donation the high standards of quality and security, which are targeted by the German donor organization in recipient protection, responsible evaluation of the expanded donor criteria and immunosuppressive therapy are all in favor of post-mortem organ donation. For all the phenomenal chance of success the priority of the post-mortem organ donation is regulated by law. The living donation remains an individual decision of the donor and the personal situation of life.

  1. Insight into cofactor recognition in arylamine N-acetyltransferase enzymes

    DEFF Research Database (Denmark)

    Xu, Ximing; Li de la Sierra-Gallay, Inés; Kubiak, Xavier Jean Philippe

    2015-01-01

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined...... for Bacillus anthracis NAT1 and Homo sapiens NAT2. Therefore, in contrast to previous data, this study shows that different orthologous NATs can bind their cofactors in a similar way, suggesting that the mode of binding CoA in this family of enzymes is less diverse than previously thought. Moreover......, it supports the notion that the presence of the `mammalian/eukaryotic insertion loop' in certain NAT enzymes impacts the mode of binding CoA by imposing structural constraints....

  2. Lack of consensus in social systems

    Science.gov (United States)

    Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.

    2008-05-01

    We propose an exactly solvable model for the dynamics of voters in a two-party system. The opinion formation process is modeled on a random network of agents. The dynamical nature of interpersonal relations is also reflected in the model, as the connections in the network evolve with the dynamics of the voters. In the infinite time limit, an exact solution predicts the emergence of consensus, for arbitrary initial conditions. However, before consensus is reached, two different metastable states can persist for exponentially long times. One state reflects a perfect balancing of opinions, the other reflects a completely static situation. An estimate of the associated lifetimes suggests that lack of consensus is typical for large systems.

  3. Exploiting fine-scale genetic and physiological variation of closely related microbes to reveal unknown enzyme functions.

    Science.gov (United States)

    Badur, Ahmet H; Plutz, Matthew J; Yalamanchili, Geethika; Jagtap, Sujit Sadashiv; Schweder, Thomas; Unfried, Frank; Markert, Stephanie; Polz, Martin F; Hehemann, Jan-Hendrik; Rao, Christopher V

    2017-08-04

    Polysaccharide degradation by marine microbes represents one of the largest and most rapid heterotrophic transformations of organic matter in the environment. Microbes employ systems of complementary carbohydrate-specific enzymes to deconstruct algal or plant polysaccharides (glycans) into monosaccharides. Because of the high diversity of glycan substrates, the functions of these enzymes are often difficult to establish. One solution to this problem may lie within naturally occurring microdiversity; varying numbers of enzymes, due to gene loss, duplication, or transfer, among closely related environmental microbes create metabolic differences akin to those generated by knock-out strains engineered in the laboratory used to establish the functions of unknown genes. Inspired by this natural fine-scale microbial diversity, we show here that it can be used to develop hypotheses guiding biochemical experiments for establishing the role of these enzymes in nature. In this work, we investigated alginate degradation among closely related strains of the marine bacterium Vibrio splendidus One strain, V. splendidus 13B01, exhibited high extracellular alginate lyase activity compared with other V. splendidus strains. To identify the enzymes responsible for this high extracellular activity, we compared V. splendidus 13B01 with the previously characterized V. splendidus 12B01, which has low extracellular activity and lacks two alginate lyase genes present in V. splendidus 13B01. Using a combination of genomics, proteomics, biochemical, and functional screening, we identified a polysaccharide lyase family 7 enzyme that is unique to V. splendidus 13B01, secreted, and responsible for the rapid digestion of extracellular alginate. These results demonstrate the value of querying the enzymatic repertoires of closely related microbes to rapidly pinpoint key proteins with beneficial functions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Microbial nitrilases: versatile, spiral forming, industrial enzymes.

    Science.gov (United States)

    Thuku, R N; Brady, D; Benedik, M J; Sewell, B T

    2009-03-01

    The nitrilases are enzymes that convert nitriles to the corresponding acid and ammonia. They are members of a superfamily, which includes amidases and occur in both prokaryotes and eukaryotes. The superfamily is characterized by having a homodimeric building block with a alpha beta beta alpha-alpha beta beta alpha sandwich fold and an active site containing four positionally conserved residues: cys, glu, glu and lys. Their high chemical specificity and frequent enantioselectivity makes them attractive biocatalysts for the production of fine chemicals and pharmaceutical intermediates. Nitrilases are also used in the treatment of toxic industrial effluent and cyanide remediation. The superfamily enzymes have been visualized as dimers, tetramers, hexamers, octamers, tetradecamers, octadecamers and variable length helices, but all nitrilase oligomers have the same basic dimer interface. Moreover, in the case of the octamers, tetradecamers, octadecamers and the helices, common principles of subunit association apply. While the range of industrially interesting reactions catalysed by this enzyme class continues to increase, research efforts are still hampered by the lack of a high resolution microbial nitrilase structure which can provide insights into their specificity, enantioselectivity and the mechanism of catalysis. This review provides an overview of the current progress in elucidation of structure and function in this enzyme class and emphasizes insights that may lead to further biotechnological applications.

  5. Carbohydrate-related enzymes of important Phytophthora plant pathogens.

    Science.gov (United States)

    Brouwer, Henk; Coutinho, Pedro M; Henrissat, Bernard; de Vries, Ronald P

    2014-11-01

    Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Effect of different nutrient supply and other growth factors on the activity of the oxidizing enzymes in plants

    Energy Technology Data Exchange (ETDEWEB)

    Amberger, A

    1960-01-01

    Among the plants studied were french beans and peas; the oxidizing enzymes examined were ascorbic acid oxidase, cytochrome oxidase, phenol oxidase, peroxidase and catalase. Increasing the K dosage reduced enzyme activity and raised dry matter contents until at a very high dosage this action was reversed. Both N and P increased enzyme activity and yields. With B high enzyme activity and low dry matter content were both associated with deficiency and toxicity levels. Increasing the Fe dosage led to a rise in both dry matter content and enzyme activity, whereas F depressed yields and raised enzyme activity. Lack of water increased respiration. Light inhibited all enzyme activity.

  7. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    Science.gov (United States)

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  8. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  9. Cellulase enzyme and biomass utilization

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... human population grows and economic development. However, the current .... conditions and the production cost of the related enzyme system. Therefore ... Given the importance of this enzyme to these so many industries,.

  10. Family Meals

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Family Meals KidsHealth / For Parents / Family Meals What's in ... even more important as kids get older. Making Family Meals Happen It can be a big challenge ...

  11. Family Arguments

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Arguments Page Content Article Body We seem to ...

  12. Family History

    Science.gov (United States)

    Your family history includes health information about you and your close relatives. Families have many factors in common, including their genes, ... as heart disease, stroke, and cancer. Having a family member with a disease raises your risk, but ...

  13. Family Issues

    Science.gov (United States)

    ... Some have two parents, while others have a single parent. Sometimes there is no parent and grandparents raise grandchildren. Some children live in foster families, adoptive families, or in stepfamilies. Families are much ...

  14. Family Disruptions

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Disruptions Page Content Article Body No matter how ...

  15. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    Science.gov (United States)

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  16. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry

    CSIR Research Space (South Africa)

    Ramnath, L

    2017-03-01

    Full Text Available are very closely related (Lee 2016). Enzymes exhibit the canon- ical�/�-hydrolase fold and contain a typical catalytic triad. High activities at low temperature (less than 15 °C) were believed to originate from conserved sequence motifs of these enzymes... enzymes to a family. However, unique families are being discovered through the use of metagenomics (Fu et al. 2011; Kim et al. 2009; Lee et al. 2006). Table 1 summarizes the different classes of lipo- lytic enzymes currently described. Lipases Lipases (e...

  17. Preliminary characterization of digestive enzymes in freshwater mussels

    Science.gov (United States)

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Newton, Teresa J.; Haro, Roger J.

    2015-01-01

    Resource managers lack an effective chemical tool to control the invasive zebra mussel Dreissena polymorpha. Zebra mussels clog water intakes for hydroelectric companies, harm unionid mussel species, and are believed to be a reservoir of avian botulism. Little is known about the digestive physiology of zebra mussels and unionid mussels. The enzymatic profile of the digestive glands of zebra mussels and native threeridge (Amblema plicata) and plain pocketbook mussels (Lampsilis cardium) are characterized using a commercial enzyme kit, api ZYM, and validated the kit with reagent-grade enzymes. A linear correlation was shown for only one of nineteen enzymes, tested between the api ZYM kit and a specific enzyme kit. Thus, the api ZYM kit should only be used to make general comparisons of enzyme presence and to observe trends in enzyme activities. Enzymatic trends were seen in the unionid mussel species, but not in zebra mussels sampled 32 days apart from the same location. Enzymatic classes, based on substrate, showed different trends, with proteolytic and phospholytic enzymes having the most change in relative enzyme activity.

  18. Lack of efficacy of ergocalciferol repletion

    Directory of Open Access Journals (Sweden)

    Thomas Wasser

    2012-04-01

    Full Text Available Introduction: Vitamin D has become an area of intensive scrutiny, both in medical and lay literature. However, there are limited data to suggest proper repletion regimens for those patients who have hypovitaminosis D. Consequently, various methods are used in clinical practice. The aim of this study was to assess the efficacy of various treatment strategies for hypovitaminosis D in an ambulatory internal medicine practice. Methods: A retrospective chart review between October 2005 and June 2010 of a suburban internal medicine practice was performed via query of the electronic medical record (Centricity, General Electric Healthcare, UK. Patients with a 25-hydroxyvitamin D concentration less than 32 mg/dl were identified and treated. Treatment success was defined as 25-hydroxyvitamin D concentrations greater than 32 mg/dl. Statistical analysis to assess changes in vitamin D level controlling for season, comorbidities, and demographics were used. Results: A total of 607 treatment episodes were identified, with 395 excluded due to lack of follow-up vitamin D level within 16 weeks, no treatment documented, topical treatment, doxercalciferol treatment, or non-compliance. Of the remaining patients, there were 212 treatment instances on 178 patients. Ergocalciferol 50,000 international units (IU was used most frequently (71.4% of the time.. A higher initial vitamin D level was positively associated with treatment success (adjusted odds ratio = 1.11, p=0.002. Increased doses of ergocalciferol increased the likelihood of treatment success (p=0.0011. Seasonal variation was related to posttreatment 25-hydroxyvitamin D concentration as was body mass index (BMI (p=0.003 and p=0.044. Conclusion: Pretreatment levels of 25-hydroxyvitamin D, BMI, season, and vitamin D dose are predictors of successful hypovitaminosis D treatment. Our data suggest that patients with initial 25-hydroxyvitamin D concentrations of <20 should be treated with a higher total dose of

  19. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  20. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  1. 5 The Distribution of the Enzyme.cdr

    African Journals Online (AJOL)

    Administrator

    In uricotelic organisms, that include bacteria, fungi, invertebrates, reptiles and birds (Bellairs, 1969; Jenkinson et al., 1996) and ammonotelic organisms such as fish and amphibians (at early stage of development). (Mora et al., 1965ab; Bellairs, 1969;. Jenkinson et al., 1996), complete urea cycle enzymes are lacking. Thus ...

  2. Family Privilege

    Science.gov (United States)

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  3. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of Aspergillus niger.

    Science.gov (United States)

    van der Kaaij, R M; Yuan, X-L; Franken, A; Ram, A F J; Punt, P J; van der Maarel, M J E C; Dijkhuizen, L

    2007-07-01

    In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidylinositol anchored, and some highly conserved amino acids of enzymes in the alpha-amylase family were absent. We expressed two of these enzymes in a suitable A. niger strain and characterized the purified proteins. Both enzymes showed transglycosylation activity on donor substrates with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds and therefore belong to the group of the 4-alpha-glucanotransferases (EC 2.4.1.25). Their reaction products reached a degree of polymerization of at least 30. Maltose and larger maltooligosaccharides were the most efficient acceptor substrates, although AgtA also used small nigerooligosaccharides containing alpha-(1,3)-glycosidic bonds as acceptor substrate. An agtA knockout of A. niger showed an increased susceptibility towards the cell wall-disrupting compound calcofluor white, indicating a cell wall integrity defect in this strain. Homologues of AgtA and AgtB are present in other fungal species with alpha-glucans in their cell walls, but not in yeast species lacking cell wall alpha-glucan. Possible roles for these enzymes in the synthesis and/or maintenance of the fungal cell wall are discussed.

  4. Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome

    NARCIS (Netherlands)

    Frenkel, Joost; Rijkers, Ger T.; Mandey, Saskia H. L.; Buurman, Sandra W. M.; Houten, Sander M.; Wanders, Ronald J. A.; Waterham, Hans R.; Kuis, Wietse

    2002-01-01

    OBJECTIVE: To investigate whether the increased interleukin-1beta (IL-1beta) secretion in hyperimmunoglobulinemia D and periodic fever syndrome is due to the accumulation of mevalonate kinase (MK), the substrate of the deficient enzyme, or the lack of its products, the isoprenoid compounds. METHODS:

  5. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  6. Prefrontal glucose deficits in murderers lacking psychosocial deprivation.

    Science.gov (United States)

    Raine, A; Phil, D; Stoddard, J; Bihrle, S; Buchsbaum, M

    1998-01-01

    Previous research has suggested that links between autonomic nervous system functioning and violence are strongest in those who come from benign home backgrounds, but there appears to be no similar research using brain-imaging measures of central nervous system functioning. It was hypothesized that murderers who had no early psychosocial deprivation (e.g., no childhood abuse, family neglect) would demonstrate lower prefrontal glucose metabolism than murderers with early psychosocial deprivation and a group of normal controls. Murderers from a previous study, which showed prefrontal deficits in murderers, were assessed for psychosocial deprivation and divided into those with and without deprivation. Murderers without any clear psychosocial deficits were significantly lower on prefrontal glucose metabolism than murderers with psychosocial deficits and controls. These results suggest that murderers lacking psychosocial deficits are characterized by prefrontal deficits. It is argued that among violent offenders without deprived home backgrounds, the "social push" to violence is minimized, and consequently, brain abnormalities provide a relatively stronger predisposition to violence in this group.

  7. Radioisotope-enzymes and cancer study

    International Nuclear Information System (INIS)

    Luyen, T. van

    2008-01-01

    Cancer is a pathological sign, when the abnormal cells appear in certain human tissues or organs. These cells can reproduce beyond the control of normal biological protection mechanism. Because they reproduce very fast, the metabolic process is accelerated, which causes the extreme need for more energy, substrate and catalyzing enzymes. Based on these needs, we can control the metabolic process by: Stopping supplying the energy. Stopping supplying the substrate and the materials to build up the cell's structure. Stopping operating catalysis by breaking out the enzyme's structure. Destroying the tumor cell by extra agents such as radiations and chemicals. All of these methods have been studied for a long time, which costs too much money, time and labor. Although we succeeded in some ways, the results are still not satisfactory. There are many reasons for this situation but the main one is the lack of information to understand all the processes taking place in the cell and our body. However, as far as we studied, we would like to propose the method to break the structure of the enzyme by nuclear decay process. (author)

  8. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  9. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  10. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  11. Family Business Training: A Canadian Perspective

    Science.gov (United States)

    Ibrahim, A. B.; Soufani, K.; Lam, Jose

    2003-01-01

    Family firms play an important role in the working of the Canadian economy; despite their importance to the economic activities and job creation it is observed that family businesses have lower survival rates than non-family firms, some argue that this can possibly be attributed (amongst other factors) to the lack of training. Most of the training…

  12. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  13. Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours

    DEFF Research Database (Denmark)

    Yamada, Takuji; Waller, Alison S.; Raes, Jeroen

    2012-01-01

    Despite the current wealth of sequencing data, one-third of all biochemically characterized metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered orphan enzymes. They represent a major gap between our molecular and biochemical knowledge, and consequently a...... Systems Biology 8: 581; published online 8 May 2012; doi:10.1038/msb.2012.13...

  14. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  15. Hfq stimulates the activity of the CCA-adding enzyme

    Directory of Open Access Journals (Sweden)

    Betat Heike

    2007-10-01

    Full Text Available Abstract Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A polymerase I (PAP. As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme. Therefore, it was assumed that Hfq might not only influence the poly(A polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq. So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.

  16. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  18. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  19. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  20. Familial gigantism

    NARCIS (Netherlands)

    W.W. de Herder (Wouter)

    2012-01-01

    textabstractFamilial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas.

  1. Familial gigantism

    Directory of Open Access Journals (Sweden)

    Wouter W. de Herder

    2012-01-01

    Full Text Available Familial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas.

  2. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  3. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  4. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  5. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    Science.gov (United States)

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  6. Enzymes in Human Milk.

    Science.gov (United States)

    Dallas, David C; German, J Bruce

    2017-01-01

    Milk proteins are a complex and diverse source of biological activities. Beyond their function, intact milk proteins also act as carriers of encrypted functional sequences that, when released as peptides, exert biological functions, including antimicrobial and immunomodulatory activity, which could contribute to the infant's competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother's milk has been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant's stomach, possibly even to a larger extent than the infant's own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease-based peptide release system. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  7. Family Issues

    Science.gov (United States)

    ... es Autismo? Family Issues Home / Living with Autism / Family Issues Stress Siblings A child’s autism diagnosis affects every member of the family in different ways. Parents/caregivers must now place their ... may put stress on their marriage, other children, work, finances, and ...

  8. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...

  9. Standardized education and parental awareness are lacking for testicular torsion.

    Science.gov (United States)

    Friedman, Ariella A; Ahmed, Haris; Gitlin, Jordan S; Palmer, Lane S

    2016-06-01

    Testicular torsion leads to orchiectomy in 30-50% of cases, which may cause psychological upset and parental guilt over a potentially avertable outcome. Presentation delay is an important modifiable cause of orchiectomy; yet, families are not routinely educated about torsion or its urgency. The present study assessed parental knowledge regarding acute scrotal pain. An anonymous survey was distributed to parents in Urology and ENT offices, asking about their children's gender and scrotal pain history, urgency of response to a child's acute scrotal pain, and familiarity with testicular torsion. Surveys of 479 urology and 59 ENT parents were analyzed. The results between the two were not statistically different. Among the urology parents, 34% had heard of testicular twisting/torsion, most commonly through friends, relatives or knowing someone with torsion (35%); only 17% were informed by pediatricians (Summary Figure). Parents presenting for a child's scrotal pain were significantly more likely to have heard of torsion (69%) than those presenting for other reasons (30%, OR 5.24, P parents of boys had spoken with their children about torsion. Roughly three quarters of them would seek emergent medical attention - by day (75%) or night (82%) - for acute scrotal pain. However, urgency was no more likely among those who knew about torsion. This was the first study to assess parental knowledge of the emergent nature of acute scrotal pain in a non-urgent setting, and most closely approximating their level of knowledge at the time of pain onset. It also assessed parents' hypothetical responses to the scenario, which was markedly different than documented presentation times, highlighting a potential area for improvement in presentation times. Potential limitations included lack of respondent demographic data, potential sampling bias of a population with greater healthcare knowledge or involvement, and assessment of parents only. Parental knowledge of testicular torsion was

  10. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  11. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  12. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  13. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  14. Jamaican families.

    Science.gov (United States)

    Miner, Dianne Cooney

    2003-01-01

    The study of the family in the Caribbean originated with European scholars who assumed the universality of the patriarchal nuclear family and the primacy of this structure to the healthy functioning of society. Matrifocal Caribbean families thus were seen as chaotic and disorganized and inadequate to perform the essential tasks of the social system. This article provides a more current discussion of the Jamaican family. It argues that its structure is the result of the agency and adaptation of its members and not the root cause of the increasing marginalization of peoples in the developing world. The article focuses on families living in poverty and how the family structure supports essential family functions, adaptations, and survival.

  15. A phylogenetic analysis of normal modes evolution in enzymes and its relationship to enzyme function.

    Science.gov (United States)

    Lai, Jason; Jin, Jing; Kubelka, Jan; Liberles, David A

    2012-09-21

    Since the dynamic nature of protein structures is essential for enzymatic function, it is expected that functional evolution can be inferred from the changes in protein dynamics. However, dynamics can also diverge neutrally with sequence substitution between enzymes without changes of function. In this study, a phylogenetic approach is implemented to explore the relationship between enzyme dynamics and function through evolutionary history. Protein dynamics are described by normal mode analysis based on a simplified harmonic potential force field applied to the reduced C(α) representation of the protein structure while enzymatic function is described by Enzyme Commission numbers. Similarity of the binding pocket dynamics at each branch of the protein family's phylogeny was analyzed in two ways: (1) explicitly by quantifying the normal mode overlap calculated for the reconstructed ancestral proteins at each end and (2) implicitly using a diffusion model to obtain the reconstructed lineage-specific changes in the normal modes. Both explicit and implicit ancestral reconstruction identified generally faster rates of change in dynamics compared with the expected change from neutral evolution at the branches of potential functional divergences for the α-amylase, D-isomer-specific 2-hydroxyacid dehydrogenase, and copper-containing amine oxidase protein families. Normal mode analysis added additional information over just comparing the RMSD of static structures. However, the branch-specific changes were not statistically significant compared to background function-independent neutral rates of change of dynamic properties and blind application of the analysis would not enable prediction of changes in enzyme specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells

    Directory of Open Access Journals (Sweden)

    Laura Popolo

    2017-10-01

    Full Text Available Candida albicans is an opportunistic microorganism that can become a pathogen causing mild superficial mycosis or more severe invasive infections that can be life-threatening for debilitated patients. In the etiology of invasive infections, key factors are the adaptability of C. albicans to the different niches of the human body and the transition from a yeast form to hypha. Hyphal morphology confers high adhesiveness to the host cells, as well as the ability to penetrate into organs. The cell wall plays a crucial role in the morphological changes C. albicans undergoes in response to specific environmental cues. Among the different categories of enzymes involved in the formation of the fungal cell wall, the GH72 family of transglycosylases plays an important assembly role. These enzymes cut and religate β-(1,3-glucan, the major determinant of cell shape. In C. albicans, the PHR family encodes GH72 enzymes, some of which work in specific environmental conditions. In this review, we will summarize the work from the initial discovery of PHR genes to the study of the pH-dependent expression of PHR1 and PHR2, from the characterization of the gene products to the recent findings concerning the stress response generated by the lack of GH72 activity in C. albicans hyphae.

