WorldWideScience

Sample records for enzyme activity follow

  1. Modulation of enzyme activities following the coadministration of ...

    African Journals Online (AJOL)

    It could be inferred from the results therefore that the intrinsic properties of chemical substances could be modulated or modified intracellularly when in interaction with other compounds and even with the cell system. Keywords: Food additives, Chloroquine, Potassium bromate, Co-administration, Enzyme activity, Modulation ...

  2. Decrease in Activities of Selected Rat Liver Enzymes following ...

    African Journals Online (AJOL)

    The effects of the chemical effluent from Soap and Detergent Industry on some rat liver enzymes were investigated. Chemical analyses of both the effluent and tap water which served as the control were carried out before various concentrations of the effluent (5%v/v, 25%v/v, 50%v/v and 100%v/v) were made. The effluent ...

  3. Changes in Activities of Three Enzymes Degrading Galactomannan During and Following Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Yan-fang REN

    2007-12-01

    Full Text Available To investigate the relationships among β-mannanase, β-mannosidase and α-galactosidase required for degrading galactomannan in cell wall during and following rice seed germination, the activities of the three enzymes and the effects of ABA and GA3 on them were surveyed. The activities of β-mannosidase and α-galactosidase presented in dry and pre-germinated rice seeds, and increased slowly during and following germination. However, the activity of β-mannanase was detected only after germination. GA3 could promote the activities of β-mannanase and α-galactosidase. ABA had little effect on the activities of β-mannosidase and α-galactosidase, but it could seriously inhibit the activity of β-mannanase.

  4. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    Directory of Open Access Journals (Sweden)

    Joseph E. Knelman

    2017-09-01

    Full Text Available While past research has studied forest succession on decadal timescales, ecosystem responses to rapid shifts in nutrient dynamics within the first months to years of succession after fire (e.g., carbon (C burn-off, a pulse in inorganic nitrogen (N, accumulation of organic matter, etc. have been less well documented. This work reveals how rapid shifts in nutrient availability associated with fire disturbance may drive changes in soil enzyme activity on short timescales in forest secondary succession. In this study, we evaluate soil chemistry and decomposition extracellular enzyme activity (EEA across time to determine whether rapid shifts in nutrient availability (1–29 months after fire might control microbial enzyme activity. We found that, with advancing succession, soil nutrients correlate with C-targeting β-1,4-glucosidase (BG EEA four months after the fire, and with N-targeting β-1,4-N-acetylglucosaminidase (NAG EEA at 29 months after the fire, indicating shifting nutrient limitation and decomposition dynamics. We also observed increases in BG:NAG ratios over 29 months in these recently burned soils, suggesting relative increases in microbial activity around C-cycling and C-acquisition. These successional dynamics were unique from seasonal changes we observed in unburned, forested reference soils. Our work demonstrates how EEA may shift even within the first months to years of ecosystem succession alongside common patterns of post-fire nutrient availability. Thus, this work emphasizes that nutrient dynamics in the earliest stages of forest secondary succession are important for understanding rates of C and N cycling and ecosystem development.

  5. Diversity and Enzyme Activity of Ectomycorrhizal Fungal Communities Following Nitrogen Fertilization in an Urban-Adjacent Pine Plantation

    Directory of Open Access Journals (Sweden)

    Chen Ning

    2018-02-01

    Full Text Available Rapid economic development and accelerated urbanization in China has resulted in widespread atmospheric nitrogen (N deposition. One consequence of N deposition is the alteration of mycorrhizal symbioses that are critical for plant resource acquisition (nitrogen, N, phosphorus, P, water. In this study, we characterized the diversity, composition, and functioning of ectomycorrhizal (ECM fungal communities in an urban-adjacent Pinus elliottii plantation under ambient N deposition (~24 kg N ha−1 year−1, and following N fertilization (low N, 50 kg N ha−1 year−1; high N, 300 kg N ha−1 year−1. ECM functioning was expressed as the potential activities of extracellular enzymes required for organic N (protease, P (phosphomonoesterase, and recalcitrant polymers (phenol oxidase. Despite high ambient N deposition, ECM community composition shifted under experimental N fertilization, and those changes were linked to disparate levels of soil minerals (P, K and organic matter (but not N, a decline in acid phosphatase (AP, and an increase in phenol oxidase (PO potential activities. Based on enzyme stoichiometry, medium-smooth exploration type ECM species invested more in C acquisition (PO relative to P (AP following high N fertilization than other exploration types. ECM species with hydrophilic mantles also showed higher enzymatic PO:AP ratios than taxa with hydrophobic mantles. Our findings add to the accumulating evidence that shifts in ECM community composition and taxa specialized in organic C, N, and P degradation could modulate the soil nutrient cycling in forests exposed to chronic elevated N input.

  6. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates

    Energy Technology Data Exchange (ETDEWEB)

    Rabovsky, J.; Judy, D.J.; Rodak, D.J.; Petersen, M.

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under conditions of particulate exposure and virus infection, serum IFN levels peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE.

  7. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    Science.gov (United States)

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  8. Dissociation from DNA of Type III Restriction–Modification enzymes during helicase-dependent motion and following endonuclease activity

    Science.gov (United States)

    Tóth, Júlia; van Aelst, Kara; Salmons, Hannah; Szczelkun, Mark D.

    2012-01-01

    DNA cleavage by the Type III Restriction–Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can ‘turnover’, albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. ‘DNA sliding’). PMID:22523084

  9. Dissociation from DNA of Type III Restriction-Modification enzymes during helicase-dependent motion and following endonuclease activity.

    Science.gov (United States)

    Tóth, Júlia; van Aelst, Kara; Salmons, Hannah; Szczelkun, Mark D

    2012-08-01

    DNA cleavage by the Type III Restriction-Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼ 200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can 'turnover', albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. 'DNA sliding').

  10. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  11. Variability of soil enzyme activities and vegetation succession following boreal forest surface soil transfer to an artificial hill

    Directory of Open Access Journals (Sweden)

    Maarit Niemi

    2014-08-01

    Full Text Available A landfill site in southern Finland was converted into urban green space by covering it with a layer of fresh forest humus transferred from nearby construction sites. The aim was to develop the 70 m high artificial hill into a recreational area with high biodiversity of flora and fauna. Forest humus was used as a source of organic matter, plant roots, seeds, soil fauna and microorganisms in order to enable rapid regeneration of diverse vegetation and soil biological functions. In this study we report the results of three years of monitoring of soil enzyme activity and plant species compositional patterns. Monthly soil samples were taken each year between June and September from four sites on the hill and from two standing reference forests using three replicate plots. Activities of 10 different enzymes, soil organic matter (SOM content, moisture, pH and temperature of the surface layer were monitored. Abundances of vascular plant species were surveyed on the same four hill sites between late May and early September, three times a season in 2004 and 2005. Although the addition of organic soil considerably increased soil enzyme activities (per dw, the activities at the covered hill sites were far lower than in the reference forests. Temporal changes and differences between sites were analysed in more detail per soil organic matter (SOM in order to reveal differences in the quality of SOM. All the sites had a characteristic enzyme activity pattern and two hill sites showed clear temporal changes. The enzyme activities in uncovered topsoil increased, whereas the activities at the covered Middle site decreased, when compared with other sites at the same time. The different trend between Middle and North sites in enzyme activities may reflect differences in humus material transferred to these sites, but difference in the succession of vegetation affects enzyme activities strongly. Middle yielded higher β-sitosterol content in 2004, as an indication

  12. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  13. Changes in activity of some NADPH producing enzymes in the liver of rats following lethal X-irradiation

    International Nuclear Information System (INIS)

    Datelinka, I.; Ahlers, I.; Toropila, M.; Praslicka, M.

    1982-01-01

    The activities were determined of glucoso-6-phosphate dehydrogenase, 6-phospho-gluconate dehydrogenase, malic dehydrogenase and isocitrate dehydrogenase in the cytosol fraction of the liver homogenate of rats irradiated with a dose of 14.35 Gy of X radiation. The observed changes do not explain the observed growth of lipogenesis following irradiation. (M.D.)

  14. Baseline and 6-Week follow-up levels of PAF and activity of its metabolic enzymes in patients with heart failure and healthy volunteers--a pilot study.

    Science.gov (United States)

    Detopoulou, Paraskevi; Fragopoulou, Elizabeth; Nomikos, Tzortzis; Antonopoulou, Smaragdi; Kotroyiannis, Iason; Vassiliadou, Carmen; Panagiotakos, Demosthenes B; Chrysohoou, Christina; Pitsavos, Christos; Stefanadis, Christodoulos

    2013-10-01

    This study aimed at evaluating the changes in platelet-activating factor (PAF) and its metabolic enzymes over a 6-week follow-up period in patients with newly diagnosed heart failure ([HF] n = 12) compared with age-, sex-, and BMI-matched apparently healthy volunteers (n = 10). The PAF, its key biosynthetic enzymes (lyso-PAF acetyltransferase [lyso-PAF-AT] and dithiothreitol [DTT]-insensitive CDP choline: 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase [PAF-CPT]), and its catabolic isoenzymes (PAF-acetylhydrolase [PAF-AH] and lipoprotein-associated phospholipase A2 [Lp-PLA2]) were measured in serum and leukocytes of participants. At baseline, patients with HF had lower median activities of lyso-PAF-AT (P PAF-CPT (P = .07) in parallel with PAF levels (P = .05) and higher activities of PAF-AH (P = .02) and Lp-PLA2 (P PAF-CPT and PAF levels marginally increased (P = .1), lyso-PAF-AT (P PAF-AH (P = .004) and Lp-PLA2 (P PAF biosynthetic enzymes and especially lyso-PAF-AT.

  15. Changes in Histopathology, Enzyme Activities, and the Expression of Relevant Genes in Zebrafish (Danio rerio) Following Long-Term Exposure to Environmental Levels of Thallium.

    Science.gov (United States)

    Hou, Li-Ping; Yang, Yang; Shu, Hu; Ying, Guang-Guo; Zhao, Jian-Liang; Chen, Yi-Bing; Chen, Yong-Heng; Fang, Gui-Zhen; Li, Xin; Liu, Ji-Sheng

    2017-11-01

    Thallium is a rare-earth element, but widely distributed in water environments, posing a potential risk to our health. This study was designed to investigate the chronic effects of thallium based on physiological responses, gene expression, and changes in the activity of relevant enzymes in adult zebra fish exposed to thallium at low doses. The endpoints assessed include mRNA expression of metallothionein (MT)2 and heat shock protein HSP70; enzymatic activities of superoxide dismutase (SOD) and Na + /K + -ATPase; and the histopathology of gill, gonad, and liver tissues. The results showed significant increases in HSP70 mRNA expression following exposure to 100 ng/L thallium and in MT2 expression following exposure to 500 ng/L thallium. Significantly higher activities were observed for SOD in liver and Na + /K + -ATPase activity in gill in zebra fish exposed to thallium (20 and 100 ng/L, respectively) in comparison to control fish. Gill, liver, and gonad tissues displayed different degrees of damage. The overall results imply that thallium may cause toxicity to zebra fish at environmentally relevant aqueous concentrations.

  16. Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape river crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNPs)

    CSIR Research Space (South Africa)

    Walters, Chavon R

    2016-01-01

    Full Text Available of oxidative stress was studied in the gills and hepatopancreas of the Cape River crab Potamonautes perlatus. Responses were assessed through activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and the nonenzymatic...

  17. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  18. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  19. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  20. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  1. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  2. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  3. Enzyme inhibition activities of Andrachne cardifolia Muell.

    Science.gov (United States)

    Ahmad, Bashir; Shah, S M Hassan; Bashir, Shumaila; Shah, Jehandar

    2007-04-01

    The crude methanolic extract and various fractions of Andrachne cardifolia Muell, including chloroform, ethyl acetate and n-butanol fractions were subjected to in vitro enzyme inhibition activity against acetylcholinesterase, butyrylcholinesterase, lipoxygenase and urease enzymes. A significant enzyme inhibition activity (40-89%) was shown by the crude methanolic extract and its fractions against lipoxygenase, while low to significant activity (40-71%) against butyrylcholinesterase. The crude methanolic extract and its various fractions demonstrated poor to significant activity (25-73%) against acetylcholinesterase and no activity against urease.

  4. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  5. Antimutagenic activity of oxidase enzymes

    International Nuclear Information System (INIS)

    Agabeili, R.A.

    1986-01-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity

  6. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  7. Cardiac Magnetic Resonance Imaging in Myocarditis Reveals Persistent Disease Activity Despite Normalization of Cardiac Enzymes and Inflammatory Parameters at 3-Month Follow-Up.

    Science.gov (United States)

    Berg, Jan; Kottwitz, Jan; Baltensperger, Nora; Kissel, Christine K; Lovrinovic, Marina; Mehra, Tarun; Scherff, Frank; Schmied, Christian; Templin, Christian; Lüscher, Thomas F; Heidecker, Bettina; Manka, Robert

    2017-11-01

    There is a major unmet need to identify high-risk patients in myocarditis. Although decreasing cardiac and inflammatory markers are commonly interpreted as resolving myocarditis, this assumption has not been confirmed as of today. We sought to evaluate whether routine laboratory parameters at diagnosis predict dynamic of late gadolinium enhancement (LGE) as persistent LGE has been shown to be a risk marker in myocarditis. Myocarditis was diagnosed based on clinical presentation, high-sensitivity troponin T, and cardiac magnetic resonance imaging, after exclusion of obstructive coronary artery disease by angiography. Cardiac magnetic resonance imaging was repeated at 3 months. LGE extent was analyzed with the software GT Volume. Change in LGE >20% was considered significant. Investigated cardiac and inflammatory markers included high-sensitivity troponin T, creatine kinase, myoglobin, N-terminal B-type natriuretic peptide, C-reactive protein, and leukocyte count. Twenty-four patients were enrolled. Absolute levels of cardiac enzymes and inflammatory markers at baseline did not predict change in LGE at 3 months. Cardiac and inflammatory markers had normalized in 21 patients (88%). LGE significantly improved in 16 patients (67%); however, it persisted to a lesser degree in 17 of them (71%) and increased in a small percentage (21%) despite normalization of cardiac enzymes. This is the first study reporting that cardiac enzymes and inflammatory parameters do not sufficiently reflect LGE in myocarditis. Although a majority of patients with normalizing laboratory markers experienced improved LGE, in a small percentage LGE worsened. These data suggest that cardiac magnetic resonance imaging might add value to currently existing diagnostic tools for risk assessment in myocarditis. © 2017 American Heart Association, Inc.

  8. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  9. [Enzyme histochemical studies on the rat adrenal cortex, ovary, uterus and vagina following chlormadinone acetate administration, especially cholinesterase activity in myometrium and endometrium].

    Science.gov (United States)

    Hanker, J

    1975-01-01

    1. Female albino rats were treated with a total of 28 mg of chlormadinone acetate (CMA) for 28 days. In the adrenal cortex, the ovary, the vagina, and the uterus the activities of 3-beta-ol-steroiddehydrogenase, of dl-beta-OH-butric acid dehydrogenase, of alcaline and acid phosphatases, of DPN-diaphorase, of ATP-ase, and of non-specific esterases do not differ from untreated controls. 2. In the external muscle layer of the myometrium strong cholinesterase (ChE) activity was induced by C.M.A. A corresponding high ChE activity is normally found in immature rats or in estrus. 3. Furthermore, by treatment with CMA, ChE activity was induced in the tubular glands of the endometrium. This activity is found in the small parts of glomerate glandular terminals only but not in the rest of the glandular epithelium, nor in the epithelium of the cavum. It could be demonstrated that a corresponding ChE activity normally appears in the second third of pregnancy. The ChE activity induced by CMA was considerably higher and more widespread than during normal pregnancy. 4. It is concluded that in the endometrial glands a development similar to pregnancy is initiated by CMA. But development stops at the stage of ChE activity, thus leading to accumulation of ChE active cells.

  10. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... starch was, for instance, reflected in a high α-glucosidase activity. However, no obvious correlations between specific process parameters and enzyme activities were found....

  11. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  12. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused. CBHI.1 protein. Plate enzyme ...

  13. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  14. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  15. Comparative Study on Liver Enzymes Activity and Blood Group ...

    African Journals Online (AJOL)

    The aim of this study is to determine the activities of some selected liver enzymes amongst apparently healthy subjects of different blood groups. The study involved 95 apparently healthy students of Ambrose Alli University, Ekpoma, Edo State, Nigeria, between the ages of 18-30, and distributed as follows; blood group O ...

  16. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  17. Procedures and means for determining enzyme activities

    International Nuclear Information System (INIS)

    Hunger, H.; Behrendt, G.; Schmidt, G.

    1988-01-01

    Aim of the invention is an improved procedure for the determination of phosphorylating enzyme activity by using an improved means. Cellular extracts and cell lysates, resp., are contacted with surface carriers from natural and/or synthesized polymers, containing deprotonizable groups, in presence of 32 P-γ-ATP and, if necessary, of ATP. The phosphorylated antibiotic is evidenced by autoradiography or any other identifying procedure. Fields of application are molecular biology, genetic engineering, biotechnology and medical special fields

  18. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  19. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  20. Detection of enzyme activity in decontaminated spices of industrial use

    International Nuclear Information System (INIS)

    Müller, R.; Theobald, R.

    1995-01-01

    A range of decontaminated spices of industrial use have been examinated for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material [de

  1. Growth characteristics and enzyme activity in Batrachochytrium dendrobatidis isolates.

    Science.gov (United States)

    Symonds, E Pearl; Trott, Darren J; Bird, Philip S; Mills, Paul

    2008-09-01

    Batrachochytrium dendrobatidis is a member of the phylum Chytridiomycota and the causative organism chytridiomycosis, a disease of amphibians associated with global population declines and mass mortality events. The organism targets keratin-forming epithelium in adult and larval amphibians, which suggests that keratinolytic activity may be required to infect amphibian hosts. To investigate this hypothesis, we tested 10 isolates of B. dendrobatidis for their ability to grow on a range of keratin-supplemented agars and measured keratolytic enzyme activity using a commercially available kit (bioMerieux API ZYM). The most dense and fastest growth of isolates were recorded on tryptone agar, followed by growth on frog skin agar and the slowest growth recorded on feather meal and boiled snake skin agar. Growth patterns were distinctive for each nutrient source. All 10 isolates were strongly positive for a range of proteolytic enzymes which may be keratinolytic, including trypsin and chymotrypsin. These findings support the predilection of B. dendrobatidis for amphibian skin.

  2. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Pilgaard, Bo; Lezyk, Mateusz Jakub

    2017-01-01

    and the lytic polysaccharide monooxygenase families. This approach notonly assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. Results: We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition......Background: Carbohydrate-active enzymes are found in all organisms and participate in key biological processes.These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis...... for prediction of enzyme function. A fastand reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interestas demonstrated for the glycosyl hydrolase...

  3. Probing Au nanoparticle uptake by enzyme following the digestion of a starch-Au-nanoparticle composite.

    Science.gov (United States)

    Deka, Jashmini; Paul, Anumita; Ramesh, A; Chattopadhyay, Arun

    2008-09-16

    In this letter, we report on the digestion of starch, when present as a composite with Au nanoparticles (NPs), by alpha-amylase. It has been observed that the rate of digestion of free starch and that in the composite were identical. Also, the well-established iodine test could be carried out to investigate the kinetics in the presence of Au NPs. The investigations revealed that following the digestion of starch in the composite the NPs were released and subsequently attached to the enzyme only and not to the degraded products of starch. Also, the enzyme attached to NPs, following digestion, retained its catalytic activity. The particle sizes of the NPs were not affected in the process because no agglomeration was observed. Experimental observations indicated the possibility of oriented attachment of alpha-amylase to the NPs in comparison to amyloglucosidase, another digestive enzyme. Finally, we observed a change in the surface plasmon resonance (SPR) of the NPs following the digestion of starch in the composite, and thus we could demonstrate that the SPR of the NPs could be used as a direct probe for monitoring the digestion of the composite by the enzyme.

  4. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  5. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    Acid phosphatase; dominance; Drosophila malerkotliana; epigenetics; heterodimeric allozymes; subunit interaction. J. Biosci. | Vol. 27 | No. ... Department of Genetics, Punjab Agricultural University, Ludhiana 141 004, India. *Corresponding ...... the genetic and complementation maps of the locus specifying the enzyme; J.

  6. Enzyme-mediated Nutrient Regeneration Following Lysis of Synechococcus WH7803

    Science.gov (United States)

    Mine, A. H.; Coleman, M.; Colman, A. S.

    2016-02-01

    Phosphate availability plays a pivotal role in limiting primary production in large regions of the oceans. In order to meet their metabolic needs, microbes use a variety of strategies to overcome phosphate stress. Expression of enzymes such as alkaline phosphatase (APase) allows cells to hydrolyze and use certain ambient dissolved organic phosphorus (DOP) compounds to meet their P demand. Cell lysis releases a range of nutrient forms and enzymes into the ambient environment and is an essential component of the microbial loop. Yet very few studies have attempted to characterize both the immediate and sustained nutrient remineralization linked to the milieu of organophosphorus compounds and enzymatic activity in lysate. We conducted experiments using Synechococcus WH7803 grown under nutrient replete and starved conditions to quantify the release of phosphate during viral lysis and lysis by lysozyme treatment. Dissolved inorganic and organic phosphorus concentrations and APase activity were monitored over time following lysis. We observed a significant initial release of orthophosphate that accompanies lysis. Following lysis, phosphate concentrations continue to rise for a period of hours to days as organophosphorus compounds continue to hydrolyze. Our observations suggest this is due to a combination of direct hydrolysis of DOP released during lysis, solubilization of POP followed by hydrolysis, and possibly polyphosphate decomposition. Size fractionated enzymatic assays suggest cellular debris associated enzymes and dissolved fractions are both important in DOP hydrolysis in the viral lysate, whereas particle associated APase activity dominates in the lysozyme treatments. Moreover, nutrient status prior to lysis has important controls on the initial nutrient release and subsequent regenerative flux. These findings underscore the significance of lysis and subsequent enzyme-mediated hydrolysis in nutrient regeneration and biogeochemical dynamics in marine ecosystems.

  7. Serum protein and enzyme levels in rats following administration of ...

    African Journals Online (AJOL)

    The effects of caffeinated and non-caffeinated paracetamol administration, with or without vitamins A and E supplementation on the protein and enzyme levels in Wistar albino rats were investigated using cafeinated paracetamol and paracetamol as caffeinated and non-caffeinated paracetamol respectively, and water ...

  8. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  9. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... of different factors, such as the nature of the enzyme, the properties of the support, the type of immobilization and the interaction between enzyme and support, has to be taken into consideration. In this thesis, these factors are pursued and addressed by exploiting various types of polymers with focus...

  10. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. ORENZA: a web resource for studying ORphan ENZyme activities

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2006-10-01

    Full Text Available Abstract Background Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities. Complete lists of all EC numbers and of orphan EC numbers are available and will be periodically updated. ORENZA allows one to browse the complete list of EC numbers or the subset associated with orphan enzymes or to query a specific EC number, an enzyme name or a species name for those interested in particular organisms. It is possible to search ORENZA for the different biochemical properties of the defined enzymes, the metabolic pathways in which they participate, the taxonomic data of the organisms whose genomes encode them, and many other features. The association of an enzyme activity with an amino acid sequence is clearly underlined, making it easy to identify at once the orphan enzyme activities. Interactive publishing of suggestions by the community would provide expert evidence for re-annotation of orphan EC numbers in public databases. Conclusion ORENZA is a Web resource designed to progressively bridge the unwanted gap between function (enzyme activities and sequence (dataset present in public databases. ORENZA should increase interactions between communities of biochemists and of genomicists. This is expected to reduce the number of orphan enzyme

  12. ORENZA: a web resource for studying ORphan ENZyme activities.

    Science.gov (United States)

    Lespinet, Olivier; Labedan, Bernard

    2006-10-06

    Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities. Complete lists of all EC numbers and of orphan EC numbers are available and will be periodically updated. ORENZA allows one to browse the complete list of EC numbers or the subset associated with orphan enzymes or to query a specific EC number, an enzyme name or a species name for those interested in particular organisms. It is possible to search ORENZA for the different biochemical properties of the defined enzymes, the metabolic pathways in which they participate, the taxonomic data of the organisms whose genomes encode them, and many other features. The association of an enzyme activity with an amino acid sequence is clearly underlined, making it easy to identify at once the orphan enzyme activities. Interactive publishing of suggestions by the community would provide expert evidence for re-annotation of orphan EC numbers in public databases. ORENZA is a Web resource designed to progressively bridge the unwanted gap between function (enzyme activities) and sequence (dataset present in public databases). ORENZA should increase interactions between communities of biochemists and of genomicists. This is expected to reduce the number of orphan enzyme activities by allocating gene sequences to the relevant enzymes.

  13. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  14. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  15. A Simple and Accurate Method for Measuring Enzyme Activity.

    Science.gov (United States)

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  16. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  17. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  18. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    as homomultimers (Zabin and Villarejo 1975; Kacser and. Burns 1981; Hollacher and Place 1987; Stuber et al 1992;. Xiau et al 1995; Stuber 1999). Using electrophoresis for isolating allozymes [different molecular forms of an enzyme coded by the same gene (Markert 1975)], free from contamination by other allozymes, ...

  19. Enzyme activities and histopathology of selected tissues in rats ...

    African Journals Online (AJOL)

    The effect of chronic administration of potassium bromate (KBrO3), a flour improver, on some 'marker' enzymes of rat cellular system was investigated. The levels of these enzymes were measured progressively in the kidney, liver and small intestine, 24h after days 1, 3, 5, 10, 15 and 20 following the administration of ...

  20. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G

    2010-01-01

    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  1. Virtual Biochemistry – pH effect on enzyme activity

    Directory of Open Access Journals (Sweden)

    D.N. Heidrich

    2011-04-01

    Full Text Available Protocols of laboratory experiments, followed by teacher's explanation, not always clearly translate to the student the dynamics to beadopted for the implementation of the proposed practice. One of these cases is related to the study of the effect of pH on enzyme activity. For better help the understanding of the technical procedure, a hypermedia was built based on a protocol adopted at the Department of Biochemistry, UFSC. The hypermedia shows how theeffect of variations in pH can be observed  in vitro. Taking as example salivary amylase and the consumption of starch (substrate by means of iodine staining, a set of pH buffers was tested to identify the best pH for this enzyme  activity. This hypermedia as introductory tool for such practice was tested on aNutrition course classroom. Students agree that the hypermedia provided a better understanding of the proposed activities. Teachers also notice a smallerreagents consumption and reduction of the time spent by the students in the achievement of the experiment.

  2. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  3. Why do crown ethers activate enzymes in organic solvents?

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2002-01-01

    One of the major drawbacks of enzymes in nonaqueous solvents is that their activity is often dramatically low compared to that in water. This limitation can be largely overcome by crown ether treatment of enzymes. In this paper, we describe a number of carefully designed new experiments that have

  4. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    Lignin is probably one of the most recalcitrant compounds synthesized by plants. This compound is degraded by few microorganisms. White-rot fungi have been extensively studied due to its powerful ligninolytic enzymes. In this study, ligninolytic enzyme activities of different fungal species (six commercial and 13 wild) were ...

  5. Changes in growth, survival and digestive enzyme activities of Asian ...

    African Journals Online (AJOL)

    A study was conducted to determine the effects of different dietary treatments on the growth, survival and digestive enzyme activities of Mystus nemurus larvae. Newly hatched larvae were reared for 14 days in twelve 15 L glass aquaria (for growth and survival) and eight 300 L fiberglass tanks (for enzyme samples) at a ...

  6. Seasonality of fibrolytic enzyme activity in herbivore microbial ...

    African Journals Online (AJOL)

    Fibre (cellulose, hemicellulose and lignin) is the most abundant polysaccharide in nature and is hydrolysed by gut micro-organisms of herbivores because they can produce a set of extracellular enzymes. This study examined seasonal changes in the fibrolytic enzyme activity of microbial ecosystems of five herbivores ...

  7. Activity enhancement of ligninolytic enzymes of Trametes versicolor ...

    African Journals Online (AJOL)

    Suspended cultures of white-rot fungus, Trametes versicolor, supplemented with bagasse powder showed a concentration dependent enhancement in the ligninolytic enzymes activity in liquid shake cultures. 2% (w/v) bagasse powder improved greater stability to the enzymes. The optimum pH is 3.5 and the optimum ...

  8. Effect of diffusion on enzyme activity in a microreactor

    NARCIS (Netherlands)

    Swarts, J.W.; Kolfschoten, R.C.; Jansen, M.C.A.A.; Janssen, A.E.M.; Boom, R.M.

    2010-01-01

    To establish general rules for setting up an enzyme microreactor system, we studied the effect of diffusion on enzyme activity in a microreactor. As a model system we used the hydrolysis of ortho-nitrophenyl-ß-d-galactopyranoside by ß-galactosidase from Kluyveromyces lactis. We found that the

  9. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... Lignin is probably one of the most recalcitrant compounds synthesized by plants. This compound is degraded by few microorganisms. White-rot fungi have been extensively studied due to its powerful ligninolytic enzymes. In this study, ligninolytic enzyme activities of different fungal species (six commercial ...

  10. General discussion about enzymes activities of radiation injury

    International Nuclear Information System (INIS)

    Vucicevic, M.; Sukalo, I.

    1989-01-01

    Researching reliable and practical indicators of radiation injury, however, is very interesting and considerable department of scientific studies, practical and theoretical. Enzymes activities are among biochemical indicators which are changed after radiation injury. Activity of these specific proteins is important in regulation of every biochemical reaction in existing beings. Biological macromolecules can be damaged by radiation or the cell permeability can be changed. All of these influence directly on enzymes activities. In this paper we present the review of the all important enzymes, indicators of the radiation injury, which variances on reference to normal values are significant of the functional and the structural changes of essential organs (author)

  11. Chitinolytic enzymes from Clostridium aminovalericum: activity screening and purification.

    Science.gov (United States)

    Simůnek, J; Tishchenko, G; Rozhetsky, K; Bartonová, H; Kopecný, J; Hodrová, B

    2004-01-01

    A strain isolated from the feces of takin was identified as Clostridium aminovalericum. In response to various types of chitin used as growth substrates, the bacterium produced a complete array of chitinolytic enzymes: chitinase ('endochitinase'), exochitinase, beta-N-acetylglucosaminidase, chitosanase and chitin deacetylase. The highest activities of chitinase (536 pkat/mL) and exochitinase (747 pkat/mL) were induced by colloidal chitin. Fungal chitin also induced high levels of these enzymes (463 pkat/mL and 502 pkat/mL, respectively). Crab shell chitin was the best inducer of chitosanase activity (232 pkat/mL). The chitinolytic enzymes of this strain were separated from culture filtrate by ion-exchange chromatography on the carboxylic sorbent Polygran 27. At pH 4.5, some isoforms of the chitinolytic enzymes (30% of total enzyme activity) did not bind to Polygran 27. The enzymes were eluted under a stepwise pH gradient (pH 5-8) in 0.1 mol/L phosphate buffer. At merely acidic pH (4.5-5.5), the adsorbed enzymes were co-eluted. However, at pH close to neutral values, the peaks of highly purified isoforms of exochitinases and chitinases were isolated. The protein and enzyme recovery reached 90%.

  12. Function and biotechnology of extremophilic enzymes in low water activity

    Science.gov (United States)

    2012-01-01

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  13. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  14. Extreme nuclear disproportion and constancy of enzyme activity in a ...

    Indian Academy of Sciences (India)

    Unknown

    Extreme nuclear disproportion and constancy of enzyme activity in a heterokaryon of Neurospora crassa. KANDASAMY PITCHAIMANI and RAMESH MAHESHWARI*. Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India. Abstract. Heterokaryons of Neurospora crassa were generated by ...

  15. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    tolerance, respectively were used to investigate the oxygen consumption rate of photosystem I, the oxygen evolution rate of photosystem II, cab transcript levels, and activities of enzymes involved in photosynthetic carbon reduction cycle.

  16. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  17. Magnetic enzyme membranes as active elements of electrochemical sensors: specific amino acid enzyme elctrodes.

    Science.gov (United States)

    Calvot, C; Berjonneau, A M; Gellf, G; Thomas, D

    1975-11-15

    The basic principle of the described magnetic enzyme electrodes is a kinetic accumulation of CO2 at the active layer electrode interface. The local pCO2 level is linked to three simultaneous phenomena: substrate diffusion in, enzyme reaction CO2 diffusion out. After a transient state there is a stationary state between the quantity of CO2 produced by the enzyme reaction and the CO2 diffusing from the active membrane to the bulk solution. Continuous determination of free amino acids in biological media is useful in biological processing, fermentation, medicine, pharmaceutical industries and biological research. No methods are presently available for any specific continuous measurement of lysine which is of nutritional importance in protein industrial syntheses; of phenylalanine and tyrosine which have to be monitored in several inborn diseases (phenylketonuria being the most important of them); of arginine and histidine which play a still imperfectly understood part in neurochemistry. The use of decarboxylase bearing membranes as sensors in such measurements could offer several novel advantages: (a) a simple device made of a currently manufactured electrode slightly modified by the use of an enzyme membrane; (b) The absence of any enzymic consumption due to the immobilization and the negligible consumption of substrate during the measurements; (c) The sensitivity which can be sharpened by a systematic study of the membrane parameters; (d) the continuous response of the electrode as long as it is in contact with the substrate solution; (e) the further feasibility as a miniature sensor. The magnetic device introduced allows obviously a convenient use of the enzyme electrode, the active part can be removed and replaced without disturbance for the pCO2 electrode itself. The enzyme electrodes are not only useful at the applied point of view but also at the fundamental point of view by allowing a direct measurement of an intra membrane concentration. The influence of

  18. Kidney transplantation from a mother with unrecognized Fabry disease to her son with low α-galactosidase A activity: A 14-year follow-up without enzyme replacement therapy.

    Science.gov (United States)

    Odani, Keiko; Okumi, Masayoshi; Honda, Kazuho; Ishida, Hideki; Tanabe, Kazunari

    2016-07-01

    We report a case of kidney transplantation from mother to son, both of whom were likely to have had an unrecognized renal variant phenotype of Fabry disease. The patient was a 54-year-old man, with an unknown primary cause of end stage renal disease. He had no notable past medical history, other than end stage renal disease. He underwent living-related kidney transplantation from his mother at age 40 years. Foam cells in the glomeruli were identified on histology assessment of a 0-hour allograft biopsy, with zebra bodies identified in the glomerular visceral epithelial cells by electron microscopy. These findings were indicative of Fabry disease in the donated kidney. As a definitive diagnosis of Fabry's disease could not be confirmed, enzyme replacement therapy was not initiated. Thirteen years after kidney transplantation, the patient underwent left nephrectomy for a left renal tumour, with pathological findings of clear cell carcinoma, foam cells and zebra bodies in the native kidney. Detailed examinations identified low α-galactosidase A activity and mutation of the α-Gal A gene, confirming a diagnosis of a renal variant phenotype of Fabry disease. Histology of several allograft biopsies performed over the 14 years from the time of kidney transplantation revealed only moderate interstitial fibrosis and tubular atrophy, with no evidence of disease progression on electron microscopy, despite the presence of zebra bodies in the glomerular visceral epithelial cells. © 2016 Asian Pacific Society of Nephrology.

  19. Dietary cholesterol increases paraoxonase 1 enzyme activity

    Science.gov (United States)

    Kim, Daniel S.; Burt, Amber A.; Ranchalis, Jane E.; Richter, Rebecca J.; Marshall, Julieann K.; Nakayama, Karen S.; Jarvik, Ella R.; Eintracht, Jason F.; Rosenthal, Elisabeth A.; Furlong, Clement E.; Jarvik, Gail P.

    2012-01-01

    HDL-associated paraoxonase 1 (PON1) activity has been consistently associated with cardiovascular and other diseases. Vitamins C and E intake have previously been positively associated with PON1 in a subset of the Carotid Lesion Epidemiology and Risk (CLEAR) cohort. The goal of this study was to replicate these findings and determine whether other nutrient intake affected PON1 activity. To predict nutrient and mineral intake values, 1,402 subjects completed a standardized food frequency survey of their dietary habits over the past year. Stepwise regression was used to evaluate dietary and covariate effects on PON1 arylesterase activity. Five dietary components, cholesterol (P < 2.0 × 10−16), alcohol (P = 8.51 × 10−8), vitamin C (P = 7.97 × 10−5), iron (P = 0.0026), and folic acid (0.037) were independently predictive of PON1 activity. Dietary cholesterol was positively associated and predicted 5.5% of PON1 activity, second in variance explained. This study presents a novel finding of dietary cholesterol, iron, and folic acid predicting PON1 activity in humans and confirms prior reported associations, including that with vitamin C. Identifying and understanding environmental factors that affect PON1 activity is necessary to understand its role and that of HDL in human disease. PMID:22896672

  20. Antioxidant Enzyme Activities of some Brassica Species

    Directory of Open Access Journals (Sweden)

    Rodica SOARE

    2017-11-01

    Full Text Available This paper set out to comparatively study five species: white cabbage (Brassica oleracea L. var. capitata alba Alef., red cabbage (Brassica oleracea L. var. capitata f. rubra Alef., Kale (Brassica oleracea L. var. Acephala, cauliflower (Brassica oleracea var. botrytis and broccoli (Brassica oleracea var. cymosa in order to identify those with high enzymatic and antioxidant activities. The enzymatic activity of superoxide dismutase (SOD, catalase (CAT and soluble peroxidase (POX as well as the antioxidant activity against 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation were determined. Total superoxide dismutase activity was measured spectrophotometrically based on inhibition in the photochemical reduction of nitroblue tetrazolium. Total soluble peroxidase was assayed by measuring the increase in A436 due to the guaiacol oxidation and the catalase activity was assayed through the colorimetric method. The capacity of extracts to scavenge the ABTS radical cation was assessed colorimetric using Trolox as a standard. The obtained results show that studied enzymatic activities and the antioxidant activity against ABTS vary depending on the analyzed species. So, among the studied Brassicaceae species, it emphasize red cabbage with the highest enzymatic activity (CAT 22.54 mM H2O2/min/g and POX 187.2 mM ΔA/1min/1g f.w. and kale with highest antioxidant activity, of 767 μmol TE/100g f.w. The results of this study recommendintroducing the studied varieties in diet due to the rich antioxidant properties.

  1. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  2. Chimeric enzymes with improved cellulase activities

    Science.gov (United States)

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  3. Enzyme inhibitory activity of selected Philippine plants

    International Nuclear Information System (INIS)

    Sasotona, Joseph S.; Hernandez, Christine C.

    2015-01-01

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  4. Tissue and plasma enzyme activities in juvenile green iguanas.

    Science.gov (United States)

    Wagner, R A; Wetzel, R

    1999-02-01

    To determine activities of intracellular enzymes in 8 major organs in juvenile green iguanas and to compare tissue and plasma activities. 6 green iguanas iguanas, but high values may not always indicate overt muscle disease. The AMS activity may be specific for the pancreas, but the wide range of plasma activity would likely limit its diagnostic usefulness. Activities of AST and LDH may reflect tissue damage or inflammation, but probably do not reflect damage to specific tissues or organs.

  5. Enzyme-polymer composites with high biocatalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.; Nauman, E B.; Dordick, Jonathan S.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease in activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.

  6. Enzyme activation through the utilization of intrinsic dianion binding energy.

    Science.gov (United States)

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2017-03-01

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed.

  7. Improving Activity of Salt-Lyophilized Enzymes in Organic Media

    Science.gov (United States)

    Borole, Abhijeet P.; Davison, Brian H.

    Lyophilization with salts has been identified as an important method of activating enzymes in organic media. Using salt-activated enzymes to transform molecules tethered to solid surfaces in organic phase requires solubilization of enzymes in the solvents. Methods of improving performance of salt-lyophilized enzymes, further, via chemical modification, and use of surfactants and surfactants to create fine emulsions prior to lyophilization are investigated. The reaction system used is transesterification of N-acetyl phenylalanine ethyl ester with methanol or propanol. Initial rate of formation of amino acid esters by subtilisin Carlsberg (SC) was studied and found to increase two to sevenfold by either chemical modification or addition of surfactants in certain solvents, relative to the salt (only)-lyophilized enzyme. The method to prepare highly dispersed enzymes in a salt-surfactant milieu also improved activity by two to threefold. To test the effect of chemical modification on derivatization of drug molecules, acylation of bergenin was investigated using chemically modified SC.

  8. Extraction of Active Enzymes from "Hard-to-Break-Cells"

    DEFF Research Database (Denmark)

    Ottaviani, Alessio; Tesauro, Cinzia; Fjelstrup, S

    We present the utilization of a rolling circle amplification (RCA) based assay to investigate the extraction efficiency of active enzymes from a class of “hard-to-break” cells, yeast Saccaramyces cerevisiae. Current analyses of microorganisms, such as pathogenic bacteria, parasites or particular...... life stages of microorganisms (e.g. spores from bacteria or fungi) is hampered by the lack of efficient lysis protocols that preserve the activity and integrity of the cellular content. Presented herein is a flexible scheme to screen lysis protocols for active enzyme extraction. We also report a gentle...... yet effective approach for extraction of active enzymes by entrapping cells in microdroplets. Combined effort of optimized extraction protocols and effective analytical approaches is expected to generate impact in future disease diagnosis and environmental safety....

  9. Distribution and activity of hydrogenase enzymes in subsurface sediments

    Science.gov (United States)

    Adhikari, R.; Nickel, J.; Glombitza, C.; Spivack, A. J.; D'Hondt, S. L.; Kallmeyer, J.

    2013-12-01

    Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process rather than an overall microbial activity. Since hydrogenase enzymes are intracellular and ubiquitous in subsurface microbial communities, the enzyme activity represents a measure of total activity of the entire microbial community. A hydrogenase activity assay could quantify total metabolic activity without having to identify specific processes. This would be a major advantage in subsurface biosphere studies, where several metabolic processes can occur simultaneously. We quantified hydrogenase enzyme activity and distribution in sediment samples from different aquatic subsurface environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico) using a tritium-based assay. We found enzyme activity at all sites and depths. Volumetric hydrogenase activity did not show much variability between sites and sampling depths, whereas cell-specific activity ranged from 10-5 to 1 nmol H2 cell-1 d-1. Activity was lowest in sediment layers where nitrate was detected. Higher activity was associated with samples in which sulfate was the predominant electron acceptor. We found highest activity in samples from environments with >10 ppm methane in the pore water. The results show that cell-specific hydrogenase enzyme activity increases with decreasing energy yield of the electron acceptor used. It is not possible to convert volumetric or cell-specific hydrogenase activity into a

  10. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  11. Lead action on activity of some enzymes of plants

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Koshkaryova, A.I.

