WorldWideScience

Sample records for enzyme activity showed

  1. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  2. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  3. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  4. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  5. Butterfly extracts show antibacterial activity

    Science.gov (United States)

    Extracts of several British butterfly species were tested and shown to possess powerful bactericidal activity against the gram-positive bacteria Staphylococcus aureus (S. aureus). The active compounds were identified as hydroxylated pyrrolizidine alkaloids (PAs) related to loline with nitrogen at C-...

  6. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  7. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay Rojas

    2016-01-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly a ims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes ef ficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/in activation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultr asonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  8. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay

    2016-06-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly aims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes efficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/inactivation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultrasonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  9. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  10. Enzyme specific activity in functionalized nanoporous supports

    International Nuclear Information System (INIS)

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J

    2008-01-01

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P LD ) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I e , defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH 2 - and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P LD . With decreasing P LD , I e of GOX in FMS increased from 150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P LD . With increasing P LD , the corresponding I e of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P LD , consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P LD and may promote a more favorable confinement environment that enhances the OPH activity

  11. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  12. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  13. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  14. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  15. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  16. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  17. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  18. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  19. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  20. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  1. Activity enhancement of ligninolytic enzymes of Trametes versicolor ...

    African Journals Online (AJOL)

    Suspended cultures of white-rot fungus, Trametes versicolor, supplemented with bagasse powder showed a concentration dependent enhancement in the ligninolytic enzymes activity in liquid shake cultures. 2% (w/v) bagasse powder improved greater stability to the enzymes. The optimum pH is 3.5 and the optimum ...

  2. Lysosomal enzyme activation in irradiated mammary tumors

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1976-01-01

    Lysosomal enzyme activity of C3H mouse mammary tumors was measured quantitatively by a histochemical method. Following whole-body doses of 3600 rad or less no changes were observed in the lysosomal enzyme activity for 12 hr after the irradiation, but very large increases in acid phosphatase and β-naphthylamidase activity were, however, observed 24 hr after irradiation. Significant increases in enzyme activity were detected 72 hr after a dose of 300 rad and the increases of enzyme activity were dose dependent over the range 300 to 900 rad. Testosterone (80 mg/kg) injected into mice 2 hr before irradiation (850 rad) caused a significant increase of lysosomal enzyme activity over and above that of the same dose of irradiation alone. If the tumor-bearing mice were given 95 percent oxygen/5 percent carbon dioxide to breathe for 8 min before irradiation the effect of 850 rad on lysosomal acid phosphatase was increased to 160 percent/that of the irradiation given alone. Activitation of lysosomal enzymes in mammary tumors is an important primary or secondary consequence of radiation

  3. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G

    2010-01-01

    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  4. Antimutagenic activity of oxidase enzymes

    International Nuclear Information System (INIS)

    Agabeili, R.A.

    1986-01-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity

  5. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  6. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  7. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  8. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  9. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  10. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  11. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    Directory of Open Access Journals (Sweden)

    Judit Ribera

    Full Text Available A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  12. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    Science.gov (United States)

    Ribera, Judit; Estupiñán, Mónica; Fuentes, Alba; Fillat, Amanda; Martínez, Josefina; Diaz, Pilar

    2017-01-01

    A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain) allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  13. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  14. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  15. Evolutionary transitions in enzyme activity of ant fungus gardens.

    Science.gov (United States)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  16. Chromatin accessibility data sets show bias due to sequence specificity of the DNase I enzyme.

    Directory of Open Access Journals (Sweden)

    Hashem Koohy

    Full Text Available DNase I is an enzyme which cuts duplex DNA at a rate that depends strongly upon its chromatin environment. In combination with high-throughput sequencing (HTS technology, it can be used to infer genome-wide landscapes of open chromatin regions. Using this technology, systematic identification of hundreds of thousands of DNase I hypersensitive sites (DHS per cell type has been possible, and this in turn has helped to precisely delineate genomic regulatory compartments. However, to date there has been relatively little investigation into possible biases affecting this data.We report a significant degree of sequence preference spanning sites cut by DNase I in a number of published data sets. The two major protocols in current use each show a different pattern, but for a given protocol the pattern of sequence specificity seems to be quite consistent. The patterns are substantially different from biases seen in other types of HTS data sets, and in some cases the most constrained position lies outside the sequenced fragment, implying that this constraint must relate to the digestion process rather than events occurring during library preparation or sequencing.DNase I is a sequence-specific enzyme, with a specificity that may depend on experimental conditions. This sequence specificity is not taken into account by existing pipelines for identifying open chromatin regions. Care must be taken when interpreting DNase I results, especially when looking at the precise locations of the reads. Future studies may be able to improve the sensitivity and precision of chromatin state measurement by compensating for sequence bias.

  17. Influence of long-term fertilization on soil enzyme activities

    Directory of Open Access Journals (Sweden)

    Alina Dora SAMUEL

    2009-05-01

    Full Text Available Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase were determined in the 0–10, 10–20, and 20–30 cm layers of a brown luvic soil submitted to a complex fertilization experiment with different types of green manure. It was found that each activity decreased with increasing sampling depth. It should be emphasized that greenmanuring of maize led to a significant increase in each of the five enzymatic activities determined. The enzymatic indicators of soil quality calculated from the values of enzymatic activities showed the order: lupinus + rape + oat > lupinus > vetch + oat + ryegrass > lupinus + oat + vetch > unfertilized plot. This order means that by determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. There were significant correlations of soil enzyme activities with chemical properties.

  18. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  19. Detection of enzyme activity in decontaminated spices of industrial use

    International Nuclear Information System (INIS)

    Müller, R.; Theobald, R.

    1995-01-01

    A range of decontaminated spices of industrial use have been examinated for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material [de

  20. Pathogenicity and cell wall-degrading enzyme activities of some ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2005-12-17

    Dec 17, 2005 ... be attributed to the activities of these cell wall degrading enzymes. Keywords: Cowpea ... bacteria have long been known to produce enzymes capable of ... Inoculated seeds were sown in small plastic pots filled with steam- ...

  1. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  2. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    Directory of Open Access Journals (Sweden)

    Xiangping Tan

    2014-01-01

    Full Text Available Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2 scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI and the geometric mean of enzyme activities (GME. At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  3. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma.

    Science.gov (United States)

    Yahagi, Naoya; Shimano, Hitoshi; Hasegawa, Kiyoshi; Ohashi, Kenichi; Matsuzaka, Takashi; Najima, Yuho; Sekiya, Motohiro; Tomita, Sachiko; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Nagai, Ryozo; Ishibashi, Shun; Kadowaki, Takashi; Makuuchi, Masatoshi; Ohnishi, Shin; Osuga, Jun-ichi; Yamada, Nobuhiro

    2005-06-01

    Hepatocellular carcinoma is a very common neoplastic disease in countries where hepatitis viruses B and/or C are prevalent. Small hepatocellular carcinoma lesions detected by ultrasonography at an early stage are often hyperechoic because they are composed of well-differentiated cancer cells that are rich in triglyceride droplets. The triglyceride content of hepatocytes depends in part on the rate of lipogenesis. Key lipogenic enzymes, such as fatty acid synthase, are co-ordinately regulated at the transcriptional level. We therefore examined the mRNA expression of lipogenic enzymes in human hepatocellular carcinoma samples from 10 patients who had undergone surgical resection. All of the samples exhibited marked elevation of expression of mRNA for lipogenic enzymes, such as fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase, compared with surrounding non-cancerous liver tissue. In contrast, the changes in mRNA expression of SREBP-1, a transcription factor that regulates a battery of lipogenic enzymes, did not show a consistent trend. In some cases where SREBP-1 was elevated, the main contributing isoform was SREBP-1c rather than SREBP-1a. Thus, lipogenic enzymes are markedly induced in hepatocellular carcinomas, and in some cases SREBP-1c is involved in this activation.

  4. Effect of irradiation on lysosomal enzyme activation in cultured macrophages

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1980-01-01

    The effect of γrays on lysosomal enzyme activity of normal and immune macrophages of DBA/2 mice cultured in vitro has been studied. A dose of 500 rad did not significantly affect lysosomal enzyme activity 3 hours after irradiation but caused the activity to increase to 1.4 times the control value 22.5 hours after irradiation. 22.5 hours after a dose of 3000 rad the enzyme activity increased to 2.5 times the control. Lysosomal enzyme activity of the macrophages was also markedly increased by immunization of the mice with D lymphoma cells, before culture in vitro, but irradiation of these cells with a dose of 500 rad caused a further increase in lysosomal enzyme activity. The results indicate that immunization and irradiation both cause stimulation of lysosomal enzyme activity in macrophages but that the mechanisms of activation are unlikely to be identical. (author)

  5. Quantum mechanical design of enzyme active sites.

    Science.gov (United States)

    Zhang, Xiyun; DeChancie, Jason; Gunaydin, Hakan; Chowdry, Arnab B; Clemente, Fernando R; Smith, Adam J T; Handel, T M; Houk, K N

    2008-02-01

    The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.

  6. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  7. Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting ants

    DEFF Research Database (Denmark)

    Kooij, Pepijn Wilhelmus; Liberti, Joanito; Giampoudakis, Konstantinos

    2014-01-01

    activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also...... for decomposition enzymes....

  8. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  9. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  10. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  11. Enzyme activity and kinetics in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Duddridge, J E; Wainwright, M

    1982-01-01

    In determining the effects of heavy metals in microbial activity and litter degradation in river sediments, one approach is to determine the effects of these pollutants on sediment enzyme activity and synthesis. Methods to assay amylase, cellulase and urease activity in diverse river sediments are reported. Enzyme activity was low in non-amended sediments, but increased markedly when the appropriate substrate was added, paralleling both athropogenic and natural amendment. Linear relationships between enzyme activity, length of incubation, sample size and substrate concentration were established. Sediment enzyme activity generally obeyed Michaelis-Menton kinetics, but of the three enzymes, urease gave least significant correlation coefficients when the data for substrate concentration versus activity was applied to the Eadie-Hofstee transformation of the Michaelis-Menten equation. K/sub m/ and V/sub max/ for amylase, cellulase and urease in sediments are reported. (JMT)

  12. Reveal the response of enzyme activities to heavy metals through in situ zymography.

    Science.gov (United States)

    Duan, Chengjiao; Fang, Linchuan; Yang, Congli; Chen, Weibin; Cui, Yongxing; Li, Shiqing

    2018-07-30

    Enzymes in the soil are vital for assessing heavy metal soil pollution. Although the presence of heavy metals is thought to change the soil enzyme system, the distribution of enzyme activities in heavy metal polluted-soil is still unknown. For the first time, using soil zymography, we analyzed the distribution of enzyme activities of alfalfa rhizosphere and soil surface in the metal-contaminated soil. The results showed that the growth of alfalfa was significantly inhibited, and an impact that was most pronounced in seedling biomass and chlorophyll content. Catalase activity (CAT) in alfalfa decreased with increasing heavy metal concentrations, while malondialdehyde (MDA) content continually increased. The distribution of enzyme activities showed that both phosphatase and β-glucosidase activities were associated with the roots and were rarely distributed throughout the soil. In addition, the total hotspot areas of enzyme activities were the highest in extremely heavy pollution soil. The hotspot areas of phosphatase were 3.4%, 1.5% and 7.1% under none, moderate and extremely heavy pollution treatment, respectively, but increased from 0.1% to 0.9% for β-glucosidase with the increasing pollution levels. Compared with the traditional method of enzyme activities, zymography can directly and accurately reflect the distribution and extent of enzyme activity in heavy metals polluted soil. The results provide an efficient research method for exploring the interaction between enzyme activities and plant rhizosphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Antioxidant Enzyme Activities of some Brassica Species

    Directory of Open Access Journals (Sweden)

    Rodica SOARE

    2017-11-01

    Full Text Available This paper set out to comparatively study five species: white cabbage (Brassica oleracea L. var. capitata alba Alef., red cabbage (Brassica oleracea L. var. capitata f. rubra Alef., Kale (Brassica oleracea L. var. Acephala, cauliflower (Brassica oleracea var. botrytis and broccoli (Brassica oleracea var. cymosa in order to identify those with high enzymatic and antioxidant activities. The enzymatic activity of superoxide dismutase (SOD, catalase (CAT and soluble peroxidase (POX as well as the antioxidant activity against 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation were determined. Total superoxide dismutase activity was measured spectrophotometrically based on inhibition in the photochemical reduction of nitroblue tetrazolium. Total soluble peroxidase was assayed by measuring the increase in A436 due to the guaiacol oxidation and the catalase activity was assayed through the colorimetric method. The capacity of extracts to scavenge the ABTS radical cation was assessed colorimetric using Trolox as a standard. The obtained results show that studied enzymatic activities and the antioxidant activity against ABTS vary depending on the analyzed species. So, among the studied Brassicaceae species, it emphasize red cabbage with the highest enzymatic activity (CAT 22.54 mM H2O2/min/g and POX 187.2 mM ΔA/1min/1g f.w. and kale with highest antioxidant activity, of 767 μmol TE/100g f.w. The results of this study recommendintroducing the studied varieties in diet due to the rich antioxidant properties.

  15. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  16. Effects of de-icing salt on soil enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, M; Wilke, B M

    1983-01-01

    Effects of de-icing salt on dehydrogenase, urease, alkalinephosphatase and arylsulfatase activity of O/sub L/- and A/sub h/-horizons of a moder and a mull soil were investigated using a field experiment. Additions of 2.5 kg m/sup -2/ and 5.0 kg m/sup -2/ of de-icing salt reduced activities of most enzymes within four weeks. Eleven months after salt addition there was nearly no reduction of enzyme activity to be measured on salt treated soils. The percentage of reduced enzyme activity was generally higher in the moder soil. It was concluded that reductions of enzyme activity were due to decreases of microbial activity and not to inactivation of enzymes.

  17. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  18. Ultrasound in Enzyme Activation and Inactivation

    Science.gov (United States)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  19. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  20. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... on their tailored surface modification in order to obtain improved enzyme-support systems. Firstly, an off-stoichiometric thiol-ene (OSTE) thermosetting material was used for the development of a screening platform allowing the investigation of micro-environmental effects and their impact on the activity...

  1. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  2. A Simple and Accurate Method for Measuring Enzyme Activity.

    Science.gov (United States)

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  3. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  4. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    Science.gov (United States)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  5. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    Science.gov (United States)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  6. Enzyme inhibitory activity of selected Philippine plants

    International Nuclear Information System (INIS)

    Sasotona, Joseph S.; Hernandez, Christine C.

    2015-01-01

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  7. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  8. Radiation effects on the parotid gland of mammals. Pt. 3. Behaviour of enzyme activity after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tomassi, I; Balzi, M; Cremonini, D; Becciolini, A; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia; Pelu, G [I.N.R.C.A., Florence (Italy). Inst. of Radiology

    1979-08-01

    Modifications of some enzyme activities in parotid tissue homogenates have been studied in animals which were also examined for morphological changes and for plasma and parotid amylase activity. Results from irradiated animals show a certain increase in maltase activity. Alkaline phosphatase and LAP show no significant variations; a similar behaviour is shown by lysosomal enzymes and protein content. A different pattern was seen by comparing the curves of these enzymes with those of the same activity in the small intestine. This result appears to be due to the different radiosensitivity of these tissues.

  9. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  10. Assessment of digestive enzymes activity during the fry development of the endangered Caspian brown trout Salmo caspius.

    Science.gov (United States)

    Zamani, A; Hajimoradloo, A; Madani, R; Farhangi, M

    2009-09-01

    The study of digestive enzymes activity at Salmo caspius fry showed that enzymes were available at the moment of mouth opening on the first day post hatching (dph) and the activity of enzymes showed no significant difference from the hatching day 28 dph. An increased activity was seen between 32 and 43 dph and this activity was significantly higher than the activity during the first 28 days. In the primary stages after yolk sac resorption (43-58 dph), enzymes activity showed an increased profile, however none of them showed a significant difference between 43 and 58 dph.

  11. Changes in growth, survival and digestive enzyme activities of Asian ...

    African Journals Online (AJOL)

    A study was conducted to determine the effects of different dietary treatments on the growth, survival and digestive enzyme activities of Mystus nemurus larvae. Newly hatched larvae were reared for 14 days in twelve 15 L glass aquaria (for growth and survival) and eight 300 L fiberglass tanks (for enzyme samples) at a ...

  12. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    Lignin is probably one of the most recalcitrant compounds synthesized by plants. This compound is degraded by few microorganisms. White-rot fungi have been extensively studied due to its powerful ligninolytic enzymes. In this study, ligninolytic enzyme activities of different fungal species (six commercial and 13 wild) were ...

  13. Effect of diffusion on enzyme activity in a microreactor

    NARCIS (Netherlands)

    Swarts, J.W.; Kolfschoten, R.C.; Jansen, M.C.A.A.; Janssen, A.E.M.; Boom, R.M.

    2010-01-01

    To establish general rules for setting up an enzyme microreactor system, we studied the effect of diffusion on enzyme activity in a microreactor. As a model system we used the hydrolysis of ortho-nitrophenyl-ß-d-galactopyranoside by ß-galactosidase from Kluyveromyces lactis. We found that the

  14. General discussion about enzymes activities of radiation injury

    International Nuclear Information System (INIS)

    Vucicevic, M.; Sukalo, I.

    1989-01-01

    Researching reliable and practical indicators of radiation injury, however, is very interesting and considerable department of scientific studies, practical and theoretical. Enzymes activities are among biochemical indicators which are changed after radiation injury. Activity of these specific proteins is important in regulation of every biochemical reaction in existing beings. Biological macromolecules can be damaged by radiation or the cell permeability can be changed. All of these influence directly on enzymes activities. In this paper we present the review of the all important enzymes, indicators of the radiation injury, which variances on reference to normal values are significant of the functional and the structural changes of essential organs (author)

  15. General discussion about enzymes activities of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Vucicevic, M; Sukalo, I [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    Researching reliable and practical indicators of radiation injury, however, is very interesting and considerable department of scientific studies, practical and theoretical. Enzymes activities are among biochemical indicators which are changed after radiation injury. Activity of these specific proteins is important in regulation of every biochemical reaction in existing beings. Biological macromolecules can be damaged by radiation or the cell permeability can be changed. All of these influence directly on enzymes activities. In this paper we present the review of the all important enzymes, indicators of the radiation injury, which variances on reference to normal values are significant of the functional and the structural changes of essential organs (author)

  16. Virtual Biochemistry – pH effect on enzyme activity

    Directory of Open Access Journals (Sweden)

    D.N. Heidrich

    2011-04-01

    Full Text Available Protocols of laboratory experiments, followed by teacher's explanation, not always clearly translate to the student the dynamics to beadopted for the implementation of the proposed practice. One of these cases is related to the study of the effect of pH on enzyme activity. For better help the understanding of the technical procedure, a hypermedia was built based on a protocol adopted at the Department of Biochemistry, UFSC. The hypermedia shows how theeffect of variations in pH can be observed  in vitro. Taking as example salivary amylase and the consumption of starch (substrate by means of iodine staining, a set of pH buffers was tested to identify the best pH for this enzyme  activity. This hypermedia as introductory tool for such practice was tested on aNutrition course classroom. Students agree that the hypermedia provided a better understanding of the proposed activities. Teachers also notice a smallerreagents consumption and reduction of the time spent by the students in the achievement of the experiment.

  17. Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica

    Science.gov (United States)

    Kuspradini, H.; Putri, AS; Mitsunaga, T.

    2018-04-01

    Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.

  18. HPRT Enzyme Activity of Blood Cells From Patients With Downs Syndrome

    International Nuclear Information System (INIS)

    Sbubber, E.K.; Abdul-Rahman, M.H.; Sultan, A.F.; Hamamy, H.A.

    1998-01-01

    Hypoxanthine phosphoribosyl transferase (HPRT) enzyme activity was determined in erythrocytes from 16 children (aged below one year to 11 year) with down s syndrome using 8-C 14 Hypoxanthine and radioeleelrophorsis techniques. Significant (P<0.01) reduction in HPRT enzyme activity was seen in D S children compared to that of 18 (age and sex matched) healthy children. Pure 21 - trisomic erythrocytes expressed lower enzyme activity than mosaic cell. Mothers of D S children showed significantly (P<0.01) lower enzyme activity than mothers of normal children . Reduced activity of HPRT enzyme was also observed in PHA-stimulated lymphocytes of DS children and their mothers. These results indicated that deficiency of HPRT in D S patients may contribute to the abnormal purine metabolism associated with the symptomatology of this syndrome

  19. Physicochemical Properties and Enzymes Activity Studies in a ...

    African Journals Online (AJOL)

    Soil Physicochemical properties and enzyme concentration were evaluated in soil from a refined-oil contaminated community in Isiukwuato, Abia State three years after the spill. The soil enzymes examined were urease, lipase, oxidase, alkaline and acid phosphatases. Results show a significant (P< 0.05) decrease in the ...

  20. Phytobiotic Utilization as Feed Additive in Feed for Pancreatic Enzyme Activity of Broiler Chicken

    Directory of Open Access Journals (Sweden)

    Sri Purwanti

    2015-09-01

    Full Text Available This research was conducted to evaluate the effect of turmeric water extract, garlic and combination turmeric and garlic as a feed additive in the broiler diet on pancreatic enzyme activity of broiler chicken. Effectivity of treatments was assessed by addition of phytobiotic (control, 015% zinc bacitracin, 2.5% TE, 2.0% GE, 2.5% TGE which were arranged Completely Randomized Design with 4 replications. The variables measured were pancreatic enzyme activity(amylase enzyme activity, protease enzyme activity  and lipase enzyme activity.The results showed that enzyme protein activity content of 2.5% TE supplementation is also high at 82.02 U/ml, then supplemented 2.5% TGE, 2.0% GE, negative control and positive control respectively 75.98 ; 72.02; 68.74; and 66.57 U/ml. The lipase enzyme activity whereas the negative control and a positive control differ significantly higher (P<0.05 to treatment with the addition of 2.5% TE, 2.0% GE and 2.5% TGE phytobiotic. The research concluded that the incorporation of 2.5% TE, 2% GE and combined 2.5% TGE as feed additive enhanced pancreatic enzyme activity.

  1. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    tolerance, respectively were used to investigate the oxygen consumption rate of photosystem I, the oxygen evolution rate of photosystem II, cab transcript levels, and activities of enzymes involved in photosynthetic carbon reduction cycle.

  2. activity of enzyme trypsin immobilized onto macroporous poly(epoxy

    African Journals Online (AJOL)

    dell

    consequential effects of covalent immobilization. EXPERIMENTAL. Materials .... immersed into water bath. ... storage stability of the enzyme was studied ... pore size range of about 10 to 150 µm. ... figures, the differences in activities (slopes.

  3. Seasonality of fibrolytic enzyme activity in herbivore microbial ...

    African Journals Online (AJOL)

    2012-08-21

    Aug 21, 2012 ... liberating end-products such as volatile fatty acids. Cellulase enzyme ... All the other common chemicals such as glacial acetic acid, sodium azide .... specific activity was observed among animal species and between seasons ...

  4. Changes in activities of tissues enzymes in rats administered Ficus ...

    African Journals Online (AJOL)

    This study evaluates the effects of methanolic extract of Ficus exasperata leaf on the ... measuring the levels of some key enzymes in ... powder using an electrical blender. .... of the cells at these doses. .... activities and acute toxicity of a stem.

  5. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  6. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    KAUST Repository

    Corgié, Stéphane C.

    2012-02-15

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities

    Science.gov (United States)

    Molaei, Ali; Lakzian, Amir; Datta, Rahul; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Ceccherini, Maria T.

    2017-10-01

    Pharmaceutical antibiotics are frequently used in the livestock and poultry industries to control infectious diseases. Due to the lack of proper guidance for use, the majority of administrated antibiotics and their metabolites are excreted to the soil environment through urine and feces. In the present study, we used chlortetracycline and sulfapyridine antibiotics to screen out their effects on dehydrogenase, alkaline phosphatase and urease activity. Factorial experiments were conducted with different concentrations of antibiotic (0, 10, 25 and 100 mg kg-1 of soil) mixed with soil samples, and the enzyme activity was measured at intervals of 1, 4 and 21 days. The results show that the chlortetracycline and sulfapyridine antibiotics negatively affect the dehydrogenase activity, but the effect of sulfapyridine decreases with time of incubation. Indeed, sulfapyridine antibiotic significantly affect the alkaline phosphatase activity for the entire three-time interval, while chlortetracycline seems to inhibit its activity within 1 and 4 days of incubation. The effects of chlortetracycline and sulfapyridine antibiotics on urease activity appear similar, as they both significantly affect the urease activity on day 1 of incubation. The present study concludes that chlortetracycline and sulfapyridine antibiotics have harmful effects on soil microbes, with the extent of effects varying with the duration of incubation and the type of antibiotics used.

  8. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  9. Hfq stimulates the activity of the CCA-adding enzyme

    Directory of Open Access Journals (Sweden)

    Betat Heike

    2007-10-01

    Full Text Available Abstract Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A polymerase I (PAP. As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme. Therefore, it was assumed that Hfq might not only influence the poly(A polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq. So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.

  10. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    Science.gov (United States)

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  11. Inhibition of existing denitrification enzyme activity by chloramphenicol

    Science.gov (United States)

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  12. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    Science.gov (United States)

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Cadmium Phytoavailability and Enzyme Activity under Humic Acid Treatment in Fluvo-aquic Soil

    Science.gov (United States)

    Liu, Borui; Huang, Qing; Su, Yuefeng

    2018-01-01

    A pot experiment was conducted to investigate the cadmium (Cd) availability to pakchois (Brassica chinensis L.) as well as the enzyme activities in fluvo-aquic soil under humic acid treatment. The results showed that the phytoavailability of Cd in soil decreased gradually as humic acid concentration rose (0 to 12 g·kg-1), while the activities of urease (UE), alkaline phosphatase (ALP) and catalase (CAT) kept increasing (P enzymes due to the Cd pollution. In conclusion, humic acid is effective for the reduction of both Cd phytoavailability and the damage to enzyme activities due to Cd pollution in fluvo-aquic soil

  14. Activity of certain enzymes in cadmium-poisoned chicks

    Energy Technology Data Exchange (ETDEWEB)

    Kench, J E; Gubb, P J.D.

    1970-01-01

    Activities of a number of enzymes in the liver and other tissues of newly hatched cadmium poisoned chicks have been compared with those of normal controls before and after incubation with Cd/sup +2/ at a concentration similar to that present in vivo. Concentrations of Cd/sup +2/ in the various cellular fractions were determined, after wet oxidation, by atomic absorption spectrophotometry. Interaction of Cd/sup +2/ with enzymes may provide information on the localization of enzymes within mitochondria and other cellular structures. 7 references.

  15. Tissue and plasma enzyme activities in juvenile green iguanas.

    Science.gov (United States)

    Wagner, R A; Wetzel, R

    1999-02-01

    To determine activities of intracellular enzymes in 8 major organs in juvenile green iguanas and to compare tissue and plasma activities. 6 green iguanas iguanas, but high values may not always indicate overt muscle disease. The AMS activity may be specific for the pancreas, but the wide range of plasma activity would likely limit its diagnostic usefulness. Activities of AST and LDH may reflect tissue damage or inflammation, but probably do not reflect damage to specific tissues or organs.

  16. Chimeric enzymes with improved cellulase activities

    Science.gov (United States)

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  17. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  18. Chaperone-like activities of α-synuclein: α-Synuclein assists enzyme activities of esterases

    International Nuclear Information System (INIS)

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo; Doohun Kim, T.

    2006-01-01

    α-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of α-synuclein has not yet been known. Here we have shown that α-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of α-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with α-synuclein. Our results indicate that α-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo

  19. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    Science.gov (United States)

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  20. Contemplation of wheat genotypes for enhanced antioxidant enzyme activity

    International Nuclear Information System (INIS)

    Nasim, S.; Shabbir, G.; Ilyas, M.

    2017-01-01

    Wheat (Triticum aestivum L.) is leading cereal crop in Pakistan but its yield is highly affected due to various abiotic factors especially drought stress, which affects the metabolism of plants. The present study was conducted at Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, using thirty three genotypes during 2011 to investigate the response of anti oxidative enzymes. Seedlings were subjected to stress condition with 30 % PEG 6000 solution along with control (irrigated with water) under in vitro conditions. The experiment was conducted in pots following Complete Randomized Design in Laboratory. Results revealed that under control conditions the maximum values for Guaiacol peroxidase were found in Punjab-96 and Auqab-2000 (2.523), for superoxide in C-273 (0.294), for ascorbate peroxide in PAK-81 (2.523) and for catalase in Kohsar-95 (0.487). Under moisture stress condition the maximum value for Guaiacol peroxidase were recorded for Kohsar-95 (2.699), for superoxide in Kohsar-95 (1.259), for ascorbate peroxide in Pak-81, SA-75, Mexipak-65 and PARI-73 (3.000) and for catalase in Mexipak-65 (0.640). The genotypes which showed higher antioxidant enzyme activity under drought stress have the ability to perform better under adverse soil moisture condition. Such potential genotypes can be utilized in the future breeding programs and also in improving the wheat varieties against drought stress. (author)

  1. DUOX enzyme activity promotes AKT signalling in prostate cancer cells.

    Science.gov (United States)

    Pettigrew, Christopher A; Clerkin, John S; Cotter, Thomas G

    2012-12-01

    Reactive oxygen species (ROS) and oxidative stress are related to tumour progression, and high levels of ROS have been observed in prostate tumours compared to normal prostate. ROS can positively influence AKT signalling and thereby promote cell survival. The aim of this project was to establish whether the ROS generated in prostate cancer cells positively regulate AKT signalling and enable resistance to apoptotic stimuli. In PC3 cells, dual oxidase (DUOX) enzymes actively generate ROS, which inactivate phosphatases, thereby maintaining AKT phosphorylation. Inhibition of DUOX by diphenylene iodium (DPI), intracellular calcium chelation and small-interfering RNA (siRNA) resulted in lower ROS levels, lower AKT and glycogen synthase kinase 3β (GSK3β) phosphorylation, as well as reduced cell viability and increased susceptibility to apoptosis stimulating fragment (FAS) induced apoptosis. This report shows that ROS levels in PC3 cells are constitutively maintained by DUOX enzymes, and these ROS positively regulate AKT signalling through inactivating phosphatases, leading to increased resistance to apoptosis.

  2. Extraction of Active Enzymes from "Hard-to-Break-Cells"

    DEFF Research Database (Denmark)

    Ottaviani, Alessio; Tesauro, Cinzia; Fjelstrup, S

    We present the utilization of a rolling circle amplification (RCA) based assay to investigate the extraction efficiency of active enzymes from a class of “hard-to-break” cells, yeast Saccaramyces cerevisiae. Current analyses of microorganisms, such as pathogenic bacteria, parasites or particular...... life stages of microorganisms (e.g. spores from bacteria or fungi) is hampered by the lack of efficient lysis protocols that preserve the activity and integrity of the cellular content. Presented herein is a flexible scheme to screen lysis protocols for active enzyme extraction. We also report a gentle...... yet effective approach for extraction of active enzymes by entrapping cells in microdroplets. Combined effort of optimized extraction protocols and effective analytical approaches is expected to generate impact in future disease diagnosis and environmental safety....

  3. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  4. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    Science.gov (United States)

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  5. Evaluation of the organophosphorus hydrolase enzyme activity in creams and investigation of its stability

    Directory of Open Access Journals (Sweden)

    Mariye Rajaie

    2016-06-01

    Full Text Available The main purpose of this project is investigation of the organophosphorus hydrolase (OPH enzyme activity in water in oil (w/o and oil in water (o/w creams and investigation of the OPH enzyme stability in formulated creams. OPH enzyme was extracted and purified from strain flavobacterium. The w/o and o/w creams were prepared using different formulations. In order to achieve an emulsion with maximum stability, appropriate percentage of the cream components was selected by studying different formulations and the physical and chemical stability of the produced cream were considered. 5Uenzyme/90gcream enzyme was used for each formulation. To measure the enzyme activity in creams, extraction method was used and enzyme activity was determined based on parathion hydrolysis. The thermal stability of OPH in both types of w/o and o/w creams was studied at 4 and 30  °C for various time periods. The average enzyme activity was about 0.0065 U/gcream and 0.018 U/gcream for w/o and o/w creams respectivly. According to the results, the relative activity at 4 °C was reduced to 50% after 26 and 45 days in w/o and o/w creams, respectivly. The results showed that the OPH enzyme activity in o/w cream was 2.6 times more than that of w/o cream, because of the higher hydrophobicity of o/w cream compared to w/o. The OPH enzyme stability in o/w cream was greater in comparison to w/o cream. The OPH enzyme was active for nearly 2 months on o/w creams at 4 °C .

  6. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  7. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna

    DEFF Research Database (Denmark)

    Ørsted, Michael; Roslev, Peter

    2015-01-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, we investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl...... or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2Cr2O7, or the herbicide formulation Roundup®. Toxicant induced changes in hydrolytic enzyme activity were compared to changes in mobility (ISO 6341). The results...... showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna, and fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup® resulted in loss of whole body enzyme activity, and release of cell...

  8. Active explorers show low learning performance in a social insect

    Institute of Scientific and Technical Information of China (English)

    Eve UDINO; Margot PEREZ; Claudio CARERE; Patrizia d'ETTORRE

    2017-01-01

    An intriguing question in behavioral biology is whether consistent individual differences (called animal personalities) relate to variation in cognitive performance because commonly measured personality traits may be associated with risk-reward trade-offs.Social insects,whose learning abilities have been extensively characterized,show consistent behavioral variability,both at colony and at individual level.We investigated the possible link between personality traits and learning performance in the carpenter ant Camponotus aethiops.Exploratory activity,sociability,and aggression were assessed twice in ant foragers.Behaviors differed among individuals,they were partly repeatable across time and exploratory activity correlated positively with aggression.Learning abilities were quantified by differential conditioning of the maxilla-labium extension response,a task that requires cue perception and information storage.We found that exploratory activity of individual ants significantly predicted learning performance:"active-explorers" were slower in learning the task than "inactive-explorers".The results suggest for the first time a link between a personality trait and cognitive performance in eusocial insects,and that the underlying individual variability could affect colony performance and success.

  9. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  10. Lead action on activity of some enzymes of plants

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Koshkaryova, A.I.

    2008-01-01

    Lead action on activity of some enzymes of young plants of barley double-row (Hordeum distichon L.) families of cereals (Grominea). It is established that activity urease, catalase, ascorbatoxidase is in dependence as from a lead dose in a nutritious solution, and term ontogenesis. At later stages ontogenesis the increase in concentration of lead in an inhabitancy leads to sharp decrease in activity ascorbatoxidase. In the same conditions activity urease and catalase raises.

  11. Activation of lysosomal enzymes and tumour regression caused by irradiation and steroid hormones

    International Nuclear Information System (INIS)

    Ball, A.; Barratt, G.M.; Wills, E.D.