  17. Applying neural networks as software sensors for enzyme engineering.

    Science.gov (United States)

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  18. Pancreatic enzyme replacement therapy.

    Science.gov (United States)

    Layer, P; Keller, J; Lankisch, P G

    2001-04-01

    Malabsorption due to severe pancreatic exocrine insufficiency is one of the most important late features of chronic pancreatitis. Generally, steatorrhea is more severe and occurs several years prior to malabsorption of other nutrients because synthesis and secretion of lipase are impaired more rapidly, its intraluminal survival is shorter, and the lack of pancreatic lipase activity is not compensated for by nonpancreatic mechanisms. Patients suffer not only from nutritional deficiencies but also from increased nutrient delivery to distal intestinal sites, causing symptoms by profound alteration of upper gastrointestinal secretory and motor functions. Adequate nutrient absorption requires delivery of sufficient enzymatic activity into the duodenal lumen simultaneously with meal nutrients. The following recommendations are based on modern therapeutic concepts: 25,000 to 40,000 units of lipase per meal using pH-sensitive pancreatin microspheres, with dosage increases, compliance checks, and differential diagnosis in case of treatment failure. Still, in most patients, lipid digestion cannot be completely normalized by current standard therapy, and future developments are needed to optimize treatment.

  19. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  20. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes.

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2014-08-01

    Full Text Available Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a

  1. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    Science.gov (United States)

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  2. [Automated analyzer of enzyme immunoassay].

    Science.gov (United States)

    Osawa, S

    1995-09-01

    Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.

  3. Quantitative trait loci for a neurocranium deformity, lack of operculum, in gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Negrín-Báez, D; Navarro, A; Afonso, J M; Toro, M A; Zamorano, M J

    2016-04-01

    Lack of operculum, a neurocranial deformity, is the most common external abnormality to be found among industrially produced gilthead seabream (Sparus aurata L.), and this entails significant financial losses. This study conducts, for the first time in this species, a quantitative trait loci (QTL) analysis of the lack of operculum. A total of 142 individuals from a paternal half-sibling family (six full-sibling families) were selected for QTL mapping. They had previously shown a highly significant association with the prevalence of lack of operculum in a segregation analysis. All the fish were genotyped for 106 microsatellite markers using a set of multiplex PCRs (ReMsa1-ReMsa13). A linear regression methodology was used for the QTL analysis. Four QTL were detected for this deformity, two of which (QTLOP1 and QTLOP2) were significant. They were located at LG (linkage group) nine and LG10 respectively. Both QTL showed a large effect (about 27%), and furthermore, the association between lack of operculum and sire allelic segregation observed was statistically significant in the QTLOP1 analysis. These results represent a significant step towards including marker-assisted selection for this deformity in genetic breeding programmes to reduce the incidence of the deformity in the species. © 2016 Stichting International Foundation for Animal Genetics.

  4. Family Polymorphism

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    safety and flexibility at the level of multi-object systems. We are granted the flexibility of using different families of kinds of objects, and we are guaranteed the safety of the combination. This paper highlights the inability of traditional polymorphism to handle multiple objects, and presents family...... polymorphism as a way to overcome this problem. Family polymorphism has been implemented in the programming language gbeta, a generalized version of Beta, and the source code of this implementation is available under GPL....

  5. Level validity of self-report whole-family measures.

    Science.gov (United States)

    Manders, Willeke A; Cook, William L; Oud, Johan H L; Scholte, Ron H J; Janssens, Jan M A M; De Bruyn, Eric E J

    2007-12-01

    This article introduces an approach to testing the level validity of family assessment instruments (i.e., whether a family instrument measures family functioning at the level of the system it purports to assess). Two parents and 2 adolescents in 69 families rated the warmth in each of their family relationships and in the family as a whole. Family members' ratings of whole-family warmth assessed family functioning not only at the family level (i.e., characteristics of the family as a whole) but also at the individual level of analysis (i.e., characteristics of family members as raters), indicating a lack of level validity. Evidence was provided for the level validity of a latent variable based on family members' ratings of whole-family warmth. The findings underscore the importance of assessing the level validity of individual ratings of whole-family functioning.

  6. Family literacy

    DEFF Research Database (Denmark)

    Sehested, Caroline

    2012-01-01

    I Projekt familielæsning, der er et samarbejde mellem Nationalt Videncenter for Læsning og Hillerød Bibliotek, arbejder vi med at få kontakt til de familier, som biblioteket ellers aldrig ser som brugere og dermed også de børn, der vokser op i familier, for hvem bøger og oplæsningssituationer ikk...... er en selvfølgelig del af barndommen. Det, vi vil undersøge og ønsker at være med til at udvikle hos disse familier, er det, man kan kalde family literacy....

  7. Community families

    DEFF Research Database (Denmark)

    Jensen, Lotte Groth; Lou, Stina; Aagaard, Jørgen

    2017-01-01

    : Qualitative interviews with members of volunteer families. Discussion: The families were motivated by helping a vulnerable person and to engaging in a rewarding relationship. However, the families often doubted their personal judgment and relied on mental health workers to act as safety net. Conclusion......Background: Social interventions targeted at people with severe mental illness (SMI) often include volunteers. Volunteers' perspectives are important for these interventions to work. The present paper investigates the experiences of volunteer families who befriend a person with SMI. Material...

  8. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  9. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  10. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  11. Watching Individual Enzymes at Work

    Science.gov (United States)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  12. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  13. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  14. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  15. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Bingzhi Chen

    Full Text Available Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation and GH43 (hemicellulose and pectin degradation, and the lyase families PL1, PL3 and PL4 (pectin degradation but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3'-tag digital gene expression (DGE reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.

  16. This is My Family

    OpenAIRE

    Yeğen, Hale Nur; Çetin, Merve

    2017-01-01

    Me and my family, Families poem, Mother-Father, Brother-Sister, Grandparents, Uncle-Aunt, Cousin, Family, Family handgame, My family tree, Activities (Three In a Family), Digital Games, A family poem, Quiz

  17. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Extraction of Active Enzymes from "Hard-to-Break-Cells"

    DEFF Research Database (Denmark)

    Ottaviani, Alessio; Tesauro, Cinzia; Fjelstrup, S

    We present the utilization of a rolling circle amplification (RCA) based assay to investigate the extraction efficiency of active enzymes from a class of “hard-to-break” cells, yeast Saccaramyces cerevisiae. Current analyses of microorganisms, such as pathogenic bacteria, parasites or particular...... life stages of microorganisms (e.g. spores from bacteria or fungi) is hampered by the lack of efficient lysis protocols that preserve the activity and integrity of the cellular content. Presented herein is a flexible scheme to screen lysis protocols for active enzyme extraction. We also report a gentle...... yet effective approach for extraction of active enzymes by entrapping cells in microdroplets. Combined effort of optimized extraction protocols and effective analytical approaches is expected to generate impact in future disease diagnosis and environmental safety....

  19. Family problems

    International Nuclear Information System (INIS)

    Goldman, T.

    1984-01-01

    Even Grand Unified Theories may not explain the repetitive pattern of fermions in the Standard Model. The abysmal absence of dynamical information about these ''families'' is emphasized. The evidence that family quantum numbers exist, and are not conserved, is reviewed. It is argued that rare kaon decays may be the best means to obtain more information on this important question

  20. Family problems

    International Nuclear Information System (INIS)

    Goldman, T.

    1984-01-01

    Even Grand Unified Theories may not explain the repetitive pattern of fermions in the Standard Model. The abysmal absence of dynamical information about these families is emphasized. The evidence that family quantum numbers exist, and are not conserved, is reviewed. It is argued that rare kaon decays may be the best means to obtain more information on this important question

  1. Familial hypercholesterolemia

    Science.gov (United States)

    ... and Tests A physical exam may show fatty skin growths called xanthomas and cholesterol deposits in the eye (corneal arcus). The health care provider will ask questions about your personal and family medical history. There may be: A strong family history of ...

  2. FAMILY PYRGOTIDAE.

    Science.gov (United States)

    Mello, Ramon Luciano; Lamas, Carlos José Einicker

    2016-06-14

    Pyrgotidae is a family of endoparasitics flies of beetles with worldwide distribution. The Neotropical fauna is composed by 59 valid species names disposed in 13 genera. The occurrence of Pyrgota longipes Hendel is the first record of the family in Colombia.

  3. Anaesthesia and familial dysautonomia with congenital insensitivity ...

    African Journals Online (AJOL)

    Adele

    the HSANs are familial dysautonomia (Riley-Day syndrome or HSAN type III) and congenital ... sion, and excessive vagal reflexes. Central ... His skin was mottled, dry and pale. ... Eye protection is important since affected individuals lack tears,.

  4. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  5. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    Science.gov (United States)

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  6. Relationships between child behavior problems and family functioning: A literature review

    NARCIS (Netherlands)

    As, N.M.C. van; Janssens, J.M.A.M.

    2002-01-01

    Reviews research examining the relationship between family functioning and child behavior problems. Focuses on parenting styles, intergenerational relationships, family structure, and family interaction patterns. Finds that child behavior problems are related to a lack of parental support, an

  7. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate...... glycosyltransferases and glycoside hydrolases were selected based on co-expression profiles from a transcriptomics analysis. Reverse genetics approach on a novel glucuronosyltransferase involved in AGP biosynthesis has revealed that the enzyme activity is required for normal cell elongation in etiolated seedlings....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  8. The Extended Family and Children's Educational Success

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    2012-01-01

    Research on family background and educational success focuses almost exclusively on two generations and on parents and children. This paper argues that the extended family makes up a significant part of the total effect of family background on educational success. Empirical results based...... on the Wisconsin Longitudinal Study show that, net of family factors shared by siblings from the same immediate family, factors shared by first cousins from the same extended family account for a nontrivial part of the total variance in children’s educational success. Results also show that while socioeconomic...... characteristics of grandparents and aunts and uncles have few direct effects on educational success, resources in the extended family compensate lacking resources in low-SES families, which in turn promote children’s educational success. The main conclusion is that the total effect of family background...

  9. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  11. Family therapy, conflicts and change

    DEFF Research Database (Denmark)

    Musaeus, Peter

    2007-01-01

    Given the relative lack of sociocultural approaches to therapy, this presentation aims to contribute to a sociocultural understanding of motivation and socio-emotional problems in children and families undergoing family therapy. The study was designed as a case study using semi structured...... will be sketched pertaining to the area of family therapy. The study argues for the importance of a holistic, non-mechanical (Valsiner) approach to motivation for change in understanding how "at risk" or "problematic" children and youth (who are for instance experiencing school absenteeism, domestic violence...... interviews with 15 families undergoing family therapy delivered by a communal agency in Denmark.   Using notions of crisis interlinked with institutions and everyday lives (Hedegaard) framed by historical, contentious struggles (Holland and Lave), a model of conflict, violence, learning and motivation...

  12. 10 CFR 503.21 - Lack of alternate fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New Facilities § 503.21 Lack of alternate fuel supply. (a) Eligibility. Section 211(a)(1) of the Act provides for...

  13. Culture independent PCR: an alternative enzyme discovery strategy

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Lydolph, Magnus; Lange, Lene

    2005-01-01

    Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7 and glyco...... the value of culture-independent PCR in microbial diversity studies and could add to development of a new enzyme screening technology....

  14. Lead action on activity of some enzymes of plants

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Koshkaryova, A.I.

    2008-01-01

    Lead action on activity of some enzymes of young plants of barley double-row (Hordeum distichon L.) families of cereals (Grominea). It is established that activity urease, catalase, ascorbatoxidase is in dependence as from a lead dose in a nutritious solution, and term ontogenesis. At later stages ontogenesis the increase in concentration of lead in an inhabitancy leads to sharp decrease in activity ascorbatoxidase. In the same conditions activity urease and catalase raises.

  15. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    International Nuclear Information System (INIS)

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation

  16. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties

    OpenAIRE

    Sendobry, Sandra M; Cornicelli, Joseph A; Welch, Kathryn; Bocan, Thomas; Tait, Bradley; Trivedi, Bharat K; Colbry, Norman; Dyer, Richard D; Feinmark, Steven J; Daugherty, Alan

    1997-01-01

    15-Lipoxygenase (15-LO) has been implicated in the pathogenesis of atherosclerosis because of its localization in lesions and the many biological activities exhibited by its products. To provide further evidence for a role of 15-LO, the effects of PD 146176 on the development of atherosclerosis in cholesterol-fed rabbits were assessed. This novel drug is a specific inhibitor of the enzyme in vitro and lacks significant non specific antioxidant properties.PD 146176 inhibited rabbit reticulocyt...

  17. Changing families, changing workplaces.

    Science.gov (United States)

    Bianchi, Suzanne M

    2011-01-01

    American families and workplaces have both changed dramatically over the past half-century. Paid work by women has increased sharply, as has family instability. Education-related inequality in work hours and income has grown. These changes, says Suzanne Bianchi, pose differing work-life issues for parents at different points along the income distribution. Between 1975 and 2009, the labor force rate of mothers with children under age eighteen increased from 47.4 percent to 71.6 percent. Mothers today also return to work much sooner after the birth of a child than did mothers half a century ago. High divorce rates and a sharp rise in the share of births to unmarried mothers mean that more children are being raised by a single parent, usually their mother. Workplaces too have changed, observes Bianchi. Today's employees increasingly work nonstandard hours. The well-being of highly skilled workers and less-skilled workers has been diverging. For the former, work hours may be long, but income has soared. For lower-skill workers, the lack of "good jobs" disconnects fathers from family obligations. Men who cannot find work or have low earnings potential are much less likely to marry. For low-income women, many of whom are single parents, the work-family dilemma is how to care adequately for children and work enough hours to support them financially. Jobs for working-class and lower middle-class workers are relatively stable, except in economic downturns, but pay is low, and both parents must work full time to make ends meet. Family income is too high to qualify for government subsidized child care, but too low to afford high-quality care in the private market. These families struggle to have a reasonable family life and provide for their family's economic well-being. Bianchi concludes that the "work and family" problem has no one solution because it is not one problem. Some workers need more work and more money. Some need to take time off around the birth of a child

  18. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  19. Inhibition of existing denitrification enzyme activity by chloramphenicol

    Science.gov (United States)

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  20. Should a Lack Of Filial Piety Be Penalized?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Chinese traditionally have viewed the extended family model as an admirable living pattern worthy of acclamation. With the rapid development of a market economy, however, values have been changing in China. Most young people want to lead an independent life, and thanks to the immensely improved living conditions, they are moving out of their parents' homes to pursue their own lives. Family size is

  1. Family matters

    DEFF Research Database (Denmark)

    Kieffer-Kristensen, Rikke; Siersma, Volkert Dirk; Teasdale, Thomas William

    2013-01-01

    brain injury participated. Family and brain injury characteristics were reported by the ill and healthy parents. Children self-reported post-traumatic stress symptoms (PSS) using the Child Impact of Events revised (CRIES). Emotional and behavioural problems among the children were also identified...... by the parents using the Achenbach’s Child Behaviour Checklist (CBCL). RESULTS: The family stress variables relating to the healthy spouse in all six comparisons were significant (p... scores for the children. For the adjusted associations, we again found the family stress variables in the healthy spouse to be related to the risk of emotional and behavioral problems in the children. CONCLUSIONS: The present results suggest that in ABI families, the children’s emotional functioning...

  2. Small Families

    Science.gov (United States)

    ... children of larger families. The financial costs of maintaining a household are lower. It is easier for ... separated from you, hindering the development of new relationships with peers. In fact, you may have that ...

  3. Familial hypercholesterolaemia

    African Journals Online (AJOL)

    Familial hypercholesterolaemia (FH) is a monogenic disorder of low-density lipoprotein (LDL) metabolism. It is characterised .... Figure 2: Cumulative prevalence of physical signs in adult FH patients at the. GSH Lipid .... microvascular trauma.

  4. Family Life

    Science.gov (United States)

    ... family members to do your laundry, walk the dog, or update others on your progress. You may ... parenting while living with cancer . The importance of communication As demonstrated above, good communication is important in ...

  5. Familial dysautonomia

    Science.gov (United States)

    ... condition. FD occurs most often in people of Eastern European Jewish ancestry (Ashkenazi Jews). It is caused ... also be used for prenatal diagnosis. People of Eastern European Jewish background and families with a history ...

  6. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

    Science.gov (United States)

    Ferreira Filho, Jaire Alves; Horta, Maria Augusta Crivelente; Beloti, Lilian Luzia; Dos Santos, Clelton Aparecido; de Souza, Anete Pereira

    2017-10-12

    Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.

  7. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  8. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  9. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  10. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    Science.gov (United States)

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  11. Family welfare.

    Science.gov (United States)

    Sinha, N K

    1992-01-01

    Between 1901-1921, India gained 12.9 million people because mortality remained high. The death rate fell between 1921-1951, but birth rates remained the same. Therefore 110 million people were added--2 times the population increase between 1891-1921. Between 1951-1981, the population increased to 324 million. Socioeconomic development was responsible for most of the downward trend in the birth rate during the 20th century. Even though large families were the norm in early India, religious leaders encouraged small family size. The 1st government family planning clinics in the world opened in Mysore and Bangalore in 1930. Right before Independence, the Bhore Committee made recommendations to reduce population growth such as increasing the age of marriage for girls. Since 1951 there has been a change in measures and policies geared towards population growth with each of the 7 5-Year Plans because policy makers applied what they learned from each previous plan. The 1st 5-Year Plan emphasized the need to understand what factors contribute to population growth. It also integrated family planning services into health services of hospitals and health centers. The government was over zealous in its implementation of the sterilization program (2nd 5-Year Plan, 1956-1961), however, which hurt family planning programs for many years. As of early 1992, sterilization, especially tubectomy, remained the most popular family planning method, however. The 7th 5-Year Plan changed its target of reaching a Net Reproductive Rate of 1 by 2001 to 2006-2011. It set a goal of 100% immunization coverage by 1990 but it did not occur. In 1986, the Ministry of Health and Family Welfare planned to make free contraceptives available in urban and rural areas and to involve voluntary organizations. The government needs to instill measures to increase women's status, women's literacy, and age of marriage as well as to eliminate poverty, ensure old age security, and ensure child survival and

  12. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  13. Parental experience of family resources in single-parent families having a child with cancer.

    Science.gov (United States)

    Huang, I-Chen; Mu, Pei-Fan; Chiou, Tzeon-Jye

    2008-10-01

    The purpose of this study was to explore the essence of family experiences in terms of family resources and how these assist a single-parent caring for a child with cancer. When families face stresses caused by cancer, they need to readjust their roles, interactive patterns and relationships, both inside and outside the family. During the adaptation process, family resources may assist recovery from stress and a return to equilibrium. Most research has emphasised the support resources available to two-parent families during the treatment process. There is a lack of information on the experiences of single-parent families and their available resources together with the functions and roles played by family resources during the adjustment process. Qualitative. Five major themes were identified: (i) facing the disease with courage; (ii) hope kindled by professionals; (iii) constructing parental role ability; (iv) assisting the children to live with the illness; and (v) family flexibility. The results of the current study demonstrate that single-parent families with a child suffering from cancer employ family resources to assist family adjustment and to maintain family function/equilibrium. These results explain the dynamic interactions between the multiple levels of resources available to the family. The study results provide evidence-based information that identifies the nature of family resources in single-parent families and describes how these resources can be applied to assist the families.

  14. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  15. Curious Cases of the Enzymes.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-07-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the 'trial and error' methodology of the ancients is now replaced with rational scientific theories.

  16. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  17. Lack of consent for mediation between companies and its reasons

    OpenAIRE

    Karpińska-Królikowska, Iwona

    2011-01-01

    This article discusses commercial mediation, presenting its principles and procedure. It shows the reason why I became interested in the topic of companies’ lack of willingness to solve problems through mediation. It presents empirical statistics from mediation in commercial cases, including those on lack of consents or settlements. The figures are shown against the background of court statistics. On the basis of research conducted in the form of case studies, it presents...

  18. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome.

    Directory of Open Access Journals (Sweden)

    Concetta De Santi

    Full Text Available The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15 form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs.MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.

  19. An effective approach for annotation of protein families with low sequence similarity and conserved motifs: identifying GDSL hydrolases across the plant kingdom.