    2008-01-01

    Lead action on activity of some enzymes of young plants of barley double-row (Hordeum distichon L.) families of cereals (Grominea). It is established that activity urease, catalase, ascorbatoxidase is in dependence as from a lead dose in a nutritious solution, and term ontogenesis. At later stages ontogenesis the increase in concentration of lead in an inhabitancy leads to sharp decrease in activity ascorbatoxidase. In the same conditions activity urease and catalase raises.

  12. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  13. Antioxidant enzymes activities in obese Tunisian children

    Directory of Open Access Journals (Sweden)

    Sfar Sonia

    2013-01-01

    Full Text Available Abstract Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls, aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx. Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p  Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response.

  14. Effects of Fertilization on Tomato Growth and Soil Enzyme Activity

    Science.gov (United States)

    Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing

    2015-04-01

    To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum

  15. Nerve agent hydrolysis activity designed into a human drug metabolism enzyme.

    Directory of Open Access Journals (Sweden)

    Andrew C Hemmert

    2011-03-01

    Full Text Available Organophosphorus (OP nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning.

  16. Influence of long-term fertilization on soil enzyme activities

    Directory of Open Access Journals (Sweden)

    Alina Dora SAMUEL

    2009-05-01

    Full Text Available Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase were determined in the 0–10, 10–20, and 20–30 cm layers of a brown luvic soil submitted to a complex fertilization experiment with different types of green manure. It was found that each activity decreased with increasing sampling depth. It should be emphasized that greenmanuring of maize led to a significant increase in each of the five enzymatic activities determined. The enzymatic indicators of soil quality calculated from the values of enzymatic activities showed the order: lupinus + rape + oat > lupinus > vetch + oat + ryegrass > lupinus + oat + vetch > unfertilized plot. This order means that by determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. There were significant correlations of soil enzyme activities with chemical properties.

  17. Early feeding to modify digestive enzyme activity in broiler chickens

    Directory of Open Access Journals (Sweden)

    Milagro León T.

    2014-09-01

    Full Text Available Objective. To evaluate the effect on digestive enzyme activity in broiler chickens by providing food in the first 48 hrs. after birth. Materials and methods. After incubating 300 fertile eggs from Hubbard breeding and immediately after hatching, the chicks were randomly assigned to treatments: fasting (from hatching to 48 hrs.; Hydrated Balanced Food (HBF from birth to 48 hrs.; commercial hydrating supplement (CHS from birth to 48 hrs. The diets were provided ad libitum. After 48 hrs. a commercial diet was fed. At birth and at 48 and 72 hrs. of age 30 chicks/treatment were sacrificed to determine the enzyme activity of maltase, sucrase, alkaline phosphatase, phytase, a-amylase, trypsin and lipase in samples of duodenal or pancreatic homogenate. Results. The supply of HBF or CHS during the first 48 hrs. of life increased the activity of maltase, sucrase and phytase in the first 3 days of life, with values between 1.2 and up to 4-fold compared to the control (p<0.05. Chickens that fasted for the first 48 hrs. had higher activity of the pancreatic enzymes a-amylase, trypsin, and lipase at 72 hrs. of life (p<0.05. Conclusions. The food supply in the first 48 hrs. after hatching increases the duodenal enzyme activity in the intestinal brush border during the first 3 days of age in broiler chickens.

  18. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  19. Activity of Krebs cycle enzymes in mdx mice.

    Science.gov (United States)

    Comim, Clarissa M; Hoepers, Andreza; Ventura, Letícia; Freiberger, Viviane; Dominguini, Diogo; Mina, Francielle; Mendonça, Bruna P; Scaini, Giselli; Vainzof, Mariz; Streck, Emílio L; Quevedo, João

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a degenerative disease of skeletal, respiratory, and cardiac muscles caused by defects in the dystrophin gene. More recently, brain involvement has been verified. Mitochondrial dysfunction and oxidative stress may underlie the pathophysiology of DMD. In this study we evaluate Krebs cycle enzymes activity in the cerebral cortex, diaphragm, and quadriceps muscles of mdx mice. Cortex, diaphragm, and quadriceps tissues from male dystrophic mdx and control mice were used. We observed increased malate dehydrogenase activity in the cortex; increased malate dehydrogenase and succinate dehydrogenase activities in the diaphragm; and increased citrate synthase, isocitrate dehydrogenase, and malate dehydrogenase activities in the quadriceps of mdx mice. This study showed increased activity of Krebs cycle enzymes in cortex, quadriceps, and diaphragm in mdx mice. © 2015 Wiley Periodicals, Inc.

  20. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  1. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  2. Free radical scavenging enzymes, activities and their correlation ...

    African Journals Online (AJOL)

    In this study, we investigated erythrocyte superoxide dismutase (SOD) and catalase (CAT) activities as antioxidant enzymes and malondialdehyde (MDA) as a sign of lipid peroxidation inAIH patients, along with routine parameters of liver disease. Present investigations were carried out to evaluate these special parameters ...

  3. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    AJL

    2012-04-26

    Apr 26, 2012 ... Changes in photosynthesis and activities of enzymes involved in carbon metabolism during exposure ... pigment-protein (cab gene encoding) complexes of PSII. (LHCII), which occupies approximately ... filtered through two layers of Miracloth and the dark green filtrate was centrifuged at 3000 rpm for 5 min ...

  4. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  5. Physicochemical Properties and Enzymes Activity Studies in a ...

    African Journals Online (AJOL)

    JTEkanem

    2009-11-04

    Nov 4, 2009 ... Soil Nitrogen (N),. Phosphorus (P), Calcium (Ca) and Magnesium (Mg) were also elevated in contaminated soil. These results suggest that the soil is not yet suitable for agricultural activity. Keywords: Refined-Oil Spill, Soil Enzymes, Physicochemical Properties, Eluama. *To whom correspondence should ...

  6. Modulation of Antioxidant Enzyme Expression and Activity by ...

    African Journals Online (AJOL)

    Renal toxicity produced by paraquat involves the generation of reactive oxygen species (ROS) which can overwhelm antioxidant defences, leading to oxidant injury. However, there are conflicting reports regarding the activity and/or expression of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) ...

  7. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  8. A metal-based inhibitor of NEDD8-activating enzyme.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available A cyclometallated rhodium(III complex [Rh(ppy(2(dppz](+ (1 (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE. The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.

  9. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    Science.gov (United States)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  10. Inhibitors of Testosterone Biosynthetic and Metabolic Activation Enzymes

    Directory of Open Access Journals (Sweden)

    Leping Ye

    2011-12-01

    Full Text Available The Leydig cells of the testis have the capacity to biosynthesize testosterone from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone are critical for the development of male reproductive system and spermatogenesis. At least four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side chain cleavage enzyme (CYP11A1 for the conversion of cholesterol into pregnenolone within the mitochondria, 3β-hydroxysteroid dehydrogenase (HSD3B, for the conversion of pregnenolone into progesterone, 17α-hydroxylase/17,20-lyase (CYP17A1 for the conversion of progesterone into androstenedione and 17β-hydroxysteroid dehydrogenase (HSD17B3 for the formation of testosterone from androstenedione. Testosterone is also metabolically activated into more potent androgen dihydrotestosterone by two isoforms 5α-reductase 1 (SRD5A1 and 2 (SRD5A2 in Leydig cells and peripheral tissues. Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and prochloraz and plant constituents (genistein and gossypol. This paper reviews these endocrine disruptors targeting steroidogenic enzymes.

  11. Inhibitors of testosterone biosynthetic and metabolic activation enzymes.

    Science.gov (United States)

    Ye, Leping; Su, Zhi-Jian; Ge, Ren-Shan

    2011-12-02

    The Leydig cells of the testis have the capacity to biosynthesize testosterone from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone are critical for the development of male reproductive system and spermatogenesis. At least four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side chain cleavage enzyme (CYP11A1) for the conversion of cholesterol into pregnenolone within the mitochondria, 3β-hydroxysteroid dehydrogenase (HSD3B), for the conversion of pregnenolone into progesterone, 17α-hydroxylase/17,20-lyase (CYP17A1) for the conversion of progesterone into androstenedione and 17β-hydroxysteroid dehydrogenase (HSD17B3) for the formation of testosterone from androstenedione. Testosterone is also metabolically activated into more potent androgen dihydrotestosterone by two isoforms 5α-reductase 1 (SRD5A1) and 2 (SRD5A2) in Leydig cells and peripheral tissues. Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone) and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and prochloraz) and plant constituents (genistein and gossypol). This paper reviews these endocrine disruptors targeting steroidogenic enzymes.

  12. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma.

    Science.gov (United States)

    Yahagi, Naoya; Shimano, Hitoshi; Hasegawa, Kiyoshi; Ohashi, Kenichi; Matsuzaka, Takashi; Najima, Yuho; Sekiya, Motohiro; Tomita, Sachiko; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Nagai, Ryozo; Ishibashi, Shun; Kadowaki, Takashi; Makuuchi, Masatoshi; Ohnishi, Shin; Osuga, Jun-ichi; Yamada, Nobuhiro

    2005-06-01

    Hepatocellular carcinoma is a very common neoplastic disease in countries where hepatitis viruses B and/or C are prevalent. Small hepatocellular carcinoma lesions detected by ultrasonography at an early stage are often hyperechoic because they are composed of well-differentiated cancer cells that are rich in triglyceride droplets. The triglyceride content of hepatocytes depends in part on the rate of lipogenesis. Key lipogenic enzymes, such as fatty acid synthase, are co-ordinately regulated at the transcriptional level. We therefore examined the mRNA expression of lipogenic enzymes in human hepatocellular carcinoma samples from 10 patients who had undergone surgical resection. All of the samples exhibited marked elevation of expression of mRNA for lipogenic enzymes, such as fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase, compared with surrounding non-cancerous liver tissue. In contrast, the changes in mRNA expression of SREBP-1, a transcription factor that regulates a battery of lipogenic enzymes, did not show a consistent trend. In some cases where SREBP-1 was elevated, the main contributing isoform was SREBP-1c rather than SREBP-1a. Thus, lipogenic enzymes are markedly induced in hepatocellular carcinomas, and in some cases SREBP-1c is involved in this activation.

  13. ATPase Activity Measurements by an Enzyme-Coupled Spectrophotometric Assay.

    Science.gov (United States)

    Sehgal, Pankaj; Olesen, Claus; Møller, Jesper V

    2016-01-01

    Enzymatic coupled assays are usually based on the spectrophotometric registration of changes in NADH/NAD(+) or NADPH/NADP(+) absorption at 340 nm accompanying the oxidation/reduction of reactants that by dehydrogenases and other helper enzymes are linked to the activity of the enzymatic reaction under study. The present NADH-ATP-coupled assay for ATPase activity is a seemingly somewhat complicated procedure, but in practice adaptation to performance is easily acquired. It is a more safe and elegant method than colorimetric methods, but not suitable for handling large number of samples, and also presupposes that the activity of the helper enzymes is not severely affected by the chemical environment of the sample in which it is tested.

  14. Microfluidics-Enabled Enzyme Activity Measurement in Single Cells.

    Science.gov (United States)

    Tesauro, Cinzia; Frøhlich, Rikke; Stougaard, Magnus; Ho, Yi-Ping; Knudsen, Birgitta R

    2015-01-01

    Cellular heterogeneity has presented a significant challenge in the studies of biology. While most of our understanding is based on the analysis of ensemble average, individual cells may process information and respond to perturbations very differently. Presented here is a highly sensitive platform capable of measuring enzymatic activity at the single-cell level. The strategy innovatively combines a rolling circle-enhanced enzyme activity detection (REEAD) assay with droplet microfluidics. The single-molecule sensitivity of REEAD allows highly sensitive detection of enzymatic activities, i.e. at the single catalytic event level, whereas the microfluidics enables isolation of single cells. Further, confined reactions in picoliter-sized droplets significantly improve enzyme extraction from human cells or microorganisms and result in faster reaction kinetics. Taken together, the described protocol is expected to open up new possibilities in the single-cell research, particularly for the elucidation of heterogeneity in a population of cells.

  15. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar

    2016-04-01

    Full Text Available Introduction Corn has been recently used for producing ethanol fuel in the major corn-producing countries such as the US and Brazil. Recent diversion of corn for biofuel production along with the increased world's demand for this feedstuff has resulted in unprecedented rise in feed cost for poultry worldwide. Alternative grains such as wheat and barley can be successfully replaced for corn in poultry diets. These cereal grains can locally grow in many parts of the world as they have remarkably lower water requirement than corn. Wheat and barley are generally used as major sources of energy in poultry diets. Though the major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls (Olukosi et al. 2007; Mirzaie et al. 2012. NSPs are generally considered as anti-nutritional factors (Jamroz et al. 2002. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value (Olukosi et al. 2007.Wheat and barley are generally used as major sources of energy in poultry diets. The major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls. NSPs are generally considered as anti-nutritional factors. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value. The major part of NSPs in barley comprises polymers of (1→3 (1→4-β- glucans which could impede growth factors and consequently carcass quality through lowering the rate and amount of available nutrients in the mucosal surface of the intestinal. Materials and Methods This experiment was conducted to evaluate the effect of corn and barley based diets supplemented with multi-enzyme on growth, carcass, pancreas enzyme activity and physiological characteristics of broilers. A total number of 375 one day old

  16. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    Science.gov (United States)

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, v max decreased significantly (P enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  17. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  18. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    Science.gov (United States)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  19. Evaluation of pancreatin stability through enzyme activity determination

    Directory of Open Access Journals (Sweden)

    Terra Gleysson De Paula

    2016-09-01

    Full Text Available Pancreatin is a biotechnological product containing an enzyme complex, obtained from porcine pancreas, that is employed in treating pancreatic diseases. Experiments regarding the stability of the pharmaceutical formulation containing pancreatin were performed using standard binary mixtures with 6 excipients in a 1:1 ratio (m/m and a commercial formulation. To accomplish these goals, samples were stored for 1, 3 and 6 months at 40 ± 1 °C and 75 ± 5 % relative humidity (RH and 40 ± 1 °C and 0 % RH. Stress testing was also performed. All samples were analyzed to evaluate the α-amylase, lipase and protease activities through UV/Vis spectrophotometry. The results revealed that the excipient proprieties and the storage conditions affected enzyme stability. Humidity was a strong influencing factor in the reduction of α-amylase and protease activities. Stress testing indicated that pH 9.0 and UV light did not induce substantial alterations in enzyme activity.

  20. In vivo enzyme activity in inborn errors of metabolism

    International Nuclear Information System (INIS)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D.

    1990-01-01

    Low-dose continuous infusions of [2H5]phenylalanine, [1-13C]propionate, and [1-13C]leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD

  1. In vivo enzyme activity in inborn errors of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. (Clinical Research Centre, Harrow (England))

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  2. Association between posttraumatic stress disorder following myocardial infarction and liver enzyme levels: a prospective study.

    Science.gov (United States)

    von Känel, Roland; Abbas, Chiara C; Begré, Stefan; Gander, Marie-Louise; Saner, Hugo; Schmid, Jean-Paul

    2010-09-01

    Research in rodents demonstrated that psychological stress increases circulating levels of alanine transaminase, aspartate transaminase, and alkaline phosphatase reflecting liver injury. Moreover, chronic posttraumatic stress disorder and transaminases predicted coronary heart disease. To investigate the hypothesis that severity of posttraumatic stress disorder following myocardial infarction would prospectively relate to liver enzymes. Study participants were 24 patients (mean 59+/-7 years, 79% men) with an interviewer-rated diagnosis of posttraumatic stress disorder caused by an index myocardial infarction 3+/-3 months before. After a mean follow-up of 26+/-6 months, patients had a clinical interview to reassess posttraumatic stress disorder severity, a medical history, and blood collected to determine liver enzymes. Total posttraumatic stress disorder symptoms assessed at study entry prospectively predicted plasma levels of alanine transaminase (r=.47, p=.031) and alkaline phosphatase (r=.57, p=.004), but not of aspartate transaminase (p=.15), controlling for follow-up duration and antidepressant use. Total posttraumatic stress disorder symptoms assessed at follow-up were associated with alanine transaminase (r=.72, p=.004), aspartate transaminase (r=.60, p=.018), and alkaline phosphatase (r=.64, p=.001) in the 16 patients who had maintained diagnostic posttraumatic stress disorder, but not in all 24 patients. The severity of posttraumatic stress disorder following myocardial infarction was associated with mild increase in liver enzyme levels, suggesting that chronic psychological stress relates to hepatic damage in humans. This might help to explain the previously observed increased cardiovascular risk in chronically traumatized individuals.

  3. Biological activity of camel milk casein following enzymatic digestion.

    Science.gov (United States)

    Salami, Maryam; Moosavi-Movahedi, Ali Akbar; Moosavi-Movahedi, Faezeh; Ehsani, Mohammad Reza; Yousefi, Reza; Farhadi, Mohammad; Niasari-Naslaji, Amir; Saboury, Ali Akbar; Chobert, Jean-Marc; Haertlé, Thomas

    2011-11-01

    The aim of this study was to investigate the effects of enzymatic hydrolysis with digestive enzymes of camel whole casein and beta-casein (β-CN) on their antioxidant and Angiotensin Converting Enzyme (ACE)-inhibitory properties. Peptides in each hydrolysate were fractionated with ultra-filtration membranes. The antioxidant activity was determined using a Trolox equivalent antioxidant capacity (TEAC) scale. After enzymatic hydrolysis, both antioxidant and ACE-inhibitory activities of camel whole casein and camel β-CN were enhanced. Camel whole casein and β-CN showed significant ACE-inhibitory activities after hydrolysis with pepsin alone and after pepsinolysis followed by trypsinolysis and chymotrypsinolysis. Camel β-CN showed high antioxidant activity after hydrolysis with chymotrypsin. The results of this study suggest that when camel milk is consumed and digested, the produced peptides start to act as natural antioxidants and ACE-inhibitors.

  4. Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis

    Science.gov (United States)

    Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov

    2015-01-01

    Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...

  5. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    Science.gov (United States)

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-08

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  6. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    and soil ecosystem services. The soil enzyme activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysaccharides as cellulose, hemicellulose and chitin, while degradation of proteins has been......Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soil enzymes originate from a variety of organisms, notably fungi and bacteria......, experimental conditions of extraction of enzymes from soils, buffer and pH, substrate concentration, temperature and the necessary controls were optimized and standardized. This has resulted in an optimized standard operating procedure of EEA, which are being tested as an indicator of soil functional diversity...

  7. Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities.

    Science.gov (United States)

    Tomme, P; Kwan, E; Gilkes, N R; Kilburn, D G; Warren, R A

    1996-01-01

    The cenC gene, encoding beta-1,4-glucanase C (CenC) from Cellulomonas fimi, was overexpressed in Escherichia coli with a tac-based expression vector. The resulting polypeptide, with an apparent molecular mass of 130 kDa, was purified from the cell extracts by affinity chromatography on cellulose followed by anion-exchange chromatography. N-terminal sequence analysis showed the enzyme to be properly processed. Mature CenC was optimally active at pH 5.0 and 45 degrees C. The enzyme was extremely active on soluble, fluorophoric, and chromophoric glycosides (4-methylumbelliferyl beta-glycosides, 2'-chloro-4'-nitrophenyl-beta-D-cellobioside, and 2'-chloro-4'-nitrophenyl-lactoside) and efficiently hydrolyzed carboxymethyl cellulose, barley beta-glucan, lichenan, and, to a lesser extent, glucomannan. CenC also hydrolyzed acid-swollen cellulose, Avicel, and bacterial microcrystalline cellulose. However, degradation of the latter was slow compared with its degradation by CenB, another C. fimi cellulose belonging to the same enzyme family. CenC acted with inversion of configuration at the anomeric carbon, in accordance with its classification as a family 9 member. The enzyme released mainly cellobiose from soluble cellodextrins and insoluble cellulose. Attack appeared to be from the reducing chain ends. Analysis of carboxymethyl cellulose hydrolysis suggests that CenC is semiprocessive enzyme with both endo- and exoglucanase activities. PMID:8763951

  8. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  9. Relationship between Estradiol and Antioxidant Enzymes Activity of Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2009-01-01

    Full Text Available Some evidence suggests the neuroprotection of estrogen provided by the antioxidant activity of this compound. The main objective of this study was to determine the level of estradiol and its correlation with the activity of antioxidant enzymes, total antioxidant status and ferritin from ischemic stroke subjects. The study population consisted of 30 patients with acute ischemic stroke and 30 controls. There was no significant difference between estradiol in stroke and control group. The activity of superoxide dismutase and level of ferritin was higher in stroke compared with control group (<.05, <.001, resp.. There was no significant correlation between estradiol and glutathione peroxidase, glutathione reductase, catalase, total antioxidant status, and ferritin in stroke and control groups. We observed inverse correlation between estradiol with superoxide dismutase in males of stroke patients (=−0.54, =.029. Our results supported that endogenous estradiol of elderly men and women of stroke or control group has no antioxidant activity.

  10. ANTIOXIDANT ENZYME ACTIVITY AND FRESH-CUT ARRACACHA QUALITY

    Directory of Open Access Journals (Sweden)

    Hêmina Carla Vilela

    2015-06-01

    Full Text Available The arracacha is an alternative of fresh-cut product; however it can be easily degraded after the processing techniques. The objective of this work was to evaluate the useful life of fresh-cut arracacha submitted to two types of cuts and storage, as well as to evaluate the activity of antioxidant enzymes. The roots were selected, sanitized and submitted to two cut types: cubed and grated. Then they were evaluated at 3 times: 0, 3 and 7 days. The cutting in cubes provided higher quality and lower SOD, CAT and APX activity. However, the grated product presented higher PG activity and lower PPO activity. The microbiological safety and the nutritional value were maintained in both cuts during the whole storage period. The useful life, regarding the physicochemical, nutritional and microbiological aspects, can be established at 7 days under refrigeration for fresh-cut arracacha.

  11. Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles.

    Science.gov (United States)

    Khodashenas, Bahareh; Ghorbani, Hamid Reza

    2016-06-01

    Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO(3)) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet -visible (UV-Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV-Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405-420 nm for 1 mM metal precursor solution (AgNO(3)) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO(3) with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO(3) concentration and the size of produced Ag NPs.

  12. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center

    International Nuclear Information System (INIS)

    Alpert, C.A.; Frank, R.; Stueber, K.D.; Deutscher, J.; Hengstenberg, W.

    1985-01-01

    Enzyme I, the phosphoenolpyruvate:protein phosphotransferase (EC 2.7.3.9), which is part of the bacterial phosphoenolpyruvate-(PEP) dependent phosphotransferase system, has been purified from Streptococcus faecalis by using a large-scale preparation. Size exclusion chromatography revealed a molecular weight of 140,000. On sodium dodecyl sulfate gels, enzyme I gave one band with a molecular weight of 70,000, indicating that enzyme I consists of two identical subunits. The first 59 amino acids of the amino-terminal part of the protein have been sequenced. It showed some similarities with enzyme I of Salmonella typhimurium. The active center of enzyme I has also been determined. After phosphorylation with [ 32 P]PEP, the enzyme was cleaved by using different proteases. Labeled peptides were isolated by high-performance liquid chromatography on a reversed-phase column. The amino acid composition or amino acid sequence of the peptides has been determined. The largest labeled peptide was obtained with Lys-C protease and had the following sequence: -Ala-Phe-Val-Thr-Asp-Ile-Gly- Gly-Arg-Thr-Ser-His*-Ser-Ala-Ile-Met-Ala-Arg-Ser-Leu-Glu-Ile-Pro-Ala- Ile-Val-Gly-Thr-Lys-. It has previously been shown that the phosphoryl group is bound to the N-3 position of a histidyl residue in phosphorylated enzyme I. The single His in position 12 of the above peptide must therefore carry the phosphoryl group

  13. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center

    Energy Technology Data Exchange (ETDEWEB)

    Alpert, C.A.; Frank, R.; Stueber, K.D.; Deutscher, J.; Hengstenberg, W.

    1985-02-12

    Enzyme I, the phosphoenolpyruvate:protein phosphotransferase (EC 2.7.3.9), which is part of the bacterial phosphoenolpyruvate-(PEP) dependent phosphotransferase system, has been purified from Streptococcus faecalis by using a large-scale preparation. Size exclusion chromatography revealed a molecular weight of 140,000. On sodium dodecyl sulfate gels, enzyme I gave one band with a molecular weight of 70,000, indicating that enzyme I consists of two identical subunits. The first 59 amino acids of the amino-terminal part of the protein have been sequenced. It showed some similarities with enzyme I of Salmonella typhimurium. The active center of enzyme I has also been determined. After phosphorylation with (/sup 32/P)PEP, the enzyme was cleaved by using different proteases. Labeled peptides were isolated by high-performance liquid chromatography on a reversed-phase column. The amino acid composition or amino acid sequence of the peptides has been determined. The largest labeled peptide was obtained with Lys-C protease and had the following sequence: -Ala-Phe-Val-Thr-Asp-Ile-Gly- Gly-Arg-Thr-Ser-His*-Ser-Ala-Ile-Met-Ala-Arg-Ser-Leu-Glu-Ile-Pro-Ala- Ile-Val-Gly-Thr-Lys-. It has previously been shown that the phosphoryl group is bound to the N-3 position of a histidyl residue in phosphorylated enzyme I. The single His in position 12 of the above peptide must therefore carry the phosphoryl group.

  14. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    Science.gov (United States)

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  15. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities

    Science.gov (United States)

    Molaei, Ali; Lakzian, Amir; Datta, Rahul; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Ceccherini, Maria T.

    2017-10-01

    Pharmaceutical antibiotics are frequently used in the livestock and poultry industries to control infectious diseases. Due to the lack of proper guidance for use, the majority of administrated antibiotics and their metabolites are excreted to the soil environment through urine and feces. In the present study, we used chlortetracycline and sulfapyridine antibiotics to screen out their effects on dehydrogenase, alkaline phosphatase and urease activity. Factorial experiments were conducted with different concentrations of antibiotic (0, 10, 25 and 100 mg kg-1 of soil) mixed with soil samples, and the enzyme activity was measured at intervals of 1, 4 and 21 days. The results show that the chlortetracycline and sulfapyridine antibiotics negatively affect the dehydrogenase activity, but the effect of sulfapyridine decreases with time of incubation. Indeed, sulfapyridine antibiotic significantly affect the alkaline phosphatase activity for the entire three-time interval, while chlortetracycline seems to inhibit its activity within 1 and 4 days of incubation. The effects of chlortetracycline and sulfapyridine antibiotics on urease activity appear similar, as they both significantly affect the urease activity on day 1 of incubation. The present study concludes that chlortetracycline and sulfapyridine antibiotics have harmful effects on soil microbes, with the extent of effects varying with the duration of incubation and the type of antibiotics used.

  16. A modern mode of activation for nucleic acid enzymes.

    Directory of Open Access Journals (Sweden)

    Dominique Lévesque

    2007-07-01

    Full Text Available Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes, a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process.

  17. Active deceleration support in car following

    NARCIS (Netherlands)

    Mulder, M.; Pauwelussen, J.J.A.; Paassen, M.M. van; Mulder, M.; Abbink, D.A.

    2010-01-01

    A haptic gas pedal feedback system is developed that provides car-following information via haptic cues from the gas pedal. During normal car-following situations, the haptic feedback (HF) cues were sufficient to reduce control activity and improve car-following performance. However, in more

  18. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  19. Changes of enzyme activities in lens after glaucoma trabecular resection

    Directory of Open Access Journals (Sweden)

    Jian-Ping Wang

    2013-08-01

    Full Text Available AIM: To observe the change of lens antioxidant enzyme activity after glaucoma trabecular resection. METHODS: Thirty-two eyes of sixteen New-Zealand rabbits(2.2-2.4kgwere divided into two groups. The left eyes of rabbits underwent standard glaucoma trabecular resection were treatment group, and the normal right eyes served as controls. Transparency of lenses was monitored by a slit-lamp biomicroscopy before and after glaucoma trabecular resection. The morphology of lens cells was observed under the light microscope.The activities of Na+-K+-ATPase,catalase(CAT, glutathion peroxidase(GSH-px, glutathione reductase(GR, superoxide dismutase(SODand content of malondialdehyde(MDAin lenses were detected six months after trabecular resection. RESULTS: Lenses were clear in both treatment group and normal control group during the six months after operation. The morphology and structure of lens cells were normal under the light microscope in both operation group and normal group. The activity of lens cells antioxidant enzyme activity were significantly decreased in operation group compared with control group, Na+-K+-ATPase declined by 20.97%, CAT declined by 16.36%, SOD declined by 4.46%, GR declined by 4.85%, GSH-px declined by 10.02%, and MDA increased by 16.31%. CONCLUSION: Glaucoma trabecular resection can induce the change of Na+-K+-ATPase, CAT, GSH-px, GR, SOD and MDA in lens of rabbit. Glaucoma filtration surgery for the occurrence of cataract development mechanism has important guiding significance.

  20. Puromycin-sensitive aminopeptidase: an antiviral prodrug activating enzyme.

    Science.gov (United States)

    Tehler, Ulrika; Nelson, Cara H; Peterson, Larryn W; Provoda, Chester J; Hilfinger, John M; Lee, Kyung-Dall; McKenna, Charles E; Amidon, Gordon L

    2010-03-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al., 2008. Molecular Pharmaceutics 5, 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The k(cat) for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher k(cat) for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design.

  1. Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition.

    Science.gov (United States)

    Adebayo, Olusegun L; Adenuga, Gbenga A; Sandhir, Rajat

    2016-05-01

    Selenium (Se) and zinc (Zn) are trace elements required for optimal brain functions. Thus, the role of Se and Zn against protein malnutrition induced oxidative stress on mitochondrial antioxidants and electron transport chain (ETC) enzymes from rats' brain were investigated. Normal protein (NP) and low protein (LP) rats were fed with diets containing 16% and 5% casein respectively for a period of 10weeks. Then the rats were supplemented with Se and Zn at a concentration of 0.15mgL(-1) and 227mgL(-1) in drinking water for 3weeks after which the rats were sacrificed. The results obtained from the study showed significant (p<0.05) increase in lipid peroxidation (LPO), ROS production, oxidized glutathione (GSSG) levels and mitochondrial swelling and significant (p<0.05) reductions in catalase (CAT) and Mn-superoxide dismutase (Mn-SOD) activities, glutathione (GSH) levels, GSH/GSSG ratio and MTT reduction as a result of LP ingestion. The activities of mitochondrial ETC enzymes were also significantly inhibited in both the cortex and cerebellum of LP-fed rats. Supplementation with either Se or Zn restored the alterations in all the parameters. The study showed that Se and Zn might be beneficial in protecting mitochondrial antioxidants and ETC enzymes against protein malnutrition induced oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K. (NWU)

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  3. The Effects of Ibogaine on Uterine Smooth Muscle Contractions: Relation to the Activity of Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Zorana Oreščanin-Dušić

    2018-01-01

    Full Text Available Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga. It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H2O2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H2O2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis.

  4. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    Directory of Open Access Journals (Sweden)

    Xiangping Tan

    2014-01-01

    Full Text Available Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2 scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI and the geometric mean of enzyme activities (GME. At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  5. Proteomic data on enzyme secretion and activity in the bacterium Chitinophaga pinensis

    Directory of Open Access Journals (Sweden)

    Johan Larsbrink

    2017-04-01

    Full Text Available The secretion of carbohydrate-degrading enzymes by a bacterium sourced from a softwood forest environment has been investigated by mass spectrometry. The findings are discussed in full in the research article “Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis” in Journal of Proteomics by Larsbrink et al. ([1], doi: 10.1016/j.jprot.2017.01.003. The bacterium was grown on three carbon sources (glucose, glucomannan, and galactomannan which are likely to be nutrient sources or carbohydrate degradation products found in its natural habitat. The bacterium was grown on solid agarose plates to mimic the natural behaviour of growth on a solid surface. Secreted proteins were collected from the agarose following trypsin-mediated hydrolysis to peptides. The different carbon sources led to the secretion of different numbers and types of proteins. Most carbohydrate-degrading enzymes were found in the glucomannan-induced cultures. Several of these enzymes may have biotechnological potential in plant cell wall deconstruction for biofuel or biomaterial production, and several may have novel activities. A subset of carbohydrate-active enzymes (CAZymes with predicted activities not obviously related to the growth substrates were also found in samples grown on each of the three carbohydrates. The full dataset is accessible at the PRIDE partner repository (ProteomeXchange Consortium with the identifier PXD004305, and the full list of proteins detected is given in the supplementary material attached to this report.

  6. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Joshua Kellogg

    2014-10-01

    Full Text Available Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively. The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia.

  7. Hydrodynamic Voltammetry as a Rapid and Simple Method for Evaluating Soil Enzyme Activities

    Directory of Open Access Journals (Sweden)

    Kazuto Sazawa

    2015-03-01

    Full Text Available Soil enzymes play essential roles in catalyzing reactions necessary for nutrient cycling in the biosphere. They are also sensitive indicators of ecosystem stress, therefore their evaluation is very important in assessing soil health and quality. The standard soil enzyme assay method based on spectroscopic detection is a complicated operation that requires the removal of soil particles. The purpose of this study was to develop a new soil enzyme assay based on hydrodynamic electrochemical detection using a rotating disk electrode in a microliter droplet. The activities of enzymes were determined by measuring the electrochemical oxidation of p-aminophenol (PAP, following the enzymatic conversion of substrate-conjugated PAP. The calibration curves of β-galactosidase (β-gal, β-glucosidase (β-glu and acid phosphatase (AcP showed good linear correlation after being spiked in soils using chronoamperometry. We also performed electrochemical detection using real soils. Hydrodynamic chronoamperometry can be used to assess the AcP in soils, with a detection time of only 90 s. Linear sweep voltammetry was used to measure the amount of PAP released from β-gal and β-glu by enzymatic reaction after 60 min. For the assessment of soil enzymes, the results of hydrodynamic voltammetry assay compared favorably to those using a standard assay procedure, but this new procedure is more user-friendly, rapid and simple.

  8. Activity of pectic enzymes involved in the ripening process of lulo (Solanum quitoense Lam.

    Directory of Open Access Journals (Sweden)

    Rodríguez Nieto Jeimmy Marcela

    2011-04-01

    Full Text Available In the ripening process of the lulo (Solanum quitoense Lam. physicochemical changes are produced by pectics enzymes as Polygalacturonase (PG, Pectinesterase (PE and Pectateliase (PL that acting on pectics substrates of plant tissue, being responsible of the physiological alteration of cells and tissues that results in the fruit softening and the beginning of the premature senescence period. This research explores the foundations of the softening enzymes behavior of lulo epicarp for the activity measurement of PL, PG and PE of fruit´s epicarp and determining their relationship with the softening process during the ripening and senescence process of fruits through follow up of the enzyme expression, the ripening index and instrumental hardness during the lulo fruit ripening under three storage treatments: 1 Control (18° C, 57 days, 2 Refrigeration (18° C, 1 day; 4° C, 14 days; 18° C, 42 days and 3 Pre-cooling heat shock (27° C, 1 day; 4° C, 14 days; 18° C, 42 days found that the enzymes expression and softening is reduced by heat treatment, compared with the control group; however, the cold storage inhibit the fruit softening process but chilling injuries was produced, while heat shock, in addition to inhibiting the enzymes expression, inhibited the fruit softening process and protect against chilling injuries prolonging the shelf life in 10 days, showing that it´s the best post-harvest treatment for this type of fruit.

  9. Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity.

    Science.gov (United States)

    Koo, Namin; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2012-06-01

    The objectives of this study were to elucidate the effects of soil amendments [Ferrous sulfate (Fe(II)), red mud, Fe(II) with calcium carbonate (Fe(II)/L) or red mud (RM/F), zero-valent iron (ZVI), furnace slag, spent mushroom waste and by-product fertilizer] on arsenic (As) stabilization and to establish relationships between soil properties, As fractions and soil enzyme activities in amended As-rich gold mine tailings (Kangwon and Keumkey). Following the application of amendments, a sequential extraction test and evaluation of the soil enzyme activities (dehydrogenase and β-glucosidase) were conducted. Weak and negative relationships were observed between water-soluble As fractions (As(WS)) and oxalate extractable iron, while As(WS) was mainly affected by dissolved organic carbon in alkaline tailings sample (Kangwon) and by soil pH in acidic tailings sample (Keumkey). The soil enzyme activities in both tailings were mainly associated with As(WS). Principal component and multiple regression analyses confirmed that As(WS) was the most important factor to soil enzyme activities. However, with some of the treatments in Keumkey, contrary results were observed due to increased water-soluble heavy metals and carbon sources. In conclusion, our results suggest that to simultaneously achieve decreased As(WS) and increased soil enzyme activities, Kangwon tailings should be amended with Fe(II), Fe(II)/L or ZVI, while only ZVI or RM/F would be suitable for Keumkey tailings. Despite the limitations of specific soil samples, this result can be expected to provide useful information on developing a successful remediation strategy of As-contaminated soils.

  10. Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities.

    Science.gov (United States)

    Nayak, Soumya; Mishra, C S K; Guru, B C; Rath, Monalisa

    2011-09-01

    Phosphogypsum (PG) is produced as a solid waste from phosphatic fertilizer plants. The waste slurry is disposed off in settling ponds or in heaps. This solid waste is now increasingly being used as a calcium supplement in agriculture. This study reports the effectof PG amendmenton soil physico chemical properties, bacterial and fungal count and activities of soil enzymes such as invertase, cellulase and amylase over an incubation period of 28 days. The highest mean percent carbon loss (55.98%) was recorded in 15% PG amended soil followed by (55.28%) in 10% PG amended soil and the minimum (1.68%) in control soil. The highest number of bacterial colonies (47.4 CFU g(-1) soil), fungal count (17.8 CFU g(-1) soil), highest amylase activity (38.4 microg g(-1) soil hr(-1)) and cellulase activity (38.37 microg g(-1) soil hr(-1)) were recorded in 10% amended soil. Statistically significant difference (p<0.05) has been recorded in the activities of amylase and cellulase over the period of incubation irrespective of amendments. Considering the bacterial and fungal growth and the activities of the three soil enzymes in the control and amended sets, it appears that 10% PG amendment is optimal for microbial growth and soil enzyme activities.

  11. Milk clotting and proteolytic activity of enzyme preparation from ...

    African Journals Online (AJOL)

    Some microorganisms have the ability to produce enzymes that could clot milk and used as a substitute for calf rennet. Strains of lactic acid bacteria (LAB) could produce proteolytic enzymes that may have the potential to be used as a source of milk clotting enzyme (MCE). In the present study, LAB isolated from shrimp paste ...

  12. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens

    NARCIS (Netherlands)

    Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T.

    2013-01-01

    This trial was conducted to evaluate the effects of dietary supplementation of phytogenic product containing an equal mixture of thymol and carvacrol at 4 levels (0, 60, 100, and 200 mg/kg of diet) on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities,

  13. A study of enzyme and protein microencapsulation--some factors affecting the low apparent enzymic activity yields.

    Science.gov (United States)

    Wood, D A; Whateley, T L

    1982-09-01

    Microencapsulation of aqueous solutions of enzymes, alpha-chymotrypsin (EC 3.4.21.1) and histidase (EC 4.3.1.3), with semipermeable polyamide membranes resulted in a loss of enzymic activity. The low yields (less than 40%) found with both enzymes were typical of others reported in the literature. The activity of broken histidase-containing microcapsules was greater than that of the microcapsules before breaking, and this was interpreted as being due to a simple diffusional restriction on the substrate and product. The maximum of the apparent pH-activity curve of alpha-chymotrypsin was found to be shifted one unit to more alkaline pH when the enzyme was encapsulated. This phenomenon was explained in terms of the hydrogen ion concentration in the microenvironment surrounding the enzyme being different from that in the bulk solution. Microencapsulation of aqueous solutions of enzymes is accomplished by in situ polymerization reactions at the interface of a water-in-oil emulsion. 125I-labelled proteins (albumin and fibrinogen) were encapsulated under similar conditions to determine the efficiency of the microencapsulation process. About one third of these proteins was lost during the overall preparation procedure and a further fraction was attached to the membranes of the microcapsules.

  14. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    Science.gov (United States)

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-05-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (A549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.

  15. Aberrant activity of the DNA repair enzyme AlkB.

    Science.gov (United States)

    Henshaw, Timothy F; Feig, Michael; Hausinger, Robert P

    2004-05-01

    Escherichia coli AlkB is a DNA/RNA repair enzyme containing a mononuclear Fe(II) site that couples the oxidative decomposition of alpha-ketoglutarate (alphaKG) to the hydroxylation of 1-methyladenine or 3-methylcytosine lesions in DNA or RNA, resulting in release of formaldehyde and restoration of the normal bases. In the presence of Fe(II), alphaKG, and oxygen, but the absence of methylated DNA, AlkB was found to catalyze an aberrant reaction that generates a blue chromophore. The color is proposed to derive from Fe(III) coordinated by a hydroxytryptophan at position 178 as revealed by mass spectrometric analysis. Protein structural modeling confirms that Trp 178 is reasonably positioned to react with the Fe(IV)-oxo intermediate proposed to form at the active site.

  16. The effect of aluminium on enzyme activities in two wheat cultivars

    African Journals Online (AJOL)

    Administrator

    2011-04-25

    Apr 25, 2011 ... In order to study the effect of different aluminum (Al) concentrations on the enzyme activities of wheat seedlings and ... activity of different enzymes such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase. (GR) and ...... antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Plant.

  17. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs.

    Directory of Open Access Journals (Sweden)

    Yujin Tang

    Full Text Available Vacuolar processing enzymes (VPEs have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD, which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177, Cys (219] and substrate binding pocket [Arg (112, Arg (389, Ser (395], except that Ser (395 in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF, close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.

  18. A cytochemical method for measuring enzyme activity in individual preovulatory mouse oocytes

    NARCIS (Netherlands)

    de Schepper, G. G.; van Noorden, C. J.; Koperdraad, F.