    1982-01-01

    The lysosomal enzyme activity and membrane permeability of mouse C3H mammary tumours has been studied using quantitative cytochemical methods following irradiation of the tumours with doses of 1500, 3500 or 6000 rad ν rays. No change in the lysosomal enzyme activity was observed immediately after irradiation, but increased enzyme activity and increased membrane permeability were observed 24 hr after irradiation with doses of 3500 or 6000 rad. Twenty-four hours after injection of prednisolone there was a marked increase of lysosomal membrane permeability and enzyme activity, and injection of prednisolone soon after irradiation enhanced the effect of irradiation. After a dose of 6000 rad and prednisolone, the lysosomal membrane permeability increased to 191% of the control and the enzyme activity to 326% of the value of the control tumours. Measurement of tumour size after irradiation or after a combined treatment with irradiation and prednisolone showed that a close correlation exists between tumour regression and lysosomal enzyme activity. The experiments support the view that lysosomal enzymes play an important role in tumour regression following irradiation. (author)

  12. Antioxidant enzymes activities in obese Tunisian children

    Directory of Open Access Journals (Sweden)

    Sfar Sonia

    2013-01-01

    Full Text Available Abstract Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls, aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx. Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p  Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response.

  13. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.

    Science.gov (United States)

    Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P

    2014-07-16

    The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).

  14. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  15. Enzyme activities in reclaimed coal mine spoils and soils

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P R; Aldon, E F; Lindemann, W C

    1987-11-01

    The segregation and stockpiling of topsoil material may reduce enzymatic activities that may hinder normal nutrient cycling processes in reclaimed minelands. The effects of topsoiling and reclamation age on dehydrogenase, nitrogenase, phosphatase, arylsulphatase, amylase, cellulase, invertase and urease activities were evaluated on three reclaimed non-top-soiled and five reclaimed topsoiled areas and compared with an indisturbed reference soil. Three months after topsoiling and revegetation, activities of the enzymes in the reclaimed areas, with the exception of dehydrogenase, were statistically equal to activities of the undisturbed soil. Most enzymes, including dehydrogenase, peaked in the next 1 or 2 years after reclamation with topsoiling and declined thereafter. A 4-year-old topsoiled site (revegetated in 1978) was statistically similar to the undisturbed soil. Amylase activity, however, was significantly lower after the fourth year compared to the undisturbed soil. The non-topsoiled areas, even after 6, 7 and 8 years, appeared to have lower enzyme activities than the younger topsoiled areas or the undisturbed soil. This trend was supported by the finding that the 4-year-old topsoiled site was more enzymatically similar to the undisturbed soil than was the 8-year-old non-topsoiled site (revegetated in 1974). The low enzyme acitivities found in the non-topsoiled areas may be a result of their adverse chemical and physical properties, as well as the low diversity of microorganisms. These studies demonstrate the value of topsoil use for early establishment of soil processes in reclaimed areas. 3 figs., 19 refs., 8 tabs.

  16. Actinomycete enzymes and activities involved in straw saccharification

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, A J; Ball, A S [Liverpool Univ. (UK). Dept. of Genetics and Microbiology

    1990-01-01

    This research programme has been directed towards the analysis of actinomycete enzyme systems involved in the degradation of plant biomass (lignocellulose.) The programme was innovative in that a novel source of enzymes was systematically screened and wheat straw saccharifying activity was the test criterion. Over 200 actinomycete strains representing a broad taxonomic range were screened. A range of specific enzyme activities were involved and included cellulase, xylanase, arabinofuranosidase, acetylesterase, {beta}-xylosidase and {beta}-glucosidase. Since hemicellulose (arabinoxylan) was the primary source of sugar, xylanases were characterized. The xylan-degrading systems of actinomycetes were complex and nonuniform, with up to six separate endoxylanases identified in active strains. Except for microbispora bispora, actinomycetes were found to be a poor source of cellulase activity. Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. While modification reactions were common, cleavage of inter-monomer bonds, and utilization of complex polyphenolic compounds were restricted to two strains: Thermomonospora mesophila and Streptomyces badius. Crude enzyme preparations from actinomycetes can be used to generate sugar, particularly pentoses, directly from cereal straw. The potential for improvements in yield rests with the formulation to cooperative enzyme combinations from different strains. The stability properties of enzymes from thermophilic strains and the general neutral to alkali pH optima offer advantages in certain process situations. Actinomycetes are a particularly rich source of xylanases for commercial application and can rapidly solubilise a lignocarbohydrate fraction of straw which may have both product and pretreatment potential. 31 refs., 4 figs., 5 tabs.

  17. Differentiation between activity of digestive enzymes of Brachionus calyciflorus and extracellular enzymes of its epizooic bacteria

    Directory of Open Access Journals (Sweden)

    Wilko H. AHLRICHS

    2009-08-01

    Full Text Available The rotifer Brachionus calyciflorus was examined by scanning electron microscopy (SEM for surface-attached, i.e. epizootic, bacteria to ascertain their specific localization and thus find out if we could discern between rotifer and bacterial enzyme activity. The lorica of B. calyciflorus was colonized by one distinct type of bacteria, which originated from the algal culture used for rotifer feeding. The corona, posterior epidermis and foot of all inspected individuals were always without attached bacteria. The density of the attached bacteria was higher with the increasing age of B. calyciflorus: while young individuals were colonized by ~ tens of bacterial cells, older ones had on average hundreds to thousands of attached bacteria. We hypothesize that epizooic bacteria may produce the ectoenzymes phosphatases and β-N-acetylhexosaminidases on the lorica, but not on the corona of B. calyciflorus. Since enzyme activities of epizooic bacteria may influence the values and interpretation of bulk rotifer enzyme activities, we should take the bacterial contribution into account.

  18. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  19. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    Directory of Open Access Journals (Sweden)

    Fiona Karen Harlan

    Full Text Available Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research

  20. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  1. High-Resolution Observations of a Filament showing Activated Barb

    Science.gov (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  2. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  3. Enzyme activity in bioregulator-treated tomato (Solanum ...

    African Journals Online (AJOL)

    USER

    2010-05-31

    May 31, 2010 ... African Journal of Biotechnology Vol. 9(22), pp. 3264-3271, 31 ... In this work, spectrophotometric analysis ... most stable enzymes in vegetables and its thermal destruc-tion ... proteins, carbohydrates, lipids and allelochemicals (Hedin et al., 1995) ..... activities isolated from corn root plasma membrane. Plant.

  4. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  5. Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activity against Mycobacterium tuberculosis

    Science.gov (United States)

    Chapman, Timothy M.; Bouloc, Nathalie; Buxton, Roger S.; Chugh, Jasveen; Lougheed, Kathryn E.A.; Osborne, Simon A.; Saxty, Barbara; Smerdon, Stephen J.; Taylor, Debra L.; Whalley, David

    2012-01-01

    A high-throughput screen against PknB, an essential serine–threonine protein kinase present in Mycobacterium tuberculosis (M. tuberculosis), allowed the identification of an aminoquinazoline inhibitor which was used as a starting point for SAR investigations. Although a significant improvement in enzyme affinity was achieved, the aminoquinazolines showed little or no cellular activity against M. tuberculosis. However, switching to an aminopyrimidine core scaffold and the introduction of a basic amine side chain afforded compounds with nanomolar enzyme binding affinity and micromolar minimum inhibitory concentrations against M. tuberculosis. Replacement of the pyrazole head group with pyridine then allowed equipotent compounds with improved selectivity against a human kinase panel to be obtained. PMID:22469702

  6. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity.

    Science.gov (United States)

    Hunter, A J; Morris, T A; Jin, B; Saint, C P; Kelly, J M

    2013-09-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes.

  7. A metal-based inhibitor of NEDD8-activating enzyme.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available A cyclometallated rhodium(III complex [Rh(ppy(2(dppz](+ (1 (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE. The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.

  8. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate...... glycosyltransferases and glycoside hydrolases were selected based on co-expression profiles from a transcriptomics analysis. Reverse genetics approach on a novel glucuronosyltransferase involved in AGP biosynthesis has revealed that the enzyme activity is required for normal cell elongation in etiolated seedlings....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  9. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  10. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    Science.gov (United States)

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  11. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    Science.gov (United States)

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    Science.gov (United States)

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  13. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  14. Synthetic analogs of anoplin show improved antimicrobial activities

    DEFF Research Database (Denmark)

    Munk, Jens; Uggerhøj, Lars Erik; Poulsen, Tanja Juul

    2013-01-01

    We present the antimicrobial and hemolytic activities of the decapeptide anoplin and 19 analogs thereof tested against methicillin-resistant Staphylococcus aureus ATCC 33591 (MRSA), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), vancomycin-resistant Enterococcus faecium (ATCC...... that increasing the charge and/or hydrophobicity improves antimicrobial activity and increases hemolytic activity. For each strain tested, we identify at least six anoplin analogs with an improved therapeutic index compared with anoplin, the only exception being Enterococcus faecium, against which only few...

  15. ATPase Activity Measurements by an Enzyme-Coupled Spectrophotometric Assay.

    Science.gov (United States)

    Sehgal, Pankaj; Olesen, Claus; Møller, Jesper V

    2016-01-01

    Enzymatic coupled assays are usually based on the spectrophotometric registration of changes in NADH/NAD(+) or NADPH/NADP(+) absorption at 340 nm accompanying the oxidation/reduction of reactants that by dehydrogenases and other helper enzymes are linked to the activity of the enzymatic reaction under study. The present NADH-ATP-coupled assay for ATPase activity is a seemingly somewhat complicated procedure, but in practice adaptation to performance is easily acquired. It is a more safe and elegant method than colorimetric methods, but not suitable for handling large number of samples, and also presupposes that the activity of the helper enzymes is not severely affected by the chemical environment of the sample in which it is tested.

  16. Ratio Imaging of Enzyme Activity Using Dual Wavelength Optical Reporters

    Directory of Open Access Journals (Sweden)

    Moritz F. Kircher

    2002-04-01

    Full Text Available The design of near-infrared fluorescent (NIRF probes that are activated by specific proteases has, for the first time, allowed enzyme activity to be imaged in vivo. In the current study, we report on a method of imaging enzyme activity using two fluorescent probes that, together, provide improved quantitation of enzymatic activity. The method employs two chemically similar probes that differ in their degradability by cathepsin B. One probe consists of the NIRF dye Cy5.5 attached to a particulate carrier, a crosslinked iron oxide nanoparticle (CLIO, through cathepsin B cleavable l-arginyl peptides. A second probe consists of Cy3.5 attached to a CLIO through proteolytically resistant d-arginyl peptides. Using mixtures of the two probes, we have shown that the ratio of Cy5.5 to Cy3.5 fluorescence can be used to determine levels of cathepsin B in the environment of nanoparticles with macrophages in suspension. After intravenous injection, tissue fluorescence from the nondegradable Cy3.5–d-arginyl probe reflected nanoparticle accumulation, while fluorescence of the Cy5.5–l-arginyl probe was dependent on both accumulation and activation by cathepsin B. Dual wavelength ratio imaging can be used for the quantitative imaging of a variety of enzymes in clinically important settings, while the magnetic properties of the probes allow their detection by MR imaging.

  17. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    Science.gov (United States)

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  18. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar

    2016-04-01

    Full Text Available Introduction Corn has been recently used for producing ethanol fuel in the major corn-producing countries such as the US and Brazil. Recent diversion of corn for biofuel production along with the increased world's demand for this feedstuff has resulted in unprecedented rise in feed cost for poultry worldwide. Alternative grains such as wheat and barley can be successfully replaced for corn in poultry diets. These cereal grains can locally grow in many parts of the world as they have remarkably lower water requirement than corn. Wheat and barley are generally used as major sources of energy in poultry diets. Though the major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls (Olukosi et al. 2007; Mirzaie et al. 2012. NSPs are generally considered as anti-nutritional factors (Jamroz et al. 2002. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value (Olukosi et al. 2007.Wheat and barley are generally used as major sources of energy in poultry diets. The major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls. NSPs are generally considered as anti-nutritional factors. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value. The major part of NSPs in barley comprises polymers of (1→3 (1→4-β- glucans which could impede growth factors and consequently carcass quality through lowering the rate and amount of available nutrients in the mucosal surface of the intestinal. Materials and Methods This experiment was conducted to evaluate the effect of corn and barley based diets supplemented with multi-enzyme on growth, carcass, pancreas enzyme activity and physiological characteristics of broilers. A total number of 375 one day old

  19. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    Science.gov (United States)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  20. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.

    Science.gov (United States)

    Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui

    2014-10-01

    As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.

  1. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

    Science.gov (United States)

    Ferreira Filho, Jaire Alves; Horta, Maria Augusta Crivelente; Beloti, Lilian Luzia; Dos Santos, Clelton Aparecido; de Souza, Anete Pereira

    2017-10-12

    Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.

  2. Glyceraldehyde-3-phosphate dehydrogenase from Chironomidae showed differential activity towards metals.

    Science.gov (United States)

    Chong, Isaac K W; Ho, Wing S

    2013-09-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to interact with different biomolecules and was implicated in many novel cellular activities including programmed cell death, nuclear RNA transport unrelated to the commonly known carbohydrate metabolism. We reported here the purification of GAPDH from Chironomidae larvae (Insecta, Diptera) that showed different biologic activity towards heavy metals. It was inhibited by copper, cobalt nickel, iron and lead but was activated by zinc. The GAPDH was purified by ammonium sulphate fractionation and Chelating Sepharose CL-6B chromatography followed by Blue Sepharose CL-6B chromatography. The 150-kDa tetrameric GAPDH showed optimal activity at pH 8.5 and 37°C. The multiple alignment of sequence of the Chironomidae GAPDH with other known species showed 78 - 88% identity to the conserved regions of the GADPH. Bioinformatic analysis unveils substantial N-terminal sequence similarity of GAPDH of Chironomidae larvae to mammalian GADPHs. However, the GADPH of Chironomidae larvae showed different biologic activities and cytotoxicity towards heavy metals. The GAPDH enzyme would undergo adaptive molecular changes through binding at the active site leading to higher tolerance to heavy metals.

  3. Extracellular enzyme activity in a willow sewage treatment system.

    Science.gov (United States)

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  4. Psychopaths show enhanced amygdala activation during fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas eSchultz

    2016-03-01

    Full Text Available Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into primary and secondary psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional fearlessness, while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  5. Prostaglandin levels and lysosomal enzyme activities in irradiated rats

    International Nuclear Information System (INIS)

    Trocha, P.J.; Catravas, G.N.

    1980-01-01

    Whole-body irradiation of rats results in the release of hydrolases from lysosomes, an increase in lysosomal enzyme activities, and changes in the prostaglandin levels in spleen and liver tissues. A transient increase in the concentration of prostaglandins E and F and leakage of lysosomal hydrolases occurred in both spleen and liver tissues 3-6 hours after the animals were irradiated. Maximal values for hydrolase activities, prostaglandin E and F content, and release of lysosomal enzymes were found 4 days postirradiation in rat spleens whereas in the liver only slight increases were observed at this time period for prostaglandin F levels. On day 7 there was a final rise in the spleen's prostaglandin E and F concentrations and leakage of hydrolases from the lysosomes before returning to near normal values on day 11. The prostaglandin F concentration in liver was also slightly elevated on the 7th day after irradiation and then decreased to control levels. (author)

  6. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater

    Directory of Open Access Journals (Sweden)

    Yumiko Obayashi

    2017-10-01

    Full Text Available Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO and 2-methoxyethanol (MTXE. The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube, protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In

  7. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    Science.gov (United States)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  8. In vivo enzyme activity in inborn errors of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. (Clinical Research Centre, Harrow (England))

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  9. In vivo enzyme activity in inborn errors of metabolism

    International Nuclear Information System (INIS)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D.

    1990-01-01

    Low-dose continuous infusions of [2H5]phenylalanine, [1-13C]propionate, and [1-13C]leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD

  10. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  11. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    Science.gov (United States)

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  12. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    Science.gov (United States)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  13. Responses of absolute and specific enzyme activity to consecutive application of composted sewage sludge in a Fluventic Ustochrept.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available Composted sewage sludge (CS is considered a rich source of soil nutrients and significantly affects the physical, chemical, and biological characteristics of soil, but its effect on specific enzyme activity in soil is disregarded. The present experiment examined the absolute and specific enzyme activity of the enzymes involved in carbon, nitrogen, and phosphorus cycles, the diversity of soil microbial functions, and soil community composition in a Fluventic Ustochrept under a maize-wheat rotation system in North China during 2012-2015. Application of CS led to increase in MBC and in its ratio to both total organic carbon (TOC and microbial biomass nitrogen (MBN. Absolute enzyme activity, except that of phosphatase, increased in CS-treated soils, whereas specific activity of all the enzymes declined, especially at the highest dose of CS (45 t ha-1. The diversity of soil microbial community also increased in CS-treated soils, whereas its functional diversity declined at higher doses of CS owing to the lowered specific enzyme activity. These changes indicate that CS application induced the domination of microorganisms that are not metabolically active and those that use resources more efficiently, namely fungi. Redundancy analysis showed that fundamental alterations in soil enzyme activity depend on soil pH. Soil specific enzyme activity is affected more than absolute enzyme activity by changes in soil properties, especially soil microbial activity and composition of soil microflora (as judged by the following ratios: MBC/TOC, MBC/MBN, and TOC/LOC, that is labile organic carbon through the Pearson Correlation Coefficient. Specific enzyme activity is thus a more accurate parameter than absolute enzyme activity for monitoring the effect of adding CS on the activities and structure of soil microbial community.

  14. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    KAUST Repository

    Corgié , Sté phane C.; Kahawong, Patarawan; Duan, Xiaonan; Bowser, Daniel; Edward, Joseph B.; Walker, Larry P.; Giannelis, Emmanuel P.

    2012-01-01

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs

  15. Mining anaerobic digester consortia metagenomes for secreted carbohydrate active enzymes

    DEFF Research Database (Denmark)

    Wilkens, Casper; Busk, Peter Kamp; Pilgaard, Bo

    thermophilic and mesophilic ADs a wide variety of carbohydrate active enzyme functions were discovered in the metagenomic sequencing of the microbial consortia. The most dominating type of glycoside hydrolases were β-glucosidases (up to 27%), α-amylases (up to 10%), α-glucosidases (up to 8%), α......, and food wastes (Alvarado et al., 2014). The processes and the roles of the microorganisms that are involved in biomass conversion and methane production in ADs are still not fully understood. We are investigating thermophilic and mesophilic ADs that use wastewater surplus sludge for methane production...... was done with the Peptide Pattern Recognition (PPR) program (Busk and Lange, 2013), which is a novel non-alignment based approach that can predict function of e.g. CAZymes. PPR identifies a set of short conserved sequences, which can be used as a finger print when mining genomes for novel enzymes. In both...

  16. Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis

    Science.gov (United States)

    Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov

    2015-01-01

    Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...

  17. DNA-directed control of enzyme-inhibitor complex formation: a modular approach to reversibly switch enzyme activity

    NARCIS (Netherlands)

    Janssen, B.M.G.; Engelen, W.; Merkx, M.

    2015-01-01

    DNA-templated reversible assembly of an enzyme–inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-ß-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template

  18. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  19. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  20. A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes.

    Science.gov (United States)

    Saburi, Wataru; Morimoto, Naoki; Mukai, Atsushi; Kim, Dae Hoon; Takehana, Toshihiko; Koike, Seiji; Matsui, Hirokazu; Mori, Haruhide

    2013-01-01

    α-Amylases (EC 3.2.1.1) hydrolyze internal α-1,4-glucosidic linkages of starch and related glucans. Bacillus sp. AAH-31 produces an alkalophilic thermophilic α-amylase (AmyL) of higher molecular mass, 91 kDa, than typical bacterial α-amylases. In this study, the AmyL gene was cloned to determine its primary structure, and the recombinant enzyme, produced in Escherichia coli, was characterized. AmyL shows no hydrolytic activity towards pullulan, but the central region of AmyL (Gly395-Asp684) was similar to neopullulanase-like α-amylases. In contrast to known neopullulanase-like α-amylases, the N-terminal region (Gln29-Phe102) of AmyL was similar to carbohydrate-binding module family 20 (CBM20), which is involved in the binding of enzymes to starch granules. Recombinant AmyL showed more than 95% of its maximum activity in a pH range of 8.2-10.5, and was stable below 65 °C and from pH 6.4 to 11.9. The kcat values for soluble starch, γ-cyclodextrin, and maltotriose were 103 s(-1), 67.6 s(-1), and 5.33 s(-1), respectively, and the Km values were 0.100 mg/mL, 0.348 mM, and 2.06 mM, respectively. Recombinant AmyL did not bind to starch granules. But the substitution of Trp45 and Trp84, conserved in site 1 of CBM20, with Ala reduced affinity to soluble starch, while the mutations did not affect affinity for oligosaccharides. Substitution of Trp61, conserved in site 2 of CBM20, with Ala enhanced hydrolytic activity towards soluble starch, indicating that site 2 of AmyL does not contribute to binding to soluble long-chain substrates.

  1. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    Science.gov (United States)

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-08

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  2. Quality of Water Content, Diastase Enzyme Activity and Hidroximetilfurfural (HMF in Rubber and Rambutan Honey

    Directory of Open Access Journals (Sweden)

    Sulis Setio Toto Harjo

    2017-03-01

    Full Text Available The purpose of this research was to determine the water content, diastase enzyme activity and HMF of the rubber and rambutan honey. The method was a laboratory experiments with statistical analysis unpaired student t-test by two treatments and fifteen replications. The variable of this research were water content, diastase enzyme activity and HMF. The results of rubber and rambutan honey showed that there were significant difference effect (P0.05 that is 11 DN and there is a highly significant difference (P<0.01 on the HMF content of 17.23±0.54 mg/kg and 7.61±0.23 mg/kg. Rubber and rambutan honey have good quality based on the water content, diastase enzyme activity and HMF. It was concluded that the rubber and rambutan honey used were of good quality because it has met the requirements of SNI.

  3. Relationship between Estradiol and Antioxidant Enzymes Activity of Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2009-01-01

    Full Text Available Some evidence suggests the neuroprotection of estrogen provided by the antioxidant activity of this compound. The main objective of this study was to determine the level of estradiol and its correlation with the activity of antioxidant enzymes, total antioxidant status and ferritin from ischemic stroke subjects. The study population consisted of 30 patients with acute ischemic stroke and 30 controls. There was no significant difference between estradiol in stroke and control group. The activity of superoxide dismutase and level of ferritin was higher in stroke compared with control group (<.05, <.001, resp.. There was no significant correlation between estradiol and glutathione peroxidase, glutathione reductase, catalase, total antioxidant status, and ferritin in stroke and control groups. We observed inverse correlation between estradiol with superoxide dismutase in males of stroke patients (=−0.54, =.029. Our results supported that endogenous estradiol of elderly men and women of stroke or control group has no antioxidant activity.

  4. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  5. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    Science.gov (United States)

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.

  6. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling...... of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...

  7. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali; Eissa, Hala F.; El-Domyati, Fotouh M.; Saleh, Osama Mesilhy; Ibrahim, Nasser E.; Salama, M. I.; Mahfouz, Magdy M.; Bahieldin, Ahmed M.

    2011-01-01

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  8. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali

    2011-06-26

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  9. Influence of protoplast fusion between two Trichoderma spp. on extracellular enzymes production and antagonistic activity.

    Science.gov (United States)

    Hassan, Mohamed M

    2014-11-02

    Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride , by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride . Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%-70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina , Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the

  10. Viral Pseudo Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production

    Science.gov (United States)

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-01-01

    SUMMARY RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologues of phosphoribosylformyglycinamide synthase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homologue thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. PMID:25752576

  11. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine

    2010-01-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity...... profiles were observed. No ascorbate peroxidase (APX) activity was present in mature seeds but activity was detected after 24 h PI and increased 14-fold up to 144 h PI. In contrast, dehydroascorbate reductase (DHAR) activity was present at 4 h PI and first decreased by 9-fold until 72 h PI followed by a 5......-fold increase at 144 h PI. Glutathione reductase and monodehydroascorbate reductase activities were also detected at 4 h PI, and showed modest increases of 1.8- and 2.7-fold, respectively, by 144 h PI. The combination of functional analysis with the proteomics approach enabled correlation...

  12. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  13. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    DEFF Research Database (Denmark)

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively....... The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been...... be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation...

  14. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    Science.gov (United States)

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  15. A modern mode of activation for nucleic acid enzymes.

    Directory of Open Access Journals (Sweden)

    Dominique Lévesque

    2007-07-01

    Full Text Available Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes, a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process.

  16. Effect of fluorozis on the erythrocyte antioxidant enzyme activity levels

    International Nuclear Information System (INIS)

    Akdogan, M.; YiImaz, D.; Yontem, M.; Kalei, S.; Kilic, I.

    2011-01-01

    While the flourine level of (drinking) water was higher than normal ranges in the center of Isparta region before 1995 year, this problematic situation is solved in later years. (However) the individuals who are staying in Yenice district are still expose to high levels of fluorine because of the usage of Andik spring water (3.8 mg/L flour level) as drinking water. In this study we aimed to investigate the harmful effect of floride on human erythrocytes via antioxidant defence system and lipid peroxidation. Therefore, we studied the activities of erythrocyte antioxidant enzymes such as Superoxide Dismutase (SOD), Glutathione Peroxidase (GSH-Px) and Catalase (CAT), and the level of erythrocyte Glutathione (GSH), thiobarbituric acid reactive substance (TBARS) and the level of urine floride in high floride exposed people (children, adult and elderly). The activities of SOD, GSH-Px and CAT and the level of GSH, TBARS and urine floride were higher in 3.8 mg/L floride exposed children (Group II) than 0.8 mg/L floride exposed control children (Group I) (p 0.05). The activities of SOD, GSH-Px and CAT were lower and the levels of TBARS and urine floride were higher in 3.8 mg/L floride exposed elderly people (Group VI) than 0.8 mg/L floride exposed control elderly people (Group V) (p 0.05). As a result we thought that increased SOD, GSH-Px and CAT activities in floride exposed children and adult people, decreased activities of these enzymes in floride exposed elderly people, and increased TBARS in all groups may indicate floride caused oxidative damage in erythrocytes. (author)

  17. Effect of water quality and confounding factors on digestive enzyme activities in Gammarus fossarum.

    Science.gov (United States)

    Charron, L; Geffard, O; Chaumot, A; Coulaud, R; Queau, H; Geffard, A; Dedourge-Geffard, O

    2013-12-01

    The feeding activity and subsequent assimilation of the products resulting from food digestion allow organisms to obtain energy for growth, maintenance and reproduction. Among these biological parameters, we studied digestive enzymes (amylase, cellulase and trypsin) in Gammarus fossarum to assess the impact of contaminants on their access to energy resources. However, to enable objective assessment of a toxic effect of decreased water quality on an organisms' digestive capacity, it is necessary to establish reference values based on its natural variability as a function of changing biotic and abiotic factors. To limit the confounding influence of biotic factors, a caging approach with calibrated male organisms from the same population was used. This study applied an in situ deployment at 23 sites of the Rhone basin rivers, complemented by a laboratory experiment assessing the influence of two abiotic factors (temperature and conductivity). The results showed a small effect of conductivity on cellulase activity and a significant effect of temperature on digestive enzyme activity but only at the lowest temperature (7 °C). The experimental conditions allowed us to define an environmental reference value for digestive enzyme activities to select sites where the quality of the water impacted the digestive capacity of the organisms. In addition to the feeding rate, this study showed the relevance of digestive enzymes as biomarkers to be used as an early warning tool to reflect organisms' health and the chemical quality of aquatic ecosystems.

  18. Effects of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed

    International Nuclear Information System (INIS)

    Li Shuifeng; Wang Bingliang; Guan Xueyu; Zhang Yan

    2006-01-01

    The effect of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed was studied. The results showed that the germination potentiality and germination rate of hot pepper seed after boarding return satellite were increased by 3.5% and 5.3%, respectively. During seed germination, soluble protein and MDA contents decreased, however, the SOD activities increased. SOD activity of treated seeds was higher than that of the control especially during the initial period of germination, while the content of soluble and MDA contents were much lower than those of control. The activities of SOD, G-POD, APX and CAT in 13d seedlings of treated seeds were increased by 14.29%, 25.23%, 1.84% and 21.52%, respectively. It was concluded that space flight enhanced antioxidant enzyme activities of seeds and seedlings, which were very important to prevent membrane lipid superoxide. (authors)

  19. Changes in Soil Enzyme Activities and Microbial Biomass after Revegetation in the Three Gorges Reservoir, China

    Directory of Open Access Journals (Sweden)

    Qingshui Ren

    2018-05-01

    Full Text Available Soil enzymes and microbes are central to the decomposition of plant and microbial detritus, and play important roles in carbon, nitrogen, and phosphorus biogeochemistry cycling at the ecosystem level. In the present study, we characterized the soil enzyme activity and microbial biomass in revegetated (with Taxodium distichum (L. Rich. and Cynodon dactylon (L. Pers. versus unplanted soil in the riparian zone of the Three Gorges Dam Reservoir (TGDR, in order to quantify the effect of revegetation on the edaphic microenvironment after water flooding in situ. After revegetation, the soil physical and chemical properties in revegetated soil showed significant differences to those in unplanted soil. The microbial biomass carbon and phosphorus in soils of T. distichum were significantly higher than those in C. dactylon and unplanted soils, respectively. The microbial biomass nitrogen in revegetated T. distichum and C. dactylon soils was significantly increased by 273% and 203%, respectively. The enzyme activities of T. distichum and C. dactylon soils displayed no significant difference between each other, but exhibited a great increase compared to those of the unplanted soil. Elements ratio (except C/N (S did not vary significantly between T. distichum and C. dactylon soils; meanwhile, a strong community-level elemental homeostasis in the revegetated soils was found. The correlation analyses demonstrated that only microbial biomass carbon and phosphorus had a significantly positive relationship with soil enzyme activities. After revegetation, both soil enzyme activities and microbial biomasses were relatively stable in the T. distichum and C. dactylon soils, with the wooded soil being more superior. The higher enzyme activities and microbial biomasses demonstrate the C, N, and P cycling and the maintenance of soil quality in the riparian zone of the TGDR.

  20. Changes of enzyme activities in lens after glaucoma trabecular resection

    Directory of Open Access Journals (Sweden)

    Jian-Ping Wang

    2013-08-01

    Full Text Available AIM: To observe the change of lens antioxidant enzyme activity after glaucoma trabecular resection. METHODS: Thirty-two eyes of sixteen New-Zealand rabbits(2.2-2.4kgwere divided into two groups. The left eyes of rabbits underwent standard glaucoma trabecular resection were treatment group, and the normal right eyes served as controls. Transparency of lenses was monitored by a slit-lamp biomicroscopy before and after glaucoma trabecular resection. The morphology of lens cells was observed under the light microscope.The activities of Na+-K+-ATPase,catalase(CAT, glutathion peroxidase(GSH-px, glutathione reductase(GR, superoxide dismutase(SODand content of malondialdehyde(MDAin lenses were detected six months after trabecular resection. RESULTS: Lenses were clear in both treatment group and normal control group during the six months after operation. The morphology and structure of lens cells were normal under the light microscope in both operation group and normal group. The activity of lens cells antioxidant enzyme activity were significantly decreased in operation group compared with control group, Na+-K+-ATPase declined by 20.97%, CAT declined by 16.36%, SOD declined by 4.46%, GR declined by 4.85%, GSH-px declined by 10.02%, and MDA increased by 16.31%. CONCLUSION: Glaucoma trabecular resection can induce the change of Na+-K+-ATPase, CAT, GSH-px, GR, SOD and MDA in lens of rabbit. Glaucoma filtration surgery for the occurrence of cataract development mechanism has important guiding significance.

  1. Puromycin-sensitive aminopeptidase: an antiviral prodrug activating enzyme.

    Science.gov (United States)

    Tehler, Ulrika; Nelson, Cara H; Peterson, Larryn W; Provoda, Chester J; Hilfinger, John M; Lee, Kyung-Dall; McKenna, Charles E; Amidon, Gordon L

    2010-03-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al., 2008. Molecular Pharmaceutics 5, 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The k(cat) for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher k(cat) for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design.

  2. First glycoside hydrolase family 2 enzymes from Thermus antranikianii and Thermus brockianus with β-glucosidase activity

    Directory of Open Access Journals (Sweden)

    Carola eSchröder

    2015-06-01

    Full Text Available Two genes tagh2 and tbgh2 coding for enzymes with hydrolytic activity towards esculin were identified from the extreme thermophilic, aerobic bacteria Thermus antranikianii (Ta and T. brockianus (Tb. Shortened conserved domains predicted a membership of the enzymes of glycoside hydrolase (GH family 2. At present, β-galactosidase activity is found frequently in GH family 2 but β-glucosidase activity has not been reported in this family before. The enzymes TaGH2 and TbGH2 preferred hydrolysis of nitrophenol-linked β-D-glucopyranosides with specific activities of 3,966 U/mg and 660 U/mg, respectively. Residual activities of 40 % (TaGH2 and 51 % (TbGH2 towards 4-NP-β-D-galactopyranoside were observed. Furthermore, TaGH2 hydrolyzed cellobiose. TbGH2, however, showed no activity on cellobiose or lactose. The enzymes exhibited highest activity at 95 °C (TaGH2 and 90 °C (TbGH2 at pH 6.5. Both enzymes were extremely thermostable and thermal activation up to 250 % was observed at temperatures between 50 and 60 °C. Accordingly, the first thermoactive glycoside hydrolase family 2 enzymes with β glucosidase activity have been identified and characterized. The hydrolysis of cellobiose is a unique property of TaGH2 when compared to the enzymes of GH family 2.

  3. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center

    International Nuclear Information System (INIS)

    Alpert, C.A.; Frank, R.; Stueber, K.D.; Deutscher, J.; Hengstenberg, W.

    1985-01-01

    Enzyme I, the phosphoenolpyruvate:protein phosphotransferase (EC 2.7.3.9), which is part of the bacterial phosphoenolpyruvate-(PEP) dependent phosphotransferase system, has been purified from Streptococcus faecalis by using a large-scale preparation. Size exclusion chromatography revealed a molecular weight of 140,000. On sodium dodecyl sulfate gels, enzyme I gave one band with a molecular weight of 70,000, indicating that enzyme I consists of two identical subunits. The first 59 amino acids of the amino-terminal part of the protein have been sequenced. It showed some similarities with enzyme I of Salmonella typhimurium. The active center of enzyme I has also been determined. After phosphorylation with [ 32 P]PEP, the enzyme was cleaved by using different proteases. Labeled peptides were isolated by high-performance liquid chromatography on a reversed-phase column. The amino acid composition or amino acid sequence of the peptides has been determined. The largest labeled peptide was obtained with Lys-C protease and had the following sequence: -Ala-Phe-Val-Thr-Asp-Ile-Gly- Gly-Arg-Thr-Ser-His*-Ser-Ala-Ile-Met-Ala-Arg-Ser-Leu-Glu-Ile-Pro-Ala- Ile-Val-Gly-Thr-Lys-. It has previously been shown that the phosphoryl group is bound to the N-3 position of a histidyl residue in phosphorylated enzyme I. The single His in position 12 of the above peptide must therefore carry the phosphoryl group

  4. Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity?