    Science.gov (United States)

    Vujaklija, Ivan; Bielen, Ana; Paradžik, Tina; Biđin, Siniša; Goldstein, Pavle; Vujaklija, Dušica

    2016-02-18

    The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through

  20. Familial macrocephaly

    International Nuclear Information System (INIS)

    Tatsuno, Masaru; Hayashi, Michiko; Iwamoto, Hiroko

    1984-01-01

    We reported 63 macrocephalic children with special emphasis on 16 cases with familial macrocephaly. Of the 16 children with familial macrocephaly, 13 were boys. Foureen parents (13 fathers and 1 mother) had head sizes above 98th percentile. Three of 5 brothers and 5 of 8 sisters also had large heads. The head circumference at birth was known for 14 of the children and it was above the 98th percentile in 7 patients. Subsequent evaluations have shown the head size of these children to be following a normal growth curve. Some of the children were hypotonic as infants, but their development was generally normal. CT scans usually clearly distinguished these children from those with hydorocephalus. The familial macrocephalic children had ventricular measurements which were within the normal range, but absolute measurements of the ventricular size may be misleading, because the CT appearance was of mildly dilated ventricles in half of them. (author)

  1. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  2. Family Structure and Family Processes in Mexican American Families

    OpenAIRE

    Zeiders, Katharine H.; Roosa, Mark W.; Tein, Jenn-Yun

    2011-01-01

    Despite increases in single-parent families among Mexican Americans (MA), few studies have examined the association of family structure and family adjustment. Utilizing a diverse sample of 738 Mexican American families (21.7% single parent), the current study examined differences across family structure on early adolescent outcomes, family functioning, and parent-child relationship variables. Results revealed that early adolescents in single parent families reported greater school misconduct,...

  3. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Natural family planning.

    Science.gov (United States)

    Brown, J B; Blackwell, L F; Billings, J J; Conway, B; Cox, R I; Garrett, G; Holmes, J; Smith, M A

    1987-10-01

    It is now well accepted that a woman can conceive from an act of intercourse for a maximum of only about 7 days of her menstrual cycle. The reliability of natural family planning depends on identifying this window of fertility without ambiguity. Several symptomatic markers, cervical mucus and basal body temperature, have been used extensively and with considerable success in most women but failures occur. Ovarian and pituitary hormone production show characteristic patterns during the cycle. Urinary estrogen and pregnanediol measurements yield reliable information concerning the beginning, peak, and end of the fertile period, provided that the assays are accurate and performed on timed specimens of urine. We have developed such enzyme immunoassays for urinary estrogen and pregnanediol glucuronides that can be performed at home. In the early versions of the assays, enzyme reaction rates were measured by eye, but more recently, a simple photoelectronic rate meter has been used. The final problem to be solved is not technologic but whether women are sufficiently motivated to expend the same time and effort each day for 10 days a month, with less cost, on fertility awareness as they spend on making a cup of tea.

  5. Super families

    International Nuclear Information System (INIS)

    Amato, N.; Maldonado, R.H.C.

    1989-01-01

    The study on phenomena in the super high energy region, Σ E j > 1000 TeV revealed events that present a big dark spot in central region with high concentration of energy and particles, called halo. Six super families with halo were analysed by Brazil-Japan Cooperation of Cosmic Rays. For each family the lateral distribution of energy density was constructed and R c Σ E (R c ) was estimated. For studying primary composition, the energy correlation with particles released separately in hadrons and gamma rays was analysed. (M.C.K.)

  6. The Sorcerer II Global Ocean Sampling Expedition: Expanding theUniverse of Protein Families

    Energy Technology Data Exchange (ETDEWEB)

    Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B.; Halpern,Aaron L.; Williamson, Shannon J.; Remington, Karin; Eisen, Jonathan A.; Heidelberg, Karla B.; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S.; Li, Huiying; Mashiyama, Susan T.; Joachimiak, Marcin P.; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A.; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael,Benjamin J.; Bafna, Vineet; Friedman, Robert; Brenner, Steven E.; Godzik,Adam; Eisenberg, David; Dixon, Jack E.; Taylor, Susan S.; Strausberg,Robert L.; Frazier, Marvin; Venter, J.Craig

    2006-03-23

    Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

  7. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families.

    Science.gov (United States)

    Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B; Halpern, Aaron L; Williamson, Shannon J; Remington, Karin; Eisen, Jonathan A; Heidelberg, Karla B; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S; Li, Huiying; Mashiyama, Susan T; Joachimiak, Marcin P; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael, Benjamin J; Bafna, Vineet; Friedman, Robert; Brenner, Steven E; Godzik, Adam; Eisenberg, David; Dixon, Jack E; Taylor, Susan S; Strausberg, Robert L; Frazier, Marvin; Venter, J Craig

    2007-03-01

    Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

  8. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families.

    Directory of Open Access Journals (Sweden)

    Shibu Yooseph

    2007-03-01

    Full Text Available Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

  9. Metabolic control by sirtuins and other enzymes that sense NAD(+), NADH, or their ratio

    DEFF Research Database (Denmark)

    Anderson, Kristin A; Madsen, Andreas S; Olsen, Christian A

    2017-01-01

    NAD(+) is a dinucleotide cofactor with the potential to accept electrons in a variety of cellular reduction-oxidation (redox) reactions. In its reduced form, NADH is a ubiquitous cellular electron donor. NAD(+), NADH, and the NAD(+)/NADH ratio have long been known to control the activity of several...... oxidoreductase enzymes. More recently, enzymes outside those participating directly in redox control have been identified that sense these dinucleotides, including the sirtuin family of NAD(+)-dependent protein deacylases. In this review, we highlight examples of non-redox enzymes that are controlled by NAD......(+), NADH, or NAD(+)/NADH. In particular, we focus on the sirtuin family and assess the current evidence that the sirtuin enzymes sense these dinucleotides and discuss the biological conditions under which this might occur; we conclude that sirtuins sense NAD(+), but neither NADH nor the ratio. Finally, we...

  10. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  11. The Structural Basis of Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Abbott,D.; Boraston, A.

    2007-01-01

    Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 {angstrom} resolution) and a digalacturonic acid product complex (solved to 2.10 {angstrom} resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.

  12. An engineered split M.HhaI-zinc finger fusion lacks the intended methyltransferase specificity

    International Nuclear Information System (INIS)

    Meister, Glenna E.; Chandrasegaran, Srinivasan; Ostermeier, Marc

    2008-01-01

    The ability to site-specifically methylate DNA in vivo would have wide applicability to the study of basic biomedical problems as well as enable studies on the potential of site-specific DNA methylation as a therapeutic strategy for the treatment of diseases. Natural DNA methyltransferases lack the specificity required for these applications. Nomura and Barbas [W. Nomura, C.F. Barbas 3rd, In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase, J. Am. Chem. Soc. 129 (2007) 8676-8677] have reported that an engineered DNA methyltransferase comprised of fragments of M.HhaI methyltransferase and zinc finger proteins has very high specificity for the chosen target site. Our analysis of this engineered enzyme shows that the fusion protein methylates target and non-target sites with similar efficiency

  13. Characterization of a bacteriophage T4 mutant lacking DNA-dependent ATPase

    International Nuclear Information System (INIS)

    Behme, M.T.; Ebisuzaki, K.

    1975-01-01

    A DNA-dependent ATPase has previously been purified from bacteriophage T4-infected Escherichia coli. A mutant phage strain lacking this enzyme has been isolated and characterized. Although the mutant strain produced no detectable DNA-dependent ATPase, growth properties were not affected. Burst sizes were similar for the mutant phage and T4D in polAl, recB, recC, uvrA, uvrB, uvrC, and various DNA-negative E. coli. UV sensitivity and genetic recombination were normal in a variety of E. coli hosts. Mapping data indicate that the genetic locus controlling the mutant occurs near gene 56. The nonessential nature of this gene is discussed

  14. Analysis of the transcriptome of Isodon rubescens and key enzymes involved in terpenoid biosynthesis

    Directory of Open Access Journals (Sweden)

    Xiuhong Su

    2016-05-01

    Full Text Available Isodon rubescens is an important medicinal plant in China that has been shown to reduce tumour growth due to the presence of the compound oridonin. In an effort to facilitate molecular research on oridonin biosynthesis, we reported the use of next generation massively parallel sequencing technologies and de novo transcriptome assembly to gain a comprehensive overview of I. rubescens transcriptome. In our study, a total of 50,934,276 clean reads, 101,640 transcripts and 44,626 unigenes were generated through de novo transcriptome assembly. A number of unigenes – 23,987, 10,263, 7359, 18,245, 17,683, 19,485, 9361 – were annotated in the National Center for Biotechnology Information (NCBI non-redundant protein (Nr, NCBI nucleotide sequences (Nt, Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology (KO, Swiss-Prot, protein family (Pfam, gene ontology (GO, eukaryotic ortholog groups (KOG databases, respectively. Furthermore, the annotated unigenes were functionally classified according to the GO, KOG and KEGG. Based on these results, candidate genes encoding enzymes involved in terpenoids backbone biosynthesis were detected. Our data provided the most comprehensive sequence resource available for the study on I. rubescens, as well as demonstrated the effective use of Illumina sequencing and de novo transcriptome assembly on a species lacking genomic information.

  15. Family Violence.

    Science.gov (United States)

    Emery, Robert E.

    1989-01-01

    Researchers and policymakers have begun to recognize the extent and severity of family violence, particularly its effects on children. But there is much disagreement about the definition of violence, its development, the consequences for victims, and the most effective avenues for intervention. Advances recommendations for further research.…

  16. Family arizing

    NARCIS (Netherlands)

    Croes, M.J.G.; Feijs, L.M.G.; Chen, L.; Djajadingrat, T.; Feijs, L.M.G.; Hu, J.; Kufin, S.H.M.; Rampino, L.; Rodriguez, E.; Steffen, D.

    2015-01-01

    In this demo we show the two main components of the Family Arizing system which allows parents to stay in contact with their child and, in cases of distress, provide the child with a remote comforting hug. The two components to be shown are the active necklace and the active snuggle.

  17. Family Genericity

    DEFF Research Database (Denmark)

    Ernst, Erik

    2006-01-01

    Type abstraction in object-oriented languages embody two techniques, each with its own strenghts and weaknesses. The first technique is extension, yielding abstraction mechanisms with good support for gradual specification. The prime example is inheritance. The second technique is functional abst...... the result as family genericity. The presented language design has been implemented....

  18. FAMILY ASILIDAE.

    Science.gov (United States)

    Wolff, Marta; Lamas, Carlos José Einicker

    2016-06-14

    Asilidae is one of the largest Diptera families with more than 7,000 recognized species worldwide. All their species are predators on arthropods, mainly insects. This catalogue presents 71 species distributed in 26 genera, ten tribes or generic groups and four subfamilies. For each species we present the available geographical information and relevant references.

  19. Family Hypnotherapy.

    Science.gov (United States)

    Araoz, Daniel L.; Negley-Parker, Esther

    1985-01-01

    A therapeutic model to help families activate experiential and right hemispheric functioning through hypnosis is presented in detail, together with a clinical illustration. Different situations in which this model is effective are mentioned and one such set of circumstances is described. (Author)

  20. Familial hypercholesterolaemia

    DEFF Research Database (Denmark)

    Versmissen, Jorie; Vongpromek, Ranitha; Yahya, Reyhana

    2016-01-01

    cholesterol efflux capacity between male familial hypercholesterolaemia (FH) patients with and without CHD relative to their non-FH brothers, and examined HDL constituents including sphingosine-1-phosphate (S1P) and its carrier apolipoprotein M (apoM). RESULTS: Seven FH patients were asymptomatic and six had...... in asymptomatic FH patients may play a role in their apparent protection from premature CHD....

  1. Temporal changes in glycogenolytic enzyme mRNAs during myogenesis of primary porcine satellite cells

    DEFF Research Database (Denmark)

    Henckel, Poul; Theil, Peter Kappel; Sørensen, Inge Lise

    2007-01-01

    , phosphorylase kinase, phosphorylase and glycogen debranching enzyme, and no alterations of the transporter molecule GLUT4, clearly indicate that glycogenolytic enzymes of potential importance to meat quality development are regulated at the gene level during myogenesis, and are heavily involved in muscle cell...... and muscle fibre development. The genes, however, are not influenced by insulin, and the lack of response to insulin of expression of gene-encoding enzymes involved in the formation and degradation of glycogen may question the applicability of porcine cell culture systems, like the one applied, as a model...

  2. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  3. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  4. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  5. Research progress of nanoparticles as enzyme mimetics

    Science.gov (United States)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  6. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  8. Immobilised enzymes in biorenewable production

    OpenAIRE

    Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, ...

  9. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  10. Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.

    Directory of Open Access Journals (Sweden)

    Chinatsu Mukai

    Full Text Available Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase. We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.

  11. Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.

    Science.gov (United States)

    Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L; Hinchman, Meleana M; Travis, Alexander J

    2013-01-01

    Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.

  12. Lack of dust in quasar absorption line systems

    International Nuclear Information System (INIS)

    Jura, M.

    1977-01-01

    It is stated that the origin of absorption line systems in quasars is still uncertain. Most such systems apparently have atomic hydrogen column densities of the order of 10 19 /cm 2 , but at least two quasars, 1331 + 170 and PHL957, have such strong Lyman α absorption lines that atomic hydrogen column densities of the order of 10 21 /cm 2 are indicated. It should be possible to observe the dust produced 2,200 A extinction feature as it is red shifted into the visible, and to determine whether absorption line systems are produced in spiral galaxies where the dust content is similar to that in the interstellar medium. It has been argued that the emission line regions of quasars generally lack dust and that towards PHL957 the 2,200 A feature is absent. The present author argues that dust similar to that found in the interstellar medium is not found towards the quasars 1331 + 170 and PHL957. This could explain why H 2 is not found towards PHL957, and it indicates that the absorption line systems in quasars are not produced in spiral galaxies similar to our own. It seems from the analysis presented that the dust-to-gas ratio towards 1331 + 170 is at least a factor of 20 less than in the interstellar medium, and there is no reason to suppose that this lack of dust results from a lack of metals It is concluded that there seems to be a lack of normal dust towards PHL957 by at least a factor of two; and that the absorption region towards 1331 + 170 and probably the region towards PHL957 are lacking dust similar to that in our own galaxy. This can explain the lack of H 2 in these systems. (U.K.)

  13. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  14. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  15. Immobilised enzymes in biorenewables production.

    Science.gov (United States)

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  16. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  17. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  18. Trial watch – inhibiting PARP enzymes for anticancer therapy

    Science.gov (United States)

    Sistigu, Antonella; Manic, Gwenola; Obrist, Florine; Vitale, Ilio

    2016-01-01

    ABSTRACT Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients. PMID:27308587

  19. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

    Science.gov (United States)

    Iakiviak, Michael; Mackie, Roderick I; Cann, Isaac K O

    2011-11-01

    Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from R. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in Escherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.

  20. Effect of lack of later support in the masseter muscle

    International Nuclear Information System (INIS)

    Fernandez Lopez, Otton

    2007-01-01

    One of the main complaints during dental consultation has been pain in the zone of the masseter muscle, especially a lack of rear support. None research has published that reveals what has been the relationship between the rear support and histological alterations in muscle mass. Both topics have treated to relate through a process of tooth wear in laboratory animals and produce a lack of rear support. Cuts of the masseter muscles and specimens were subjected to microscopic study of light and electronic. The conclusion has been that by removing the rear support are produced important changes to histological level. (author) [es

  1. [Lack of neonatologists: vocational crisis or mistaken policies?].

    Science.gov (United States)

    Justich, Pablo R

    2012-10-01

    In Argentina, the difficulty in covering neonatologist's positions represent an increasing problem. The absence of a coordinated and organized health system on one hand, and the lack of adaptation of the neonatologist's role to the current situation of the maternal and child care on the other, prevent the correct assistential coverage. The inadequate work conditions, the professional risks, the wide amount of time devoted to formation and studying, and the lack of knowledge of the professionals necessities and difficulties have a negative impact when it comes to incorporate new specialists. A global approach of the problem is essential to reach enduring answers.

  2. [Family violence].

    Science.gov (United States)

    Manoudi, F; Chagh, R; Es-soussi, M; Asri, F; Tazi, I

    2013-09-01

    Family violence is a serious public health problem, the scale of which is seriously increasing in Morocco. Although it has existed for a long time, we ignore the real characteristics of this plague in our country; our work consisted in an epidemiological approach of family violence in Marrakech during 2006. After elaborating a questionnaire, which allows the study of the demographic and social profile of the families, the study of violence exercised in the family and the evaluation of the depression in the women, we led an inquiry amongst 265 women. Analysis of the results obtained has allowed us to underline the following characteristics: 16.6% of the women in our sample had been physically beaten; the young age is a risk factor; the age range most affected by violence is in women between the ages of 30 and 40 and which represent 39% of the battered women; domestic violence touches all the social, economic and cultural classes: in our study, 63% of the women having undergone violence were housewives, 25% were managers and 3% senior executives; family problems were the most important cause of violence in our study, representing 32.32%. Requests for money was the cause in 11.3% of the cases, and imposed sexual relations were found in 6.8% of the cases; alcoholism is an aggravating factor of family violence; 27.3% of the spouses who assaulted their wives were drunk; 52% of the assaulted women were victims of violence in childhood and 36% had been witness to their father's violence; in 63.6% of the cases of violence, the children were witnesses, and in 25% of the cases the children were victims of violence at the same time as their mothers; 50% of the women victims of violence did not react, while 38.6% left home, and 9.1 filed for divorce. Thirty-two percent of the assaulted woman had been traumatised by the aggression; the association of depression and violence was very high, 343% of the battered women in our study suffered from severe depression. This work

  3. Families, children, migration and AIDS.

    Science.gov (United States)

    Haour-Knipe, Mary

    2009-01-01

    Migration is very often a family affair, and often involves children, directly or indirectly. It may give rise to better quality of life for an entire family, or to bitter disappointment, and may also increase vulnerability to HIV and AIDS. This review, carried out for the Joint Learning Initiative on Children and AIDS, links the literature on "migration", on "HIV and AIDS" and on "families". Three themes are sketched: (1) As both HIV prevalence and circular migration increase, former migrant workers affected by AIDS may return to their families for care and support, especially at the end of life, often under crisis conditions. Families thus lose promising members, as well as sources of support. However, very little is known about the children of such migrants. (2) Following patterns of migration established for far different reasons, children may have to relocate to different places, sometimes over long distances, if their AIDS-affected parents can no longer care for them. They face the same adaptation challenges as other children who move, but complicated by loss of parent(s), AIDS stigma, and often poverty. (3) The issue of migrant families living with HIV has been studied to some extent, but mainly in developed countries with a long history of migration, and with little attention paid to the children in such families. Difficulties include involuntary separation from family members, isolation and lack of support, disclosure and planning for children's care should the parent(s) die and differences in treatment access within the same family. Numerous research and policy gaps are defined regarding the three themes, and a call is made for thinking about migration, families and AIDS to go beyond description to include resilience theory, and to go beyond prevention to include care.

  4. Work, family, and happiness : essays on interdependencies within families, life events, and time allocation decisions

    NARCIS (Netherlands)

    Pouwels, B.

    2011-01-01

    In this thesis we investigate how today’s work and family life influence people’s happiness – or the lack thereof. We contribute to the research agenda by focusing on three underexplored issues in the literature, namely i) interdependencies within families, ii) life events, and iii) time allocation

  5. Children's Lack of Playtime Seen as Troubling Health, School Issue

    Science.gov (United States)

    Jacobson, Linda

    2008-01-01

    Teachers and parents are frequently warned that students in the United States are lacking the academic skills they need for the 21st century. But a growing contingent of educators, psychologists, and other professionals are voicing worries that today's children are also growing up without the chance to play. Test preparation in kindergarten,…

  6. Lack of competition in Italian natural gas market

    International Nuclear Information System (INIS)

    Bozzetto, Fabrizio

    2007-01-01

    This article analyses the reasons for an evident lack of competition in the Italian natural gas market, after the 2003 full liberalisation of the market. In particular, analysis focuses on dynamics which probably marks mass market and small office segments [it

  7. Kidney failure in mice lacking the tetraspanin CD151

    NARCIS (Netherlands)

    Sachs, Norman; Kreft, Maaike; van den Bergh Weerman, Marius A.; Beynon, Andy J.; Peters, Theo A.; Weening, Jan J.; Sonnenberg, Arnoud

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  8. Kidney failure in mice lacking the tetraspanin CD151.

    NARCIS (Netherlands)

    Sachs, N.; Kreft, M.; Bergh Weerman, M. van der; Beynon, A.J.; Peters, T.A.; Weening, J.J.; Sonnenberg, A.

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  9. Siim Nestor soovitab : lack of Eoins / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2008-01-01

    Väikefirma Seksound annab sel nädalavahetusel välja Viljandi indiebändi Lack of Eoins esikplaadi "Echo Group" (plaadiesitlused 11. dets. Tallinnas Von Krahlis ja 12. dets. Tartus Genialistide klubis, esinevad ka Ans. Andur ja Popidiot, plaate keerutavad Hannes Praks ja Taavi Laatsit)

  10. Lack of a safety culture destroyed the reactor

    International Nuclear Information System (INIS)

    Vuori, A.

    1996-01-01

    The importance of good safety culture in the operation of nuclear power plants is discussed. The modern safety culture emphasizes responsibility and preventive maintenance that can eliminate or minimize faults in advance. In the article the accident of Chernobyl is used as an example of the lack of safety culture. (1 fig.)