    1985-01-01

    The activities of 6 enzymes involved in carbohydrate metabolism were determined quantitatively in preovulatory oocytes by cytochemical means per individual cell as well as biochemically in cell homogenates. Oocytes were incorporated in a polyacrylamide matrix for appropriate enzyme cytochemical

  19. Season-controlled changes in biochemical constituents and oxidase enzyme activities in tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Sen, Supatra; Mukherji, S

    2009-07-01

    Season-controlled changes in biochemical constituents viz. carotenoids (carotene and xanthophyll) and pectic substances along with IAA-oxidase and polyphenol oxidase (PPO) enzyme activities were estimated/assayed in leaves of Lycopersicon esculentum Mill. (tomato) in two developmental stages--pre-flowering (35 days after sowing) and post-flowering (75 days after sowing) in three different seasons--summer rainy and winter Carotenoid content along with pectic substances were highest in winter and declined significantly in summer followed by rainy i.e. winter > summer > rainy. Carotenoid content was significantly higher in the pre-flowering as compared to post-flowering in all three seasons while pectic substances increased in the post-flowering as compared to pre-flowering throughout the annual cycle. IAA oxidase and PPO enzyme activities were enhanced in rainy and decreased sharply in summer and winter i.e. rainy > summer > winter. Both the enzymes exhibited higher activity in the post-flowering stage as compared to pre-flowering in all three seasons. These results indicate winter to be the most favourable season for tomato plants while rainy season environmental conditions prove to be unfavourable (stressful) with diminished content of carotenoid and pectic substances and low activities of IAA oxidase and PPO, ultimately leading to poor growth and productivity.

  20. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.

    Science.gov (United States)

    Ermert, Susanne; Marx, Andreas; Hacker, Stephan M

    2017-04-01

    Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.

  1. Enzyme catalysis: C-H activation is a Reiske business

    Science.gov (United States)

    Bruner, Steven D.

    2011-05-01

    Enzymes that selectively oxidize unactivated C-H bonds are capable of constructing complex molecules with high efficiency. A new member of this enzyme family is RedG, a Reiske-type oxygenase that catalyses chemically challenging cyclizations in the biosynthesis of prodiginine natural products.

  2. Physicochemical Properties and Enzymes Activity Studies in a ...

    African Journals Online (AJOL)

    Soil Physicochemical properties and enzyme concentration were evaluated in soil from a refined-oil contaminated community in Isiukwuato, Abia State three years after the spill. The soil enzymes examined were urease, lipase, oxidase, alkaline and acid phosphatases. Results show a significant (P< 0.05) decrease in the ...

  3. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  4. Activity and distribution of urease following microencapsulation within polyamide membranes.

    Science.gov (United States)

    Monshipouri, M; Neufeld, R J

    1991-04-01

    Urease was microencapsulated by forming a semipermeable polyamide membrane around aqueous microdroplets (266 microns mean diameter) containing the soluble enzyme. The yield of the interfacial polymerization technique, determined spectrophotometrically, was 83% of the original enzyme on a mass basis, resulting in a final intracapsular urease concentration of 62.3 mg ml-1 or 0.1 mM. Similar absorption spectra of broken and intact microcapsules suggested that spectrophotometry may be applied in performing direct studies on the intact microcapsules. The high activity yield of urease microcapsules relative to the mass of entrapped enzyme (92.5%) indicated minimal effects of mass transfer limitation. The mass of active urease incorporated into the nylon membrane represented 6% of the encapsulated enzyme activity. The soluble intracapsular enzyme fraction (94%) was released into solution upon rupture of the membrane. A complete mass and activity balance of the encapsulated enzyme was achieved.

  5. Effect of Bacillus cereus Enzymes on Milk Quality following Ultra High Temperature Processing

    Directory of Open Access Journals (Sweden)

    B. Janštová

    2006-01-01

    Full Text Available Using a model case of contamination of long-life semi-skimmed milk with the spores of six B. cereus strains, isolated from the farm environment and raw milk, proteolysis was monitored by measuring changes in protein content by infra-red spectroscopy; free tyrosine was measured by the Lowry method according to Juffs, and the reduction in casein fractions by SDS-PAGE. Lipolysis was monitored by the dilution extractive method. At a storage temperature of 4 °C for 4 months no enzyme processes were observed, whereas at a storage temperature of 24 °C a marked enzyme activity was found during maximum 3 weeks as well as sensory changes of UHT milk. After three weeks of storage, a reduction in protein content from 34.55 g l-1 milk to 29.46 ± 2.00 g l-1 milk, and a reduction in the free tyrosine from 0.65 to 2.13 ± 0.28 mg ml-1 was found, as well as increased molar contents of free fatty acids (FFA from 41.97 to 1617.22 ± 68.17 mmol kg-1 milk fat. After six days of storage, α-casein, β-casein and κ-casein dropped to 69 ± 10%, 56 ± 16% and 43 ± 10%, respectively. Majority of changes in UHT milk depended on the B. cereus strain used, initial microbial counts and the method of heat inactivation of spores.

  6. Effect of tillage systems and permanent groundcover intercropped with orange trees on soil enzyme activities

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-04-01

    Full Text Available The objective of this study was to evaluate the effect of different soil tillage systems and groundcover crops intercropped with orange trees on soil enzyme activities. The experiment was performed in an Ultisol soil in northwestern Paraná State. Two soil tillage systems were evaluated [conventional tillage (CT across the entire area and strip tillage (ST with a 2-m strip width] in combination with various groundcover vegetation management systems. Soil samples were collected after five years of experimental management at a depth of 0-15 cm under the tree canopy and in the inter-row space in the following treatments: (1 CT-Calopogonium mucunoides; (2 CT-Arachis pintoi; (3 CT-Bahiagrass; (4 CT-Brachiaria humidicola; and (5 ST-B. humidicola. The soil tillage systems and groundcover crops influenced the soil enzyme activities both under the tree canopy and in the inter-row space. The cultivation of B. humidicola provided higher amylase, arylsulfatase, acid phosphatase and alkaline phosphatase than other groundcover species. Strip tillage increased enzyme activities compared to the conventional tillage system.

  7. Influence of radiation dose in computed tomography on antioxidant enzyme activity in rabbit erythrocytes

    Directory of Open Access Journals (Sweden)

    Mitrović Marko B.

    2017-01-01

    Full Text Available The objective of this study was to assess the radiation dose in computed tomography examinations of rabbits using different examination protocols and to correlate these values with the activity of antioxidant enzymes in their red blood cells following irradiation. The presented results revealed that a single, routine computed tomography scan exposure led to a different response of the activity of antioxidant enzymes in red blood cells regarding both dose and time. The results indicate that there is a dose threshold that is about 25 mGy. Doses below that level do not produce any significant changes in the level of antioxidant enzymes activity. On the other hand, the level just above that threshold had a significant impact on the antioxidant defence, but in a relatively short time period (2 hours after exposure, compared to the higher dose that requires a longer adaptive period. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173014: Molecular mechanisms of redox signalling in homeostasis: adaptation and pathology

  8. Continuous enzyme-coupled assay for microbial transglutaminase activity.

    Science.gov (United States)

    Oteng-Pabi, Samuel K; Keillor, Jeffrey W

    2013-10-15

    Transglutaminases (protein-glutamine:amine γ-glutamyltransferase, EC 2.3.2.13) are a family of calcium-dependent enzymes that catalyze an acyl transfer between glutamine residues and a wide variety of primary amines. When a lysine residue acts as the acyl-acceptor substrate, a γ-glutamyl-ε-lysine isopeptide bond is formed. This isopeptide bond formation represents protein cross-linking, which is critical to several biological processes. Microbial transglutaminase (mTG) is a bacterial variant of the transglutaminase family, distinct by virtue of its calcium-independent catalysis of the isopeptidic bond formation. Furthermore, mTG's promiscuity in acyl-acceptor substrate preference highlights its biocatalytic potential. The acyl-donor substrate, however, is limited in its scope; the amino acid sequences flanking glutamine residues dramatically affect substrate specificity and activity. Here, we have developed and optimized a modified glutamate dehydrogenase assay with the intention of analyzing potential high-affinity peptides. This direct continuous assay presents significant advantages over the commonly used hydroxamate assay, including generality, sensitivity, and ease of manipulation. Furthermore, we identified 7M48 (WALQRPH), a high-affinity peptide that shows greater affinity with mTG (K(M)=3 mM) than the commonly used Cbz-Gln-Gly (K(M)=58 mM), attesting to its potential for application in biocatalysis and bioconjugation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Chaperone-like activities of α-synuclein: α-Synuclein assists enzyme activities of esterases

    International Nuclear Information System (INIS)

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo; Doohun Kim, T.

    2006-01-01

    α-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of α-synuclein has not yet been known. Here we have shown that α-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of α-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with α-synuclein. Our results indicate that α-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo

  10. Reveal the response of enzyme activities to heavy metals through in situ zymography.

    Science.gov (United States)

    Duan, Chengjiao; Fang, Linchuan; Yang, Congli; Chen, Weibin; Cui, Yongxing; Li, Shiqing

    2018-07-30

    Enzymes in the soil are vital for assessing heavy metal soil pollution. Although the presence of heavy metals is thought to change the soil enzyme system, the distribution of enzyme activities in heavy metal polluted-soil is still unknown. For the first time, using soil zymography, we analyzed the distribution of enzyme activities of alfalfa rhizosphere and soil surface in the metal-contaminated soil. The results showed that the growth of alfalfa was significantly inhibited, and an impact that was most pronounced in seedling biomass and chlorophyll content. Catalase activity (CAT) in alfalfa decreased with increasing heavy metal concentrations, while malondialdehyde (MDA) content continually increased. The distribution of enzyme activities showed that both phosphatase and β-glucosidase activities were associated with the roots and were rarely distributed throughout the soil. In addition, the total hotspot areas of enzyme activities were the highest in extremely heavy pollution soil. The hotspot areas of phosphatase were 3.4%, 1.5% and 7.1% under none, moderate and extremely heavy pollution treatment, respectively, but increased from 0.1% to 0.9% for β-glucosidase with the increasing pollution levels. Compared with the traditional method of enzyme activities, zymography can directly and accurately reflect the distribution and extent of enzyme activity in heavy metals polluted soil. The results provide an efficient research method for exploring the interaction between enzyme activities and plant rhizosphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Visualization of Enzyme Activities in Earthworm Biopores by In Situ Soil Zymography.

    Science.gov (United States)

    Razavi, Bahar S; Hoang, Duyen; Kuzyakov, Yakov

    2017-01-01

    Earthworms produce biopores with strongly increased microbial and enzyme activities and consequently they form microbial hotspots in soil. In extremely dynamic microhabitats and hotspots such as earthworm biopores, the in situ enzyme activities are a footprint of process rates and complex biotic interactions. The effect of earthworms on enzyme activities inside biopores, relative to earthworm-free soil, can be visualized by in situ soil zymography. Here, we describe the details of the approach and discuss its advantages and limitations. Direct zymography provides high spatial resolution for quantitative images of enzyme activities in biopores.

  12. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  13. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    Enzyme technology provides key strategies to green chemistry as many processes have undergone re-design to serve increasing demands towards being sustainable. While the population is rapidly increasing on our planet it is leading to accumulative problems in terms of production of waste, depletion...... industries. However, as biorefinery concepts are implemented in many industrial processes an increasing demand for Process Analytical Technology (PAT) evolves to monitor, understand and steer processes optimally. Biomasses can be very diverse and are usually of complex chemical nature. Conventional......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...

  14. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    Science.gov (United States)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  15. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  16. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  17. Comparison of N-acetyltransferase-2 enzyme genotype-phenotype and xanthine oxidase enzyme activity between Swedes and Koreans.

    Science.gov (United States)

    Djordjevic, Natasa; Carrillo, Juan Antonio; Roh, Hyung-Keun; Karlsson, Sara; Ueda, Nobuhisa; Bertilsson, Leif; Aklillu, Eleni

    2012-10-01

    The aim of this study was to compare xanthine oxidase (XO) and N-acetyltransferase-2 (NAT2) genotype and phenotype between Swedes (n = 113) and Koreans (n = 150), as well as to investigate the effect of sex, smoking, age, and oral contraceptive (OC) use on enzyme activities, using caffeine as a probe. XO and NAT2 activities were estimated by 1U/(1U+1X) and AFMU/(AFMU+1X+1U) urinary ratios, respectively. Participants were genotyped for 191G>A, 341T>C, 590G>A, and 857G>A NAT2 polymorphisms. There was no significant difference in XO activity between Swedes and Koreans. In Swedes, higher XO activity was observed in women (P < .003). There were significant differences in NAT2 genotype and phenotype between Swedes and Koreans. Koreans display significantly higher frequency of NAT2 fast acetylator genotype (89%), whereas the slow acetylator genotype is predominant (62%) in Swedes (P < .0001). Significantly higher NAT2 activity was observed in Koreans compared to Swedes (P < .0001). Having the same NAT2 fast acetylator genotype, Koreans display higher enzyme activity than Swedes (P < .004). OC use significantly increased NAT2 activity in Swedish women. In conclusion, Koreans display higher NAT2 activity than Swedes regardless of NAT2 genotype. Ethnicity, OC use, and genotype determine NAT2 activity, whereas sex is the only determinant of XO activity.

  18. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    Science.gov (United States)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and

  19. Changes in activities of adaptive liver enzymes in rats after non-lethal x-irradiation

    International Nuclear Information System (INIS)

    Toropila, M.; Ahlersova, E.; Ahlers, I.; Benova, K.

    1998-01-01

    The effect of a single dose of whole-body X-irradiation of 2.39 Gy (250 R) on the activities of selected adaptive rat liver enzymes and blood serum corticosterone concentrations was followed for a period of 28 days. Rats of Wistar strain SPF breeding (VELAZ Prague) were used. Both irradiated and control animals were fed in pairs with the same amount of feed as was consumed by irradiated animals in the pilot experiment. The feed intake of irradiated animals decreased significantly until the fourth day. During the rest of the experimental period no significant differences were recorded in feed intake between the experimental and control groups. The activity of tyrosine aminotransferase (TAT) in the liver of irradiated animals increased, with the exception of the initial period. Similar changes were recorded in the activity of tryptophane-2-3 dioxygenase (TO). A significant increase on the third day and a significant decrease from the seventh day after irradiation was recorded in the activity of aspartate aminotransferase (AST). Similar changes were observed with alanine aminotransferase (ALT). It is necessary to stress that the activity of this enzyme decreased also on the first day after irradiation. Until the third day there was a marked increase of serum corticosterone in the irradiated animals. The results point not only towards significant changes to the parameters observed, caused by a non-lethal irradiation dose, but also towards the importance of the nutritional regime, so-called paired feeding

  20. Salivary enzyme activity in anorexic persons—a controlled clinical trial.

    Science.gov (United States)

    Paszynska, Elżbieta; Schlueter, Nadine; Slopien, Agnieszka; Dmitrzak-Weglarz, Monika; Dyszkiewicz-Konwinska, Marta; Hannig, Christian

    2015-11-01

    Patients with anorexia nervosa are at high risk for general and oral diseases. However, not all anorexic patients suffer from them, irrespective of the severity of their eating disorder. It is often speculated that differences in the saliva are important; however, little is known about salivary parameters in anorexic patients. The aim of the clinical trial was to evaluate stimulated and resting salivary flow rate and the activity of the following enzymes in both types of saliva: amylase, aspartate amino transferase (AST), alanine amino transferase (ALT), collagenase, lysozyme, peroxidase, serine and acidic proteases, and trypsin in persons with anorexia nervosa (AN) and to compare them with those of healthy controls. Sixty-six subjects participated (28 patients with anorexia nervosa, 38 matched healthy controls). Regarding flow rate, stimulated and unstimulated levels were significantly lower in the AN group than in the controls. Activities of collagenase and AST in stimulated saliva were significantly higher in anorexic participants. In the AN group, changes due to salivary stimulation were found for the activity of acidic proteases, AST, and lysozyme. Reduced salivary flow might be one indicator of anorexia. Despite starvation and anorexia development, salivary key enzymes show physiological activity. This indicates a partial adaptation of the organism to severe condition during malnutrition. Further research is needed into possible role of reduced collagenase and transaminase activities in maintaining protection against external noxae and bacteria which might have impact on general oral health among patients with anorexia nervosa.

  1. The ENZYME data bank.

    Science.gov (United States)

    Bairoch, A

    1994-09-01

    The ENZYME data bank is a repository of information relative to the nomenclature of enzymes. It is primarily based on the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) and it contains the following data for each type of characterized enzyme for which an EC (Enzyme Commission) number has been provided: EC number Recommended name Alternative names (if any) Catalytic activity Cofactors (if any) Pointers to the SWISS-PROT protein sequence entrie(s) that correspond to the enzyme (if any) Pointers to human disease(s) associated with a deficiency of the enzyme (if any).

  2. Effect of Cereal Type and Enzyme Addition on Performance, Pancreatic Enzyme Activity, Intestinal Microflora and Gut Morphology of Broilers

    Directory of Open Access Journals (Sweden)

    Kalantar M

    2016-06-01

    Full Text Available The effects of grain and carbohydrase enzyme supplementation were investigated on digestive physiology of chickens. A total of 625 one-day-old chicks (Ross 308 were randomly assigned to five treatments in a completely randomized design. Treatments included two different types of grains (wheat, and barley with or without a multi-carbohydrase supplement. A corn-based diet was also considered to serve as a control. Feeding barley-based diet with multi-carbohydrase led to higher feed intake (P < 0.01 than those fed corn- and wheat-based diets. Birds fed on barley and wheat diets had lower weight gain despite a higher feed conversion ratio (P < 0.01. Total count and number of different type of bacteria including Gram-negative, E. coli, and Clostridia increased after feeding wheat and barley but the number of Lactobacilli and Bifidobacteria decreased (P < 0.01. Feeding barley and wheat diets reduced villus height in different parts of the small intestine when compared to those fed on a corn diet. However, enzyme supplementation of barley and wheat diets improved weight gain and feed conversion ratio and resulted in reduced number of E. coli and Clostridia and increased number of Lactobacilli and Bifidobacteria, and also restored the negative effects on intestinal villi height (P < 0.01. The activities of pancreatic α-amylase and lipase were (P < 0.01 increased in chickens fed wheat and barley diets when compared to the control fed on a corn diet. Enzyme supplementation reduced the activities of pancreatic α-amylase and lipase (P < 0.01. In conclusion, various dietary non-starch polysaccharides without enzyme supplementation have an adverse effect on digesta viscosity, ileal microflora, villi morphology, and pancreatic enzyme activity.

  3. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    Science.gov (United States)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  4. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  5. Stimulation of Escherichia coli DNA photoreactivating enzyme activity by adenosine 5'-triphosphate

    International Nuclear Information System (INIS)

    Koka, P.

    1984-01-01

    A purification procedure consisting of Biorex-70, single-stranded DNA-agarose, and ultraviolet (UV) light irradiated DNA-cellulose chromatography has been adopted for the Escherichia coli photoreactivating enzyme, to obtain enzyme preparations that are free of extraneous nucleic acid or nucleotides. The purification yields high specific activities (75 000 pmol h -1 mg -1 ) with a 50% recovery. Enzyme preparations have also been obtained from UV-irradiated DNA-cellulose by exposure to visible light. These enzyme preparations contain oligoribonucleotides, up to 26 nucleotides in length in relation to DNA size markers, but these are not essential for enzymatic activity. When the enzyme is preincubated with exogenous ATP a 10-fold stimulation in the enzyme activity has been observed. It has been determined by polyacrylamide gel electrophoresis and high-voltage diethylaminoethyl paper electrophoresis that the light-released enzyme samples from a preincubated and washed mixture of the enzyme, [γ- 32 P]ATP, and UV-irradiated DNA-cellulose contained exogenous [γ- 32 P], which eluted with the enzyme-containing fractions when subjected to Bio-Gel P-30 chromatography. GTP caused a slight enhancement of the enzyme activity while ADP strongly inhibited photoreactivation, at the same concentration and conditions. Higher (X5) concentrations of ADP and adenosine 5'-(β, γ-methylenetriphosphate) totally inhibited the enzyme activity. Dialysis of a photoreactivating enzyme preparation against a buffer solution containing 1 mM ATP caused a 9-fold stimulation of the enzyme activity. In addition, there is an apparent hydrolysis of ATP during photoreactivation as measured by the release of 32 P from [γ- 32 P]ATP

  6. Enzymes activities involving bacterial cytochromes incorporated in clays

    International Nuclear Information System (INIS)

    Lojou, E.; Giudici-Orticoni, M.Th.; Bianco, P.

    2005-01-01

    With the development of bio electrochemistry, researches appeared on the enzymes immobilization at the surface of electrodes for the realization of bioreactors and bio sensors. One of the main challenges is the development of host matrix able to immobilize the protein material preserving its integrity. In this framework the authors developed graphite electrodes modified by clay films. These electrodes are examined for two enzyme reactions involving proteins of sulfate-reduction bacteria. Then in the framework of the hydrogen biological production and bioreactors for the environmental pollution de-pollution, the electrochemical behavior of the cytochrome c3 in two different clays deposed at the electrode is examined

  7. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine

    2010-01-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity...

  8. Placental iodothyronine deiodinase III and II ratios, mRNA expression compared to enzyme activity

    NARCIS (Netherlands)

    Stulp, M. R.; de Vijlder, J. J.; Ris-Stalpers, C.

    1998-01-01

    Iodothyronine deiodinases III and II (D3 and D2) specific enzyme activities in human placenta both decrease with gestational age. The relation of the enzyme activities with their respective mRNA expression was investigated by semi-quantitative RT-PCR on human placenta mRNA. To investigate if RT-PCR

  9. Effects of ABO/Rh blood groups, G-6-P-D enzyme activity and ...

    African Journals Online (AJOL)

    Effects of ABO/Rh blood groups, G-6-P-D enzyme activity and haemoglobin. Theresa K Nkuo-Akenji, Paul Wepngong, Jane-Frances Akoachere. Abstract. The main objective was to investigate the effects of ABO/Rh blood groups, haemoglobin genotype and G-6-P-D enzyme activity on malaria. The study was carried out in ...

  10. Phytobiotic Utilization as Feed Additive in Feed for Pancreatic Enzyme Activity of Broiler Chicken

    Directory of Open Access Journals (Sweden)

    Sri Purwanti

    2015-09-01

    Full Text Available This research was conducted to evaluate the effect of turmeric water extract, garlic and combination turmeric and garlic as a feed additive in the broiler diet on pancreatic enzyme activity of broiler chicken. Effectivity of treatments was assessed by addition of phytobiotic (control, 015% zinc bacitracin, 2.5% TE, 2.0% GE, 2.5% TGE which were arranged Completely Randomized Design with 4 replications. The variables measured were pancreatic enzyme activity(amylase enzyme activity, protease enzyme activity  and lipase enzyme activity.The results showed that enzyme protein activity content of 2.5% TE supplementation is also high at 82.02 U/ml, then supplemented 2.5% TGE, 2.0% GE, negative control and positive control respectively 75.98 ; 72.02; 68.74; and 66.57 U/ml. The lipase enzyme activity whereas the negative control and a positive control differ significantly higher (P<0.05 to treatment with the addition of 2.5% TE, 2.0% GE and 2.5% TGE phytobiotic. The research concluded that the incorporation of 2.5% TE, 2% GE and combined 2.5% TGE as feed additive enhanced pancreatic enzyme activity.

  11. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  12. Vitality Improvement of the Mediterranean Fruit Fly, Ceratitis capitata Wied 1- Measured by using dehydrogenase Enzyme Activities

    International Nuclear Information System (INIS)

    Salama, M.S.; Shoman, A.A.; Elbermawy, S.M.; Abul Yazid, I.

    2000-01-01

    The present study searches for the improvement vitality of the Mediterranean fruit fly, Ceratitis capitata Wied. Through the induction of a specific variance (mutation) in the genetic material. Several types of treatments that were thought to cause this mutation were used, as IGR's, temperature, formaldehyde, colchicine, alcohols, several types of larval rearing media and gamma-rays. Generally, the activities of the energy enzymes alpha-glycerophosphate dehydrogenase (alpha-GPDH) enzyme lactate dehydrogenase (LDH) enzyme and malate dehydrogenase (MDH) enzyme, when used as a direct measure for the fly vitality, increased due to treatments of the egg stage by the previously mentioned treatments specially by the usage of rice hulls in the larval rearing medium alone or followed by irradiation of the pupal stage with 90 Gy

  13. [Enzyme kinetic analysis of Oncomelania hupensis exposed to active ingredient of Buddleja lindleyana (AIBL)].

    Science.gov (United States)

    Bang-Xing, Han; Jun, Chen

    2016-07-01

    To analyze the enzyme kinetics of active ingredient of Buddleja lindleyana (AIBL) against Oncomelania hupensis , the intermediate host of Schistosoma japonicum . O . hupensis snails were placed in 1 000 ml of 3.55 mg/L AIBL solution for 24, 48 h and 72 h, respectively, and the enzyme kinetics of alanine aminotransferase (GPT) was determined by Reitman-Frankel assay, lactate dehydrogenase (LDH) by the chemical inhibition lactic acid substrate method, alkaline phosphatase (AKP) by the disodium phenyl phosphate colorimetric method, acetylcholine esterase (AChE) and malate dehydrogenas (MDH) by ELISA, and succinate dehydrogenase (SDH) by the phenazine methyl sulfate reaction method (PMS) in the soft tissues of O. hupensis before and after AIBL treatment. Following exposure to 3.55 mg/L AIBL solution for 24 h, the GPT, LDH, and AKP activities significantly improved in the soft tissues of O. hupensis , while the SDH and MDH activities were significantly lowered in the head-foot and liver. However, AIBL treatment did not cause significant effect on AChE activity in O. hupensis . AIBL causes significant damages to O. hupensis liver and can efficiently act on anaerobic and aerobic respiration loci, which will hinder energy metabolism, and cause inadequate energy supply in cells used for normal secretion, eventually leading to O. hupensis death.

  14. Bromelain enzyme from pineapple: in vitro activity study under different micropropagation conditions.

    Science.gov (United States)

    Vilanova Neta, Jaci Lima; da Silva Lédo, Ana; Lima, Aloisio André Bonfim; Santana, José Carlos Curvelo; Leite, Nadjma Souza; Ruzene, Denise Santos; Silva, Daniel Pereira; de Souza, Roberto Rodrigues

    2012-09-01

    The aim of this work was to evaluate the activity of bromelain in pineapple plants (Ananas comosus var. Comosus), Pérola cultivar, produced in vitro in different culture conditions. This enzyme, besides its pharmacological effects, is also employed in food industries, such as breweries and meat processing. In this work, the enzymatic activity was evaluated in the tissues of leaves and stems of plants grown in culture medium without plant growth regulator. The most significant levels of bromelain were observed in leaf tissue after 4 months of culture in vitro in medium with a filter paper bridge, followed by medium gelled by the agar. The results of this study, regarding the different structures of the pineapple (leaves and stems) in vitro showed that the activity of bromelain varied depending on the culture conditions, the time and structure of which was quantified, ensuring a viable strategy in the production of seedlings with high levels of bromelain in subsequent phases of micropropagation.

  15. Assessment of some Hepatic Enzyme activities in adult rabbits ...

    African Journals Online (AJOL)

    Therapeutic potentials of Garcinia kola (G. kola) have been extensively documented and several researches have asserted its protective uniqueness against liver disorders/diseases. It is the aim of this study to assess the level of some enzyme involved in liver cellular integrity in rabbits chronically fed G. kola. To achieve this ...

  16. Chitinolytic enzymes from Clostridium aminovalericum: Activity screening and purification

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Tishchenko, Galina; Rozhetsky, K.; Bartoňová, Hana; Kopečný, Jan; Hodrová, Blanka

    2004-01-01

    Roč. 49, č. 2 (2004), s. 194-198 ISSN 0015-5632 R&D Projects: GA ČR GA525/00/0984 Institutional research plan: CEZ:AV0Z5045916 Keywords : chitinolytic enzyme Subject RIV: EE - Microbiology, Virology Impact factor: 1.034, year: 2004

  17. HPRT Enzyme Activity of Blood Cells From Patients With Downs Syndrome

    International Nuclear Information System (INIS)

    Sbubber, E.K.; Abdul-Rahman, M.H.; Sultan, A.F.; Hamamy, H.A.

    1998-01-01

    Hypoxanthine phosphoribosyl transferase (HPRT) enzyme activity was determined in erythrocytes from 16 children (aged below one year to 11 year) with down s syndrome using 8-C 14 Hypoxanthine and radioeleelrophorsis techniques. Significant (P<0.01) reduction in HPRT enzyme activity was seen in D S children compared to that of 18 (age and sex matched) healthy children. Pure 21 - trisomic erythrocytes expressed lower enzyme activity than mosaic cell. Mothers of D S children showed significantly (P<0.01) lower enzyme activity than mothers of normal children . Reduced activity of HPRT enzyme was also observed in PHA-stimulated lymphocytes of DS children and their mothers. These results indicated that deficiency of HPRT in D S patients may contribute to the abnormal purine metabolism associated with the symptomatology of this syndrome

  18. Shc proteins influence the activities of enzymes involved in fatty acid oxidation and ketogenesis.

    Science.gov (United States)

    Hagopian, Kevork; Tomilov, Alexey A; Tomilova, Natalia; Kim, Kyoungmi; Taylor, Sandra L; Lam, Adam K; Cortopassi, Gino A; McDonald, Roger B; Ramsey, Jon J

    2012-12-01

    ShcKO mice have low body fat and resist weight gain on a high fat diet, indicating that Shc proteins may influence enzymes involved in β-oxidation. To investigate this idea, the activities of β-oxidation and ketone body metabolism enzymes were measured. The activities of β-oxidation enzymes (acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and ketoacyl-CoA thiolase) in liver and hindlimb skeletal muscle, ketolytic enzymes (acetoacetyl-CoA thiolase, β-hydroxybutyrate dehydrogenase and 3-oxoacid-CoA transferase) in skeletal muscle, and ketogenic enzymes (acetoacetyl-CoA thiolase and β-hydroxybutyrate dehydrogenase) in liver were measured from wild-type and ShcKO mice. The activities of β-oxidation enzymes were increased (P<.05) in the ShcKO compared to wild-type mice in the fasted but not the fed state. In contrast, no uniform increases in the ketolytic enzyme activities were observed between ShcKO and wild-type mice. In liver, the activities of ketogenic enzymes were increased (P<.05) in ShcKO compared to wild-type mice in both the fed and fasted states. Levels of phosphorylated hormone sensitive lipase from adipocytes were also increased (P<.05) in fasted ShcKO mice. These studies indicate that the low Shc levels in ShcKO mice result in increased liver and muscle β-oxidation enzyme activities in response to fasting and induce chronic increases in the activity of liver ketogenic enzymes. Decreases in the level of Shc proteins should be considered as possible contributors to the increase in activity of fatty acid oxidation enzymes in response to physiological conditions which increase reliance on fatty acids as a source of energy. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Mini Review: Basic Physiology and Factors Influencing Exogenous Enzymes Activity in the Porcine Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Strube, Mikael Lenz; Meyer, Anne S.; Boye, Mette

    2013-01-01

    activity during intestinal transit are few, it is known that the enzymes, being protein molecules, can be negatively affected by the gastrointestinal proteolytic enzymes and the low pH in the stomach ventricle. In this review, the pH-values, endogenous proteases and other factors native to the digestive......The addition of exogenous enzymes to pig feed is used to enhance general nutrient availability and thus increase daily weight gain per feed unit. The enzymes used are mainly beta-glucanase (EC 3.2.1.4) and xylanase (EC 3.2.1.8) and phytase (EC 3.1.3.8). Although in vivo data assessing feed enzyme...... tract of the adult pig and the piglet are discussed in relation to the stability of exogenous feed enzymes. Development of more consistent assessment methods which acknowledge such factors is warranted both in vitro and in vivo for proper evaluation and prediction of the efficiency of exogenous enzymes...

  20. Expression and enzyme activity of cytochrome P450 enzymes CYP3A4 and CYP3A5 in human skin and tissue-engineered skin equivalents.

    Science.gov (United States)

    Smith, Sarah A; Colley, Helen E; Sharma, Parveen; Slowik, Klaudia M; Sison-Young, Rowena; Sneddon, Andrew; Webb, Steven D; Murdoch, Craig

    2017-12-11

    CYP3A4 and CYP4A5 share specificity for a wide range of xenobiotics with the CYP3 subfamily collectively involved in the biotransformation of approximately 30% of all drugs. CYP3A4/5 mRNA transcripts have been reported in the skin, yet knowledge of their protein expression and function is lacking. In this study, we observed gene and protein expression of CYP3A4/5 in both human skin and tissue-engineered skin equivalents (TESEs), and enzyme activity was detected using the model substrate benzyl-O-methyl-cyanocoumarin. Mass spectrometric analysis of TESE lysates following testosterone application revealed a time-dependent increase in metabolite production, confirming the functional expression of these enzymes in skin. © 2017 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  1. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  2. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia

    Directory of Open Access Journals (Sweden)

    Gulati Vandana

    2012-06-01

    Full Text Available Abstract Background Traditional Indian and Australian medicinal plant extracts were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of hyperglycemia and type 2 diabetes. The antioxidant activities were also assessed. Methods The evaluation of enzyme inhibitory activity of seven Australian aboriginal medicinal plants and five Indian Ayurvedic plants was carried out against α-amylase and α-glucosidase. Antioxidant activity was determined by measuring (i the scavenging effect of plant extracts against 2, 2-diphenyl-1-picryl hydrazyl (DPPH and 2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS and (ii ferric reducing power. Total phenolic and total flavonoid contents were also determined. Results Of the twelve plant extracts evaluated, the highest inhibitory activity against both α-amylase and α-glucosidase enzymes was exerted by Santalum spicatum and Pterocarpus marsupium with IC50 values of 5.43 μg/ml and 0.9 μg/ml, respectively, and 5.16 μg/ml and 1.06 μg/ml, respectively. However, the extracts of Acacia ligulata (IC50 = 1.01 μg/ml, Beyeria leshnaultii (0.39 μg/ml, Mucuna pruriens (0.8 μg/ml and Boerhaavia diffusa (1.72 μg/ml exhibited considerable activity against α-glucosidase enzyme only. The free radical scavenging activity was found to be prominent in extracts of Acacia kempeana, Acacia ligulata followed by Euphorbia drummondii against both DPPH and ABTS. The reducing power was more pronounced in Euphorbia drummondii and Pterocarpus marsupium extracts. The phenolic and flavonoid contents ranged from 0.42 to 30.27 μg/mg equivalent of gallic acid and 0.51 to 32.94 μg/mg equivalent of quercetin, respectively, in all plant extracts. Pearson’s correlation coefficient between total flavonoids and total phenolics was 0.796. Conclusion The results obtained in this study showed that most of the plant extracts

  3. Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota).

    Science.gov (United States)

    Kuuskeri, Jaana; Mäkelä, Miia R; Isotalo, Jarkko; Oksanen, Ilona; Lundell, Taina

    2015-10-19

    The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species. Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1+5.8S+ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes. Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates. Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.

  4. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    Science.gov (United States)

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  5. Evaluation of enzymes inhibition activities of medicinal plant from Burkina Faso.

    Science.gov (United States)

    Bangou, Mindiédiba Jean; Kiendrebeogo, Martin; Meda, Nâg-Tiero Roland; Coulibaly, Ahmed Yacouba; Compaoré, Moussa; Zeba, Boukaré; Millogo-Rasolodimby, Jeanne; Nacoulma, Odile Germaine

    2011-01-15

    The aim of the present study was to evaluate some enzymes inhibitory effects of 11 plant species belonging to 9 families from Burkina Faso. Methanolic extracts were used for their Glutathione-s-transferase (GST), Acetylcholinesterase (AChE), Carboxylesterase (CES) and Xanthine Oxidase (XO) inhibitory activities at final concentration of 100 microg mL(-1). The total phenolics, flavonoids and tannins were also determined spectrophotometrically using Folin-Ciocalteu, AlCl3 and ammonium citrate iron reagents, respectively. Among the 11 species tested, the best inhibitory percentages were found with Euphorbia hirta, Sclerocarya birrea and Scoparia dulcis (inhibition > 40%) followed by Annona senegalensis, Annona squamosa, Polygala arenaria and Ceratotheca sesamoides (inhibition > 25%). The best total phenolic and tannin contents were found with S. birrea with 56.10 mg GAE/100 mg extract and 47.75 mg TAE/100 mg extract, respectively. E hirta presented the higher total flavonoids (9.96 mg QE/100 mg extract). It's was found that Sclerocarya birrea has inhibited all enzymes at more than 30% and this activity is correlated to total tannins contents. Contrary to S. birrea, the enzymatic activities of E. hirta and S. dulcis are correlated to total flavonoids contents. Present findings suggest that the methanolic extracts of those plant species are potential inhibitors of GST, AChE, CES and XO and confirm their traditional uses in the treatment of mental disorders, gout, painful inflammations and cardiovascular diseases.

  6. Chaperone-Like Activity of ß-Casein and Its Effect on Residual in Vitro Activity of Food Enzymes

    DEFF Research Database (Denmark)

    Sulewska, Anna Maria

    . The negative effect of BSA on enzyme was not observed before. The residual activity of horseradish peroxidase was also improved by the reconstituted skim milk: addition of reconstituted skim milk prior to heat treatment resulted in higher residual activity of HRP compared to no addition (58±3% and 30......±1%, respectively) The findings of this study show that β-casein can influence the response of food enzymes to heat treatment. β-Casein is not a universal chaperone and its effect on different targets needs to be evaluated on a case-by-case basis. This study also shows that proteins as e.g. BSA may affect......ABSTRACT Activity of endogenous enzymes may cause browning of fruits and vegetables. These enzymes can be inactivated, for example by heat treatment, but the response of enzymes to heat treatment depends on many factors. Foods are very complex systems and the stability of enzymes...

  7. Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates.

    Science.gov (United States)

    Peterson, R A; Bradner, J R; Roberts, T H; Nevalainen, K M H

    2009-02-01

    Identification of fungi isolated from koala faeces and screening for their enzyme activities of biotechnological interest. Thirty-seven fungal strains were isolated from koala faeces and identified by the amplification and direct sequencing of the internal transcribed spacer (ITS) region of the ribosomal DNA. The fungi were screened for selected enzyme activities using agar plates containing a single substrate for each target class of enzyme. For xylanase, endoglucanase, ligninase (ligninolytic phenoloxidase) and protease over two-thirds of the isolates produced a clearing halo at 25 degrees C, indicating the secretion of active enzyme by the fungus, and one-third produced a halo indicating amylase, mannanase and tannase activity. Some isolates were also able to degrade crystalline cellulose and others displayed lipase activity. Many of the fungal isolates also produced active enzymes at 15 degrees C and some at 39 degrees C. Koala faeces, consisting of highly lignified fibre, undigested cellulose and phenolics, are a novel source of fungi with high and diverse enzyme activities capable of breaking down recalcitrant substrates. To our knowledge, this is the first time fungi from koala faeces have been identified using ITS sequencing and screened for their enzyme activities.

  8. Nandrolone increases angiotensin-I converting enzyme activity in rats tendons

    Directory of Open Access Journals (Sweden)

    Rita de Cassia Marqueti

    2015-06-01

    Full Text Available INTRODUCTION: The renin-angiotensin system (RAS has been associated with several biological processes of the human body, regulating, among others blood pressure and water and electrolytes balance. Moreover, RAS also regulates connective tissue growth. Recently, studies have shown that the use of nandrolone modifies the angiotensin-I converting enzyme (ACE activity and increases collagen deposition in the heart. OBJECTIVE: The aim of study was to evaluate the Angiotensin-I converting enzyme (ACE activity in the superficial flexor tendon (SFT and in serum after load exercise in combination with anabolic androgenic steroid (AAS administration after training session and six weeks of detraining. METHODS: Forty-eight Wistar rats were used into two groups (G1 and G2 subdivided into four subgroups: Sedentary (S; trained (T; AAS-treated (Deca-Durabolin(r, 5mg/kg, twice a week sedentary rats (AAS and AAS-treated and trained animals (AAST. Trained groups performed jumps in water: four series of 10 jumps each, followed by a 30 sec interval between the series, for seven weeks. RESULTS: Training increased ACE activity in the SFT compared to the control group (p <0.05. Both AAS and AAST groups presented higher ACE activity levels (p < 0.05. The AAST increased the ACE activity only compared to the trained animals. Only the AAST group presented significant higher levels of ACE in the serum. In the G2 group, all experimental groups presented decreased ACE activity in the serum and in the tendon, as compared to the control group. CONCLUSION: This study indicates that AAS administration and its combination with exercise increased ACE activity of tendons. AAS abuse could compromise tendon adaptation causing maladaptive remodeling.

  9. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  10. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Baldrian, P.; Trogl, J.; Frouz, J.; Snajdr, J.; Valaskova, V.; Merhautova, V.; Cajthaml, T.; Herinkova, J. [ASCR, Prague (Czech Republic). Institute for Microbiology

    2008-09-15

    Changes in the activity of extracellular enzymes (cellobiohydrolase, beta-glucosidase, beta-xylosidase, chitinase, arylsulfatase and phosphatases) and the changes in microbial community and abiotic properties in the topsoil layer, as well as soil abiotic properties during primary succession were investigated in a brown coal mine deposit area near Sokolov, Czech Republic. The study considered the chronosequence of 4 post-mining plots, 4-, 12-, 21 - and 45-year old. The 4-year old site had no vegetation cover. Herbs and grasses (mainly Calamagrostis epigeios) were present on the 12-year old plot, shrubs (Salix caprea) occurred on the 21-year old plot and tree cover (Betula spp. and Populus tremuloides) developed on the 45-year old plot. Soil pH gradually decreased with site age, while the content of K, C and N peaked in the 21-year old site, being significantly lower in the 45-year old site and much lower in the 4- and 12-year old sites. Phosphatase activities were strongly affected by seasonality while the activities of all the other enzymes measured were more influenced by the effects of succession age and soil layer than by seasonality. Succession age was also the most important factor affecting the total and bacterial PLFA contents, followed by the effects of soil layer and season while for the fungal biomass content-related properties (ergosterol, fungal PLFA and the fungal/bacterial PLFA ratio), season was the most important. Activities of individual enzymes in the topsoil (0-5 cm depth) were significantly affected by both site age and season. Cellobiohydrolase and beta-xylosidase were more affected by site age while chitinase and phosphatases were more affected by season. Enzyme activity increased with succession age. Comparison of the effect of site and season on enzyme activity showed that season played a principal role in the enzyme activity of the entire 0-5 cm component of topsoil, as well the soil layers when evaluated separately.