    Science.gov (United States)

    Queiroz-Claret, C; Valon, C; Queiroz, O

    1988-01-01

    An unconventional hypothesis to the molecular basis of enzyme rhythms is that the intrinsic physical instability of the protein molecules which, in an aqueous medium, tend to move continuously from one conformational state to another could lead, in the population of enzyme molecules, to sizeable long-period oscillations in affinity for substrate and sensitivity to ligands and regulatory effects. To investigate this hypothesis, malate dehydrogenase was extracted and purified from leaves of the plant Kalanchoe blossfeldiana. The enzyme solutions were maintained under constant conditions and sampled at regular intervals for up to 40 or 70 h for measurements of activity as a function of substrate concentration, Km for oxaloacetic acid and sensitivity to the action of 2,3-butanedione, a modifier of active site arginyl residues. The results show that continuous slow oscillations in the catalytic capacity of the enzyme occur in all the extracts checked, together with fluctuations in Km. Apparent circadian periodicities were observed in accordance with previous data established during long run (100 h) experiments. The saturation curves for substrate showed multiple kinetic functions, with various pronounced intermediary plateaus and "bumps" depending on the time of sampling. Variation in the response to the effect of butanedione indicated fluctuation in the accessibility to the active site. Taken together, the results suggest that, under constant conditions, the enzyme in solution shifts continuously and reversibly between different configurations. This was confirmed by parallel studies on the proton-NMR spectrum of water aggregates in the enzyme solution and proton exchange rates.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Joshua Kellogg

    2014-10-01

    Full Text Available Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively. The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia.

  6. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    Science.gov (United States)

    Kellogg, Joshua; Grace, Mary H.; Lila, Mary Ann

    2014-01-01

    Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively). The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS) was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia. PMID:25341030

  7. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    Science.gov (United States)

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  8. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation.

    Science.gov (United States)

    Nagaraj, Raghavendra; Sharpley, Mark S; Chi, Fangtao; Braas, Daniel; Zhou, Yonggang; Kim, Rachel; Clark, Amander T; Banerjee, Utpal

    2017-01-12

    Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    Directory of Open Access Journals (Sweden)

    Ace Baehaki

    2015-12-01

    Full Text Available The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%. The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidrazil, protein content, and molecular weight using SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. The results showed that catfish protein hydrolysates prepared by papain enzyme has antioxidative activity. The highest degree of hydrolysis was 71.98% at enzyme concentration of 6%. Based on the DPPH scavenging method catfish protein hydrolysates has the antioxidative activity with the value 37.85-67.62%. The protein content of catfish protein hydrolysates were 20.86-54.47 mg/ml. The molecular weight of catfish protein hydrolyzates were 11.90-65.20 kDa.

  10. Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri.

    Science.gov (United States)

    Shima, S; Hérault, D A; Berkessel, A; Thauer, R K

    1998-11-01

    Enzymes involved in methane formation from carbon dioxide and dihydrogen in Methanopyrus kandleri require high concentrations (> 1 M) of lyotropic salts such as K2HPO4/KH2PO4 or (NH4)2SO4 for activity and for thermostability. The requirement correlates with high intracellular concentrations of cyclic 2,3-diphosphoglycerate (cDPG; approximately 1 M) in this hyperthermophilic organism. We report here on the effects of potassium cDPG on the activity and thermostability of the two methanogenic enzymes cyclohydrolase and formyltransferase and show that at cDPG concentrations prevailing in the cells the investigated enzymes are highly active and completely thermostable. At molar concentrations also the potassium salts of phosphate and of 2,3-bisphosphoglycerate, the biosynthetic precursor of cDPG, were found to confer activity and thermostability to the enzymes. Thermodynamic arguments are discussed as to why cDPG, rather than these salts, is present in high concentrations in the cells of Mp. kandleri.

  11. Effects of Fertilization on Tomato Growth and Soil Enzyme Activity

    Science.gov (United States)

    Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing

    2015-04-01

    To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum

  12. Triclabendazole Effect on Protease Enzyme Activity in the Excretory- Secretory Products of Fasciola hepatica in Vitro.

    Directory of Open Access Journals (Sweden)

    Yosef Shrifi

    2014-03-01

    Full Text Available Fasciola hepatica is one of the most important helminthes parasites and triclabendazole (TCBZ is routinely used for treatment of infected people and animals. Secreted protease enzymes by the F. hepatica plays a critical role in the invasion, migration, nutrition and the survival of parasite and are key targets for novel drugs and vaccines. The aim of study was to determine the protease activity of excretory- secretory products (ESP of F. hepatica in the presence of TCBZ anthelmintic.F. hepatica helminthes were collected and cultured within RPMI 1640 [TCBZ treated (test and untreated (control] for 6 h at 37 °C. ESP of treated and control were collected, centrifuged and supernatants were stored at -20°C. Protein concentrations were measured according to Bradford method. Protease enzymes activities of ESP samples were estimated by using sigma's non-specific protease activity assay. ESP protein bands were detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE.Mean protein concentrations in control and treated of ESP samples were determined 196.1 ±14.52 and 376.4 ±28.20 μg/ml, respectively. Mean protease enzymes activities in control and treated were 0.37 ±0.1 and 0.089 ±0.03 U/ml, respectively. Significant difference between proteins concentrations and protease enzymes activities of two groups was observed (P<0.05. SDS-PAGE showed different patterns of protein bands between treated and control samples.The TCBZ reduced secreted protease enzymes activities and possibly effects on invasion, migration, nutrition and particularly survival of the parasite in the host tissues.

  13. Microbial enzyme activities of peatland soils in south central Alaska lowlands

    Science.gov (United States)

    Microbial enzyme activities related to carbon and nutrient acquisition were measured on Alaskan peatland soils as indicators of nutrient limitation and biochemical sustainability. Peat decomposition is mediated by microorganisms and enzymes that in turn are limited by various ph...

  14. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2010-01-01

    Full Text Available Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  15. The Effects of Ibogaine on Uterine Smooth Muscle Contractions: Relation to the Activity of Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Zorana Oreščanin-Dušić

    2018-01-01

    Full Text Available Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga. It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H2O2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H2O2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis.

  16. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    Physiological studies in plants often require enzyme extraction from tissues containing high concentrations of phenols and polyphenols. Unless removed or neutralized, such compounds may hinder extraction, inactivate enzymes, and interfere with enzyme detection. The following protocol for activity...... assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf...

  17. Ecotoxicological effects of copper and selenium combined pollution on soil enzyme activities in planted and unplanted soils.

    Science.gov (United States)

    Hu, Bin; Liang, Dongli; Liu, Juanjuan; Xie, Junyu

    2013-04-01

    The present study explored the joint effects of Cu and Se pollution mechanisms on soil enzymes to provide references for the phytoremediation of contaminated areas and agricultural environmental protection. Pot experiments and laboratory analyses were carried out to study the individual and combined influences of Cu and Se on soil enzyme activities. The activities of four soil enzymes (urease, catalase, alkaline phosphatase, and nitrate reductase) were chosen. All soil enzyme activities tested were inhibited by Cu and Se pollution, either individually or combined, in varying degrees, following the order nitrate reductase>urease>catalase>alkaline phosphatase. Growing plants stimulated soil enzyme activity in a similar trend compared with treatments without plants. The joint effects of Cu and Se on catalase activity showed synergism at low concentrations and antagonism at high concentrations, whereas the opposite was observed for urease activity. However, nitrate reductase activity showed synergism both with and without plant treatments. The half maximal effective concentration (EC50) of exchangeable fractions had a similar trend with the EC50 of total content and was lower than that of total content. The EC50 values of nitrate reductase and urease activities were significantly lower for both Se and Cu (p<0.05), which indicated that they were more sensitive than the other two enzymes. Copyright © 2013 SETAC.

  18. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  19. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  20. PENGARUH DEGRADASI ENZIM PROTEOLITIK TERHADAP AKTIVITAS ANGIOTENSIN CONVERTING ENZYME INHIBITOR BEKASAM DENGAN Lactobacillus plantarum B1765 (The Effect of Degradation of Proteolitic Enzyme on Angiotensin Converting Enzyme Inhibitor Activity of Bekasam with Lactobacillus plantarum B1765

    Directory of Open Access Journals (Sweden)

    Prima Retno Wikandari

    2016-10-01

    Full Text Available This research studied the effect of digestive enzyme degradation on the Angiotensin Converting Enzyme Inhibitor (ACEI activity and the stability of bekasam peptide and ACEI activity. Water extract of bekasam was subjected to pepsin and trypsin. The stability of peptide was measured from the changes of peptide concentration before and after treatment by those enzymes. The stability of ACEI activity was measured by hypuric acid liberated from Hip-His-Leu as ACE substrate and determined by spectrophotometer. The results showed that proteolytic enzyme degradation did not affect the concentration of peptide (p>0,05 and the mean concentration 36.72. It was closely related with the ACEI activity that did not change significantly before and after digestion by pepsin and trypsin (p>0,05 and the mean ACEI activity was 70.73. It showed that ACEI activity of bekasam did not change by the degradation of digestive enzyme. Keywords: bekasam, fermented fish, peptides, ACEI activity ABSTRAK Penelitian ini bertujuan untuk mengkaji pengaruh degradasi enzim pencernaan proteolitik terhadap stabilitas peptida dan aktivitas Angiotensin Converting Enzyme Inhibitor (ACEI bekasam yang difermentasi dengan kultur starter Lactobacillus plantarum B1765. Terhadap ekstrak bekasam diberi perlakuan enzim proteolitik pepsin dan tripsin. Pengujian stabilitas peptida diukur dengan ada tidaknya perubahan jumlah peptida setelah perlakuan enzim menggunakan metode formol, sedangkan aktivitas ACEI dilakukan dengan mengetahui jumlah asam hipurat dari substrat Hip-His-Leu yang dibebaskan oleh ACE diukur dengan spektrofotometer. Hasil pengujian menunjukkan perlakuan enzim proteolitik tidak berpengaruh pada konsentrasi peptida dengan p>0,05 dengan nilai rata-rata konsentrasi peptida sebesar 36,72. Hal ini berkorelasi dengan aktivitas ACEI yang juga menunjukkan tidak ada pengaruh antara perlakuan sebelum dan setelah degradasi enzim (p>0,05 dengan rata-rata aktivitas ACEI sebesar 70,73. Hasil

  1. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.

    2016-12-15

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.

  2. Andrographolide powder treatment as antifeedant decreased digestive enzyme activity from Plutella xylostella (L.) larvae midgut

    Science.gov (United States)

    Madihah, Malini, Desak Made; Roviani, Hana; Rani, Nessa Vidya; Hermawan, Wawan

    2018-02-01

    Andrographolide, an active compound of Andrographis paniculata, has shown antifeedant activity against Plutella xylostella larvae by disrupting the midgut histological structures. This study aims to determine the activity of andrographolide in crystallized powder form against several digestive enzymes from the midgut of 4th instar P. xylostella larvae. The concentrations used were 0 (control), 1000, 1600, 2500, 4000 and 6500 ppm with four replications each. No-choice antifeedant test with leaf disc method is used in a bioassay for 24 hours. The midgut was dissected from 2nd until 6th segment of 4th instar larvae and was homogenized in iced-buffer solution. Furthermore, larvae's midgut samples were centrifuged at 10,000 rpm, 4°C for 20 min and the supernatant is used as enzyme source. The results showed that andrographolide significantly reduces the amylase, invertase, protease and trypsin activity, as well as total protein concentration compared with control (p<0.05) in a dose-dependent manner. This study provides information about the mode of action of andrographolide in inhibiting feed activity by the reduced digestive enzyme activity of 4th instar P. xylostella larvae.

  3. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  5. Monoamine oxidase A gene polymorphisms and enzyme activity associated with risk of gout in Taiwan aborigines.

    Science.gov (United States)

    Tu, Hung-Pin; Ko, Albert Min-Shan; Wang, Shu-Jung; Lee, Chien-Hung; Lea, Rod A; Chiang, Shang-Lun; Chiang, Hung-Che; Wang, Tsu-Nai; Huang, Meng-Chuan; Ou, Tsan-Teng; Lin, Gau-Tyan; Ko, Ying-Chin

    2010-02-01

    Taiwanese aborigines have a high prevalence of hyperuricemia and gout. Uric acid levels and urate excretion have correlated with dopamine-induced glomerular filtration response. MAOs represent one of the major renal dopamine metabolic pathways. We aimed to identify the monoamine oxidase A (MAOA, Xp11.3) gene variants and MAO-A enzyme activity associated with gout risk. This study was to investigate the association between gout and the MAOA single-nucleotide polymorphisms (SNPs) rs5953210, rs2283725, and rs1137070 as well as between gout and the COMT SNPs rs4680 Val158Met for 374 gout cases and 604 controls. MAO-A activity was also measured. All three MAOA SNPs were significantly associated with gout. A synonymous MAOA SNP, rs1137070 Asp470Asp, located in exon 14, was associated with the risk of having gout (P = 4.0 x 10(-5), adjusted odds ratio 1.46, 95% confidence intervals [CI]: 1.11-1.91). We also showed that, when compared to individuals with the MAOA GAT haplotype, carriers of the AGC haplotype had a 1.67-fold (95% CI: 1.28-2.17) higher risk of gout. Moreover, we found that MAOA enzyme activity correlated positively with hyperuricemia and gout (P for trend = 2.00 x 10(-3) vs. normal control). We also found that MAOA enzyme activity by rs1137070 allele was associated with hyperuricemia and gout (P for trend = 1.53 x 10(-6) vs. wild-type allele). Thus, our results show that some MAOA alleles, which have a higher enzyme activity, predispose to the development of gout.

  6. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    International Nuclear Information System (INIS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-01-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  7. Uracil phosphoribosyltransferase from the extreme thermoacidophilic archaebacterium Sulfolobus shibatae is an allosteric enzyme, activated by GTP and inhibited by CTP

    DEFF Research Database (Denmark)

    Linde, Lise; Jensen, Kaj Frank

    1996-01-01

    Uracil phosphoribosyltransferase, which catalyses the formation of UMP and pyrophosphate from uracil and 5-phosphoribosyl a-1-pyrophosphate (PRPP), was partly purified from the extreme thermophilic archaebacterium Sulfolobus shibatae. The enzyme required divalent metal ions for activity...... and it showed the highest activity at pH 6.4. The specific activity of the enzyme was 50-times higher at 95°C than at 37°C, but the functional half-life was short at 95°C. The activity of uracil phosphoribosyltransferase was strongly activated by GTP, which increased Vmax of the reaction by approximately 20......-fold without much effect on Km for the substrates. The concentration of GTP required for half-maximal activation was about 80 µM. CTP was a strong inhibitor and acted by raising the concentration of GTP needed for half-maximal activation of the enzyme. We conclude that uracil phosphoribosyltransferase...

  8. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF

    International Nuclear Information System (INIS)

    Park, Kiyoung; Li, Ning; Kwak, Yeonju; Srnec, Martin

    2017-01-01

    Binuclear non-heme iron enzymes activate O 2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O 2 . Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. As a result, this activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.

  9. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.

    Directory of Open Access Journals (Sweden)

    Changshui Liu

    Full Text Available The formation of fusion protein in biosynthetic pathways usually improves metabolic efficiency either channeling intermediates and/or colocalizing enzymes. In the metabolic engineering of biochemical pathways, generating unnatural protein fusions between sequential biosynthetic enzymes is a useful method to increase system efficiency and product yield. Here, we reported a special case. The malonyl-CoA reductase (MCR of Chloroflexus aurantiacus catalyzes the conversion of malonyl-CoA to 3-hydroxypropionate (3HP, and is a key enzyme in microbial production of 3HP, an important platform chemical. Functional domain analysis revealed that the N-terminal region of MCR (MCR-N; amino acids 1-549 and the C-terminal region of MCR (MCR-C; amino acids 550-1219 were functionally distinct. The malonyl-CoA was reduced into free intermediate malonate semialdehyde with NADPH by MCR-C fragment, and further reduced to 3HP by MCR-N fragment. In this process, the initial reduction of malonyl-CoA was rate limiting. Site-directed mutagenesis demonstrated that the TGXXXG(AX(1-2G and YXXXK motifs were important for enzyme activities of both MCR-N and MCR-C fragments. Moreover, the enzyme activity increased when MCR was separated into two individual fragments. Kinetic analysis showed that MCR-C fragment had higher affinity for malonyl-CoA and 4-time higher K cat/K m value than MCR. Dissecting MCR into MCR-N and MCR-C fragments also had a positive effect on the 3HP production in a recombinant Escherichia coli strain. Our study showed the feasibility of protein dissection as a new strategy in biosynthetic systems.

  10. Evaluation, partial characterization and purification of acetylcholine esterase enzyme and antiangiogenic activity from marine sponges

    Directory of Open Access Journals (Sweden)

    Maushmi Shailesh Kumar

    2014-11-01

    Full Text Available Objective: To test three marine sponges Halichondria glabrata Keller, 1891; Spirastrella pachyspira (S. pachyspira Levi, 1958 and Cliona lobata Hancock, 1849 for the presence of the acetylcholinesterase (AChE in both young and developed samples from western coastal area of India. S. pachyspira methanolic extract was selected for anti/pro angiogenic activity. Methods: They were evaluated for AChE activity using Ellman’s assay based on production of yellow colored 5-thio-2-nitrobenzoate. Purification of the enzyme was planned using ammonium sulphate precipitation and characterization by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Chorioallantoic membrane (ChAM assay model was used for angiogenic/ antiangiogenic testing. Results: All the three sponges showed good specific enzyme activity and S. pachyspira contained maximum specific enzyme activity. Sixty percent of ammonium sulphate precipitation of crude protein sample gave single band at 66 kDa corresponding to the true AChE. ChAM assay was performed at 62.5, 125.0 and 250.0 µg/mL. Dosage beyond 250 µg/mL extract showed toxic response with anti angiogenic activity at all the concentrations. Conclusions: AChE activity was detected in all samples. Extract showed good anti-angiogenic response at 62.5 µg/mL. Extract was highly toxic affecting microvasculature of ChAM as well as normal growth and development of the embryo at 500 µg/mL. With further characterization of bioactive compounds from the extract of S. pachyspira, the compounds can be developed for anti tumor activity.

  11. Chaperone-Like Activity of ß-Casein and Its Effect on Residual in Vitro Activity of Food Enzymes

    DEFF Research Database (Denmark)

    Sulewska, Anna Maria

    ABSTRACT Activity of endogenous enzymes may cause browning of fruits and vegetables. These enzymes can be inactivated, for example by heat treatment, but the response of enzymes to heat treatment depends on many factors. Foods are very complex systems and the stability of enzymes......-casein on the enzymatic activity of three targets was tested by monitoring enzyme activity after heat treatment and by measuring the intensity of scattered light during and after heat treatment. β-Casein was shown to interact at elevated temperatures with three selected targets:horseradish peroxidase, tyrosinase from......, residual activity of horseradish peroxidase was lower in samples containing BSA than in samples without any addition. Horseradish peroxidase heated with BSA did not regain activity within one hour after treatment. BSA is often added to enzyme solutions to prevent enzyme adhesion to vial surfaces...

  12. Enzyme activity and seedling growth of soybean seeds under accelerated aging

    Directory of Open Access Journals (Sweden)

    Yadollhhi Nooshabadi S.J.

    2013-11-01

    Full Text Available Seed aging is the main problem of seed storage. Changes of bio-chemical and reduction of seedling growth are consequence of seed deterioration. An experiment was conducted to evaluate the effects of accelerated aging on soybean seed germination indexes and enzyme activity. Seeds were incubated in closed plastic boxes for the accelerated aging treatments. Three accelerate aging regimes were performed by placing seeds at 41°C and relative humidity (RH of 90-100 % for 0, 2, 4, 6 and 8 days periods. Our results showed that increasing aging duration resulted higher reduction in germination characteristics, catalase and ascorbate peroxidase. Germination percentage, means time to germination, germination index, normal seedling percentage and enzyme activity decrease significantly.

  13. Development Of Enzyme Digestive Activity Of Blue Crab Portunus Pelagicus Larvae

    OpenAIRE

    Nikhlani, Andi; Sukarti, Komsanah

    2017-01-01

    Seed production continuity of Portunus pelagicus larvae had been conducted but the results were still un-consistent Digestive activity was known to be associated with the type of feed consumed by larvae. Amylase, lipase, and trypsin enzymes were used as a biological indicators to measure the digestion of feed. The aim of this study was to describe the activity of digestive enzymes in blue swimming crab larvae. Digestive enzyme activity data obtained was presented in graphical form and anal...

  14. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    Science.gov (United States)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  15. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    Science.gov (United States)

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  16. Measurement and purification of Alanine aminotransferase (ALT enzyme activity in patients with celiac disease

    Directory of Open Access Journals (Sweden)

    Taghreed U. Mohammed

    2017-09-01

    Full Text Available Celiac disease (CD is the most common genetically - based disease in correlation with food intolerance. The aim of this study is to measure the activity of ALT enzyme and purify enzyme from sera women with celiac disease. Alanine aminotransferase (ALT activity has been assayed in (30 women serum samples with celiac disease, age range between (20-40 year and (30 serum of healthy women as control group, age range between (22-38 year. In the present study, the mean value of ALT activity was significantly higher in patients with celiac disease than healthy group (p<0.01. The ALT enzyme was partial purified from sera women with celiac disease by dialysis, gel filtration using Sephadex G- 50 and ion exchange chromatography using DEAE- cellulose A-50 . The results showed a single peak by using gel filtration and the activity reached 31-15 U/L .Two isoenzymes were obtained by using ion exchange chromatography and the purity degree of isoenzymse (I, II were (5.7 and (5.53 fold respectively

  17. Visualization of Enzyme Activities in Earthworm Biopores by In Situ Soil Zymography.

    Science.gov (United States)

    Razavi, Bahar S; Hoang, Duyen; Kuzyakov, Yakov

    2017-01-01

    Earthworms produce biopores with strongly increased microbial and enzyme activities and consequently they form microbial hotspots in soil. In extremely dynamic microhabitats and hotspots such as earthworm biopores, the in situ enzyme activities are a footprint of process rates and complex biotic interactions. The effect of earthworms on enzyme activities inside biopores, relative to earthworm-free soil, can be visualized by in situ soil zymography. Here, we describe the details of the approach and discuss its advantages and limitations. Direct zymography provides high spatial resolution for quantitative images of enzyme activities in biopores.

  18. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  19. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  20. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  1. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria.

    Science.gov (United States)

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.

  2. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  3. Endonuclease α from Saccharomyces cerevisiae shows increased activity on ultraviolet irradiated native DNA

    International Nuclear Information System (INIS)

    Bryant, D.W.; Haynes, R.H.

    1978-01-01

    Endonuclease α isolated from the nucleus of the yeast Saccharomyces cerevisiae is a DNA endonuclease which has been shown to act preferentially on denatured T7 DNA. The purified enzyme is more active with UV-irradiated native T7 DNA than with unirradiated substrate. The relation between damage, measured by pyrimidine dimer concentration, and excess endonuclease activity is most readily explained by local denaturation caused by the presence of pyrimidine dimers. When three radiation sensitive mutants of yeast were tested for the level of endonuclease α present, none were found lacking the enzyme. However, nuclei of strain rad 1-1, a mutant that may be defective in heteroduplex repair as well as excision repair, were found to contain reduced levels of the endonuclease. (orig./AJ) [de

  4. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Adiguzel, U; Sezer, C; Yis, O; Akyol, G; Hasanreisoglu, B

    2002-01-01

    Refractive corneal surgery induces keratocyte apoptosis and generates reactive oxygen radicals (ROS) in the cornea. The purpose of the present study is to evaluate the correlation between keratocyte apoptosis and corneal antioxidant enzyme activities after different refractive surgical procedures in rabbits. Rabbits were divided into six groups. All groups were compared with the control group (Group 1), after epithelial scraping (Group 2), epithelial scrape and photorefractive keratectomy (PRK) (traditional PRK: Group 3), transepithelial PRK (Group 4), creation of a corneal flap with microkeratome (Group 5) and laser-assisted in situ keratomileusis (LASIK, Group 6). Terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling assay (to detect DNA fragmentation in situ) and light microscopy were used to detect apoptosis in rabbit eyes. Glutathione peroxidase (Gpx) and superoxide dismutase (SOD) activities of the corneal tissues were measured with spectrophotometric methods. Corneal Gpx and SOD activities decreased significantly in all groups when compared with the control group (P<0.05) and groups 2, 3 and 6 showed a significantly higher amount of keratocyte apoptosis (P<0.05). Not only a negative correlation was observed between corneal SOD activity and keratocyte apoptosis (cc: -0.3648) but Gpx activity also showed negative correlation with keratocyte apoptosis (cc: -0.3587). The present study illustrates the negative correlation between keratocyte apoptosis and corneal antioxidant enzyme activities. This finding suggests that ROS may be partly responsible for keratocyte apoptosis after refractive surgery.

  5. Antitumor properties and modulation of antioxidant enzymes' activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction.

    Science.gov (United States)

    El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A

    2010-01-01

    The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These

  6. Enzyme-immobilized SiO2-Si electrode: Fast interfacial electron transfer with preserved enzymatic activity

    Science.gov (United States)

    Wang, Gang; Yau, Siu-Tung

    2005-12-01

    The enzyme, glucose oxidase (GOx), is immobilized using electrostatic interaction on the native oxide of heavily doped n-type silicon. Voltammetric measurement shows that the immobilized GOx gives rise to a very fast enzyme-silicon interfacial electron transfer rate constant of 7.9s-1. The measurement also suggests that the enzyme retains its native conformation when immobilized on the silicon surface. The preserved native conformation of GOx is further confirmed by testing the enzymatic activity of the immobilized GOx using glucose. The GOx-immobilized silicon is shown to behave as a glucose sensor that detects glucose with concentrations as low as 50μM.

  7. Measurement of peroxisomal enzyme activities in the liver of brown trout (Salmo trutta, using spectrophotometric methods

    Directory of Open Access Journals (Sweden)

    Resende Albina D

    2003-03-01

    Full Text Available Abstract Background This study was aimed primarily at testing in the liver of brown trout (Salmo trutta spectrophotometric methods previously used to measure the activities of catalase and hydrogen peroxide producing oxidases in mammals. To evaluate the influence of temperature on the activities of those peroxisomal enzymes was the second objective. A third goal of this work was the study of enzyme distribution in crude cell fractions of brown trout liver. Results The assays revealed a linear increase in the activity of all peroxisomal enzymes as the temperature rose from 10° to 37°C. However, while the activities of hydrogen peroxide producing oxidases were strongly influenced by temperature, catalase activity was only slightly affected. A crude fraction enriched with peroxisomes was obtained by differential centrifugation of liver homogenates, and the contamination by other organelles was evaluated by the activities of marker enzymes for mitochondria (succinate dehydrogenase, lysosomes (aryl sulphatase and microsomes (NADPH cytochrome c reductase. For peroxisomal enzymes, the activities per mg of protein (specific activity in liver homogenates were strongly correlated with the activities per g of liver and with the total activities per liver. These correlations were not obtained with crude peroxisomal fractions. Conclusions The spectrophotometric protocols originally used to quantify the activity of mammalian peroxisomal enzymes can be successfully applied to the study of those enzymes in brown trout. Because the activity of all studied peroxisomal enzymes rose in a linear mode with temperature, their activities can be correctly measured between 10° and 37°C. Probably due to contamination by other organelles and losses of soluble matrix enzymes during homogenisation, enzyme activities in crude peroxisomal fractions do not correlate with the activities in liver homogenates. Thus, total homogenates will be used in future seasonal and

  8. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development

    Science.gov (United States)

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G’ value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese. PMID:25938823

  9. Combretum lanceolatum flowers extract shows antidiabetic activity through activation of AMPK by quercetin

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Porto Dechandt

    2012-12-01

    Full Text Available The present study evaluated the antidiabetic activity of the Combretum lanceolatum Pohl ex Eichler, Combretaceae, flowers extract (ClEtOH in diabetic rats. Streptozotocin-diabetic rats were divided into four groups: diabetic control, diabetic treated with 500 mg/kg of metformin and diabetic treated with 250 or 500 mg/kg of ClEtOH for 21 days. The treatment of diabetic rats with 500 mg/kg of ClEtOH promoted an increase in the weight of liver, white adipose tissues and skeletal muscles, improving body weight gain. Diabetic rats treated with 500 mg/kg of ClEtOH also presented reduction in glycemia, glycosuria and urinary urea levels, and increase in liver glycogen content. HPLC chromatogram showed that quercetin is the major compound in the extract. The phosphorylation levels of adenosine monophosphate-activated protein kinase were increased in liver slices incubated in vitro with 50 µg/mL of ClEtOH, similarly to the incubation with metformin (50 µg/mL or quercetin (10 µg/mL. The antihyperglycemic effect of ClEtOH was similar to that of metformin and appears to be through inhibition of gluconeogenesis, since urinary urea was reduced and skeletal muscle mass was increased. These data indicate that the antidiabetic activity of the Combretum lanceolatum extract could be mediated, at least in part, through activation of adenosine monophosphateactivated protein kinase by quercetin.

  10. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  11. Stimulation of Escherichia coli DNA photoreactivating enzyme activity by adenosine 5'-triphosphate

    International Nuclear Information System (INIS)

    Koka, P.

    1984-01-01

    A purification procedure consisting of Biorex-70, single-stranded DNA-agarose, and ultraviolet (UV) light irradiated DNA-cellulose chromatography has been adopted for the Escherichia coli photoreactivating enzyme, to obtain enzyme preparations that are free of extraneous nucleic acid or nucleotides. The purification yields high specific activities (75 000 pmol h -1 mg -1 ) with a 50% recovery. Enzyme preparations have also been obtained from UV-irradiated DNA-cellulose by exposure to visible light. These enzyme preparations contain oligoribonucleotides, up to 26 nucleotides in length in relation to DNA size markers, but these are not essential for enzymatic activity. When the enzyme is preincubated with exogenous ATP a 10-fold stimulation in the enzyme activity has been observed. It has been determined by polyacrylamide gel electrophoresis and high-voltage diethylaminoethyl paper electrophoresis that the light-released enzyme samples from a preincubated and washed mixture of the enzyme, [γ- 32 P]ATP, and UV-irradiated DNA-cellulose contained exogenous [γ- 32 P], which eluted with the enzyme-containing fractions when subjected to Bio-Gel P-30 chromatography. GTP caused a slight enhancement of the enzyme activity while ADP strongly inhibited photoreactivation, at the same concentration and conditions. Higher (X5) concentrations of ADP and adenosine 5'-(β, γ-methylenetriphosphate) totally inhibited the enzyme activity. Dialysis of a photoreactivating enzyme preparation against a buffer solution containing 1 mM ATP caused a 9-fold stimulation of the enzyme activity. In addition, there is an apparent hydrolysis of ATP during photoreactivation as measured by the release of 32 P from [γ- 32 P]ATP

  12. Type 2 Diabetic Rats on Diet Supplemented With Chromium Malate Show Improved Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism

    Science.gov (United States)

    Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang

    2015-01-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes. PMID:25942313

  13. Effect of Cereal Type and Enzyme Addition on Performance, Pancreatic Enzyme Activity, Intestinal Microflora and Gut Morphology of Broilers

    Directory of Open Access Journals (Sweden)

    Kalantar M

    2016-06-01

    Full Text Available The effects of grain and carbohydrase enzyme supplementation were investigated on digestive physiology of chickens. A total of 625 one-day-old chicks (Ross 308 were randomly assigned to five treatments in a completely randomized design. Treatments included two different types of grains (wheat, and barley with or without a multi-carbohydrase supplement. A corn-based diet was also considered to serve as a control. Feeding barley-based diet with multi-carbohydrase led to higher feed intake (P < 0.01 than those fed corn- and wheat-based diets. Birds fed on barley and wheat diets had lower weight gain despite a higher feed conversion ratio (P < 0.01. Total count and number of different type of bacteria including Gram-negative, E. coli, and Clostridia increased after feeding wheat and barley but the number of Lactobacilli and Bifidobacteria decreased (P < 0.01. Feeding barley and wheat diets reduced villus height in different parts of the small intestine when compared to those fed on a corn diet. However, enzyme supplementation of barley and wheat diets improved weight gain and feed conversion ratio and resulted in reduced number of E. coli and Clostridia and increased number of Lactobacilli and Bifidobacteria, and also restored the negative effects on intestinal villi height (P < 0.01. The activities of pancreatic α-amylase and lipase were (P < 0.01 increased in chickens fed wheat and barley diets when compared to the control fed on a corn diet. Enzyme supplementation reduced the activities of pancreatic α-amylase and lipase (P < 0.01. In conclusion, various dietary non-starch polysaccharides without enzyme supplementation have an adverse effect on digesta viscosity, ileal microflora, villi morphology, and pancreatic enzyme activity.

  14. Influence of External Nitrogen on Nitrogenase Enzyme Activity and Auxin Production in Herbaspirillum seropedicae (Z78).

    Science.gov (United States)

    Yin, Tan Tzy; Pin, Ui Li; Ghazali, Amir Hamzah Ahmad

    2015-04-01

    The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL(-1) of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (10(6) and 10(12) cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 10(6) cfu/ml inoculum, whereas the higher inoculum size (10(12) cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth.

  15. Effect of different nutrient supply and other growth factors on the activity of the oxidizing enzymes in plants

    Energy Technology Data Exchange (ETDEWEB)

    Amberger, A

    1960-01-01

    Among the plants studied were french beans and peas; the oxidizing enzymes examined were ascorbic acid oxidase, cytochrome oxidase, phenol oxidase, peroxidase and catalase. Increasing the K dosage reduced enzyme activity and raised dry matter contents until at a very high dosage this action was reversed. Both N and P increased enzyme activity and yields. With B high enzyme activity and low dry matter content were both associated with deficiency and toxicity levels. Increasing the Fe dosage led to a rise in both dry matter content and enzyme activity, whereas F depressed yields and raised enzyme activity. Lack of water increased respiration. Light inhibited all enzyme activity.

  16. Fungal Community and Ligninolytic Enzyme Activities in Quercus deserticola Trel. Litter from Forest Fragments with Increasing Levels of Disturbance

    Directory of Open Access Journals (Sweden)

    Jesús A. Rosales-Castillo

    2017-12-01

    Full Text Available Litter fungal communities and their ligninolytic enzyme activities (laccase, Mn-peroxidase, and lignin-peroxidase play a vital role in forest biogeochemical cycles by breaking down plant cell wall polymers, including recalcitrant lignin. However, litter fungal communities and ligninolytic enzyme activities have rarely been studied in Neotropical, non-coniferous forests. Here, we found no significant differences in litter ligninolytic enzyme activities from well preserved, moderately disturbed, and heavily disturbed Quercus deserticola Trel. forests in central Mexico. However, we did find seasonal effects on enzyme activities: during the dry season, we observed lower laccase, and increased Mn-peroxidase and lignin-peroxidase activities, and in the rainy season, Mn-peroxidase and lignin-peroxidase activities were lower, while laccase activity peaked. Fungal diversity (Shannon-Weaver and Simpson indices based on ITS-rDNA analyses decreased with increased disturbance, and principal component analysis showed that litter fungal communities are structured differently between forest types. White-rot Polyporales and Auriculariales only occurred in the well preserved forest, and a high number of Ascomycota were shared between forests. While the degree of forest disturbance significantly affected the litter fungal community structure, the ligninolytic enzyme activities remained unaffected, suggesting functional redundancy and a possible role of generalist Ascomycota taxa in litter delignification. Forest conservation and restoration strategies must account for leaf litter and its associated fungal community.