  11. Special Relativity in Week One: 4) Lack of Simultaneity

    Science.gov (United States)

    Huggins, Elisha

    2011-01-01

    This is our final article on teaching special relativity in the first week of an introductory physics course. One of the profound changes in our view of the world was Einstein's discovery of the lack of simultaneity. He illustrated this result with a thought experiment in which we observe a railroad car passing by us. We see the two ends of the…

  12. FAMILY BOMBYLIIDAE.

    Science.gov (United States)

    Lamas, Carlos José Einicker; Evenhuis, Neal L

    2016-06-14

    Bombyliidae is one of the largest Diptera families with more than 4,500 recognized species worldwide. Their species vary from robust to thin, and may be small to large (2-20mm) and looks like bees or wasps. They also present great variation in color. Adults can often be seen either resting and sunning themselves on trails, rocks or twigs or feeding on flowering plants as they are nectar feeders. All reared bee flies are predators or parasitoids of arthropods. The Colombian fauna of bombyliids comprises at the moment 22 species, and 12 genera, of which, six are endemic species. Nonetheless, this number may be much higher, as Colombia is a megadiverse country and there are not many specimens of this family deposited in collections all over the world.

  13. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  14. Biochemical characterization of thermostable cellulase enzyme from ...

    African Journals Online (AJOL)

    user

    2012-05-29

    May 29, 2012 ... tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well ... In the current industrial processes, cellulolytic enzymes ... energy sources such as glucose, ethanol, hydrogen and.

  15. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  16. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  17. [Adolescent substance use and family problems].

    Science.gov (United States)

    Malbergier, André; Cardoso, Luciana Roberta Donola; Amaral, Ricardo Abrantes do

    2012-04-01

    This study aimed to evaluate the association between substance use (alcohol, tobacco, and illicit drugs) and family problems among 965 adolescents from 50 public schools in two cities in São Paulo State, Brazil, in 2007. The Drug Use Screening Inventory (DUSI) was used for data collection. Use of alcohol, tobacco, and illicit drugs was associated with a negative assessment of the family relationship, lack of monitoring/support, and psychoactive substance use by family members (p illicit drugs had more family problems than those who did not consume any substance (p illicit drugs (p illicit drug use.

  18. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  19. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  20. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity

    Science.gov (United States)

    Weber, Felix C.; Esser, Philipp R.; Müller, Tobias; Ganesan, Jayanthi; Pellegatti, Patrizia; Simon, Markus M.; Zeiser, Robert; Idzko, Marco; Jakob, Thilo

    2010-01-01

    Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis. PMID:21059855

  1. Members of the YjgF/YER057c/UK114 family of proteins inhibit phosphoribosylamine synthesis in vitro.

    Science.gov (United States)

    Lambrecht, Jennifer A; Browne, Beth Ann; Downs, Diana M

    2010-11-05

    The YjgF/YER057c/UK114 family of proteins is highly conserved across all three domains of life and currently lacks a consensus biochemical function. Analysis of Salmonella enterica strains lacking yjgF has led to a working model in which YjgF functions to remove potentially toxic secondary products of cellular enzymes. Strains lacking yjgF synthesize the thiamine precursor phosphoribosylamine (PRA) by a TrpD-dependent mechanism that is not present in wild-type strains. Here, PRA synthesis was reconstituted in vitro with anthranilate phosphoribosyltransferase (TrpD), threonine dehydratase (IlvA), threonine, and phosphoribosyl pyrophosphate. TrpD-dependent PRA formation in vitro was inhibited by S. enterica YjgF and the human homolog UK114. Thus, the work herein describes the first biochemical assay for diverse members of the highly conserved YjgF/YER057c/UK114 family of proteins and provides a means to dissect the cellular functions of these proteins.

  2. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2004-06-01

    Full Text Available Abstract Background The PathoLogic program constructs Pathway/Genome databases by using a genome's annotation to predict the set of metabolic pathways present in an organism. PathoLogic determines the set of reactions composing those pathways from the enzymes annotated in the organism's genome. Most annotation efforts fail to assign function to 40–60% of sequences. In addition, large numbers of sequences may have non-specific annotations (e.g., thiolase family protein. Pathway holes occur when a genome appears to lack the enzymes needed to catalyze reactions in a pathway. If a protein has not been assigned a specific function during the annotation process, any reaction catalyzed by that protein will appear as a missing enzyme or pathway hole in a Pathway/Genome database. Results We have developed a method that efficiently combines homology and pathway-based evidence to identify candidates for filling pathway holes in Pathway/Genome databases. Our program not only identifies potential candidate sequences for pathway holes, but combines data from multiple, heterogeneous sources to assess the likelihood that a candidate has the required function. Our algorithm emulates the manual sequence annotation process, considering not only evidence from homology searches, but also considering evidence from genomic context (i.e., is the gene part of an operon? and functional context (e.g., are there functionally-related genes nearby in the genome? to determine the posterior belief that a candidate has the required function. The method can be applied across an entire metabolic pathway network and is generally applicable to any pathway database. The program uses a set of sequences encoding the required activity in other genomes to identify candidate proteins in the genome of interest, and then evaluates each candidate by using a simple Bayes classifier to determine the probability that the candidate has the desired function. We achieved 71% precision at a

  3. Galectin-4 and small intestinal brush border enzymes form clusters

    DEFF Research Database (Denmark)

    Danielsen, E M; van Deurs, B

    1997-01-01

    that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half...... by a nonclassical pathway, and the brush border enzymes represent a novel class of natural ligands for a member of the galectin family. Newly synthesized galectin-4 is rapidly "trapped" by association with intracellular structures prior to its apical secretion, but once externalized, association with brush border......Detergent-insoluble complexes prepared from pig small intestine are highly enriched in several transmembrane brush border enzymes including aminopeptidase N and sucrase-isomaltase, indicating that they reside in a glycolipid-rich environment in vivo. In the present work galectin-4, an animal lectin...

  4. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    Directory of Open Access Journals (Sweden)

    Swati Chaturvedi

    2016-01-01

    Full Text Available One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.

  5. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications

    Directory of Open Access Journals (Sweden)

    Christopher D. Boone

    2013-01-01

    Full Text Available As the global atmospheric emissions of carbon dioxide (CO2 and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs, which reversibly catalyze the hydration of CO2 into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2 atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.

  6. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Ricardo Harakava

    2005-01-01

    Full Text Available Eucalyptus ESTs libraries were screened for genes involved in lignin biosynthesis. This search was performed under the perspective of recent revisions on the monolignols biosynthetic pathway. Eucalyptus orthologues of all genes of the phenylpropanoid pathway leading to lignin biosynthesis reported in other plant species were identified. A library made with mRNAs extracted from wood was enriched for genes involved in lignin biosynthesis and allowed to infer the isoforms of each gene family that play a major role in wood lignin formation. Analysis of the wood library suggests that, besides the enzymes of the phenylpropanoids pathway, chitinases, laccases, and dirigent proteins are also important for lignification. Colocalization of several enzymes on the endoplasmic reticulum membrane, as predicted by amino acid sequence analysis, supports the existence of metabolic channeling in the phenylpropanoid pathway. This study establishes a framework for future investigations on gene expression level, protein expression and enzymatic assays, sequence polymorphisms, and genetic engineering.

  7. [Types of families, living conditions, functioning of family systems and social maladjustment during latency and adolescence in underprivileged milieus].

    Science.gov (United States)

    Le Blanc, M; McDuff, P; Tremblay, R E

    1991-06-01

    Available data on the impact of certain types of families is lacking, and the results are often misleading with respect to maladjustment. Following a description of variations in delinquent activity and behaviour problems according to family type, the authors analyse the difficulties in the operation of family systems. Comparisons of six family types apply to data from 763 boys aged 10, 319 female and 426 male adolescents, aged 14 and 15: intact families, father-based and mother-based single-parent families, father-based and mother-based reconstituted families and substitute families. The article's data show that in the late eighties, nearly 40 per cent of children and adolescents living in low-income districts in Montreal belonged to disunited families. In addition, the data confirm a classic observation: in comparison with intact families, disunited families are underprivileged in relation to living conditions, deficient in relation to psychosocial functioning, and propitious to behaviour problems and delinquent activity. In addition, it has been established that certain disunited family types represent a considerable risk factor. The damaging effect of family structure increases in the following order: intact families, mother-based single-parent families, mother-based reconstituted families, substitute families, father-based reconstituted families and father-based single-parent families. Finally, certain intervention methods are suggested to help prevent behaviour and family problems.

  8. Cellulolytic enzyme compositions and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  9. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  10. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  11. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  12. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  13. Prenatal family support, postnatal family support and postpartum depression.

    Science.gov (United States)

    Xie, Ri-Hua; Yang, Jianzhou; Liao, Shunping; Xie, Haiyan; Walker, Mark; Wen, Shi Wu

    2010-08-01

    Inadequate social support is an important determinant of postpartum depression (PPD). Social support for pregnant women consists of supports from various sources and can be measured at different gestation periods. Differentiating the effects of social support from different sources and measured at different gestation periods may have important implications in the prevention of PPD. In the family centred Chinese culture, family support is likely to be one of the most important components in social support. The aim of this study was to assess the association of prenatal family support and postnatal family support with PPD. A prospective cohort study was conducted between February and September 2007 in Hunan, China. Family support was measured with social support rating scale at 30-32 weeks of gestation (prenatal support) and again at 2 weeks of postpartum visit (postnatal support). PPD was defined as Edinburgh Postnatal Depression Scale (EPDS) score > or =13. A total of 534 pregnant women were included, and among them, 103 (19.3%) scored 13 or more on the EPDS. PPD was 19.4% in the lowest tertile versus 18.4% in the highest quartile (adjusted odds ratio: 1.04, 95% confidence interval 0.60, 1.80) for prenatal support from all family members, and PPD was 39.8% in the lowest tertile versus 9.6% in the highest tertile (adjusted odds ratio: 4.4, 95% confidence interval 2.3, 8.4) for postnatal support from all family members. Among family members, support from husband had the largest impact on the risk of developing PPD. Lack of postnatal family support, especially the support from husband, is an important risk factor of PPD.

  14. A novel thermophilic and halophilic esterase from Janibacter sp. R02, the first member of a new lipase family (Family XVII).

    Science.gov (United States)

    Castilla, Agustín; Panizza, Paola; Rodríguez, Diego; Bonino, Luis; Díaz, Pilar; Irazoqui, Gabriela; Rodríguez Giordano, Sonia

    2017-03-01

    Janibacter sp. strain R02 (BNM 560) was isolated in our laboratory from an Antarctic soil sample. A remarkable trait of the strain was its high lipolytic activity, detected in Rhodamine-olive oil supplemented plates. Supernatants of Janibacter sp. R02 displayed superb activity on transesterification of acyl glycerols, thus being a good candidate for lipase prospection. Considering the lack of information concerning lipases of the genus Janibacter, we focused on the identification, cloning, expression and characterization of the extracellular lipases of this strain. By means of sequence alignment and clustering of consensus nucleotide sequences, a DNA fragment of 1272bp was amplified, cloned and expressed in E. coli. The resulting recombinant enzyme, named LipJ2, showed preference for short to medium chain-length substrates, and displayed maximum activity at 80°C and pH 8-9, being strongly activated by a mixture of Na + and K + . The enzyme presented an outstanding stability regarding both pH and temperature. Bioinformatics analysis of the amino acid sequence of LipJ2 revealed the presence of a consensus catalytic triad and a canonical pentapeptide. However, two additional rare motifs were found in LipJ2: an SXXL β-lactamase motif and two putative Y-type oxyanion holes (YAP). Although some of the previous features could allow assigning LipJ2 to the bacterial lipase families VIII or X, the phylogenetic analysis showed that LipJ2 clusters apart from other members of known lipase families, indicating that the newly isolated Janibacter esterase LipJ2 would be the first characterized member of a new family of bacterial lipases. Published by Elsevier Inc.

  15. Comparative analyses of two thermophilic enzymes exhibiting both beta-1,4 mannosidic and beta-1,4 glucosidic cleavage activities from Caldanaerobius polysaccharolyticus.

    Science.gov (United States)

    Han, Yejun; Dodd, Dylan; Hespen, Charles W; Ohene-Adjei, Samuel; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-08-01

    The hydrolysis of polysaccharides containing mannan requires endo-1,4-beta-mannanase and 1,4-beta-mannosidase activities. In the current report, the biochemical properties of two endo-beta-1,4-mannanases (Man5A and Man5B) from Caldanaerobius polysaccharolyticus were studied. Man5A is composed of an N-terminal signal peptide (SP), a catalytic domain, two carbohydrate-binding modules (CBMs), and three surface layer homology (SLH) repeats, whereas Man5B lacks the SP, CBMs, and SLH repeats. To gain insights into how the two glycoside hydrolase family 5 (GH5) enzymes may aid the bacterium in energy acquisition and also the potential application of the two enzymes in the biofuel industry, two derivatives of Man5A (Man5A-TM1 [TM1 stands for truncational mutant 1], which lacks the SP and SLH repeats, and Man5A-TM2, which lacks the SP, CBMs, and SLH repeats) and the wild-type Man5B were biochemically analyzed. The Man5A derivatives displayed endo-1,4-beta-mannanase and endo-1,4-beta-glucanase activities and hydrolyzed oligosaccharides with a degree of polymerization (DP) of 4 or higher. Man5B exhibited endo-1,4-beta-mannanase activity and little endo-1,4-beta-glucanase activity; however, this enzyme also exhibited 1,4-beta-mannosidase and cellodextrinase activities. Man5A-TM1, compared to either Man5A-TM2 or Man5B, had higher catalytic activity with soluble and insoluble polysaccharides, indicating that the CBMs enhance catalysis of Man5A. Furthermore, Man5A-TM1 acted synergistically with Man5B in the hydrolysis of beta-mannan and carboxymethyl cellulose. The versatility of the two enzymes, therefore, makes them a resource for depolymerization of mannan-containing polysaccharides in the biofuel industry. Furthermore, on the basis of the biochemical and genomic data, a molecular mechanism for utilization of mannan-containing nutrients by C. polysaccharolyticus is proposed.

  16. An investigation of culturally competent terminology in healthcare policy finds ambiguity and lack of definition.

    Science.gov (United States)

    Grant, Julian; Parry, Yvonne; Guerin, Pauline

    2013-06-01

    This research explored how the concept of cultural competence was represented and expressed through health policies that were intended to improve the quality and efficacy of healthcare provided to families from culturally marginalised communities, particularly women and children with refugee backgrounds. A critical document analysis was conducted of policies that inform healthcare for families from culturally marginalised communities in two local government areas in South Australia. The analysis identified two major themes: lack of, or inconsistent, definitions of 'culture' and 'cultural competency' and related terms; and the paradoxical use of language to determine care. Cultural competence within health services has been identified as an important factor that can improve the health outcomes for families from marginalised communities. However, inconsistency in definitions, understanding and implementation of cultural competence in health practice makes it difficult to implement care using these frameworks. Clearly defined pathways are necessary from health policy to inform culturally competent service delivery. The capacity for policy directives to effectively circumvent the potential deleterious outcomes of culturally incompetent services is only possible when that policy provides clear definitions and instructions. Consultation and partnership are necessary to develop effective definitions and processes relating to cultural competence. © 2013 The Authors. ANZJPH © 2013 Public Health Association of Australia.

  17. Family pediatrics: report of the Task Force on the Family.

    Science.gov (United States)

    Schor, Edward L

    2003-06-01

    their basic needs. Children's needs for which only a family can provide include social support, socialization, and coping and life skills. Their self-esteem grows from being cared for, loved, and valued and feeling that they are part of a social unit that shares values, communicates openly, and provides companionship. Families transmit and interpret values to their children and often serve as children's connection to the larger world, especially during the early years of life. Although schools provide formal education, families teach children how to get along in the world. Often, efforts to discuss families and make recommendations regarding practice or policy stumble over disagreements about the definition of a family. The task force recognized the diversity of families and chose not to operate from the position of a fixed definition. Rather, the task force, which was to address pediatrics, decided to frame its deliberations and recommendations around the functions of families and how various aspects of the family context influence child rearing and child health. One model of family functioning that implicitly guided the task force is the family stress model (Fig 1). Stress of various sorts (eg, financial or health problems, lack of social support, unhappiness at work, unfortunate life events) can cause parents emotional distress and cause couples conflict and difficulty with their relationship. These responses to stress then disrupt parenting and the interactions between parent and child and can lead to short-term or lasting poor outcomes. The earlier these events transpire and the longer that the disruption lasts, the worse the outcomes for children. The task force favors efforts to encourage and support marriage yet recognizes that every family constellation can produce good outcomes for children and that none is certain to yield bad ones. (ABSTRACT TRUNCATED)

  18. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  19. Massive expansion of the calpain gene family in unicellular eukaryotes.

    Science.gov (United States)

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  20. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  1. Biochemistry students' ideas about how an enzyme interacts with a substrate.

    Science.gov (United States)

    Linenberger, Kimberly J; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an enzyme and be able to reason from simplistic lock and key or induced fit models to the more complex energetics model of transition state theory. Learning to understand these many facets of enzyme-substrate interactions and reasoning from multiple models present challenges where students incorrectly make connections between concepts or make no connection at all. This study investigated biochemistry students' understanding of enzyme-substrate interactions through the use of clinical interviews and a national administration (N = 707) of the Enzyme-Substrate Interactions Concept Inventory. Findings include misconceptions regarding the nature of enzyme-substrate interactions, naïve ideas about the active site, a lack of energetically driven interactions, and an incomplete understanding of the specificity pocket. © 2015 by the International Union of Biochemistry and Molecular Biology.

  2. Interactions between Melanin Enzymes and Their Atypical Recruitment to the Secretory Pathway by Palmitoylation

    Directory of Open Access Journals (Sweden)

    Srijana Upadhyay

    2016-11-01

    Full Text Available Melanins are biopolymers that confer coloration and protection to the host organism against biotic or abiotic insults. The level of protection offered by melanin depends on its biosynthesis and its subcellular localization. Previously, we discovered that Aspergillus fumigatus compartmentalizes melanization in endosomes by recruiting all melanin enzymes to the secretory pathway. Surprisingly, although two laccases involved in the late steps of melanization are conventional secretory proteins, the four enzymes involved in the early steps of melanization lack a signal peptide or a transmembrane domain and are thus considered “atypical” secretory proteins. In this work, we found interactions among melanin enzymes and all melanin enzymes formed protein complexes. Surprisingly, the formation of protein complexes by melanin enzymes was not critical for their trafficking to the endosomal system. By palmitoylation profiling and biochemical analyses, we discovered that all four early melanin enzymes were strongly palmitoylated during conidiation. However, only the polyketide synthase (PKS Alb1 was strongly palmitoylated during both vegetative hyphal growth and conidiation when constitutively expressed alone. This posttranslational lipid modification correlates the endosomal localization of all early melanin enzymes. Intriguingly, bioinformatic analyses predict that palmitoylation is a common mechanism for potential membrane association of polyketide synthases (PKSs and nonribosomal peptide synthetases (NRPSs in A. fumigatus. Our findings indicate that protein-protein interactions facilitate melanization by metabolic channeling, while posttranslational lipid modifications help recruit the atypical enzymes to the secretory pathway, which is critical for compartmentalization of secondary metabolism.

  3. Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.

  4. Economy may be harmed by lack of LLW disposal

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A study released by Organizations United for Responsible Low-Level Radioactive Waste Solutions warns that the substantial benefits of using radioactive materials are threatened by the lack of a low-level waste (LLW) disposal facility. The main point of the study is the threat to the American economy posed by insufficient facilities for disposal of the 1.7 billion ft 3 of LLW produced by the use of radioactive materials every year only 34.8 percent of which comes from nuclear power plants. open-quotes Thirty years of experience have provided the technical knowledge to design waste disposal facilities that protect the public and environment. But an impending lack of adequate disposal facilities jeopardizes our continued use of radioactive materials,close quotes according to the study

  5. Lack of diversity in behavioral healthcare leadership reflected in services.

    Science.gov (United States)

    Rosenberg, Linda

    2008-04-01

    America's rapidly changing demographics present an enormous challenge for today's healthcare leaders to redesign the organization and delivery of care to accommodate people who now represent every language, culture and religious belief in the world. So will mental health and addictions services in this country be ready to address the unique needs of these multicultural patients? A survey of the present landscape in 2008 tells us that we have a long, long way to go. Not only are mental health and addictions fields lacking in cultural competency, but there is little diversity in our leadership ranks. Top administrators and executives in behavioral health today are overwhelmingly non-Hispanic whites. This lack of cultural diversity among our leaders will lead to an ever-widening gap in the current chasm of racial and ethnic disparities in healthcare.

  6. Family roles as family functioning regulators

    OpenAIRE

    STEPANYAN ARMINE

    2015-01-01

    The author examines the problems of formation and functioning of family roles. Having social roots, family roles appear on individual level by performing the social function of the formation of family as a social institute.

  7. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  8. Law tightened to protect adults who lack capacity.

    Science.gov (United States)

    2009-05-21

    VULNERABLE OLDER people will be better protected from abuse and poor care after new legislation came into force last month. Under the Mental Capacity Act Deprivation of Liberty Safeguards, a care home or hospital wanting to deprive a person who lacks capacity of their liberty, for their own safety or wellbeing, must now apply for permission. A rigorous, standardised assessment and authorisation process must then be completed.