  11. Melatonin Promotes Cheliped Regeneration, Digestive Enzyme Function, and Immunity Following Autotomy in the Chinese Mitten Crab, Eriocheir sinensis

    Directory of Open Access Journals (Sweden)

    Cong Zhang

    2018-03-01

    Full Text Available In the pond culture of juvenile Eriocheir sinensis, a high limb-impairment rate seriously affects the culture success. Therefore, it is particularly important to artificially promote limb regeneration. This study evaluated the effects of melatonin on cheliped regeneration, digestive ability, and immunity, as well as its relationship with the eyestalk. It was found that the injection of melatonin significantly increased the limb regeneration rate compared with the saline group (P < 0.05. The qRT-PCR results of growth-related genes showed that the level of EcR-mRNA (ecdysteroid receptor and Chi-mRNA (chitinase expression was significantly increased following the melatonin injection, while the expression of MIH-mRNA (molt-inhibiting hormone was significantly decreased (P < 0.05. Melatonin significantly increased lipase activity (P < 0.05. We observed that the survival rates of limb-impaired and unilateral eyestalk-ablated crabs were substantially improved following melatonin treatment, whereas the survival of the unilateral eyestalk-ablated crabs was significantly decreased compared with the control group (P < 0.05. Furthermore, the results of serum immune and antioxidant capacity revealed that melatonin significantly increased the total hemocyte counts (THC, hemocyanin content, total antioxidant capacity (T-AOC, acid phosphatase (ACP, and glutathione peroxidase activity (GSH-Px, whereas the immune-related parameters were significantly decreased in eyestalk-ablated crabs (P < 0.05. Therefore, these findings indicate that melatonin exerts a protective effect on organism injury, which could promote limb regeneration by up-regulating the expression of growth-related genes, improve digestive enzyme activity, and strengthen the immune response, particularly antioxidant capacity.

  12. Study on optimization of process parameters for enhancing the multi-hydrolytic enzyme activity in garbage enzyme produced from preconsumer organic waste.

    Science.gov (United States)

    Arun, C; Sivashanmugam, P

    2017-02-01

    The garbage enzymes produced from preconsumer organic waste containing multi hydrolytic enzyme activity which helps to solubilize the waste activated sludge. The continuous production of garbage enzyme and its scaling up process need a globe optimized condition. In present study the effect of fruit peel composition and sonication time on enzyme activity were investigated. Garbage enzyme produced from 6g pineapple peels: 4g citrus peels pre-treated with ultrasound for 20min shows higher hydrolytic enzymes activity. Simultaneously statistical optimization tools were used to model garbage enzyme production with higher activity of amylase, lipase and protease. The maximum activity of amylase, lipase and protease were predicted to be 56.409, 44.039, 74.990U/ml respectively at optimal conditions (pH (6), temperature (37°C), agitation (218 RPM) and fermentation duration (3days)). These optimized conditions can be successfully used for large scale production of garbage enzyme with higher hydrolytic enzyme activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of experimentally-induced maternal hypothyroidism on crucial offspring rat brain enzyme activities.

    Science.gov (United States)

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Stolakis, Vasileios; Tsagianni, Anastasia; Skandali, Nikolina; Al-Humadi, Hussam; Tsakiris, Stylianos

    2014-06-01

    Hypothyroidism is known to exert significant structural and functional changes to the developing central nervous system, and can lead to the establishment of serious mental retardation and neurological problems. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil-induced experimental hypothyroidism on crucial brain enzyme activities of Wistar rat offspring, at two time-points of their lives: at birth (day-1) and at 21 days of age (end of lactation). Under all studied experimental conditions, offspring brain acetylcholinesterase (AChE) activity was found to be significantly decreased due to maternal hypothyroidism, in contrast to the two studied adenosinetriphosphatase (Na(+),K(+)-ATPase and Mg(2+)-ATPase) activities that were only found to be significantly altered right after birth (increased and decreased, respectively, following an exposure to gestational maternal hypothyroidism) and were restored to control levels by the end of lactation. As our findings regarding the pattern of effects that maternal hypothyroidism has on the above-mentioned crucial offspring brain enzyme activities are compared to those reported in the literature, several differences are revealed that could be attributed to both the mode of the experimental simulation approach followed as well as to the time-frames examined. These findings could provide the basis for a debate on the need of a more consistent experimental approach to hypothyroidism during neurodevelopment as well as for a further evaluation of the herein presented and discussed neurochemical (and, ultimately, neurodevelopmental) effects of experimentally-induced maternal hypothyroidism, in a brain region-specific manner. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Inhibitory activity of Plantago major L. on angiotensin I-converting enzyme.

    Science.gov (United States)

    Nhiem, Nguyen Xuan; Tai, Bui Huu; Van Kiem, Phan; Van Minh, Chau; Cuong, Nguyen Xuan; Tung, Nguyen Huu; Thu, Vu Kim; Trung, Trinh Nam; Anh, Hoang Le Tuan; Jo, Sung-Hoon; Jang, Hae-Dong; Kwon, Young-In; Kim, Young Ho

    2011-03-01

    Eight compounds were isolated from methanol extract of Plantago major L. leaves and investigated for their ability to inhibit angiotensin I-converting enzyme activity. Among them, compound 1 showed the most potent inhibition with rate of 28.06 ± 0.21% at a concentration of 100 μM. Compounds 2 and 8 exhibited weak activities. These results suggest that compound 1 might contribute to the ability of P. major to inhibit the activity of angiotensin I- converting enzyme.

  15. Crystallization of Hevamine, an Enzyme with Lysozyme/Chitinase Activity from Hevea brasiliensis Latex

    NARCIS (Netherlands)

    ROZEBOOM, HJ; BUDIANI, A; BEINTEMA, JJ

    1990-01-01

    Hevamine, an enzyme with both lysozyme and chitinase activity, was isolated and purified from Hevea brasiliensis (rubber tree) latex. The enzyme (molecular weight 29,000) is homologous to certain “pathogenesis-related” proteins from plants, but not to hen egg-white or phage T4 lysozyme. To

  16. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...

  17. Exo-inulinase of Aspergillus niger N402: A hydrolytic enzyme with significant transfructosylating activity

    NARCIS (Netherlands)

    Goosen, C.; Maarel, M.J. E.C. van der; Dijkhuizen, L.

    2008-01-01

    The purified exo-inulinase enzyme of Aspergillus niger N402 (AngInuE; heterologously expressed in Escherichia coli) displayed a sucrose:inulin (S/I) hydrolysis ratio of 2.3, characteristic for a typical exo-inulinase. The enzyme also had significant transfructosylating activity with increasing

  18. Measuring potential denitrification enzyme activity rates using the membrane inlet mass spectrometer

    Science.gov (United States)

    The denitrification enzyme activity (DEA) assay, provides a quantitative assessment of the multi enzyme, biological process of reactive nitrogen removal via the reduction of N03 to N2. Measured in soil, usually under non limiting carbon and nitrate concentrations, this short ter...

  19. Effect of citric acid and microbial phytase on serum enzyme activities ...

    African Journals Online (AJOL)

    Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks. ... African Journal of Biotechnology ... An experiment was conducted to study the effect of microbial phytase supplementation and citric acid in broiler chicks fed corn-soybean meal base diets on enzyme ...

  20. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    identified in enzymes from a wide variety of families, though almost half are found in the α-amylase family GH13. The roles attributed to SBSs are not limited to targeting the enzyme to the substrate, but also include a variety of others such as guiding the substrate into the active site, altering enzyme...... specificity and acting as an allosteric site. Although SBSs share many roles with CBMs they may not simply be an alternative to CBMs, but rather complementary as SBSs and CBMs frequently co-occur in enzymes. Despite a relatively long history, it is only in recent years that SBSs have been studied in great...

  1. Apparent expression of flower colours and internal variation of enzyme activities in some typical phenotypes of dyer's saffron cultivars

    Directory of Open Access Journals (Sweden)

    Koshi Saito

    2014-01-01

    Full Text Available Phytochemical screening of four Carthamus pigments in phenotypically different cultivars of dyer's saffron was carried out by means of chromatographic techniques. The pigment composition in the floral part correlated well with the flower colour, supporting these components as idoneous chemotaxonomic markers. Among seven cultivars examined, three were orange-yellow and contained carthamin (red and precarthamin, safflor yellow A and safflor yellow B (orange-yellow (type 0. There were bright-yellow and also had the above four pigments (type Y. The seventh cultivar was ivory-white and produced no quinoidal chalcones in the florets (type W. Relative activities of three different enzymes were examined in soluble protein extracts from etiolated seedlings of the garden varieties. Monophenol monooxygenase (EC 1.14.18.1 and peroxidase (EC 1.11.1.7. were distributed over all cultivars tested. The relative level of the enzyme activities could be ordered as follows: type 0, type W and type Y. The activity of a carthamin-synthesizing enzyme was found in the protein extracts from all garden forms examined. Its activity was most prominent in type O. The activity level in type W was inferior to that of type O. The catalytic intensity in type Y was found to even lower. The results were discussed as to the composition of the phenotypic markers and the distribution of the enzyme activities in three different garden forms of dyer's saffron cultivars.

  2. Pyrrolizidine alkaloids--genotoxicity, metabolism enzymes, metabolic activation, and mechanisms.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; Lin, Ge; Chou, Ming W

    2004-02-01

    Pyrrolizidine alkaloid-containing plants are widely distributed in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Because of their abundance and potent toxicities, the mechanisms by which pyrrolizidine alkaloids induce genotoxicities, particularly carcinogenicity, were extensively studied for several decades but not exclusively elucidated until recently. To date, the pyrrolizidine alkaloid-induced genotoxicities were revealed to be elicited by the hepatic metabolism of these naturally occurring toxins. In this review, we present updated information on the metabolism, metabolizing enzymes, and the mechanisms by which pyrrolizidine alkaloids exert genotoxicity and tumorigenicity.

  3. Effect of different growth parameters on chitinase enzyme activity ...

    African Journals Online (AJOL)

    Optimization of culture conditions revealed that the enzyme production was maximum in pH 7.5 (107.4 ± 0.50 U/ml), temperature 35°C (103.15 ± 1.74 U/ml) when the carbon and the nitrogen sources used were CMC (106.0 ± 1.89 U/ml) and KNO3 (91.2 ± 1.51 U/ml), respectively. The total chitinase production for all optimum ...

  4. Cortical activation following a balance disturbance.

    Science.gov (United States)

    Quant, S; Adkin, A L; Staines, W R; McIlroy, W E

    2004-04-01

    Although recent work suggests that cortical processing can be involved in the control of balance responses, the central mechanisms involved in these reactions remain unclear. We presently investigated the characteristics of scalp-recorded perturbation-evoked responses (PERs) following a balance disturbance. Eight young adults stabilized an inverted pendulum using their ankle musculature while seated. When perturbations were applied to the pendulum, subjects were instructed to return (active condition) or not return (passive condition) the pendulum to its original stable position. Primary measures included peak latency and amplitude of early PERs (the first negative peak between 100 and 150 ms, N1), amplitude of late PERs (between 200 and 400 ms) and onset and initial amplitude of ankle muscle responses. Based on the timing of PERs, we hypothesized that N1 would represent sensory processing of the balance disturbance and that late PERs would be linked to the sensorimotor processing of balance corrections. Our results revealed that N1 was maximal over frontal-central electrode sites (FCz and Cz). Average N1 measures at FCz, Cz, and CPz were comparable between active and passive tasks ( p>0.05). In contrast, the amplitude of late PERs at Cz was less positive for the active condition than for the passive ( psensory representation of early PERs. Differences in late PERs may represent sensorimotor processing related to the execution of balance responses.

  5. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  6. Experimental strategy to discover microbes with gluten-degrading enzyme activities

    Science.gov (United States)

    Helmerhorst, Eva J.; Wei, Guoxian

    2014-06-01

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  7. An appraisal of the enzyme stability-activity trade-off.

    Science.gov (United States)

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  8. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling...... awareness of the threats to soil and the ecosystem services has fostered the need for a thorough understanding of soil functions and activities. Soils are very species-rich and show great functional heterogeneity. While molecular analysis of gene expression is developing, simple and inexpensive indicators......, recycling of nutrients and waste, soil remediation, plant growth support and regulation of above ground biodiversity, resilience, and soil suppressiveness. As such, soil ecosystem services are beneficial and vital for human life and at the same time threatened by anthropogenic activities. Increasing...

  9. Effect of gamma irradiation on the activities of sugar metabolizing enzymes in sweet potato

    International Nuclear Information System (INIS)

    Ajlouni, Said.

    1987-01-01

    Experiments were conducted to study the effects of gamma radiation on sucrose formation in sweet potatoes, establish the relationship between radiation dose and sucrose accumulation and to examine the possible mechanism of sucrose formation. A cobalt 60 irradiator was used and five radiation doses between 100-500 K rads were experimented. Data obtained revealed that the rate of starch degradation into sucrose depends mainly on the radiation dose and the time after irradiation. Radiation dose of 200-300 K rads followed by storage for eight days at 24 0 C resulted in maximal sucrose accumulation (10.7% based on fresh weight). Higher doses, however decreased sucrose accumulation. The increase in sucrose accumulation is probably due to activation of sucrose synthesizing enzymes, particularly the amylases, phosphorylase and phosphoglucomutase. The specific activity of these enzymes increased with increasing radiation dose to a certain level. The results of this study indicate that the use of 200-300 K rads and eight days storage at 22-24 0 C achieves the highest degree of sucrose accumulation in the studied variety

  10. Comparative evaluation of enzyme activities and phenol content of ...

    African Journals Online (AJOL)

    Interestingly, biochemical analyses showed the highest phenolic content and PME activity in plants treated with EM Bokashi. All treatments significantly increased POX activity while they decreased PPO activity. In addition, significant and positive correlations (P < 0.01) were observed between stem length and PME activity ...

  11. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences.

    Science.gov (United States)

    Schwarzenberger, Anke; Fink, Patrick

    2018-04-01

    Food quality is an important factor influencing organisms' well-being. In freshwater ecosystems, food quality has been studied extensively for the keystone herbivore genus Daphnia, as they form the critical trophic link between primary producers and higher order consumers such as fish. For Daphnia, the edible fraction of phytoplankton in lakes (consisting mostly of unicellular algae and cyanobacteria) is extraordinarily diverse. To be able to digest different food particles, Daphnia possess a set of digestive enzymes that metabolize carbohydrates, lipids and proteins. Recent studies have found a connection between gene expression and activity of single digestive enzyme types of Daphnia, i.e. lipases and proteases, and transcriptome studies have shown that a variety of genes coding for gut enzymes are differentially expressed in response to different food algae. However, never before has a set of digestive enzymes been studied simultaneously both on the gene expression and the enzyme activity level in Daphnia. Here, we investigated several digestive enzymes of Daphnia pulex in a comparison between a high-quality (green algal) and a low-quality (cyanobacterial) diet. Diet significantly affected the expression of all investigated digestive enzyme genes and enzyme activity was altered between treatments. Furthermore, we found that gene expression and enzyme activity were significantly correlated in cellulase, triacylglycerol lipase and β-glucosidase when switched from high to low-quality food. We conclude that one of the factors causing the often observed low biomass and energy transfer efficiency from cyanobacteria to Daphnia is probably the switch to a cost-effective overall increase of gene expression and activity of digestive enzymes of this herbivore. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    Science.gov (United States)

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  13. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations.

    Science.gov (United States)

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-12-02

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Soil Minerals Affect Extracellular Enzyme Activities in Cold and Warm Environments

    Science.gov (United States)

    Yang, Z.; Morin, M. M.; Graham, D. E.; Wullschleger, S. D.; Gu, B.

    2017-12-01

    Extracellular enzymes are mainly responsible for degrading and cycling soil organic matter (SOM) in both cold and warm terrestrial ecosystems. Minerals can play important roles in affecting soil enzyme activities, however, the interactions between enzyme and soil minerals remain poorly understood. In this study, we developed a model soil-enzyme system to examine the mineral effects on a hydrolytic enzyme (i.e., β-glucosidase) under both cold (4°C) and relatively warm (20 and 30°C) conditions. Minerals including iron oxides and clays (e.g., kaolinite and montmorillonite) were used to mimic different types of soils, and enzyme adsorption experiments were conducted to determine the enzyme interactions with different mineral surfaces. Time-series experiments were also carried out to measure enzymatic degradation of the organic substrates, such as cellobiose and indican. We observed that fractions of adsorbed enzyme and the hydrolytic activity were higher on iron oxides (e.g., hematite) compared to kaolinite and montmorillonite at given experimental conditions. The degradation of cellobiose was significantly faster than that of indican in the presence of minerals. We also found that the adsorption of enzyme was not dependent on the mineral surface areas, but was controlled by the mineral surface charge. In addition, temperature increase from 4 to 30°C enhanced mineral-assisted glucosidase hydrolysis by 2 to 4 fold, suggesting greater degradation under warmer environments. The present work demonstrates that the enzyme activity is influenced not only by the soil temperature but also by the surface chemistry of soil minerals. Our results highlight the need to consider the physical and chemical properties of minerals in biogeochemical models, which could provide a better prediction for enzyme-facilitated SOM transformations in terrestrial ecosystems.

  15. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  16. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  17. Tracking of secretory phospholipase A2 enzyme activity levels from childhood to adulthood: a 21-year cohort.

    Science.gov (United States)

    Chung, Olivia; Juonala, Markus; Mallat, Ziad; Hutri-Kähönen, Nina; Viikari, Jorma S A; Raitakari, Olli T; Magnussen, Costan G

    2018-02-21

    Secretory phospholipase A2 (sPLA2) enzyme activity is a potential inflammatory biomarker for cardiovascular disease. We examined the tracking, or persistence, of sPLA2 enzyme activity levels from childhood to adulthood, and identify potentially modifiable factors affecting tracking. Prospective cohort of 1735 children (45% females) who had serum sPLA2 enzyme activity levels and other cardiovascular disease risk factors measured in 1980 that were followed-up in 2001. sPLA2 activity tracked from childhood to adulthood for males (r=0.39) and females (r=0.45). Those who decreased body mass index relative to their peers were more likely to resolve elevated childhood sPLA2 levels than have persistent elevated sPLA2 levels in childhood and adulthood. Those who consumed less fruit, and gained more body mass index relative to their peers, began smoking or were a persistent smoker between childhood and adulthood were more likely to develop incident elevated sPLA2 levels than those with persistent not elevated sPLA2 levels. Childhood sPLA2 enzyme activity levels associate with adult sPLA2 levels 21 years later. Healthful changes in modifiable risk factors that occur between childhood and adulthood might prevent children from developing elevated sPLA2 levels in adulthood. Copyright © 2018. Published by Elsevier Editora Ltda.

  18. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  19. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.

    Science.gov (United States)

    Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang

    2013-04-01

    A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mining anaerobic digester consortia metagenomes for secreted carbohydrate active enzymes

    DEFF Research Database (Denmark)

    Wilkens, Casper; Busk, Peter Kamp; Pilgaard, Bo

    , and food wastes (Alvarado et al., 2014). The processes and the roles of the microorganisms that are involved in biomass conversion and methane production in ADs are still not fully understood. We are investigating thermophilic and mesophilic ADs that use wastewater surplus sludge for methane production......Anaerobic digesters (ADs) are one of several ways to produce renewable energy, which in the case of ADs is in the form of methane. Several microbial groups are involved in anaerobic degradation of organic wastes such as animal manures and wastewater, and solid organic wastes such as sludge, crop...... was done with the Peptide Pattern Recognition (PPR) program (Busk and Lange, 2013), which is a novel non-alignment based approach that can predict function of e.g. CAZymes. PPR identifies a set of short conserved sequences, which can be used as a finger print when mining genomes for novel enzymes. In both...

  1. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    Science.gov (United States)

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  2. ENZYME ACTIVITIES OF PADDY SOILS AND RELATIONSHIPS WITH THE SOIL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Rıdvan KIZILKAYA

    1998-03-01

    Full Text Available This study was carried out to determine the effect of soil properties on enzyme activities of paddy soils, the sample of which were taken from Üçpınar, Harız, Doğancı, Kaygusuz, Emenli, Sarıköy and Gelemenağarı villages where rice cultivation is an intensive agricultural system. In this study, soil properties having effects on urease, phosphatase, ß-glucosidase and catalase enzyme activities were setforth. Urease enzyme activities of soil samples varied from 24.12 to 39.03 mg N 100 g dry soil -1 . Significant correlations were determined between urease enzyme activities and organic matter (r = 0.89**, extractable Mn (r = 0.74**, exchangable K (r = 0.73** and total P content of soil (r = 0.81*. Acid phosphatase enzyme activity varied between 3.00-17.44 mg phenol 100 g dry soil -1 , alkaline phosphatase enzyme activity between 12.00-25.53 mg phenol 100 g dry soil-1 . Exchangable Mg (r = 0.71* and extractable Cu (r = 0.74* were found to have positive effect on acid phosphatase enzyme activity and pH (r = 0.73*, exchangable Ca (r = 0.74*, exchangable Mg (r = 0.71*, exchangable total basic cations (r = 0.79* and extractable Cu (r = 0.70* had positive effects on alkaline phosphatase enzyme activity, whereas total P (r = - 0.84** affected the activity negatively. ß-glucosidase enzyme activity was measured to vary between 1.12-3.64 mg salingen 100 g dry soil -1 . It was also observed that extractable Zn content of soil samples (r = - 0.97** had negative effect on ß-glucosidase activity, wheras total exchangable acidic cations (r = 0.70* affected the activity positively. Catalase enzyme activities of soils changed between 5.25 - 9.00 mg O2 5 g dry soil -1 . Significant correlations were found between catalase activities and fraction of soils and extractable Fe content. Positive correlations, however, were determined between catalase activities and clay fraction (r = 0.82* and salt content (r = 0.83** of samples.

  3. Recovery of active pathogenesis-related enzymes from the apoplast ...

    African Journals Online (AJOL)

    Overall protease activity intensity was higher in the symplast. Maximum symplast contamination of the apoplast was 2% as estimated by glucose 6-phosphate dehydrogenase activity, a biochemical marker for symplast. Accumulation of pathogenesis-related enzymatic activities in the apoplast of M. acuminata leaf tissue was ...

  4. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  5. Definition of regional dependence of activity antioxidative enzymes means of the dispersive analysis

    Directory of Open Access Journals (Sweden)

    Anatoly T. Bykov

    2011-05-01

    Full Text Available In article application of the dispersive analysis for an estimation of dependence of activity antioxidative enzymes from region of constant residing, age, sex and the disease diagnosis is considered.

  6. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    Science.gov (United States)

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  7. Linkages between land Cover, enzymes, and soil organic matter chemistry following encroachment of leguminous woody plant into grasslands

    Science.gov (United States)

    Filley, T. R.; Stott, D. E.; Boutton, T. W.; Creamer, C. A.; Olk, D.

    2009-12-01

    In the Rio Grande Plains of southern Texas, subtropical thorn woodlands dominated by the N-fixing tree Prosopis glandulosa have largely replaced native grasslands over the last 150 years as a result of fire suppression and over grazing. This land cover change has resulted in the increase of belowground stocks of C, N, and P, changes to the amount and chemical nature of soil-stabilized plant biopolymers, and the composition and activity of soil microbes. Given that extracellular enzymes produced by plants and microbes are the principal means by which complex compounds are degraded and the production of such enzymes is triggered or suppressed by changes in primary input and nutrient availability we sought to relate how these fundamental changes in this ecosystem are reflected in the activity of soil stabilized extracellular enzymes and soil organic matter (SOM) chemistry in this system. We focused upon a successional chronosequence from C4-dominant grassland to woody patches of up to 86 yrs age since mesquite establishment. We related the molecular composition and concentration of hydrolysable amino acids and amino sugars, as well as CuO extractable lignin and substituted fatty acid to the potential activities of five extracellular enzymes (arylamidase, acid phosphatase, β-glucosidase, β-glucosaminidase (NAGase, polyphenoloxidase (PPO)) and a general marker for hydrolytic activity, fluorescein diacetate (FDA). Each of these enzymes, with the exception of PPO, showed higher potential activity in soils from woody clusters than grasslands and had activities generally well correlated to carbon content. PPO, often defined as a proxy for microbial lignin decay activity, showed no statistical difference between grassland and forest sites and no significant relationship to soil C content. Yields of total amino acids and amino sugars all show increases in content with cluster age when normalized to soil mass, as did the enzyme activities targeted to their decomposition, but

  8. Modest induction of phase 2 enzyme activity in the F-344 rat prostate

    Directory of Open Access Journals (Sweden)

    Brooks James D

    2006-03-01

    Full Text Available Abstract Background Prostate cancer is the most commonly diagnosed malignancy in men and is thought to arise as a result of endogenous oxidative stress in the face of compromised carcinogen defenses. We tested whether carcinogen defense (phase 2 enzymes could be induced in the prostate tissues of rats after oral feeding of candidate phase 2 enzyme inducing compounds. Methods Male F344 rats were gavage fed sulforaphane, β-naphthoflavone, curcumin, dimethyl fumarate or vehicle control over five days, and on the sixth day, prostate, liver, kidney and bladder tissues were harvested. Cytosolic enzyme activities of nicotinamide quinone oxidoreductase (NQO1, total glutathione transferase (using DCNB and mu-class glutathione transferase (using CDNB were determined in the treated and control animals and compared. Results In prostatic tissues, sulforaphane produced modest but significant increases in the enzymatic activities of NQO1, total GST and GST-mu compared to control animals. β-naphthoflavone significantly increased NQO1 and GST-mu activities and curcumin increased total GST and GST-mu enzymatic activities. Dimethyl fumarate did not significantly increase prostatic phase 2 enzyme activity. Compared to control animals, sulforaphane also significantly induced NQO1 or total GST enzyme activity in the liver, kidney and, most significantly, in the bladder tissues. All compounds were well tolerated over the course of the gavage feedings. Conclusion Orally administered compounds will induce modestly phase 2 enzyme activity in the prostate although the significance of this degree of induction is unknown. The 4 different compounds also altered phase 2 enzyme activity to different degrees in different tissue types. Orally administered sulforaphane potently induces phase 2 enzymes in bladder tissues and should be investigated as a bladder cancer preventive agent.

  9. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  10. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  11. Cardiovascular function following reduced aerobic activity

    Science.gov (United States)

    Raven, P. B.; Welch-O'Connor, R. M.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: The aim of this study was to test the hypothesis that a sustained reduction of physical activity (deconditioning) would alter the cardiovascular regulatory function. METHODS: Nineteen young, healthy volunteers participated in physical deconditioning for a period of 8 wk. Before (pre) and following (post) physical deconditioning, the responses of heart rate (HR), mean arterial pressure (MAP, measured by Finapres), central venous pressure (CVP), stroke volume (SV, Doppler), and forearm blood flow (FBF, plethysmography) were determined during lower body negative pressure (LBNP). The carotid baroreflex (CBR) function was assessed using a train of pulsatile neck pressure (NP) and suction, and the aortic baroreflex control of HR was assessed during steady-state phenylephrine (PE) infusion superimposed by LBNP and NP to counteract the PE increased CVP and carotid sinus pressure, respectively. RESULTS: Active physical deconditioning significantly decreased maximal oxygen uptake (-7%) and LBNP tolerance (-13%) without a change in baseline hemodynamics. Plasma volume (-3% at P = 0.135), determined by Evans Blue dilution, and blood volume (-4% at P = 0.107) were not significantly altered. During LBNP -20 to -50 torr, there was a significantly greater drop of SV per unit decrease in CVP in the post- (14.7 +/- 1.6%/mm Hg) than predeconditioning (11.2 +/- 0.7%/mm Hg) test accompanied by a greater tachycardia. Deconditioning increased the aortic baroreflex sensitivity (pre vs post: -0.61 +/- 0.12 vs -0.84 +/- 0.14 bpm.mm-1 Hg, P = 0.009) and the slope of forearm vascular resistance (calculated from [MAP-CVP]/FBF) to CVP (-2.75 +/- 0.26 vs -4.94 +/- 0.97 PRU/mm Hg, P = 0.086). However, neither the CBR-HR (-0.28 +/- 0.03 VS -0.39 +/- 0.10 bpm.mm-1 Hg) nor the CBR-MAP (-0.37 +/- 0.16 vs -0.25 +/- 0.07 mm Hg/mm Hg) gains were statistically different between pre- and postdeconditioning. CONCLUSIONS: We concluded that the functional modification of the cardiac pressure

  12. Indication of temperature inverted microbial assimilative capacities (extracellular enzymes activities in the pelagic of Lake Sevan (Armenia

    Directory of Open Access Journals (Sweden)

    Arevik MINASYAN

    2016-06-01

    Full Text Available Pioneering records of extracellular enzymes activities (EEA in Lake Sevan waters highlight dependence of heterotrophic functioning on physicochemical characteristics and bacterial assemblage. Values of EEA, ranged 0.11-30.39 µg C/P L-1h-1, were higher in upper layers compared to the omission in deeper parts. Particles associated (ecto- enzymes mainly predominated over free dissolved (exo- enzymes. In June activities of all studied enzymes followed similar pattern, particularly, decreasing at thermocline and increasing twice/more in cold deeper waters. Regardless higher bacterial density and temperature in June, with no similar records up to now, EEA revealed reverse relationship to temperature and bacteria data and were significantly lesser than in March. Our finding might be suggested as temperature inverted impact to heterotrophic activities in eutrophic conditions. We assume that observed, with temperature raise, declined EEA was due to blocked enzymatic active center from colloids and DOM components interaction, which, in overall, may suppress organic substrate utilization and result in weakening of first and rate limiting step of biological self-purification in Lake Sevan waters. Therefore, since temperature is co-regulator of assimilative/carrying capacity of aquatic ecosystems, climate warming might have unexpected negative feedbacks also through lowering assimilative capacities of water bodies, jeopardizing their quality and ecology.

  13. Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.

    Science.gov (United States)

    Fang, Shengzuo; Liu, Dong; Tian, Ye; Deng, Shiping; Shang, Xulan

    2013-01-01

    Monoculture causes nutrient losses and leads to declines in soil fertility and biomass production over successive cultivation. The rhizosphere, a zone of usually high microbial activities and clearly distinct from bulk soil, is defined as the volume of soil around living roots and influenced by root activities. Here we investigated enzyme activities and microbial biomass in the rhizosphere under different tree compositions. Six treatments with poplar, willow, and alder mono- or mixed seedlings were grown in rhizoboxes. Enzyme activities associated with nitrogen cycling and microbial biomass were measured in all rhizosphere and bulk soils. Both enzyme activities and microbial biomass in the rhizosphere differed significantly tree compositions. Microbial biomass contents were more sensitive to the changes of the rhizosphere environment than enzyme activities. Tree species coexistence did not consistently increase tested enzyme activities and microbial biomass, but varied depending on the complementarities of species traits. In general, impacts of tree species and coexistence were more pronounced on microbial composition than total biomass, evidenced by differences in microbial biomass C/N ratios stratified across the rhizosphere soils. Compared to poplar clone monoculture, other tree species addition obviously increased rhizosphere urease activity, but greatly reduced rhizosphere L-asparaginase activity. Poplar growth was enhanced only when coexisted with alder. Our results suggested that a highly productive or keystone plant species in a community had greater influence over soil functions than the contribution of diversity.

  14. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    Science.gov (United States)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the

  15. Scavenging activity, anti-inflammatory and diabetes related enzyme ...

    African Journals Online (AJOL)

    The total phenolic content measured by Folin-ciocalteu method. The raw leaf extracts of the selected varieties were found to contain a high content of total phenolic content (342.45 mg GAE/ gDW for GE) and therefore exhibited a higher antioxidant activity and inhibitory effect of radicals scavenging activity against DPPH and ...

  16. Changes in activities of enzymes of glutamate metabolism in rat ...

    African Journals Online (AJOL)

    ... acute treatment GAD activity was significantiy inhibited in ail the brain regions except in cerebral cortex where the inhibition was non-significant However, under sub-acute treatment GAD activity showed an elevation in cerebral cortex. cerebellum and striatum, whiie showing a decrease in hippocampus and ponsmedulla.

  17. Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system

    Science.gov (United States)

    Desguin, Benoît; Goffin, Philippe; Viaene, Eric; Kleerebezem, Michiel; Martin-Diaconescu, Vlad; Maroney, Michael J; Declercq, Jean-Paul; Soumillion, Patrice; Hols, Pascal

    2014-01-01

    Racemases catalyze the inversion of stereochemistry in biological molecules, giving the organism the ability to use both isomers. Among them, lactate racemase remains unexplored due to its intrinsic instability and lack of molecular characterization. Here we determine the genetic basis of lactate racemization in Lactobacillus plantarum. We show that, unexpectedly, the racemase is a nickel-dependent enzyme with a novel α/β fold. In addition, we decipher the process leading to an active enzyme, which involves the activation of the apo-enzyme by a single nickel-containing maturation protein that requires preactivation by two other accessory proteins. Genomic investigations reveal the wide distribution of the lactate racemase system among prokaryotes, showing the high significance of both lactate enantiomers in carbon metabolism. The even broader distribution of the nickel-based maturation system suggests a function beyond activation of the lactate racemase and possibly linked with other undiscovered nickel-dependent enzymes. PMID:24710389

  18. Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji'an, China.

    Science.gov (United States)

    Yin, Juxin; Zhang, Daihui; Zhuang, Jianjian; Huang, Yi; Mu, Ying; Lv, Shaowu

    2017-12-11

    Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji'an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC. HPLC, GC-MS, and LC-MS were combined to measure the enzyme activity of the key enzymes. Quantitative PCR was used in the investigation of gene expression. By analyzing the correlation between the enzyme activity and the transcription level of the key enzymes with ginsenoside content, we found that DS and GT enzyme activities are significantly correlated with the ginsenoside content in different ages of ginseng. Our findings might provide a new strategy to discriminate between ginseng of different years. Meanwhile, this research provides important information for the in-depth study of ginsenoside biosynthesis.

  19. Milk enzyme activities and subclinical mastitis among women in Guinea-Bissau

    DEFF Research Database (Denmark)

    Rasmussen, Lill Brith Wium; Hartvig, Ditte Luise; Kæstel, Pernille

    2008-01-01

    Background: Subclinical mastititis (SCM) is a condition with raised milk concentration of sodium and milk immune factors. The milk enzymes N-acetyl-β-D-glucosaminidase (NAGase), lactate dehydrogenase (LDH), acid phosphatase (AcP), and alkaline phosphatase (AP) have attracted attention in dairy...... research as indicators of SCM, udder health, and milk quality. Study Design: To investigate if milk enzyme activities and the inflammatory interleukin 8 (IL-8) level are increased in women with SCM, we measured sodium, potassium, NAGase, LDH, AcP, AP, and IL-8 in breastmilk samples collected at 2 months...... in univariate linear regression (p enzymes and IL-8). Conclusions: A positive association between the Na/K ratio and the breastmilk enzymes NAGase, LDH, AcP, and AP was found. Breastmilk enzymes have not previously been investigated in relation to SCM in women, and further...

  20. Mitochondrial respiratory and antioxidative enzyme activities in turkey meat.

    Science.gov (United States)

    Janisch, S; Wicke, M; Krischek, C

    2012-02-01

    Meat quality and (anti)oxidative metabolism of m. pectoralis superficialis (MPS), m. gastrocnemius (MG) and m. iliotibilialis lateralis (MIL) from turkey toms were analysed. After slaughter, pH of MPS and MG decreased and electrical conductivity of the MPS increased. The MG had generally higher pH values. The meat lightness (L) and redness (a) increased in MG and MPS after slaughter. The MPS always had higher L and lower a values. Mitochondrial respiratory activities (MRA) were higher in the MIL than the MPS. The activities of superoxide dismutase (SOD) and glutathione peroxidase, analysed in the MPS, increased and the glutathione reductase activity decreased after slaughter. Meat samples with lower pH24 h p.m. had higher drip loss and L values. The MRA were tendentially lower and the SOD activities higher in these samples. These results indicate a relation between the meat quality, the antioxidative metabolism and mitochondrial respiration.

  1. Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts.

    Science.gov (United States)

    Albenzio, M; Santillo, A; Kelly, A L; Caroprese, M; Marino, R; Sevi, A

    2015-11-01

    Individual caprine milk with different somatic cell counts (SCC) were studied with the aim of investigating the percentage distribution of leukocyte cell types and the activities of indigenous proteolytic enzymes; proteolysis of casein was also studied in relation to cell type following recovery from milk. The experiment was conducted on 5 intensively managed dairy flocks of Garganica goats; on the basis of SCC, the experimental groups were denoted low (L-SCC; 1,501,000 cells/mL) SCC. Leukocyte distribution differed between groups; polymorphonuclear neutrophilic leukocytes were higher in M-SCC and H-SCC milk samples, the percentage macrophages was the highest in H-SCC, and levels of nonviable cells significantly decreased with increasing SCC. Activities of all the main proteolytic enzymes were affected by SCC; plasmin activity was the highest in H-SCC milk and the lowest in L-SCC, and elastase and cathepsin D activities were the highest in M-SCC. Somatic cell count influenced casein hydrolysis patterns, with less intact α- and β-casein in H-SCC milk. Higher levels of low electrophoretic mobility peptides were detected in sodium caseinate incubated with leukocytes isolated from L-SCC milk, independent of cell type, whereas among cells recovered from M-SCC milk, macrophages yielded the highest levels of low electrophoretic mobility peptides from sodium caseinate. The level of high electrophoretic mobility peptides was higher in sodium caseinate incubated with polymorphonuclear neutrophilic leukocytes and macrophages isolated from M-SCC, whereas the same fraction of peptides was always the highest, independent of leukocyte type, for cells recovered from H-SCC milk. In caprine milk, a level of 700,000 cells/mL represented the threshold for changes in leukocyte distribution, which is presumably related to the immune status of the mammary gland. Differences in the profile of indigenous lysosomal proteolytic enzymes in caprine milk may influence the integrity of casein

  2. DNA topoisomerase II enzyme activity appears in mouse sperm ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... Sperm suspensions of 4 male mice (A, B, C and D), having an initial motility grade of 3.5 were used to examine the presence of DNA topoisomerase II (top 2) activity in sperm heads. The initial percentage motile of male A was 75%, male B was 80%, male C was 70% and male D was 60%. Top 2 activity was.

  3. DNA topoisomerase II enzyme activity appears in mouse sperm ...

    African Journals Online (AJOL)

    Sperm suspensions of 4 male mice (A, B, C and D), having an initial motility grade of 3.5 were used to examine the presence of DNA topoisomerase II (top 2) activity in sperm heads. The initial percentage motile of male A was 75%, male B was 80%, male C was 70% and male D was 60%. Top 2 activity was examined by ...

  4. Evaluation of antioxidant enzymes activity and malondialdehyde levels in patients with chronic periodontitis and diabetes mellitus.

    Science.gov (United States)

    Trivedi, Shilpa; Lal, Nand; Mahdi, Abbas Ali; Mittal, Madhukar; Singh, Babita; Pandey, Shivani

    2014-05-01

    The aim of this study is to investigate the impact of diabetes, a known risk factor for periodontitis, on activities of antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT) as well as levels of free radical damage marker malondialdehyde (MDA) in blood and saliva of individuals with chronic periodontitis (CP). Sixty patients with CP (30 patients with type 2 diabetes mellitus [DMCP] and 30 systemically healthy patients [CP]) and 60 periodontally healthy individuals (30 patients with type 2 diabetes mellitus and 30 systemically healthy patients [PH]) were included in this study. After clinical measurements, blood and saliva samples were collected. SOD, GR, and CAT activities in red blood cell lysate and saliva and MDA levels in plasma and saliva samples were spectrophotometrically assayed. An analysis of variance test followed by a post hoc test was used to compare the intragroup and intergroup variances among the study groups. MDA levels in both the periodontitis groups were higher than in the periodontally healthy groups, but the difference between the CP and DMCP groups did not reach statistical significance (P >0.05). There was a highly significant difference between the CP and PH groups for all the enzymes studied except for SOD in blood. Only salivary SOD and GR activities were significantly different in the CP and DMCP groups. This study favors the role of oxidative stress in both diabetes and periodontitis. It shows that the compensatory mechanism of the body is partially collapsed because of excessive production of free radicals during periodontitis and is not able to cope with increased free radical generation attributable to diabetes, thereby worsening the situation.

  5. Changes in activities of tissues enzymes in rats administered Ficus ...

    African Journals Online (AJOL)

    parts (fruit, leaf, sap, bark, and root) of Ficus exasperata. The plant is used ... powdered leaf materials were cold-macerated with 6 volumes of 80% methanol for 14 days. Crude extract was obtained by filtration followed by evaporation of the solvent in a rotatory evaporator. The paste was weighed and used to prepare the ...

  6. Stabilization of enzymes by multipoint covalent immobilization on supports activated with glyoxyl groups.

    Science.gov (United States)

    López-Gallego, Fernando; Fernandez-Lorente, Gloria; Rocha-Martin, Javier; Bolivar, Juan M; Mateo, Cesar; Guisan, Jose M

    2013-01-01

    Stabilization of enzymes via immobilization techniques is a valuable approach in order to convert a necessary protocol (immobilization) into a very interesting tool to improve key enzyme properties (stabilization). Multipoint covalent attachment of each immobilized enzyme molecule may promote a very interesting stabilizing effect. The relative distances among all enzyme residues involved in immobilization has to remain unaltered during any conformational change induced by any distorting agent. Amino groups are very interesting nucleophiles placed on protein surfaces. The immobilization of enzyme through the region having the highest amount of amino groups (Lys residues) is key for a successful stabilization. Glyoxyl groups are small aliphatic aldehydes that form very unstable Schiff's bases with amino groups and they do not seem to be useful for enzyme immobilization at neutral pH. However, under alkaline conditions, glyoxyl supports are able to immobilize enzymes via a first multipoint covalent immobilization through the region having the highest amount of Lysine groups. Activation of supports with a high surface density of glyoxyl groups and the performance of very intense enzyme-support multipoint covalent attachments are here described.

  7. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.

    Science.gov (United States)

    Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui

    2014-10-01

    As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.

  8. Novel TPP-riboswitch activators bypass metabolic enzyme dependency.

    Science.gov (United States)

    Lünse, Christina E; Scott, Fraser J; Suckling, Colin J; Mayer, Günter

    2014-01-01

    Riboswitches are conserved regions within mRNA molecules that bind specific metabolites and regulate gene expression. TPP-riboswitches, which respond to thiamine pyrophosphate (TPP), are involved in the regulation of thiamine metabolism in numerous bacteria. As these regulatory RNAs are often modulating essential biosynthesis pathways they have become increasingly interesting as promising antibacterial targets. Here, we describe thiamine analogs containing a central 1,2,3-triazole group to induce repression of thiM-riboswitch dependent gene expression in different E. coli strains. Additionally, we show that compound activation is dependent on proteins involved in the metabolic pathways of thiamine uptake and synthesis. The most promising molecule, triazolethiamine (TT), shows concentration dependent reporter gene repression that is dependent on the presence of thiamine kinase ThiK, whereas the effect of pyrithiamine (PT), a known TPP-riboswitch modulator, is ThiK independent. We further show that this dependence can be bypassed by triazolethiamine-derivatives that bear phosphate-mimicking moieties. As triazolethiamine reveals superior activity compared to pyrithiamine, it represents a very promising starting point for developing novel antibacterial compounds that target TPP-riboswitches. Riboswitch-targeting compounds engage diverse endogenous mechanisms to attain in vivo activity. These findings are of importance for the understanding of compounds that require metabolic activation to achieve effective riboswitch modulation and they enable the design of novel compound generations that are independent of endogenous activation mechanisms.