  17. Soil zymography - A novel technique for mapping enzyme activity in the rhizosphere

    Science.gov (United States)

    Spohn, Marie

    2014-05-01

    The effect plant roots on microbial activity in soil at the millimeter scale is poorly understood. One reason for this is that spatially explicit methods for the study of microbial activity in soil are limited. Here we present a quantitative in situ technique for mapping the distribution of exoenzymes in soil along with some results about the effects of roots on exoenzyme activity in soil. In the first study we showed that both acid and alkaline phosphatase activity were up to 5.4-times larger in the rhizosphere of Lupinus albus than in the bulk soil. While acid phosphatase activity (produced by roots and microorganisms) was closely associated with roots, alkaline phosphatase activity (produced only by microorganisms) was more widely distributed, leading to a 2.5-times larger area of activity of alkaline than of acid phosphatase. These results indicate a spatial differentiation of different ecophysiological groups of organic phosphorus mineralizing organisms in the rhizosphere which might alleviate a potential competition for phosphorus between them. In a second study cellulase, chitinase and phosphatase activities were analyzed in the presence of living Lupinus polyphyllus roots and dead/dying roots (in the same soils 10, 20 and 30 days after cutting the L. polyphyllus shoots). The activity of all three enzymes was 9.0 to 13.9-times higher at the living roots compared to the bulk soil. Microhotspots of cellulase, chitinase and phosphatase activity in the soil were found up to 60 mm away from the living roots. 10 days after shoot cutting, the areas of high activities of cellulase and phosphatase activity were extend up to 55 mm away from the next root, while the extension of the area of chitinase activity did not change significantly. At the root, cellulase and chitinase activity increased first at the root tips after shoot cutting and showed maximal activity 20 days after shoot cutting. The number and activity of microhotspots of chitinase activity was maximal 10

  18. Effect of Ethanol on Germination and Enzyme Activities in Finger millet (Eleusine coracana Gaertn. Seeds

    Directory of Open Access Journals (Sweden)

    S.S. Kulkarni

    2014-08-01

    Full Text Available Influence of ethanol the end product of alcoholic fermentation on the growth of finger millet (var. GPU-28, CO-9 seedlings of two finger millet was studied as a means of evaluating growth responses under anoxia. The germination was delayed by ethanol treatment in case of both the cultivars. Ethanol treatment affected the growth of both radicle and coleoptile of seedlings. In this respect the radicle growth is more sensitive to ethanol than the coleoptile in both varieties of finger millet. The activities of enzymes nitrate reductase, ATPase, acid phosphatase, amylase were reduced by alcohol treatment in germinating seeds of both the cultivars. However, lower concentration of alcohol (1% caused stimulation of peroxidase in var. CO-9. In case of var. GPU-28 showed stimulation of enzyme alkaline phosphatase in both concentration of alcohol.

  19. Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins.

    Science.gov (United States)

    Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan; Hopkins, David L

    2013-01-15

    Two plant enzyme extracts from kiwifruit and asparagus were evaluated for their ability to hydrolyse commercially available substrates and proteins present in both beef connective tissue and topside myofibrillar extracts. The results show significant differences in protease activity depending on the assay used. Protease assays with connective tissue and meat myofibrillar extracts provide a more realistic evaluation of the potential of the enzymes for application in meat tenderization. Overall, the kiwifruit protease extract was found to be more effective at hydrolysing myofibrillar and collagen proteins than the asparagus protease extract. The two protease extracts appeared to target meat myofibrillar and collagen proteins differently, suggesting the potential of a synergistic effect of these proteases in improving the tenderness of specific cuts of meat, based on their intrinsic protein composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability.

    Science.gov (United States)

    Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali

    2018-01-31

    A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.

  1. Survival of Bemisia tabaci and activity of plant defense-related enzymes in genotypes of Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Luis Latournerie-Moreno

    2015-03-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius, 1889 is a major plant pest of horticultural crops from the families Solanaceae, Fabaceae and Cucurbitaceae in Neotropical areas. The exploration of host plant resistance and their biochemical mechanisms offers an excellent alternative to better understand factors affecting the interaction between phytophagous insect and host plant. We evaluated the survival of B. tabaci in landrace genotypes of Capsicum annuum L., and the activity of plant defense-related enzymes (chitinase, polyphenoloxidase, and peroxidase. The landrace genotypes Amaxito, Tabaquero, and Simojovel showed resistance to B. tabaci, as we observed more than 50% nymphal mortality, while in the commercial susceptible genotype Jalapeño mortality of B. tabaci nymphs was not higher than 20%. The activities of plant defense-related enzymes were significantly different among pepper genotypes (P < 0.05. Basal activities of chitinase, polyphenoloxidase and peroxidase were significantly lower or equal in landrace genotypes than that of the commercial genotype Jalapeño. The activity of plant enzymes was differential among pepper genotypes (P < 0.05. For example, the activity of chitinase enzyme generally was higher in non-infested plants with B. tabaci than those infested. Instead polyphenoloxidase ('Amaxito' and 'Simojovel' and peroxidase enzymes activities ('Tabaquero' increased in infested plants (P < 0.05. We conclude that basal activities of plant defense-related enzymes could be act through other mechanism plant induction, since plant defense-related enzymes showed a different induction response to B. tabaci. We underlined the role of polyphenoloxidase as plant defense in the pepper genotype Simojovel related to B. tabaci.

  2. Enzymes activities involving bacterial cytochromes incorporated in clays

    International Nuclear Information System (INIS)

    Lojou, E.; Giudici-Orticoni, M.Th.; Bianco, P.

    2005-01-01

    With the development of bio electrochemistry, researches appeared on the enzymes immobilization at the surface of electrodes for the realization of bioreactors and bio sensors. One of the main challenges is the development of host matrix able to immobilize the protein material preserving its integrity. In this framework the authors developed graphite electrodes modified by clay films. These electrodes are examined for two enzyme reactions involving proteins of sulfate-reduction bacteria. Then in the framework of the hydrogen biological production and bioreactors for the environmental pollution de-pollution, the electrochemical behavior of the cytochrome c3 in two different clays deposed at the electrode is examined

  3. Chlropyrifos-methyl shows anti-androgenic activity without estrogenic activity in rats

    International Nuclear Information System (INIS)

    Kang, Hwan Goo; Jeong, Sang Hee; Cho, Joon Hyoung; Kim, Dong Gyu; Park, Jong Myung; Cho, Myung Haing

    2004-01-01

    Chlorpyrifos-methyl (CPM), an organophosphate insecticide, widely used for grain storage and agriculture, has been suspected as endocrine disrupter by a few in vitro studies. This study was performed to investigate the (anti-) estrogenicity and (anti-) androgenicity of CPM in vivo using immature rat uterotrophic assay and rat Hershberger assay. CPM with or without 17β-estradiol were administered to 20 days old female rats to investigate its (anti-) estrogenic activity. Uterine and vaginal weight, uterine epithelial cell height were not affected by the treatment of CPM (2, 10, 50, 250 mg/kg). CPM 250 mg/kg potentiated relative vagina weight in 17β-estradiol treated immature female rats without any changing of uterine weight. Relative liver weight was increased with decrease of body weight by CPM 250 mg/kg treatment. Uterine cell proliferation tested with bromodeoxyuridine labeling index was not observed in CPM treated rats. CPM with or without testosterone propionate were administered to castrated rat of 51 days old for 10 days to investigate the (anti-)androgenic activity,. The weight of relative and absolute androgen-dependent accessory sex organs; seminal vesicle with coagulating glands (SV/CG), ventral prostate gland (VP), glans penis (GP), levator ani plus bulbocarvernosus muscle (LABC) and Cowper's gland (CG,) were unchanged by the treatment of CPM alone. While CPM induced the increase of relative adrenal gland weight, CPM 50 mg/kg decreased the weights of CV/CG, VP, CG and LABC without change of GP without changing of GP when it was treated with TP. In conclusion, CPM dose not show estrogenic and anti-estrogenic activity in immature female rats, but it represents anti-androgenic activity by inhibition of the TP-stimulated increase of the weight of accessory sex organs

  4. Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qing [Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071 (China); Graduate University, Chinese Academy of Sciences, Beijing 100049 (China); Wang Xiaomei [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Wang Xiaoyu [Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071 (China); Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei University of Technology, Tianjin 300130 (China); Yang Hongsheng, E-mail: hshyang@ms.qdio.ac.cn [Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071 (China); Liu Baozhong, E-mail: bzliu@ms.qdio.ac.cn [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)

    2010-11-15

    To investigate the possible role of metallothioneins (MTs) and antioxidant enzymes in cadmium (Cd) tolerance in Meretrix meretrix larvae, a new MT (designated MmMT) gene was identified and cloned from M. meretrix. The full-length cDNA of MmMT consisted of an open reading frame (ORF) of 231 bp encoding a protein of 76 amino acids, with 21 cysteine residues and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-Gly-x(3)-Cys-x-Cys-x(3)-Cys-x-Cys-Lys at the C-terminus. The deduced amino acid sequence of MmMT showed about 57-84% identity with previously published MT sequences of mussels and oysters. Real-time PCR was used to analyze the expression level of MmMT mRNA at different M. meretrix larval stages under Cd exposure (25 {mu}g L{sup -1}). Results showed that Cd could induce the expression of MmMT mRNA in the larvae, and the expression level increased 5.04-fold and 3.99-fold in D-shaped larvae and pediveligers, respectively. Immunolocalization of MmMT in the stressed larvae revealed that MmMT was synthesized in almost all of the soft parts at the trochophore and postlarva stages, whereas it was only synthesized in the velum and epidermis at the D-shaped larva and pediveliger stages. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), also were measured in larvae at different developmental stages. Increased enzymatic activities were detected mainly in D-shaped larvae and pediveligers under Cd stress, suggesting that these enzymes respond synchronously with MT. Our results indicate that MmMT and antioxidant enzymes played important roles in counteracting Cd stress in M. meretrix larvae.

  5. Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure

    International Nuclear Information System (INIS)

    Wang Qing; Wang Xiaomei; Wang Xiaoyu; Yang Hongsheng; Liu Baozhong

    2010-01-01

    To investigate the possible role of metallothioneins (MTs) and antioxidant enzymes in cadmium (Cd) tolerance in Meretrix meretrix larvae, a new MT (designated MmMT) gene was identified and cloned from M. meretrix. The full-length cDNA of MmMT consisted of an open reading frame (ORF) of 231 bp encoding a protein of 76 amino acids, with 21 cysteine residues and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-Gly-x(3)-Cys-x-Cys-x(3)-Cys-x-Cys-Lys at the C-terminus. The deduced amino acid sequence of MmMT showed about 57-84% identity with previously published MT sequences of mussels and oysters. Real-time PCR was used to analyze the expression level of MmMT mRNA at different M. meretrix larval stages under Cd exposure (25 μg L -1 ). Results showed that Cd could induce the expression of MmMT mRNA in the larvae, and the expression level increased 5.04-fold and 3.99-fold in D-shaped larvae and pediveligers, respectively. Immunolocalization of MmMT in the stressed larvae revealed that MmMT was synthesized in almost all of the soft parts at the trochophore and postlarva stages, whereas it was only synthesized in the velum and epidermis at the D-shaped larva and pediveliger stages. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), also were measured in larvae at different developmental stages. Increased enzymatic activities were detected mainly in D-shaped larvae and pediveligers under Cd stress, suggesting that these enzymes respond synchronously with MT. Our results indicate that MmMT and antioxidant enzymes played important roles in counteracting Cd stress in M. meretrix larvae.

  6. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  7. Activation of PAF-synthesizing enzymes in rat brain stem slices after LTP induction in the medial vestibular nuclei.

    Science.gov (United States)

    Francescangeli, Ermelinda; Grassi, Silvarosa; Pettorossi, Vito E; Goracci, Gianfrancesco

    2002-11-01

    LysoPAF acetyltransferase (lysoPAF-AT) and PAF-synthesizing phosphocholinetransferase (PAF-PCT) are the two enzymes which catalyze the final reactions for the synthesis of PAF. Their activities, assayed in the homogenate of rat brain stem slices and under their optimal conditions, increased 5 min after high frequency stimulation of vestibular afferents, inducing LTP in the medial vestibular nuclei. The activity of phosphatidylcholine-synthesizing phosphocholinetransferase, was not affected. Sixty minutes from the induction of LTP, PAF-PCT activity, but not that of lysoPAF-AT, was still significantly higher with respect to 5 min test stimulated control. We used AP-5 to verify whether this increase was strictly dependent upon LTP induction, which requires NMDA receptor activation. In AP-5 treated slices, lysoPAF-acetyltransferase and PAF-synthesizing phosphocholinetransferase activities increased, but they were reduced after high frequency stimulation under AP-5. In conclusion, we have demonstrated that the activities of PAF-synthesizing enzymes are activated soon after the induction of LTP and that this effect is linked to the activation of NMDA-receptors. We suggest that the enzyme activation by AP-5, preventing LTP, might be due to glutamate enhancement but, in neurons showing LTP and under normal conditions, the activation of potentiation mechanisms is critical for the enhancement of enzyme activities.

  8. Mini Review: Basic Physiology and Factors Influencing Exogenous Enzymes Activity in the Porcine Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Strube, Mikael Lenz; Meyer, Anne S.; Boye, Mette

    2013-01-01

    activity during intestinal transit are few, it is known that the enzymes, being protein molecules, can be negatively affected by the gastrointestinal proteolytic enzymes and the low pH in the stomach ventricle. In this review, the pH-values, endogenous proteases and other factors native to the digestive......The addition of exogenous enzymes to pig feed is used to enhance general nutrient availability and thus increase daily weight gain per feed unit. The enzymes used are mainly beta-glucanase (EC 3.2.1.4) and xylanase (EC 3.2.1.8) and phytase (EC 3.1.3.8). Although in vivo data assessing feed enzyme...... tract of the adult pig and the piglet are discussed in relation to the stability of exogenous feed enzymes. Development of more consistent assessment methods which acknowledge such factors is warranted both in vitro and in vivo for proper evaluation and prediction of the efficiency of exogenous enzymes...

  9. Hydrolytic enzyme activities in shiitake mushroom (Lentinula edodes) strains cultivated on coffee pulp.

    Science.gov (United States)

    Mata, Gerardo; Salmones, Dulce; Pérez-Merlo, Rosalía

    Hydrolytic enzyme production (cellulases, laminarinases and xylanases) was studied in cultures of Lentinula edodes on sterilized coffee pulp. Samples of substrate colonized by mycelia were taken after 7, 14, 21, 28 and 35 days of incubation at 25°C (W1 to W5) and during the fruiting period at different stages: formation of primordia (PF), first harvest (H) and one week after the first harvest (PH). The enzymatic activity was lower during the early mycelial growth and showed higher levels during the formation and development of fruiting bodies. During the reproductive stage of the fungus, the samples were subjected to a soaking treatment; however, it was not possible to relate this soaking treatment to the increase in enzyme production. The levels of enzymatic activity suggest that secretion of the studied enzymes does not influence the adaptability of the strains to the substrate. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Decrease in Activities of Selected Rat Liver Enzymes following ...

    African Journals Online (AJOL)

    The effects of the chemical effluent from Soap and Detergent Industry on some rat liver enzymes were investigated. Chemical analyses of both the effluent and tap water which served as the control were carried out before various concentrations of the effluent (5%v/v, 25%v/v, 50%v/v and 100%v/v) were made. The effluent ...

  11. Assessment of some Hepatic Enzyme activities in adult rabbits ...

    African Journals Online (AJOL)

    Therapeutic potentials of Garcinia kola (G. kola) have been extensively documented and several researches have asserted its protective uniqueness against liver disorders/diseases. It is the aim of this study to assess the level of some enzyme involved in liver cellular integrity in rabbits chronically fed G. kola. To achieve this ...

  12. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  13. Subtropical urban turfs: Carbon and nitrogen pools and the role of enzyme activity.

    Science.gov (United States)

    Kong, Ling; Chu, L M

    2018-03-01

    Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon (SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen (TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO 3 -N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices. Copyright © 2017. Published by Elsevier B.V.

  14. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    Science.gov (United States)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system

  15. Insights into catalytic activity of industrial enzyme Co-nitrile hydratase. Docking studies of nitriles and amides.

    Science.gov (United States)

    Peplowski, Lukasz; Kubiak, Karina; Nowak, Wieslaw

    2007-07-01

    Nitrile hydratase (NHase) is an enzyme containing non-corrin Co3+ in the non-standard active site. NHases from Pseudonocardia thermophila JCM 3095 catalyse hydration of nitriles to corresponding amides. The efficiency of the enzyme is 100 times higher for aliphatic nitriles then aromatic ones. In order to understand better this selectivity dockings of a series of aliphatic and aromatic nitriles and related amides into a model protein based on an X-ray structure were performed. Substantial differences in binding modes were observed, showing better conformational freedom of aliphatic compounds. Distinct interactions with postranslationally modified cysteines present in the active site of the enzyme were observed. Modeling shows that water molecule activated by a metal ion may easily directly attack the docked acrylonitrile to transform this molecule into acryloamide. Thus docking studies provide support for one of the reaction mechanisms discussed in the literature.

  16. Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes

    Directory of Open Access Journals (Sweden)

    Nisita Ratnasari

    2017-07-01

    Full Text Available This study used polysaccharide degrading enzymes and protein precipitation to extract polyphenols from oats and to determine their bioactivity. Duplicate oat brans were treated with viscozyme (Vis, cellulase (Cel or no enzyme (control, CTL then, proteins were removed in one set (Vis1, Cel1, CTL1 and not in the other (Vis2, Cel2, CTL2. HPLC analyses showed that for cellulase treated brans, precipitation of proteins increased phenolic acids and avenanthramides by 14%. Meanwhile, a decreased of 67% and 20% respectively was found for viscozyme and control brans. The effect of protein precipitation on soluble polyphenols is therefore dependent of the carbohydrase, as proteins with different compositions will interact differently with other molecules. Radical scavenging data showed that Cel1 and Vis1 had higher quenching effects on ROO• radicals with activities of 22.1 ± 0.8 and 23.5 ± 1.2 μM Trolox Equivalents/g defatted brans. Meanwhile, CTL2 had the highest HO• radicals inhibition (49.4 ± 2.8% compared to 10.8–32.3% for others. Samples that highly inhibited lipoxygenase (LOX, an enzyme involved in lipid oxidation were Cel1 (23.4 ± 2.3% and CTL1 (18 ± 0.4%.

  17. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China.

    Science.gov (United States)

    Xie, Xuefeng; Pu, Lijie; Wang, Qiqi; Zhu, Ming; Xu, Yan; Zhang, Meng

    2017-12-31

    Soil enzyme activity during different years of reclamation and land use patterns could indicate changes in soil quality. The objective of this research is to explore the dynamics of 5 soil enzyme activities (dehydrogenase, amylase, urease, acid phosphatase and alkaline phosphatase) involved in C, N, and P cycling and their responses to changes in soil physicochemical properties resulting from long-term reclamation of coastal saline soil. Soil samples from a total of 55 sites were collected from a coastal reclamation area with different years of reclamation (0, 7, 32, 40, 63a) in this study. The results showed that both long-term reclamation and land use patterns have significant effects on soil physicochemical properties and enzyme activities. Compared with the bare flat, soil water content, soil bulk density, pH and electrical conductivity showed a decreasing trend after reclamation, whereas soil organic carbon, total nitrogen and total phosphorus tended to increase. Dehydrogenase, amylase and acid phosphatase activities initially increased and then decreased with increasing years of reclamation, whereas urease and alkaline phosphatase activities were characterized by an increase-decrease-increase trend. Moreover, urease, acid phosphatase and alkaline phosphatase activities exhibited significant differences between coastal saline soil with 63years of reclamation and bare flat, whereas dehydrogenase and amylase activities remained unchanged. Aquaculture ponds showed higher soil water content, pH and EC but lower soil organic carbon, total nitrogen and total phosphorus than rapeseed, broad bean and wheat fields. Rapeseed, broad bean and wheat fields displayed higher urease and alkaline phosphatase activities and lower dehydrogenase, amylase and acid phosphatase activities compared with aquaculture ponds. Redundancy analysis revealed that the soil physicochemical properties explained 74.5% of the variation in soil enzyme activities and that an obvious relationship

  18. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    (chondroitin sulfate, fucoidan, xylan and pullulan) to determine the temperature-activity responses of hydrolysis of a related class of compounds. All 4 enzyme activities showed similarly low temperature optima in the range of 15 to 18degreesC. These temperature optima are considerably lower than most previous......The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... reports of temperature optima for enzyme activities in marine sediments. At 0degreesC, close to the in situ temperature, these enzyme activities achieved 13 to 38% of their rates at optimum temperatures. In one experiment, sulfate reduction rates were measured in parallel with extracellular enzymatic...

  19. Effects of organic solvents on the enzyme activity of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase in calorimetric assays

    DEFF Research Database (Denmark)

    Wiggers, Henrik; Cheleski, J; Zottis, A

    2007-01-01

    .0% for MeOH and up to 7.5% for DMSO. The results show that when GAPDH is assayed in the presence of DMSO (5%, v/v) using the ITC experiment, the enzyme exhibits approximately twofold higher activity than that of GAPDH with no cosolvent added. When MeOH (5%, v/v) is the cosolvent, the GAPDH activity......In drug discovery programs, dimethyl sulfoxide (DMSO) is a standard solvent widely used in biochemical assays. Despite the extensive use and study of enzymes in the presence of organic solvents, for some enzymes the effect of organic solvent is unknown. Macromolecular targets may be affected...... by the presence of different solvents in such a way that conformational changes perturb their active site structure accompanied by dramatic variations in activity when performing biochemical screenings. To address this issue, in this work we studied the effects of two organic solvents, DMSO and methanol (Me...

  20. [Dynamics of aquic brown soil enzyme activities under no-tillage].

    Science.gov (United States)

    Liu, Xiumei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2006-12-01

    This paper studied the effects of no-tillage on the dynamics of invertase, urease and acid phosphatase activities in an aquic brown soil during maize growing season. The results showed that in 0 - 10 cm soil layer, the invertase activity at jointing, trumpet-shaped and ripening stages, urease activity at jointing and booting stages, and acid phosphatase activity at booting and ripening stages were significantly higher under no-tillage (NT) than under conventional tillage (CT). In 10 - 20 cm soil layer, the invertase activity at seedling, jointing and trumpet-shaped stages was significantly different between NT and CT, and the urease activity during whole growing season except at booting stage was significantly higher under NT than under CT. In 20 - 30 cm soil layer, the invertase activity during maize growing season was significantly lower under NT than under CT, and urease activity at seedling stage and acid phosphate activity at ripening stage were significantly different between these two treatments. Under NT, there was a decreasing trend of soil enzyme activities with increasing soil depth; while under CT, soil invertase and acid phosphatase activities increased, but urease activity decreased with increasing soil depth.

  1. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    Science.gov (United States)

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

  2. Angiotensin-converting enzyme activity and cognitive impairment during hypoglycaemia in healthy humans

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, Ulrik; Thomsen, Carsten E; Høgenhaven, Hans

    2008-01-01

    INTRODUCTION: In type 1 diabetes increased risk of severe hypoglycaemia is associated with high angiotensin-converting enzyme (ACE) activity. We tested in healthy humans the hypothesis that this association is explained by the reduced ability of subjects with high ACE activity to maintain normal...... cognitive function during hypoglycaemia. METHODS: Sixteen healthy volunteers selected by either particularly high or low serum ACE activity were subjected to hypoglycaemia (plasma glucose 2.7 mmol/L). Cognitive function was assessed by choice reaction tests. RESULTS: Despite a similar hypoglycaemic stimulus...... in the two groups, only the group with high ACE activity showed significant deterioration in cognitive performance during hypoglycaemia. In the high ACE group mean reaction time (MRT) in the most complex choice reaction task was prolonged and error rate (ER) was increased in contrast to the low ACE group...

  3. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  4. An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria

    DEFF Research Database (Denmark)

    Rasmussen, Randi Engelberth; Erstad, Simon Matthé; Ramos Martinez, Erick Miguel

    2016-01-01

    microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the most widely used method for determination of intracellular enzyme activities. However, due to thick cell walls...... used directly in the assays, the permeabilized cells exhibited the enzyme activities that are comparable or even higher than those detected for cell-free lysates. Moreover, the permeabilized cells could be stored at -20 °C without losing the enzyme activities. The permeabilization process...... for permeabilization of the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, and determination of two intracellular enzymes, ribulose-1,5-bisphosphate carboxylase/decarboxylase (Rubisco) and glucose-6-phosphate dehydrogenase (G6PDH), that play pivotal roles in the central carbon metabolism...

  5. Comparative sequence, structure and redox analyses of Klebsiella pneumoniae DsbA show that anti-virulence target DsbA enzymes fall into distinct classes.

    Directory of Open Access Journals (Sweden)

    Fabian Kurth

    Full Text Available Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA. Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA. As expected, the redox properties, structure and surface features (from crystal and NMR data of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class.

  6. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  7. The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida

    International Nuclear Information System (INIS)

    Zhang Yan; Shen Guoqing; Yu Yueshu; Zhu Hongling

    2009-01-01

    The hormetic dose-response relationships induced by environmental toxic agents are often characterized by low-dose stimulation and high-dose inhibition. Confirmation of the general phenomenon of hormesis may have significant implications for ecological risk assessment, although the mechanisms that underlie hormesis remain an enigma. In this study, a model-based approach for describing a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of the hormetic effect of cadmium (Cd) on the activity of antioxidant enzymes in the earthworm Eisenia fetida. The results showed that Cd at low concentrations induced an increase in the activity of catalase and superoxide dismutase (SOD), but high concentrations inhibited the enzymes, and this was reflected in an inverted U-shaped curve. The maximum hormetic magnitude of SOD activity was higher than that of catalase. The presence of hormesis induced by cadmium in the earthworm may be related to activation of adaptive pathways. - A model-based approach and careful preliminary experiments are needed for detecting and estimating the hormetic effect.

  8. The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yan [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shen Guoqing, E-mail: gqsh@sjtu.edu.c [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Yu Yueshu; Zhu Hongling [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2009-11-15

    The hormetic dose-response relationships induced by environmental toxic agents are often characterized by low-dose stimulation and high-dose inhibition. Confirmation of the general phenomenon of hormesis may have significant implications for ecological risk assessment, although the mechanisms that underlie hormesis remain an enigma. In this study, a model-based approach for describing a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of the hormetic effect of cadmium (Cd) on the activity of antioxidant enzymes in the earthworm Eisenia fetida. The results showed that Cd at low concentrations induced an increase in the activity of catalase and superoxide dismutase (SOD), but high concentrations inhibited the enzymes, and this was reflected in an inverted U-shaped curve. The maximum hormetic magnitude of SOD activity was higher than that of catalase. The presence of hormesis induced by cadmium in the earthworm may be related to activation of adaptive pathways. - A model-based approach and careful preliminary experiments are needed for detecting and estimating the hormetic effect.

  9. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    International Nuclear Information System (INIS)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M.; Ahr, Hans-Juergen; Schmidt, Ulrich; Enzmann, Harald H.

    2004-01-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using 32 P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had 32 P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  10. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M. [New York Medical College, Department of Pathology, Valhalla (United States); Ahr, Hans-Juergen; Schmidt, Ulrich [Bayer AG, Institute of Toxicology, Wuppertal (Germany); Enzmann, Harald H. [Federal Institute for Drugs and Medical Devices, Bonn (Germany)

    2004-10-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using {sup 32}P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had {sup 32}P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  11. Antioxidant Enzyme Activity and Meat Quality of Meat Type Ducks Fed with Dried Oregano ( L. Powder

    Directory of Open Access Journals (Sweden)

    J. H. Park

    2015-01-01

    Full Text Available One-day-old Cherry valley meat-strain ducks were used to investigate the effect of supplemental dried oregano powder (DOP in feed on the productivity, antioxidant enzyme activity, and breast meat quality. One hundred sixty five ducks were assigned to 5 dietary treatments for 42 days. The dietary treatment groups were control group (CON; no antibiotic, no DOP, antibiotic group (ANT; CON+0.1% Patrol, 0.1% DOP (CON+0.1% DOP, 0.5% DOP (CON+0.5% DOP, and 1.0% DOP (CON+1.0% DOP. Upon feeding, 1,1-diphenyl-2-picryl-hydrazyl (DPPH radical scavenging activity of oregano extracts was higher than that of tocopherol, although it was less than that of ascorbic acid. As a result of in vivo study, DOP in the diet showed no effects on final body weight, feed intake, or feed conversion ratio. However, dietary 0.5% and 1% DOP supplementation caused a significant increase in the serum enzyme activity of superoxide dismutase (SOD compared with CON and ANT, while glutathione peroxidase (GPx in tissue was increased as compared to ANT (p<0.05. Cooking loss from ducks fed with DOP decreased compared with the control ducks. Thiobarbituric acid reactive substance (TBARS values of duck breast meat at 5 d post slaughter was found to be significantly reduced in ducks whose diets were supplemented with 0.5% and 1% DOP (p<0.05. These results suggest that diets containing 0.5% and 1% DOP may beneficially affect antioxidant enzyme activity of GPx and SOD, improve meat cooking loss, and reduce TBARS values in breast meat at 5 d of storage in ducks.

  12. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities

    Institute of Scientific and Technical Information of China (English)

    XIONG Jia; GRACE Mary H; ESPOSITO Debora; KOMARNYTSKY Slavko; WANG Fei; LILA Mary Ann

    2017-01-01

    The present study was designed to characterize the polyphenols isolated from Acacia mearnsii bark crude extract (B) and fractions (B1-B7) obtained by high-speed counter-current chromatography (HSCCC) and evaluate their anti-inflammatory and carbolytic enzymes (α-glucosidase and α-amylase) inhibitory activities.Fractions B4,B5,B6,B7 (total phenolics 850.3,983.0,843.9,and 572.5 mg·g-1,respectively;proanthocyanidins 75.7,90.5,95.0,and 44.8 mg·g-1,respectively) showed significant activities against reactive oxygen species (ROS),nitric oxide (NO) production,and expression of pro-inflammatory genes interleukin-lβ (IL-1β) and inducible nitric oxide synthase (iNOS) in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line RAW 264.7.All the extracts suppressed α-glucosidase and α-amylase activities,two primary enzymes responsible for carbohydrate digestion.A.mearnsii bark samples possessed significantly stronger inhibitory effects against α-glucosidase enzyme (IC50 of 0.4-1.4 tg·mL-1) than the pharmaceutical acarbose (IC50 141.8 μg·mL-1).B6 and B7 (IC5017.6 and 11.7 μg·mL-1,respectively) exhibited α-amylase inhibitory activity as efficacious as acarbose (IC50 15.4 μg·mL-1).Moreover,B extract,at 25 μg·mL-l,significantly decreased the non-mitochondrial oxidative burst that is often associated with inflammatory response in human monocytic macrophages.

  13. Crystallization of Hevamine, an Enzyme with Lysozyme/Chitinase Activity from Hevea brasiliensis Latex

    NARCIS (Netherlands)

    ROZEBOOM, HJ; BUDIANI, A; BEINTEMA, JJ

    1990-01-01

    Hevamine, an enzyme with both lysozyme and chitinase activity, was isolated and purified from Hevea brasiliensis (rubber tree) latex. The enzyme (molecular weight 29,000) is homologous to certain “pathogenesis-related” proteins from plants, but not to hen egg-white or phage T4 lysozyme. To

  14. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...

  15. Effect of citric acid and microbial phytase on serum enzyme activities ...

    African Journals Online (AJOL)

    Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks. ... African Journal of Biotechnology ... An experiment was conducted to study the effect of microbial phytase supplementation and citric acid in broiler chicks fed corn-soybean meal base diets on enzyme ...

  16. Plant Cell Protolytic Enzymes Activity under Exposure to Lectins of Endophytic and Epiphytic Azospirillum Strains

    Directory of Open Access Journals (Sweden)

    S.A. Alen’kina

    2016-05-01

    Full Text Available We studied the ability of lectins isolated from the surface of the two strains of nitrogen-fixing soil bacteria of the genus Azospirillum, A. brasilense Sp7 (epiphytic and A. brasilense Sp245 (endophytic, to show have a regulating effect on the activity of pectinolytic enzymes in the roots of wheat seedlings. Research results showed that the lectins under study can cause the induction of the activity of polygalacturonase, pectinesterase, pectatlyase from the plant cell wall, thereby ensuring the bacteria penetration in the plant tissues, as well as the induction of plants responses which, being combined with growth-stimulating effect of bacteria, contributes to the formation of plants stability and productivity.

  17. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia

    Directory of Open Access Journals (Sweden)

    Gulati Vandana

    2012-06-01

    Full Text Available Abstract Background Traditional Indian and Australian medicinal plant extracts were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of hyperglycemia and type 2 diabetes. The antioxidant activities were also assessed. Methods The evaluation of enzyme inhibitory activity of seven Australian aboriginal medicinal plants and five Indian Ayurvedic plants was carried out against α-amylase and α-glucosidase. Antioxidant activity was determined by measuring (i the scavenging effect of plant extracts against 2, 2-diphenyl-1-picryl hydrazyl (DPPH and 2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS and (ii ferric reducing power. Total phenolic and total flavonoid contents were also determined. Results Of the twelve plant extracts evaluated, the highest inhibitory activity against both α-amylase and α-glucosidase enzymes was exerted by Santalum spicatum and Pterocarpus marsupium with IC50 values of 5.43 μg/ml and 0.9 μg/ml, respectively, and 5.16 μg/ml and 1.06 μg/ml, respectively. However, the extracts of Acacia ligulata (IC50 = 1.01 μg/ml, Beyeria leshnaultii (0.39 μg/ml, Mucuna pruriens (0.8 μg/ml and Boerhaavia diffusa (1.72 μg/ml exhibited considerable activity against α-glucosidase enzyme only. The free radical scavenging activity was found to be prominent in extracts of Acacia kempeana, Acacia ligulata followed by Euphorbia drummondii against both DPPH and ABTS. The reducing power was more pronounced in Euphorbia drummondii and Pterocarpus marsupium extracts. The phenolic and flavonoid contents ranged from 0.42 to 30.27 μg/mg equivalent of gallic acid and 0.51 to 32.94 μg/mg equivalent of quercetin, respectively, in all plant extracts. Pearson’s correlation coefficient between total flavonoids and total phenolics was 0.796. Conclusion The results obtained in this study showed that most of the plant extracts

  18. Bromelain enzyme from pineapple: in vitro activity study under different micropropagation conditions.

    Science.gov (United States)

    Vilanova Neta, Jaci Lima; da Silva Lédo, Ana; Lima, Aloisio André Bonfim; Santana, José Carlos Curvelo; Leite, Nadjma Souza; Ruzene, Denise Santos; Silva, Daniel Pereira; de Souza, Roberto Rodrigues

    2012-09-01

    The aim of this work was to evaluate the activity of bromelain in pineapple plants (Ananas comosus var. Comosus), Pérola cultivar, produced in vitro in different culture conditions. This enzyme, besides its pharmacological effects, is also employed in food industries, such as breweries and meat processing. In this work, the enzymatic activity was evaluated in the tissues of leaves and stems of plants grown in culture medium without plant growth regulator. The most significant levels of bromelain were observed in leaf tissue after 4 months of culture in vitro in medium with a filter paper bridge, followed by medium gelled by the agar. The results of this study, regarding the different structures of the pineapple (leaves and stems) in vitro showed that the activity of bromelain varied depending on the culture conditions, the time and structure of which was quantified, ensuring a viable strategy in the production of seedlings with high levels of bromelain in subsequent phases of micropropagation.

  19. Experimental Strategy to Discover Microbes with Gluten-degrading Enzyme Activities.

    Science.gov (United States)

    Helmerhorst, Eva J; Wei, Guoxian

    2014-05-05

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  20. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  1. Effect of different growth parameters on chitinase enzyme activity ...