  9. Return voltage: reproductibility of lack in isolated plastics

    International Nuclear Information System (INIS)

    Frutos, F.; Acedo, M.; Jimenez, A.; Perez, J.A.

    1998-01-01

    Return voltage measures from plane-plane and point-plane experimental test objects of polyethylene are presented. Even though a lack of reproducibility is observed, all the experimental voltage curves can be modellized as the sum of two exponential functions: a first one with a long time period and a second one with a quite shorter time parameter. This analytical behaviour could be theoretically explained by considering an exponential dielectric function response. (Author) 7 refs

  10. The subjetivacion of the lack: between Lacan and Hegel

    Directory of Open Access Journals (Sweden)

    Lorena Souyris Oportot

    2014-05-01

    Full Text Available The present article develops a reflection concerning the figure of the subjectivation and the statute of the lack  in relation to Jacques Lacan y Hegel's thought . The analysis will be addressed from a philosophical approach as and with a psychoanalytic perspective, to show the need to understand the subjectivity, not already as a "work" of duel, but ligature to the loss and the split. The idea is that the above mentioned significances make possible deconstruir and to rethink the duel in lack, that he structures to the subject in an experience "escripturaire" (escriptural and, for the same thing, of dispossession. So that the figure of the subjetivación "in" lack  will allow to grant an important place to the non-place while I spread where the unthinkable thing and the "Autre" registers.  Once exposed this, the reflection will focus on the tragic exigences behind experience “escripturaire” expressed in the image of Antigone

  11. REPROBATION AND LACK OF INTEREST IN MECHATRONICS ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    César Humberto Guzmán Valdivia

    2013-07-01

    Full Text Available Engineering education in mechatronics is an attractive field of research because it is a new multidisciplinary career. However, a potential problem is the reprobation rate. In the period from January to April 2012 at the Universidad Politécnica de Zacatecas a 53% regular students of a total of 197 were registered. To find the causes of this problem, a survey was conducted to determine the causes of reprobation, lack of motivation and interest to a population of 96 students, of which 40 were the first training cycle, 32 the second and 24 the third. The surveys yielded three main results. The first indicates that the lack of interest is proportional to the time spent in college. The second shows that the reprobation rate is linked to the laziness and the excess of courses. And the last shows a lack of motivation and low expectations of student due to the monotony of the theoretical courses. In conclusion, more research is needed to have a motivated student in an engineering career in mechatronics.

  12. The Role of Family in Family Firms

    OpenAIRE

    Marianne Bertrand; Antoinette Schoar

    2006-01-01

    History is replete with examples of spectacular ascents of family businesses. Yet there are also numerous accounts of family businesses brought down by bitter feuds among family members, disappointed expectations between generations, and tragic sagas of later generations unable to manage their wealth. A large fraction of businesses throughout the world are organized around families. Why are family firms so prevalent? What are the implications of family control for the governance, financing an...

  13. In silico prediction of potential chemical reactions mediated by human enzymes.

    Science.gov (United States)

    Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun

    2018-06-13

    Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.

  14. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  15. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  16. The aspartic proteinase family of three Phytophthora species

    Science.gov (United States)

    2011-01-01

    Background Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to humans) and contain conserved motifs and landmark residues. APs fulfil critical roles in infectious organisms and their host cells. Annotation of Phytophthora APs would provide invaluable information for studies into their roles in the physiology of Phytophthora species and interactions with their hosts. Results Genomes of Phytophthora infestans, P. sojae and P. ramorum contain 11-12 genes encoding APs. Nine of the original gene models in the P. infestans database and several in P. sojae and P. ramorum (three and four, respectively) were erroneous. Gene models were corrected on the basis of EST data, consistent positioning of introns between orthologues and conservation of hallmark motifs. Phylogenetic analysis resolved the Phytophthora APs into 5 clades. Of the 12 sub-families, several contained an unconventional architecture, as they either lacked a signal peptide or a propart region. Remarkably, almost all APs are predicted to be membrane-bound. Conclusions One of the twelve Phytophthora APs is an unprecedented fusion protein with a putative G-protein coupled receptor as the C-terminal partner. The others appear to be related to well-documented enzymes from other species, including a vacuolar enzyme that is encoded in every fungal genome sequenced to date. Unexpectedly, however, the oomycetes were found to have both active and probably-inactive forms of an AP similar to vertebrate BACE, the enzyme responsible for initiating the processing cascade that generates the Aβ peptide central to Alzheimer's Disease. The oomycetes also encode enzymes similar to plasmepsin V, a membrane-bound AP that cleaves effector proteins of the malaria parasite Plasmodium falciparum during

  17. Religion and family planning.

    Science.gov (United States)

    Pinter, Bojana; Hakim, Marwan; Seidman, Daniel S; Kubba, Ali; Kishen, Meera; Di Carlo, Costantino

    2016-12-01

    Religion is embedded in the culture of all societies. It influences matters of morality, ideology and decision making, which concern every human being at some point in their life. Although the different religions often lack a united view on matters such contraception and abortion, there is sometimes some dogmatic overlap when general religious principles are subject to the influence of local customs. Immigration and population flow add further complexities to societal views on reproductive issues. For example, present day Europe has recently faced a dramatic increase in refugee influx, which raises questions about the health care of immigrants and the effects of cultural and religious differences on reproductive health. Religious beliefs on family planning in, for example, Christianity, Judaism, Islam and Hinduism have grown from different backgrounds and perspectives. Understanding these differences may result in more culturally competent delivery of care by health care providers. This paper presents the teachings of the most widespread religions in Europe with regard to contraception and reproduction.

  18. Family Farming Goods Distribution

    Directory of Open Access Journals (Sweden)

    Guilherme Soares Loiola

    2015-11-01

    Full Text Available Farmers need interaction mechanisms closer to customers interested in purchasing their products. The lack of communication between producer and potential buyers impacts on producers financial performance (that could have losses in sales volume, and buyers, which ultimately acquire lower-quality products. Thus, this paper aims to provide a technological solution proposal, the Buscagro: a software application that can be used on mobile devices and towards to enable a better interaction between family farmers and buyers, allowing a greater display of products from the farmer and disclosure of interests of potential buyers. The features of this technology are based on farmers goods data and information products demanded by potential buyers. In this way, the software application performs combinations based on supply and demand data, generating results for producers to have access in how to find buyers and for consumers to find products a greater agility.

  19. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes.

    Science.gov (United States)

    Harris, Charles A; Haas, Joel T; Streeper, Ryan S; Stone, Scot J; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W; Zechner, Rudolf; Farese, Robert V

    2011-04-01

    The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types.

  20. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes[S

    Science.gov (United States)

    Harris, Charles A.; Haas, Joel T.; Streeper, Ryan S.; Stone, Scot J.; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W.; Zechner, Rudolf; Farese, Robert V.

    2011-01-01

    The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types. PMID:21317108

  1. [Family adherence in serious mental disorder].

    Science.gov (United States)

    Martín Padilla, Ernesto; Obando Posada, Diana; Sarmiento Medina, Pedro

    2017-10-09

    Identify attitudes and behaviors that evidence and characterize family adherence to treatment in patients with severe mental disorder. Qualitative descriptive, from an interpretative social approach. Chia, Colombia, with professionals in the psychiatric and geriatric settings. Twelve professionals in psychiatry, nursing and psychology, with experience in care of patients with serious mental disorder and their families. Intentional sampling. Twelve semi-structured interviews were carried out. The analysis strategy was made from the procedures of constant comparison and open coding of the grounded theory. As validation strategies, triangulation was done between researchers and methods, as interviews and results survey. Two categories of family adherence were defined: family and treatment (treatment cooperation, knowledge about the disease and attention to the disease evolution), and family attitudes towards the patient (patient's care, patient's promotion of autonomy, and affective attachment with the patient). A third category showed aspects that diminished family adherence, such as lack or distortion of information regarding mental disorder, or family and patient endurance attitudes. Participants agree about the relevance of the construct named «family adherence», which describes the behaviors and attitudes of the family regarding the treatment of patients with severe mental disorder. Family adherence can be seen as active participation behavior, but also as a process of strengthening relationships, which can reduce the burden and suffering on family members, caregivers and patients. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  2. [Family, Through Mental Health and Sickness].

    Science.gov (United States)

    Solano Murcia, Martha Inés; Vasquez Cardozo, Socorro

    2014-01-01

    The following article arises from the study "Representaciones sociales en el campo de la salud mental" (Social Representations in the Mental Health Field), in which the objective was to address the social representations in the family context; concerning caring, as well as the burden it implies using a qualitative method. The corpus was built based on the analysis and interpretation gathered from families with mental illness members. There were 17 individual interviews, 13 group interviews and one family group of three generations, held regarding the clinical care of the family member. These interviews were held at three different hospitals in Bogota. The representation of "a family" constitutes the structuring of the meanings of family relationships that cope with mental illness built upon the social and historical life of its members. The three comprehensive categories were: a) Family in good times and bad times; b) mental illness in family interactions, and c) Care and burden. Socially speaking, mental illness can lead to dehumanization, in that it discriminates and stigmatizes, even within the family unit. Caring for a family member with mental illness comes about by hierarchical order, self assignation, and by institutionalization. This latter occurs due to lack of caregivers or because the family does not consider their home the best place to care for such a patient. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  3. The Impact on Family Functioning of Social Media Use by Depressed Adolescents: A Qualitative Analysis of the Family Options Study

    OpenAIRE

    Lewis, Andrew J.; Knight, Tess; Germanov, Galit; Benstead, Michelle Lisa; Joseph, Claire Ingrid; Poole, Lucinda

    2015-01-01

    Background: Adolescent depression is a prevalent mental health problem, which can have a major impact on family cohesion. In such circumstances, excessive use of the Internet by adolescents may exacerbate family conflict and lack of cohesion. The current study aims to explore these patterns within an intervention study for depressed adolescents.Method: The current study draws upon data collected within the Family Options randomized controlled trial that examined family-based interventions for...

  4. Roles within the Family

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Text Size Email Print Share Roles Within the Family Page Content Article Body Families are not democracies. ...

  5. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100

    International Nuclear Information System (INIS)

    Soria, L.F.; Ludwig, E.H.; Clarke, H.R.G.; McCarthy, B.J.; Vega, G.L.; Grundy, S.M.

    1989-01-01

    Familial defective apolipoprotein (apo) B-100 is a genetic disease that leads to hypercholesterolemia and to an increased serum concentration of low density lipoproteins that bind defectively to the apoB,E(LDL) receptor. The disorder appears to result from a mutation in the gene for apoB-100. Extensive sequence analysis of the two alleles of one subject heterozygous for the disorder has revealed a previously unreported mutation in the codon for amino acid 3500 that results in the substitution of glutamine for arginine. This same mutant allele occurs in six other, unrelated subjects and in eight affected relatives in two of these families. A partial haplotype of this mutant apoB-100 allele was constructed by sequence analysis and restriction enzyme digestion at positions where variations in the apoB-100 are known to occur. This haplotype is the same in three probands and four affected members of one family and lacks a polymorphic Xba I site whose presence has been correlated with high cholesterol levels. Thus, it appears that the mutation in the codon for amino acid 3500 (CGG → CAG), a CG mutational hot spot, defines a minor apoB-100 allele associated with defective low density lipoproteins and hypercholesterolemia

  6. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  7. [Different approaches to the family in the context of the family health program/strategy].

    Science.gov (United States)

    Ribeiro, Edilza Maria

    2004-01-01

    This study presents the scenario that favored the inclusion of the family as a care focus in public policies. The strategies to interrupt the impoverishment and vulnerability of families in the XXth century occur in a different form, according to different "welfare states" in capitalist societies. However, in view of the welfare state crisis and the increasing costs of public and private services and privates, at least a partial family solution is required in terms of reducing its dependency. The Family Health Program (PSF) put the family on the Brazilian social policy agenda in 1994, reflecting interests from the neoliberal model as well as from solidary social forces. This inclusion generated different approaches, such as: family/individual; family/home; family/individual/home; family/community; family/social risk; family/family. These approaches, due to the lack of a mutual dialogue, end up composing an insufficiently identified picture, thus turning care more difficult. The conditions indicated here should be examined as a way of giving a true chance to the family

  8. UK Citizens Lack Simple, Objective Knowledge of the European Union

    DEFF Research Database (Denmark)

    Manners, Ian James

    2017-01-01

    214); ‘A direct European tax will be created’ (EBS 214); ‘National citizenship will disappear’ (EBS 214); and ‘Most of the European budget is spent on administrative and personnel costs’ (EB65) UK respondents were far more likely to answer incorrectly that these were true. This is likely the result...... of disinformation in UK politics and media. The data suggests that not only are UK respondents unable to answer simple questions about the EU, but that they are relatively more likely to answer incorrectly rather than admit they did not know, reflecting disinformation about the EU in the UK. This lack of simple...

  9. Reincarnation and the Lack of Imagination in Philosophy

    Directory of Open Access Journals (Sweden)

    Mikel Burley

    2015-12-01

    Full Text Available It has been observed, by D. Z. Phillips among others, that philosophy suffers from a “lack of imagination”. That is, philosophers often fail to see possibilities of sense in forms of life and discourse due to narrow habits of thinking. This is especially problematic in the philosophy of religion, not least when cross-cultural modes of inquiry are called for. This article examines the problem in relation to the philosophical investigation of reincarnation beliefs in particular. As a remedial strategy, I argue for increased attention both to ethnographic sources and to the articulation of distinctively religious moral visions that reincarnation-talk facilitates.

  10. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes.

    NARCIS (Netherlands)

    Horn, P.J.; Carruthers, L.M.; Logie, C.; Hill, D.A.; Solomon, M.J.; Wade, P.A.; Imbalzano, A.N.; Hansen, J.; Peterson, C.L.

    2002-01-01

    Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of

  11. Global survey of Klebsiella pneumoniae major porins from ertapenem non-susceptible isolates lacking carbapenemases.

    Science.gov (United States)

    Wise, Mark G; Horvath, Elizabeth; Young, Katherine; Sahm, Daniel F; Kazmierczak, Krystyna M

    2018-03-01

    To understand the diversity of porin disruption in Klebsiella pneumoniae, the major outer membrane protein (OMP) porins, OmpK35 and OmpK36, were examined in a set of isolates that did not harbour traditional carbapenem-hydrolysing enzymes, but nevertheless tested non-susceptible to ertapenem. A world-wide collection of Klebsiella pneumoniae isolates that were part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) surveillance project over the years 2008-2014 were characterised with regard to their β-lactamase gene carriage and potential permeability defects. Four hundred and eighty-seven isolates that did not carry carbapenemase genes, but were non-susceptible to ertapenem, were investigated by sequence analysis of the genes encoding OmpK35 and OmpK36. Isolates without obvious genetic lesions in either major porin gene were further examined by outer membrane protein SDS-PAGE. The majority of isolates, 83.0 % (404/487), exhibited clear genetic disruption in either or both of the ompK35 and ompK36 genes. Among the proportion of the collection with the highest ertapenem MIC value (>4 mg l -1 ), 60.5 % (115/190) showed mutation in both porin genes. Isolates without obvious genetic mutations were examined by SDS-PAGE, and 90.4 % (75/83) were found to lack or show altered expression of at least one of the major OMPs when compared to an ertapenem sensitive control strain. This study illustrates that porin deficiency in Klebsiella pneumoniae is a widespread phenomenon, and in combination with ESBLs and/or AmpC enzymes, likely accounts for the elevated ertapenem MICs observed in this study.

  12. Assessment of 105 Patients with Angiotensin Converting Enzyme-Inhibitor Induced Angioedema

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; von Buchwald, Christian; Wadelius, Mia

    2017-01-01

    Objective. To asses a cohort of 105 consecutive patients with angiotensin converting enzyme-inhibitor induced angioedema with regard to demographics, risk factors, family history of angioedema, hospitalization, airway management, outcome, and use of diagnostic codes used for the condition. Study...... gender was associated with a significantly higher risk of angiotensin converting enzyme-inhibitor induced angioedema. 6.7% had a positive family history of angioedema. Diabetes seemed to be a protective factor with regard to angioedema. 95% experienced angioedema of the head and neck. 4.7% needed...... Design. Cohort study. Methods. This was a retrospective cohort study of 105 patients with angiotensin converting enzyme-inhibitor induced angioedema in the period 1995-2014. Results. The cohort consisted of 67 females and 38 males (F : M ratio 1.8), with a mean age of 63 [range 26-86] years. Female...

  13. Family Psychology and Family Therapy in Japan.

    Science.gov (United States)

    Kameguchi, Kenji; Murphy-Shigematsu, Stephen

    2001-01-01

    Reviews the development of family psychology and family therapy in Japan, tracing the origins of these movements, explaining how these fields were activated by the problem of school refusal, and describing an approach to family therapy that has been developed to work with families confronting this problem, as well as preventive programs of family…

  14. Structure Biology of Membrane Bound Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dax [Johns Hopkins Univ., Baltimore, MD (United States). School of Medicine. Dept. of Physiology

    2016-11-30

    The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkane $\\square$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.

  15. Enzyme organization in the proline biosynthetic pathway of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Gamper, H; Moses, V

    1974-01-01

    The conversion of glutamic acid to proline by an Escherichia coli extract was studied. The activity was dependent upon the presence of ATP and NADPH and was largely unaffected by the presence of NH/sub 3/ or imidazole. The first two pathway enzymes appear to exist as a complex which stabilizes a labile intermediate postulated as ..gamma..-glutamyl phosphate. Attempted synthesis of this compound was unsuccessful due to its spontaneous cyclization to 2-pyrrolidone 5-carboxylate. Dissociation of the enzyme complex upon dilution of the extract is presumed responsible for an experimentally observed dilution effect. E. coli pro/sub A//sup -/ and pro/sub B//sup -/ auxotroph extracts failed to complement one another in the biosynthesis of proline. This is attributed to the lack of a dynamic equilibrium between the complex and its constituent enzymes. In vivo studies with E. coli showed no evidence for metabolic channeling in the final reaction of proline synthesis, the reduction of ..delta../sup 1/-pyrroline 5-carboxylate.

  16. THE LACK OF RECOGNITION OF OTHERS, AFFECTS SCHOOL LIFE

    Directory of Open Access Journals (Sweden)

    Apolinar López-Miguel

    2016-01-01

    Full Text Available The school is the ideal place to teach to live in ness (ie, work sameness and otherness because we are different but equal in dignity and human rights, also the importance of "peace education" takes place before the deterioration of coexistence, the result of discrimination. We invite the reader to re-think the role of the school as a driving space of peace, being vital interaction school-family-community; promoting in areas: dialogue, tolerance, respect for differences, to build a Peace Education.

  17. Strengthening Family Practices for Latino Families.

    Science.gov (United States)

    Chartier, Karen G; Negroni, Lirio K; Hesselbrock, Michie N

    2010-01-01

    The study examined the effectiveness of a culturally-adapted Strengthening Families Program (SFP) for Latinos to reduce risks for alcohol and drug use in children. Latino families, predominantly Puerto Rican, with a 9-12 year old child and a parent(s) with a substance abuse problem participated in the study. Pre- and post-tests were conducted with each family. Parental stress, parent-child dysfunctional relations, and child behavior problems were reduced in the families receiving the intervention; family hardiness and family attachment were improved. Findings contribute to the validation of the SFP with Latinos, and can be used to inform social work practice with Puerto Rican families.

  18. Efficient lighting in buildings: The lack of legislation in Portugal

    International Nuclear Information System (INIS)

    Almeida, António Manuel; Martins, António Gomes

    2014-01-01

    The behavior of building designers is conditioned by the existing legislation and regulations in the national context in which they operate. However, in the Portuguese legislation there are no rules concerning the use of daylight, and therefore, designers are not stimulated to adopt solutions that make use of the existing potential of sunlight availability. In the same way, it is difficult to understand the lack of specific regulation, with quantified targets, limiting power density of artificial lighting installed inside buildings. The present opportunity, generated by the need to carry out the revision of Portuguese building energy systems regulation, should be used to fill the existing gap in national legislation regarding those matters. In this paper the authors present some proposals for future legislation that will have as central purpose the utilization of efficient lighting systems and the promotion of architectural solutions that optimize the use of daylighting. It is possible, and desirable, to add new directives to national legislation that contribute to the improvement of Portuguese buildings, characterized by its good performance in terms of daylight availability, and at the same time, increasing the energy efficiency and reducing the energy consumption of lighting systems installed in those buildings. - Highlights: • In the Portuguese legislation there are no rules concerning the use of daylight. • Lack of specific regulation limiting power density of artificial lighting. • Revision of Portuguese building energy systems regulation. • Some proposals for future legislation. • Improvement of Portuguese buildings promoting energy efficiency

  19. Characteristics of Adolescents Lacking Provider-Recommended Human Papillomavirus Vaccination.

    Science.gov (United States)

    Krakow, Melinda; Beavis, Anna; Cosides, Olivia; Rositch, Anne F

    2017-05-01

    To characterize subgroups of teens in the United States for whom provider recommendation is less likely to impact human papillomavirus (HPV) vaccine initiation. We analyzed provider-verified vaccination data from the Centers for Disease Control and Prevention's 2014 National Immunization Survey-Teen. Poisson regression models identified characteristics associated with the lack of HPV vaccine initiation among teens who received a provider recommendation (n = 12,742). Top qualitative reasons for nonvaccination among teens who received a provider recommendation were summarized (n = 1,688). Among teens with provider recommendations, males, younger teens, and white teens were less likely to initiate vaccination, compared to peers. Believing the vaccine was unnecessary, concerns about safety and lack of vaccine knowledge were common reasons parents did not initiate the vaccine, despite receiving provider recommendations. These key subgroups and barriers to HPV vaccination should be targeted with interventions that complement provider recommendation to achieve broad vaccine uptake in the United States. Published by Elsevier Inc.