  9. Gaseous environment of plants and activity of enzymes of carbohydrate catabolism

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Igamberdiev, A.U.; Salam, A.M.M.

    1989-01-01

    The authors investigated the action of hypoxia and high CO 2 concentration in the atmosphere on activity of phosphofructokinase, aldolase, glucose phosphate isomerase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, and isocitrate lyase in pea seedlings (Pisum sativum L.), corn scutella (Zea mays L.), and hemp cotyledons (Cannabis sativa L.). The first 4-12h of hypoxia witnessed suppression of enzymes of the initial stages of glycolysis (glucose-6-phosphate isomerase, phosphofructokinase)and activation of enzymes of its final stages (alcohol dehydrogenase and lactate dehydrogenase) and enzymes linking glycolysis and the pentose phosphate pathway (aldolase and glucose-6-phosphate dehydrogenase). An excess of CO 2 in the environment accelerated and amplified this effect. At the end of a 24-h period of anaerobic incubation, deviations of enzyme activity from the control were leveled in both gaseous environments. An exception was observed in the case of phosphofructokinase, whose activity increased markedly at this time in plants exposed to CO 2 . Changes in activity of the enzymes were coupled with changes in their kinetic parameters (apparent K m and V max values). The activity of isocitrate lyase was suppressed in both variants of hypoxic gaseous environments, a finding that does not agree with the hypothesis as to participation of the glyoxylate cycle in the metabolic response of plants to oxygen stress. Thus, temporary inhibition of the system of glycolysis and activation of the pentose phosphate pathway constituted the initial response of the plants to O 2 stress, and CO 2 intensified this metabolic response

  10. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  11. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Golbeck, J.H.; Cammarata, K.V.

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  12. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens.

    Directory of Open Access Journals (Sweden)

    Johanna Rytioja

    Full Text Available White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification.

  13. Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography.

    Science.gov (United States)

    Hughes, Alex J; Herr, Amy E

    2010-05-01

    We describe a sensitive zymography technique that utilizes an automated microfluidic platform to report enzyme molecular weight, amount, and activity (including k(cat) and K(m)) from dilute protein mixtures. Calf intestinal alkaline phosphatase (CIP) is examined in detail as a model enzyme system, and the method is also demonstrated for horseradish peroxidase (HRP). The 40 min assay has a detection limit of 5 zmol ( approximately 3 000 molecules) of CIP. Two-step pore-limit electrophoresis with enzyme assay (PLENZ) is conducted in a single, straight microchannel housing a polyacrylamide (PA) pore-size gradient gel. In the first step, pore limit electrophoresis (PLE) sizes and pseudoimmobilizes resolved proteins. In the second step, electrophoresis transports both charged and neutral substrates into the PLE channel to the entrapped proteins. Arrival of substrate at the resolved enzyme band generates fluorescent product that reveals enzyme molecular weight against a fluorescent protein ladder. Additionally, the PLENZ zymography assay reports the kinetic properties of CIP in a fully quantitative manner. In contrast to covalent enzyme immobilization, physical pseudoimmobilization of CIP in the PA gel does not significantly reduce its maximum substrate turnover rate. However, an 11-fold increase in the Michaelis constant (over the free solution value) is observed, consistent with diffusional limitations on substrate access to the enzyme active site. PLENZ offers a robust platform for rapid and multiplexed functional analysis of heterogeneous protein samples in drug discovery, clinical diagnostics, and biocatalyst engineering.

  14. Soil microbial abundances and enzyme activities in different rhizospheres in an integrated vertical flow constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Ying; Jiang, Yueping; Jiang, Qinsu; Min, Hang; Fan, Haitian; Zeng, Qiang; Chang, Jie [College of Life Sciences, Zhejiang University, Hangzhou (China); Zhang, Chongbang [School of Life Sciences, Taizhou University, Linhai (China); Yue, Chunlei [Zhejiang Forestry Academy, Hangzhou (China)

    2011-03-15

    Rhizosphere microorganism is an important bio-component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical-flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians.

    Science.gov (United States)

    Li, Mei-Hui

    2016-08-01

    The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. Copyright © 2016. Published by Elsevier Inc.

  16. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  17. D-glucose transport and glycolytic enzyme activities in erythrocytes of dogs, pigs, cats, horses, cattle and sheep.

    Science.gov (United States)

    Arai, T; Washizu, T; Sagara, M; Sako, T; Nigi, H; Matsumoto, H; Sasaki, M; Tomoda, I

    1995-03-01

    The activities of D-glucose transport (D-GT) and the glycolytic enzymes hexokinase (HK) and pyruvate kinase (PK), were measured in the erythrocytes of dogs, pigs, cats, horses, cattle and sheep. The erythrocytes of dogs had the highest activities of D-GT, HK and PK, significantly higher than the activities in the erythrocytes of the herbivores. The activities of D-GT and HK in cat erythrocytes were significantly lower than in those of dogs. The differences between the activities of D-GT in the erythrocytes of the different species followed the differences in activities of HK but not those in the activities of PK or in the blood glucose concentrations. It is considered that the activity of HK provides a convenient measurement of the relative rates of glucose oxidation in erythrocytes.

  18. changes in activities of enzymes of glutamate metabolism in rat ...

    African Journals Online (AJOL)

    F , Cote, LJ , Ginsburg, S , Lawrence. G.D., Naini. P.. and Sano. M. (1990). Studies on new centrally active reversibie acety1cholinesterase inhibitors. Neurochem. Res. 15: 587-59. Barchas, J. D., Akii, H., Eiliot, G.R., Hoiman. B. and Watson. S.J (1978). Behavioral neurochemistry: Neuroreguiarors and behavioral states.

  19. Activity of Redox Enzymes in the Thallus of Anthoceros natalensis.

    Science.gov (United States)

    Chasov, A V; Beckett, R P; Minibayeva, F V

    2015-09-01

    Anthocerotophyta (hornworts) belong to a group of ancient nonvascular plants and originate from a common ancestor with contemporary vascular plants. Hornworts represent a unique model for investigating mechanisms of formation of stress resistance in higher plants due to their high tolerance to the action of adverse environmental factors. In this work, we demonstrate that the thallus of Anthoceros natalensis exhibits high redox activity changing under stress. Dehydration of the thallus is accompanied by the decrease in activities of intracellular peroxidases, DOPA-peroxidases, and tyrosinases, while catalase activity increases. Subsequent rehydration results in the increase in peroxidase and catalase activities. Kinetic features of peroxidases and tyrosinases were characterized as well as the peroxidase isoenzyme composition of different fractions of the hornwort cell wall proteins. It was shown that the hornwort peroxidases are functionally similar to peroxidases of higher vascular plants including their ability to form superoxide anion-radical. The biochemical mechanism was elucidated, supporting the possible participation of peroxidases in the formation of reactive oxygen species (ROS) via substrate-substrate interactions in the hornwort thallus. It has been suggested that the ROS formation by peroxidases is an evolutionarily ancient process that emerged as a protective mechanism for enhancing adaptive responses of higher land plants and their adaptation to changing environmental conditions and successful colonization of various ecological niches.

  20. activity of enzyme trypsin immobilized onto macroporous poly(epoxy

    African Journals Online (AJOL)

    dell

    storage conditions. According to Goradia et al. (2005) and Maurich et al. (2008) immobilization prevents autolysis thus making the immobilized trypsin relatively more stable than the free trypsin under the same storage conditions. The immobilized trypsin could be reused up to seven times without significant loss of activity.

  1. Enzyme Activity and Biomolecule Templating at Liquid and Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harvey W. Blanch

    2004-12-01

    There are two main components of this research program. The first involves studies of the adsorption and catalytic activity of proteins at fluid-fluid and fluid-solid interfaces; the second employs biological macromolecules as templates at the solid-liquid interface for controlled crystallization of inorganic materials, to provide materials with specific functionality.

  2. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle.

    Science.gov (United States)

    White, S H; Johnson, S E; Bobel, J M; Warren, L K

    2016-07-01

    Untrained Thoroughbred horses (6 mares and 6 geldings; 11 yr [SE 1] and 565 kg [SE 11]) were used to evaluate antioxidant gene expression and enzyme activity in blood and skeletal muscle in response to prolonged exercise after receiving 2 levels of dietary selenium for 36 d: 0.1 (CON; = 6) or 0.3 mg/kg DM (SEL; = 6). Horses were individually fed 1.6% BW coastal bermudagrass hay, 0.4% BW whole oats, and a mineral/vitamin premix containing no Se. Sodium selenite was added to achieve either 0.1 or 0.3 mg Se/kg DM in the total diet. On d 35, horses underwent 2 h of submaximal exercise in a free-stall exerciser. Blood samples were obtained before (d 0) and after 34 d of Se supplementation and on d 35 to 36 immediately after exercise and at 6 and 24 h after exercise. Biopsies of the middle gluteal muscle were obtained on d 0, before exercise on d 34, and at 6 and 24 h after exercise. Supplementation with Se above the NRC requirement (SEL) increased serum Se ( = 0.011) and muscle thioredoxin reductase (TrxR) activity ( = 0.051) but had no effect on glutathione peroxidase (GPx) activity in plasma, red blood cell (RBC) lysate, or muscle in horses at rest. Serum creatine kinase activity increased ( Serum lipid hydroperoxides were affected by treatment ( = 0.052) and were higher ( = 0.012) in horses receiving CON than SEL immediately following exercise. Muscle expression of was unchanged at 6 h but increased ( = 0.005) 2.8-fold 24 h after exercise, whereas muscle TrxR activity remained unchanged. Glutathione peroxidase activity increased in plasma (P < 0.0001) and decreased in RBC lysate ( = 0.010) after prolonged exercise. A Se treatment × time interaction was observed for RBC GPx activity (P = 0.048). Muscle and expression and GPx activity did not change during the 24-h period after exercise. Level of dietary Se had no overall effect on expression of , , , , , , or in muscle following exercise. The impact of prolonged exercise on the activities of antioxidant enzymes

  3. Revealing hidden effect of earthworm on C distribution and enzyme activity

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2017-04-01

    Despite its importance for terrestrial nutrient and carbon cycling, the spatial organization and localization of microbial activity in soil and in biopores is poorly understood. We hypothesized that biopores created by earthworm play a critical role in reducing the gap of SOM input and microbial activities between topsoil and subsoil. Accordingly, Carbon (C) allocation by earthworms was related to enzyme distribution along soil profile. For the first time we visualized spatial distribution of enzyme activities (β-glucosidase, chitinase and acid phosphatase) and C allocation (by 14C imaging) in earthworm biopores in topsoil and subsoil. Soil zymography (an in situ method for the analysis of the two-dimensional distribution of enzyme activity in soil) was accompanied with 14C imaging (a method that enables to trace distribution of litter and C in soil profile) to visualize change of enzyme activities along with SOM incorporation by earthworms from topsoil to subsoil. Experiment was set up acquiring rhizoboxes (9×1×50 cm) filled up with fresh soil and 3 earthworms (L. terrestris), which were then layered with 14C-labeled plant-litter of 0.3 MBq on the soil surface. 14C imaging and zymography have been carried out after one month. Activities of all enzymes regardless of their nutrient involvement (C, N, P) were higher in the biopores than in bulk soil, but the differences were larger in topsoil compared to subsoil. Among three enzymes, Phosphatase activity was 4-times higher in the biopore than in the bulk soil. Phosphatase activity was closely associated with edge of burrows and correlate positively with 14C activity. These results emphasized especial contribution of hotspheres such as biopores to C allocation in subsoil - which is limited in C input and nutrients - and in stimulation of microbial and enzymatic activity by input of organic residues, e.g. by earthworms. In conclusion, biopore increased enzymatic mobilization of nutrients (e.g. P) inducing allocation

  4. Heterogeneity of hydrolytic enzyme activities under drought: imaging and quantitative analysis

    Science.gov (United States)

    Sanaullah, Muhammad; Razavi, Bahar S.; Kuzyakov, Yakov

    2015-04-01

    The zymography-based "snap-shoot" of enzyme activities in the rhizosphere is challenging to detect the in situ microbial response to global climate change. We developed in situ soil zymography and used it for identification and localization of hotspots of β-glucosidase activity in the rhizosphere of maize under drought stress (30% of field capacity). The zymographic signals were especially high at root tips and were much stronger for activity of β-glucosidase under drought as compared with optimal moisture (70% of field capacity). This distribution of enzyme activity was confirmed by fluorogenically labelled substrates applied directly to the root exudates. The activity of β-glucosidase in root exudates (produced by root and microorganism associated on the root surface), sampled within 1 hour after zymography was significantly higher by drought stressed plants as compared with optimal moisture. In contrast, the β-glucosidase activity in destructively sampled rhizosphere soil was lower under drought stress compared with optimal moisture. Furthermore, drought stress did not affected β-glucosidase activity in bulk soil, away from rhizosphere. Consequently, we conclude that higher release of mucilage by roots und drought stimulated β-glucosidase activity in the rhizosphere. Thus, the zymography revealed plant-mediated mechanisms accelerating β-glucosidase activity under drought at the root-soil interface. So, coupling of zymography and enzyme assays in the rhizosphere and non-rhizosphere soil enables precise mapping the changes in two-dimensional distribution of enzyme activities due to climate change within dynamic soil interfaces.

  5. Characterization of AmiBA2446, a novel bacteriolytic enzyme active against Bacillus species.

    Science.gov (United States)

    Mehta, Krunal K; Paskaleva, Elena E; Azizi-Ghannad, Saba; Ley, Daniel J; Page, Martin A; Dordick, Jonathan S; Kane, Ravi S

    2013-10-01

    There continues to be a need for developing efficient and environmentally friendly treatments for Bacillus anthracis, the causative agent of anthrax. One emerging approach for inactivation of vegetative B. anthracis is the use of bacteriophage endolysins or lytic enzymes encoded by bacterial genomes (autolysins) with highly evolved specificity toward bacterium-specific peptidoglycan cell walls. In this work, we performed in silico analysis of the genome of Bacillus anthracis strain Ames, using a consensus binding domain amino acid sequence as a probe, and identified a novel lytic enzyme that we termed AmiBA2446. This enzyme exists as a homodimer, as determined by size exclusion studies. It possesses N-acetylmuramoyl-l-alanine amidase activity, as determined from liquid chromatography-mass spectrometry (LC-MS) analysis of muropeptides released due to the enzymatic digestion of peptidoglycan. Phylogenetic analysis suggested that AmiBA2446 was an autolysin of bacterial origin. We characterized the effects of enzyme concentration and phase of bacterial growth on bactericidal activity and observed close to a 5-log reduction in the viability of cells of Bacillus cereus 4342, a surrogate for B. anthracis. We further tested the bactericidal activity of AmiBA2446 against various Bacillus species and demonstrated significant activity against B. anthracis and B. cereus strains. We also demonstrated activity against B. anthracis spores after pretreatment with germinants. AmiBA2446 enzyme was also stable in solution, retaining its activity after 4 months of storage at room temperature.

  6. Redox enzyme-mimicking activities of CeO2nanostructures: Intrinsic influence of exposed facets.

    Science.gov (United States)

    Yang, Yushi; Mao, Zhou; Huang, Wenjie; Liu, Lihua; Li, Junli; Li, Jialiang; Wu, Qingzhi

    2016-10-17

    CeO 2 nanoparticles (NPs) have been well demonstrated as an antioxidant in protecting against oxidative stress-induced cellular damages and a potential therapeutic agent for various diseases thanks to their redox enzyme-mimicking activities. The Ce 3+ /Ce 4+ ratio and oxygen vacancies on the surface have been considered as the major originations responsible for the redox enzyme-mimicking activities of CeO 2 NPs. Herein, CeO 2 nanostructures (nanocubes and nanorods) exposed different facets were synthesized via a facile hydrothermal method. The characterizations by X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-Vis spectroscopy show that the Ce 3+ /Ce 4+ ratio and oxygen vacancy content on the surfaces of as-synthesized CeO 2 nanostructures are nearly at the same levels. Meanwhile, the enzymatic activity measurements indicate that the redox enzyme-mimicking activities of as-synthesized CeO 2 nanostructures are greatly dependent on their exposed facets. CeO 2 nanocubes with exposed {100} facets exhibit a higher peroxidase but lower superoxide dismutase activity than those of the CeO 2 nanorods with exposed {110} facets. Our results provide new insights into the redox enzyme-mimicking activities of CeO 2 nanostructures, as well as the design and synthesis of inorganic nanomaterials-based artificial enzymes.

  7. [The restoration of the enzyme activity of chernozem soil after gamma-irradiation].

    Science.gov (United States)

    Denisova, T V; Kazeev, K Sh

    2006-01-01

    The Influence of gamma-radiation by dozes 1, 5, 10 and 20 kGy on enzyme activity of ordinary chemozem were studied. Dynamics of the restoration of the enzyme activity after the influence of gamma-radiation in model experiments in 3, 30, 90 and 180 days was investigated. The doze 1 kGy did no statistically significant influence on the investigated enzymes. Dehydrogenase is more radiosensitive enzyme than catalase. Values of the saccharase activity differed a significant variation so in most cases it has not been registered statistically significant changes. In 90-180 days of the incubation enzymes activity was restored up to control values. Dehydrogenase activity in 180 days in variants with dozes 10 and 20 kGy was restored up to a level of the control, over variants with dozes 1 and 5 kGy--is higher than the control over 78% and 23% accordingly. Saccharase activity in 180 days after the influence of gamma-radiation with a doze 20 kGy was on 61% lower than the control.

  8. Effect of bleaching on mercury release from amalgam fillings and antioxidant enzyme activities: a pilot study.

    Science.gov (United States)

    Cakir, Filiz Yalcin; Ergin, Esra; Gurgan, Sevil; Sabuncuoglu, Suna; Arpa, Cigdem Sahin; Tokgoz, İlknur; Ozgunes, Hilal; Kiremitci, Arlin

    2015-01-01

    The aim of this pilot clinical study was to determine the mercury release from amalgam fillings and antioxidant enzyme activities (Superoxide Dismutase [SOD] and Catalase[CAT] ) in body fluids after exposure to two different vital tooth bleaching systems. Twenty eight subjects with an average age of 25.6 years (18-41) having at least two but not more than four Class II amalgam fillings on each quadrant arch in the mouth participated in the study. Baseline concentrations of mercury levels in whole blood, urine, and saliva were measured by a Vapor Generation Accessory connected to an Atomic Absorption Spectrometer. Erythrocyte enzymes, SOD, and CAT activities in blood were determined kinetically. Subjects were randomly assigned to two groups of 14 volunteers. Group 1 was treated with an at-home bleaching system (Opalescence PF 35% Carbamide Peroxide, Ultradent), and Group 2 was treated with a chemically activated office bleaching system (Opalescence Xtra Boost 38% Hydrogen Peroxide, Ultradent) according to the manufacturer's recommendations. Twenty-four hours after bleaching treatments, concentrations of mercury and enzymes were remeasured. There were no significant differences on mercury levels in blood, urine, and saliva before and after bleaching treatments (p > 0.05). No differences were also found in the level of antioxidant enzyme activities (SOD and CAT) before and after treatments (p > 0.05). Mercury release did not affect the enzyme activities (p > 0.05). Bleaching treatments either office or home did not affect the amount of mercury released from amalgam fillings in blood, urine, and saliva and the antioxidant-enzyme activities in blood. Bleaching treatments with the systems tested in this pilot study have no deleterious effect on the mercury release from amalgam fillings and antioxidant enzymes in body fluids. © 2014 Wiley Periodicals, Inc.

  9. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater

    Directory of Open Access Journals (Sweden)

    Yumiko Obayashi

    2017-10-01

    Full Text Available Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO and 2-methoxyethanol (MTXE. The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube, protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In

  10. Development of a solid-phase assay for measurement of proteolytic enzyme activity

    International Nuclear Information System (INIS)

    Varani, J.; Johnson, K.; Kaplan, J.

    1980-01-01

    A solid-phase, plate assay was developed for the measurement of proteolytic enzyme activity. In this assay procedure, radiolabeled substrates were dried onto the surface of microtiter wells. Following drying, the wells were washed two times with saline to remove the nonadherent substrate. When proteolytic enzymes were added to the wells, protein hydrolysis occurred, releasing radioactivity into the supernatant fluid. The amount of protein hydrolysis that occurred was reflected by the amount of radioactivity in the supernatant fluid. When 125 I-hemoglobin was used as the substrate, it was as susceptible to hydrolysis by trypsin in the solid-phase assay as it was in solution in a standard assay procedure. Protease activity from a variety of sources (including from viable cells as well as from extracellular sources) were also able to hydrolyze the hemoglobin on the plate. 125 I-Labeled serum albumen, fibrinogen, and rat pulmonary basement membrane were also susceptible to hydrolysis by trypsin in the solid phase. When [ 14 C]elastin was dried onto the plate, it behaved in a similar manner to elastin in solution. It was resistant to hydrolysis by nonspecific proteases such as trypsin and chymotrypsin but was highly susceptible to hydrolysis by elastase. The solid-phase plate assay has several features which recommended it for routine use. It is as sensitive as standard tube assays (and much more sensitive than routinely used colormetric assays). It is quick and convenient; there are no precipitation, centrifugation, or filtration steps. In addition, very small volumes of radioactive wastes are generated. Another advantage of the solid-phase plate assay is the resistance of the dried substrates to spontaneous breakdown and to microbial contamination. Finally, this assay is suitable for use with viable cells as well as for extracellular proteases

  11. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  12. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  13. Is there any role of prolidase enzyme activity in the etiology of preeclampsia?

    Science.gov (United States)

    Pehlivan, Mustafa; Ozün Ozbay, Pelin; Temur, Muzaffer; Yılmaz, Ozgur; Verit, Fatma Ferda; Aksoy, Nurten; Korkmazer, Engin; Üstünyurt, Emin

    2017-05-01

    To evaluate a relationship between preeclampsia and prolidase enzyme activity. A prospective cohort study of 41 pregnant women diagnosed with preeclampsia and 31 healthy pregnant women as control group was selected at Harran University Hospital Department of Obstetrics and Gynecology. The prolidase enzyme activity was analyzed in maternal and umbilical cord plasma, amniotic fluid and placental and umbilical cord tissues by Chinard method in addition to maternal serum levels of lactate dehydrogenase (LDH), serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT). A significant relationship was found between plasma prolidase activity (635 ± 83 U/L) (p  = 0.007), umbilical cord plasma prolidase activity (610 ± 90 U/L) (p = 0.013), amniotic fluid prolidase activity (558 ± 100 U/L) (p  = 0.001), umbilical cord tissue prolidase activity (4248 ± 1675 U/gr protein) (p  = 0.013) and placental tissue prolidase activity (2116 ± 601 U/gr protein) (p  = 0.001) in preeclamptic group when compared to healthy pregnant women. There is a strong correlation between prolidase enzyme activity and preeclampsia. Prolidase enzyme activity may play a role in preeclampsia.

  14. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    Full Text Available Three hundred one-day-old male broiler chickens (Ross-308 were fed corn-soybean basal diets containing non-starch polysaccharide (NSP enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI and average daily gain (ADG were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05. Feed-to-gain ratio (FGR was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05. Apparent digestibility of crude protein (ADCP was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05. Cholecystokinin (CCK level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05, but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05, respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05. However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05. The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05. Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  15. Studies on the effects of radiation on enzyme activity and chromosome in mammals (Mus musuculus)

    International Nuclear Information System (INIS)

    Kim, J.B.; Lee, K.S.; Kim, Y.J.

    1982-01-01

    From the results of many researches in radiation biology, it is well known that the radiation induces gene mutation, aberration of chromosome which is a carrier of genes and the increase or decrease of enzyme activities in living organisms. However, the frequency of chromosomal aberration or the degree of enzyme activities according to the animal's age when they are irradiated with radiation and time pass after irradiation are known a little if any. From these viewpoints, the research on the frequencies of chromosomal aberrations in bone marrow cells and the degree of activities of glucose-6-phosphate dehydrogenase in liver, kidney and brain, and isocitrate dehydrogense in kidney and brain of mouse has been carried out according to the mice age when they are irradiated with 200 rad of whole body irradiation. The chromosomes and enzyme activities were observed at 24 hours, 48 hours and 4 days to 90 days after irradiation. (Author)

  16. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...... 0.05). In female rats the CCO activity expressed per milligram protein was increased 4.5-fold in the trained compared with the sedentary control rats (P less than 0.01). Neither cold stress nor sham swim training increased CCO or MDH activities in white adipose tissue (P greater than 0...

  17. A new versatile microarray-based method for high-throughput screening of carbohydrate-active enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia; Pedersen, Henriette Lodberg; Schückel, Julia

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing, together with associated bioinformatic tools have identified vast numbers of putative carbohydrate degrading and modifying enzymes including glycoside hydrolase...

  18. Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Lucie Vávrová

    2013-02-01

    Full Text Available Objective: In the pathogenesis of the metabolic syndrome (MetS, an increase of oxidative stress could play an important role which is closely linked with insulin resistance, endothelial dysfunction, and chronic inflammation. The aim of our study was to assess several parameters of the antioxidant status in MetS. Methods: 40 subjects with MetS and 40 age- and sex-matched volunteers without MetS were examined for activities of superoxide dismutase (CuZnSOD, catalase (CAT, glutathione peroxidase 1 (GPX1, glutathione reductase (GR, paraoxonase1 (PON1, concentrations of reduced glutathione (GSH, and conjugated dienes in low-density lipoprotein (CD-LDL. Results: Subjects with MetS had higher activities of CuZnSOD (p Conclusions: Our results implicated an increased oxidative stress in MetS and a decreased antioxidative defense that correlated with some laboratory (triglycerides, high-density lipoprotein cholesterol (HDL-C and clinical (waist circumference, blood pressure components of MetS.

  19. Renal scintigraphy following angiotensin-converting enzyme inhibition in the diagnosis of renovascular hypertension (captopril scintigraphy)

    International Nuclear Information System (INIS)

    Sfakianakis, G.N.; Sfakianakis, E.; Bourgoignie, J.

    1988-01-01

    There is definitely a niche for an accurate test for the diagnosis of RVH; more important, there is a need for a predictive test to help select patients suitable for revascularization procedures as opposed to medical treatment. All current tests have less than optimal results. Captopril scintigraphy warrants evaluation. It is important, however, to approach the test with a full understanding of its theoretical potentials on the basis of current clinical experience. Several options, techniques, and combinations are possible, given the availability of more than one radiopharmaceutical. The purpose of this chapter is to: (a) briefly review RVH and its pathophysiology, with emphasis on the need to establish the diagnosis, lateralize the abnormality, and decide about the mode of treatment; (b) review the current knowledge about converting-enzyme inhibitors; (c) analyze the handling of the different radiopharmaceuticals by the RVH-related kidney with and without pharmacologic intervention; and (d) compare and critically examine proposed protocols for captopril scintigraphy

  20. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides plantation at different ages.

    Directory of Open Access Journals (Sweden)

    Miao Yang

    Full Text Available The aim of this study was to assess the impact of forest age and season on the soil microbial community and enzyme activities in sea-buckthorn plantation system and to determine the relative contributions to soil microbial properties. Soil sampling was carried out in the dry season (April and wet season (September in four areas, including: abandoned farmland (NH, an 8-year- old plantation (young plantation, 8Y, a 13-year-old plantation (middle-aged plantation, 13Y, and an 18-year-old plantation (mature plantation, 18Y. The results showed that forest age and season have a significant effect on soil microbial community structure and enzyme activities. The total, bacterial, fungal, Gram-negative (G+, and Gram-positive (G- PLFAs increased gradually with forest age, with the highest values detected in 18Y. All the detected enzyme activities showed the trend as a consequence of forest age. The microbial PLFAs and soil enzyme activities were higher in the wet season than the dry season. However, there were no significant interactions between forest age and season. A Correlation analysis suggested that soil microbial communities and enzyme activities were significantly and positively correlated with pH, total nitrogen (TN and available phosphorus (AP. Season had a stronger influence on soil microbial communities than forest age. In general, sea-buckthorn plantations establishment might be a potential tool for maintaining and increasing soil fertility in arid and semi-arid regions.

  1. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    Science.gov (United States)

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  2. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter.

    Science.gov (United States)

    Peyrot, Caroline; Wilkinson, Kevin J; Desrosiers, Mélanie; Sauvé, Sébastien

    2014-01-01

    The effects of silver nanoparticles (AgNPs) on terrestrial ecosystems need to be better understood and assessed. Cationic silver (Ag+) has well-documented toxicity against bacteria, but it is not clear what will be the effect of nanoscale Ag. In the present study, the potential effects of AgNPs were investigated in soils by measuring activity of the enzymes phosphomonoesterase, arylsulfatase, β-D-glucosidase, and leucine-aminopeptidase. The toxicity of AgNPs was compared with that of ionic Ag, and the ameliorating effects of soil organic matter were evaluated. To this end, 2 soils with different organic matter contents were artificially contaminated with either AgNPs or Ag-acetate at equivalent total Ag concentrations. In general, enzyme activities were inhibited as a function of the Ag concentration in the soil. In the AgNP exposures, only a small fraction of the AgNP was actually truly dissolved (found in the soil enzymes. The addition of organic matter to the soils appeared to enhance enzyme activities; however, the mechanism of organic matter action is not clear given that dissolved Ag concentrations were similar in both the organic-matter–amended and unamended soils. The present study shows that the AgNP produces significant negative effects on the soil enzyme activities tested. The Ag chemical speciation measurements suggested that the AgNP caused greater toxic effects to the soil enzymes at the low Ag concentrations. For the larger concentrations of total soil Ag, causes of the negative effects on enzyme activities are less obvious but suggest that colloidal forms of Ag play a role.

  3. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna

    DEFF Research Database (Denmark)

    Ørsted, Michael; Roslev, Peter

    2015-01-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, we investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl...... or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2Cr2O7, or the herbicide formulation Roundup®. Toxicant induced changes in hydrolytic enzyme activity were compared to changes in mobility (ISO 6341). The results...... showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna, and fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup® resulted in loss of whole body enzyme activity, and release of cell...

  4. Angiotensin-converting enzyme activity and cognitive impairment during hypoglycaemia in healthy humans

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, Ulrik; Thomsen, Carsten E; Høgenhaven, Hans

    2008-01-01

    INTRODUCTION: In type 1 diabetes increased risk of severe hypoglycaemia is associated with high angiotensin-converting enzyme (ACE) activity. We tested in healthy humans the hypothesis that this association is explained by the reduced ability of subjects with high ACE activity to maintain normal ...

  5. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  6. Enzyme activity of antiradical protection in case of ultraviolet irradiation of blood

    International Nuclear Information System (INIS)

    Shabunevich, L.V.; Aleksandrova, L.A.; Perelygin, V.G.

    1986-01-01

    The state of free radical processes and activity of antiradical protection enzymes are investigated for patients with lymphostatis of lower extremities, who have been treated by UV-irradiated blood autotransfusion. An increase in the activity of ceruloplasmin and superoxidedismutase of erythrocytes, which is considered to be one of the mechanisms of positive effect of UV-irradiated blood transfusion, is shown

  7. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus.

    Science.gov (United States)

    Chen, Yongfu; Li, Changkun; Xue, Jiangang; Kwok, Lai-yu; Yang, Jie; Zhang, Heping; Menghe, Bilige

    2015-08-01

    Hypertension affects up to 30% of the adult population in most countries. It is a known risk factor for cardiovascular diseases, including coronary heart disease, peripheral artery disease, and stroke. Owing to the increased health awareness of consumers, the application of angiotensin-converting enzyme (ACE)-inhibitory peptides produced by Lactobacillushelveticus to prevent or control high blood pressure has drawn wide attention. A total of 59 L. helveticus strains were isolated from traditional fermented dairy products and the ACE-inhibitory activity of the fermented milks produced with the isolated microorganisms was assayed. The ACE-inhibitory activity of 38 L. helveticus strains was more than 50%, and 3 strains (IMAU80872, IMAU80852, and IMAU80851) expressing the highest ACE-inhibitory activity were selected for further studies. Particularly, the gastrointestinal protease tolerance and thermostability of the ACE-inhibitory activity in the fermented milks were assessed. Based on these 2 criteria, IMAU80872 was found to be superior over the other 2 strains. Furthermore, IMAU80872 exhibited a high in vitro ACE-inhibitory activity at the following fermentation conditions: fermentation temperature at 40°C, inoculation concentration of 1×10(6) cfu/mL, and fermentation for 18h. Finally, by using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, we observed changes of the metabolome along the milk fermentation process of IMAU80872. Furthermore, 6 peptides were identified, which might have ACE-inhibitory activity. In conclusion, we identified a novel ACE-inhibitory L. helveticus strain suitable for the production of fermented milk or other functional dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Role of proteolytic enzymes in increasing malt activity and intensifying alcohol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Rimareva, L.V.; Voinarskii, I.N.

    1981-01-01

    Treatment of malt with Protoorizin G10X, Prototerrizin P10X (from Aspergillus oryzae), or papain increased the activity of amylase by 48% and the activity of dextranase by 81%. The saccharification of malt increased by 72%. The use of activated malt intensified alcohol fermentation 1.5-1.7-fold. The fungal proteases were more effective than papain. The activation is apparently due to the release of bound amylolytic enzymes.

  9. Predicting novel substrates for enzymes with minimal experimental effort with active learning

    Energy Technology Data Exchange (ETDEWEB)

    Pertusi, Dante A.; Moura, Matthew E.; Jeffryes, James G.; Prabhu, Siddhant; Walters Biggs, Bradley; Tyo, Keith E. J.

    2017-11-01

    Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of similar to 80% using similar to 33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways.

  10. Determination of restriction enzyme activity when cutting DNA labeled with the TOTO dye family.

    Science.gov (United States)

    Maschmann, April; Kounovsky-Shafer, Kristy L

    2017-06-03

    Optical mapping, a single DNA molecule genome analysis platform that can determine methylation profiles, uses fluorescently labeled DNA molecules that are elongated on the surface and digested with a restriction enzyme to produce a barcode of that molecule. Understanding how the cyanine fluorochromes affect enzyme activity can lead to other fluorochromes used in the optical mapping system. The effects of restriction digestion on fluorochrome labeled DNA (Ethidium Bromide, DAPI, H33258, EthD-1, TOTO-1) have been analyzed previously. However, TOTO-1 is a part of a family of cyanine fluorochromes (YOYO-1, TOTO-1, BOBO-1, POPO-1, YOYO-3, TOTO-3, BOBO-3, and POPO-3) and the rest of the fluorochromes have not been examined in terms of their effects on restriction digestion. In order to determine if the other dyes in the TOTO-1 family inhibit restriction enzymes in the same way as TOTO-1, lambda DNA was stained with a dye from the TOTO family and digested. The restriction enzyme activity in regards to each dye, as well as each restriction enzyme, was compared to determine the extent of digestion. YOYO-1, TOTO-1, and POPO-1 fluorochromes inhibited ScaI-HF, PmlI, and EcoRI restriction enzymes. Additionally, the mobility of labeled DNA fragments in an agarose gel changed depending on which dye was intercalated.

  11. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.

    Science.gov (United States)

    van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2018-03-01

    Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.

  12. Correlation of the aphicidal activity of Beauveria bassiana SFB-205 supernatant with enzymes.

    Science.gov (United States)

    Kim, Jae Su; Roh, Jong Yul; Choi, Jae Young; Wang, Yong; Shim, Hee Jin; Je, Yeon Ho

    2010-01-01

    The supernatant of Beauveria bassiana SFB-205 reduced the population of cotton aphid, Aphis gossypii Glover, with a dosage-dependent manner, which allowed a quality control (QC) factor to be determined for the evaluation of the supernatant as the first step of a development. Enzymes were assumed as possible QC factors based on 1) the comparable aphicidal activity of the supernatant protein pellet to the raw supernatant, 2) the supernatant-induced degradation of the insect cuticles, observed by transmission electron microscopy, and 3) the confirmation of enzymes related to the fungal penetration - chitinase, and the Pr1- and Pr2 proteases - in the supernatant. Finally, from the bioassay with the enzyme-inhibited supernatants processed by substrate inhibition one by one, decreased aphicidal activities were observed for all three enzyme-inhibited treatments. This phenomenon, furthermore, was more remarkable in the chitinase-inhibited supernatant. This finding provides that those enzymes (and most particularly the chitinase) in the supernatant were strongly involved in the aphicidal activity. Consequently, the amount of the chitinase may be used as one of the QC factors to determine the insecticidal activity of the supernatant of B. bassiana SFB-205 in the optimization of mass production. Copyright © 2009 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali

    2011-06-26

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  14. Effects of ionizing radiation on the enzyme activities and ultrastructural changes of poultry

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H.-I.; Hau, L.-B. [National Taiwan University, Taipei (Taiwan). Graduate Inst. of Food Science and Technology

    1995-10-01

    Enzyme-catalyzed changes are generally recognized as one of the major reasons for fresh meat deterioration after irradiation. In this study, the effects of ionizing radiation and storage on the enzyme activities of poultry as well as the ultrastructural change of muscle were evaluated. When chicken breasts were irradiated at 4{sup o}C and -20{sup o}C, both Ca{sup 2+}-dependent protease and cathepsin D showed some degree of resistance to irradiation. The activities of those two enzymes decreased with the increase of irradiation doses. During storage, Ca{sup 2+}-dependent proteases showed a marked decrease in activity. On the other hand, the cathepsin D activity was not significantly changed at either 4{sup o}C or -20{sup o}C after 20 days. Transmission electron microscope examination showed no structural changes of the myofibrils with a radiation dose of up to 10 kGy at either 4{sup o}C or -20{sup o}C. Freezing protected the irradiated chicken breasts from autolytic enzymes damage during storage. In contrast, considerable sarcomere degradation occurred in Z-line for irradiated samples when stored at 4{sup o}C for 20 days. The action of the proteolytic enzymes may have been responsible for the sarcomere degradation in irradiated chicken breasts. (Author).

  15. Changes In Certain Enzymes Activities In Tribolium CONFUSUM As Affected By Vanillin Or GAMMA Irradiation

    International Nuclear Information System (INIS)

    MOHAMED, S.A.; SHOMAN, A.A.; AHMED, Z.A.

    2009-01-01

    The effect of 1 or 4 g vanillin/100 g whole wheat flour on the alkaline phosphatase of one day old larvae revealed that the mean enzyme activity was highly significantly increased in male and non-significant in female Triboluim confusum. As pupae were irradiated, the mean enzyme activity was significantly decreased in males and females (except at dose 300 Gy). Alanine transaminase (ALT or GPT) activity was decreased in males due to the effect of 4% vanillin and increased by irradiation while in female, the activity of ALT was increased when the larvae were reared on flour containing 1% or 4% vanillin and increased when pupae were irradiated at all doses used. There was a positive relationship between all treatments and the activity of aspartate transaminase (AST or GOT) in both sexes. The activity of AST was increased when the male or female larvae were reared on wheat flour containing 1 or 4 % vanillin and when pupae of males or females were irradiated. The choline esterase enzyme in T. confusum adults of both sexes was inhibited according to the effect of treatments with vanillin or gamma irradiation. Treated larvae with 1 or 4 % vanillin or irradiated as pupae at 300, 600 and 800 Gy led to decrease in the activity of choline esterase enzyme with the same pattern in both sexes.

  16. Circadian phenomena and irradiation. Modifications of enzyme activity in the small intestine after sublethal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A.; Giache, V.; Scubla, E.; D' Abbondio, D.

    1987-01-01

    Irradiation effects after a 3 Gy dose administered at four different times of a 24 h light/darkness cycle were studied: The modifications in the brush border enzyme activity of epithelial cells of the small intestine were determined. In controls the activity of these enzymes showed circadian oscillations with the maximum during the dark period and the minimum during the light period. The trend after irradiation in the various groups was very similar but some differences were present specially at the initial intervals when the effect appeared to be different depending on the enzyme level at the time of exposure. Lactase activity in animals irradiated at 0.00 and 18.00 o'clock returned to control levels later than in the other groups.

  17. Quality of Water Content, Diastase Enzyme Activity and Hidroximetilfurfural (HMF in Rubber and Rambutan Honey

    Directory of Open Access Journals (Sweden)

    Sulis Setio Toto Harjo

    2017-03-01

    Full Text Available The purpose of this research was to determine the water content, diastase enzyme activity and HMF of the rubber and rambutan honey. The method was a laboratory experiments with statistical analysis unpaired student t-test by two treatments and fifteen replications. The variable of this research were water content, diastase enzyme activity and HMF. The results of rubber and rambutan honey showed that there were significant difference effect (P0.05 that is 11 DN and there is a highly significant difference (P<0.01 on the HMF content of 17.23±0.54 mg/kg and 7.61±0.23 mg/kg. Rubber and rambutan honey have good quality based on the water content, diastase enzyme activity and HMF. It was concluded that the rubber and rambutan honey used were of good quality because it has met the requirements of SNI.

  18. Sustained strenuous exercise in sled dogs depresses three blood copper enzyme activities.

    Science.gov (United States)

    DiSilvestro, R A; Hinchcliff, K W; Blostein-Fujii, A

    2005-01-01

    Studies show mixed conclusions about acute responses of copper status to strenuous exercise. Because copper function involves metalloenzyme activities, which might take days to change, the present study examined the response of three copper metalloenzyme activities to sustained strenuous exercise in sled dogs. A race lasting 12-15 d depressed activities for both plasma ceruloplasmin and erythrocyte superoxide dismutase in dogs consuming commercial dog foods and meats. A shorter, 3-d training run for dogs fed a commercial balanced diet also depressed ceruloplasmin activities but not superoxide dismutase activities. Dogs fed the same diet but that did not run showed no changes in either parameter. Activities of a third copper enzyme, plasma diamine oxidase, also decreased after a 3-d training run. In summary, blood activities of three copper enzymes were depressed by sustained strenuous exercise in sled dogs.

  19. [Effect of low-intensity 900 MHz frequency electromagnetic radiation on rat liver and blood serum enzyme activities].

    Science.gov (United States)

    Nersesova, L S; Petrosian, M S; Gazariants, M G; Mkrtchian, Z S; Meliksetian, G O; Pogosian, L G; Akopian, Zh I

    2014-01-01

    The comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them. The dynamics of post-radiation changes in the activity of investigated enzyme levels following a single and short-term fractional schedules of radiation did not differ essentially.

  20. Cerebrohepatorenal Syndrome (CHRS) of Zellweger: lysosomal enzyme activities, sulfation of glycosaminoglycans, and pipecolic acid levels in cultured skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.C.P.