    African Journals Online (AJOL)

    Optimization of culture conditions revealed that the enzyme production was maximum in pH 7.5 (107.4 ± 0.50 U/ml), temperature 35°C (103.15 ± 1.74 U/ml) when the carbon and the nitrogen sources used were CMC (106.0 ± 1.89 U/ml) and KNO3 (91.2 ± 1.51 U/ml), respectively. The total chitinase production for all optimum ...

  2. An appraisal of the enzyme stability-activity trade-off.

    Science.gov (United States)

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  3. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    Science.gov (United States)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  4. Developmental and hormone-induced changes of mitochondrial electron transport chain enzyme activities during the last instar larval development of maize stem borer, Chilo partellus (Lepidoptera: Crambidae).

    Science.gov (United States)

    VenkatRao, V; Chaitanya, R K; Naresh Kumar, D; Bramhaiah, M; Dutta-Gupta, A

    2016-12-01

    The energy demand for structural remodelling in holometabolous insects is met by cellular mitochondria. Developmental and hormone-induced changes in the mitochondrial respiratory activity during insect metamorphosis are not well documented. The present study investigates activities of enzymes of mitochondrial electron transport chain (ETC) namely, NADH:ubiquinone oxidoreductase or complex I, Succinate: ubiquinone oxidoreductase or complex II, Ubiquinol:ferricytochrome c oxidoreductase or complex III, cytochrome c oxidase or complex IV and F 1 F 0 ATPase (ATPase), during Chilo partellus development. Further, the effect of juvenile hormone (JH) analog, methoprene, and brain and corpora-allata-corpora-cardiaca (CC-CA) homogenates that represent neurohormones, on the ETC enzyme activities was monitored. The enzymatic activities increased from penultimate to last larval stage and thereafter declined during pupal development with an exception of ATPase which showed high enzyme activity during last larval and pupal stages compared to the penultimate stage. JH analog, methoprene differentially modulated ETC enzyme activities. It stimulated complex I and IV enzyme activities, but did not alter the activities of complex II, III and ATPase. On the other hand, brain homogenate declined the ATPase activity while the injected CC-CA homogenate stimulated complex I and IV enzyme activities. Cumulatively, the present study is the first to show that mitochondrial ETC enzyme system is under hormone control, particularly of JH and neurohormones during insect development. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Evolutionary Loss of Activity in De-Ubiquitylating Enzymes of the OTU Family.

    Directory of Open Access Journals (Sweden)

    Marcell Louis

    Full Text Available Understanding function and specificity of de-ubiquitylating enzymes (DUBs is a major goal of current research, since DUBs are key regulators of ubiquitylation events and have been shown to be mutated in human diseases. Most DUBs are cysteine proteases, relying on a catalytic triad of cysteine, histidine and aspartate to cleave the isopeptide bond between two ubiquitin units in a poly-ubiquitin chain. We have discovered that the two Drosophila melanogaster homologues of human OTUD4, CG3251 and Otu, contain a serine instead of a cysteine in the catalytic OTU (ovarian tumor domain. DUBs that are serine proteases instead of cysteine- or metallo-proteases have not been described. In line with this, neither CG3251 nor Otu protein were active to cleave ubiquitin chains. Re-introduction of a cysteine in the catalytic center did not render the enzymes active, indicating that further critical features for ubiquitin binding or cleavage have been lost in these proteins. Sequence analysis of OTUD4 homologues from various other species showed that within this OTU subfamily, loss of the catalytic cysteine has occurred frequently in presumably independent events, as well as gene duplications or triplications, suggesting DUB-independent functions of OTUD4 proteins. Using an in vivo RNAi approach, we show that CG3251 might function in the regulation of Inhibitor of Apoptosis (IAP-antagonist-induced apoptosis, presumably in a DUB-independent manner.

  6. Identification of 5'-adenylylimidodiphosphate-hydrolyzing enzyme activity in rabbit taste bud cells using X-ray microanalysis

    International Nuclear Information System (INIS)

    Asanuma, N.

    1990-01-01

    X-ray microanalysis has been used to characterize the enzyme activity hydrolyzing the ATP analogue 5'-adenylylimidodiphosphate (AMP-PNP) in taste bud cells. Rabbit foliate papillae fixed with paraformaldehyde and glutaraldehyde were incubated cytochemically with AMP-PNP as the substrate and lead ion as capture agent. The reaction product which appeared on the microvilli of taste bud cells was examined using an energy dispersive X-ray microanalyzer connected to an analytical electron microscope. The X-ray spectrum thus obtained was compared with that obtained from the product obtained from the demonstration of ATPase activity. Comparison of the phosphorus/lead ratios in the two products showed that twice as much phosphorus was released from an AMP-PNP molecule by the activity in question compared with that released from an ATP molecule by ATPase activity. This indicates that the enzyme hydrolyzes AMP-PNP into AMP and imidodiphosphate and that the enzyme is adenylate cyclase or ATP pyrophosphohydrolase, which possesses a similar hydrolytic property, but not ATPase or alkaline phosphatase, which hydrolyzes AMP-PNP into ADP-NH2 and orthophosphate. This paper provides an example of the use of X-ray microanalysis as a tool for enzyme distinction. The method is applicable to a variety of enzymes and tissues

  7. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    Science.gov (United States)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  8. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  9. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  10. A Rhodium(III) Complex as an Inhibitor of Neural Precursor Cell Expressed, Developmentally Down-Regulated 8-Activating Enzyme with in Vivo Activity against Inflammatory Bowel Disease.

    Science.gov (United States)

    Zhong, Hai-Jing; Wang, Wanhe; Kang, Tian-Shu; Yan, Hui; Yang, Yali; Xu, Lipeng; Wang, Yuqiang; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-12

    We report herein the identification of the rhodium(III) complex [Rh(phq) 2 (MOPIP)] + (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.

  11. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    Science.gov (United States)

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Transgenic alfalfa (Medicago sativa) with increased sucrose phosphate synthase activity shows enhanced growth when grown under N2-fixing conditions.

    Science.gov (United States)

    Gebril, Sayed; Seger, Mark; Villanueva, Fabiola Muro; Ortega, Jose Luis; Bagga, Suman; Sengupta-Gopalan, Champa

    2015-10-01

    Overexpression of SPS in alfalfa is accompanied by early flowering, increased plant growth and an increase in elemental N and protein content when grown under N2-fixing conditions. Sucrose phosphate synthase (SPS; EC 2.3.1.14) is the key enzyme in the synthesis of sucrose in plants. The outcome of overexpression of SPS in different plants using transgenic approaches has been quite varied, but the general consensus is that increased SPS activity is associated with the production of new sinks and increased sink strength. In legumes, the root nodule is a strong C sink and in this study our objective was to see how increasing SPS activity in a legume would affect nodule number and function. Here we have transformed alfalfa (Medicago sativa, cv. Regen SY), with a maize SPS gene driven by the constitutive CaMV35S promoter. Our results showed that overexpression of SPS in alfalfa, is accompanied by an increase in nodule number and mass and an overall increase in nitrogenase activity at the whole plant level. The nodules exhibited an increase in the level of key enzymes contributing to N assimilation including glutamine synthetase and asparagine synthetase. Moreover, the stems of the transformants showed higher level of the transport amino acids, Asx, indicating increased export of N from the nodules. The transformants exhibited a dramatic increase in growth both of the shoots and roots, and earlier flowering time, leading to increased yields. Moreover, the transformants showed an increase in elemental N and protein content. The overall conclusion is that increased SPS activity improves the N status and plant performance, suggesting that the availability of more C in the form of sucrose enhances N acquisition and assimilation in the nodules.

  13. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.

    Science.gov (United States)

    Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang

    2013-04-01

    A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    Science.gov (United States)

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  15. ENZYME ACTIVITIES OF PADDY SOILS AND RELATIONSHIPS WITH THE SOIL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Rıdvan KIZILKAYA

    1998-03-01

    Full Text Available This study was carried out to determine the effect of soil properties on enzyme activities of paddy soils, the sample of which were taken from Üçpınar, Harız, Doğancı, Kaygusuz, Emenli, Sarıköy and Gelemenağarı villages where rice cultivation is an intensive agricultural system. In this study, soil properties having effects on urease, phosphatase, ß-glucosidase and catalase enzyme activities were setforth. Urease enzyme activities of soil samples varied from 24.12 to 39.03 mg N 100 g dry soil -1 . Significant correlations were determined between urease enzyme activities and organic matter (r = 0.89**, extractable Mn (r = 0.74**, exchangable K (r = 0.73** and total P content of soil (r = 0.81*. Acid phosphatase enzyme activity varied between 3.00-17.44 mg phenol 100 g dry soil -1 , alkaline phosphatase enzyme activity between 12.00-25.53 mg phenol 100 g dry soil-1 . Exchangable Mg (r = 0.71* and extractable Cu (r = 0.74* were found to have positive effect on acid phosphatase enzyme activity and pH (r = 0.73*, exchangable Ca (r = 0.74*, exchangable Mg (r = 0.71*, exchangable total basic cations (r = 0.79* and extractable Cu (r = 0.70* had positive effects on alkaline phosphatase enzyme activity, whereas total P (r = - 0.84** affected the activity negatively. ß-glucosidase enzyme activity was measured to vary between 1.12-3.64 mg salingen 100 g dry soil -1 . It was also observed that extractable Zn content of soil samples (r = - 0.97** had negative effect on ß-glucosidase activity, wheras total exchangable acidic cations (r = 0.70* affected the activity positively. Catalase enzyme activities of soils changed between 5.25 - 9.00 mg O2 5 g dry soil -1 . Significant correlations were found between catalase activities and fraction of soils and extractable Fe content. Positive correlations, however, were determined between catalase activities and clay fraction (r = 0.82* and salt content (r = 0.83** of samples.

  16. The effect of aluminium on enzyme activities in two wheat cultivars ...

    African Journals Online (AJOL)

    The effect of aluminium on enzyme activities in two wheat cultivars. ... African Journal of Biotechnology ... and Maroon (Al-tolerant) were grown on hydroponic solution (non modified Hoagland solution) containing AlCl3 (0-100-200-300 M).

  17. Definition of regional dependence of activity antioxidative enzymes means of the dispersive analysis

    Directory of Open Access Journals (Sweden)

    Anatoly T. Bykov

    2011-05-01

    Full Text Available In article application of the dispersive analysis for an estimation of dependence of activity antioxidative enzymes from region of constant residing, age, sex and the disease diagnosis is considered.

  18. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  19. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    Science.gov (United States)

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  20. Correlation between Pesticide Resistance and Enzyme Activity in the Diamondback Moth, Plutella xylostella

    Science.gov (United States)

    Gong, Ya-Jun; Wang, Ze-Hua; Shi, Bao-Cai; Kang, Zong-Jiang; Zhu, Liang; Jin, Gui-Hua; Weig, Shu-Jun

    2013-01-01

    The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most important pests that has developed high pesticide resistance. The resistances of five Chinese populations of this moth, four resistant strains (from Beijing, Henan, Fujian, and Guangdong) and one susceptible strain, to five pesticides were determined, and the activities of carboxylesterase, glutathione S-transferase, and acetylcholine esterase were tested in all five populations. The correlations between pesticide resistance and enzyme activity were analyzed. The results showed that the resistance status to the five pesticides was different among the five populations. The resistance ratios of the Beijing and Henan populations to spinosad were 5.84 and 8.22, respectively, and those to beta-cypermethrin were 4.91 and 4.98, respectively. These ratios were higher than those for the Fujian and Guangdong populations. The Fujian population was more sensitive to abamectin and chlorpyrifos than the susceptible population (the resistance ratios were 0.14 and 0.91, respectively); in fact, the median lethal concentration for P. xylostella was significantly higher for chlorpyrifos than that for any of the other four pesticides. The carboxylesterase activity in P. xylostella showed positive correlations with the resistance to spinosad, beta-cypermethrin, chlorpyrifos, and abamectin, but no correlation was observed between the carboxylesterase activity and resistance to emamectin benzoate, between glutathione S-transferase activity and resistance to any of the five pesticides tested, or between acetylcholine esterase activity and any of the pesticides except for emamectin benzoate. PMID:24766444

  1. Blood superoxiddismutase and catalase: enzymes activity under oxidative stress conditions

    OpenAIRE

    Каріна Леонідівна Шамелашвілі; Інга Володимирівна Леус; Тетяна Іванівна Сергієнко; Марина Вячеславівна Горіла; Наталія Іванівна Штеменко

    2015-01-01

    The activity of catalase and superoxide dismutase depends not only on the used compounds of rhenium, and also on their dimensional structure and form of applying. It is established that the cis- and trans-isomers of complex compounds of rhenium did countervailing effect on superoxide dismutase and catalase activities. Cis-isomers of Rhenium dycarboxylats agreed increased activity of superoxide dismutase and catalase. While under the action of trans-isomers, where increased activity of superox...

  2. Recovery of active pathogenesis-related enzymes from the apoplast ...

    African Journals Online (AJOL)

    Overall protease activity intensity was higher in the symplast. Maximum symplast contamination of the apoplast was 2% as estimated by glucose 6-phosphate dehydrogenase activity, a biochemical marker for symplast. Accumulation of pathogenesis-related enzymatic activities in the apoplast of M. acuminata leaf tissue was ...

  3. Blood superoxiddismutase and catalase: enzymes activity under oxidative stress conditions

    Directory of Open Access Journals (Sweden)

    Каріна Леонідівна Шамелашвілі

    2015-05-01

    Full Text Available The activity of catalase and superoxide dismutase depends not only on the used compounds of rhenium, and also on their dimensional structure and form of applying. It is established that the cis- and trans-isomers of complex compounds of rhenium did countervailing effect on superoxide dismutase and catalase activities. Cis-isomers of Rhenium dycarboxylats agreed increased activity of superoxide dismutase and catalase. While under the action of trans-isomers, where increased activity of superoxide dismutase, catalase activity decreased

  4. Effects of dietary menadione on the activity of antioxidant enzymes in abalone, Haliotis discus hannai Ino

    Science.gov (United States)

    Fu, Jinghua; Xu, Wei; Mai, Kangsen; Zhang, Wenbing; Feng, Xiuni; Liufu, Zhiguo

    2012-01-01

    A 240-day growth experiment in a re-circulating water system was conducted to investigate the effects of dietary menadione on the growth and antioxidant responses of abalone Haliotis discus hannai Ino. Triplicate groups of juvenile abalone (initial weight: 1.19 ± 0.01 g; shell length: 19.23 ± 0.01 mm) were fed to satiation with 3 semi-purified diets containing 0, 10, and 1 000 mg menadione sodium bisulfite (MSB)/kg, respectively. Results show that there were no significant differences in the rate of weight gain or in the daily increment in shell length of abalone among different treatments. Activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) in viscera were significantly decreased with dietary menadione. However, activities of these enzymes except for GPX in muscle were increased. Therefore, antioxidant responses of abalone were increased in muscle and decreased in viscera by dietary menadione.

  5. Pomegranate (Punica granatum Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Badriah Alkathiri

    2017-12-01

    Full Text Available Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major-infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum, but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity.

  6. Pomegranate (Punica granatum) Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice.

    Science.gov (United States)

    Alkathiri, Badriah; El-Khadragy, Manal F; Metwally, Dina M; Al-Olayan, Ebtesam M; Bakhrebah, Muhammed A; Abdel Moneim, Ahmed E

    2017-12-18

    Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum ) have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major -infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum , but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity.

  7. Simultaneous measurement of two enzyme activities using infrared spectroscopy: A comparative evaluation of PARAFAC, TUCKER and N-PLS modeling.

    Science.gov (United States)

    Baum, Andreas; Hansen, Per Waaben; Meyer, Anne S; Mikkelsen, Jørn Dalgaard

    2013-08-06

    Enzymes are used in many processes to release fermentable sugars for green production of biofuel, or the refinery of biomass for extraction of functional food ingredients such as pectin or prebiotic oligosaccharides. The complex biomasses may, however, require a multitude of specific enzymes which are active on specific substrates generating a multitude of products. In this paper we use the plant polymer, pectin, to present a method to quantify enzyme activity of two pectolytic enzymes by monitoring their superimposed spectral evolutions simultaneously. The data is analyzed by three chemometric multiway methods, namely PARAFAC, TUCKER3 and N-PLS, to establish simultaneous enzyme activity assays for pectin lyase and pectin methyl esterase. Correlation coefficients Rpred(2) for prediction test sets are 0.48, 0.96 and 0.96 for pectin lyase and 0.70, 0.89 and 0.89 for pectin methyl esterase, respectively. The retrieved models are compared and prediction test sets show that especially TUCKER3 performs well, even in comparison to the supervised regression method N-PLS. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Oxidative enzymes activity in sugarcane juice as a function of the planting system

    Directory of Open Access Journals (Sweden)

    Tadeu Alcides Marques

    2013-03-01

    Full Text Available In Brazil, the largest producer of sugarcane in the world, the industrial process transforms this crop into ethanol and/or granulated sugar. Some cultivars exhibit enzymatic browning in the extracted sugarcane juice at levels harmful to the manufacturing process of white granulated sugar. The objective of this study was to assess the effect of sugarcane straw used as soil coverage, the use of different planting systems, and treatments with hydrogel polymer on enzymatic activity. The cultivar RB 86 7515 was sampled for 8 months; the first sample was obtained by cutting the upper portion of the stalk at the internode, which was taken to the laboratory for determination of the enzymatic activity of polyphenoloxidase (PPO and peroxidase (POD. The soil coverage with different forms of straw as well as the planting systems did not change the enzymatic activity of polyphenoloxidase (PPO and peroxidase (POD. The polyphenoloxidase (PPO activity increased with the use of a polymer due to increased polyphenoloxidase (PPO activity in the groove system. The enzymes studied showed changes in activity during the experimental period. The production of sugar at the end of the season (August to November avoids the periods of highest enzymatic activity.

  9. [Effects of long-term fertilization on enzyme activities in black soil of Northeast China].

    Science.gov (United States)

    Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Wang, Shou-Yu

    2008-03-01

    In this paper, black soil samples at the depths of 0-20 cm and 20-40 cm were collected from the Hailun Agricultural Ecology Station of Chinese Academy of Sciences to study the effects of long-term fertilization on their urease, invertase, phosphatase and catalase activities and total C and N contents. The results showed that long-term application of chemical fertilizers and organic manure increased the activities of urease, invertase and phosphatase in 0-20 cm and 20-40 cm soil layers in different degree, and the combined application of them increased the activities of the three enzymes significantly, with an increment of 43.6%-113.2%, 25.9%-79.5% and 14.7%-134.4% in 0-20 cm soil layer and 56.1%-127.2%, 14.5%-113.8% and 16.2%-207.2% in 20-40 cm soil layer, respectively. However, long-term application of chemical fertilizers without organic manure had little effects on catalase activity. The activities of urease, invertase and phosphatase decreased with increasing soil depth. Long-term application of N fertilizer increased urease activity, and P fertilization had obvious positive effect on phosphatase activity. Long-term fertilization also had obvious effects on the soil total C and N contents and C/N ratio.

  10. [The changes of serum angiotensin converting enzyme activity in Type 2 diabetes and its vascular complications].

    Science.gov (United States)

    Wu, H; Qu, S; Zhang, Y; Deng, J; Li, J; Zhou, J

    2000-09-01

    This investigation was made with reference to the changes of serum angiotensin converting enzyme (SACE) activity in type 2 diabetes and its vascular complications. SACE activity was studied in 127 type 2 diabetic patients and 90 healthy persons by using a spectrophotometric assay. The results showed SACE activity was obviously higher in diabetic patients (459.51 +/- 175.85 U) than in healthy persons (321.14 +/- 121.27 U); SACE activity was significantly higher in type 2 diabetic patients with diabetic nephropathy (548.27 +/- 166.60 U) than in patients without diabetic nephropathy (383.2 +/- 139.00 U), but there was no difference between patients with microalbuminuria and macroalbuminuria; no statistical difference was detected in SACE activity between diabetic patients with diabetic retinopathy (465.64 +/- 178.93 U) and without retinopathy (449.07 +/- 170.04 U); SACE activity was not associated with the course of diabetes, blood pressure, blood lipid and blood glucose. These data suggest that raised SACE activity might only play a role in the initiation of type 2 diabetes and diabetic nephropathy, but not relate to the progress of diabetic nephropathy, the onset of diabetic retinopathy and hypertension.

  11. Digestive enzyme activity and trophic behavior in two predator aquatic insects (Plecoptera, Perlidae): a comparative study.

    Science.gov (United States)

    López-Rodríguez, M J; Trenzado, C E; Tierno de Figueroa, J M; Sanz, A

    2012-05-01

    Plecoptera (Perlidae) are among the major macroinvertebrate predators in stream ecosystems and one of the insect families with lower tolerance to environmental alterations, being usually employed as bioindicators of high water ecological quality. The differences in the trophic roles of the coexisting species have been exclusively studied from their gut contents, while no data are available on the comparative digestive capacity. In the present paper, we make a comparative study of the activity of several digestive enzymes, namely proteases (at different pH), amylase, lipase, trypsin and chymotrypsin, in two species of stoneflies, Perla bipunctata and Dinocras cephalotes, which cohabit in the same stream. The study of digestive enzyme activity together with the analysis of gut contents can contribute to a better understanding of the ecology of these aquatic insects and their role in freshwater food webs. Thus, our results show that the two studied predator species inhabiting in the same stream present specializations on their feeding behaviors, facilitating their coexistence, and also differences in their capacity of use the resources. One of the main findings of this study is that D. cephalotes is able to assimilate a wider trophic resource spectrum and this could be one of the reasons why this species has a wider global distribution in all its geographical range. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Sexual differences in destructive capability and midgut enzyme activities in adult variegated grasshoppers Zonocerus variegatus (LINNAEUS, 1758 (Orthoptera: Pyrgomorphidae

    Directory of Open Access Journals (Sweden)

    Ademolu Kehinde O.

    2016-12-01

    Full Text Available The variegated grasshopper Zonocerus variegatus is a polyphagous insect, feeding on numerous food and cash crops. The present study aimed to investigate the sexual variations in the destructive capability of the adult insects and the composition of leaves damaged by them, as well as in the levels of midgut microbial flora and digestive enzymes (cellulase, amylase and α-glucosidase. The results showed that females consumed and caused more damage to cassava leaves than their male congeners. The leaves damaged by males contained more nutrients than those damaged by females. The gut microbial flora and enzyme assay showed that females had significantly larger colony forming units and a non-significant difference in enzyme activities. It can thus be concluded that adult females are more destructive than males.

  13. The effect of gamma irradiation and zinc on changes of the activity of adaptive enzymes in the poultry

    International Nuclear Information System (INIS)

    Danova, D.; Kafka, I.; Kalenicova, Z.; Luptakova, L.

    2008-01-01

    We observed changes of the activity of alanine aminotransferase and aspartate aminotransferase in the serum of broiler chicks after single whole-body gamma irradiation in time gap 3., 7., 14. and 21 day. We applied zinc to organism of chicks after irradiation. Our observations showed that most of the changes in the enzyme activity were very different at irradiation groups and zinc groups of chickens compared to controls. (authors)

  14. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes.

  15. Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji'an, China.

    Science.gov (United States)

    Yin, Juxin; Zhang, Daihui; Zhuang, Jianjian; Huang, Yi; Mu, Ying; Lv, Shaowu

    2017-12-11

    Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji'an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC. HPLC, GC-MS, and LC-MS were combined to measure the enzyme activity of the key enzymes. Quantitative PCR was used in the investigation of gene expression. By analyzing the correlation between the enzyme activity and the transcription level of the key enzymes with ginsenoside content, we found that DS and GT enzyme activities are significantly correlated with the ginsenoside content in different ages of ginseng. Our findings might provide a new strategy to discriminate between ginseng of different years. Meanwhile, this research provides important information for the in-depth study of ginsenoside biosynthesis.

  16. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  17. Stabilization of enzymes activities of lipoxygenase pathway by irradiation to improve the production of olive oil aroma

    International Nuclear Information System (INIS)

    Musrati, Imen

    2009-01-01

    The main purpose of this work was to improve the synthesis of volatile compounds leading to green note in olives and olive tree leaves by improving enzymes activities of lipoxygenase pathway. Lipoxygenase (LOX), hydroperoxyde lyase (HPL) and alcohol dehydrogenase (ADH) activities were tested in olives and olive tree leaves during maturation. The gamma irradiation effects on these samples were studied. LOX, HPL and ADH showed maximum activities at black stage for olives and in December for olive leaves. Those activities, from olives and Chemlali olive leaves, were improved after irradiation with 0,5KGy. For the case of Chetoui olive leaves, the irradiation treatment was unfavorable because it causes a loss in enzymes activities. (Author)

  18. Milk enzyme activities and subclinical mastitis among women in Guinea-Bissau

    DEFF Research Database (Denmark)

    Rasmussen, Lill Brith Wium; Hartvig, Ditte Luise; Kæstel, Pernille

    2008-01-01

    research as indicators of SCM, udder health, and milk quality. Study Design: To investigate if milk enzyme activities and the inflammatory interleukin 8 (IL-8) level are increased in women with SCM, we measured sodium, potassium, NAGase, LDH, AcP, AP, and IL-8 in breastmilk samples collected at 2 months......Background: Subclinical mastititis (SCM) is a condition with raised milk concentration of sodium and milk immune factors. The milk enzymes N-acetyl-β-D-glucosaminidase (NAGase), lactate dehydrogenase (LDH), acid phosphatase (AcP), and alkaline phosphatase (AP) have attracted attention in dairy...... in univariate linear regression (p enzymes and IL-8). Conclusions: A positive association between the Na/K ratio and the breastmilk enzymes NAGase, LDH, AcP, and AP was found. Breastmilk enzymes have not previously been investigated in relation to SCM in women, and further...

  19. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  20. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

    Science.gov (United States)

    Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E

    2017-06-27

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

  1. Activity of pyrimidine degradation enzymes in normal tissues

    NARCIS (Netherlands)

    van Kuilenburg, A. B. P.; van Lenthe, H.; van Gennip, A. H.

    2006-01-01

    In this study, we measured the activity of dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP) and beta-ureidopropionase (beta-UP), using radiolabeled substrates, in 16 different tissues obtained at autopsy from a single patient. The activity of DPD could be detected in all tissues

  2. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Rocha Junior, Carlos da; Caseli, Luciano

    2017-01-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  3. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Rocha Junior, Carlos da; Caseli, Luciano, E-mail: lcaseli@unifesp.br

    2017-04-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  4. Regulation of phase I and phase II steroid metabolism enzymes by PPARα activators

    International Nuclear Information System (INIS)

    Fan Liqun; You Li; Brown-Borg, Holly; Brown, Sherri; Edwards, Robert J.; Corton, J. Christopher

    2004-01-01

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to some PP results in alterations of steroid levels that may be mechanistically linked to adverse effects in reproductive organs. We hypothesized that changes in steroid levels after PP exposure are due to alterations in the levels of P450 enzymes that hydroxylate testosterone and estrogen. In testosterone hydroxylase assays, exposure to the PP, WY-14,643 (WY), gemfibrozil or di-n-butyl phthalate (DBP) led to compound-specific increases in 6β and 16β-testosterone and androstenedione hydroxylase activities and decreases in 16α, 2α-hydroxylase activities by all three PP. The decreases in 16α and 2α-testosterone hydroxylase activity can be attributed to a 2α and 16α- testosterone hydroxylase, CYP2C11, which we previously showed was dramatically down-regulated in these same tissues (Corton et al., 1998; Mol. Pharmacol. 54, 463-473). To explain the increases in 6β- and 16β-testosterone hydroxylase activities, we examined the expression of P450 family members known to carry out these functions. Alterations in the 6β-testosterone hydroxylases CYP3A1, CYP3A2 and the 16β-testosterone hydroxylase, CYP2B1 were observed after exposure to some PP. The male-specific estrogen sulfotransferase was down-regulated in rat liver after exposure to all PP. The mouse 6β-testosterone hydroxylase, Cyp3a11 was down-regulated by WY in wild-type but not PPARα-null mice. In contrast, DEHP increased Cyp3a11 in both wild-type and PPARα-null mice. These studies demonstrate that PP alter the expression and activity of a number of enzymes which regulate levels of sex steroids. The changes in these enzymes may help explain why exposure to some PP leads to adverse effects in endocrine tissues that produce or are the targets of sex hormones

  5. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics.

    Science.gov (United States)

    Vokřál, Ivan; Jirásko, Robert; Stuchlíková, Lucie; Bártíková, Hana; Szotáková, Barbora; Lamka, Jiří; Várady, Marián; Skálová, Lenka

    2013-09-23

    The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Correction: Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability.

    Science.gov (United States)

    Frančič, N; Bellino, M G; Soler-Illia, G J A A; Lobnik, A

    2016-07-07

    Correction for 'Mesoporous titania thin films as efficient enzyme carriers for paraoxon determination/detoxification: effects of enzyme binding and pore hierarchy on the biocatalyst activity and reusability' by N. Frančičet al., Analyst, 2014, 139, 3127-3136.

  7. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    Directory of Open Access Journals (Sweden)

    Sonika Gupta

    2016-01-01

    Full Text Available The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  8. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity.

    Science.gov (United States)

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  9. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  10. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming in Alabama

    Directory of Open Access Journals (Sweden)

    Zachary Senwo

    2011-07-01

    Full Text Available Evaluation of the soil rhizosphere has been limited by the lack of robust assessments that can explore the vast complex structure and diversity of soil microbial communities. Our objective was to combine fatty acid methyl ester (FAME and pyrosequencing techniques to evaluate soil microbial community structure and diversity. In addition, we evaluated biogeochemical functionality of the microbial communities via enzymatic activities of nutrient cycling. Samples were taken from a silt loam at 0–10 and 10–20 cm in an organic farm under lettuce (Lactuca sativa, potato (Solanum tuberosum, onion (Allium cepa L, broccoli (Brassica oleracea var. botrytis and Tall fescue pasture grass (Festuca arundinacea. Several FAMEs (a15:0, i15:0, i15:1, i16:0, a17:0, i17:0, 10Me17:0, cy17:0, 16:1ω5c and 18:1ω9c varied among the crop rhizospheres. FAME profiles of the soil microbial community under pasture showed a higher fungal:bacterial ratio compared to the soil under lettuce, potato, onion, and broccoli. Soil under potato showed higher sum of fungal FAME indicators compared to broccoli, onion and lettuce. Microbial biomass C and enzyme activities associated with pasture and potato were higher than the other rhizospheres. The lowest soil microbial biomass C and enzyme activities were found under onion. Pyrosequencing revealed significant differences regarding the maximum operational taxonomic units (OTU at 3% dissimilarity level (roughly corresponding to the bacterial species level at 0–10 cm (581.7–770.0 compared to 10–20 cm (563.3–727.7 soil depths. The lowest OTUs detected at 0–10 cm were under broccoli (581.7; whereas the lowest OTUs found at 10–20 cm were under potato (563.3. The predominant phyla (85% in this soil at both depths were Bacteroidetes (i.e., Flavobacteria, Sphingobacteria, and Proteobacteria. Flavobacteriaceae and Xanthomonadaceae were predominant under broccoli. Rhizobiaceae, Hyphomicrobiaceae, and Acidobacteriaceae were more

  11. DNA topoisomerase II enzyme activity appears in mouse sperm ...

    African Journals Online (AJOL)

    Sperm suspensions of 4 male mice (A, B, C and D), having an initial motility grade of 3.5 were used to examine the presence of DNA topoisomerase II (top 2) activity in sperm heads. The initial percentage motile of male A was 75%, male B was 80%, male C was 70% and male D was 60%. Top 2 activity was examined by ...

  12. An evaluation on elastase enzyme activity in gingival crevicular fluid in periodontitis

    Directory of Open Access Journals (Sweden)

    Qujeq D

    2003-08-01

    Full Text Available Statement of Problem: Changes in protein levels, host calls enzymes and inflammatory mediators in gingival"ncrevicular Fluid (GCF are considered as diagnostic indicators of Periodontitis."nPurpose: he aim of the present study was to measure the elastase enzyme activity in gingival crevicular Fluid"namong patients with periodontitis."nMaterial and Methods: In this study, 52 periodontitis patients (experimental group and 51 healthy subjects"nwithout any gingival inflammatio (control group were participated. Subjects of the periodontitis group"nshowed pockets of 4-5 mm depth without gingival enlargement and recession or pockets of 1-2 mm depth"nwith gingival recession. For enzyme activity measurement, lOOu,! of gingival fluid of each sample was mixed"nwith lOOu! of enzyme substrate on the tube. The mixture was incubated at 34°c for lh with a buffer solution"nof 1ml volume and absorbance was read at 410nm with spectrophotometer. The enzyme activity differences"nbetween two groups were analyzed by student t test."nResults: The elastase enzyme activity in gingival crevicular fluid in subjects with periodontium destruction"nand control subjects was 153±11.3 and 52.7±10.4 enzyme unit in ml per minute, respectively. The difference"nbetween groups was statistically significant (PO.05."nConclusion: Based on the findings of this study, the measurement of elastae enzyme activity could be a useful"nindication of tissue changes that may ultimately manifest clinically as periodontitis.

  13. Dietary effects of marine food intake on intestinal and hepatic enzyme activities in rats.

    Science.gov (United States)

    González, M; Caride, B; Lamas, A; Taboada, C

    2001-03-01

    Dietary effects of two diets high in protein from two marine species (Haliotis tuberculata and Anemonia viridis) as compared to a high-quality patron protein such as casein (or casein supplemented with olive oil) on intestinal and hepatic enzymes were studied. After 23 days, the two marine species as diet compared to casein increased the disaccharidase and alkaline phosphatase activities. Feeding Haliotis tuberculata meal produced a decrease on intestinal leucine aminopeptidase activity. The hepatic gamma-glutamyltranspeptidase activity decreased slightly in animals fed Haliotis tuberculata meal. Supplementation of casein with olive oil tended to decrease the intestinal and hepatic enzyme activity.

  14. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults

    International Nuclear Information System (INIS)

    Petersen, Maria Skaalum; Halling, Jonrit; Damkier, Per; Nielsen, Flemming; Grandjean, Philippe; Weihe, Pal; Brosen, Kim

    2007-01-01

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6β-hydroxycortisol/cortisol (6β-OHC/FC) ratio. POP exposures were assessed by measuring their concentrations in serum lipid. The results showed a unimodal distribution of the 6β-OHC/FC ratio with values ranging from 0.58 to 27.38. Women had a slightly higher 6β-OHC/FC ratio than men (p = 0.07). Confounder-adjusted multiple regression analysis showed significant associations between 6β-OHC/FC ratios and ΣPCB, PCB-TEQ and p,p'-DDE, o,p'-DDT and HCB, respectively, but the associations were statistically significant for men only

  15. Gaseous environment of plants and activity of enzymes of carbohydrate catabolism

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Igamberdiev, A.U.; Salam, A.M.M.