  20. [Lack of assertiveness in patients with eating disorders].

    Science.gov (United States)

    Behar A, Rosa; Manzo G, Rodrigo; Casanova Z, Dunny

    2006-03-01

    Low self-assertion has been noted as an important feature among patients with eating disorders. To verify, in a female population, if assertiveness is related or has a predictive capacity for the development of eating disorders. An structured clinical interview, the Eating Attitudes Test (EAT-40) and the Rathus Assertiveness Scale (RAS) were administered to 62 patients that fulfilled the DSM-IV diagnostic criteria for eating disorders and to 120 female students without eating problems. Patients with eating disorders ranked significantly higher on the EAT-40 and its factors (p assertiveness on the RAS (p Assertiveness measured by RAS and its factors was inversely related to EAT-40 and its items (r= -0.21). The predictive capability of the lack of self-assertion in the development of an eating disorder reached 53%, when patients with eating disorders and subjects at risk were considered together and compared to students without such disorder. Lack of assertiveness is a significant trait in patients with eating disorders; it may worsen its outcome and even perpetuate symptoms. Low self-assertion may be considered a predictive factor in the development of an eating disorder and must be managed from a preventive or therapeutic point of view.

  1. Individuals With OCD Lack Unrealistic Optimism Bias in Threat Estimation.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Exner, Cornelia

    2015-07-01

    Overestimating the occurrence of threatening events has been highlighted as a central cognitive factor in the maintenance of obsessive-compulsive disorder (OCD). The present study examined the different facets of this cognitive bias, its underlying mechanisms, and its specificity to OCD. For this purpose, threat estimation, probabilistic classification learning (PCL) and psychopathological measures were assessed in 23 participants with OCD, 30 participants with social phobia, and 31 healthy controls. Whereas healthy participants showed an optimistic expectation bias regarding positive and negative future events, OCD participants lacked such a bias. This lack of an optimistic expectation bias was not specific to OCD. Compared to healthy controls, OCD participants overestimated their personal risk for experiencing negative events, but did not differ from controls in their risk estimation regarding other people. Finally, OCD participants' biases in the prediction of checking-related events were associated with their impairments in learning probabilistic cue-outcome associations in a disorder-relevant context. In sum, the present results add to a growing body of research demonstrating that cognitive biases in OCD are context-dependent. Copyright © 2015. Published by Elsevier Ltd.

  2. Next-generation leadership development in family businesses: the critical roles of shared vision and family climate

    OpenAIRE

    Miller, Stephen P.

    2014-01-01

    The multigenerational survival rate for family-owned businesses is not good. Lack of a shared vision for the family enterprise and weak next-generation leadership are often cited as two of the leading reasons for the failure of family firms to successfully transition from one generation of family ownership to the next. The climate of the business-owning family has also been suggested as important to the performance of the family enterprise. Despite these commonly held tenets, there is a la...

  3. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  4. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  7. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  8. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  9. Parental experience of enzyme replacement therapy for Hunter syndrome.

    Science.gov (United States)

    Buraczewska, M; O'Leary, D; Walsh, O; Monavari, A; Crushell, E

    2013-04-01

    We aimed to establish the profile of Irish patients with Hunter Syndrome (Mucopolysaccharidosis type II, MPS II) receiving weekly intravenous Enzyme Replacement Therapy (ERT) with recombinant iduronate-2-sulfatase and to assess the social impact and parental opinion of ERT through the use of a parental questionnaire. Nine patients aged 3.5- 14 years have received a mean of 2 (range 0.5-3.5) years of ERT. Treatment was associated with clinical improvements from baseline in hepatosplenomegaly in 6/7 (85%) respiratory manifestations in 4/6 (67%) and a mean reduction in urinary glycosaminoglycan excretion of 62%. Changes noted by parents included increased energy 3/9 (33%) and softening of skin, hair and facial features 8/9 (89%). Parents report that seven hours weekly were spent on hospitalizations for ERT. Parental employment was adversely affected in 8 (89%) families. One day of school/preschool (20%) was lost every week for 8 (89%) children. All parents believed the benefits of ERT out-weigh the difficulties involved. All families would welcome the introduction of home based therapy. In conclusion the social and educational burden of hospital-based ERT on these children and their families is significant. The introduction of home-based therapy is likely to improve overall quality of life for MPSII patients and their families.

  10. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  11. Sterol glycosyltransferases--the enzymes that modify sterols.

    Science.gov (United States)

    Chaturvedi, Pankaj; Misra, Pratibha; Tuli, Rakesh

    2011-09-01

    Sterols are important components of cell membranes, hormones, signalling molecules and defense-related biotic and abiotic chemicals. Sterol glycosyltransferases (SGTs) are enzymes involved in sterol modifications and play an important role in metabolic plasticity during adaptive responses. The enzymes are classified as a subset of family 1 glycosyltransferases due to the presence of a signature motif in their primary sequence. These enzymes follow a compulsory order sequential mechanism forming a ternary complex. The diverse applications of sterol glycosides, like cytotoxic and apoptotic activity, anticancer activity, medicinal values, anti-stress roles and anti-insect and antibacterial properties, draws attention towards their synthesis mechanisms. Many secondary metabolites are derived from sterol pathways, which are important in defense mechanisms against pathogens. SGTs in plants are involved in changed sensitivity to stress hormones and their agrochemical analogs and changed tolerance to biotic and abiotic stresses. SGTs that glycosylate steroidal hormones, such as brassinosteroids, function as growth and development regulators in plants. In terms of metabolic roles, it can be said that SGTs occupy important position in plant metabolism and may offer future tools for crop improvement.

  12. Utilization of Diamine Oxidase Enzyme from Mung Bean Sprouts (Vigna radiata L) for Histamine biosensors

    Science.gov (United States)

    Karim, Abdul; Wahab, A. W.; Raya, I.; Natsir, H.; Arif, A. R.

    2018-03-01

    This research is aimed to utilize the diamine oxidase enzyme (DAO) which isolated from mung bean sprouts (Vigna radiata L) to develop histamine biosensors based on electode enzyme with the amperometric method (cyclic voltammetry).The DAO enzyme is trapped inside the membrane of chitin-cellulose acetate 2:1 and glutaraldehyde which super imposed on a Pt electrode. Histamine will be oxidized by DAO enzyme to produce aldehydes and H2O2 that acting as electron transfer mediators.The performance of biosensors will be measured at various concentrations of glutaraldehyde, temperature changes and different range of pH. Recently, it has been found that the optimal conditions obtained from the paramaters as follows; at 25% of glutaraldehyde, temperature of 37°C and pH of 7.4. Eventually, the results provided an expectation for applying histamine biosensors in determining the freshness and safety of fish specifically skombroidae families.

  13. Identification of two Nereis virens [Annelida: Polychaeta] cytochrome P450 enzymes and induction by xenobiotics

    DEFF Research Database (Denmark)

    Rewitz, Kim; Kjellerup, C; Jørgensen, A

    2004-01-01

    Nereis virens. These are the first CYP sequences reported in annelids. The deduced amino acid sequences both share highest identities to mammalian CYP4F enzymes (61% and 58%), indicating membership of the CYP4 family (accordingly, referred to as CYP41 and CYP42, respectively). The CYP42 gene expression...... was significantly higher in vehicle controls (corn oil) compared to untreated controls. Clofibrate increased the expression of the CYP42 genes. The induction by clofibrate and corn oil indicates regulatory similarities to vertebrate CYP4 enzymes, which are primarily involved in the metabolism of endogenous...... compounds such as fatty acids. Crude oil and benz(a)anthracene significantly induced CYP42 gene expression 2.6-fold, and because CYP enzymes often are induced by their own substrates, this induction may indicate involvement of N. virens CYP4 enzymes in the detoxification of environmental contaminants...

  14. Profiles of digestive enzymes of two competing planktivores, silver carp and gizzard shad, differ

    Science.gov (United States)

    Amberg, Jon J.; Jensen, Nathan R.; Erickson, Richard A.; Sauey, Blake W.; Jackson, Craig

    2018-01-01

    Typically, studies in digestive physiology in fish focus on a few enzymes and provide insight into the specific processes of the enzyme in a targeted species. Comparative studies assessing a wide number of digestive enzymes on fishes that compete for food resources are lacking, especially in the context of an introduced species. It is generally thought that the invasive silver carp (SVC; Hypophthalmichthys molitrix) directly compete for food resources with the native gizzard shad (GZS; Dorosoma cepedianum) in waters where they coexist. We compared 19 digestive enzymes between SVC and GZS throughout a year and in two rivers in the Midwestern United States: Illinois River and Wabash River. All digestive enzymes analyzed were detected in both SVC and GZS in both rivers. However, the profiles of the digestive enzymes varied by species. Alkaline phosphatase, valine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-β-glucosaminidase were all much higher in SVC than in GZS. Differences between digestive enzyme profiles were also observed between rivers and months. This study demonstrates the utility of using an ecological approach to compare physiological features in fishes.

  15. Enzymes in cleaning products: an overview of toxicological properties and risk assessment/management.

    Science.gov (United States)

    Basketter, David; Berg, Ninna; Broekhuizen, Cees; Fieldsend, Mark; Kirkwood, Sheila; Kluin, Cornelia; Mathieu, Sophie; Rodriguez, Carlos

    2012-10-01

    Enzymes used in cleaning products have an excellent safety profile, with little ability to cause adverse responses in humans. For acute toxicity, genotoxicity, sub-acute and repeated dose toxicity, enzymes are unremarkable. Reproductive toxicity and carcinogenicity are also not endpoints of concern. Exceptions are the ability of some proteases to produce irritating effects at high concentrations and more importantly, the intrinsic potential of these bacterial/fungal proteins to act as respiratory sensitizers. It is a reasonable assumption that the majority of enzyme proteins possess this hazard. However, methods for characterising the respiratory sensitisation hazard of enzymes are lacking and the information required for risk assessment and risk management, although sufficient, remains limited. Previously, most data was generated in animal models and in in vitro immunoassays that assess immunological cross-reactivity. Nevertheless, by the establishment of strict limits on airborne exposure (based on a defined minimal effect limit of 60ng active enzyme protein/m(3)) and air and health monitoring, occupational safety can be assured. Similarly, by ensuring that airborne exposure is kept similarly low, coupled with knowledge of the fate of these enzymes on skin and fabrics, it has proven possible to establish a long history of safe consumer use of enzyme containing products. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  17. Next-generation leadership development in family businesses: the critical roles of shared vision and family climate.

    Science.gov (United States)

    Miller, Stephen P

    2014-01-01

    The multigenerational survival rate for family-owned businesses is not good. Lack of a shared vision for the family enterprise and weak next-generation leadership are often cited as two of the leading reasons for the failure of family firms to successfully transition from one generation of family ownership to the next. The climate of the business-owning family has also been suggested as important to the performance of the family enterprise. Despite these commonly held tenets, there is a lack of rigorous quantitative research that explores the relationships among these three factors. To address this gap, a quantitative study of 100 next-generation family firm leaders and 350 family and non-family leaders and employees with whom they work was conducted. The results demonstrate that a shared vision for the family business has a strong effect on the leadership effectiveness of next-generation family leaders and a moderate effect on the degree to which they are positively engaged with their work. The findings also show that two dimensions of family climate significantly influence the likelihood that a shared vision for the family firm has been created. Open communication in the family is positively related to the presence of a shared vision for the business. Intergenerational authority, which refers to a senior generation that exercises unquestioned authority and sets the rules, is negatively related to the presence of a shared vision. Surprisingly, a third dimension of family climate, cognitive cohesion, which includes shared values in the family, had no relationship with the degree to which there was a shared vision for the family business. The implications for family business owners is that they would be wise to spend as much time on fostering a positive family climate characterized by open communication as they do on creating and executing a successful business strategy if their goal is to pass the business from one generation of family owners to the next.

  18. Next-generation leadership development in family businesses: the critical roles of shared vision and family climate

    Science.gov (United States)

    Miller, Stephen P.

    2014-01-01

    The multigenerational survival rate for family-owned businesses is not good. Lack of a shared vision for the family enterprise and weak next-generation leadership are often cited as two of the leading reasons for the failure of family firms to successfully transition from one generation of family ownership to the next. The climate of the business-owning family has also been suggested as important to the performance of the family enterprise. Despite these commonly held tenets, there is a lack of rigorous quantitative research that explores the relationships among these three factors. To address this gap, a quantitative study of 100 next-generation family firm leaders and 350 family and non-family leaders and employees with whom they work was conducted. The results demonstrate that a shared vision for the family business has a strong effect on the leadership effectiveness of next-generation family leaders and a moderate effect on the degree to which they are positively engaged with their work. The findings also show that two dimensions of family climate significantly influence the likelihood that a shared vision for the family firm has been created. Open communication in the family is positively related to the presence of a shared vision for the business. Intergenerational authority, which refers to a senior generation that exercises unquestioned authority and sets the rules, is negatively related to the presence of a shared vision. Surprisingly, a third dimension of family climate, cognitive cohesion, which includes shared values in the family, had no relationship with the degree to which there was a shared vision for the family business. The implications for family business owners is that they would be wise to spend as much time on fostering a positive family climate characterized by open communication as they do on creating and executing a successful business strategy if their goal is to pass the business from one generation of family owners to the next. PMID

  19. Next-Generation Leadership Development in Family Businesses: The Critical Roles of Shared Vision and Family Climate

    Directory of Open Access Journals (Sweden)

    Stephen Phillip Miller

    2014-12-01

    Full Text Available The multigenerational survival rate for family-owned businesses is not good. Lack of a shared vision for the family enterprise and weak next-generation leadership are often cited as two of the leading reasons for the failure of family firms to successfully transition from one generation of family ownership to the next. The climate of the business-owning family has also been suggested as important to the performance of the family enterprise. Despite these commonly held tenets, there is a lack of rigorous quantitative research that explores the relationships among these three factors. To address this gap, a quantitative study of 100 next-generation family firm leaders and 350 family and non-family leaders and employees with whom they work was conducted. The results demonstrate that a shared vision for the family business has a strong effect on the leadership effectiveness of next-generation family leaders and a moderate effect on the degree to which they are positively engaged with their work. The findings also show that two dimensions of family climate significantly influence the likelihood that a shared vision for the family firm has been created. Open communication in the family is positively related to the presence of a shared vision for the business. Intergenerational authority, which refers to a senior generation that exercises unquestioned authority and sets the rules, is negatively related to the presence of a shared vision. Surprisingly, a third dimension of family climate, cognitive cohesion, which includes shared values in the family, had no relationship with the degree to which there was a shared vision for the family business. The implications for family business owners is that they would be wise to spend as much time on fostering a positive family climate characterized by open communication as they do on creating and executing a successful business strategy if their goal is to pass the business from one generation of family owners to

  20. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  1. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  2. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  3. Thermometric enzyme linked immunosorbent assay: TELISA.

    Science.gov (United States)

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  4. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  5. Lack of interaction between the peptidomimetic substrates captopril and cephradine.

    Science.gov (United States)

    Foster, David R; Yee, Shiyin; Bleske, Barry E; Carver, Peggy L; Shea, Michael J; Menon, Sujatha S; Ramachandran, Chandrasekharan; Welage, Lynda S; Amidon, Gordon L

    2009-03-01

    Intestinal peptide transporters, including hPEPT1, facilitate the absorption of cephalosporins and angiotensin-converting enzyme inhibitors, and have been investigated as a means to improve oral drug absorption. Renal peptide transporters including hPEPT2, may also facilitate renal reabsorption of such compounds. In vitro and animal studies suggest that co-administration of peptidomimetic compounds may alter oral pharmacokinetics, although this has not been well studied in humans. The purpose of this study was to determine whether co-administration of the hPEPT substrates captopril and cephradine alters the oral pharmacokinetics of either agent. Nine healthy male volunteers received a single oral 25-mg dose of captopril, a single oral 500-mg dose of cephradine, or concurrent ingestion of captopril and cephradine in a cross-over manner. Venous blood samples were taken and captopril and cephradine pharmacokinetics were determined using noncompartmental analyses. No significant differences were observed in captopril or cephradine pharmacokinetics when administered together as compared to each agent alone (a marginal decrease in C(max) was observed for both captopril and cephradine during co-administration [5-15%]; however, differences were not statistically significant). The results of our study suggest that hPEPT1 and hPEPT2 are unlikely to contribute to clinically important drug interactions in humans.

  6. Gamma-ray induction of a mutant soybean [Glycine max (L.) Merrill] line lacking all seed lipoxygenases

    International Nuclear Information System (INIS)

    Hajika, Makita; Suda, Ikuo; Sakai, Shinji; Takahashi, Masakazu

    1997-01-01

    Induction of a soybean line lacking all isozymes of seed lipoxygenase was attempted using γ-radiation and of 1,813 seeds in M 3 generation, only one was identified as a seed lacking all the isozymes by SDS-PAGE. This line did not present any physiological abnormality over 10 generations or more (M 4 -M 14 ) and no significant influence of the enzyme on the agricultural traits was observed during the performance test in fields. In the resistance test against insect pests, significant differences were not found among the varieties and the lines tested. These results suggest that deletion of all lipoxygenase isozymes would not affect the soybean production in practice. The lipoxygenase activity was not detected in the leaves as well as the seeds of this line, suggesting that this enzyme are not indispensable for the soybean growth. The validity of this line in food processing fields was examined through determining the levels of hexanal production and DETBA. This line was found able to improve the taste of soybean cookies and use in combination with other materials as flour, egg, etc. because the line has no lipoxygenase activity. (M.N.)

  7. Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters

    Directory of Open Access Journals (Sweden)

    Laura Fernández

    2018-04-01

    Full Text Available Leishmania-activated C-kinase antigen (LACK is a highly conserved protein among Leishmania species and is considered a viable vaccine candidate for human leishmaniasis. In animal models, prime-boost vaccination with LACK-expressing plasmids plus attenuated vaccinia viruses (modified vaccinia Ankara [MVA] and mutant M65 expressing LACK, has been shown to protect against cutaneous leishmaniasis (CL. Further, LACK demonstrated to induce the production of protective cytokines in patients with active CL or cured visceral leishmaniasis, as well as in asymptomatic individuals from endemic areas. However, whether LACK is capable to trigger cytokine release by peripheral blood mononuclear cells from patients cured of CL due to Leishmania infantum (L. infantum or induce protection in L. infantum-infected hamsters [visceral leishmaniasis (VL model], has not yet been analyzed. The present work examines the ex vivo immunogenicity of LACK in cured VL and CL patients, and asymptomatic subjects from an L. infantum area. It also evaluates the vaccine potential of LACK against L. infantum infection in hamsters, in a protocol of priming with plasmid pCI-neo-LACK (DNA-LACK followed by a booster with the poxvirus vectors MVA-LACK or M65-LACK. LACK-stimulated PBMC from both asymptomatic and cured subjects responded by producing IFN-γ, TNF-α, and granzyme B (Th1-type response. Further, 78% of PBMC samples that responded to soluble Leishmania antigen showed IFN-γ secretion following stimulation with LACK. In hamsters, the protocol of DNA-LACK prime/MVA-LACK or M65-LACK virus boost vaccination significantly reduced the amount of Leishmania DNA in the liver and bone marrow, with no differences recorded between the use of MVA or M65 virus vector options. In summary, the Th1-type and cytotoxic responses elicited by LACK in PBMC from human subjects infected with L. infantum, and the parasite protective effect of prime/boost vaccination in hamsters with DNA-LACK/MVA-LACK

  8. Family Matters

    Directory of Open Access Journals (Sweden)

    Isabel de Riquer

    2011-04-01

    Full Text Available The scene is at the court of James I of Aragon in the mid-13th c., the place is the royal palace of Barcelona or any of the crown's other possessions, and the dramatis personae include the heir to the throne, prince Peire (future king Peire the Great, and the court's most famous troubadour, Cerverí de Girona (fl. 1259-85. Author of the largest corpus of any Occitan troubadour (114 poems, Cerverì distinguishes himself by the surprises and challenges he presents to his audience: an alba (the most openly erotic genre to the Virgin Mary, the Cobla in sis lengatges (Cobla in Six Languages, the apparently nonsensical Vers estrayn. Cerverì borrows equally from the folk-inspired Galician-Portuguese poetry and from the French tradition, including the chanson de malmariée, where a young woman bemoans being sold off by her family to an old man (gilos, "Jealous" and separated from her youthful doulz amis, some even praying for the death of their husband. Both within that tradition and among Cerverì's three chansons de malmariée, the Gelosesca stands out as "especially determined" to lose her husband, using every "solution" (prayer, black magic, potion or experimenta.