    1985-01-01

    The defect in the cerebrohepatorenal syndrome (CHRS), a fatal hereditary disorder primarily affecting neurological development, is unknown. Three areas were studied for specific biochemical abnormalities which might aid in diagnosis and understanding of the disorder: (1) Clinico-pathological similarities to inherited degenerative neurologic disorders suggested decreased activity of certain lysosomal enzymes. Assays of ..beta..-galactosidase, ..beta..-hexosaminidase, ..cap alpha..-mannosidase, and arylsulfatase A activities in fibroblasts from four infants with CHRS indicated no deficiency of enzyme activities. (2) Undersulfation of glycosaminoglycans (GAGs) has been reported in patients with the clinically similar Lowe's syndrome. The rate and amount of incorporation of /sup 35/SO/sub 4/ = into intracellular /sup 35/S-GAGs up to 48 hours was comparable in fibroblasts from six CHRS infants and controls. Loss of /sup 35/-GAGs also followed a normal pattern. (3) Because pipecolic acid (PA) has been reported to be elevated in body fluids of patients with CHRS, cultured skin fibroblasts were examined for such an abnormality. Lysosomal enzyme activities and metabolism of sulfated glycosaminoglycans appear to be normal in cultured skin fibroblasts from infants with CHRS. Despite the sensitivity of the method, examination of pipecolic acid in cultured skin fibroblasts does not seem to be useful for diagnosis of CHRS.

  1. Effect of interfacial properties on the activation volume of adsorbed enzymes.

    Science.gov (United States)

    Schuabb, Vitor; Cinar, Süleyman; Czeslik, Claus

    2016-04-01

    We have studied the enzymatic activities of α-chymotrypsin (α-CT) and horseradish peroxidase (HRP) that are adsorbed on various chemically modified planar surfaces under aqueous solution. The enzymes were adsorbed on bare quartz, hydrophobic poly(styrene) (PS), positively charged poly(allylamine hydrochloride) (PAH), and negatively charged poly(styrene sulfonate) (PSS). Activation volumes of the enzymes at the aqueous-solid interfaces were determined by using high-pressure total internal reflection fluorescence (TIRF) spectroscopy. Apparently, the pressure response of the adsorbed enzymes strongly depends on the interfacial properties. α-CT can be activated by pressure (increasing enzymatic rate) on negatively charged surfaces like quartz and PSS, whereas HRP is activated by pressure on hydrophobic PS. Corresponding negative activation volumes of -29 mL mol(-1) for α-CT on quartz, -23 mL mol(-1) for α-CT on PSS, and -35 mL mol(-1) for HRP on PS are found. In addition, the absolute activities of α-CT and HRP on quartz, PS, PAH and PSS were determined by UV absorption at ambient pressure. Remarkably, large activities are found on those surfaces that are associated with negative activation volumes. However, Fourier transform infrared (FTIR) spectra collected in attenuated total reflection (ATR) mode do not indicate major adsorption induced conformational changes of the enzymes at any interface studied. Overall, the results of this study show that the activity of immobilized enzymes can largely be enhanced by the right combination of adsorbent material and applied pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Trace cobalt speciation in bacteria and at enzymic active sites using emission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A.A.; Antonyuk, L.P.; Smirnova, V.E.; Serebrennikova, O.B. [Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation); Kulikov, L.A.; Perfiliev, Yu.D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, Moscow State University (Russian Federation)

    2002-02-01

    {sup 57}Co emission Moessbauer spectroscopy (EMS) allows the chemical state of cobalt, as influenced by its coordination environment, to be monitored in biological samples at its physiological (trace) concentrations. To draw attention to EMS as a valuable tool for speciation of cobalt in biocomplexes, the process of cobalt(II) metabolism in cells of the plant growth-promoting rhizobacterium Azospirillum brasilense Sp245 was investigated using EMS of {sup 57}Co{sup II}-doped bacterial cells. EMS measurements also showed {sup 57}Co{sup II}-activated glutamine synthetase (GS, a key enzyme of nitrogen metabolism, isolated from this bacterium) to have two different cobalt(II) forms at its active sites, in agreement with data available on other bacterial GSs. Chemical after-effects following electron capture by the nucleus of the parent {sup 57}Co{sup II} during the {sup 57}Co{yields}{sup 57}Fe transition, which contribute to the formation of a stabilised daughter {sup 57}Fe{sup III} component along with the nucleogenic {sup 57}Fe{sup II} forms, are also briefly considered. (orig.)

  3. Influence of probiotics on the growth and digestive enzyme activity of white Pacific shrimp ( Litopenaeus vannamei)

    Science.gov (United States)

    Gómez, R. Geovanny D.; Shen, M. A.

    2008-05-01

    The influence of Bacillus probiotics on the digestive enzyme activity and the growth of Litopenaeus vannamei were determined in this study. The shrimp was treated with five percentages (1.5, 3.0, 4.5, 6.0 and 7.5) of probiotics ( Bacillus spp.) supplemented to the feed and cultured for 45d. The growth measured as the weight gain at the end of culturing was significantly ( Pprobiotic-treated shrimps than that of the control (without receiving probiotics). Activities of protease and amylase, two digestive enzymes of the midgut gland and the intestine were significantly ( Pprobiotic-treated shrimp than in the control.

  4. Potato responds to salt stress by increased activity of antioxidant enzymes.

    Science.gov (United States)

    Aghaei, Keyvan; Ehsanpour, Ali Akber; Komatsu, Setsuko

    2009-12-01

    To understand the response of potato to salt stress, antioxidant enzyme activities and ion content were analyzed for a sensitive and a tolerant cultivar. Nodal cuttings of the tolerant cultivar, Kennebec, and the sensitive cultivar, Concord, were exposed to media without or with 30, 60, 90 or 120 mmol/L NaCl for 4 weeks. On exposure to NaCl, the length and fresh and dry weight of both shoots and roots of Concord showed greater decrease than those of Kennebec. The decrease in shoot growth was more severe than that of the root for both cultivars. The K(+) content of shoots and roots of both cultivars was reduced in a dose-dependent manner by exposure to NaCl; the Na(+) content increased. Activities of ascorbate peroxidase, catalase and glutathione reductase were increased in NaCl-exposed shoots of Kennebec; the corresponding activities in NaCl-exposed shoots of Concord were decreased. Roots of both cultivars showed similar changes in the activities of these enzymes on exposure to NaCl. These studies established that enzyme activities in Concord shoots are inversely related to the NaCl concentration, whereas those in Kennebec do not show a dose dependency, which is also the case for the roots of both cultivars. Our findings suggest that an increase in activity of antioxidant enzymes, such as ascorbate peroxidase, catalase and glutathione reductase, can contribute to salt tolerance in Kennebec, a salt resistant cultivar of potato.

  5. The in vivo effect of N-nitrosomorpholine on the activity of enzymes ...

    African Journals Online (AJOL)

    Neoplasm antigens outnumber the enzymes which are utilized to determine the cancer. Cancer development in the living organisms chronologically follows the cytotoxic, organotoxic and mutagenic alterations. Generally, the first symptom for chemical carcinogens is a metabolical response in connection with the ...

  6. Effect of Robola and Cabernet Sauvignon extracts on platelet activating factor enzymes activity on U937 cells.

    Science.gov (United States)

    Xanthopoulou, M N; Asimakopoulos, D; Antonopoulou, S; Demopoulos, C A; Fragopoulou, E

    2014-12-15

    A number of studies support the anti-atherogenic effect of wine compounds. The scope of this study was to examine the effect of a red (Cabernet Sauvignon-CS) and a white (Robola-R) wine, as well as resveratrol and quercetin, on the platelet activating factor (PAF) biosynthetic enzymes, acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAF-AT) and DTT-insensitive CDP-choline 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT), and its main catabolic enzyme (PAF acetylhydrolase; PAF-AH), on U937 cells, in cell free and in intact cell experiments. In cell free experiments, phenolic compounds and wine extracts inhibited PAF biosynthetic enzymes, however in higher concentrations than intact cell experiments. In the latter cases, polar lipids of both wines inhibited in the same order of magnitude the action of lyso-PAF-AT and of PAF-CPT. The water fractions possessed a dual action, in lower concentrations they activated both enzymes, while in higher concentrations only inhibited PAF-CPT. All fractions either did not affect or slightly activated PAF-AH activity. In conclusion, wine compounds may exert their anti-inflammatory activity by reducing PAF levels through modulation of the PAF metabolic enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Activation of different cerebral functional regions following ...

    African Journals Online (AJOL)

    Background: To explore the brain function regions characteristics of the acupoint combination, this study observed activity changes in the brain regions of healthy volunteers after acupuncture at both Taixi (KI3) and Taichong (LR3) (KI3 + LR3) and KI3 alone using resting-state functional magnetic resonance imaging(fMRI).

  8. Possible macrophage activation syndrome following initiation of ...

    African Journals Online (AJOL)

    Macrophage activation syndrome (MAS) has been rarely reported in the course of adult-onset Still's disease (AOSD) and in the majority of cases, it was triggered by an infection. Here, we report, to our knowledge, the first case of MAS occurring after adalimumab treatment initiation and not triggered by an infection.

  9. Activity and localization of some hydrolytic enzymes during the development of Iris pseudoacorus endosperm

    Directory of Open Access Journals (Sweden)

    B. Gabara

    2015-01-01

    Full Text Available The changes in the activity of some hydrolytic enzymes during the development of Iris pseudoacorus endosperm were investigated using biochemical and cytochemical methods. In the early stages of development the chalazal pole shows a greater enzymatic activity than the micropylar pole. These differences decline as the seeds mature, and the activity of the studied enzymes becomes lower as the endosperm develops. Considerable activity of ß-galactosidase has been observed at the time of deposition of storage hemi-celluloses in the cell walls of the endosperm. Activity of the cytochemically datectable -hydrolases is localised in granules up to 2μ in diameter. Cytochemical observations in the electron microscope indicate that the activity of acid phosphatase is associated with spherosomes.

  10. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  11. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed...... for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD...... (P capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves...

  12. Killing of Staphylococci by θ-Defensins Involves Membrane Impairment and Activation of Autolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Miriam Wilmes

    2014-11-01

    Full Text Available θ-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque θ-defensins against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by θ-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin.

  13. An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria

    DEFF Research Database (Denmark)

    Rasmussen, Randi Engelberth; Erstad, Simon Matthé; Ramos Martinez, Erick Miguel

    2016-01-01

    BACKGROUND: Cyanobacteria are photosynthetic bacteria that thrive in diverse ecosystems and play major roles in the global carbon cycle. The abilities of cyanobacteria to fix atmospheric CO2 and to allocate the fixed carbons to chemicals and biofuels have attracted growing attentions as sustainable...... microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the most widely used method for determination of intracellular enzyme activities. However, due to thick cell walls...... for permeabilization of the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, and determination of two intracellular enzymes, ribulose-1,5-bisphosphate carboxylase/decarboxylase (Rubisco) and glucose-6-phosphate dehydrogenase (G6PDH), that play pivotal roles in the central carbon metabolism...

  14. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment.

    Science.gov (United States)

    Hyer, Marc L; Milhollen, Michael A; Ciavarri, Jeff; Fleming, Paul; Traore, Tary; Sappal, Darshan; Huck, Jessica; Shi, Judy; Gavin, James; Brownell, Jim; Yang, Yu; Stringer, Bradley; Griffin, Robert; Bruzzese, Frank; Soucy, Teresa; Duffy, Jennifer; Rabino, Claudia; Riceberg, Jessica; Hoar, Kara; Lublinsky, Anya; Menon, Saurabh; Sintchak, Michael; Bump, Nancy; Pulukuri, Sai M; Langston, Steve; Tirrell, Stephen; Kuranda, Mike; Veiby, Petter; Newcomb, John; Li, Ping; Wu, Jing Tao; Powe, Josh; Dick, Lawrence R; Greenspan, Paul; Galvin, Katherine; Manfredi, Mark; Claiborne, Chris; Amidon, Benjamin S; Bence, Neil F

    2018-02-01

    The ubiquitin-proteasome system (UPS) comprises a network of enzymes that is responsible for maintaining cellular protein homeostasis. The therapeutic potential of this pathway has been validated by the clinical successes of a number of UPS modulators, including proteasome inhibitors and immunomodulatory imide drugs (IMiDs). Here we identified TAK-243 (formerly known as MLN7243) as a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE), the primary mammalian E1 enzyme that regulates the ubiquitin conjugation cascade. TAK-243 treatment caused depletion of cellular ubiquitin conjugates, resulting in disruption of signaling events, induction of proteotoxic stress, and impairment of cell cycle progression and DNA damage repair pathways. TAK-243 treatment caused death of cancer cells and, in primary human xenograft studies, demonstrated antitumor activity at tolerated doses. Due to its specificity and potency, TAK-243 allows for interrogation of ubiquitin biology and for assessment of UAE inhibition as a new approach for cancer treatment.

  15. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed...... (P trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves...... for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD...

  16. Influence of molting and starvation on digestive enzyme activities and energy storage in Gammarus fossarum.

    Science.gov (United States)

    Charron, Laetitia; Geffard, Olivier; Chaumot, Arnaud; Coulaud, Romain; Jaffal, Ali; Gaillet, Véronique; Dedourge-Geffard, Odile; Geffard, Alain

    2014-01-01

    Among the many biological responses studied in ecotoxicology, energy-based biomarkers such as digestive enzyme activities and energy reserves appear to be useful predictive tools for detecting physiological disturbances in organisms. However, the use of these biological responses as biomarkers could be limited by the effects of confounding factors (biotic and abiotic) and physiological processes, such as the reproductive cycle. Thus, the optimal use of these biomarkers will be facilitated by understanding the effects of these factors on the energy metabolism of the sentinel species being studied. We considered abiotic factors (temperature and conductivity) in a previous study, whereas the present study investigated the effects of gender, the female reproductive stage, and food availability on the digestive enzyme activities and energy storage of Gammarus fossarum. The results indicated that, during the female reproductive cycle, the activities of digestive enzymes (amylase, cellulase, and trypsin) decreased significantly, whereas the levels of reserves (proteins, lipids, and sugar) increased until the last premolt stage. Restricted food diets only led to decreased amylase activities in both sexes. Food starvation also induced a decrease in the energy outcomes in females, whereas there were no effects in males. In general, the biochemical (digestive enzyme activities) and physiological (energy reserves) responses were more stable in males than in females. These results support the use of males fed ad libitum to limit the effects of confounding factors when using these energy biomarkers in Gammarus fossarum during biomonitoring programs.

  17. Influence of molting and starvation on digestive enzyme activities and energy storage in Gammarus fossarum.

    Directory of Open Access Journals (Sweden)

    Laetitia Charron

    Full Text Available Among the many biological responses studied in ecotoxicology, energy-based biomarkers such as digestive enzyme activities and energy reserves appear to be useful predictive tools for detecting physiological disturbances in organisms. However, the use of these biological responses as biomarkers could be limited by the effects of confounding factors (biotic and abiotic and physiological processes, such as the reproductive cycle. Thus, the optimal use of these biomarkers will be facilitated by understanding the effects of these factors on the energy metabolism of the sentinel species being studied. We considered abiotic factors (temperature and conductivity in a previous study, whereas the present study investigated the effects of gender, the female reproductive stage, and food availability on the digestive enzyme activities and energy storage of Gammarus fossarum. The results indicated that, during the female reproductive cycle, the activities of digestive enzymes (amylase, cellulase, and trypsin decreased significantly, whereas the levels of reserves (proteins, lipids, and sugar increased until the last premolt stage. Restricted food diets only led to decreased amylase activities in both sexes. Food starvation also induced a decrease in the energy outcomes in females, whereas there were no effects in males. In general, the biochemical (digestive enzyme activities and physiological (energy reserves responses were more stable in males than in females. These results support the use of males fed ad libitum to limit the effects of confounding factors when using these energy biomarkers in Gammarus fossarum during biomonitoring programs.

  18. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    Science.gov (United States)

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  19. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  20. Enzyme activity and allosteric characteristics of gamma-irradiated solid aspartate transcarbamylase

    International Nuclear Information System (INIS)

    Bigler, W.N.; Tolbert, B.M.

    1977-01-01

    Aspartate transcarbamylase purified from E. coli was lyophilized, irradiated in vacuo with γ radiation from a cesium-137 source, redissolved in buffer under a nitrogen atmosphere, and assayed for enzyme activity. Lyophilized and redissolved enzyme had normal catalytic and allosteric kinetic characteristics. The average D 37 observed with saturating substrate, 25 mM aspartate, was 4.1 Mrad. With less than saturating substrate, 5 mM aspartate, the activity increases from zero to 1.6 Mrad and then decreases with a D 37 of 7.2 Mrad. Inclusion of 1 mM CTP, an allosteric inhibitor, in the 5 mM aspartate assays results in a more pronounced maximum in the activity curve occurring at slightly higher dose, 2.2 Mrad. Inhibitability by CTP has a D 37 of 2.3 Mrad with doses below the activity maximum. Enzyme lyophilized in the presence of 1 mM CTP has a D 37 of 2.9 Mrad. ATCase activity changes caused by irradiation of lyophylized bacteria were qualitatively like the changes observed in the detailed studies with the purified enzyme. Apparent radiation sensitivities of ATCase in lyophilized bacteria were observed to vary with the technique used to disrupt the resuspended bacteria

  1. Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase for use in antibody-directed enzyme prodrug therapy

    NARCIS (Netherlands)

    Houba, PHJ; Leenders, RGG; Boven, E; Scheeren, JW; Pinedo, HM; Haisma, HJ

    1996-01-01

    Antibody-directed enzyme prodrug therapy (ADEPT) alms at the specific activation of a prodrug by an enzyme-immuoconjugate localized in tumor tissue. The use of an enzyme of human origin is preferable in ADEPT because it might not be immunogenic when administered to patients. In the case of human

  2. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  3. Apoferritin Nanoparticle: A Novel and Biocompatible Carrier for Enzyme Immobilization with Enhanced Activity and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong J.; Lin, Chiann Tso; Lin, Yuehe

    2011-11-01

    Apoferritin is a nanostructured material with a uniform size and spherical structure, and it has excellent bio-compatibility. In this work, we report the use of apoferritin as a novel and biocompatible carrier for stabilizing enzymes and their activities. We used glucose oxidase (GOx) as a model enzyme. GOx was immobilized on the surface of the apoferritin through a green synthetic approach taking advantage of bioaffinity binding between streptavidin and biotin. As a result, a glucose oxidase-biotin/streptavidin/biotin-apoferritin conjugate (Apo-GOx) was prepared using streptavidin as a bridge. The synthesized Apo-GOx was characterized with transmission electron microscopy, ultraviolet, and fluorescence spectroscopy. The activity and stability of GOx on the surface of the apoferritin were studied in different environments, such as temperature, chemicals, and pH, in comparison with the biotinylated GOx (B-GOx). The results showed that the activity of GOx on the apoferritin surface was significantly enhanced. The thermal and chemical stability of the GOx on the apoferritin was also greatly improved compared to free B-GOx in a solution. It was found that the activity of the GOx on the apoferritin only lost 30% in comparison to a 70% loss of free B-GOx after a 2 h incubation at 50oC. There was almost no decrease in activity for the GOx on the apoferritin as compared to an 80% activity decrease for free B-GOx after 30 min incubation in a 5 M urea solution. Glucose detection was used as a model application for the enzyme immobilization method developed in this work. The GOx immobilized apoferritin nanoparticles exhibited high sensitivity for glucose detection with a detection limit of 3 nM glucose. This work offers a novel approach for immobilizing enzymes with enhanced stability and activity, and this method may find a number of applications, such as in enzyme catalysis, DNA assays and immunoassays.

  4. Evaluation of Macerating Pectinase Enzyme Activity under Various Temperature, pH and Ethanol Regimes

    Directory of Open Access Journals (Sweden)

    Andrew G. Reynolds

    2018-02-01

    Full Text Available The polygalacturonase (PGU, hemicellulase (mannanase and protease enzyme activities in commercial macerating, pectinase-enzyme preparations commonly used by wineries in Ontario (Scottzyme Color X and Color Pro were measured under various simulated process conditions (temperature, pH, and ethanol concentration. Treatments included three temperatures (15, 20 and 30 °C; pH = 3.0, 3.5, 4.0 and 5.0; ethanol = 0%, four pH levels (3.0, 3.5, 4.0 and 5.0; temperature = 15, 20, 30 and 50 °C; ethanol = 0%, and four ethanol concentrations ((2.5, 5, 7.5 and 10%; temperature = 20 °C and pH = 3.5. Polygalacturonase enzyme activity in Color X increased linearly with temperature at all pH levels, and increased with pH at all temperature regimes. Polygalacturonase activity decreased with increasing ethanol. Color X mannanase activity increased with temperatures between 15 and 40 °C, and decreased with increased pH between 3.0 and 5.0. Response of mannanase to ethanol was cubic with a sharp decrease between 8 and 10% ethanol. Protease activity increased linearly with temperatures between 20 and 40 °C. These data suggest that the PGU, mannanase and protease components in these enzyme products provide sufficient activities within the ranges of pH, temperature, and ethanol common during the initial stages of red wine fermentations, although low must temperatures (<20 °C and presence of ethanol would likely lead to sub-optimal enzyme activities.

  5. Co-immobilization of different enzyme activities to non-woven polyester surfaces.

    Science.gov (United States)

    Nouaimi-Bachmann, Meryem; Skilewitsch, Olga; Senhaji-Dachtler, Saida; Bisswanger, Hans

    2007-03-01

    Co-immobilization was applied to combine complementary enzyme reactions. Therefore, trypsin was co-immobilized together with both, lipase and alpha-amylase, onto the surface of non-woven polyester material. The progress of the immobilization reaction was directly monitored by investigating covalent fixation of the enzymes to the polyester flees using (1)H-MAS-NMR. Co-immobilization of the different types of enzymes to the polyester support showed retained enzymatic activity. However, a competition of binding to the support was observed. Increasing amounts of one type of enzyme reduced the degree of immobilization for the other type. In order to investigate the distribution of trypsin and alpha-amylase on the polyester support, the flees was treated with a mixture of rhodamine isothiocyanate labeled with anti-trypsin antibodies and fluorescein isothiocyanate labeled with anti-alpha-amylase antibodies. Using fluorescence microscopy, the co-immobilization was analyzed by selective excitation of both chromophores at 480 and 530 nm, respectively. In addition, fluorescence spectroscopy was applied by direct labeling of trypsin and lipase prior to co-immobilization to the polyester support. A special prism of plexiglass was constructed, which fit into a 10 x 10 mm fluorescence cuvette in that way that a diagonal plane was formed within the cuvette. The non-woven support was fixed in the cuvette and fluorescence spectra were obtained to characterize the amount of different enzymes linked to the support. Using FRET it was demonstrated that a uniform distribution of the various enzyme species was achieved, where the different enzyme activities are bound on the support in close neighborhood to one another.

  6. Effects of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed

    International Nuclear Information System (INIS)

    Li Shuifeng; Wang Bingliang; Guan Xueyu; Zhang Yan

    2006-01-01

    The effect of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed was studied. The results showed that the germination potentiality and germination rate of hot pepper seed after boarding return satellite were increased by 3.5% and 5.3%, respectively. During seed germination, soluble protein and MDA contents decreased, however, the SOD activities increased. SOD activity of treated seeds was higher than that of the control especially during the initial period of germination, while the content of soluble and MDA contents were much lower than those of control. The activities of SOD, G-POD, APX and CAT in 13d seedlings of treated seeds were increased by 14.29%, 25.23%, 1.84% and 21.52%, respectively. It was concluded that space flight enhanced antioxidant enzyme activities of seeds and seedlings, which were very important to prevent membrane lipid superoxide. (authors)

  7. Carbon-degrading enzyme activities stimulated by increased nutrient availability in Arctic tundra soils.

    Directory of Open Access Journals (Sweden)

    Akihiro Koyama

    Full Text Available Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral from untreated native soils and from soils which had been fertilized with nitrogen (N and phosphorus (P since 1989 (23 years and 2006 (six years. Fertilized plots within the 1989 site received annual additions of 10 g N · m(-2 · year(-1 and 5 g P · m(-2 · year(-1. Within the 2006 site, two fertilizer regimes were established--one in which plots received 5 g N · m(-2 · year(-1 and 2.5 g P · m(-2 · year(-1 and one in which plots received 10 g N · m(-2 · year(-1 and 5 g P · m(-2 · year(-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems.

  8. Triclabendazole Effect on Protease Enzyme Activity in the Excretory- Secretory Products of Fasciola hepatica in Vitro.

    Directory of Open Access Journals (Sweden)

    Yosef Shrifi

    2014-03-01

    Full Text Available Fasciola hepatica is one of the most important helminthes parasites and triclabendazole (TCBZ is routinely used for treatment of infected people and animals. Secreted protease enzymes by the F. hepatica plays a critical role in the invasion, migration, nutrition and the survival of parasite and are key targets for novel drugs and vaccines. The aim of study was to determine the protease activity of excretory- secretory products (ESP of F. hepatica in the presence of TCBZ anthelmintic.F. hepatica helminthes were collected and cultured within RPMI 1640 [TCBZ treated (test and untreated (control] for 6 h at 37 °C. ESP of treated and control were collected, centrifuged and supernatants were stored at -20°C. Protein concentrations were measured according to Bradford method. Protease enzymes activities of ESP samples were estimated by using sigma's non-specific protease activity assay. ESP protein bands were detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE.Mean protein concentrations in control and treated of ESP samples were determined 196.1 ±14.52 and 376.4 ±28.20 μg/ml, respectively. Mean protease enzymes activities in control and treated were 0.37 ±0.1 and 0.089 ±0.03 U/ml, respectively. Significant difference between proteins concentrations and protease enzymes activities of two groups was observed (P<0.05. SDS-PAGE showed different patterns of protein bands between treated and control samples.The TCBZ reduced secreted protease enzymes activities and possibly effects on invasion, migration, nutrition and particularly survival of the parasite in the host tissues.

  9. Prediction of severe hypoglycaemia by angiotensin-converting enzyme activity and genotype in type 1 diabetes

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Agerholm-Larsen, Birgit; Pramming, S

    2003-01-01

    AIMS/HYPOTHESIS: We have previously shown a strong relationship between high angiotensin-converting enzyme (ACE) activity, presence of the deletion (D) allele of the ACEgene and recall of severe hypoglycaemic events in patients with Type 1 diabetes. This study was carried out to assess this relat...

  10. Effects of ABO/Rh blood groups, G-6-P-D enzyme activity and ...

    African Journals Online (AJOL)

    The main objective was to investigate the effects of ABO/Rh blood groups, haemoglobin genotype and G-6-P-D enzyme activity on malaria. The study was carried out in Buea, South West Province, Cameroon. Subjects consulting at health care facilities in Buea were randomly recruited into the study. A total of 121 febrile ...

  11. Effects of Zinc supplementation on antioxidant enzyme activities in healthy old subjects

    OpenAIRE

    Mariani, E.; Mangialasche, F.; Feliziani, F.T.; Cecchetti, R.; Malavolta, M.; Bastiani, P.; Baglioni, M.; Dedoussis, G.; Fulop, T.; Herbein, G.; Jajte, J.; Monti, Dominique; Rink, L.; Mocchegiani, E.; Mecocci, P.

    2008-01-01

    Effects of Zinc supplementation on antioxidant enzyme activities in healthy old subjects correspondence: Corresponding author. Tel.: +39 075 578 3270; fax: +39 075 573 0259. (Mecocci, P.) (Mecocci, P.) Institute of Gerontology and Geriatrics, University of Perugia - ITALY (Mariani, E.) Institute of Gerontology and Geriatrics, University of Perugia - ITALY (Mangialasche, F.) Institute of Gerontology and Geriatrics, Unive...

  12. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation.

    Science.gov (United States)

    Nagaraj, Raghavendra; Sharpley, Mark S; Chi, Fangtao; Braas, Daniel; Zhou, Yonggang; Kim, Rachel; Clark, Amander T; Banerjee, Utpal

    2017-01-12

    Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    Czech Academy of Sciences Publication Activity Database

    Convigton, E. D.; Roitsch, Thomas; Dernastia, M.

    2016-01-01

    Roč. 63, č. 4 (2016), s. 757-762 ISSN 1318-0207 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : AGPase * carbohydrates * invertases * sucrose synthase * panel of enzyme activity assays * phytoplasma Subject RIV: EH - Ecology, Behaviour Impact factor: 0.983, year: 2016

  14. [The effect of a water-soluble vitamins on the activity of some enzymes in diabetes].

    Science.gov (United States)

    Petrov, S A; Danilova, A O; Karpov, L M

    2014-01-01

    Intramuscular injections of the vitamin complex containing: thiamine chloride (B1), riboflavin (B2), lipoic acid (N), calcium pantothenate (B5), pyridoxine hydrochloride (B6), folic acid (B9), ascorbic acid (C) can reduce the blood glucose level in serum of rats with alloxan diabetes, stabilize activity of some enzymes of energy metabolism, lactate dehydrogenase and pyruvate dehydrogenase complex.

  15. Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs

    NARCIS (Netherlands)

    Storm, G; Vingerhoeds, MH; Crommelin, DJA; Haisma, HJ

    1997-01-01

    Immunoliposomes bearing anticancer prodrug activating enzymes (immuno-enzymosomes) are proposed for use in a two-phase approach to targeted chemotherapy of human cancer. In the first phase the tumor-specific immuno-enzymosomes are administered, and time is allowed for tumor localization and

  16. Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome

    NARCIS (Netherlands)

    Wanders, R. J.; Kos, M.; Roest, B.; Meijer, A. J.; Schrakamp, G.; Heymans, H. S.; Tegelaers, W. H.; van den Bosch, H.; Schutgens, R. B.; Tager, J. M.

    1984-01-01

    The activity of peroxisomal enzymes was studied in human liver and cultured human skin fibroblasts in relation to the finding (Goldfischer, S. et al. (1973) Science 182, 62-64) that morphologically distinct peroxisomes are not detectable in patients with the cerebro-hepato-renal (Zellweger)

  17. The effect of aluminium on enzyme activities in two wheat cultivars ...

    African Journals Online (AJOL)

    In order to study the effect of different aluminum (Al) concentrations on the enzyme activities of wheat seedlings and the effect of malate and citrate treatments as chelates for reducing the noxious effect of Al in medium culture, the seedlings of two wheat cultivars, Darab (Al-sensitive) and Maroon (Al-tolerant) were grown on ...

  18. Soil enzyme activities in Pinus tabuliformis (Carriere) plantations in northern China

    Science.gov (United States)

    Weiwei Wang; Deborah Page-Dumroese; Ruiheng Lv; Chen Xiao; Guolei Li; Yong Liu

    2016-01-01

    Changes in forest stand structure may alter the activity of invertase, urease, catalase and phenol oxidase after thinning Pinus tabuliformis (Carriére) plantations in Yanqing County of Beijing, China. We examined changes in these soil enzymes as influenced by time since thinning (24, 32, and 40 years since thinning) for 3 seasons (spring, summer and autumn)...

  19. Detection of metals and polychlorobiphenyls and their correlation with detoxificant enzymes activity in Dicentrarchus labrax

    Directory of Open Access Journals (Sweden)

    I. Traversi

    2011-01-01

    Full Text Available Several pollutants released to the environment, are biotransformed into more soluble molecules, in liver, by several enzymes, as catalase (CAT and glutathione-S-tranferase (GST, which are fundamental for detoxification and excretion. The aim of this study was to investigate the relationships among xenobiotic levels and CAT and GST enzymatic activities, in reared European sea bass.

  20. Catalytic promiscuity of a proline-based tautomerase : Aldolase activities and enzyme redesign

    NARCIS (Netherlands)

    Rahimi, Mehran

    2016-01-01

    Numerous enzymes have been found to catalyze additional and completely different types of reactions relative to the natural activity they evolved for. This interesting phenomenon, called catalytic promiscuity, has proven to be a fruitful guide for the development of novel biocatalysts for organic

  1. A study of the fine structure, enzyme activities and pattern of 14CO2 ...

    African Journals Online (AJOL)

    A detailed study of selected grasses has been made with respect to fine structures characteristics, enzyme activities associated with C-4 and C-3 pathway photosynthesis, and short term carbon dioxide-14 incorporation experiments. A good correlation was obtained between the fine structure, the carbon pathway and the ...

  2. Effect of “Tai Chi” exercise on antioxidant enzymes activities and ...

    African Journals Online (AJOL)

    Background: “Tai Chi” is a useful exercise that increases physical strength and relax the mind. Materials and Methods: The study investigates effect of “tai chi” exercise on antioxidant enzymes activities and immunity function in participants. These participants were randomly divided into two groups: “tai chi” exercise group ...

  3. Biomass and enzyme activity of two soil transects at King George Island, Maritime Antarctica

    Czech Academy of Sciences Publication Activity Database

    Tscherko, D.; Bölter, M.; Beyer, L.; Chen, J.; Elster, Josef; Kandeler, E.; Kuhn, D.; Blume, H. P.

    2003-01-01

    Roč. 35, č. 1 (2003), s. 34-47 ISSN 1523-0430 R&D Projects: GA ČR GA205/94/0156; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : Maritime Antarctica * microbial soil biomass * enzyme activity Subject RIV: EF - Botanics Impact factor: 0.954, year: 2003

  4. Improving Enzyme Activity and Broadening Selectivity for Biological Desulfurization and Upgrading of Petroleum Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Abhijeet P. Borole; Choo Y. Hamilton; Karen Miller; Brian Davison; Matthew Grossman; Robert Shong

    2003-05-12

    The objective of this project was to develop improved biocatalysts for desulfurization and upgrading of petroleum feedstocks. The goal was to improve the activity and broaden the selectivity of desulfurization enzymes using directed evolution as a tool as well as to explore the impact of ring-opening on biological desulfurization

  5. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques.

    Science.gov (United States)

    Grace, M; Fletcher, L; Powers, S K; Hughes, M; Coombes, J

    1996-12-01

    Homogenization of tissue for analysis of bioenergetic enzyme activities is a common practice in studies examining metabolic properties of skeletal muscle adaptation to disease, aging, inactivity or exercise. While numerous homogenization techniques are in use today, limited information exists concerning the efficacy of specific homogenization protocols. Therefore, the purpose of this study was to compare the efficacy of four commonly used approaches to homogenizing skeletal muscle for analysis of bioenergetic enzyme activity. The maximal enzyme activity (Vmax) of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured from homogenous muscle samples (N = 48 per homogenization technique) and used as indicators to determine which protocol had the highest efficacy. The homogenization techniques were: (1) glass-on-glass pestle; (2) a combination of a mechanical blender and a teflon pestle (Potter-Elvehjem); (3) a combination of the mechanical blender and a biological detergent; and (4) the combined use of a mechanical blender and a sonicator. The glass-on-glass pestle homogenization protocol produced significantly higher (P pestle homogenization protocol is the technique of choice for studying bioenergetic enzyme activity in skeletal muscle.

  6. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism

    DEFF Research Database (Denmark)

    Andriotis, Vasilios M. E.; Rejzek, Martin; Rugen, Michael D.

    2016-01-01

    -active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying...

  7. Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids

    NARCIS (Netherlands)

    Holdsworth, Jane E.; Veenhuis, Marten; Ratledge, Colin

    1988-01-01

    The activities of ATP:citrate lyase (ACL; EC 4.1.3.8), carnitine acetyltransferase (CAT; EC 2.3.1.7), NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42), isocitrate lyase (ICL; EC 4.1.3.1) and malic enzyme (malate dehydrogenase; EC 1.1.1.40) were measured in four oleaginous yeasts, Candida

  8. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  9. The inhibition of Streptococcus mutans glucosyltransferase enzyme activity by mangosteen pericarp extract

    Directory of Open Access Journals (Sweden)

    Nirawati Pribadi

    2017-06-01

    Full Text Available Background: Streptococcus mutans (S. mutans is a bacterium that plays an important role in the pathogenesis of dental caries. Streptococcus mutans produces the glucosyltransferase enzyme which is capable of catalyzing glucan synthesis in the progression of dental caries. Certain treatments involving traditional plant use have been developed to eradicate Streptococcus mutans as a means of preventing the formation of dental caries. One of these is mangosteen pericarp extract containing a number of polyphenols that have the capacity to act as antibacterial agents, namely; tannin, mangostin, and flavonoid. Purpose: The research aimed to investigate the inhibitory power of mangosteen pericarp extract against Streptococcus mutans producing the glucosyltransferase enzyme. Methods: The research used mangosteen pericarp extract at concentrations of 0.39% and 0.78% as the treatments, while 0.12% chlorhexidine gluconate was used as a positive control, and distilled water as a negative control. Each group consisted of six samples. Mangosteen peels extracted with 96% ethanol (maceration method and mangosteen extract constituted 5% of the total weight of the mangosteen pericarp. Supernatant containing Gtf enzyme produced from a culture medium and centrifuged at 1500 rpm for 10 minutes at 4o C. Glucosyltransferase enzyme activity was measured by analyzing the extensive fructose area by means of High Performance Liquid Chromatography (HPLC. The extensive fructose area was determined according to time retention in each group. Results: Mangosteen peel extract at concentrations of 0.39% and 0.78% demonstrated greater ability than the negative control group (sterile aquades and similar ability to the positive group (chlorhexidine 0.12% to inhibit the activity of the Gtf enzyme or S. mutans bacteria. Conclusion: Mangosteen pericarp extract has the ability to inhibit the activity of Streptococcus mutans in producing glucosyltransferase enzyme.

  10. Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity?

    Science.gov (United States)

    Queiroz-Claret, C; Valon, C; Queiroz, O

    1988-01-01

    An unconventional hypothesis to the molecular basis of enzyme rhythms is that the intrinsic physical instability of the protein molecules which, in an aqueous medium, tend to move continuously from one conformational state to another could lead, in the population of enzyme molecules, to sizeable long-period oscillations in affinity for substrate and sensitivity to ligands and regulatory effects. To investigate this hypothesis, malate dehydrogenase was extracted and purified from leaves of the plant Kalanchoe blossfeldiana. The enzyme solutions were maintained under constant conditions and sampled at regular intervals for up to 40 or 70 h for measurements of activity as a function of substrate concentration, Km for oxaloacetic acid and sensitivity to the action of 2,3-butanedione, a modifier of active site arginyl residues. The results show that continuous slow oscillations in the catalytic capacity of the enzyme occur in all the extracts checked, together with fluctuations in Km. Apparent circadian periodicities were observed in accordance with previous data established during long run (100 h) experiments. The saturation curves for substrate showed multiple kinetic functions, with various pronounced intermediary plateaus and "bumps" depending on the time of sampling. Variation in the response to the effect of butanedione indicated fluctuation in the accessibility to the active site. Taken together, the results suggest that, under constant conditions, the enzyme in solution shifts continuously and reversibly between different configurations. This was confirmed by parallel studies on the proton-NMR spectrum of water aggregates in the enzyme solution and proton exchange rates.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Enzyme activity, hormone concentration in tree shrew (Tupaia belangeri during cold acclimation

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2012-08-01

    Full Text Available Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. The tree shrew (Tupaia belangeri, is a unique species of small mammals which is origin of island in the Oriental realm. The present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake, metabolism, uncoupling protein 1 (UCP1 in brown adipose tissue (BAT, and other biochemical characters of T. belangeri during cold exposure about 21 days. Our data demonstrate that cold acclimation induced a remarkable increase in body mass, a significant increase in energy intake and metabolic rate, and high expression of UCP1 in BAT of T. belangeri. Cold acclimation induced an increase in cytochrome c oxidase (COX and Thyroidhormones (T3/T4. These data supported that T. belangeri increased the body mass and increased energy intake and expenditure under cold acclimation. Increased expression of UCP1 was potentially involved in the regulation of energy metabolism and thermogenic capacity following cold acclimation. And it through changes in enzyme activity and hormone concentration under cold acclimation, and suggested temperature changes play an important role in the regulation of thermogenic capacity in tree shrew.

  12. Effect of antimony on the microbial growth and the activities of soil enzymes.

    Science.gov (United States)

    An, Youn-Joo; Kim, Minjin

    2009-02-01

    The effects of antimony (Sb) on microbial growth inhibition and activities of soil enzymes were investigated in the present study. Test bacterial species were Escherichia coli, Bacillus subtilis and Streptococcus aureus. Among the microorganisms tested, S. aureus was the most sensitive. The 50% effects on the inhibition of specific growth rate of E. coli, B. subtilis, and, S. aureus were 555, 18.4, and 15.8 mg Sb L(-1), respectively. A silt loam soil was amended with antimony and incubated in a controlled condition. Microbial activities of dehydrogenase, acid phosphatase (P cycle), arylsulfatase (S cycle), beta-glucosidase (C cycle), urease (N cycle), and fluorescein diacetate hydrolase in soil were measured. Activities of urease and dehydrogenase were related with antimony and can be an early indication of antimony contamination. The maximum increase in soil urease activity by antimony was up to 168% after 3d compared with the control. The activities of other four enzymes (acid phosphatase, fluorescein diacetate hydrolase, arylsulfatase and ss-glucosidase) were less affected by antimony. This study suggested that antimony affects nitrogen cycle in soil by changing urease activity under the neutral pH, however, soil enzyme activities may not be a good protocol due to their complex response patterns to antimony pollution.

  13. Influence of green manure fertilization on soil enzyme activities and other soil properties

    Directory of Open Access Journals (Sweden)

    Alina Dora SAMUEL

    2007-05-01

    Full Text Available Agricultural practices that improve agricultural sustainability are needed particularly for brown luvic soil. Soil enzyme activities can provide information on how soil management is affecting the processes in soil such as decomposition and nutrient cycling. Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase were determined in the 0–10, 10–20, and 20–30 cm layers of a brown luvic soil submitted to a complex fertilization experiment with different types of green manure. It was found that each activity decreased with increasing sampling depth. It should be emphasized that green-manuring of maize led to a significant increase in each of the five enzymatic activities determined. The enzymatic indicators of soil quality calculated from the values of enzymatic activities showed the order: lupinus + rape + oat > lupinus > vetch + oat + ryegrass > lupinus + oat + vetch > unfertilized plot. This order means that by determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. There were significant correlations of soil enzyme activities with physical properties.