    1989-01-01

    The authors investigated the action of hypoxia and high CO 2 concentration in the atmosphere on activity of phosphofructokinase, aldolase, glucose phosphate isomerase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, and isocitrate lyase in pea seedlings (Pisum sativum L.), corn scutella (Zea mays L.), and hemp cotyledons (Cannabis sativa L.). The first 4-12h of hypoxia witnessed suppression of enzymes of the initial stages of glycolysis (glucose-6-phosphate isomerase, phosphofructokinase)and activation of enzymes of its final stages (alcohol dehydrogenase and lactate dehydrogenase) and enzymes linking glycolysis and the pentose phosphate pathway (aldolase and glucose-6-phosphate dehydrogenase). An excess of CO 2 in the environment accelerated and amplified this effect. At the end of a 24-h period of anaerobic incubation, deviations of enzyme activity from the control were leveled in both gaseous environments. An exception was observed in the case of phosphofructokinase, whose activity increased markedly at this time in plants exposed to CO 2 . Changes in activity of the enzymes were coupled with changes in their kinetic parameters (apparent K m and V max values). The activity of isocitrate lyase was suppressed in both variants of hypoxic gaseous environments, a finding that does not agree with the hypothesis as to participation of the glyoxylate cycle in the metabolic response of plants to oxygen stress. Thus, temporary inhibition of the system of glycolysis and activation of the pentose phosphate pathway constituted the initial response of the plants to O 2 stress, and CO 2 intensified this metabolic response

  16. [Estimation of adaptive capacities in Magnitogorsk children from the activity of some detoxification enzymes].

    Science.gov (United States)

    koganova, Z I; Ingel', F I; Antipanova, N A; Legostoeva, T B; Poliakova, O V

    2010-01-01

    The paper provides the first fragment of a multiparameter study analyzing the influence of environmental pollution, the social and psychological features of a family, and some endogenous factors on genome stability and sensitivity in a developed ferrous metallurgy town. It also gives data on the urine and serum activity of the lysosomal enzyme N-acetyl-b-D-glucosaminidase (NAG) and the serum activity of catalase in an organized contingent of apparently healthy children (n = 178; 6 kindergartens) aged 5-7 years, who live permanently in Magnitogorsk at different distances from the metallurgical works. More than 70% of children selected for examination were found to have average normal levels of activity of the enzymes studied. According to the average levels of enzyme activity, there were only 2 kindergartens (both from the left-bank region). In the children from the left-bank area, enzyme activities varied more greatly, which suggests the higher prevalence of tense adaptation. Correlation analysis revealed association between the children's serum activity of enzymes and some components of snow pollution. It is anticipated that the found changes in serum activities of N-acetyl-beta-D-glucosaminidase and catalase may be determined by individual differences in a child's response to ambient air pollutants.

  17. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-10-01

    Full Text Available The nitrate to ammonium ratios in nitrogen (N compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl and nitrate (NaNO3 at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl and nitrate (NaNO3 applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+ and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA, we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively

  18. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China

    Science.gov (United States)

    Zhang, Chuang; Zhang, Xin-Yu; Zou, Hong-Tao; Kou, Liang; Yang, Yang; Wen, Xue-Fa; Li, Sheng-Gong; Wang, Hui-Min; Sun, Xiao-Min

    2017-10-01

    The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil

  19. Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography.

    Science.gov (United States)

    Hughes, Alex J; Herr, Amy E

    2010-05-01

    We describe a sensitive zymography technique that utilizes an automated microfluidic platform to report enzyme molecular weight, amount, and activity (including k(cat) and K(m)) from dilute protein mixtures. Calf intestinal alkaline phosphatase (CIP) is examined in detail as a model enzyme system, and the method is also demonstrated for horseradish peroxidase (HRP). The 40 min assay has a detection limit of 5 zmol ( approximately 3 000 molecules) of CIP. Two-step pore-limit electrophoresis with enzyme assay (PLENZ) is conducted in a single, straight microchannel housing a polyacrylamide (PA) pore-size gradient gel. In the first step, pore limit electrophoresis (PLE) sizes and pseudoimmobilizes resolved proteins. In the second step, electrophoresis transports both charged and neutral substrates into the PLE channel to the entrapped proteins. Arrival of substrate at the resolved enzyme band generates fluorescent product that reveals enzyme molecular weight against a fluorescent protein ladder. Additionally, the PLENZ zymography assay reports the kinetic properties of CIP in a fully quantitative manner. In contrast to covalent enzyme immobilization, physical pseudoimmobilization of CIP in the PA gel does not significantly reduce its maximum substrate turnover rate. However, an 11-fold increase in the Michaelis constant (over the free solution value) is observed, consistent with diffusional limitations on substrate access to the enzyme active site. PLENZ offers a robust platform for rapid and multiplexed functional analysis of heterogeneous protein samples in drug discovery, clinical diagnostics, and biocatalyst engineering.

  20. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  1. Properties of latent and thiol-activated rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and regulation of enzyme activity.

    Science.gov (United States)

    Dotan, I; Shechter, I

    1983-10-15

    The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.

  2. Activity of the ligninolytic enzymes of the Phanerochaete chrysosporium and its variation with the Mn+2 addition

    International Nuclear Information System (INIS)

    Jimenez T, Gloria Alicia; Mejia G, Amanda I; Lopez O, Betty Lucy

    1999-01-01

    The activity of the ligninolytic enzymes, lignin peroxidase (LiP), manganese peroxidase (MnP) and Laccase, in submerged cultures of Phanerochaete chrysosporium, with limited amounts of carbon and nitrogen, were affected by the addition of Mn+2. In cultures with o and 1,25 ppm of Mn+2, only the lip was detected and its higher activity level was observed in the cultures with 1.25 ppm of Mn+2. The cultures with 40 ppm of Mn+2 showed activities of lip, MnP and Laccase. The presence of the three enzymes in the same culture had not been reported and it is of great importance because is shows that the fungus and its lignolitic machinery can act sequentially

  3. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  4. THE COORDINATION COMPOUNDS OF COBALT (II, III WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. D. Varbanets

    2013-02-01

    Full Text Available Chloride, bromide and isothiocyanate complexes of cobalt(II with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1–(12, and also complexes of cobalt(II, Ш with derivatives of morpholine-4-carbodithioic acid (13–(18 have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was shown that cobalt (II, Ш compounds influence differently on the activity of enzymes tested, exerted both inhibitory and stimulatory action. It gives a possibility to expect that manifestation of activity by complex molecule depends on ligand and anion presence — Cl–, Br– or NCS–. The high activating action of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides (1–(12 on elastase and fibrinolytic activity of peptidases compared to tris(4-morpholinecarbodithioatocobalt(ІІІ (14 and products of its interaction with halogens (15–(17, causes inhibitory effect that is probably due to presence of a weekly S–N link, which is easy subjected to homolytic breaking. The studies of influences of cobalt(II complexes on activity of C. аlbidus and E. еrubescens ?-Lrhamnosidases showed, that majority of compounds inhibits of its activity, at that the most inhibitory effect exerts to C. аlbidus enzyme.To sum up, it is possible to state that character of influence of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides, and also cobalt(II, Ш complexes with derivatives of morpholine-4-carbodithioic acid varies depending on both strain producer and enzyme tested. The difference in complex effects on enzymes tested are due to peculiarities of building and functional groups of their active centers, which are also responsible for binding with modificators.

  5. Effects of heavy metal pollution on enzyme activities in railway cut slope soils.

    Science.gov (United States)

    Meng, Xiaoyi; Ai, Yingwei; Li, Ruirui; Zhang, Wenjuan

    2018-03-07

    Railway transportation is an important transportation mode. However, railway transportation causes heavy metal pollution in surrounding soils. Heavy metal pollution has a serious negative impact on the natural environment, including a decrease of enzyme activities in soil and degradation of sensitive ecosystems. Some studies investigated the heavy metal pollution at railway stations or certain transportation hubs. However, the pollution accumulated in artificial cut slope soil all along the rails is still questioned. The interest on non-point source pollution from railways is increasing in an effort to protect the soil quality along the line. In this study, we studied spatial distributions of heavy metals and five enzyme activities, i.e., urease (UA), saccharase (SAC), protease (PRO), catalase (CAT), and polyphenol oxidase (POA) in the soil, and the correlation among them beside three different railways in Sichuan Province, China, as well. Soil samples were respectively collected from 5, 10, 25, 50, 100, and 150 m away from the rails (depth of 0-8 cm). Results showed that Mn, Cd, Cu, and Zn were influenced by railway transportation in different degrees while Pb was not. Heavy metal pollution was due to the abrasion of the gravel bed as well as the tracks and freight transportation which caused more heavy metal pollution than passenger transportation. Enzymatic activities were significantly negatively correlated with heavy metals in soils, especially Zn and Cu. Finally, it is proposed that combined use of PRO and POA activities could be an indicator of the heavy metal pollution in cut slope soils. The protective measures aimed at heavy metal pollution caused by railway transportation in cut slope soils are urgent.

  6. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers.

    Science.gov (United States)

    Xu, Z R; Hu, C H; Xia, M S; Zhan, X A; Wang, M Q

    2003-06-01

    Two hundred forty male Avian Farms broiler chicks, 1 d of age, were randomly allocated to four treatments, each of which had five pens of 12 chicks per pen. The chicks were used to investigate the effects of fructooligosaccharide (FOS) on digestive enzyme activities and intestinal microflora and morphology. The chicks received the same basal diet based on corn-soybean meal, and FOS was added to the basal diet at 0, 2.0, 4.0, and 8.0 g/kg diet at the expense of corn. Addition of 4.0 g/kg FOS to the basal diet significantly increased average daily gain of broilers. The feed-to-gain ratios were significantly decreased for the birds fed diets with 2.0 and 4.0 g/kg FOS versus the control. Addition of 4.0 g/kg FOS enhanced the growth of Bifidobacterium and Lactobacillus, but inhibited Escherichia coli in the small intestinal and cecal digesta. Supplementation of 2.0 or 4.0 g/kg FOS to chicks significantly improved the activities of amylase compared to the control (12.80 or 14.75 vs. 8.42 Somogyi units). A significant increase in the activities of total protease was observed in 4.0 g/kg FOS-treated birds versus controls (83.91 vs. 65.97 units). Morphology data for the duodenum, jejunum, and ileum showed no significant differences for villus height, crypt depth, or microvillus height at the duodenum. By contrast, addition of 4.0 g/kg FOS significantly increased ileal villus height, jejunal and ileal microvillus height, and villus-height-to-crypt-depth ratios at the jejunum and ileum and decreased crypt depth at the jejunum and ileum. However, addition of 8.0 g/kg FOS had no significant effect on growth performance, digestive enzyme activities, intestinal microflora, or morphology.

  7. Influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment.

    Science.gov (United States)

    Huang, Danlian; Xu, Juanjuan; Zeng, Guangming; Lai, Cui; Yuan, Xingzhong; Luo, Xiangying; Wang, Cong; Xu, Piao; Huang, Chao

    2015-08-01

    As lead is one of the most hazardous heavy metals in river ecosystem, the influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment with high moisture content were studied at laboratory scale. The dynamic changes of urease, catalase, protease activities, organic matter content, and exchangeable or ethylenediaminetetraacetic acid (EDTA)-extractable Pb concentration in sediment were monitored during different levels of exogenous lead infiltrating into sediment. At the early stage of incubation, the activities of catalase and protease were inhibited, whereas the urease activities were enhanced with different levels of exogenous lead. Organic matter content in polluted sediment with exogenous lead was lower than control and correlated with enzyme activities. In addition, the effects of lead on the three enzyme activities were strongly time-dependent and catalase activities showed lower significant difference (P < 0.05) than urease and protease. Correlations between catalase activities and EDTA-extractable Pb in the experiment were significantly negative. The present findings will improve the understandings about the ecotoxicological mechanisms in sediment.

  8. Revealing hidden effect of earthworm on C distribution and enzyme activity

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2017-04-01

    Despite its importance for terrestrial nutrient and carbon cycling, the spatial organization and localization of microbial activity in soil and in biopores is poorly understood. We hypothesized that biopores created by earthworm play a critical role in reducing the gap of SOM input and microbial activities between topsoil and subsoil. Accordingly, Carbon (C) allocation by earthworms was related to enzyme distribution along soil profile. For the first time we visualized spatial distribution of enzyme activities (β-glucosidase, chitinase and acid phosphatase) and C allocation (by 14C imaging) in earthworm biopores in topsoil and subsoil. Soil zymography (an in situ method for the analysis of the two-dimensional distribution of enzyme activity in soil) was accompanied with 14C imaging (a method that enables to trace distribution of litter and C in soil profile) to visualize change of enzyme activities along with SOM incorporation by earthworms from topsoil to subsoil. Experiment was set up acquiring rhizoboxes (9×1×50 cm) filled up with fresh soil and 3 earthworms (L. terrestris), which were then layered with 14C-labeled plant-litter of 0.3 MBq on the soil surface. 14C imaging and zymography have been carried out after one month. Activities of all enzymes regardless of their nutrient involvement (C, N, P) were higher in the biopores than in bulk soil, but the differences were larger in topsoil compared to subsoil. Among three enzymes, Phosphatase activity was 4-times higher in the biopore than in the bulk soil. Phosphatase activity was closely associated with edge of burrows and correlate positively with 14C activity. These results emphasized especial contribution of hotspheres such as biopores to C allocation in subsoil - which is limited in C input and nutrients - and in stimulation of microbial and enzymatic activity by input of organic residues, e.g. by earthworms. In conclusion, biopore increased enzymatic mobilization of nutrients (e.g. P) inducing allocation

  9. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Furné, Miriam; García-Gallego, Manuel; Hidalgo, M Carmen; Morales, Amalia E; Domezain, Alberto; Domezain, Julio; Sanz, Ana

    2008-04-01

    The digestive enzyme activities were determined in Adriatic sturgeon and rainbow trout during starvation and refeeding period. Overall, the digestive enzyme activities are affected in the same sense in both species. The protease and lipase activities were decreased later than amylase activity. Even after 1 month of starvation, both species would be prepared to digest protein and lipids in an effective way. After 72 days of starvation, the digestive machinery of the sturgeon and of the trout shows an altered capacity to digest macronutrients. The capacity to digest proteins and lipids, after 60 days of refeeding, begins to become re-established in sturgeon and trout. In contrast, in this period, the capacity to digest carbohydrates remains depressed in both species.

  10. Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity.

    Science.gov (United States)

    Zaghloul, T I

    1998-01-01

    The Bacillus subtilis alkaline protease(aprA) gene was previously cloned on a pUBHO-derivative plasmid. High levels of expression and gene stability were demonstrated when B. subtilis cells were grown on the laboratory medium 2XSG. B. subtilis cells harboring the multicopy aprA gene were grown on basal medium, supplemented with 1 % chicken feather as a source of energy, carbon, and nitrogen. Proteolytic and keratinolytic activities were monitored throughout the cultivation time. A high level of keratinolytic activity was obtained, and this indicates that alkaline protease is acting as a keratinase. Furthermore, considerable amounts of soluble proteins and free amino acids were obtained as a result of the enzymatic hydrolysis of feather. Biodegradation of feather waste using these cells represents an alternative way to improve the nutritional value of feather, since feather waste is currently utilized on a limited basis as a dietary protein supplement for animal feedstuffs. Moreover, the release of free amino acids from feather and the secreted keratinase enzyme would promote industries based on feather waste.

  11. Heterogeneity of hydrolytic enzyme activities under drought: imaging and quantitative analysis

    Science.gov (United States)

    Sanaullah, Muhammad; Razavi, Bahar S.; Kuzyakov, Yakov

    2015-04-01

    The zymography-based "snap-shoot" of enzyme activities in the rhizosphere is challenging to detect the in situ microbial response to global climate change. We developed in situ soil zymography and used it for identification and localization of hotspots of β-glucosidase activity in the rhizosphere of maize under drought stress (30% of field capacity). The zymographic signals were especially high at root tips and were much stronger for activity of β-glucosidase under drought as compared with optimal moisture (70% of field capacity). This distribution of enzyme activity was confirmed by fluorogenically labelled substrates applied directly to the root exudates. The activity of β-glucosidase in root exudates (produced by root and microorganism associated on the root surface), sampled within 1 hour after zymography was significantly higher by drought stressed plants as compared with optimal moisture. In contrast, the β-glucosidase activity in destructively sampled rhizosphere soil was lower under drought stress compared with optimal moisture. Furthermore, drought stress did not affected β-glucosidase activity in bulk soil, away from rhizosphere. Consequently, we conclude that higher release of mucilage by roots und drought stimulated β-glucosidase activity in the rhizosphere. Thus, the zymography revealed plant-mediated mechanisms accelerating β-glucosidase activity under drought at the root-soil interface. So, coupling of zymography and enzyme assays in the rhizosphere and non-rhizosphere soil enables precise mapping the changes in two-dimensional distribution of enzyme activities due to climate change within dynamic soil interfaces.

  12. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.

    Science.gov (United States)

    Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

    2014-02-01

    Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  13. Change of various enzyme activities of koji and sterilization of koiji by γ-radiation

    International Nuclear Information System (INIS)

    Iwano, Kimio; Mikami, Shigeaki; Oishi, Atsushi; Shiinoki, Satoshi

    1987-01-01

    Sterilization and changes of various enzyme activities of koji by gamma irradiation were investigated. A dose of 1 Mrad gamma irradiation was effective for the sterilization of koji. Various enzymes of koji were inactivated about 10-30% by the irradiation, while no influence was observed for shochu fermentation. There seemed to be no influence for qualities of sake and shochu by the irradiation. (author)

  14. [The restoration of the enzyme activity of chernozem soil after gamma-irradiation].

    Science.gov (United States)

    Denisova, T V; Kazeev, K Sh

    2006-01-01

    The Influence of gamma-radiation by dozes 1, 5, 10 and 20 kGy on enzyme activity of ordinary chemozem were studied. Dynamics of the restoration of the enzyme activity after the influence of gamma-radiation in model experiments in 3, 30, 90 and 180 days was investigated. The doze 1 kGy did no statistically significant influence on the investigated enzymes. Dehydrogenase is more radiosensitive enzyme than catalase. Values of the saccharase activity differed a significant variation so in most cases it has not been registered statistically significant changes. In 90-180 days of the incubation enzymes activity was restored up to control values. Dehydrogenase activity in 180 days in variants with dozes 10 and 20 kGy was restored up to a level of the control, over variants with dozes 1 and 5 kGy--is higher than the control over 78% and 23% accordingly. Saccharase activity in 180 days after the influence of gamma-radiation with a doze 20 kGy was on 61% lower than the control.

  15. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    Science.gov (United States)

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC 50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC 50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC 50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of

  16. Enzyme Activity and Biomolecule Templating at Liquid and Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harvey W. Blanch

    2004-12-01

    There are two main components of this research program. The first involves studies of the adsorption and catalytic activity of proteins at fluid-fluid and fluid-solid interfaces; the second employs biological macromolecules as templates at the solid-liquid interface for controlled crystallization of inorganic materials, to provide materials with specific functionality.

  17. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    thylbenzothiazoline-6-sulphonic acid (ABTS, Sigma) and. Kalmış et al. 4315 guaiacol (Sigma) oxidizing activity was performed in Petri dishes. (90 mm diameter) with 15 ml of G.A.E. (Glucose Asparagine) agar medium (Dhoulib et al.

  18. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming

    Science.gov (United States)

    This study investigated the activities of ß-glucosidase (C cycling, ß-glucosaminidase (C and N cycling), acid phosphatase (P cycling) and arylsulfatase (S cycling) under lettuce (Lactuca sativa), potato (Solanum Tuberosum), onion (Allium cepa L), broccoli (Brassica oleracea var. botrytis) and Tall f...

  19. Activities of some enzymes associated with oxygen metablolism ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... SOD and CAT activities in 20 days seedlings were higher than those in ... content and cell permeability in leaves were lower than those in root which in turn .... The water soluble protein content of all crude SOD, CAT and MDA.

  20. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    Science.gov (United States)

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  1. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities.

    Science.gov (United States)

    Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor

    2015-06-01

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health.

  2. Effect of bleaching on mercury release from amalgam fillings and antioxidant enzyme activities: a pilot study.

    Science.gov (United States)

    Cakir, Filiz Yalcin; Ergin, Esra; Gurgan, Sevil; Sabuncuoglu, Suna; Arpa, Cigdem Sahin; Tokgoz, İlknur; Ozgunes, Hilal; Kiremitci, Arlin

    2015-01-01

    The aim of this pilot clinical study was to determine the mercury release from amalgam fillings and antioxidant enzyme activities (Superoxide Dismutase [SOD] and Catalase[CAT] ) in body fluids after exposure to two different vital tooth bleaching systems. Twenty eight subjects with an average age of 25.6 years (18-41) having at least two but not more than four Class II amalgam fillings on each quadrant arch in the mouth participated in the study. Baseline concentrations of mercury levels in whole blood, urine, and saliva were measured by a Vapor Generation Accessory connected to an Atomic Absorption Spectrometer. Erythrocyte enzymes, SOD, and CAT activities in blood were determined kinetically. Subjects were randomly assigned to two groups of 14 volunteers. Group 1 was treated with an at-home bleaching system (Opalescence PF 35% Carbamide Peroxide, Ultradent), and Group 2 was treated with a chemically activated office bleaching system (Opalescence Xtra Boost 38% Hydrogen Peroxide, Ultradent) according to the manufacturer's recommendations. Twenty-four hours after bleaching treatments, concentrations of mercury and enzymes were remeasured. There were no significant differences on mercury levels in blood, urine, and saliva before and after bleaching treatments (p > 0.05). No differences were also found in the level of antioxidant enzyme activities (SOD and CAT) before and after treatments (p > 0.05). Mercury release did not affect the enzyme activities (p > 0.05). Bleaching treatments either office or home did not affect the amount of mercury released from amalgam fillings in blood, urine, and saliva and the antioxidant-enzyme activities in blood. Bleaching treatments with the systems tested in this pilot study have no deleterious effect on the mercury release from amalgam fillings and antioxidant enzymes in body fluids. © 2014 Wiley Periodicals, Inc.

  3. Non-invasive imaging of tumors by monitoring autotaxin activity using an enzyme-activated near-infrared fluorogenic substrate.

    Directory of Open Access Journals (Sweden)

    Damian Madan

    Full Text Available Autotaxin (ATX, an autocrine motility factor that is highly upregulated in metastatic cancer, is a lysophospholipase D enzyme that produces the lipid second messenger lysophosphatidic acid (LPA from lysophosphatidylcholine (LPC. Dysregulation of the lysolipid signaling pathway is central to the pathophysiology of numerous cancers, idiopathic pulmonary fibrosis, rheumatoid arthritis, and other inflammatory diseases. Consequently, the ATX/LPA pathway has emerged as an important source of biomarkers and therapeutic targets. Herein we describe development and validation of a fluorogenic analog of LPC (AR-2 that enables visualization of ATX activity in vivo. AR-2 exhibits minimal fluorescence until it is activated by ATX, which substantially increases fluorescence in the near-infrared (NIR region, the optimal spectral window for in vivo imaging. In mice with orthotopic ATX-expressing breast cancer tumors, ATX activated AR-2 fluorescence. Administration of AR-2 to tumor-bearing mice showed high fluorescence in the tumor and low fluorescence in most healthy tissues with tumor fluorescence correlated with ATX levels. Pretreatment of mice with an ATX inhibitor selectively decreased fluorescence in the tumor. Together these data suggest that fluorescence directly correlates with ATX activity and its tissue expression. The data show that AR-2 is a non-invasive and selective tool that enables visualization and quantitation of ATX-expressing tumors and monitoring ATX activity in vivo.

  4. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    Science.gov (United States)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    plant protection schedule taken up for main crop and for intercrops, but was least in the insecticide sprayed to both the crops. Data on interaction of intercropping and plant protection schedules indicated that Bt cotton with chilli as intercrop and with zero plant protection showed the highest population of P-solubilizers, N2 fixers as well as urease and phosphatase activities at 135 days of crop growth. Similarly, population of total bacteria, fungi and actinomycetes were highest in the treatment of Bt cotton + chilli + onion with zero protection but were on par with the treatment Bt cotton + chilli with zero protection at 135 days of crop growth. Dehydrogenase activity was found to be the highest in the treatment of Bt cotton + redgram with zero protection at 135 days of crop growth. Our studies showed harmful effects of insecticide sprays on soil microflora and enzyme activities.

  5. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    Full Text Available Three hundred one-day-old male broiler chickens (Ross-308 were fed corn-soybean basal diets containing non-starch polysaccharide (NSP enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI and average daily gain (ADG were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05. Feed-to-gain ratio (FGR was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05. Apparent digestibility of crude protein (ADCP was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05. Cholecystokinin (CCK level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05, but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05, respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05. However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05. The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05. Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  6. Toxic action of zinc on growth and enzyme activities of rice Oryza sativa L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Nag, P.; Nag, P.; Paul, A.K.; Mukherji, S.

    1984-01-01

    This paper provides information on the effects of toxic concentrations of zinc sulfate (ZnSO/sub 4/.7H/sub 2/O) on the growth and metabolism of rice Oryza sativa L. seedlings. Root growth inhibition was always more pronounced than was shoot growth inhibition. Root growth was completely inhibited at 40 m M concentration, whereas the magnitude of reduction of shoot length was only 56% at this concentration. Gibberellic acid (GA/sub 3/) was partially capable of relieving zinc inhibition. The activities of peroxidase, IAA oxidase and ascorbic acid oxidase of seedlings increased in response to zinc addition, whereas catalase and IAA synthetase decreased. All the hydrolyzing enzymes, viz., ..cap alpha..-amylase and phytase of endosperm together with RNase and ATPase of the embryo, showed distinct inhibition from the control, the exception being endosperm RNase which was stimulated under zinc treatment. 50 references, 6 figures.

  7. Is there any role of prolidase enzyme activity in the etiology of preeclampsia?

    Science.gov (United States)

    Pehlivan, Mustafa; Ozün Ozbay, Pelin; Temur, Muzaffer; Yılmaz, Ozgur; Verit, Fatma Ferda; Aksoy, Nurten; Korkmazer, Engin; Üstünyurt, Emin

    2017-05-01

    To evaluate a relationship between preeclampsia and prolidase enzyme activity. A prospective cohort study of 41 pregnant women diagnosed with preeclampsia and 31 healthy pregnant women as control group was selected at Harran University Hospital Department of Obstetrics and Gynecology. The prolidase enzyme activity was analyzed in maternal and umbilical cord plasma, amniotic fluid and placental and umbilical cord tissues by Chinard method in addition to maternal serum levels of lactate dehydrogenase (LDH), serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT). A significant relationship was found between plasma prolidase activity (635 ± 83 U/L) (p  = 0.007), umbilical cord plasma prolidase activity (610 ± 90 U/L) (p = 0.013), amniotic fluid prolidase activity (558 ± 100 U/L) (p  = 0.001), umbilical cord tissue prolidase activity (4248 ± 1675 U/gr protein) (p  = 0.013) and placental tissue prolidase activity (2116 ± 601 U/gr protein) (p  = 0.001) in preeclamptic group when compared to healthy pregnant women. There is a strong correlation between prolidase enzyme activity and preeclampsia. Prolidase enzyme activity may play a role in preeclampsia.

  8. Studies on the effects of radiation on enzyme activity and chromosome in mammals (Mus musuculus)

    International Nuclear Information System (INIS)

    Kim, J.B.; Lee, K.S.; Kim, Y.J.

    1982-01-01

    From the results of many researches in radiation biology, it is well known that the radiation induces gene mutation, aberration of chromosome which is a carrier of genes and the increase or decrease of enzyme activities in living organisms. However, the frequency of chromosomal aberration or the degree of enzyme activities according to the animal's age when they are irradiated with radiation and time pass after irradiation are known a little if any. From these viewpoints, the research on the frequencies of chromosomal aberrations in bone marrow cells and the degree of activities of glucose-6-phosphate dehydrogenase in liver, kidney and brain, and isocitrate dehydrogense in kidney and brain of mouse has been carried out according to the mice age when they are irradiated with 200 rad of whole body irradiation. The chromosomes and enzyme activities were observed at 24 hours, 48 hours and 4 days to 90 days after irradiation. (Author)

  9. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...... 0.05). In female rats the CCO activity expressed per milligram protein was increased 4.5-fold in the trained compared with the sedentary control rats (P less than 0.01). Neither cold stress nor sham swim training increased CCO or MDH activities in white adipose tissue (P greater than 0...

  10. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  11. Factor analysis shows association between family activity environment and children's health behaviour.

    Science.gov (United States)

    Hendrie, Gilly A; Coveney, John; Cox, David N

    2011-12-01

    To characterise the family activity environment in a questionnaire format, assess the questionnaire's reliability and describe its predictive ability by examining the relationships between the family activity environment and children's health behaviours - physical activity, screen time and fruit and vegetable intake. This paper describes the creation of a tool, based on previously validated scales, adapted from the food domain. Data are from 106 children and their parents (Adelaide, South Australia). Factor analysis was used to characterise factors within the family activity environment. Pearson-Product Moment correlations between the family environment and child outcomes, controlling for demographic variation, were examined. Three factors described the family activity environment - parental activity involvement, opportunity for role modelling and parental support for physical activity - and explained 37.6% of the variance. Controlling for demographic factors, the scale was significantly correlated with children's health behaviour - physical activity (r=0.27), screen time (r=-0.24) and fruit and vegetable intake (r=0.34). The family activity environment questionnaire shows high internal consistency and moderate predictive ability. This study has built on previous research by taking a more comprehensive approach to measuring the family activity environment. This research suggests the family activity environment should be considered in family-based health promotion interventions. © 2011 The Authors. ANZJPH © 2011 Public Health Association of Australia.

  12. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    Science.gov (United States)

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  13. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme.

    Science.gov (United States)

    Njuma, Olive J; Davis, Ian; Ndontsa, Elizabeth N; Krewall, Jessica R; Liu, Aimin; Goodwin, Douglas C

    2017-11-10

    KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H 2 O 2 -induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H 2 O 2 to O 2 and H 2 O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H 2 O 2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting ( i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H 2 O 2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  15. The effect of hyperthermia and radiation on lysosomal enzyme activity of mouse mammary tumours

    International Nuclear Information System (INIS)

    Barratt, G.M.; Wills, E.D.

    1979-01-01

    The effects of hyperthermia and radiation have been studied on the acid phosphatase and β-glucuronidase activities in lysosomes of C3H mice mammary tumours and of the spleen. Quantitative histochemical methods have been used. Hyperthermic treatment of both spontaneous and transplanted tumours caused an increase in the activity of both acid phosphatase and β-glucuronase when measured immediately after treatment, but the activities returned to normal after 24 hours. In contrast a radiation dose of 3500 rad did not cause an increase in activity of either enzyme immediately, but a large activation was observed after 24 hr. Combination of hyperthermic and radiation treatment caused increases in enzyme activities which were dependent on the time after treatment. Hyperthermic treatment of the lower body of mice bearing tumours also caused activation of lysosomal enzymes in the spleen. This may be hormone mediated. It is considered that the increased lysosomal enzyme activity observed after hyperthermia may be a consequence of increased permeability of the lysosomal membrane caused by hyperthermia. (author)

  16. Antioxidant Enzyme Activity, Iron Content and Lipid Oxidation of Raw and Cooked Meat of Korean Native Chickens and Other Poultry

    Directory of Open Access Journals (Sweden)

    Muhlisin

    2016-05-01

    Full Text Available This study was conducted to observe antioxidant enzyme activity, iron content and lipid oxidation of Korean native chickens and other poultry. The breast and thigh meat of three Korean native chicken breeds including Woorimatdak, Hyunin black and Yeonsan ogye, and three commercial poultry breeds including the broiler, White Leghorn and Pekin duck (Anasplatyrhyncos domesticus were studied. The analyses of the antioxidant enzymes activity, iron content and lipid oxidation were performed in raw and cooked samples. The activity of catalase (CAT in the thigh meat was higher than that of the breast meat of three Korean native chickens and the broiler, respectively. The activity of glutathione peroxidase (GPx in the uncooked thigh meat of three Korean native chickens was higher than that of the breasts. The breast meat of Woorimatdak and Pekin duck had higher superoxide dismutase (SOD activity than the others, while only the thigh meat of Pekin duck had the highest activity. Cooking inactivated CAT and decreased the activity of GPx and SOD. The thigh meat of Woorimatdak, White Leghorn, Yeonsan ogye and Hyunin black contained more total iron than the breast meat of those breeds. The heme-iron lost during cooking ranged from 3.2% to 14.8%. It is noted that the thigh meat had higher thiobarbituric acid reactive substances values than the breast in all chicken breeds. Though Woorimatdak showed higher antioxidant enzyme activity and lower released-iron percentage among Korean native chickens, no differences were found on lipid oxidation. We confirm that the dark meat of poultry exhibited higher antioxidant enzyme activity and contained more iron than the white meat.

  17. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation.

    Science.gov (United States)

    Nauman, Mohd; Kale, R K; Singh, Rana P

    2018-03-07

    Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and

  18. Gelatin in situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity.

    Science.gov (United States)

    Hadler-Olsen, Elin; Kanapathippillai, Premasany; Berg, Eli; Svineng, Gunbjørg; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2010-01-01

    In situ zymography is a method for the detection and localization of enzymatic activity in tissue sections. This method is used with frozen sections because routine fixation of tissue in neutral-buffered formalin inhibits enzyme activity. However, frozen sections present with poor tissue morphology, making precise localization of enzymatic activity difficult to determine. Ethanol- and zinc-buffered fixative (ZBF) are known to preserve both morphological and functional properties of the tissue well, but it has not previously been shown that these fixatives preserve enzyme activity. In the present study, we show that in situ zymography can be performed on ethanol- and ZBF-fixed paraffin-embedded tissue. Compared with snap-frozen tissue, ethanol- and ZBF-fixed tissue showed stronger signals and superior morphology, allowing for a much more precise detection of gelatinolytic activity. Gelatinolytic enzymes could also be extracted from both ethanol- and ZBF-fixed tissue. The yield, as analyzed by SDS-PAGE gelatin zymography and Western blotting, was influenced by the composition of the extraction buffer, but was generally lower than that obtained from unfixed tissue.

  19. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity.

    Science.gov (United States)

    Reynolds, Hannah T; Barton, Hazel A

    2014-01-01

    White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth.

  20. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity.

    Directory of Open Access Journals (Sweden)

    Hannah T Reynolds

    Full Text Available White-nose Syndrome (WNS is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans, is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus, which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth.

  1. Predicting novel substrates for enzymes with minimal experimental effort with active learning.

    Science.gov (United States)

    Pertusi, Dante A; Moura, Matthew E; Jeffryes, James G; Prabhu, Siddhant; Walters Biggs, Bradley; Tyo, Keith E J

    2017-11-01

    Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of ~80% using ~33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Predicting novel substrates for enzymes with minimal experimental effort with active learning

    Energy Technology Data Exchange (ETDEWEB)

    Pertusi, Dante A.; Moura, Matthew E.; Jeffryes, James G.; Prabhu, Siddhant; Walters Biggs, Bradley; Tyo, Keith E. J.

    2017-11-01

    Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of similar to 80% using similar to 33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways.

  3. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity.

    Science.gov (United States)

    Lv, Xuan; Pan, Liumeng; Wang, Jiaying; Lu, Liping; Yan, Weilin; Zhu, Yanye; Xu, Yiwen; Guo, Ming; Zhuang, Shulin

    2017-03-01

    Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC 50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC 50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R 2 between 0.83 and 0.97, p pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones.

    Science.gov (United States)

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H; Kleiner, Ralph E; Du, Xiu Quan; Leissring, Malcolm A; Tang, Wei-Jen; Charron, Maureen J; Seeliger, Markus A; Saghatelian, Alan; Liu, David R

    2014-07-03

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.

  6. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities.