  9. FAMILY BUSINESSES AND THE DIFFICULTIES ENCOUNTERED BY

    Directory of Open Access Journals (Sweden)

    Alessandra Martins

    2009-05-01

    Full Text Available There are few family owned businesses that survive to the next generation. In general, 30% of these businesses are passed on to second generation families and less than 15% survive to third generation families. There has been little research done on third generation family businesses. Therefore the main purpose of this paper is to identify the principal difficulties of passing on managerial skills to the third generation owners. This study uses a case study of a Brazilian family organization composed of twelve enterprises. The instrument to collect data was an individually guided recorded interview with all of the family managers (1ª, 2ª e 3ª generation. The technique applied, was suggested for Miles & Huberman (1994 to group the data in analytical categories to facilitate the analyzed speeches contained in the 49 blocks of responses. As a result, the transition the business to the third generation owners has been strongly associated with the relation between family and business by the following factors: a the succession process influenced by emotional and family values; b conflicts, rivalries and divergences of strategic visions and business goals between the family generations; c lack of professional criteria to hire relatives; and d fragility of communication and consequent asymmetry of information among the family members.

  10. Cytoplasmic tethering of a RING protein RBCK1 by its splice variant lacking the RING domain

    International Nuclear Information System (INIS)

    Yoshimoto, Nobuo; Tatematsu, Kenji; Koyanagi, Tomoyoshi; Okajima, Toshihide; Tanizawa, Katsuyuki; Kuroda, Shun'ichi

    2005-01-01

    RBCC protein interacting with PKC 1 (RBCK1) is a transcription factor belonging to the RING-IBR protein family and has been shown to shuttle between the nucleus and cytoplasm, possessing both the nuclear export and localization signals within its amino acid sequence. RBCK2, lacking the C-terminal half of RBCK1 including the RING-IBR domain, has also been identified as an alternative splice variant of RBCK1. RBCK2 shows no transcriptional activity and instead it represses the transcriptional activity of RBCK1. Here, we show that RBCK2 is present usually in the cytoplasm containing two Leu-rich regions that presumably serve as a nuclear export signal (NES). Moreover, an NES-disrupted RBCK1 that is mostly localized within the nucleus is translocated to the cytoplasm when coexpressed with RBCK2, suggesting that RBCK2 serves as a cytoplasmic tethering protein for RBCK1. We propose a novel and general function of RING-lacking splice variants of RING proteins to control the intracellular localization and functions of the parental RING proteins by forming a hetero-oligomeric complex

  11. Lack of production sharing laws slows joint ventures in Russia

    International Nuclear Information System (INIS)

    Knott, D.

    1995-01-01

    When Russia opened its doors to foreign oil companies in 1990, there was a rush to secure a piece of the country's potentially vast oil wealth. Since then, many of the ventures between Russian and non-Russian partners have become bogged down with operational problems and an ever changing tax and legal regime. There is a stockpile of massive developments building, while government grinds with seeming reluctance toward passing laws that will allow outside firms to do big business. For major development projects the main stumbling block is the lack of production sharing contract legislation. The paper describes the problems, the current legislation, and operating problems, then highlights several joint ventures that have been successful and several that have ended in pullouts of the foreign investor

  12. Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Zhu, Xiaorong; Deacon, Carolyn F

    2003-01-01

    proglucagon processing showed marked defects. Tissue proglucagon levels in null mice were elevated, and proglucagon processing to glicentin, oxyntomodulin, and glucagon-like peptide-1 and -2 (GLP-1 and GLP-2) was markedly decreased, indicating that PC1 is essential for the processing of all the intestinal...... proglucagon cleavage sites. This includes the monobasic site R(77) and, thereby, production of mature, biologically active GLP-1. We also found elevated glucagon levels, suggesting that factors other than PC1 that are capable of processing to mature glucagon are present in the secretory granules of the L cell......The neuroendocrine prohormone convertases 1 and 2 (PC1 and PC2) are expressed in endocrine intestinal L cells and pancreatic A cells, respectively, and colocalize with proglucagon in secretory granules. Mice lacking PC2 have multiple endocrinopathies and cannot process proglucagon to mature...

  13. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    2015-10-01

    Full Text Available Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1 might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.

  14. Problems caused by regulatory delays and lack of regulation

    Science.gov (United States)

    Reamer, Lynne A.

    1994-12-01

    An FDA perspective on some of the problems encountered during the device review process is described. Emphasis is placed on the need for communication and teamwork among all parties to make the system work. Manufacturers are encouraged to `Do it right the first time.' Pertinent questions are asked of the manufacturers and proposed solutions are presented. Day to day reality at FDA is described and document workload is revealed. Lack of regulation, or more appropriately, when less regulation is appropriate is discussed. FDA has distributed to manufacturers a new draft guidance document to help in the decisionmaking process and when to submit a 510(k) when modifications are made to a device. This and other mechanisms are in place at the FDA to streamline the review process. Manufacturers are cautioned about their decisions and to seek advice from qualified persons. FDA emphasizes that help is available and that when in doubt, call.

  15. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Lack of time management as a psychosocial work risk

    Directory of Open Access Journals (Sweden)

    Ramon Cladellas

    2008-10-01

    Full Text Available This paper is aimed to explore the possible relationship between workers' lack of time management and several psychosocial risks. The psychosocial risks were assessed by means of the ISTAS21 Questionnaire, the Spanish version of the CoPsoQ (Copenhagen Psychological Questionnaire. More specifically, nine dimensions, which are directly related with time management, satisfaction, health and stress, were selected for evaluation. Time management was measured through the following variables: quantitative demands, influences and control of the time. Drawing on a sample of 142 workers from four departments (development, implantation, support and administration, the research results show that the employees who belong to a department that offers few opportunities for individual time management are less satisfied, have worse general and mental health, and experience more behavioral, symptomatic and cognitive stress than those who can manage their work schedule.

  17. Nonadherence is Associated with Lack of HIV-Related Knowledge

    DEFF Research Database (Denmark)

    Dyrehave, Charlotte; Rasmussen, Dlama Nggida; Hønge, Bo Langhoff

    2016-01-01

    -sectional study included 494 HIV-infected individuals from the Bissau HIV Cohort in Guinea-Bissau. They completed a questionnaire designed for assessment of adherence and HIV-related knowledge. RESULTS: A majority were female, 41% were illiterate, 25% did not take the medicine during the last 4 days, and 23......BACKGROUND: Poor treatment adherence is a main barrier for effective antiretroviral therapy (ART) globally. HIV-related knowledge may affect understanding and utilization of HIV medical information, hence limited health literacy is a known barrier to treatment adherence. DESIGN AND METHODS: A cross......% skipped their medicine during weekends. The most frequent reasons for not taking medicine were simply forgetting, side effects, lack of food, and being too ill to attend the clinic. Nonadherent patients had a lower level of HIV-related knowledge. CONCLUSION: Main barriers for nonadherence were side...

  18. Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key industrial enzyme, the Trichoderma reesei Family 6 cellulase (Cel6A), predict that aromatic residues near the enzyme's active site and at the entrance and exit tunnel perform different functions in substrate binding and catalysis, depending on their location in the enzyme. These results suggest that nature employs aromatic-carbohydrate interactions with a wide variety of binding affinities for diverse functions. Outcomes also suggest that protein engineering strategies in which mutations are made around the binding sites may require tailoring specific to the enzyme family. Cellulase enzymes ubiquitously exhibit tunnels or clefts lined with aromatic residues for processing carbohydrate polymers to monomers, but the molecular-level role of these aromatic residues remains unknown. In silico mutation of the aromatic residues near the catalytic site of Cel6A has little impact on the binding affinity, but simulation suggests that these residues play a major role in the glucopyranose ring distortion necessary for cleaving glycosidic bonds to produce fermentable sugars. Removal of aromatic residues at the entrance and exit of the cellulase tunnel, however, dramatically impacts the binding affinity. This suggests that these residues play a role in acquiring cellulose chains from the cellulose crystal and stabilizing the reaction product, respectively. These results illustrate that the role of aromatic-carbohydrate interactions varies dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, the results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering

  19. Functional characterization of genetic enzyme variations in human lipoxygenases

    Directory of Open Access Journals (Sweden)

    Thomas Horn

    2013-01-01

    Full Text Available Mammalian lipoxygenases play a role in normal cell development and differentiation but they have also been implicated in the pathogenesis of cardiovascular, hyperproliferative and neurodegenerative diseases. As lipid peroxidizing enzymes they are involved in the regulation of cellular redox homeostasis since they produce lipid hydroperoxides, which serve as an efficient source for free radicals. There are various epidemiological correlation studies relating naturally occurring variations in the six human lipoxygenase genes (SNPs or rare mutations to the frequency for various diseases in these individuals, but for most of the described variations no functional data are available. Employing a combined bioinformatical and enzymological strategy, which included structural modeling and experimental site-directed mutagenesis, we systematically explored the structural and functional consequences of non-synonymous genetic variations in four different human lipoxygenase genes (ALOX5, ALOX12, ALOX15, and ALOX15B that have been identified in the human 1000 genome project. Due to a lack of a functional expression system we resigned to analyze the functionality of genetic variations in the hALOX12B and hALOXE3 gene. We found that most of the frequent non-synonymous coding SNPs are located at the enzyme surface and hardly alter the enzyme functionality. In contrast, genetic variations which affect functional important amino acid residues or lead to truncated enzyme variations (nonsense mutations are usually rare with a global allele frequency<0.1%. This data suggest that there appears to be an evolutionary pressure on the coding regions of the lipoxygenase genes preventing the accumulation of loss-of-function variations in the human population.

  20. Asteroid families from cratering: Detection and models

    Science.gov (United States)

    Milani, A.; Cellino, A.; Knežević, Z.; Novaković, B.; Spoto, F.; Paolicchi, P.

    2014-07-01

    A new asteroid families classification, more efficient in the inclusion of smaller family members, shows how relevant the cratering impacts are on large asteroids. These do not disrupt the target, but just form families with the ejecta from large craters. Of the 12 largest asteroids, 8 have cratering families: number (2), (4), (5), (10), (87), (15), (3), and (31). At least another 7 cratering families can be identified. Of the cratering families identified so far, 7 have >1000 members. This imposes a remarkable change from the focus on fragmentation families of previous classifications. Such a large dataset of asteroids believed to be crater ejecta opens a new challenge: to model the crater and family forming event(s) generating them. The first problem is to identify which cratering families, found by the similarity of proper elements, can be formed at once, with a single collision. We have identified as a likely outcome of multiple collisions the families of (4), (10), (15), and (20). Of the ejecta generated by cratering, only a fraction reaches the escape velocity from the surviving parent body. The distribution of velocities at infinity, giving to the resulting family an initial position and shape in the proper elements space, is highly asymmetric with respect to the parent body. This shape is deformed by the Yarkovsky effect and by the interaction with resonances. All the largest asteroids have been subjected to large cratering events, thus the lack of a family needs to be interpreted. The most interesting case is (1) Ceres, which is not the parent body of the nearby family of (93). Two possible interpretations of the low family forming efficiency are based on either the composition of Ceres with a significant fraction of ice, protected by a thin crust, or with the larger escape velocity of ~500 m/s.

  1. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    maturation to a starch granule. Although Pho1 catalyzes a reversible reaction, our DoE supported studies clearly demonstrated that the kinetic properties of this enzyme strongly favor synthesis of starch and that these catalytic properties are independent of the L80 peptide, a structural domain that is absent in phosphorylases from other organisms. Interesting expression of a Pho1 lacking the L80 peptide enhanced plant growth and seed yields, suggesting that Pho1 has a second function in controlling growth. Overall, results from these biochemical and physiological studies have increased our fundamental understanding on how these important starch regulatory enzymes operate at the molecular level and in planta, which will collectively aid in efforts to increase the utilization of higher plants as a renewable source of energy.

  2. Molecular evolution of flavonoid dioxygenases in the family Apiaceae.

    Science.gov (United States)

    Gebhardt, Yvonne; Witte, Simone; Forkmann, Gert; Lukacin, Richard; Matern, Ulrich; Martens, Stefan

    2005-06-01

    Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves. Flavone synthase I appears to be confined to the Apiaceae, and the unique occurrence as well as its high sequence similarity to flavanone 3beta-hydroxylase laid the basis for evolutionary studies. In order to examine the relationship of these two enzymes throughout the Apiaceae, RT-PCR based cloning and functional identification of flavone synthases I or flavanone 3beta-hydroxylases were accomplished from Ammi majus, Anethum graveolens, Apium graveolens, Pimpinella anisum, Conium maculatum and Daucus carota, yielding three additional synthase and three additional hydroxylase cDNAs. Molecular and phylogenetic analyses of these sequences were compatible with the phylogeny based on morphological characteristics and suggested that flavone synthase I most likely resulted from gene duplication of flavanone 3beta-hydroxylase, and functional diversification at some point during the development of the apiaceae subfamilies. Furthermore, the genomic sequences from Petroselinum crispum and Daucus carota revealed two introns in each of the synthases and a lack of introns in the hydroxylases. These results might be explained by intron losses from the hydroxylases occurring at a later stage of evolution.

  3. (Lack of) Cosmological evidence for dark radiation after Planck

    CERN Document Server

    Verde, Licia; Mortlock, Daniel J; Peiris, Hiranya V

    2013-01-01

    We use Bayesian model comparison to determine whether extensions to Standard-Model neutrino physics -- primarily additional effective numbers of neutrinos and/or massive neutrinos -- are merited by the latest cosmological data. Given the significant advances in cosmic microwave background (CMB) observations represented by the Planck data, we examine whether Planck temperature and CMB lensing data, in combination with lower redshift data, have strengthened (or weakened) the previous findings. We conclude that the state-of-the-art cosmological data do not show evidence for deviations from the standard cosmological model (which has three massless neutrino families). This does not mean that the model is necessarily correct -- in fact we know it is incomplete as neutrinos are not massless -- but it does imply that deviations from the standard model (e.g., non-zero neutrino mass) are too small compared to the current experimental uncertainties to be inferred from cosmological data alone.

  4. Understanding paediatric rehabilitation therapists' lack of use of outcome measures.

    Science.gov (United States)

    King, Gillian; Wright, Virginia; Russell, Dianne J

    2011-01-01

    Despite widespread educational and promotional efforts, paediatric rehabilitation therapists still do not systematically or routinely use outcome measures. A review of contextual and psychosocial factors affecting therapists' use of outcome measures was performed, incorporating information from past studies of barriers to therapists' use of measures and more recent information about measure use, knowledge brokering and expert practice. This cumulative and contextual overview provided insights into how many therapists may approach practice. Therapists' beliefs in the importance of establishing effective relationships may lead them to place less value on formal measurement, to adopt a less rigorous and more pragmatic approach to ascertaining whether outcomes are achieved, and to avoid measures that may show little improvement. A relational goal-oriented approach to practice is proposed in which therapists adopt a broader facilitative and educational role with families about the importance of the measurement process.

  5. [Compatibility of family and medical profession].

    Science.gov (United States)

    Bundy, B D; Bellemann, N; Weber, M-A

    2011-09-01

    The compatibility of family and profession is especially difficult for employees in medical professions because of shift work and overtime. It seems that in the future women are going to represent the majority of medical professionals. Hence, with the manifest lack of physicians social aspects will also play a bigger role in the choice of the place of employment. In most families the classic role model prevails although women are well educated and men also set a high value on the compatibility of family and profession and would like to take parental leave and work in flexible working hours. This represents a chance, especially for radiology.

  6. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  7. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  8. JCL Roundtable: enzyme replacement therapy for lipid storage disorders.

    Science.gov (United States)

    Brown, W Virgil; Desnick, Robert J; Grabowski, Gregory A

    2014-01-01

    There are several inherited disorders that involve abnormal storage of lipids in tissues leading to severe compromise of organs. Sadly, these are often accompanied by lifelong morbidity and early mortality. Disorders such as Gaucher, Fabry, and lysosomal acid lipase deficiencies (Wolman and cholesteryl ester storage diseases) have been known for many years, and provide a difficult and frustrating set of problems for patients, their families, and their physicians. With recombinant methods of protein synthesis, it is now possible to literally replace the defective enzymes that underlie the basic pathophysiology of many such disorders. The delivery of these enzymes into the affected cells is possible because of their location in the lysosomes where the natural degradation of their lipid substrates occurs. I have asked 2 well-known investigators to join us for this Roundtable. These are professors who have been involved with the research that has made this type of therapy possible and who have participated in the clinical trials that demonstrated the value of enzyme replacement therapy. They are Dr. Robert Desnick, dean of Genetic and Genomic Medicine and professor and chairman emeritus of the Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai in New York City, and Dr. Gregory Grabowski, professor of Microbiology, Biochemistry, and Pediatrics, at the University of Cincinnati College of Medicine. Dr. Grabowski recently retired from that school to become the chief science officer of Synageva, a company involved in producing enzymes for this type of therapy. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  9. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes

    NARCIS (Netherlands)

    Vujičić-Žagar, Andreja; Pijning, Tjaard; Kralj, Slavko; López, Cesar A.; Eeuwema, Wieger; Dijkhuizen, Lubbert; Dijkstra, Bauke W.

    2010-01-01

    Glucansucrases are large enzymes belonging to glycoside hydrolase family 70, which catalyze the cleavage of sucrose into fructose and glucose, with the concomitant transfer of the glucose residue to a growing α-glucan polymer. Among others, plaque-forming oral bacteria secrete these enzymes to

  10. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay

    Science.gov (United States)

    Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Masahiro Samejima; David Hibbett; Bernard Henrissat; Dan Cullen

    2013-01-01

    To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (...

  11. Families living with parental mental illness and their experiences of family interventions.

    Science.gov (United States)

    Afzelius, M; Plantin, L; Östman, M

    2018-03-01

    WHAT IS KNOWN ON THE SUBJECT?: Coping with parental mental illness in families can be challenging for both children and parents. Providing evidence-based family interventions to families where a parent has a mental illness can enhance the relationships in the family. Although psychiatric research has shown that evidence-based family interventions may improve the communication and understanding of parental mental illness, there is a lack in this area of research from an everyday clinical context. WHAT DOES THIS PAPER ADD TO EXISTING KNOWLEDGE?: Our study reinforces the fact that parents with mental illnesses are searching for support from psychiatric services in order to talk to their children about their illness. The finding that under-age children comply when they are told by their parents to join an intervention in psychiatric services supporting the family is something not observed earlier in research. This study once more illuminates the fact that partners of a person with parental mental illness are seldom, in an obvious way, included in family support interventions. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: Psychiatric services, and especially mental health nurses, have an important task in providing families with parental mental illness with support concerning communication with their children and in including the "healthy" partner in family support interventions. Introduction Although research has shown that evidence-based family interventions in research settings improve the communication and understanding of parental mental illness, there is a lack of knowledge about interventions in an everyday clinical context. Aim This study explores how families with parental mental illness experience family interventions in a natural clinical context in psychiatric services. Method Five families with children aged 10-12 were recruited from psychiatric services in southern Sweden and interviewed in a manner inspired by naturalistic inquiry and content analysis. Both

  12. School, family and adolescent smoking.

    Science.gov (United States)

    Yañez, Aina; Leiva, Alfonso; Gorreto, Lucia; Estela, Andreu; Tejera, Elena; Torrent, Maties

    2013-01-01

    The socio-cultural environment is an important factor involved with the onset of smoking during adolescence. Initiation of cigarette smoking occurs almost exclusively during this stage. In this context we aimed to analyze the association of school and family factors with adolescent smoking by a cross-sectional study of 16 secondary schools randomly selected from the Balearic Islands involved 3673 students and 530 teachers. The prevalence of regular smoking (at least one cigarette per week) was 4.8% among first year students, 11.6% among second year students, 14.1% among third year students, 20.9% among fourth year students and 22% among teachers. Among first and second year students, there were independent associations between regular smoking and adolescents' perception of being allowed to smoke at home, belonging to a single parent family, poor relationship with parents, poor academic performance, lack of interest in studies and teachers' perception of smoking in the presence of pupils. Among third and fourth year students, there were independent associations between regular smoking and poor relationship with parents, adolescents' perception of being allowed to smoke at home, poor academic performance, lack of control over student misbehavior and the school attended. The school policies and practices affect student related health behavior regarding smoking, independent of individual and family factors.

  13. The conception of the family in the realm of Lithuanian family policy

    Directory of Open Access Journals (Sweden)

    VILIJA TARMAGADZĖ

    2017-10-01

    policy in Lithuania is fragmented, lacks a unitary system, including the absence of an offi cial institution responsible for family policy (this function is currently delegated to Th e Ministry of Social Security and Labour, the implementation of family policy is legislated andimplemented without correct procedures. Following the concept of family, family functing and family policy analysis, it can be stated that the concept of family and its functions is diff erent. Th ey are both infl uenced by diff erent views from scholars’, politicians’ and other particular persons’ or groups’ regarding marriage, as well as socio-cultural, political and other factors. Th e variety of family conceptions encourages debate, which should not persist and interfere with the formation and implementation of State family policies. Th e concept of family, family functions and family policies are considered as three mutually interacting components. Based on this, the tools of appropriate and thoughtful family policy implementation can be formulated and developed. Family policy in Lithuania is not yet suffi ciently formulated in both conceptual and realizable levels. For that reason it is necessary to do a comprehensive study in order to provide a basis for implementing new family policies based on that study. Likewise, to develop the concept of family and family function, it is necessary to formulate an Educational Policy Concept and to implement its strategies, designing the tools for its implementation in the context

  14. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  16. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  17. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  18. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  19. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  20. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  1. Utilization of enzyme supplemented Telfairia occidentalis stalk ...