  14. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    Science.gov (United States)

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. In vitro and comparative study on the extracellular enzyme activity of molds isolated from keratomycosis and soil

    Directory of Open Access Journals (Sweden)

    Arumugam Mythili

    2014-10-01

    .e. NSM7 with EAI of 1.98 when compared to other corneal and soil isolates. The pectinase activity index was also prominent for corneal isolate NSM5 versus the soil isolates, SAF1, SFS1, SES1, SBS1 and SCS 1 as 1.76 versus 1.47, 1.38, 1.16, 1.11 and 1.14, respectively.CONCLUSION: The most common isolate was Fusarium spp. followed by Aspergillus, Curvularia, Exserohilum, Bipolaris, Exophiala and Alternaria species. Enzyme activity indices (EAI of the enzymes analysed varied with the clinical and soil isolates with respect to protease and cellulase (P=0.01. Of all the strains compared it was noted that mean EAI was greater in many clinical fusarial isolates followed by non sporulating molds.

  16. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Siuzdak, Gary; Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M.; Wong, Chi-Huey; Siuzdak, Gary

    2008-03-10

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This 'soft' immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing {beta}-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65 C and 5.5, respectively, and the activity was inhibited by both phenylethyl-{beta}-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced {gamma}-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. The interest in leveraging mass spectrometry for studying enzyme activities in complex biological samples derives from its high sensitivity and specificity; however, signal suppression and significant sample preparation requirements limit its overall utility (1). Here we describe a Nanostructure-Initiator Mass Spectrometry (NIMS

  17. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    Science.gov (United States)

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  18. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size

    Science.gov (United States)

    Dorodnikov, M.; Blagodatskaya, E.; Blagodatsky, S.; Marhan, S.; Fangmeier, A.; Kuzyakov, Y.

    2009-04-01

    Increased belowground carbon (C) transfer by plant roots at elevated CO2 may change properties of the microbial community in the rhizosphere. Previous investigations that focused on total soil organic C or total microbial C showed contrasting results: small increase, small decrease or no changes. We evaluated the effect of 5 years of elevated CO2(550 ppm) on four extracellular enzymes: ß-glucosidase, chitinase, phosphatase, and sulfatase. We expected microorganisms to be differently localized in aggregates of various sizes and, therefore analyzed microbial biomass (Cmic by SIR) and enzyme activities in three aggregate-size classes: large macro- (>2 mm), small macro- (0.25-2 mm), and microaggregates (production, we activated microorganisms by substrate (glucose and nutrients) amendment. Although Ctotal and Cmic as well as the activities of ß-glucosidase, phosphatase, and sulfatase were unaffected in bulk soil and in aggregate-size classes by elevated CO2, significant changes were observed in potential enzyme production after substrate amendment. After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Significantly higher chitinase activity in bulk soil and in large macroaggregates under elevated CO2 revealed an increased contribution of fungi to turnover processes. At the same time, less chitinase activity in microaggregates underlined microaggregate stability and the difficulties for fungal hyphae penetrating them. We conclude that quantitative and qualitative changes of C input by plants into the soil at elevated CO2 affect microbial community functioning, but not its total content. Future studies should therefore focus more on the changes of functions and activities, but less on the pools.

  19. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue

    OpenAIRE

    Nanduri, Bindu; Shack, Leslie A.; Rai, Aswathy N.; Epperson, William B.; Baumgartner, Wes; Schmidt, Ty B.; Edelmann, Mariola J.

    2016-01-01

    To develop a reproducible tissue-lysis method that retains enzyme function for activity-based protein profiling, we compared four different tissue lysis methods of bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue and focused ultrasonication had also the fastest pr...

  20. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.

    2016-12-15

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.

  1. Expression and Enzyme Activity of Catalase in Chilo suppressalis (Lepidoptera: Crambidae) Is Responsive to Environmental Stresses.

    Science.gov (United States)

    Lu, Yanhui; Bai, Qi; Zheng, Xusong; Lu, Zhongxian

    2017-08-01

    Catalase (CAT) is an important antioxidant enzyme that protects organisms against oxidative stresses by eliminating hydrogen peroxide. In this study, we cloned and characterized a full-length cDNA of CAT from Chilo suppressalis (CsCAT) and examined the influence of environmental stresses on CsCAT expression and enzyme activity. The cDNA contains a 1659-bp open reading frame encoding a polypeptide of 553 amino acids most closely related (90.14%) to Papilio polytes catalases. The CsCAT was expressed in all developmental stages with the highest expression in the fat body, and the CsCAT enzyme activity closely mirrored its observed mRNA expression patterns. The CsCAT mRNA was up-regulated when the larvae were exposed to high temperature (≥30 °C), insecticides (abamectin and chlorantraniliprole), chemicals (H2O2, CHP, CdCl2, and CuSO4), and a dead-end trap plant (vetiver grass), and the CsCAT enzyme activity again mirrored the observed CsCAT expression patterns. These results suggest that up-regulation of CsCAT may enhance the defense response of C. suppressalis by weakening the effects of environmental stresses, and provide insight into the role of CsCAT during development of C. suppressalis. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Acute intake of red wine does not affect antioxidant enzymes activities in human subjects.

    Science.gov (United States)

    Fernández-Pachón, M S; Bakkali, F; Villaño, D; Troncoso, A M; García-Parrilla, M C

    2006-09-01

    The purpose of this work was to test if the acute intake of red wine has an effect on the activity of antioxidant enzymes. Eight healthy, non-alcoholic, non-smoking human volunteers took part in the study. Ethical approval for the study was obtained from the Ethical Research Committee of the University Hospital Virgen Macarena from Seville. Each subject fasted 12-14 hours before the experiment started. Volunteers were asked to consume 300 mL of red wine in 5 minutes. Venous blood sample was obtained by antecubital venipuncture, with heparin vacutainer. Blood extraction was performed before wine ingestion (baseline value) and 30, 55, and 120 minutes after wine intake. Blood samples were immediately centrifuged at 12,000 x g for 3 minutes, avoiding unnecessary exposure to light. Antioxidant enzymes under study were: superoxide dismutase in erythrocytes, glutathione peroxidase in whole blood, and glutathione reductase in plasma. Determinations were performed spectrophotometrically with commercial available enzymatic kits. No statistically significant changes were observed on the activities of the enzymes superoxide dismutase, glutathione peroxidase, and glutathione reductase assayed at any of the times after wine intake. The intake of red wine did not modify the short-term activity of antioxidant enzymes.

  3. Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells.

    Science.gov (United States)

    Anantachoke, Natthinee; Lomarat, Pattamapan; Praserttirachai, Wasin; Khammanit, Ruksinee; Mangmool, Supachoke

    2016-01-01

    The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla , Averrhoa bilimbi , Malpighia glabra , Mangifera indica, Sandoricum koetjape , Syzygium malaccense, and Ziziphus jujuba inhibited H 2 O 2 -induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress.

  4. Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Natthinee Anantachoke

    2016-01-01

    Full Text Available The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla, Averrhoa bilimbi, Malpighia glabra, Mangifera indica, Sandoricum koetjape, Syzygium malaccense, and Ziziphus jujuba inhibited H2O2-induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress.

  5. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G.; Castilho, Marcelo S.; Oliva, Glaucius

    2005-01-01

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 μM. (author)

  6. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica]. E-mail: agcorrea@power.ufscar.br; Castilho, Marcelo S.; Oliva, Glaucius [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    2005-07-15

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 {mu}M. (author)

  7. Effect of Simulated Microgravity on the Activity of Regulatory Enzymes of Glycolysis and Gluconeogenesis in Mice Liver

    Science.gov (United States)

    Ramirez, Joaquin; Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Ramesh, Govindarajan T.; Sharma, S. Chidananda

    2014-02-01

    Gravity supports all the life activities present on earth. Microgravity environments have effect on the biological functions and physiological status of an individual. The present study was undertaken to investigate the effect of simulated microgravity on important regulatory enzymes of carbohydrate metabolism in liver using HLS mice model. Following hind limb unloading of mice for 11 days the animal's average body weights were found to be not different, while the liver weights were decreased and found to be significantly different ( p glycolysis and increased gluconeogenesis in liver and reciprocally regulated.

  8. Andrographolide powder treatment as antifeedant decreased digestive enzyme activity from Plutella xylostella (L.) larvae midgut

    Science.gov (United States)

    Madihah, Malini, Desak Made; Roviani, Hana; Rani, Nessa Vidya; Hermawan, Wawan

    2018-02-01

    Andrographolide, an active compound of Andrographis paniculata, has shown antifeedant activity against Plutella xylostella larvae by disrupting the midgut histological structures. This study aims to determine the activity of andrographolide in crystallized powder form against several digestive enzymes from the midgut of 4th instar P. xylostella larvae. The concentrations used were 0 (control), 1000, 1600, 2500, 4000 and 6500 ppm with four replications each. No-choice antifeedant test with leaf disc method is used in a bioassay for 24 hours. The midgut was dissected from 2nd until 6th segment of 4th instar larvae and was homogenized in iced-buffer solution. Furthermore, larvae's midgut samples were centrifuged at 10,000 rpm, 4°C for 20 min and the supernatant is used as enzyme source. The results showed that andrographolide significantly reduces the amylase, invertase, protease and trypsin activity, as well as total protein concentration compared with control (pandrographolide in inhibiting feed activity by the reduced digestive enzyme activity of 4th instar P. xylostella larvae.

  9. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  10. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2013-10-15

    The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferase reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [{sup 3}H]{sub 2}O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks

  11. Mannitol-Specific Enzyme II of the Phosphoenolpyruvate-Dependent Phosphotransferase System of Escherichia coli : Physical Size of Enzyme IImtl and Its Domains IIBA and IIC in the Active State

    NARCIS (Netherlands)

    Lolkema, Juke S.; Kuiper, Harald; Hoeve-Duurkens, Ria H. ten; Robillard, George T.

    1993-01-01

    The size of enzyme IImtl solubilized in the active state has been determined by size-exclusion chromatography under conditions that favor the association of the enzyme. The contribution of the detergent bound to the enzyme was determined by solubilizing the enzyme and running the TSK250 column in a

  12. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.

    Science.gov (United States)

    Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J

    2016-12-15

    To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of dietary crude protein level on jejunal brush border enzyme activities in weaned pigs.

    Science.gov (United States)

    Opapeju, Florence Omobola; Rademacher, Meike; Nyachoti, Charles Martin

    2009-01-01

    Forty weaned pigs (7.0 ± 0.5 kg, mean ± SD) were used to determine the effects of feeding a low crude protein, amino acid-supplemented diet to piglets on the activities of jejunal brush border enzymes. Pigs were randomly allotted to two diets: a 222 g crude protein (HCP) per kg diet, or a 173 g crude protein per kg diet supplemented with amino acids (LCP). Pigs fed the HCP diet had higher small intestine weight compared with those fed the LCP diet on day 7 after weaning. Diet had no effect on the specific activities of jejunal sucrase, lactase, leucine aminopeptidase, aminopeptidase A, aminopeptidase N and dipeptidyl peptidase IV. The activities of sucrase and lactase decreased (p effect on the development of jejunal brush border enzymes.

  15. Effects of Tin on Enzyme Activity in Holothuria grisea (Echinodermata: Holothuroidea).

    Science.gov (United States)

    Pereira, Tatiana Miura; Mattar, Lívia Pôncio; Pereira, Edgar Rocha; Merçon, Julia; da Silva, Ary Gomes; Cruz, Zilma Maria Almeida

    2017-05-01

    This study evaluated the effect of tin exposure on enzyme activity in the sea cucumber (Holothuria grisea Selenka, 1867). After exposure to 0 (control), 0.04, 0.08, or 0.12 mg L -1 tin, we tested the activities of total cholinesterase in longitudinal muscles, acid phosphatase in gonads and the respiratory tree, as well as alkaline phosphatase in the intestines during a 96-h bioassay. Regression analyses showed that all enzyme activities declined with increasing tin concentrations, except for acid phosphatase in the respiratory tree, which were similarly, inhibited at all tin concentrations. These results indicate that H. grisea is a potential bioindicator for seascape habitat monitoring programs, as its biochemical markers show sensitivity to trace elements that can indicate a rise in pollution levels.

  16. Modulation of the activities of membrane enzymes by cereal grain resorcinolic lipids.

    Science.gov (United States)

    Kozubek, A; Nietubyc, M; Sikorski, A F

    1992-01-01

    Resorcinolic lipids, amphiphilic compounds from cereal grains show strong effects upon the activity of membrane enzymes. The concentrations for 50% inhibition of erythrocyte membrane acetylcholinesterase were in the range of 18-90 microM and were dependent on the length of the aliphatic side chain of the homologue and on the modification of hydroxyl groups in the benzene ring. Sulfonation of OH groups resulted in a drastic decrease of the inhibitory potency. The effect of resorcinolic lipids on the activity of Ca2+(calmodulin)-ATPase was the opposite. Up to concentrations of 50 microM alk(en)ylresorcinols stimulated the activity of this enzyme and only slight inhibition (approx. 30%) was observed above 100 microM. The results suggest that the effect of resorcinolic lipids might depend on their ability to alter the bilayer properties. Most probably these compounds decrease the mobility of membrane phospholipid molecules.

  17. Enzyme-Assisted Extraction Optimization, Characterization and Antioxidant Activity of Polysaccharides from Sea Cucumber Phyllophorus proteus.

    Science.gov (United States)

    Qin, Yujing; Yuan, Qingxia; Zhang, Yuexing; Li, Jialu; Zhu, Xinjiao; Zhao, Lingling; Wen, Jing; Liu, Jikai; Zhao, Longyan; Zhao, Jinhua

    2018-03-06

    Enzyme-assisted extraction optimization, characterization and in vitro antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus (PPP) were investigated in the present study. The optimal extraction conditions with a yield of 6.44 ± 0.06% for PPP were determined as follows: Extraction time of 2.89 h, ratio of extraction solvent to raw material of 16.26 mL/g, extraction pH of 6.83, exraction temperature of 50 °C and papain concentration of 0.15%. Three purified fractions, PPP-1a, PPP-1b and PPP-2 with molecular weights of 369.60, 41.73 and 57.76 kDa, respectively, were obtained from PPP by chromatography of FPA98Cl and Sepharose CL-6B columns. Analysis of monosaccharide compositions showed that PPP-1a consisted of N -acetyl-galactosamine (GalNAc), galactose (Gal) and fucose (Fuc), PPP-1b of Fuc as the only monosaccharide and PPP-2 of glucuronic acid, GalNAc and Fuc. Sulfate contents of PPP, PPP-1a, PPP-1b and PPP-2 were determined to be 21.9%, 20.6%, 25.2% and 28.0% ( w / w ), respectively. PPP and PPP-1a had higher molecular weight and intrinsic viscosity than those of the PPP-1b and PPP-2. PPP, PPP-1a, PPP-1b and PPP-2 exhibited obvious activities of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide radical and ABTS radical in different extent, which suggested that the polysaccharides from Phyllophorus proteus may be novel agents having potential value for antioxidation.

  18. Remarkable activation of enzymes in nonaqueous media by denaturing organic cosolvents

    Energy Technology Data Exchange (ETDEWEB)

    Almarsson, O.; Klibanov, A.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry

    1996-01-05

    The rates of transesterification reactions catalyzed by the protease subtilisin Carlsberg suspended in various anhydrous solvents at 30 C can be increased more than 100-fold by the addition of denaturing organic cosolvents (dimethyl sulfoxide or formamide); in water, the same cosolvents exert no enzyme activation. At 4 C, the activation effect on the lyophilized protease is even higher, reaching 1,000-fold. Marked enhancement of enzymatic activity in anhydrous solvents by formamide is also observed for two other enzymes, {alpha}-chymotrypsin and Rhizomucor miehei lipase, and is manifested in two transesterification reactions. In addition to lyophilized subtilisin, crosslinked crystals of subtilisin are also amenable to the dramatic activation by the denaturing cosolvents. In contrast, subtilisin solubilized in anhydrous media by covalent modification with poly(ethylene glycol) exhibits only modest activation. These observations are rationalized in terms of a mechanistic hypothesis based on an enhanced protein flexibility in anhydrous milieu brought about by the denaturing organic cosolvents. The latter exert their lubricating effect largely at the interfaces between enzyme molecules in a solid preparation, thus easing the flexibility constraints imposed by protein-protein contacts.

  19. Digestive enzymes in Rhinolophus euryale (Rhinolophidae, Chiroptera are active also during hibernation

    Directory of Open Access Journals (Sweden)

    Maxinová Edita

    2017-11-01

    Full Text Available During the winter, bats use hibernation as a means of surviving the period of low prey offer. However, the Mediterranean horseshoe bat (Rhinolophus euryale arouses from torpor quite frequently. Based on the actual climatic conditions, it can profit from occasional foraging oportunities, when they occur. We analysed faeces collected on four nights during the period from November 2012 to February 2013 from the Domica-Baradla cave system (Slovakia and Hungary. In mid-November, the largest proportion of faecal contents were from Lepidoptera. Later on, the proportion of non-consumptive mass in the faeces increased and prey remnants disappeared. We analysed the activity of digestive enzymes (amylase, chitobiase, endochitinase and glukosaminidase in faeces. The activity of these enzymes was detected in fresh faeces throughout the whole winter. The faecal activity of the chitinases was relatively stable during the monitored period, whilst the activity of amylase was highest during late November and December. Some level of active digestive enzymes during the winter could be an adaptation to occasional winter foraging.

  20. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  1. Prolidase in the Marine Sponge Suberites domuncula: Enzyme Activity, Molecular Cloning, and Phylogenetic Relationship.

    Science.gov (United States)

    Wiens; Koziol; Batel; Müller

    1999-03-01

    : The enzyme prolidase hydrolyzes the peptide bond that involves the imino nitrogen of proline or hydroxyproline; hence, it catalyzes the final step in collagen degradation. From mammals it is known that this enzyme plays a major role in the recycling of proline for collagen synthesis and can be considered to be essential for the control of cell growth. The dominant organic exoskeleton in sponges, especially in Demospongiae, is collagen and the collagen-related spongin. Here we demonstrate that crude extracts of the demosponge Suberites domuncula contain prolidase or prolidase-like activity. The complementary DNA encoding the putative prolidase was cloned from a library of the same animal. Two different forms of cDNAs, termed SDPEPD1 and SDPEPD2, were identified, coding for the putative polypeptides PEPD_SD-1 with a molecular mass of 55,805 Da and PEPD_SD-2 with 51,684. Evidence is presented suggesting that the two different transcripts originate from the same gene but are formed by an alternative splicing event. We conclude that demosponges contain the activity as well as the gene for prolidase, a major enzyme involved in collagen metabolism, spicule formation, and cell motility. Phylogenetic analysis revealed that the sponge prolidase branches off first from the common ancestor of metazoan prolidases and later than the yeast prolidase; only distantly related are the bacterial enzymes.

  2. Activities of cholinesterase enzyme among diazinon and sevin insecticides sprayers in the western part of Iran

    Directory of Open Access Journals (Sweden)

    Ali Jalilian

    2016-10-01

    Full Text Available Objective: To measure the activities of cholinesterase enzyme among farmers who used the selected insecticides for the purpose of preventing the growth of agricultural pests on their farms. Methods: A total of 21 people used diazinon to spray their agricultural lands and 13 people also used sevin to spray theirs in western part of Iran. Lovi Bond method was used for the measurement of cholinesterase activity. Results: Results revealed that the enzyme level before spraying with diazinon was 100.0% among 3 workers and 87.5% in 18 of them. This level decreased to 75.0% among 13 workers and 67.5% in 5 workers. The number of workers that had headache, pale, dizziness with headache, nausea, diarrhea with cramps and stomachache were 5, 9, 5, 3, 4 and 7 respectively. These symptoms decreased after 72 h. Out of 13 workers who sprayed with sevin, the enzyme level before spraying was normal (100.0% among 5 workers and 87.5% in 8 workers. After spraying, the enzyme level was 87.5% in 5 workers, 75.0% in 5 workers and 67.5% in 3 workers. Conclusions: These workers were in danger of chemical poisoning. Measurement of precholinesterase and post-cholinesterase exposures is recommended in order to compare the values after pesticide application.

  3. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  4. The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity.

    Science.gov (United States)

    Nolan, Linda M; Harnedy, Padraigin A; Turner, Peter; Hearne, Audrey B; O'Reilly, Catherine

    2003-04-25

    The filamentous fungus Fusarium lateritium produces cyanide hydratase when grown in the presence of cyanide. The cyanide hydratase protein produced at a high level in Escherichia coli shows a low but significant nitrilase activity with acetonitrile, propionitrile and benzonitrile. The nitrilase activity is sufficient for growth of the recombinant strain on acetonitrile, propionitrile or benzonitrile as the sole source of nitrogen. The recombinant enzyme shows highest nitrilase activity with benzonitrile. Site-directed mutagenesis of the F. lateritium cyanide hydratase gene indicates that mutations leading to a loss of cyanide hydratase activity also lead to a loss of nitrilase activity. This suggests that the active site for cyanide hydratase and nitrilase activity in the protein is the same. This is the first evidence of cyanide hydratase having nitrilase activity.

  5. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  6. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    Science.gov (United States)

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))inverted sugar, but they were much lower in soil from the flotation settler (0.12-6.95 mg of the inverted sugar). The results demonstrated that heavy pollution with Zn, Pb and Cd slightly decreased the activities of urease and invertase. It is thought that it resulted from the enzyme reactions occurring in slightly acidic or alkaline soil conditions. Under such conditions, heavy metals occur mainly in insoluble forms. The activities of these enzymes are strongly dependent on the content and decomposition of organic matter in the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes.

    Directory of Open Access Journals (Sweden)

    Kaarel Adamberg

    Full Text Available Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol(-1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h(-1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h(-1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus. Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h(-1. The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times. Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h(-1. Our results show that bioprocesses can be made more efficient (using a balanced metabolism by varying the growth conditions.

  8. CD13/aminopeptidase N mRNA expression and enzyme activity in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Behzadi, Mousa; Ahmadzadeh, Arman; Valizadeh, Maryam; Haji Molla Hoseini, Mostafa; Yeganeh, Farshid

    2017-01-01

    To determine the significance of CD13/aminopeptidase N (APN) in systemic Lupus Erythromatus (SLE), we examined its catalytic activity and mRNA expression level in sera and peripheral whole blood cells of patients with SLE. In this study, 47 SLE patients and 44 age, sex matched healthy controls were included. The SLE disease activity index score and clinical finding including renal involvement and blood pressure were recorded. Catalytic activities of CD13/APN were measured in serum samples. In addition, CD13 mRNA level in peripheral whole blood cells was analyzed by quantitative real-time PCR. A Significant higher aminopeptidase activity was observed in serum from patients with SLE than serum from controls. In addition, CD13/APN mRNA expression was 6.12 times higher in SLE patients than in healthy controls. However, CD13/APN mRNA level, or its activity in serum, did not correlate with the score determined according to SLE disease activity index. Additionally, there was not any significant correlation between the complication in organs, including, kidney, and CD13/APN gene expression level or CD13/APN enzyme activity. CD13/APN enzyme activity and mRNA expression level were higher in SLE patients regardless of their disease activity. More studies are needed to better clarify the role of CD13/APN in the pathogenesis of SLE.

  9. CD13/aminopeptidase N mRNA expression and enzyme activity in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Mousa Behzadi

    2017-04-01

    Full Text Available Aims: To determine the significance of CD13/aminopeptidase N (APN in systemic Lupus Erythromatus (SLE, we examined its catalytic activity and mRNA expression level in sera and peripheral whole blood cells of patients with SLE. Methods: In this study, 47 SLE patients and 44 age, sex matched healthy controls were included. The SLE disease activity index score and clinical finding including renal involvement and blood pressure were recorded. Catalytic activities of CD13/APN were measured in serum samples. In addition, CD13 mRNA level in peripheral whole blood cells was analyzed by quantitative real-time PCR. Results: A Significant higher aminopeptidase activity was observed in serum from patients with SLE than serum from controls. In addition, CD13/APN mRNA expression was 6.12 times higher in SLE patients than in healthy controls. However, CD13/APN mRNA level, or its activity in serum, did not correlate with the score determined according to SLE disease activity index. Additionally, there was not any significant correlation between the complication in organs, including, kidney, and CD13/APN gene expression level or CD13/APN enzyme activity. Conclusion: CD13/APN enzyme activity and mRNA expression level were higher in SLE patients regardless of their disease activity. More studies are needed to better clarify the role of CD13/APN in the pathogenesis of SLE.

  10. EFFECTS OF SALT CONCENTRATIONS ON ANTIOXIDANT ENZYME ACTIVITY OF GRAIN SORGHUM

    Directory of Open Access Journals (Sweden)

    Ridvan Temizgul

    2016-07-01

    Full Text Available The present study was conducted to determine salt response of grain sorghum (Sureno plants through antioxidant defense enzymes and to determine their salt resistanceat biochemical level. Sorghum plants were grown in climate chambers for 15 days in 3 replications in Hoagland growth medium under different salt concentrations (0, 50, 100, 150, 200 mM. At the end of growing period, roots and leaves were separated and the effects of salt stress were assessed spectrophotometrically through antioxidant enzymes, chlorophyll and carotenes. Root CAT increased until 100 mM, SOD, APX and GST activities increased with increasing salt concentrations until 150 mM and then they all decreased. Increasing salt concentrations elevated MDA accumulation in sorghum roots. Leaf SOD and APX activities and proline contents increased until 150 mM and CAT, GR and GST activities increased until 100 mM and then they all decreased. Leaf MDA contents also increased with higher salt concentrations. However, increasing salt concentrations decreased chlorophyll contents at 100 mM, carotene contents increased until 150 mM and then decreased. Although ascending antioxidant enzyme activity improved salt resistance of sorghum plants, increasing concentrations were not found to be sufficient. Thus, further studies with higher concentrations should be carried out to elucidate the case.

  11. Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi.

    Science.gov (United States)

    Lindahl, Björn D; Finlay, Roger D

    2006-01-01

    The nitrogen (N) content of wood is usually suboptimal for fungal colonization. During decomposition of wood, an increasing fraction of the N becomes incorporated into fungal mycelium. Between 5 and 50% of the N in wood-degrading mycelium may be incorporated into chitin. Chitinolytic enzymes render this N available for re-utilization. Here, the activities of chitinolytic enzymes produced by wood-rotting fungi during degradation of spruce (Picea abies) wood were quantified in situ using fluorogenic 4-methylumbelliferyl substrates. A new method was developed that enables spatial quantification of enzyme activities on solid surfaces. All of the three tested fungi produced endochitinases, chitobiosidases and N-acetylhexosaminidases during colonization of wood. N-acetylhexosaminidase activity, and in some cases also chitobiosidase and endochitinase activities, were higher during secondary overgrowth of another fungus than during primary colonization of noncolonized wood. The results suggest that wood-degrading fungi degrade their own cell walls as well as the hyphae of earlier colonizers. Recycling of cell wall material within single mycelia and between fungal individuals during succession may lead to retention of N within woody debris.

  12. Cell in situ zymography: an in vitro cytotechnology for localization of enzyme activity in cell culture.

    Science.gov (United States)

    Chhabra, Aastha; Jaiswal, Astha; Malhotra, Umang; Kohli, Shrey; Rani, Vibha

    2012-09-01

    In situ zymography is a unique technique for detection and localization of enzyme-substrate interactions majorly in histological sections. Substrate with quenched fluorogenic molecule is incorporated in gel over which tissue sections are mounted and then incubated in buffer. The enzymatic activity is observed in the form of fluorescent signal. With the advancements in the field of biological research, use of in vitro cell culture has become very popular and holds great significance in multiple fields including inflammation, cancer, stem cell biology and the still emerging 3-D cell cultures. The information on analysis of enzymatic activity in cell lines is inadequate presently. We propose a single-step methodology that is simple, sensitive, cost-effective, and functional to perform and study the 'in position' activity of enzyme on substrate for in vitro cell cultures. Quantification of enzymatic activity to carry out comparative studies on cells has also been illustrated. This technique can be applied to a variety of enzyme classes including proteases, amylases, xylanases, and cellulases in cell cultures.

  13. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    Science.gov (United States)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  14. Measurement and purification of Alanine aminotransferase (ALT enzyme activity in patients with celiac disease

    Directory of Open Access Journals (Sweden)

    Taghreed U. Mohammed

    2017-09-01

    Full Text Available Celiac disease (CD is the most common genetically - based disease in correlation with food intolerance. The aim of this study is to measure the activity of ALT enzyme and purify enzyme from sera women with celiac disease. Alanine aminotransferase (ALT activity has been assayed in (30 women serum samples with celiac disease, age range between (20-40 year and (30 serum of healthy women as control group, age range between (22-38 year. In the present study, the mean value of ALT activity was significantly higher in patients with celiac disease than healthy group (p<0.01. The ALT enzyme was partial purified from sera women with celiac disease by dialysis, gel filtration using Sephadex G- 50 and ion exchange chromatography using DEAE- cellulose A-50 . The results showed a single peak by using gel filtration and the activity reached 31-15 U/L .Two isoenzymes were obtained by using ion exchange chromatography and the purity degree of isoenzymse (I, II were (5.7 and (5.53 fold respectively

  15. Intestinal microbiota differentially affect brush border enzyme activity and gene expression in the neonatal gnotobiotic pig.

    Science.gov (United States)

    Willing, B P; Van Kessel, A G

    2009-10-01

    To study microbial influence on intestinal development pertaining to nutrient digestion, two separate gnotobiotic experiments were performed, each with 16 piglets allocated to four treatment groups: germfree (GF), monoassociation with Escherichia coli, monoassociation with Lactobacillus fermentum or conventionalization with faecal bacteria (CV). Enzyme activity and gene expression of lactase phlorizin hydrolase (LPH) and aminopeptidase N (APN) were measured in isolated enterocytes, harvested on day 14, using specific substrates and quantitative PCR respectively. Enterocytes of CV pigs had reduced APN activity, but had increased gene expression relative to GF, making the specific activity:mRNA (A:G) ratio dramatically lower (p pigs as compared with GF. The results of co-incubation of L. fermentum, E. coli and faecal bacteria with APN indicate a direct relationship between enzyme inactivation and specific A:G ratio in enterocytes. We conclude that enterocyte up-regulation of APN expression occurs as either a direct response to microbial colonization or as a feedback mechanism in response to reduced enzyme activity through microbial degradation. This mechanism may play a role in ensuring effective competition of the host with the intestinal microbiota for available nutrients.

  16. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-07-01

    Conclusion: Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate–glutathione cycles, are activated to protect against phenolic compound oxidation.

  17. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Stanislav

    2014-01-01

    Roč. 63, Suppl.1 (2014), S133-S140 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 7AMB12SK158; GA ČR(CZ) GA304/08/0256 Institutional support: RVO:67985823 Keywords : enzyme * metabolism * radiometric assay * thyroid hormone Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.293, year: 2014

  18. Differentiation between activity of digestive enzymes of .i.Brachionus calyciflorus./i. and extracellular enzymes of its epizooic bacteria

    Czech Academy of Sciences Publication Activity Database

    Štrojsová, Martina; Ahlrichs, W.H.

    2009-01-01

    Roč. 68, č. 2 (2009), s. 409-412 ISSN 1129-5767 Institutional research plan: CEZ:AV0Z60170517 Keywords : rotifers * phosphatase * beta-N-acetylhexosaminidase * enzyme localization Subject RIV: EG - Zoology Impact factor: 0.932, year: 2009

  19. Effects of deuterated water upon specific activity of some marker enzymes for cytosol and plasmatic membrane

    International Nuclear Information System (INIS)

    Buzgariu, Wanda; Coroiu, Viorica; Moldovan, Lucia; Titescu, G.; Stefanescu, I.

    2004-01-01

    Recently, numerous studies were devoted to the effects of an increased environmental deuterium concentration on physiological characteristics of various biological systems, from monocellular organisms up to mammals. Within these preoccupations the experiments on enzyme activity and parameters are of special interest since they throw light upon the mechanisms in metabolic biochemical reactions (glycolysis, photosynthesis, transport across membranes, etc). The present work concerns the effects of heavy water upon the activity of some enzymes (dehydrogenase-LDH lactate and 5' nucleotidase) implied in different metabolic pathways, serving as functional indicators for some cellular compartments such as the cytosols and cellular membranes. Enzyme activity was determined by growing for 6 days the cells (Hep 2, CHO, fibroblasts) in deuterated culture media at different concentration levels (20%, 40%, 65% si 90%), as well as in a reaction medium deuterated at 99.96%. In case of the first experimental run the LDH activity was monitored for the three cellular lines (Hep 2, CHO, fibroblasts) for different time intervals (1 d, 3 d and 6 d). After the first 24 h of cells' exposure the activity values were similar regardless of the heavy water concentration in the medium. Exposing the cells for longer time (6 days) led to modifications of LDH activity. In contrast to the case of media with relatively moderate D 2 O content, cell growing in conditions of intense deuteration 65% and 90 % D 2 O) led to an increase of cytosolic enzyme activity of about 50%. In case of 5' nucleotidase after 6 days of cell cultivation in deuteration conditions the activity decreased to 50% and 70% from the value corresponding to normal conditions for cell growth. This diminution of the activity was characteristic for the media with 65% and 90% D 2 O. In the second experimental run the activities of dehydrogenase lactate and 5' nucleotidase from the cellular homogenate obtained from cells grown in

  20. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica.

    Science.gov (United States)

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.

  1. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    International Nuclear Information System (INIS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-01-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  2. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna.

    Science.gov (United States)

    Ørsted, Michael; Roslev, Peter

    2015-08-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, the authors investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2 Cr2 O7 or the herbicide formulation Roundup®. Toxicant-induced changes in hydrolytic enzyme activity were compared with changes in mobility (International Organization for Standardization standard 6341). The results showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna and the fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup resulted in loss of whole body enzyme activity and release of cell constituents, including enzymes and DNA. Roundup caused comparable inhibition of mobility and alkaline phosphatase activity with median effective concentration values at 20 °C of 8.7 mg active ingredient (a.i.)/L to 11.7 mg a.i./L. Inhibition of alkaline phosphatase activity by Roundup was lowest at 14 °C and greater at 20 °C and 26 °C. The results suggest that the fluorescence-based hydrolytic enzyme activity assay (FLEA assay) can be used as an index of D. magna stress. Combining enzyme activity with fluorescence measurements may be applied as a simple and quantitative supplement for toxicity testing with D. magna. © 2015 SETAC.

  3. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.

    Directory of Open Access Journals (Sweden)

    Changshui Liu

    Full Text Available The formation of fusion protein in biosynthetic pathways usually improves metabolic efficiency either channeling intermediates and/or colocalizing enzymes. In the metabolic engineering of biochemical pathways, generating unnatural protein fusions between sequential biosynthetic enzymes is a useful method to increase system efficiency and product yield. Here, we reported a special case. The malonyl-CoA reductase (MCR of Chloroflexus aurantiacus catalyzes the conversion of malonyl-CoA to 3-hydroxypropionate (3HP, and is a key enzyme in microbial production of 3HP, an important platform chemical. Functional domain analysis revealed that the N-terminal region of MCR (MCR-N; amino acids 1-549 and the C-terminal region of MCR (MCR-C; amino acids 550-1219 were functionally distinct. The malonyl-CoA was reduced into free intermediate malonate semialdehyde with NADPH by MCR-C fragment, and further reduced to 3HP by MCR-N fragment. In this process, the initial reduction of malonyl-CoA was rate limiting. Site-directed mutagenesis demonstrated that the TGXXXG(AX(1-2G and YXXXK motifs were important for enzyme activities of both MCR-N and MCR-C fragments. Moreover, the enzyme activity increased when MCR was separated into two individual fragments. Kinetic analysis showed that MCR-C fragment had higher affinity for malonyl-CoA and 4-time higher K cat/K m value than MCR. Dissecting MCR into MCR-N and MCR-C fragments also had a positive effect on the 3HP production in a recombinant Escherichia coli strain. Our study showed the feasibility of protein dissection as a new strategy in biosynthetic systems.

  4. Histamine metabolism. I. Thin-layer radiochromatographic assays for histaminase and histidine decarboxylase enzyme activities.

    Science.gov (United States)

    Zeiger, R S; Yurdin, D L; Twarog, F J

    1976-06-01

    Thin-layer radiochromatographic methods for the measurement of histaminase and histidine decarboxylase activities have been developed. The assays are specific for the respective enzymes, are sensitive and reproducible, and can be performed using commercially available substrates. The histaminase assay permits determination of enzyme activity from 2.5 mul of pregnancy sera, 1-2 X 10(6) human granulocytes, and microgram quantities of partially purified human placenta histaminase with an error of less than 5 per cent. The histidine decarboxylase assay permits measurement of nanogram quantities of newly formed histamine from as few as 2 X 10(4) rat peritoneal mast cells or rat basophilic leukemia cells with an error of less than 5 per cent.

  5. An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria

    OpenAIRE

    Rasmussen, Randi Engelberth; Erstad, Simon Matth?; Ramos-Martinez, Erick Miguel; Fimognari, Lorenzo; De Porcellinis, Alice Jara; Sakuragi, Yumiko

    2016-01-01

    BACKGROUND: Cyanobacteria are photosynthetic bacteria that thrive in diverse ecosystems and play major roles in the global carbon cycle. The abilities of cyanobacteria to fix atmospheric CO2 and to allocate the fixed carbons to chemicals and biofuels have attracted growing attentions as sustainable microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the mo...

  6. Enzyme activity of topsoii layer on reclaimed and unreclaimed post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Vindušková, O.; Kukla, J.; Šnajdr, Jaroslav; Baldrian, Petr; Frouz, Jan

    2017-01-01

    Roč. 62, č. 1 (2017), s. 19-25 ISSN 2542-2154 R&D Projects: GA MŠk LC06066; GA ČR GAP504/12/1288 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : enzyme assay * microbial activity * litterbag * macrofauna * soil fauna Subject RIV: DF - Soil Science; EE - Microbiology, Virology (MBU-M) OBOR OECD: Soil science; Microbiology (MBU-M)

  7. Characterization and engineering of carbohydrate-active enzymes for biotechnological applications

    OpenAIRE

    Hassan, Noor

    2015-01-01

    Extremozymes are enzymes produced by microorganisms that live in extreme habitats. Due to their higher stability, extremozymes is attracting interest as biocatalysts in various industrial processes. In this context, carbohydrate-active extremozymes can be used in various processes relevant to the paper, food and feed industry. In this thesis, the crystal structure, biochemical characterization and the capacity to synthesize prebiotic galacto-oligosaccharides (GOS) were investigated for a β-gl...

  8. Tissue-specific control of rat malic enzyme activity and messenger RNA levels by a high carbohydrate diet.

    OpenAIRE

    Dozin, B; Rall, J E; Nikodem, V M

    1986-01-01

    In euthyroid rats fed a high carbohydrate fat-free diet for 10 days, the mass of cellular malic enzyme mRNA in liver is increased 7- to 8-fold above the basal level. Malic enzyme activity is stimulated to the same extent. This effect does not result from an increase either in the transcriptional activity of the malic enzyme gene, as determined by nuclear run-off transcription assay, or in the content of intranuclear malic enzyme RNA sequences. Mathematical modeling shows that this increase in...

  9. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  10. The effect of the physical effort on the activity of brush border enzymes and lysosomal enzymes of nephron excreted in the urine

    Directory of Open Access Journals (Sweden)

    E Bakońska-Pacoń

    2003-03-01

    Full Text Available The lysosomal enzymes activities in the athletes urine were designated and presented in this work: N-acetyl-ß-D-glucosaminidase (NAG, ß-glucuronidase (GSR, arylsulfatase A (ASA. The brush border enzymes activities: leucyloaminopeptidase (LAP, alanine aminopeptidase (AAP, ?-glutamyltransferaze (GGT, the trypsin inhibitor activity (UTI and the total protein and creatinine concentrations were determined as well. Values of examined parameters are presented after its conversion to mmol creatinine units. Nine athletes subjected to physical effort in the frame of the training unit with the speed endurance accent were taken under the examination. The urine was taken before, immediately after and 24 h after effort. 9-fold increase of the protein/creatinine index was observed in the postexercise urine. In the urine taken after next 24h this index decreased to over 2-fold higher value than it presented itself before effort. Almost 3-fold increase of the NAG activity and 4-fold decrease of the ASA activity were noticed in the after effort urine. The brush border enzymes values were higher for over 2-3-fold in the postexercise urine but after next 24h they went down below values observed before effort. The correlation between NAG and brush border enzymes was observes at the level of r=0.7. All changes of examined parameters point at the passing glomerular-tubular troubles of nephrons. It may also be suggested that various forms of changes in the lysosomal enzymes activity are connected with their functions in organism and not with the degree of the renal cells structure damage.

  11. Enzyme-activity mutations detected in mice after paternal fractionated irradiation

    International Nuclear Information System (INIS)

    Charles, D.J.; Pretsch, W.

    1986-01-01

    (101/E1 X C3H/E1)F 1 -hybrid male mice were exposed in a 24-h fractionation interval to either 3.0 + 3.0-Gy or 5.1 + 5.1-Gy X-irradiation, and mated to untreated Test-stock females. The offspring were examined for mutations at 7 recessive specific loci and for activity alterations of erythrocyte enzymes controlled presumably by 12 loci. No enzyme-activity mutant was found in 3610 F 1 -offspring of the control group. In the experimental groups, no mutant was detected in 533 (3.0 + 3.0 Gy) and 173 (5.1 + 5.1 Gy) offspring from postspermatogonial germ cells treated. After treatment of spermatogonia, 1 mutant in 3388 F 1 -offspring of the 3.0 + 3.0-Gy group, and 5 mutants in 3187 F 1 offspring of the 5.1 + 5.1-Gy group were found. The mutants were all genetically confirmed. The frequency (expressed as mutants/locus/gamete) of enzyme-activity mutations is 2 (5.1 + 5.1-Gy group) to 10 (3.0 + 3.0-Gy group) times lower than the frequency of recessive specific-locus mutations. (Auth.)

  12. Effects of poultry litter biochar on soil enzyme activities and tomato, pepper and lettuce plants growth

    Directory of Open Access Journals (Sweden)

    Muhittin Onur Akça

    2015-07-01

    Full Text Available Biochar application to soils is being considered as a means to sequester carbon (C while concurrently improving soil functions. A greenhouse experiment was carried out to determine the effects of biochar from the pyrolysis poultry litter (PL on the soil enzyme activities, organic matter content and growth of tomato, pepper and lettuce plants. In the experiment, the combination of 15.15.15 composite fertilizer with 0, 200, 400 and 600kg/da doses of PL biochar were applied into the clay loam soil. Compared to the control and chemical fertilizer alone, the soil organic matter was significantly increased after biochar amendments. β-glucosidase, alkaline phosphatase, urease and arylsulphatase enzyme activities in soils were increased by the biochar applications significantly (P<0.05. Plant fresh and dry weight of tomato, pepper and lettuce plants were higher in 4kg/ha PL biochar treatment than in the other treatments. The results showed that PL biochar amendment to soils in the agricultural use increased yield of plants and enzyme activities with increasing soil organic matter content as well as improving soil properties.