    Science.gov (United States)

    Gopal, Murali; Gupta, Alka; Arunachalam, V; Magu, S P

    2007-11-01

    The effect of 10% azadirachtin granules (alcoholic extract of neem seed kernel mixed with China clay) was studied on the population of bacteria, actinomycetes, fungi, Azotobacter and nitrifying bacteria; soil dehydrogenase, phosphatase and respiratory activities on 0, 15th, 30th, 60th and 90th days after application in sandy loam soil collected from the fields. It was observed that baring the Azotobacter sp., azadirachtin at all the doses exerted a suppressive effect on the rest of the microbial communities and enzyme activities in the initial 15 day period. The population of bacteria, actinomycetes besides phosphatase and respiratory activities recovered after 60th day and subsequently increased significantly. The fungi and nitrifiers were most sensitive groups as their numbers were reduced significantly throughout the studies. The two times and five times recommended dose of azadirachtin had very high biocidal effects on the soil microorganisms and its activities. However, analysis of the data by the Shannon Weaver index showed that azadirachtin reduces both the form and functional microbial diversity at all doses.

  7. Angiotensin-converting enzyme in Spodoptera littoralis: molecular characterization, expression and activity profile during development.

    Science.gov (United States)

    Lemeire, Els; Vanholme, Bartel; Van Leeuwen, Thomas; Van Camp, John; Smagghe, Guy

    2008-02-01

    The characterization of the full-length angiotensin-converting enzyme (ACE) cDNA sequence of the lepidopteran Spodoptera littoralis is reported in this study. The predicted open reading frame encodes a 647 amino acids long protein (SlACE) and shows 63.6% identity with the Bombyx mori ACE sequence. A 3D-model, consisting of 26 alpha-helices and three beta-sheets, was predicted for the sequence. SlACE expression was studied in the embryonic, larval and pupal stages of S. littoralis and in different tissues of the last larval stage by reverse-transcribed PCR. This revealed that the gene is expressed throughout the life cycle and especially in brain, gut and fat body tissue of the last stage. These results are in agreement with a role of ACE in the metabolism of neuropeptides and gut hormones. In addition, ACE activity has been studied in more detail during development, making use of a fluorescent assay. High ACE peptidase activity coincides with every transition state, from embryo to larva, from larva to larva and from larva to pupa. A peak value in activity occurs during the early pupal stage. These results indicate the importance of SlACE during metamorphosis and reveal the high correlation of ACE activity with the insect's development, which is regulated by growth and developmental hormones.

  8. The Effects of Fenarimol and Methyl Parathion on Glucose 6-Phosphate Dehydrogenase Enzyme Activity in Rats

    Directory of Open Access Journals (Sweden)

    Ferda ARI

    2017-10-01

    Full Text Available Fenarimol and methyl parathion are pesticides that have been used in agriculture for several years. These pesticides have significant effects on environmental and human health. Therefore, we investigated the effects of methyl parathion and fenarimol on glucose 6-phosphate dehydrogenase (EC 1.1.1.49 enzyme activity in rats. The glucose 6- phosphate dehydrogenase is the first enzyme of the pentose phosphate pathway and it is important in detoxifying reactions by NADPH generated. In this study, wistar albino rats administrated with methyl parathion (7 mg kg–1 and fenarimol (200 mg kg−1 by intraperitoneally for different periods (2, 4, 8, 16, 32, 64, and 72 h. The glucose 6-phosphate dehydrogenase enzyme activity was assayed in liver, kidney, brain, and small intestine in male and female rats. The exposure of fenarimol and methyl parathion caused increase of glucose 6-phosphate dehydrogenase enzyme activity in rat tissues, especially at last periods. We suggest that this increment of enzyme activity may be the reason of toxic effects of fenarimol and methyl parathion.

  9. Influence of udder infection status on milk enzyme activities and somatic cell count throughout early lactation in goats

    DEFF Research Database (Denmark)

    Stuhr, T; Aulrich, K; Barth, K

    2013-01-01

    At present the analysis of somatic cell count (SCC) used for the detection of intramammary infections (IMI) in bovine milk is also recommended for goat milk, but due to the various factors influencing SCC it allows only limited conclusions on the udder health of goats. The research on enzyme...... activity in milk appears to show promise in finding an approach with more suitable indicators of the early detection of IMI in goats. Therefore, the present study aimed to investigate the influence of goat udder infection status on different milk enzyme activities and SCC throughout early lactation....... A total of 60 dairy goats were sampled at weekly intervals over a period of 6 weeks after kidding and the bacteriological status, milk SCC and the activity of N-acetyl-β-d-glucosaminidase (NAGase), β-glucuronidase and lactate dehydrogenase (LDH) of udder halves were analysed. Infections with minor...

  10. Changes of Soil Enzyme Activities in Different Restoration Ages of Spruce Forests on the Eastern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-mei; BAO Wei-kai; PANG Xue-yong; WU Ning; ZHOU Guo-yi

    2005-01-01

    Six soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase ) were chosen for investigation under different spruce forests with restoration ages of 4,10,16 years and an old-growth spruce forest over 400 years old in the eastern Qinghai-Tibet Plateau, China. Results showed that the activities of invertase, phosphatase, proteinase, catalase and peroxidase decreased in newly restored forests except for pholyphenoloxidase. With the development of forests after restoration, the activities of invertase, acid phosphadase, proteinase increased gradually. Our study also indicated that the soil enzyme activities were associated with surface soils and decreased with depths. This result suggested that in the earlier restoration stage the application of organic fertilizer may be more effective by surface addition to soils than deep addition.

  11. Diel changes in stream periphyton extracellular enzyme activity throughout community development on inert and organic substrates

    Science.gov (United States)

    Rier, S. T.; Francoeur, S. N.; Kuehn, K. A.

    2005-05-01

    We tested the hypothesis that algal photosynthesis in stream periphyton communities would influence the activities of extracellular enzymes produced by associated heterotrophic bacteria and fungi to acquire organic compounds and inorganic nutrients. We approached this question by looking for diurnal variation in activities of four extracellular enzymes in periphyton communities that were grown on either inert (glass fiber filters) or organic (leaves) substrata that there were incubated in stream-side channels that were either open to full sun or shaded. Substrata were subsampled for β-glucosidase, alkaline phosphotase, leucine-aminopeptidase, and phenol oxidase activities at 3-5 hr. intervals over two consecutive diurnal cycles that were repeated at an early and later stage of periphyton community development. Activities of all enzymes displayed diurnal periodicity but the strength of the diurnal effects depended largely on the substrate type and stage of community development. The most consistent diurnal change was observed with phenol oxidase activity with significantly greater (p<0.05) activities being observed in during the day for both stages of community development and for both substrate types. It is likely that oxygen produced by algal photosynthesis is driving the activity of this oxidative enzyme and that algae might indirectly influence the decomposition of phenolic compounds.

  12. Changes In Certain Enzymes Activities In Tribolium CONFUSUM As Affected By Vanillin Or GAMMA Irradiation

    International Nuclear Information System (INIS)

    MOHAMED, S.A.; SHOMAN, A.A.; AHMED, Z.A.

    2009-01-01

    The effect of 1 or 4 g vanillin/100 g whole wheat flour on the alkaline phosphatase of one day old larvae revealed that the mean enzyme activity was highly significantly increased in male and non-significant in female Triboluim confusum. As pupae were irradiated, the mean enzyme activity was significantly decreased in males and females (except at dose 300 Gy). Alanine transaminase (ALT or GPT) activity was decreased in males due to the effect of 4% vanillin and increased by irradiation while in female, the activity of ALT was increased when the larvae were reared on flour containing 1% or 4% vanillin and increased when pupae were irradiated at all doses used. There was a positive relationship between all treatments and the activity of aspartate transaminase (AST or GOT) in both sexes. The activity of AST was increased when the male or female larvae were reared on wheat flour containing 1 or 4 % vanillin and when pupae of males or females were irradiated. The choline esterase enzyme in T. confusum adults of both sexes was inhibited according to the effect of treatments with vanillin or gamma irradiation. Treated larvae with 1 or 4 % vanillin or irradiated as pupae at 300, 600 and 800 Gy led to decrease in the activity of choline esterase enzyme with the same pattern in both sexes.

  13. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Los Alamos National Laboratory; Velappan, Nileena [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  14. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  15. Enzyme activity assays within microstructured optical fibers enabled by automated alignment.

    Science.gov (United States)

    Warren-Smith, Stephen C; Nie, Guiying; Schartner, Erik P; Salamonsen, Lois A; Monro, Tanya M

    2012-12-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women's health.

  16. Influence of probiotics on the growth and digestive enzyme activity of white Pacific shrimp ( Litopenaeus vannamei)

    Science.gov (United States)

    Gómez, R. Geovanny D.; Shen, M. A.

    2008-05-01

    The influence of Bacillus probiotics on the digestive enzyme activity and the growth of Litopenaeus vannamei were determined in this study. The shrimp was treated with five percentages (1.5, 3.0, 4.5, 6.0 and 7.5) of probiotics ( Bacillus spp.) supplemented to the feed and cultured for 45d. The growth measured as the weight gain at the end of culturing was significantly ( Pshrimps than that of the control (without receiving probiotics). Activities of protease and amylase, two digestive enzymes of the midgut gland and the intestine were significantly ( Pshrimp than in the control.

  17. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    Science.gov (United States)

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, v max decreased significantly (P enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  18. Polypyridylruthenium(II complexes exert in vitro and in vivo nematocidal activity and show significant inhibition of parasite acetylcholinesterases

    Directory of Open Access Journals (Sweden)

    Madhu Sundaraneedi

    2018-04-01

    Full Text Available Over 4.5 billion people are at risk of infection with soil transmitted helminths and there are concerns about the development of resistance to the handful of frontline nematocides in endemic populations. We investigated the anti-nematode efficacy of a series of polypyridylruthenium(II complexes and showed they were active against L3 and adult stages of Trichuris muris, the rodent homologue of the causative agent of human trichuriasis, T. trichiura. One of the compounds, Rubb12-mono, which was among the most potent in its ability to kill L3 (IC50 = 3.1 ± 0.4 μM and adult (IC50 = 5.2 ± 0.3 μM stage worms was assessed for efficacy in a mouse model of trichuriasis by administering 3 consecutive daily oral doses of the drug 3 weeks post infection with the murine whipworm Trichuris muris. Mice treated with Rubb12-mono showed an average 66% reduction (P = 0.015 in faecal egg count over two independent trials. The drugs partially exerted their activity through inhibition of acetylcholinesterases, as worms treated in vitro and in vivo showed significant decreases in the activity of this class of enzymes. Our data show that ruthenium complexes are effective against T. muris, a model gastro-intestinal nematode and soil-transmitted helminth. Further, knowledge of the target of ruthenium drugs can facilitate modification of current compounds to identify analogues which are even more effective and selective against Trichuris and other helminths of human and veterinary importance. Keywords: Acetylcholinesterase, Trichuris muris, Ruthenium complex, Anthelmintic

  19. [Study on soil enzyme activities and microbial biomass carbon in greenland irrigated with reclaimed water].

    Science.gov (United States)

    Pan, Neng; Hou, Zhen-An; Chen, Wei-Ping; Jiao, Wen-Tao; Peng, Chi; Liu, Wen

    2012-12-01

    The physicochemical properties of soils might be changed under the long-term reclaimed water irrigation. Its effects on soil biological activities have received great attentions. We collected surface soil samples from urban green spaces and suburban farmlands of Beijing. Soil microbial biomass carbon (SMBC), five types of soil enzyme activities (urease, alkaline phosphatase, invertase, dehydrogenase and catalase) and physicochemical indicators in soils were measured subsequently. SMBC and enzyme activities from green land soils irrigated with reclaimed water were higher than that of control treatments using drinking water, but the difference is not significant in farmland. The SMBC increased by 60.1% and 14.2% than those control treatments in 0-20 cm soil layer of green land and farmland, respectively. Compared with their respective controls, the activities of enzymes in 0-20 cm soil layer of green land and farmland were enhanced by an average of 36.7% and 7.4%, respectively. Investigation of SMBC and enzyme activities decreased with increasing of soil depth. Significantly difference was found between 0-10 cm and 10-20 cm soil layer in green land. Soil biological activities were improved with long-term reclaimed water irrigation in Beijing.

  20. Effects of misonidazole, irradiation and hyperthermia on lysosomal enzyme activity in mouse tumours

    International Nuclear Information System (INIS)

    Barratt, G.M.; Wills, E.D.

    1981-01-01

    Male C3H mice bearing transplanted tumours were treated with hyperthermia, gamma radiation and the radiosensitising drug misonidazole. The activity of tumour lysosomal acid phosphatase and β-glucuronidase was determined using quantitative cytochemical techniques which measure both lysosomal membrane permeability and enzyme activity. Misonidazole had no effect on the membrane permeability or enzyme activity of tumour lysosomes 1 hr after injection; but 25 hr after the drug treatment the permeability of the lysosomal membrane to the substrate was increased to 1.7 times control. Increases in the lysosomal enzyme activity and membrane permeability were observed 1 hr after combined treatment with misonidazole and irradiation, although neither the drug nor irradiation given alone affected the lysosomes 1 hr after treatment. Twenty-five hours after treatment of tumours with misonidazole given 25 minutes before irradiation of tumours, permeability of the lysosomal membrane had increased to 2.3 times the control. The effects of the irradiation and the radio-sensitisers were thus synergistic. Hyperthermic treatment of tumours increased and misonidazole decreased the lysosomal membrane permeability and enzyme activity measured immediately after exposure. Thus misonidazole and irradiation act synergistically to cause increased lysosomal activity but misonidazole depresses the effect of hyperthermia on lysosomes. (author)

  1. Effect of Robola and Cabernet Sauvignon extracts on platelet activating factor enzymes activity on U937 cells.

    Science.gov (United States)

    Xanthopoulou, M N; Asimakopoulos, D; Antonopoulou, S; Demopoulos, C A; Fragopoulou, E

    2014-12-15

    A number of studies support the anti-atherogenic effect of wine compounds. The scope of this study was to examine the effect of a red (Cabernet Sauvignon-CS) and a white (Robola-R) wine, as well as resveratrol and quercetin, on the platelet activating factor (PAF) biosynthetic enzymes, acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAF-AT) and DTT-insensitive CDP-choline 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT), and its main catabolic enzyme (PAF acetylhydrolase; PAF-AH), on U937 cells, in cell free and in intact cell experiments. In cell free experiments, phenolic compounds and wine extracts inhibited PAF biosynthetic enzymes, however in higher concentrations than intact cell experiments. In the latter cases, polar lipids of both wines inhibited in the same order of magnitude the action of lyso-PAF-AT and of PAF-CPT. The water fractions possessed a dual action, in lower concentrations they activated both enzymes, while in higher concentrations only inhibited PAF-CPT. All fractions either did not affect or slightly activated PAF-AH activity. In conclusion, wine compounds may exert their anti-inflammatory activity by reducing PAF levels through modulation of the PAF metabolic enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Physically Active Men Show Better Semen Parameters than Their Sedentary Counterparts.

    Science.gov (United States)

    Lalinde-Acevedo, Paula C; Mayorga-Torres, B Jose Manuel; Agarwal, Ashok; du Plessis, Stefan S; Ahmad, Gulfam; Cadavid, Ángela P; Cardona Maya, Walter D

    2017-10-01

    The quality of semen depends upon several factors such as environment, life style, physical activity, age, and occupation. The aim of this study was to analyze and compare the conventional and functional semen parameters in men practicing vigorous physical activity to those of sedentary men. In this descriptive cross-sectional study, semen samples of 17 physically active men and 15 sedentary men were collected for analysis. Semen analysis was performed according to the World Health Organization (WHO) guidelines, while functional parameters were evaluated by flow cytometry. Results showed that several semen parameters (semen volume, viability, progressive motility, total motility, normal morphology, and moribund cells) were superior in the physically active group in comparison with the sedentary group. Semen parameters such as viability, progressive motility and total motility, as well as the percentage of moribund spermatozoa were significantly different between both groups. However, sperm DNA damage, lipid peroxidation and mitochondrial potential were not significantly different among the groups. Nevertheless, the physical activity shows better semen parameters than sedentary group. Taken together, our results demonstrate that regular physical activity has beneficial impact in sperm fertility parameters and such a life style can enhance the fertility status of men. Copyright© by Royan Institute. All rights reserved.

  3. Tributyltin toxicity in abalone (Haliotis diversicolor supertexta) assessed by antioxidant enzyme activity, metabolic response, and histopathology.

    Science.gov (United States)

    Zhou, Jin; Zhu, Xiao-shan; Cai, Zhong-hua

    2010-11-15

    A toxicity test was performed to investigate the possible harmful effects of tributyltin (TBT) on abalone (Haliotis diversicolor supertexta). Animals were exposed to TBT in a range of environmentally relevant concentrations (2, 10 and 50 ng/L) for 30 days under laboratory conditions. TBT-free conditions were used as control treatments. The activity of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD), and malondialdehyde (MDA), along with levels of haemolymph metabolites, and hepatopancreas histopathology were analyzed. The results showed that TBT decreased SOD activity, and increased POD level and MDA production in a dose-dependent way, indicating that oxidative injury was induced by TBT. Haemolymph metabolite measurements showed that TBT increased alanine and glutamate levels, and decreased glucose content, which suggested perturbation of energy metabolism. Elevated levels of acetate and pyruvate in the haemolymph indicated partial alteration of lipid metabolism. A decrease in lactate and an increase in succinate, an intermediate of the tricarboxylic acid (TCA) cycle, indicated disturbance of amino acid metabolism. Hepatopancreas tissues also exhibited inflammatory responses characterized by histopathological changes such as cell swelling, granular degeneration, and inflammation. Taken together, these results demonstrated that TBT was a potential toxin with a variety of deleterious effects on abalone. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes.

    Science.gov (United States)

    Lence, Emilio; van der Kamp, Marc W; González-Bello, Concepción; Mulholland, Adrian J

    2018-05-16

    Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.

  5. Effects of sodium pentaborate pentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities.

    Science.gov (United States)

    Chen, Xueqing; Pei, Yuansheng

    2016-10-01

    Sodium pentaborate pentahydrate (SPP) is a rare mineral. In this study, SPP was synthesized from boric acid and borax through low-temperature crystallization, and its effects on the growth of the alga, Chlorella vulgaris (C. vulgaris) were assessed. The newly synthesized SPP was characterized by chemical analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and differential thermal analysis. The changes in C. vulgaris growth, chlorophyll content, and enzyme activities upon exposure to SPP for 168h were evaluated. Results showed that SPP treatment was detrimental to C. vulgaris growth during the first 24-120h of exposure. The harmful effects, however, diminished over time (168h), even at an effective medium concentration of 226.37mg BL(-1) (the concentration of boron applied per liter of culture medium). A similar trend was observed for chlorophyll content (chlorophyll a and b) and indicated that the photosynthesis of C. vulgaris was not affected and that high levels of SPP may even promote chlorophyll synthesis. Superoxide dismutase and catalase activities of C. vulgaris increased during 24-120h exposure to SPP, but these activities gradually decreased as culture time progressed. In other words, the initial detrimental effects of synthetic SPP on C. vulgaris were temporary and reversible. This research provides a scientific basis for applications of SPP in the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. In Situ Earthworm Breeding to Improve Soil Aggregation, Chemical Properties, and Enzyme Activity in Papayas

    Directory of Open Access Journals (Sweden)

    Huimin Xiang

    2018-04-01

    Full Text Available The long-term use of mineral fertilizers has decreased the soil fertility in papaya (Carica papaya L. orchards in South China. In situ earthworm breeding is a new sustainable practice for improving soil fertility. A field experiment was conducted to compare the effects of four treatments consisting of the control (C, chemical fertilizer (F, compost (O, and in situ earthworm breeding (E on soil physico-chemical properties and soil enzyme activity in a papaya orchard. The results showed that soil chemical properties, such as pH, soil organic matter (SOM, total nitrogen (TN, available nitrogen (AN, and total phosphorus (TP were significantly improved with the E treatment but declined with the F treatment. On 31 October 2008, the SOM and TN with the O and E treatments were increased by 26.3% and 15.1%, respectively, and by 32.5% and 20.6% compared with the F treatment. Furthermore, the O and E treatments significantly increased the activity of soil urease and sucrase. Over the whole growing season, soil urease activity was 34.4%~40.4% and 51.1%~58.7% higher with the O and E treatments, respectively, than that with the C treatment. Additionally, the activity of soil sucrase with the E treatment was always the greatest of the four treatments, whereas the F treatment decreased soil catalase activity. On 11 June 2008 and 3 July 2008, the activity of soil catalase with the F treatment was decreased by 19.4% and 32.0% compared with C. Soil bulk density with the four treatments was in the order of O ≤ E < F < C. The O- and E-treated soil bulk density was significantly lower than that of the F-treated soil. Soil porosity was in the order of C < F < E < O. Soil porosity with the O and E treatments was 6.0% and 4.7% higher, respectively, than that with the F treatment. Meanwhile, the chemical fertilizer applications significantly influenced the mean weight diameter (MWD of the aggregate and proportion of different size aggregate fractions. The E treatment

  7. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  8. Psychoacoustic Tinnitus Loudness and Tinnitus-Related Distress Show Different Associations with Oscillatory Brain Activity

    Science.gov (United States)

    Balkenhol, Tobias; Wallhäusser-Franke, Elisabeth; Delb, Wolfgang

    2013-01-01

    Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support

  9. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    International Nuclear Information System (INIS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-01-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  10. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  11. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    (P anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves......The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed...... for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD...

  12. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment.

    Science.gov (United States)

    Hyer, Marc L; Milhollen, Michael A; Ciavarri, Jeff; Fleming, Paul; Traore, Tary; Sappal, Darshan; Huck, Jessica; Shi, Judy; Gavin, James; Brownell, Jim; Yang, Yu; Stringer, Bradley; Griffin, Robert; Bruzzese, Frank; Soucy, Teresa; Duffy, Jennifer; Rabino, Claudia; Riceberg, Jessica; Hoar, Kara; Lublinsky, Anya; Menon, Saurabh; Sintchak, Michael; Bump, Nancy; Pulukuri, Sai M; Langston, Steve; Tirrell, Stephen; Kuranda, Mike; Veiby, Petter; Newcomb, John; Li, Ping; Wu, Jing Tao; Powe, Josh; Dick, Lawrence R; Greenspan, Paul; Galvin, Katherine; Manfredi, Mark; Claiborne, Chris; Amidon, Benjamin S; Bence, Neil F

    2018-02-01

    The ubiquitin-proteasome system (UPS) comprises a network of enzymes that is responsible for maintaining cellular protein homeostasis. The therapeutic potential of this pathway has been validated by the clinical successes of a number of UPS modulators, including proteasome inhibitors and immunomodulatory imide drugs (IMiDs). Here we identified TAK-243 (formerly known as MLN7243) as a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE), the primary mammalian E1 enzyme that regulates the ubiquitin conjugation cascade. TAK-243 treatment caused depletion of cellular ubiquitin conjugates, resulting in disruption of signaling events, induction of proteotoxic stress, and impairment of cell cycle progression and DNA damage repair pathways. TAK-243 treatment caused death of cancer cells and, in primary human xenograft studies, demonstrated antitumor activity at tolerated doses. Due to its specificity and potency, TAK-243 allows for interrogation of ubiquitin biology and for assessment of UAE inhibition as a new approach for cancer treatment.

  13. Probiotic activity of lignocellulosic enzyme as bioactivator for rice husk degradation

    Science.gov (United States)

    Lamid, Mirni; Al-Arif, Anam; Warsito, Sunaryo Hadi

    2017-02-01

    The utilization of lignocellulosic enzyme will increase nutritional value of rice husk. Cellulase consists of C1 (β-1, 4-glucan cellobiohydrolase or exo-β-1,4glucanase), Cc (endo-β-1,4-glucanase) and component and cellobiose (β-glucocidase). Hemicellulase enzyme consists of endo-β-1,4-xilanase, β-xilosidase, α-L arabinofuranosidase, α-D-glukuronidaseand asetil xilan esterase. This research aimed to study the activity of lignocellulosic enzyme, produced by cows in their rumen, which can be used as a bioactivator in rice husk degradation. This research resulted G6 and G7 bacteria, producing xylanase and cellulase with the activity of 0.004 U mL-1 and 0.021 U mL-1; 0.003 ( U mL-1) and 0.026 (U mL-1) respectively.

  14. Climate and root proximity as dominant drivers of enzyme activity and C and N isotopic signature in soil

    Science.gov (United States)

    Stock, Svenja; Köster, Moritz; Dippold, Michaela; Boy, Jens; Matus, Francisco; Merino, Carolina; Nájera, Francisco; Spielvogel, Sandra; Gorbushina, Anna; Kuzyakov, Yakov

    2017-04-01

    The Chilean ecosystems provide a unique study area to investigate biotic controls on soil organic matter (SOM) decomposition and mineral weathering depending on climate (from hyper arid to temperate humid). Microorganisms play a crucial role in the SOM decomposition, nutrient release and cycling. By means of extracellular enzymes microorganisms break down organic compounds and provide nutrients for plants. Soil moisture (abiotic factor) and root carbon (biotic factor providing easily available energy source for microorganisms), are important factors for microbial decomposition of SOM and show strong gradients along the investigated climatic gradient. A high input of root carbon increases microbial activity and enzyme production, and facilitates SOM breakdown and nutrient release The aim of this study was to determine the potential enzymatic SOM decomposition and nutrient release depending on root proximity and precipitation. C and N contents, δ13C and δ15N values, and kinetics (Vmax, Km) of six extracellular enzymes, responsible for C, N, and P cycles, were quantified in vertical (soil depth) and horizontal (from roots to bulk soil) gradients in two climatic regions: within a humid temperate forest and a semiarid open forest. The greater productivity of the temperate forest was reflected by higher C and N contents compared to the semiarid forest. Regression lines between δ13C and -[ln(%C)] showed a stronger isotopic fractionation from top- to subsoil at the semiarid open forest, indicating a faster SOM turnover compared to the humid temperate forest. This is the result of more favorable soil conditions (esp. temperature and smaller C/N ratios) in the semiarid forest. Depth trends of δ15N values indicated N limitation in both soils, though the limitation at the temperate site was stronger. The activity of enzymes degrading cellulose and hemicellulose increased with C content. Activity of enzymes involved in C, N and P cycles decreased from top- to subsoil and

  15. Enzyme activity and allosteric characteristics of gamma-irradiated solid aspartate transcarbamylase

    International Nuclear Information System (INIS)

    Bigler, W.N.; Tolbert, B.M.

    1977-01-01

    Aspartate transcarbamylase purified from E. coli was lyophilized, irradiated in vacuo with γ radiation from a cesium-137 source, redissolved in buffer under a nitrogen atmosphere, and assayed for enzyme activity. Lyophilized and redissolved enzyme had normal catalytic and allosteric kinetic characteristics. The average D 37 observed with saturating substrate, 25 mM aspartate, was 4.1 Mrad. With less than saturating substrate, 5 mM aspartate, the activity increases from zero to 1.6 Mrad and then decreases with a D 37 of 7.2 Mrad. Inclusion of 1 mM CTP, an allosteric inhibitor, in the 5 mM aspartate assays results in a more pronounced maximum in the activity curve occurring at slightly higher dose, 2.2 Mrad. Inhibitability by CTP has a D 37 of 2.3 Mrad with doses below the activity maximum. Enzyme lyophilized in the presence of 1 mM CTP has a D 37 of 2.9 Mrad. ATCase activity changes caused by irradiation of lyophylized bacteria were qualitatively like the changes observed in the detailed studies with the purified enzyme. Apparent radiation sensitivities of ATCase in lyophilized bacteria were observed to vary with the technique used to disrupt the resuspended bacteria

  16. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  17. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    Science.gov (United States)

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  18. In vitro enzyme-mimic activity and in vivo therapeutic potential of HSJ-0017, a novel Mn porphyrin-based antioxidant enzyme mimic.

    Science.gov (United States)

    Li, Bao-qiu; Dong, Xin; Li, Na; Gao, Ji-you; Yuan, Qiang; Fang, Shi-hong; Gong, Xian-chang; Wang, Shu-juan; Wang, Feng-shan

    2014-10-01

    Manganese (III) 5, 10, 15, 20-tetrakis [3-(2-(2-methoxy)-ethoxy) ethoxy] phenyl porphyrin chloride, designated HSJ-0017, is a novel antioxidant enzyme mimic. The aim of the present study was to investigate the enzyme-mimic activity and the therapeutic potential of HSJ-0017 in free radical-related diseases. Superoxide dismutase (SOD) mimic activity was measured by the nitroblue tetrazolium chloride monohydrate reduction assay. Catalase (CAT) mimic activity was measured based on the decomposition of hydrogen peroxide. The antitumor, radioprotective and chemoprotective effects of HSJ-0017 were evaluated in H22 or S180 tumor-bearing Kunming mice. The anti-inflammatory and hepatoprotective effects were, respectively, evaluated in histamine-induced edema model and CCl4-induced hepatic damage model in Wistar rats. HSJ-0017 over a concentration range of 0.001-10 µmol/L significantly inhibited the generation of superoxide anion. Significant hydrogen peroxide scavenging activity was observed when the concentration of HSJ-0017 was higher than 0.01 µmol/L. HSJ-0017 at a dose of 3.0 mg/kg exhibited significant antitumor effect on S180 tumor xenografts, whereas no significant antitumor effect was observed in H22 tumor xenografts. HSJ-0017 at a dose of 3.0 mg/kg enhanced the antitumor effects of radiotherapy and chemotherapy, and reduced their toxicity. However, HSJ-0017 counteracted the antitumor effects of radiotherapy when administered simultaneously with radiotherapy. HSJ-0017 showed significant anti-inflammatory and hepatoprotective effects. Our results demonstrate that HSJ-0017 exhibits antioxidant, antitumor, anti-inflammatory, radioprotective, chemoprotective, and hepatoprotective effects. It is a potent dual SOD/CAT mimic. © 2014 by the Society for Experimental Biology and Medicine.

  19. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  20. Evaluation of Macerating Pectinase Enzyme Activity under Various Temperature, pH and Ethanol Regimes

    Directory of Open Access Journals (Sweden)

    Andrew G. Reynolds

    2018-02-01

    Full Text Available The polygalacturonase (PGU, hemicellulase (mannanase and protease enzyme activities in commercial macerating, pectinase-enzyme preparations commonly used by wineries in Ontario (Scottzyme Color X and Color Pro were measured under various simulated process conditions (temperature, pH, and ethanol concentration. Treatments included three temperatures (15, 20 and 30 °C; pH = 3.0, 3.5, 4.0 and 5.0; ethanol = 0%, four pH levels (3.0, 3.5, 4.0 and 5.0; temperature = 15, 20, 30 and 50 °C; ethanol = 0%, and four ethanol concentrations ((2.5, 5, 7.5 and 10%; temperature = 20 °C and pH = 3.5. Polygalacturonase enzyme activity in Color X increased linearly with temperature at all pH levels, and increased with pH at all temperature regimes. Polygalacturonase activity decreased with increasing ethanol. Color X mannanase activity increased with temperatures between 15 and 40 °C, and decreased with increased pH between 3.0 and 5.0. Response of mannanase to ethanol was cubic with a sharp decrease between 8 and 10% ethanol. Protease activity increased linearly with temperatures between 20 and 40 °C. These data suggest that the PGU, mannanase and protease components in these enzyme products provide sufficient activities within the ranges of pH, temperature, and ethanol common during the initial stages of red wine fermentations, although low must temperatures (<20 °C and presence of ethanol would likely lead to sub-optimal enzyme activities.

  1. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  2. The three catalases in Deinococcus radiodurans: Only two show catalase activity

    International Nuclear Information System (INIS)

    Jeong, Sun-Wook; Jung, Jong-Hyun; Kim, Min-Kyu; Seo, Ho Seong; Lim, Heon-Man; Lim, Sangyong

    2016-01-01

    Deinococcus radiodurans, which is extremely resistant to ionizing radiation and oxidative stress, is known to have three catalases (DR1998, DRA0146, and DRA0259). In this study, to investigate the role of each catalase, we constructed catalase mutants (Δdr1998, ΔdrA0146, and ΔdrA0259) of D. radiodurans. Of the three mutants, Δdr1998 exhibited the greatest decrease in hydrogen peroxide (H_2O_2) resistance and the highest increase in intracellular reactive oxygen species (ROS) levels following H_2O_2 treatments, whereas ΔdrA0146 showed no change in its H_2O_2 resistance or ROS level. Catalase activity was not attenuated in ΔdrA0146, and none of the three bands detected in an in-gel catalase activity assay disappeared in ΔdrA0146. The purified His-tagged recombinant DRA0146 did not show catalase activity. In addition, the phylogenetic analysis of the deinococcal catalases revealed that the DR1998-type catalase is common in the genus Deinococcus, but the DRA0146-type catalase was found in only 4 of 23 Deinococcus species. Taken together, these results indicate that DR1998 plays a critical role in the anti-oxidative system of D. radiodurans by detoxifying H_2O_2, but DRA0146 does not have catalase activity and is not involved in the resistance to H_2O_2 stress. - Highlights: • The dr1998 mutant strain lost 90% of its total catalase activity. • Increased ROS levels and decreased H_2O_2 resistance were observed in dr1998 mutants. • Lack of drA0146 did not affect any oxidative stress-related phenotypes. • The purified DRA0146 did not show catalase activity.

  3. The three catalases in Deinococcus radiodurans: Only two show catalase activity

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sun-Wook [Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185 (Korea, Republic of); Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jung, Jong-Hyun; Kim, Min-Kyu; Seo, Ho Seong [Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185 (Korea, Republic of); Lim, Heon-Man [Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Lim, Sangyong, E-mail: saylim@kaeri.re.kr [Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185 (Korea, Republic of)

    2016-01-15

    Deinococcus radiodurans, which is extremely resistant to ionizing radiation and oxidative stress, is known to have three catalases (DR1998, DRA0146, and DRA0259). In this study, to investigate the role of each catalase, we constructed catalase mutants (Δdr1998, ΔdrA0146, and ΔdrA0259) of D. radiodurans. Of the three mutants, Δdr1998 exhibited the greatest decrease in hydrogen peroxide (H{sub 2}O{sub 2}) resistance and the highest increase in intracellular reactive oxygen species (ROS) levels following H{sub 2}O{sub 2} treatments, whereas ΔdrA0146 showed no change in its H{sub 2}O{sub 2} resistance or ROS level. Catalase activity was not attenuated in ΔdrA0146, and none of the three bands detected in an in-gel catalase activity assay disappeared in ΔdrA0146. The purified His-tagged recombinant DRA0146 did not show catalase activity. In addition, the phylogenetic analysis of the deinococcal catalases revealed that the DR1998-type catalase is common in the genus Deinococcus, but the DRA0146-type catalase was found in only 4 of 23 Deinococcus species. Taken together, these results indicate that DR1998 plays a critical role in the anti-oxidative system of D. radiodurans by detoxifying H{sub 2}O{sub 2}, but DRA0146 does not have catalase activity and is not involved in the resistance to H{sub 2}O{sub 2} stress. - Highlights: • The dr1998 mutant strain lost 90% of its total catalase activity. • Increased ROS levels and decreased H{sub 2}O{sub 2} resistance were observed in dr1998 mutants. • Lack of drA0146 did not affect any oxidative stress-related phenotypes. • The purified DRA0146 did not show catalase activity.