    African Journals Online (AJOL)

    An eight (8) week feeding trial was carried out to assess the use of enzyme natuzyme supplemented Telfairia occidentalis stalk extract as growth inducer in the practical diet for Oreochromis niloticus fingerlings. Five isonitrogenous (35% crude protein) diets at 0 ml of stalk extract and enzyme (TRT 1), 15 ml (TRT 2) and 30 ...

  2. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Higa, O.Z.; Mastro, N.L. del; Castagnet, A.C.G.

    1986-01-01

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author) [pt

  3. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  4. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  5. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  6. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme...

  7. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  8. Enzyme adsorption at solid-liquid interfaces

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while

  9. [Potentialization of antibiotics by lytic enzymes].

    Science.gov (United States)

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  10. Lack of sleep is associated with internet use for leisure.

    Science.gov (United States)

    Kim, So Young; Kim, Min-Su; Park, Bumjung; Kim, Jin-Hwan; Choi, Hyo Geun

    2018-01-01

    Previous studies have suggested that excessive internet use may cause lack of sleep. However, recent studies have hypothesized that lack of sleep may instigate internet use for leisure. To elucidate the potential effects of sleep time on internet use, we explored the different associations between sleep time and internet use according to its purpose. The population-based, cross-sectional study group from the Korea Youth Risk Behavior Web-based Survey (KYRBWS) collected data from 57,425 middle school students in 2014 and 2015. Sleep time over the past 7 days was classified into the following groups: Internet use time per day was separately surveyed for leisure and for study and categorized as follows: 0 h; > 0 h, ≤ 1 h (1 h); > 1 h, ≤ 2 h (2 h); and > 2 h (2+ h) per day. Information on age, sex, region of residence, body mass index (BMI), economic level, parental education level, stress level, school performance level, and sleep satisfaction were retrieved. The relationships between sleep time and internet use time for leisure/study were analyzed using multinomial logistic regression with complex sampling. In the subgroup analysis according to sleep satisfaction (good, normal, and poor), the associations of sleep time with internet use for leisure were analyzed using the same methods. Compared to 9+ h of sleep, less sleep was related to a long internet use time (2+ h) for leisure (adjusted odds ratio, AOR [95% confidence interval, CI] of sleep: 8 h = 1.23 [1.14-1.32]; 7 h = 1.42 [1.31-1.54]; and 6 h = 1.56 [1.44-1.70]; P internet use time (2+ h) for study was evident only for 6 h of sleep (AOR of sleep: 8 h = 0.84 [0.84-1.04]; 7 h = 1.05 [0.94-1.17]; and 6 h = 1.32 [1.27-1.59]; P internet use time for leisure in all sleep satisfaction groups, although the relationship was more significant in the lower sleep satisfaction group. Less sleep was significantly related to long-term use of the internet for leisure, whereas this association was not definite for internet

  11. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Science.gov (United States)

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  12. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Directory of Open Access Journals (Sweden)

    Susanna Boronat

    2017-06-01

    Full Text Available The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR. RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  13. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  14. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  15. Enzymes - important players in green chemistry

    Directory of Open Access Journals (Sweden)

    Agata Tarczykowska

    2017-09-01

    Full Text Available Green chemistry has become a worldwide approach that leads to sustainable growth through application and development of its principles. A lot of work has to be put into designing new processes comprising of materials which do not emit pollutants to the atmosphere. Inventing new safer methods and finding less harmful products can be challenging. Enzymes are a great hope of scientists in the field of green chemistry. Enzymes as catalysts require mild conditions therefore it is a great way of saving resources such as energy or water. Processes with the use of enzymes have become more feasible by being more cost effective and eco friendly. Taking into account the benefits of green chemistry, enzyme biocatalysis has quickly replaced traditional chemical processes in several fields, and this substitution is going to reach even more areas because of new emerging technologies in enzyme engineering.

  16. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  17. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  18. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  19. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  20. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  1. Bequeathing Family Continuity.

    Science.gov (United States)

    Spanier, Graham B.

    1989-01-01

    Notes that many children who experience abuse, family disruption, or poverty reach adulthood with a strong commitment to family life. Questions whether changes in American families are indicators of pathology, deterioration, and instability; and asks how dysfunctional families transmit commitment to the concept of family to succeeding generations.…

  2. The Reconstituted Family

    OpenAIRE

    Talbot, Yves

    1981-01-01

    The reconstituted or step-family is becoming more prevalent. The physician who cares for families should be acquainted with the different aspects of such family structure and family functioning. This will enable professionals to better understand and assist their patients, by anticipating the different stresses related to the new family formation, and supporting their adaptation.

  3. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    Czech Academy of Sciences Publication Activity Database

    Daniel, B.; Wallner, S.; Steiner, B.; Oberdorfer, G.; Kumar, P.; van der Graaff, E.; Roitsch, Thomas; Sensen, Ch. W.; Gruber, K.

    2016-01-01

    Roč. 11, č. 6 (2016), e0156892 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Covalently attached fad * flavoproteins * arabidopsis * metabolism * identification * oxidation * mutagenesis * alkaloids * software * protein s Subject RIV: CE - Biochemistry Impact factor: 2.806, year: 2016

  4. Family therapy for conduct disorders.

    Science.gov (United States)

    Sholevar, G P

    2001-07-01

    Low levels of parental skill and cooperation are the prominent roots of arrested socialization, and a lack of appreciation for intimate and gratifying human relationships is evident in children with CD. The relational problems are exaggerated further by the child's observation of chronic parental discord and internalization of a family image constructed around intrafamilial conflict and isolation. Skills deficits in parental and marital communication and problem solving and conflicts in these relationships play significant roles in producing family dysfunction. The low level of parental differentiation and identity formation plays a fundamental role in family dysfunction by interfering with the development of an adequate self-image, self-esteem, and internal codes of behavior in the child. The transmission of parental antisocial tendencies to their children is facilitated by the low level of differentiation between parent and child. Family treatment should focus on enhancing cooperation between parents and children and between parents as co-parents and as a couple. Enhancing parent management skills can undermine the use of coercive, punitive, and impulsive interactions in the families. The higher divorce rate in parents of children with CD should be addressed with parents directly and early in treatment with the hope of mobilizing the rehabilitative and cooperative marital forces. In terms of future directions, family studies should address and incorporate the expanding knowledge of biologic and psychologic characteristics of children with CD and the possible impact of such characteristics in undermining family development and integrity. Such investigations should include the following information: The role of sustained and intense aggression in some children on family functioning and development. The possible role of diminished response to punishment and excessive search for gratification in children with CD. The role of the child with CD in promoting marital and

  5. Non-complexed four cascade enzyme mixture: simple purification and synergetic co-stabilization.

    Directory of Open Access Journals (Sweden)

    Suwan Myung

    Full Text Available Cell-free biosystems comprised of synthetic enzymatic pathways would be a promising biomanufacturing platform due to several advantages, such as high product yield, fast reaction rate, easy control and access, and so on. However, it was essential to produce (purified enzymes at low costs and stabilize them for a long time so to decrease biocatalyst costs. We studied the stability of the four recombinant enzyme mixtures, all of which originated from thermophilic microorganisms: triosephosphate isomerase (TIM from Thermus thermophiles, fructose bisphosphate aldolase (ALD from Thermotoga maritima, fructose bisphosphatase (FBP from T. maritima, and phosphoglucose isomerase (PGI from Clostridium thermocellum. It was found that TIM and ALD were very stable at evaluated temperature so that they were purified by heat precipitation followed by gradient ammonia sulfate precipitation. In contrast, PGI was not stable enough for heat treatment. In addition, the stability of a low concentration PGI was enhanced by more than 25 times in the presence of 20 mg/L bovine serum albumin or the other three enzymes. At a practical enzyme loading of 1000 U/L for each enzyme, the half-life time of free PGI was prolong to 433 h in the presence of the other three enzymes, resulting in a great increase in the total turn-over number of PGI to 6.2×10(9 mole of product per mole of enzyme. This study clearly suggested that the presence of other proteins had a strong synergetic effect on the stabilization of the thermolabile enzyme PGI due to in vitro macromolecular crowding effect. Also, this result could be used to explain why not all enzymes isolated from thermophilic microorganisms are stable in vitro because of a lack of the macromolecular crowding environment.

  6. Lack of genetic association of neutral endopeptidase (NEP) with complex regional pain syndrome (CRPS).

    Science.gov (United States)

    Huehne, Kathrin; Schaal, Ute; Leis, Stefan; Uebe, Steffen; Gosso, M Florencia; van den Maagdenberg, Arn M J M; Maihöfner, Christian; Birklein, Frank; Rautenstrauss, Bernd; Winterpacht, Andreas

    2010-03-12

    Complex regional pain syndrome (CRPS) is a condition that is characterized by severe pain and exaggerated neurogenic inflammation, which may develop after injury or surgery. Neurogenic inflammation is mediated by neuropeptides, such as calcitonin gene-related peptide (CGRP) and substance P (SP) that are released from nociceptors. Genetic factors may play a role in CRPS as was suggested by the occurrence of familial cases and several genetic association studies investigating mainly the human leukocyte antigen (HLA) system. Here we investigated the role of neutral endopeptidase (NEP), a key enzyme in neuropeptide catabolism. NEP dysfunction resulting in reduced inactivation of neuropeptides may be a possible pathomechanism in CRPS. To this end, we tested a GT-repeat polymorphism in the NEP promoter region as well as 18 tag-SNPs in six linkage disequilibrium (LD) blocks in the NEP gene region in 320 CRPS patients and 376 controls. No significant genetic association was observed. Thus, we conclude that the NEP gene does not seem to be a major risk factor for CRPS. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport.

    Science.gov (United States)

    Batista, Anderson S; Miletti, Luiz C; Stambuk, Boris U

    2004-01-01

    Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.

  8. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    Science.gov (United States)

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  9. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    Science.gov (United States)

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  10. Application of 133Xe encephalography in lack blood diseases

    International Nuclear Information System (INIS)

    Xie Zhiyuan; Guo Huiying

    1993-01-01

    The determination of local blood flow in brain gray matter (rCBF) using the type CGEM 2000 133 Xe encephalography is a reliable indication for judging the degree of lack blood disease. For all the inspected patients the scalp analogy localization is used. 28 probes are applied to some regions of the forehead, the vertex, the temporal folium and the occipital folium. The localization is accurate and repeatable. The result of rCBF determination is similar to XCT, but its range is rather wider than XCT. Therefore, the rCBF determination in clinic diagnosis is reliable and can give the rCBF value qualitatively. It can be used not only for diagnosing the decease in brain, but also for the predication before apoplexy, especially for vertigo disease to be inspected. For the vertigo disease of middle age and old man, the first consideration should be the decreasing of rCBF value. For the inspection of thrombus of neck artery system, it can reflect the real range of pathological changes correctly. The method is superior to XCT for treatment planning, estimating the results, supervising the effect treatment, and the diagnosis of acute cerebral embolism. In China, the morbidity rate, the sickness rate, the disability rate and recurrent rate of cerebrovascular disease are very high, especially for the old man. Satisfactory results for 1010 cases altogether are obtained by using type CGEM 2000 cerebral angiography technique for the screening

  11. Lack of international consensus in low-risk drinking guidelines.

    Science.gov (United States)

    Furtwaengler, Nina A F F; de Visser, Richard O

    2013-01-01

    To encourage moderate alcohol consumption, many governments have developed guidelines for alcohol intake, guidelines for alcohol consumption during pregnancy and legislation relating to blood alcohol limits when driving. The aim of this study was to determine the degree of international consensus within such guidelines. Official definitions of standard drinks and consumption guidelines were searched for on government websites, including all 27 European Union Member States and countries from all global geographic regions. There was a remarkable lack of agreement about what constitutes harmful or excessive alcohol consumption on a daily basis, a weekly basis and when driving, with no consensus about the ratios of consumption guidelines for men and women. International consensus in low-risk drinking guidelines is an important--and achievable--goal. Such agreement would facilitate consistent labelling of packaged products and could help to promote moderate alcohol consumption. However, there are some paradoxes related to alcohol content labelling and people's use of such information: although clearer information could increase people's capacity to monitor and regulate their alcohol consumption, not all drinkers are motivated to drink moderately or sensibly, and drinkers who intend to get drunk may use alcohol content labelling to select more alcoholic products. © 2012 Australasian Professional Society on Alcohol and other Drugs.

  12. LACK OF AWARENESS ABOUT SAFE BLOOD IN PAKISTANI POPULATION

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2014-12-01

    Full Text Available Blood transfusion is a life saving procedure in various transfusion-dependent life threatening conditions and donation of safe blood is a prerequisite for achieving this goal. This study was designed to evaluate the awareness regarding “safe blood” in Pakistani population. This study was conducted at a large scale through a population survey. The test population was divided into two groups i.e. general population and students. The Performa was designed for a general and student population and included 20 questions related to awareness of safe blood. A total of 4900 individuals belonging to different ethnic groups were included in this population survey. Results of social survey were analyzed by using Usman and Moin awareness chart. Results of this study revealed profound unawareness about safe blood in Pakistani population. This study found lack of awareness about safe blood as a major factor that is playing a vital role in the propagation of blood borne diseases in Pakistan. To secure the recipients from blood borne complications through blood donation, it is necessary to create effective awareness about safe blood in Pakistani population.

  13. Lack of empathy in patients with narcissistic personality disorder.

    Science.gov (United States)

    Ritter, Kathrin; Dziobek, Isabel; Preissler, Sandra; Rüter, Anke; Vater, Aline; Fydrich, Thomas; Lammers, Claas-Hinrich; Heekeren, Hauke R; Roepke, Stefan

    2011-05-15

    The study's objective was to empirically assess cognitive and emotional empathy in patients with narcissistic personality disorder (NPD). To date, "lack of empathy" is a core feature of NPD solely based on clinical observation. The study's method was that forty-seven patients with NPD, 53 healthy controls, and 27 clinical controls with borderline personality disorder (BPD) were included in the study. Emotional and cognitive empathy were assessed with traditional questionnaire measures, the newly developed Multifaceted Empathy Test (MET), and the Movie for the Assessment of Social Cognition (MASC). The study's results were that individuals with NPD displayed significant impairments in emotional empathy on the MET. Furthermore, relative to BPD patients and healthy controls, NPD patients did not show deficits in cognitive empathy on the MET or MASC. Crucially, this empathic profile of NPD is not captured by the Structured Clinical Interview for DSM-IV for Axis II Disorders (SCID-II). The study's conclusions were that while NPD involves deficits in emotional empathy, cognitive empathy seems grossly unaffected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Enzyme engineering through evolution: thermostable recombinant group II intron reverse transcriptases provide new tools for RNA research and biotechnology.

    Science.gov (United States)

    Collins, Kathleen; Nilsen, Timothy W

    2013-08-01

    Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.

  15. Inheritance of skeletal deformities in gilthead seabream (Sparus aurata) - lack of operculum, lordosis, vertebral fusion and LSK complex.

    Science.gov (United States)

    Negrín-Báez, D; Navarro, A; Lee-Montero, I; Soula, M; Afonso, J M; Zamorano, M J

    2015-01-01

    Morphological abnormalities in farmed gilthead seabream (Sparus aurata) are a major problem as it entails significant economic losses. In this study, 3 large scale experiments under different conditions of spawning, offspring handling and breeders phenotype were performed to analyze the inheritance of 4 types of deformities in this species: lack of operculum, lordosis, vertebral fusion, which are 3 of the most important skeletal deformities, and LSK, which is a consecutive repetition of lordosis/scoliosis/kyphosis. In Exp. [1] (mass spawning and fingerling sorting), 900 fish were analyzed at 509 d post-hatching: 846 fish that had been on-grown in a farm and 54 LSK-deformed fish that had been reared separately after being selected during the fingerling sorting process. A total of 89 families were represented. A statistically significant association between 5 of these families (from 6 breeders) and LSK-deformed fish was found. In Exp. [2] (mass spawning and no fingerling sorting), 810 fish were analyzed at 2 ages: 179 and 689 d post-hatching. Significant relationships between 2 of the breeders and 2 of the families with the lack of operculum prevalence of their descendants were found at 689 d but not at 179 d. Heritabilities: 0.09 ± 0.09 at 179 d and 0.17 ± 0.08 at 689 d. Column deformities prevalence was low and no association with family was observed. Family relationships were determined by microsatellites multiplex PCR in both experiments. In Exp. [3] (designed mating), sires suffering from lordosis or lack of operculum or vertebral fusion deformities were mated with non-deformed dams and a mass-spawning mating was considered as a control. After analyzing 11,503 offspring at 159 d post-hatching, a significant relationship between each deformity prevalence and the mating of breeders suffering from the same deformity was observed. In addition, a significant prevalence of lack of operculum in offspring from lordotic matings was observed. Heritabilities ranged from

  16. Lack of hygiene routines among patients and family members at patient hotels--a possible route for transmitting puerperal fever.

    Science.gov (United States)

    Starlander, Gustaf; Lytsy, Birgitta; Melhus, Asa

    2010-07-01

    The use of patient hotels for ambulatory care of women with uncomplicated deliveries has become a routine in Sweden. This report describes a minor outbreak of a group A Streptococcus strain in 2 newly delivered mothers and their newborn babies at a patient hotel.

  17. Different angiotensin-converting enzyme inhibitors have similar clinical efficacy after myocardial infarction

    DEFF Research Database (Denmark)

    Hansen, Morten L; Gislason, Gunnar H; Køber, Lars

    2008-01-01

    What is already known about this subject: Treatment with an angiotensin-converting enzyme (ACE) inhibitor benefits many patients with cardiovascular disease. ACE inhibitors are generally assumed to be equally effective, but this has never been fully verified in clinical trials. What this study adds...... important and not which ACE inhibitor is used. AIM: Therapy with angiotensin-converting enzyme (ACE) inhibitors is common after myocardial infarction (MI). Given the lack of randomized trials comparing different ACE inhibitors, the association among ACE inhibitors after MI in risk for mortality...

  18. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio.

    Science.gov (United States)

    Anderson, Kristin A; Madsen, Andreas S; Olsen, Christian A; Hirschey, Matthew D

    2017-12-01

    NAD + is a dinucleotide cofactor with the potential to accept electrons in a variety of cellular reduction-oxidation (redox) reactions. In its reduced form, NADH is a ubiquitous cellular electron donor. NAD + , NADH, and the NAD + /NADH ratio have long been known to control the activity of several oxidoreductase enzymes. More recently, enzymes outside those participating directly in redox control have been identified that sense these dinucleotides, including the sirtuin family of NAD + -dependent protein deacylases. In this review, we highlight examples of non-redox enzymes that are controlled by NAD + , NADH, or NAD + /NADH. In particular, we focus on the sirtuin family and assess the current evidence that the sirtuin enzymes sense these dinucleotides and discuss the biological conditions under which this might occur; we conclude that sirtuins sense NAD + , but neither NADH nor the ratio. Finally, we identify future studies that might be informative to further interrogate physiological and pathophysiological changes in NAD + and NADH, as well as enzymes like sirtuins that sense and respond to redox changes in the cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Enzymes of industrial purpose - review of the market of enzyme preparations and prospects for its development

    Directory of Open Access Journals (Sweden)

    A. A. Tolkacheva

    2017-01-01

    Full Text Available Microbial enzyme preparations are increasingly replacing conventional chemical catalysts in a number of industrial processes. Such drugs, in addition to environmental friendliness and high activity, have a number of advantages over enzyme preparations of vegetable and animal origin, namely: the production of microbial enzymes in bioreactors is easily controlled and predictable; excreted microbiological enzymes are more stable than intracellular animals and plant enzymes; the genetic diversity of microorganisms makes it possible to produce enzyme preparations with a wide range of specificity; microbiological enzymes can be synthesized year-round, in contrast to the production of plant enzymes, which is often seasonal. The leaders of the world market of enzymes are proteases and amylases, which account for 25% and 15%, respectively. Over the past five years, the world market for carbohydrases, including mainly amylases, cellulases and xylanases, has been the fastest growing segment of the enzyme market with an aggregate annual growth rate of more than 7.0%. Another major product of the industrial enzyme market, which has a great potential for growth, is lipases. From the point of view of designation, the main part is represented by food and food enzymes. The Russian market continues to be unsaturated - the current supply is not able to meet the needs of the Russian feed and food industry in enzyme preparations. Enzyme preparations of domestic producers are in demand in forage production, while food industrial enterprises prefer imported products. The most significant enterprises in the enzymatic industry in Russia at the moment are Sibbiofarm, AgroSistema, Agroferment. In the light of the Russian policy of increasing food security, the development of the domestic enzyme industry is an extremely topical task.

  20. Mouse Models Recapitulating Human Adrenocortical Tumors: What is lacking?

    Directory of Open Access Journals (Sweden)

    Felicia Leccia

    2016-07-01

    Full Text Available Adrenal cortex tumors are divided into benign forms such as primary hyperplasias and adrenocortical adenomas (ACAs, and malignant forms or adrenocortical carcinomas (ACCs. Primary hyperplasias are rare causes of ACTH-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely functional, i.e producing steroids. When functional, adenomas result in endocrine disorders such as Cushing’s syndrome (hypercortisolism or Conn’s syndrome (hyperaldosteronism. In contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors led to the identification of potentially causative genes, most of them being involved in PKA, Wnt/β-catenin and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders and in fine to provide in vivo tools for therapeutic screens. In this article we will provide an overview on the existing mouse models (xenografted and genetically engineered of adrenocortical tumors by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.