  4. Bipolar I disorder and major depressive disorder show similar brain activation during depression.

    Science.gov (United States)

    Cerullo, Michael A; Eliassen, James C; Smith, Christopher T; Fleck, David E; Nelson, Erik B; Strawn, Jeffrey R; Lamy, Martine; DelBello, Melissa P; Adler, Caleb M; Strakowski, Stephen M

    2014-11-01

    Despite different treatments and courses of illness, depressive symptoms appear similar in major depressive disorder (MDD) and bipolar I disorder (BP-I). This similarity of depressive symptoms suggests significant overlap in brain pathways underlying neurovegetative, mood, and cognitive symptoms of depression. These shared brain regions might be expected to exhibit similar activation in individuals with MDD and BP-I during functional magnetic resonance imaging (fMRI). fMRI was used to compare regional brain activation in participants with BP-I (n = 25) and MDD (n = 25) during a depressive episode as well as 25 healthy comparison (HC) participants. During the scans, participants performed an attentional task that incorporated emotional pictures. During the viewing of emotional images, subjects with BP-I showed decreased activation in the middle occipital gyrus, lingual gyrus, and middle temporal gyrus compared to both subjects with MDD and HC participants. During attentional processing, participants with MDD had increased activation in the parahippocampus, parietal lobe, and postcentral gyrus. However, among these regions, only the postcentral gyrus also showed differences between MDD and HC participants. No differences in cortico-limbic regions were found between participants with BP-I and MDD during depression. Instead, the major differences occurred in primary and secondary visual processing regions, with decreased activation in these regions in BP-I compared to major depression. These differences were driven by abnormal decreases in activation seen in the participants with BP-I. Posterior activation changes are a common finding in studies across mood states in participants with BP-I. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India).

    Science.gov (United States)

    Jaiswal, Deepa; Pandey, Jitendra

    2018-04-15

    We studied the extracellular enzyme activity (EEA) in the riverbed sediment along a 518km gradient of the Ganga River receiving carbon and nutrient load from varied human sources. Also, we tested, together with substrate-driven stimulation, if the heavy metal accumulated in the sediment inhibits enzyme activities. Because pristine values are not available, we considered Dev Prayag, a least polluted site located 624km upstream to main study stretch, as a reference site. There were distinct increases in enzyme activities in the sediment along the study gradient from Dev Prayag, however, between-site differences were in concordance with sediment carbon(C), nitrogen (N) and phosphorus (P). Fluorescein diacetate hydrolysis (FDAase), β-glucosidase (Glu) and protease activities showed positive correlation with C, N and P while alkaline phosphatase was found negatively correlated with P. Enzyme activities were found negatively correlated with heavy metal, although ecological risk index (E R i ) varied with site and metal species. Dynamic fit curves showed significant positive correlation between heavy metal and microbial metabolic quotient (qCO 2 ) indicating a decrease in microbial activity in response to increasing heavy metal concentrations. This study forms the first report linking microbial enzyme activities to regional scale sediment heavy metal accumulation in the Ganga River, suggests that the microbial enzyme activities in the riverbed sediment were well associated with the proportion of C, N and P and appeared to be a sensitive indicator of C, N and P accumulation in the river. Heavy metal accumulated in the sediment inhibits enzyme activities, although C rich sediment showed relatively low toxicity due probably to reduced bioavailability of the metal. The study has relevance from ecotoxicological as well as from biomonitoring perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].

    Science.gov (United States)

    Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun

    2017-12-01

    Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity

  7. Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus

    Directory of Open Access Journals (Sweden)

    Benedikt eLeis

    2015-04-01

    Full Text Available Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E. coli has been used exhaustively for this purpose as a host, it is important to establish alternative expression hosts and to use them for functional metagenomic screening for new enzymes. In this study we show that Thermus thermophilus HB27 is an excellent screening host and can be used as an alternative provider of truly novel biocatalysts. In a previous study we constructed the mutant strain BL03 that was no longer able to grow on defined minimal medium supplemented with tributyrin as the sole carbon source and could be used as a host to screen for metagenomic DNA fragments that could complement growth on tributyrin. Several thousand single fosmid clones from thermophilic metagenomic libraries from heated compost and hot spring water samples were subjected to a comparative screening for esterase activity in both T. thermophilus strain BL03 and E. coli EPI300. We scored a greater number of active clones in the thermophilic bacterium than in the mesophilic E. coli. From all clones functionally screened in E. coli, only two thermostable α/β-fold hydrolase enzymes with high amino acid sequence similarity to already characterized enzymes were identifiable. In contrast, five further fosmids were found that conferred lipolytic activities in T. thermophilus. Four open reading frames (ORFs were found which did not share significant similarity to known esterase enzymes. Two of the genes were expressed in both hosts and the novel thermophilic esterases, which based on their primary structures could not be assigned to known esterase or lipase families, were purified and preliminarily characterized. Our work underscores the benefit of using additional screening hosts other than E. coli for the identification of novel biocatalysts with industrial relevance.

  8. Effects of Hanseniaspora opuntiae C21 on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicas

    Science.gov (United States)

    Ma, Yuexin; Liu, Zhiming; Yang, Zhiping; Bao, Pengyun; Zhang, Congyao; Ding, Jianfeng

    2014-07-01

    The effects of a diet containing Hanseniaspora opuntiae C21 on growth and digestive enzyme activity were estimated in juvenile Apostichopus japonicus. Groups of sea cucumbers were fed diets containing H. opuntiae C21 at 0 (control), 104, 105, and 106 CFU (colony-forming units)/g feed. Results showed that after 45 d the specific growth rate (SGR) of sea cucumbers fed a C21-supplemented diet at 10 4 CFU/g feed was significantly higher than that of the control ( P sea cucumbers. In addition, after feeding the C21-supplemented diets for 15 d, the sea cucumbers were switched to an unsupplemented diet and C21 was confirmed to be capable of colonizing the intestine for at least 31 d after cessation of feeding. In conclusion, C21 was shown to successfully colonize the intestine of juvenile A. japonicus via dietary supplementation, and improve growth and digestive enzyme activity.

  9. Increased angiotensin-converting enzyme activity in the left ventricle after infarction

    Directory of Open Access Journals (Sweden)

    V.C.W. Busatto

    1997-05-01

    Full Text Available An increase in angiotensin-converting enzyme (ACE activity has been observed in the heart after myocardial infarction (MI. Since most studies have been conducted in chronically infarcted individuals exhibiting variable degrees of heart failure, the present study was designed to determine ACE activity in an earlier phase of MI, before heart failure development. MI was produced in 3-month old male Wistar rats by ligation of the anterior branches of the left coronary artery, control rats underwent sham surgery and the animals were studied 7 or 15 days later. Hemodynamic data obtained for the anesthetized animals showed normal values of arterial blood pressure and of end-diastolic pressure in the right and left ventricular cavities of MI rats. Right and left ventricular (RV, LV muscle and scar tissue homogenates were prepared to determine ACE activity in vitro by measuring the velocity of His-Leu release from the synthetic substrate Hyp-His-Leu. ACE activity was corrected to the tissue wet weight and is reported as nmol His-Leu g-1 min-1. No significant change in ACE activity in the RV homogenates was demonstrable. A small nonsignificant increase of ACE activity (11 ± 9%; P0.05 was observed 7 days after MI in the surviving left ventricular muscle. Two weeks after surgery, however, ACE activity was 46 ± 11% (P<0.05 higher in infarcted rats compared to sham-operated rats. The highest ACE activity was demonstrable in the scar tissue homogenate. In rats studied two weeks after surgery, ACE activity in the LV muscle increased from 105 ± 7 nmol His-Leu g-1 min-1 in control hearts to 153 ± 11 nmol His-Leu g-1 min-1 (P<0.05 in the remaining LV muscle of MI rats and to 1051 ± 208 nmol His-Leu g-1 min-1 (P<0.001 in the fibrous scar. These data indicate that ACE activity increased in the heart after infarction before heart failure was demonstrable by hemodynamic measurements. Since the blood vessels of the scar drain to the remaining LV myocardium, the

  10. Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland

    Science.gov (United States)

    Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.

    2015-12-01

    Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly

  11. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes

    Science.gov (United States)

    Gerringer, M. E.; Drazen, J. C.; Yancey, P. H.

    2017-07-01

    Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of whole animal metabolic capacity, particularly in inaccessible systems such as the deep sea. Previous studies have been conducted at atmospheric pressure, regardless of organism habitat depth. However, maximum reaction rates of some of these enzymes are pressure dependent, complicating the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-related rate changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase (PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH maximal reaction rates decreased with pressure for the two shallow species, but, in contrast to previous findings, it increased for the four deep species, suggesting evolutionary changes in LDH reaction volumes. MDH maximal reaction rates increased with pressure in all species (up to 51±10% at 60 MPa), including the tide pool snailfish, Liparis florae (activity increase at 60 MPa 44±9%), suggesting an inherent negative volume change of the reaction. PK was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 60 MPa), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities according to these pressure-related rate changes and new data from seven abyssal and hadal species from the Kermadec and Mariana trenches. Results show that, with abyssal and hadal species, pressure-related rate changes are another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in addition to factors such as temperature and body mass. Intraspecific increases in tricarboxylic acid cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest improved nutritional

  12. Characterization of biotransformation enzyme activities in primary rat proximal tubular cells

    NARCIS (Netherlands)

    Schaaf, G.; de Groene, E.M.; Maas, R.; Commandeur, J.N.M.; Fink-Gremmels, J.

    2001-01-01

    The proximal tubule is a frequent target for nephrotoxic compounds due to it's ability to transport and accumulate xenobiotics and their metabolites, as well as by the presence of an organ-selective set of biotransformation enzymes. The aim of the present study was to characterize the activities of

  13. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    Science.gov (United States)

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  14. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    Czech Academy of Sciences Publication Activity Database

    Convigton, E. D.; Roitsch, Thomas; Dernastia, M.

    2016-01-01

    Roč. 63, č. 4 (2016), s. 757-762 ISSN 1318-0207 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : AGPase * carbohydrates * invertases * sucrose synthase * panel of enzyme activity assays * phytoplasma Subject RIV: EH - Ecology, Behaviour Impact factor: 0.983, year: 2016

  15. A study of the fine structure, enzyme activities and pattern of 14CO2 ...

    African Journals Online (AJOL)

    A detailed study of selected grasses has been made with respect to fine structures characteristics, enzyme activities associated with C-4 and C-3 pathway photosynthesis, and short term carbon dioxide-14 incorporation experiments. A good correlation was obtained between the fine structure, the carbon pathway and the ...

  16. Polymorphic drug metabolising enzymes : Assessment of activities by phenotyping and genotyping in clinical pharmacology

    NARCIS (Netherlands)

    Tamminga, Willem Jan

    2001-01-01

    Drug effects (pharmacodynamics) are determined by drug concentration at target site and the affinity of the drug for a target. Pharmacogenetics describes inherited differences in drug metabolising enzyme activities and differences in drug transporters and receptors.Answers were sought on the

  17. N-Glycosylation of Carnosinase Influences Protein Secretion and Enzyme Activity Implications for Hyperglycemia

    NARCIS (Netherlands)

    Riedl, Eva; Koeppel, Hannes; Pfister, Frederick; Peters, Verena; Sauerhoefer, Sibylle; Sternik, Paula; Brinkkoetter, Paul; Zentgraf, Hanswalter; Navis, Gerjan; Henning, Robert H.; Van Den Born, Jacob; Bakker, Stephan J. L.; Janssen, Bart; van der Woude, Fokko J.; Yard, Benito A.

    OBJECTIVE-The (CTG)(n) polymorphism in the serum carnosinase (CN-1) gene affects CN-1 secretion Since CN-1 is heavily glycosylated and glycosylation might influence protein secretion as well, we tested the role of N-glycosylation for CN-1 secretion and enzyme activity. We also tested whether CN-1

  18. Soil enzyme activities in Pinus tabuliformis (Carriere) plantations in northern China

    Science.gov (United States)

    Weiwei Wang; Deborah Page-Dumroese; Ruiheng Lv; Chen Xiao; Guolei Li; Yong Liu

    2016-01-01

    Changes in forest stand structure may alter the activity of invertase, urease, catalase and phenol oxidase after thinning Pinus tabuliformis (Carriére) plantations in Yanqing County of Beijing, China. We examined changes in these soil enzymes as influenced by time since thinning (24, 32, and 40 years since thinning) for 3 seasons (spring, summer and autumn)...

  19. THE PRIMARY STRUCTURE OF HEVAMINE, AN ENZYME WITH LYSOZYME CHITINASE ACTIVITY FROM HEVEA-BRASILIENSIS LATEX

    NARCIS (Netherlands)

    JEKEL, PA; HARTMANN, JBH; BEINTEMA, JJ

    1991-01-01

    The primary structure of hevamine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex, has been determined predominantly with conventional non-automatic methods. The positions of three disulfide bridges have been determined. The sequence has about 60% identity with that of a

  20. Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids

    NARCIS (Netherlands)

    Holdsworth, Jane E.; Veenhuis, Marten; Ratledge, Colin

    1988-01-01

    The activities of ATP:citrate lyase (ACL; EC 4.1.3.8), carnitine acetyltransferase (CAT; EC 2.3.1.7), NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42), isocitrate lyase (ICL; EC 4.1.3.1) and malic enzyme (malate dehydrogenase; EC 1.1.1.40) were measured in four oleaginous yeasts, Candida

  1. Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome

    NARCIS (Netherlands)

    Schrakamp, G.; Bosch, H. van den; Roest, B.; Kos, M.; Meijer, A.J.; Heymans, H.S.A.; Tegelaers, W.H.H.; Schutgens, R.B.H.; Tager, J.M.; Wanders, R.J.A.

    1984-01-01

    The activity of peroxisomal enzymes was studied in human liver and cultured human skin fibroblasts in relation to the finding (Goldfischer, S. et al. (1973) Science 182, 62–64) that morphologically distinct peroxisomes are not detectable in patients with the cerebro-hepato-renal (Zellweger)

  2. Effect of “Tai Chi” exercise on antioxidant enzymes activities and ...

    African Journals Online (AJOL)

    ... exercise that increases physical strength and relax the mind. Materials and Methods: The study investigates effect of “tai chi” exercise on antioxidant enzymes activities and immunity function in participants. These participants were randomly divided into two groups: “tai chi” exercise group (n=25) and control group (n=25).

  3. Biomass and enzyme activity of two soil transects at King George Island, Maritime Antarctica

    Czech Academy of Sciences Publication Activity Database

    Tscherko, D.; Bölter, M.; Beyer, L.; Chen, J.; Elster, Josef; Kandeler, E.; Kuhn, D.; Blume, H. P.

    2003-01-01

    Roč. 35, č. 1 (2003), s. 34-47 ISSN 1523-0430 R&D Projects: GA ČR GA205/94/0156; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : Maritime Antarctica * microbial soil biomass * enzyme activity Subject RIV: EF - Botanics Impact factor: 0.954, year: 2003

  4. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques.

    Science.gov (United States)

    Grace, M; Fletcher, L; Powers, S K; Hughes, M; Coombes, J

    1996-12-01

    Homogenization of tissue for analysis of bioenergetic enzyme activities is a common practice in studies examining metabolic properties of skeletal muscle adaptation to disease, aging, inactivity or exercise. While numerous homogenization techniques are in use today, limited information exists concerning the efficacy of specific homogenization protocols. Therefore, the purpose of this study was to compare the efficacy of four commonly used approaches to homogenizing skeletal muscle for analysis of bioenergetic enzyme activity. The maximal enzyme activity (Vmax) of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured from homogenous muscle samples (N = 48 per homogenization technique) and used as indicators to determine which protocol had the highest efficacy. The homogenization techniques were: (1) glass-on-glass pestle; (2) a combination of a mechanical blender and a teflon pestle (Potter-Elvehjem); (3) a combination of the mechanical blender and a biological detergent; and (4) the combined use of a mechanical blender and a sonicator. The glass-on-glass pestle homogenization protocol produced significantly higher (P pestle homogenization protocol is the technique of choice for studying bioenergetic enzyme activity in skeletal muscle.

  5. Activities of xenobiotic metabolizing enzymes in rat placenta and liver in vitro

    NARCIS (Netherlands)

    Fabian, Eric; Wang, Xinyi; Engel, Franziska; Li, Hequn; Landsiedel, Robert; Ravenzwaay, van Bennard

    2016-01-01

    In order to assess whether the placental metabolism of xenobiotic compounds should be taken into consideration for physiologically-based toxicokinetic (PBTK) modelling, the activities of seven phase I and phase II enzymes have been quantified in the 18-day placenta of untreated Wistar rats. To

  6. Detection of metals and polychlorobiphenyls and their correlation with detoxificant enzymes activity in Dicentrarchus labrax

    Directory of Open Access Journals (Sweden)

    I. Traversi

    2011-01-01

    Full Text Available Several pollutants released to the environment, are biotransformed into more soluble molecules, in liver, by several enzymes, as catalase (CAT and glutathione-S-tranferase (GST, which are fundamental for detoxification and excretion. The aim of this study was to investigate the relationships among xenobiotic levels and CAT and GST enzymatic activities, in reared European sea bass.

  7. Histochemical demonstration of creatine kinase activity using polyvinyl alcohol and auxiliary enzymes

    NARCIS (Netherlands)

    Frederiks, W. M.; Marx, F.; van Noorden, C. J.

    1987-01-01

    Creatine kinase activity (EC 2.7.3.2.) has been demonstrated in myocardium and skeletal muscle from rats by a method based on the incubation of cryostat sections with a polyvinyl alcohol-containing medium and the use of auxiliary enzymes. Hexokinase and glucose-6-phosphate dehydrogenase were spread

  8. Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome

    NARCIS (Netherlands)

    Wanders, R. J.; Kos, M.; Roest, B.; Meijer, A. J.; Schrakamp, G.; Heymans, H. S.; Tegelaers, W. H.; van den Bosch, H.; Schutgens, R. B.; Tager, J. M.

    1984-01-01

    The activity of peroxisomal enzymes was studied in human liver and cultured human skin fibroblasts in relation to the finding (Goldfischer, S. et al. (1973) Science 182, 62-64) that morphologically distinct peroxisomes are not detectable in patients with the cerebro-hepato-renal (Zellweger)

  9. Post-cold-storage conditioning time affects soil denitrifying enzyme activity

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2011-01-01

    Soil denitrifying enzyme activity (DEA) is often assessed after cold storage. Previous studies using the short-term acetylene inhibition method have not considered conditioning time (post-cold-storage warm-up time prior to soil analysis) as a factor influencing results. We observed fluctuations...

  10. A Survey of Soil Enzyme Activities along Major Roads in Beijing: The Implications for Traffic Corridor Green Space Management

    Directory of Open Access Journals (Sweden)

    Tianxin Li

    2015-10-01

    Full Text Available Soil quality is critical to the management of urban green space, in particular, along traffic corridors where traffic-related air pollution is significant. Soil quality can be evaluated by soil enzyme activities, which show quick responses to both natural and anthropogenic disturbances. In this study, we investigated three soil enzyme activities (i.e., dehydrogenase, catalase and urease along the major roads in urban areas of Beijing. Results show the activities of dehydrogenase, catalase and urease in urban samples were 58.8%, 68.2% and 48.5% less than the rural sample, respectively. The content of fluorescent amino acids as indicators of microbial activities was also consistently lower in urban samples than the rural. We observed two times greater exposure of particulate material along the roadsides in urban areas than rural areas. Although traffic air pollutants provide some nutrient sources to stimulate the URE activity, the exposure to traffic-related air pollution leads to the substantial decrease in enzyme activities. There were significant negative correlations for exposure to PM10 with DHA (r = −0.8267, p = 0.0017 and CAT (r = −0.89, p = 0.0002 activities. For the urban soils URE activity increased with the increasing of PM. We conclude that the degraded soil quality can negatively affect the target of developing plants and green spaces along the traffic corridors to mitigate the traffic impact. This study suggests the investigation of integrated strategies to restore the soil quality, reinforce the ecological service functions of green spaces along the traffic corridors and reduce the traffic pollutants.

  11. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    Science.gov (United States)

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. © 2013.

  12. Task control signals in pediatric Tourette syndrome show evidence of immature and anomalous functional activity

    Directory of Open Access Journals (Sweden)

    Jessica A Church

    2009-11-01

    Full Text Available Tourette Syndrome (TS is a pediatric movement disorder that may affect control signaling in the brain. Previous work has proposed a dual-networks architecture of control processing involving a task-maintenance network and an adaptive control network (Dosenbach et al., 2008. A prior resting-state functional connectivity MRI (rs-fcMRI analysis in TS has revealed functional immaturity in both putative control networks, with “anomalous” correlations (i.e. correlations outside the typical developmental range limited to the adaptive control network (Church et al., 2009. The present study used functional MRI (fMRI to study brain activity related to adaptive control (by studying start-cues signals, and to task-maintenance (by studying signals sustained across a task set. Two hypotheses from the previous rs-fcMRI results were tested. First, adaptive control (i.e., start-cue activity will be altered in TS, including activity inconsistent with typical development (“anomalous”. Second, group differences found in task maintenance (i.e., sustained activity will be consistent with functional immaturity in TS. We examined regions found through a direct comparison of adolescents with and without TS, as well as regions derived from a previous investigation that showed differences between unaffected children and adults. The TS group showed decreased start-cue signal magnitude in regions where start-cue activity is unchanged over typical development, consistent with anomalous adaptive control. The TS group also had higher magnitude sustained signals in frontal cortex regions that overlapped with regions showing differences over typical development, consistent with immature task maintenance in TS. The results demonstrate task-related fMRI signal differences anticipated by the atypical functional connectivity found previously in adolescents with TS, strengthening the evidence for functional immaturity and anomalous signaling in control networks in adolescents

  13. Antiparkinson drug--Mucuna pruriens shows antioxidant and metal chelating activity.

    Science.gov (United States)

    Dhanasekaran, Muralikrishnan; Tharakan, Binu; Manyam, Bala V

    2008-01-01

    Parkinson's disease is a neurodegenerative disorder for which no neurorestorative therapeutic treatment is currently available. Oxidative stress plays an important role in the pathophysiology of Parkinson's disease. The ancient Indian medical system, Ayurveda, traditionally uses Mucuna pruriens to treat Parkinson's disease. In our earlier studies, Mucuna pruriens has been shown to possess antiparkinson and neuroprotective effects in animal models of Parkinson's disease. The antioxidant activity of Mucuna pruriens was demonstrated by its ability to scavenge DPPH radicals, ABTS radicals and reactive oxygen species. Mucuna pruriens significantly inhibited the oxidation of lipids and deoxyribose sugar. Mucuna pruriens exhibited divalent iron chelating activity and did not show any genotoxic/mutagenic effect on the plasmid DNA. These results suggest that the neuroprotective and neurorestorative effect of Mucuna pruriens may be related to its antioxidant activity independent of the symptomatic effect. In addition, the drug appears to be therapeutically safe in the treatment of patients with Parkinson's disease. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium Roqueforti.

    Science.gov (United States)

    Martínez-Rodríguez, Yamile; Acosta-Muñiz, Carlos; Olivas, Guadalupe I; Guerrero-Beltrán, José; Rodrigo-Aliaga, Dolores; Mujica-Paz, Hugo; Welti-Chanes, Jorge; Sepulveda, David R

    2014-01-03

    This study investigated the effect of high hydrostatic pressure treatments on mycelial development, spore viability, and total proteolytic and lipolytic activity of Penicillium roqueforti PV-LYO 10 D. Fungus growing in liquid medium was pressure-treated at 300, 400, and 500 MPa for 10 min at 20°C following seven days of incubation at 25°C and analyzed periodically up to day 9 after treatments to evaluate the effect on fungal growth. Mycelial mass of P. roqueforti was significantly affected at all pressure treatments evaluated, being 15.48%, 22.28%, 30.03%, and 12.53% lower than controls on day 1, 3, 6, and 9 after 300 MPa treatment, respectively. In a similar way, at 400 and 500 MPa, mycelial mass was 31.08% and 60.34% lower than controls one day after treatments and 49.74% and 80.85% lower on day 9, respectively. The viability of P. roqueforti spores decreased by 36.53% at 300 MPa, and complete inactivation took place at ≥400 MPa from an initial count of 7 log cfu/mL. Total proteolytic activity was not significantly affected at 300 MPa but was reduced by 18.22% at 400 MPa and by 43.18% at 500 MPa. Total lipolytic activity also decreased as the intensity of the pressure treatments increased. 21.69%, 39.12%, and 56.26% activity reductions were observed when treatments of 300, 400 and 500 MPa were applied, respectively. The results from this study show that pressure treatments are able to control growth, inactivate spores, and alter enzyme activity of P. roqueforti, which could be of interest in extending the shelf-life of blue-veined cheeses and other food products. © 2013.

  15. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    Science.gov (United States)

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  16. [Effect of low-intensity 900 MHz frequency electromagnetic radiation on rat liver and blood serum enzyme activities].

    Science.gov (United States)

    Nersesova, L S; Petrosian, M S; Gazariants, M G; Mkrtchian, Z S; Meliksetian, G O; Pogosian, L G; Akopian, Zh I

    2014-01-01

    The comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them. The dynamics of post-radiation changes in the activity of investigated enzyme levels following a single and short-term fractional schedules of radiation did not differ essentially.

  17. Dietary compounds that induce cancer preventive phase 2 enzymes activate apoptosis at comparable doses in HT29 colon carcinoma cells.

    Science.gov (United States)

    Kirlin, W G; Cai, J; DeLong, M J; Patten, E J; Jones, D P

    1999-10-01

    Dietary agents that induce glutathione S-transferases and related detoxification systems (Phase 2 enzyme inducers) are thought to prevent cancer by enhancing elimination of chemical carcinogens. The present study shows that compounds of this group (benzyl isothiocyanate, allyl sulfide, dimethyl fumarate, butylated hydroxyanisole) activated apoptosis in human colon carcinoma (HT29) cells in culture over the same concentration ranges that elicited increases in enzyme activity (5-25, 25-100, 10-100, 15-60 micromol/L, respectively). Pretreatment of cells with sodium butyrate, an agent that induces HT29 cell differentiation, resulted in parallel increases in Phase 2 enzyme activities and induction of apoptosis in response to the inducers. Cell death characteristics included apoptotic morphological changes, appearance of cells at sub-G1 phase on flow cytometry, caspase activation, DNA fragmentation and TUNEL-positive staining. The results suggest that dietary Phase 2 inducers may protect against cancer by a mechanism distinct from and in addition to that associated with enhanced elimination of carcinogens. If this occurs in vivo, diets high in such compounds could eliminate precancerous cells by apoptosis at time points well after initial exposure to chemical mutagens and carcinogens.

  18. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Xiaotao Ding

    Full Text Available Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  19. The three catalases in Deinococcus radiodurans: Only two show catalase activity.

    Science.gov (United States)

    Jeong, Sun-Wook; Jung, Jong-Hyun; Kim, Min-Kyu; Seo, Ho Seong; Lim, Heon-Man; Lim, Sangyong

    2016-01-15

    Deinococcus radiodurans, which is extremely resistant to ionizing radiation and oxidative stress, is known to have three catalases (DR1998, DRA0146, and DRA0259). In this study, to investigate the role of each catalase, we constructed catalase mutants (Δdr1998, ΔdrA0146, and ΔdrA0259) of D. radiodurans. Of the three mutants, Δdr1998 exhibited the greatest decrease in hydrogen peroxide (H2O2) resistance and the highest increase in intracellular reactive oxygen species (ROS) levels following H2O2 treatments, whereas ΔdrA0146 showed no change in its H2O2 resistance or ROS level. Catalase activity was not attenuated in ΔdrA0146, and none of the three bands detected in an in-gel catalase activity assay disappeared in ΔdrA0146. The purified His-tagged recombinant DRA0146 did not show catalase activity. In addition, the phylogenetic analysis of the deinococcal catalases revealed that the DR1998-type catalase is common in the genus Deinococcus, but the DRA0146-type catalase was found in only 4 of 23 Deinococcus species. Taken together, these results indicate that DR1998 plays a critical role in the anti-oxidative system of D. radiodurans by detoxifying H2O2, but DRA0146 does not have catalase activity and is not involved in the resistance to H2O2 stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  1. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    Science.gov (United States)

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Protective Antioxidant Enzyme Activities are Affected by Drought in Quinoa (Chenopodium Quinoa Willd)

    DEFF Research Database (Denmark)

    Fghire, Rachid; Ali, Oudou Issa; Anaya, Fatima

    2013-01-01

    Changes in water availability are responsible for a variety of biochemical stress responses in plant organisms. Stress induced by this factor may be associated with enhanced reactive oxygen species (ROS) generations, which cause oxidative damage. In the present study we investigated the activities...... increased in all treatments. These results suggest that antioxidant enzymes play important roles in reducing oxidative stress in quinoa plant exposed to drought stress....... of antioxidant enzymes superoxide dismutase (SOD), polyphenoloxydase (PPO), peroxidase (POD) and catalase (CAT), measured at flowering in quinoa, subjected to varying levels of drought stress. Drought levels were 100, 50 and 33% of evapotranspiration (ETc), and rainfed. Compared to full water supply (100%ETc...

  3. Chinese medicinal formula Fufang Xueshuantong capsule could inhibit the activity of angiotensin converting enzyme

    Science.gov (United States)

    Sheng, Shujing; Wang, Yonggang; Long, Chaofeng; Su, Weiwei; Rong, Xia

    2014-01-01

    Fufang Xueshuantong (FXST) capsule, a Chinese medicinal formula composed of four herbals – Panax notoginseng, Radix Astragali, Radix Salvia Miltiorrhizae and Radix Scrophulariaceae, has been used to treat cardiovascular diseases for many years, but the pharmacological mechanisms underlying its effects has not been clarified. This study investigates if a connection between FXST and angiotensin converting enzyme (ACE) might be an explanation for its pharmacological effects. ACE inhibition assay was performed on FXST capsule, 50% ethanol extracts from the four herbals and three selected saponins most abundant in P. notoginseng (Ginsenoside Rg1, Ginsenoside Rb1 and Notoginsenoside R1) using a biochemical test. Reversed-phase high-performance liquid chromatography of liberated hippuric acid from the ACE assay was conducted to determine the inhibitory effect. As a result, FXST and extracts from P. notoginseng showed a significant and dose-dependent inhibition on ACE activity with the IC50 values of 115 μg/ml and 179 μg/ml, respectively. But extracts from the other three herbals and the three selected saponins had no significant effect on ACE inhibition. Compared to other reported plant extracts, FXST could be considered as an effective ACE inhibitor. The inhibition of ACE activity supports the traditional use of FXST on blood circulation and the inhibitory property of FXST is mainly caused by P. notoginseng. PMID:26019516

  4. Trace cobalt speciation in bacteria and at enzymic active sites using emission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A.A.; Antonyuk, L.P.; Smirnova, V.E.; Serebrennikova, O.B. [Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation); Kulikov, L.A.; Perfiliev, Yu.D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, Moscow State University (Russian Federation)

    2002-02-01

    {sup 57}Co emission Moessbauer spectroscopy (EMS) allows the chemical state of cobalt, as influenced by its coordination environment, to be monitored in biological samples at its physiological (trace) concentrations. To draw attention to EMS as a valuable tool for speciation of cobalt in biocomplexes, the process of cobalt(II) metabolism in cells of the plant growth-promoting rhizobacterium Azospirillum brasilense Sp245 was investigated using EMS of {sup 57}Co{sup II}-doped bacterial cells. EMS measurements also showed {sup 57}Co{sup II}-activated glutamine synthetase (GS, a key enzyme of nitrogen metabolism, isolated from this bacterium) to have two different cobalt(II) forms at its active sites, in agreement with data available on other bacterial GSs. Chemical after-effects following electron capture by the nucleus of the parent {sup 57}Co{sup II} during the {sup 57}Co{yields}{sup 57}Fe transition, which contribute to the formation of a stabilised daughter {sup 57}Fe{sup III} component along with the nucleogenic {sup 57}Fe{sup II} forms, are also briefly considered. (orig.)

  5. Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)?

    Institute of Scientific and Technical Information of China (English)

    Ronnie Von Santos Veloso; Eliseu José G.Pereira; Raul Narciso C.Guedes; Maria Goreti A.Oliveira

    2013-01-01

    Insecticides cause a range of sub-lethal effects on targeted insects,which are frequently detrimental to them.However,targeted insects are able to cope with insecticides within sub-lethal ranges,which vary with their susceptibility.Here we assessed the response of three strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae) to sub-lethal exposure to the pyrethoid insecticide cypermethrin.We expected enzyme induction associated with cypermethrin resistance since it would aid the resistant insects in surviving such exposure.Lower respiration rate and lower activity were also expected in insecticide-resistant insects since these traits are also likely to favor survivorship under insecticide exposure.Curiously though,cypermethrin did not affect activity of digestive and energy metabolism enzymes,and even reduced the activity of some enzymes (particularly for cellulase and cysteine-proteinase activity in this case).There was strain variation in response,which may be (partially) related to insecticide resistance in some strains.Sub-lethal exposure to cypermethrin depressed proteolytic and mainly cellulolytic activity in the exposed insects,which is likely to impair their fitness.However,such exposure did not affect respiration rate and walking behavior of the insects (except for the susceptible strain where walking activity was reduced).Walking activity varies with strain and may minimize insecticide exposure,which should be a concern,particularly if associated with (physiological) insecticide resistance.

  6. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    Science.gov (United States)

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  7. Activity of trypsin-like enzymes and gelatinases in rats with doxorubicin cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Iu. А. Gordiienko

    2014-12-01

    Full Text Available Activity of trypsin-like enzymes (ATLE and gelatinases A and B were studied in the blood plasma and extracts from cardiac muscle, cerebral cortex and cerebellum of rats with cardiomyopathy caused by anthracycline antibiotic doxorubicin against the background of preventive application of corvitin and α-ketoglutarate. ATLE significantly increased in blood plasma and extracts from cerebral cortex but decreased in extracts from cardiac muscle and cerebellum in doxorubicin cardiomyopathy (DCMP. In addition, a significant increase of activity of both gelatinases in plasma and tissue extracts was observed. Preventive administration of corvitin and α-ketoglutarate resulted in differently directed changes of activity of the above mentioned enzymes in heart and brain tissues. Obtained data confirm the hypothesis about activation of proteolysis under the influence of anthracycline antibiotics and testify to selective effect of corvitin and α-ketoglutarate on ATLE and gelatinases.

  8. Activity of trypsin-like enzymes and gelatinases in rats with doxorubicin cardiomyopathy.

    Science.gov (United States)

    Gordiienko, Iu A; Babets, Ya V; Kulinich, A O; Shevtsova, A I; Ushakova, G O

    2014-01-01

    Activity of trypsin-like enzymes (ATLE) and gelatinases A and B were studied in the blood plasma and extracts from cardiac muscle, cerebral cortex and cerebellum of rats with cardiomyopathy caused by anthracycline antibiotic doxorubicin against the background of preventive application of corvitin and α-ketoglutarate. ATLE significantly increased in blood plasma and extracts from cerebral cortex but decreased in extracts from cardiac muscle and cerebellum in doxorubicin cardiomyopathy (DCMP). In addition, a significant increase of activity of both gelatinases in plasma and tissue extracts was observed. Preventive administration of corvitin and α-ketoglutarate resulted in differently directed changes of activity of the above mentioned enzymes in heart and brain tissues. Obtained data confirm the hypothesis about activation of proteolysis under the influence of anthracycline antibiotics and testify to selective effect of corvitin and α-ketoglutarate on ATLE and gelatinases.

  9. Acute Exercise Increases Plasma Total Antioxidant Status and Anti