  13. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    Directory of Open Access Journals (Sweden)

    Chung Myung

    2009-06-01

    Full Text Available Abstract Background Lactic acid bacteria (LAB are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml were orally administered to SD rats (fed a high-cholesterol diet every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  14. Enzyme activity deviates due to spatial and temporal temperature profiles in commercial microtiter plate readers.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Sieben, Michaela; Lattermann, Clemens; Kauffmann, Kira; Büchs, Jochen; Spieß, Antje C

    2016-03-01

    Microtiter plates (MTP) and automatized techniques are increasingly applied in the field of biotechnology. However, the susceptibility of MTPs to edge effects such as thermal gradients can lead to high variation of measured enzyme activities. In an effort to enhance experimental reliability, to quantify, and to minimize instrument-caused deviations in enzyme kinetics between two MTP-readers, we comprehensively quantified temperature distribution in 96-well MTPs. We demonstrated the robust application of the absorbance dye cresol red as easily applicable temperature indicator in cuvettes and MTPs and determined its accuracy to ±0.16°C. We then quantified temperature distributions in 96-well MTPs revealing temperature deviations over single MTP of up to 2.2°C and different patterns in two commercial devices (BioTek Synergy 4 and Synergy Mx). The obtained liquid temperature was shown to be substantially controlled by evaporation. The temperature-induced enzyme activity variation within MTPs amounted to about 20 %. Activity deviations between MTPs and to those in cuvettes were determined to 40 % due to deviations from the set temperature in MTPs. In conclusion, we propose a better control of experimental conditions in MTPs or alternative experimental systems for reliable determination of kinetic parameters for bioprocess development. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Agrobotanical attributes, nitrogen-fixation, enzyme activities and nutraceuticals and tyrosinase enzyme of hyacinth bean (Lablab purpureus L.) - a bio-functional medicinal legume.

    Science.gov (United States)

    Hyacinth bean (Lablab purpureus L.) accessions of different origins received from USDA, ARS, Plant Genetic Resources Conservation Unit, Griffin, GA, U.S.A. were evaluated for agrobotanical attributes, enzyme activities, nutraceuticals and quality in pot culture at AMU, Aligarh, Uttar Pradesh. Fresh ...

  16. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    Directory of Open Access Journals (Sweden)

    Lu Thea

    2012-06-01

    Full Text Available Abstract Background Fatty acid modifying enzyme (FAME has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS. However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment.

  17. Evaluation, partial characterization and purification of acetylcholine esterase enzyme and antiangiogenic activity from marine sponges

    Directory of Open Access Journals (Sweden)

    Maushmi Shailesh Kumar

    2014-11-01

    Full Text Available Objective: To test three marine sponges Halichondria glabrata Keller, 1891; Spirastrella pachyspira (S. pachyspira Levi, 1958 and Cliona lobata Hancock, 1849 for the presence of the acetylcholinesterase (AChE in both young and developed samples from western coastal area of India. S. pachyspira methanolic extract was selected for anti/pro angiogenic activity. Methods: They were evaluated for AChE activity using Ellman’s assay based on production of yellow colored 5-thio-2-nitrobenzoate. Purification of the enzyme was planned using ammonium sulphate precipitation and characterization by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Chorioallantoic membrane (ChAM assay model was used for angiogenic/ antiangiogenic testing. Results: All the three sponges showed good specific enzyme activity and S. pachyspira contained maximum specific enzyme activity. Sixty percent of ammonium sulphate precipitation of crude protein sample gave single band at 66 kDa corresponding to the true AChE. ChAM assay was performed at 62.5, 125.0 and 250.0 µg/mL. Dosage beyond 250 µg/mL extract showed toxic response with anti angiogenic activity at all the concentrations. Conclusions: AChE activity was detected in all samples. Extract showed good anti-angiogenic response at 62.5 µg/mL. Extract was highly toxic affecting microvasculature of ChAM as well as normal growth and development of the embryo at 500 µg/mL. With further characterization of bioactive compounds from the extract of S. pachyspira, the compounds can be developed for anti tumor activity.

  18. Assessment of antioxidant enzyme activities in erythrocytes of pre-hypertensive and hypertensive women

    Directory of Open Access Journals (Sweden)

    Farshad Amirkhizi

    2010-01-01

    Full Text Available Background: Few studies that have investigated hypertension have considered a state of oxidative stress that can contribute to the development of atherosclerosis and other hypertension induced organ damage. The aim of this study was to investigate whether pre-hypertension and hypertension status is associated with activities of erythrocyte antioxidant enzymes in a random sample of cardiovascular disease-free women. Methods: In this case-control study, 53 pre-hypertensive women, 32 hypertensive women and 75 healthy controls were included. General information was gathered using questionnaires and face-to-face interviews. Blood pressure and anthropometric measurements were measured for each subject. Venous blood samples were drawn from subjects and plasma was separated. Activities of erythrocyte antioxidant enzymes were also evaluated by measuring activities of copper zinc-superoxide dismutase (CuZn-SOD, glutathione peroxidase (GPX and catalase (CAT in selected subjects. Results: Fifty-three (33.1% and 32 (20% participants were pre-hypertensive and hypertensive, respectively. The hypertensive and pre-hypertensive women had lower CuZn-SOD (p < 0.001 and GPX (p < 0.01 activities compared to normotensives. Furthermore, hypertensive women had lower CAT activity compared to pre-hypertensive and normotensive women (p < 0.001. Moreover, significant differences were also observed between hypertensive and pre-hypertensive women in erythrocyte CAT activity (p < 0.01. Conclusions: The present findings show that activities of erythrocyte antioxidant enzymes decrease in pre-hypertensive and hypertensive women, which may eventually lead to atherosclerosis and other high blood pressure related health problems.

  19. Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress.

    Science.gov (United States)

    Khanna, Suruchi M; Taxak, Pooja Choudhary; Jain, Pradeep K; Saini, Raman; Srinivasan, R

    2014-08-01

    The specific activities and transcript levels of glycolytic enzymes were examined in shoots of chickpea (Cicer arietinum L.) cultivars, Pusa362 (drought tolerant) and SBD377 (drought sensitive), subjected to water-deficit stress 30 days after sowing. Water-deficit stress resulted in decrease in relative water content, chlorophyll content, plant dry weight, and NADP/NADPH ratio and increase in NAD/NADH ratio in both the cultivars. A successive decline in the specific activities of fructose-1,6-bisphosphate aldolase (aldolase), 3-phosphoglycerate kinase (PGK), and NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) and elevation in the specific activities of phosphoglycerate mutase (PGM) and triosephosphate isomerase (TPI) was observed in both the cultivars under stress as compared to their respective control plants. The specific activities of hexokinase, fructose-6-phosphate kinase (PFK), and NAD-GAPDH were least affected. The transcript levels of PGK and NADP-GAPDH decreased and that of glucose-6-phosphate isomerase (GPI), PGM, and PFK increased in response to water-deficit stress while water-deficit stress had no effect on the steady-state transcript levels of hexokinase, aldolase, TPI, and NAD-GAPDH. The results suggest that under water-deficit stress, the activities and transcript levels of most of the glycolytic enzymes are not significantly affected, except the increased activity and transcript level of PGM and decreased activities and transcript levels of PGK and NADP-GAPDH. Further, the glycolytic enzymes do not show much variation between the tolerant and sensitive cultivars under water deficit.

  20. Changes in ECG and enzyme activity in rat heart after myocardial infarction: effect of TPP and MnCl2.

    Science.gov (United States)

    Tylicki, A; Czerniecki, J; Godlewska, A; Kieliszek, M; Zebrowski, T; Bielawski, T; Wojcik, B

    2008-06-01

    Heart infarction is one of the main causes of death in the human population. Assurance of a sufficient level of bioenergetic processes is very important for the heart after infarction. Mn2+ as well as thiamine pyrophosphate (TPP) are positive effectors of the pyruvate dehydrogenase complex (PDH) and the 2-oxoglutarate dehydrogenase complex (OGDH), both of which play a very important role in the Krebs cycle. Thus, we have established the effect of MnCl2 (10mg/kg) and TPP (20mg/kg)--4 injections every 12 h--on the activity of PDH, OGDH, lactate dehydrogenase (LDH) and malate dehydrogenase (MDH). Additionally, we perform an analysis of ECG to affirm the changes in the heart electrophysiology of healthy rats after MnCl2 and TPP treatment. We then analyzed changes in the activity of these enzymes after experimental myocardial infarction in rats. We observed a decrease of OGDH and MDH activity in rat hearts after infarction in comparison with sham-operated rats. Treatment of healthy rats with MnCl2 caused an increase of OGDH activity. Moreover both MnCl2 and TPP caused an increase of PDH activity and a decrease of MDH activity (TPP revealed a stronger effect). We found no changes in LDH activity. Electrocardiography data showed a slight shortening of the QT interval and an enhanced heartbeat rate after treatment with MnCl2. TPP caused only elongation of the QT interval. In conclusion, application of MnCl2 enhanced the activity of some very important enzymes in the respiration process (PDH and OGDH). This effect, connected with enhanced heartbeat and a slightly shortened ventricle relaxation, may have potential application during the key period of convalescence following heart infarction.

  1. Optimizing the salt-induced activation of enzymes in organic solvents: Effects of lyophilization time and water content

    Energy Technology Data Exchange (ETDEWEB)

    Ru, M.T.; Reimer, J.A.; Clark, D.S. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering; Dordick, J.S. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical Engineering

    1999-04-20

    The addition of simple inorganic salts to aqueous enzyme solutions prior to lyophilization results in a dramatic activation of the dried powder in organic media relative to enzyme with no added salt. Activation of both the serine protease subtilisin Carlsberg and lipase from Mucor javanicus resulting from lyophilization in the presence of KCl was highly sensitive to the lyophilization time and water content of the sample. Specifically, for a preparation containing 98% (w/w) KCl, 1% (w/w) phosphate buffer, and 1% (w/w) enzyme, varying the lyophilization time showed a direct correlation between water content and activity up to an optimum, beyond which the activity decreased with increasing lyophilization time. The catalytic efficiency in hexane varied as much as 13-fold for subtilisin Carlsberg and 11-fold for lipase depending on the lyophilization time. This dependence was apparently a consequence of including the salt, as a similar result was not observed for the enzyme freeze-dried without KCl. In the case of subtilisin Carlsberg, the salt-induced optimum value of k{sub cat}/K{sub m} for transesterification in hexane was over 20,000-fold higher than that for salt-free enzyme, a substantial improvement over the previously reported enhancement of 3750-fold. As was found previously for pure enzyme, the salt-activated enzyme exhibited greatest activity when lyophilized from a solution of pH equal to the pH for optimal activity in water. The active-site content of the lyophilized enzyme samples also depended upon lyophilization time and inclusion of salt, with opposite trends in this dependence observed for the solvents hexane and tetrahydrofuran. Finally, substrate selectivity experiments suggested that mechanism(s) other than selective partitioning of substrate into the enzyme-salt matrix are responsible for salt-induced activation of enzymes in organic solvents.

  2. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  3. Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress.

    Science.gov (United States)

    Rossatto, Tatiana; do Amaral, Marcelo Nogueira; Benitez, Letícia Carvalho; Vighi, Isabel Lopes; Braga, Eugenia Jacira Bolacel; de Magalhães Júnior, Ariano Martins; Maia, Mara Andrade Colares; da Silva Pinto, Luciano

    2017-10-01

    The rice cultivar ( Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3 - CU/Zn , OsSOD2 - Cu/Zn , OsSOD - Cu/Zn , OsSOD4 - Cu/Zn , OsSODCc1 - Cu/Zn , OsSOD - Fe , OsAPX1 , OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6 , which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.

  4. Garlic oil attenuated nitrosodiethylamine-induced hepatocarcinogenesis by modulating the metabolic activation and detoxification enzymes.

    Science.gov (United States)

    Zhang, Cui-Li; Zeng, Tao; Zhao, Xiu-Lan; Xie, Ke-Qin

    2013-01-01

    Nitrosodiethylamine (NDEA) is a potent carcinogen widely existing in the environment. Our previous study has demonstrated that garlic oil (GO) could prevent NDEA-induced hepatocarcinogenesis in rats, but the underlying mechanisms are not fully understood. It has been well documented that the metabolic activation may play important roles in NDEA-induced hepatocarcinogenesis. Therefore, we designed the current study to explore the potential mechanisms by investigating the changes of hepatic phase Ⅰ enzymes (including cytochrome P450 enzyme (CYP) 2E1, CYP1A2 and CYP1A1) and phase Ⅱ enzymes (including glutathione S transferases (GSTs) and UDP- Glucuronosyltransferases (UGTs)) by using enzymatic methods, real-time PCR, and western blotting analysis. We found that NDEA treatment resulted in significant decreases of the activities of CYP2E1, CYP1A2, GST alpha, GST mu, UGTs and increases of the activities of CYP1A1 and GST pi. Furthermore, the mRNA and protein levels of CYP2E1, CYP1A2, GST alpha, GST mu and UGT1A6 in the liver of NDEA-treated rats were significantly decreased compared with those of the control group rats, while the mRNA and protein levels of CYP1A1 and GST pi were dramatically increased. Interestingly, all these adverse effects induced by NDEA were simultaneously and significantly suppressed by GO co-treatment. These data suggest that the protective effects of GO against NDEA-induced hepatocarcinogenesis might be, at least partially, attributed to the modulation of phase I and phase II enzymes.

  5. Synthesis of (3S,4S,5S)-trihydroxylpiperidine derivatives as enzyme stabilizers to improve therapeutic enzyme activity in Fabry patient cell lines.

    Science.gov (United States)

    Li, Huang-Yi; Lee, Jay-Der; Chen, Chiao-Wen; Sun, Ying-Chieh; Cheng, Wei-Chieh

    2018-01-20

    A series of 3S,4S,5S-trihydroxylated piperidines bearing structural diversity at C-2 or C-6 positions has been synthesized and tested to determine their ability to stabilize the activity of recombinant human α-Galactosidase A (rh-α-Gal A). Hit molecules were identified by rapid inhibitory activity screening, and then further investigated for their ability to protect this enzyme from thermo-induced denaturation and enhance its activity in Fabry patient cell lines. Our study resulted in the identification of a new class of small molecules as enzyme stabilizers for the potential treatment of Fabry disease. Of these, stabilizer 21 was the most effective, showing a 12-fold increase in rh-α-Gal A activity in Fabry disease cell lines. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Soil zymography - A novel technique for mapping enzyme activity in the rhizosphere

    Science.gov (United States)

    Spohn, Marie

    2014-05-01

    The effect plant roots on microbial activity in soil at the millimeter scale is poorly understood. One reason for this is that spatially explicit methods for the study of microbial activity in soil are limited. Here we present a quantitative in situ technique for mapping the distribution of exoenzymes in soil along with some results about the effects of roots on exoenzyme activity in soil. In the first study we showed that both acid and alkaline phosphatase activity were up to 5.4-times larger in the rhizosphere of Lupinus albus than in the bulk soil. While acid phosphatase activity (produced by roots and microorganisms) was closely associated with roots, alkaline phosphatase activity (produced only by microorganisms) was more widely distributed, leading to a 2.5-times larger area of activity of alkaline than of acid phosphatase. These results indicate a spatial differentiation of different ecophysiological groups of organic phosphorus mineralizing organisms in the rhizosphere which might alleviate a potential competition for phosphorus between them. In a second study cellulase, chitinase and phosphatase activities were analyzed in the presence of living Lupinus polyphyllus roots and dead/dying roots (in the same soils 10, 20 and 30 days after cutting the L. polyphyllus shoots). The activity of all three enzymes was 9.0 to 13.9-times higher at the living roots compared to the bulk soil. Microhotspots of cellulase, chitinase and phosphatase activity in the soil were found up to 60 mm away from the living roots. 10 days after shoot cutting, the areas of high activities of cellulase and phosphatase activity were extend up to 55 mm away from the next root, while the extension of the area of chitinase activity did not change significantly. At the root, cellulase and chitinase activity increased first at the root tips after shoot cutting and showed maximal activity 20 days after shoot cutting. The number and activity of microhotspots of chitinase activity was maximal 10

  7. Inbreeding alters activities of the stress-related enzymes chitinases and β-1,3-glucanases.

    Science.gov (United States)

    Leimu, Roosa; Kloss, Lena; Fischer, Markus

    2012-01-01

    Pathogenesis-related proteins, chitinases (CHT) and β-1,3-glucanases (GLU), are stress proteins up-regulated as response to extrinsic environmental stress in plants. It is unknown whether these PR proteins are also influenced by inbreeding, which has been suggested to constitute intrinsic genetic stress, and which is also known to affect the ability of plants to cope with environmental stress. We investigated activities of CHT and GLU in response to inbreeding in plants from 13 Ragged Robin (Lychnis flos-cuculi) populations. We also studied whether activities of these enzymes were associated with levels of herbivore damage and pathogen infection in the populations from which the plants originated. We found an increase in pathogenesis-related protein activity in inbred plants from five out of the 13 investigated populations, which suggests that these proteins may play a role in how plants respond to intrinsic genetic stress brought about by inbreeding in some populations depending on the allele frequencies of loci affecting the expression of CHT and the past levels of inbreeding. More importantly, we found that CHT activities were higher in plants from populations with higher levels of herbivore or pathogen damage, but inbreeding reduced CHT activity in these populations disrupting the increased activities of this resistance-related enzyme in populations where high resistance is beneficial. These results provide novel information on the effects of plant inbreeding on plant-enemy interactions on a biochemical level.

  8. Inbreeding alters activities of the stress-related enzymes chitinases and β-1,3-glucanases.

    Directory of Open Access Journals (Sweden)

    Roosa Leimu

    Full Text Available Pathogenesis-related proteins, chitinases (CHT and β-1,3-glucanases (GLU, are stress proteins up-regulated as response to extrinsic environmental stress in plants. It is unknown whether these PR proteins are also influenced by inbreeding, which has been suggested to constitute intrinsic genetic stress, and which is also known to affect the ability of plants to cope with environmental stress. We investigated activities of CHT and GLU in response to inbreeding in plants from 13 Ragged Robin (Lychnis flos-cuculi populations. We also studied whether activities of these enzymes were associated with levels of herbivore damage and pathogen infection in the populations from which the plants originated. We found an increase in pathogenesis-related protein activity in inbred plants from five out of the 13 investigated populations, which suggests that these proteins may play a role in how plants respond to intrinsic genetic stress brought about by inbreeding in some populations depending on the allele frequencies of loci affecting the expression of CHT and the past levels of inbreeding. More importantly, we found that CHT activities were higher in plants from populations with higher levels of herbivore or pathogen damage, but inbreeding reduced CHT activity in these populations disrupting the increased activities of this resistance-related enzyme in populations where high resistance is beneficial. These results provide novel information on the effects of plant inbreeding on plant-enemy interactions on a biochemical level.

  9. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Adiguzel, U; Sezer, C; Yis, O; Akyol, G; Hasanreisoglu, B

    2002-01-01

    Refractive corneal surgery induces keratocyte apoptosis and generates reactive oxygen radicals (ROS) in the cornea. The purpose of the present study is to evaluate the correlation between keratocyte apoptosis and corneal antioxidant enzyme activities after different refractive surgical procedures in rabbits. Rabbits were divided into six groups. All groups were compared with the control group (Group 1), after epithelial scraping (Group 2), epithelial scrape and photorefractive keratectomy (PRK) (traditional PRK: Group 3), transepithelial PRK (Group 4), creation of a corneal flap with microkeratome (Group 5) and laser-assisted in situ keratomileusis (LASIK, Group 6). Terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling assay (to detect DNA fragmentation in situ) and light microscopy were used to detect apoptosis in rabbit eyes. Glutathione peroxidase (Gpx) and superoxide dismutase (SOD) activities of the corneal tissues were measured with spectrophotometric methods. Corneal Gpx and SOD activities decreased significantly in all groups when compared with the control group (P<0.05) and groups 2, 3 and 6 showed a significantly higher amount of keratocyte apoptosis (P<0.05). Not only a negative correlation was observed between corneal SOD activity and keratocyte apoptosis (cc: -0.3648) but Gpx activity also showed negative correlation with keratocyte apoptosis (cc: -0.3587). The present study illustrates the negative correlation between keratocyte apoptosis and corneal antioxidant enzyme activities. This finding suggests that ROS may be partly responsible for keratocyte apoptosis after refractive surgery.

  10. Intrinsic Xenobiotic Metabolizing Enzyme Activities in Early Life Stages of Zebrafish (Danio rerio).

    Science.gov (United States)

    Otte, Jens C; Schultz, Bernadette; Fruth, Daniela; Fabian, Eric; van Ravenzwaay, Bennard; Hidding, Björn; Salinas, Edward R

    2017-09-01

    Early life stages of zebrafish (Danio rerio, zf) are gaining attention as an alternative invivo test system for drug discovery, early developmental toxicity screenings and chemical testing in ecotoxicological and toxicological testing strategies. Previous studies have demonstrated transcriptional evidence for xenobiotic metabolizing enzymes (XME) during early zf development. However, elaborate experiments on XME activities during development are incomplete. In this work, the intrinsic activities of representative phase I and II XME were monitored by transformation of putative zf model substrates analyzed using photometry and high pressure liquid chromatography techniques. Six different defined stages of zf development (between 2.5 h postfertilization (hpf) to 120 hpf) were investigated by preparing a subcellular fraction from whole organism homogenates. We demonstrated that zf embryos as early as 2.5 hpf possess intrinsic metabolic activities for esterase, Aldh, Gst, and Cyp1a above the methodological detection limit. The activities of the enzymes Cyp3a and Nat were measurable during later stages in development. Activities represent dynamic patterns during development. The role of XME activities revealed in this work is relevant for the assessing toxicity in this test system and therefore contributes to a valuable characterization of zf embryos as an alternative testing organism in toxicology. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. [Effect of Bacillus thuringiensis var. israelensis (Bti) on detoxification enzyme activity of larvae of Culex pipiens pallens and Aedes aegypti].

    Science.gov (United States)

    Han, Guang-jie; Li, Chuan-ming; Sun, Jun; Liu, Qin; Zhao, Song; Qi, Jian-hang; Xu, Jian

    2015-08-01

    To investigate the effect of Bacillus thuringiensis var. israelensis (Bti) on the activities of three detoxification enzymes of Culex pipiens pallens and Aedes aegypti larvae. The activities of glutathione transferase, acetyl cholinesterase and carboxyl esterase, were detected after two kinds of mosquito larvae were treated by Bti at different time and concentrations. The activities of three detoxification enzymes of the two kinds of mosquito larvae were influenced by Bti treatment. The activity of glutathione transferase was increased after the Bti treatment, but declined significantly and inhibited at a low level sustainably. The activity of carboxyl esterase was increased after the Bti treatment, but recovered to normal level quickly. Acetyl cholinesterase was affected slightly by the Bti treatment, shortly inhibited in the first time and then recovered. The active effects of the three detoxification enzymes were positively related to the concentration of Bti. The enzyme activities of glutathione transferase, acetyl cholinesterase and carboxyl esterase could be affected by Bti significantly.

  12. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato.

    Science.gov (United States)

    Kong, Danyu; Chen, Chunlin; Wu, Huilan; Li, Ye; Li, Junming; Ling, Hong-Qing

    2013-11-20

    Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1(MM), LeFRO1(Ailsa) and LeFRO1(Monita)) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1(Ailsa) > LeFRO1(MM) > LeFRO1(Monita)). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato. Copyright © 2013. Published by Elsevier Ltd.

  13. Insights into the glycyl radical enzyme active site of benzylsuccinate synthase: a computational study.

    Science.gov (United States)

    Bharadwaj, Vivek S; Dean, Anthony M; Maupin, C Mark

    2013-08-21

    The fumarate addition reaction, catalyzed by the enzyme benzylsuccinate synthase (BSS), is considered to be one of the most intriguing and energetically challenging reactions in biology. BSS belongs to the glycyl radical enzyme family and catalyzes the fumarate addition reaction, which enables microorganisms to utilize hydrocarbons as an energy source under anaerobic conditions. Unfortunately, the extreme sensitivity of the glycyl radical to oxygen has hampered the structural and kinetic characterization of BSS, thereby limiting our knowledge on this enzyme. To enhance our molecular-level understanding of BSS, a computational approach involving homology modeling, docking studies, and molecular dynamics (MD) simulations has been used to deduce the structure of BSS's catalytic subunit (BSSα) and illuminate the molecular basis for the fumarate addition reaction. We have identified two conserved and distinct binding pockets at the BSSα active site: a hydrophobic pocket for toluene binding and a polar pocket for fumaric acid binding. Subsequent dynamical and energetic evaluations have identified Glu509, Ser827, Leu390, and Phe384 as active site residues critical for substrate binding. The orientation of substrates at the active site observed in MD simulations is consistent with experimental observations of the syn addition of toluene to fumaric acid. It is also found that substrate binding tightens the active site and restricts the conformational flexibility of the thiyl radical, leading to hydrogen transfer distances conducive to the proposed reaction mechanism. The stability of substrates at the active site and the occurrence of feasible radical transfer distances between the thiyl radical, substrates, and the active site glycine indicate a substrate-assisted radical transfer pathway governing fumarate addition.

  14. Jaburetox affects gene expression and enzyme activities in Rhodnius prolixus, a Chagas' disease vector.

    Science.gov (United States)

    Fruttero, Leonardo L; Moyetta, Natalia R; Krug, Monique Siebra; Broll, Valquiria; Grahl, Matheus V Coste; Real-Guerra, Rafael; Stanisçuaski, Fernanda; Carlini, Celia R

    2017-04-01

    Jaburetox, a recombinant peptide of ∼11kDa derived from one of the Canavalia ensiformis (Jack Bean) urease isoforms, is toxic and lethal to insects belonging to different orders when administered orally or via injection. Previous findings indicated that Jaburetox acts on insects in a complex fashion, inhibiting diuresis and the transmembrane potential of Malpighian tubules, interfering with muscle contractility and affecting the immune system. In vitro, Jaburetox forms ionic channels and alters permeability of artificial lipid membranes. Moreover, recent data suggested that the central nervous system (CNS) is a target organ for ureases and Jaburetox. In this work, we employed biochemical, molecular and cellular approaches to explore the mode of action of Jaburetox using Rhodnius prolixus, one of the main Chagas' disease vectors, as experimental model. In vitro incubations with fluorescently labeled Jaburetox indicated a high affinity of the peptide for the CNS but not for salivary glands (SG). The in vitro treatment of CNS or SG homogenates with Jaburetox partially inhibited the activity of nitric oxide synthase (NOS), thus disrupting nitrinergic signaling. This inhibitory effect was also observed in vivo (by feeding) for CNS but not for SG, implying differential modulation of NOS in these organs. The inhibition of NOS activity did not correlate to a decrease in expression of its mRNA, as assessed by qPCR. UDP-N-acetylglucosamine pyrophosphorylase (UAP), a key enzyme in chitin synthesis and glycosylation pathways and a known target of Jaburetox in insect CNS, was also affected in SG, with activation of the enzyme seen after both in vivo or in vitro treatments with the peptide. Unexpectedly, incubation of Jaburetox with a recombinant R. prolixus UAP had no effect on its activity, implying that the enzyme's modulation by the peptide requires the participation of other factor(s) present in CNS or SG homogenates. Feeding Jaburetox to R. prolixus decreased the m

  15. Recovery of cholinesterase activity in the earthworm Eisenia fetida Savigny following exposure to chlorpyrifos.

    Science.gov (United States)

    Aamodt, Solveig; Konestabo, Heidi Sjursen; Sverdrup, Line Emilie; Gudbrandsen, Marius; Reinecke, Sophiè A; Reinecke, Adriaan J; Stenersen, Jørgen

    2007-09-01

    Organophosphorus (OP) insecticides inhibit cholinesterase activity, an essential process in the nervous system of most animals. Re-establishment of active enzymes is slow and depends on elimination of the insecticide from the body followed by two lengthy processes: Reactivation and/or biosynthesis of new enzymes. Earthworms (Eisenia fetida) were exposed to either clean or chlorpyrifos-containing (240 mg/kg) soil for 48 h. After transfer to clean soil, we monitored two cholinesterases (E1 and E2) and chlorpyrifos content of the earthworms for 12 weeks. After 14 to 21 d of recovery, the exposed and control worms were indistinguishable in terms of appearance and behavior. Chemical analysis showed a rapid elimination of chlorpyrifos from the earthworms, with only minor levels detected after one week. The activities of E1 and E2 were measured spectrophotometrically in whole specimen homogenates using acetylthiocholine as the substrate. Carbaryl, which selectively inhibits E1, was used to discriminate the enzyme activities. Mean +/- standard error of mean of E1 and E2 activity in the controls immediately after exposure were 1.57 +/- 0.18 nanokatal (nkat)/mg protein (n = 3) and 0.95 +/- 0.07 nkat/mg protein, respectively, and 0.48 +/- 0.07 nkat/mg and 0.45 +/- 0.06 nkat/mg, respectively, in exposed worms. After three weeks, E1 had regained an activity comparable to the controls, whereas E2 remained depressed throughout the 12-week monitoring period. The non- or late recovery of E2 makes this enzyme a potential biomarker candidate for previous OP insecticide exposure in Eisenia fetida, provided the protocol for measurements is improved and standardized.

  16. Comparison of the activities of enzymes related to glycolysis and gluconeogenesis in the liver of dogs and cats.

    Science.gov (United States)

    Washizu, T; Tanaka, A; Sako, T; Washizu, M; Arai, T

    1999-10-01

    Activities of enzymes related to glucose metabolism were measured in canine and feline liver. There were no significant differences in plasma glucose and immunoreactive insulin concentrations between dogs and cats. Glucokinase activities were absent in feline liver, however, activities of other glycolytic enzymes such as hexokinase, phosphofructokinase and pyruvate kinase, were significantly higher than those in canine livers. Activities of rate limiting enzymes of gluconeogenesis such as pyruvate carboxylase, fructose-1, 6-bisphosphatase and glucose-6-phosphatase in feline livers were significantly higher than those in canine livers. Copyright 1999 Harcourt Publishers Ltd.

  17. Screening of physiologically active strain of the filamentous fungi - a producer of a complex of lytic enzymes

    International Nuclear Information System (INIS)

    Kurbatova, E.I.; Sokolova, E.N.; Borshcheva, Yu.A.; Alsivar, S.K.A.; Rimareva, L.V.

    2014-01-01

    Filamentous Aspergillus fungi were studied to obtain a producer of a complex of the enzymes specific to biodegradation of polymers of cellular walls of vegetable and microbic biomass. Strains were selected by the increased biosynthetic ability in relation to the beta-glucanase (BG), chitinase (CT), mannanase (MN), proteases and pectinases. It was estimated during deep cultivation in the environment containing wheat bran. The fullest complex of hydrolytic enzymes (glucanase, MN, CT, protease and a polygalacturonase (PG)), and also the level of enzymatic activities was in the culture liquid obtained as a result of biosynthesis of Aspergillus foetidus 37-4 (S 37-4) strain. For its cultivation the medium containing salts like potassium dihydrogen phosphate, magnesium sulfate and ammonium sulfate in optimum concentration, and also dioses (maltose, sucrose) and polysaccharides (starch, chitin, pectin) was chosen. The greatest zones of hydrolysis are traced during planting S 37-4 in agar medium containing maltose and low methoxyl citrus pectin. As the synthesis inductor of hemicellulase, MN and CT malt sprouts were used, and of PG - not clarified beet bin fibers. Cultivation was carried out on a thermostatically controlled shaker at 30 deg. C for 120 h. Increase of activity of synthesizable enzymes when using low methoxyl citrus pectin as a media part equaled for BG 5-19%, for PG - 25%, when using a maltose for CT - 100%, MN - 29%. To increase biosynthetic ability of S 37-4 as a mutagen 3-staged ultra-violet radiation (wavelength is 265 nanometers) was applied. The obtained 379-K-5 strain surpassed in activity level a parental strain BG - by 84.8%, CT - by 45.0%, MN - by 62.9%, PG - by 89.0%. The following (4th) stage of radiation led to death of the strain. In comparison with a parental S 37-4 the colony of a mutant strain possessed the bigger size and plentiful formation of an air mycelium, ability to sporogenesis was less expressed

  18. Hydrolytic enzyme activities in shiitake mushroom (Lentinula edodes) strains cultivated on coffee pulp.

    Science.gov (United States)

    Mata, Gerardo; Salmones, Dulce; Pérez-Merlo, Rosalía

    Hydrolytic enzyme production (cellulases, laminarinases and xylanases) was studied in cultures of Lentinula edodes on sterilized coffee pulp. Samples of substrate colonized by mycelia were taken after 7, 14, 21, 28 and 35 days of incubation at 25°C (W1 to W5) and during the fruiting period at different stages: formation of primordia (PF), first harvest (H) and one week after the first harvest (PH). The enzymatic activity was lower during the early mycelial growth and showed higher levels during the formation and development of fruiting bodies. During the reproductive stage of the fungus, the samples were subjected to a soaking treatment; however, it was not possible to relate this soaking treatment to the increase in enzyme production. The levels of enzymatic activity suggest that secretion of the studied enzymes does not influence the adaptability of the strains to the substrate. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Total chemical synthesis of the enzyme sortase A(ΔN59) with full catalytic activity.

    Science.gov (United States)

    Deng, Fang-Kun; Zhang, Liang; Wang, Ya-Ting; Schneewind, Olaf; Kent, Stephen B H

    2014-04-25

    The enzyme sortase A is a ligase which catalyzes transpeptidation reactions.1, 2 Surface proteins, including virulence factors, that have a C terminal recognition sequence are attached to Gly5 on the peptidoglycan of bacterial cell walls by sortase A.1 The enzyme is an important anti-virulence and anti-infective drug target for resistant strains of Gram-positive bacteria.2 In addition, because sortase A enables the splicing of polypeptide chains, the transpeptidation reaction catalyzed by sortase A is a potentially valuable tool for protein science.3 Here we describe the total chemical synthesis of enzymatically active sortase A. The target 148 residue polypeptide chain of sortase AΔN59 was synthesized by the convergent chemical ligation of four unprotected synthetic peptide segments. The folded protein molecule was isolated by size-exclusion chromatography and had full enzymatic activity in a transpeptidation assay. Total synthesis of sortase A will enable more sophisticated engineering of this important enzyme molecule. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Digestion of fat and protein and its relation to the activity of faecal enzymes in mucoviscidosis infants under substitution therapy with pancreatic enzymes (author's transl)].

    Science.gov (United States)

    Tolckmitt, W; Lohmann, A; Kutschera, J

    1981-09-01

    The article reports on a study to determine the influence of different dosage schedules of a pancreas enzyme preparation on the digestion of fat and protein and on the lipolytic, tryptic and chymotryptic activity of the faeces in children suffering from mucoviscidose. After administration of the pancreatin preparation at the low dose level, the quantity of faeces, the excretion of fatty acids and of nitrogen are reduced and the absorption coefficient is improved. The faecal tryptic and chymotryptic activity increases, whereas the lipase activity in the faeces merely shows a tendency to rise. Increasing the pancreatin dose up to a still tolerable value by doubling the dosage does not result in further reduction of the excretion of fat and nitrogen although it enhances the proteolytic activity of the faeces while the lipase activity remains unaffected. Determination of the lipolytic, tryptic or chymotryptic activity is, therefore, unsuitable for assessing the fat and protein digestion and for estimating the required dose of pancreatic enzyme. No increase in uric acid excretion was seen in the urine collected for 24 hours after administration of both enzyme doses.

  1. Antioxidant activity and angiotensin I-converting enzyme inhibition by enzymatic hydrolysates from bee bread.

    Science.gov (United States)

    Nagai, Takeshi; Nagashima, Toshio; Suzuki, Nobutaka; Inoue, Reiji

    2005-01-01

    Enzymatic hydrolysates were prepared from bee bread using three proteases. The antioxidant properties of these hydrolysates were measured using four different methods. These had remarkable antioxidant activity similar or superior to that of 1 mM alpha-tocopherol. They also had high scavenging activities against active oxygen species as the superoxide anion radical and hydroxyl radicals. Moreover, they showed angiotensin I-converting enzyme inhibitory activities and the activities were similar to those from various fermented foods such as fish sauce, sake, vinegar, cheese, miso, and natto. The present studies reveal that enzymatic hydrolysates from bee bread are of benefit not only for the materials of health food diets, but also for in patients undergoing various diseases such as cancer, cardiovascular diseases, diabetes, and hypertension.

  2. The effect of amino acid enantiomers on activity of selected enzymes in soil

    Directory of Open Access Journals (Sweden)

    Peter Dundek

    2011-01-01

    Full Text Available This work was aimed to test the effect of selected amino acid enantiomers on activity of casein-protease and acid phosphomonoesterase in soil. Casein-protease was selected due to its key role in nitrogen mineralization and acid phosphomonoesterase due to its importance in soil organic P mineralization. The results showed that 5 mg of L- and D-glutamic acid added to fresh soil from Ah horizon of a moderately mown mountain meadow significantly (P < 0.05 decreased casein-protease activity, whereas alanine enantiomers slightly increased activity of this enzyme. Testing the effect of cystine on activity of acid phosphomonoesterase in soil showed slight increase of this activity after application of 3.2 mg L- or D-cystine to fresh soil (equivalent to 8 mg to dry soil.

  3. Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins.

    Science.gov (United States)

    Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan; Hopkins, David L

    2013-01-15

    Two plant enzyme extracts from kiwifruit and asparagus were evaluated for their ability to hydrolyse commercially available substrates and proteins present in both beef connective tissue and topside myofibrillar extracts. The results show significant differences in protease activity depending on the assay used. Protease assays with connective tissue and meat myofibrillar extracts provide a more realistic evaluation of the potential of the enzymes for application in meat tenderization. Overall, the kiwifruit protease extract was found to be more effective at hydrolysing myofibrillar and collagen proteins than the asparagus protease extract. The two protease extracts appeared to target meat myofibrillar and collagen proteins differently, suggesting the potential of a synergistic effect of these proteases in improving the tenderness of specific cuts of meat, based on their intrinsic protein composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Total serum angiotensin converting enzyme activity in rats and dogs after enalapril maleate (MK-421).

    Science.gov (United States)

    Ulm, E H; Vassil, T C

    1982-04-05

    A centrifugal gel filtration separation of serum angiotensin converting enzyme (ACE) from a potent stable inhibitor is described. This, together with a 20 hr assay incubation of very dilute enzyme, permitted the assessment of the effects of enalapril maleate treatment on total serum ACE in rats and dogs. Total serum ACE increased in both species after 1 or 2 weeks at 10 mg/kg/day. Serum ACE in rats was more than doubled; whereas the increase was modest in dogs (48 +/- 9% minimum). The effect of the drug on serum ACE combined with inherent variability of ACE precluded use of serum ACE activity as an accurate measure of inhibitor concentration in animals receiving enalapril maleate.

  5. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico.

    Science.gov (United States)

    Hernández-Zavala, A; Del Razo, L M; García-Vargas, G G; Aguilar, C; Borja, V H; Albores, A; Cebrián, M E

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 microg As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized.

  6. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Zavala, A.; Del Razo, L.M.; Garcia-Vargas, G.G.; Aguilar, C.; Borja, V.H.; Albores, A.; Cebrian, M.E. [CINVESTAV-IPN, Mexico (Mexico). Dept. de Farmacologia y Toxicologica

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 {mu}g As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized. (orig.) With 1 fig., 3 tabs., 20 refs.

  7. Effect of electron beam irradiation on pathogenicity and pathogenic enzyme activity of botrytis cinerea

    International Nuclear Information System (INIS)

    Chen Zhaoliang; Wang Haihong; Qiao Yongjin

    2013-01-01

    In order to define the effect of electron beam irradiation on pathogenicity of Botrytis cinerea mycelia, the disease parameters of strawberry fruits inoculated with mycelia of B. cinerea irradiated by electron beam with different dose were tested in vivo, the production and activity of pectinase and cellulase secreted by B. cinerea irradiated by electron beam were also tested by DNS method. The results showed that pathogenicity of irradiated B. cinerea decreased significantly. The disease incidence and disease index of strawberry inoculated by irradiated B. cinerea after 3 days and 5 days was only 15.00% and 11.39 compared to control (91.67% and 77.78), respectively. The activity of pectinase and cellulase of B. cinerea irradiated by electron beam with above 2.0 kGy were inhibited obviously. The activity of PMG of irradiated B. cinerea decreased by 37.65% and 57.46% compared with control 3 days and 5 days cultured at 20℃, and the activity of CX and BG decreased by over 60% than that of control. The hardness of strawberry treated by enzyme solution which producted by B. cinerea irradiated by electron beam at 2.0 kGy was higher than that of control strawberry and it mainted disease resistance well. Electron beam can inhibited the pathogenic enzyme activity and pathogenicity of B. cinerea obviously. So it can control gray mold of postharvest strawberry effectively. (authors)

  8. Effects of ionizing radiation on the activity of the major hepatic enzymes implicated in bile acid biosynthesis in the rat

    International Nuclear Information System (INIS)

    Souidi, M.; Scanff, P.; Grison, St.; Gourmelon, P.; Aigueperse, J.

    2007-01-01

    In the days following high-dose radiation exposure, damage to small intestinal mucosa is aggravated by changes in the bile acid pool reaching the gut. Intestinal bile acid malabsorption, as described classically, may be associated with altered hepatic bile acid biosynthesis, which was the objective of this work. The activity of the main rate-limiting enzymes implicated in the bile acid biosynthesis were evaluated in the days following an 8-Gy γ Co 60 total body irradiation of rats, with concomitant determination of biliary bile acid profiles and intestinal bile acid content. Modifications of biliary bile acid profiles, observed as early as the first post-irradiation day, were most marked at the third and fourth day, and resulted in an increased hydrophobicity index. In parallel, the intestinal bile acids' content was enhanced and hepatic enzymatic activities leading to bile acids were changed. A marked increase of sterol 12-hydroxylase and decrease of oxy-sterol 7-hydroxylase activity was observed at day 3, whereas both cholesterol 7-hydroxylase and oxy-sterol 7-hydroxylase activities were decreased at day 4 after irradiation. These results show, for the first time, radiation-induced modifications of hepatic enzymatic activities implicated in bile acid biosynthesis and suggest that they are mainly a consequence of radiation-altered intestinal absorption, which induces a physiological response of the entero-hepatic bile acid recirculation. (authors)

  9. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism

    International Nuclear Information System (INIS)

    Moriya, Shunsuke; Iwasaki, Kaori; Samejima, Keijiro; Takao, Koichi; Kohda, Kohfuku; Hiramatsu, Kyoko; Kawakita, Masao

    2012-01-01

    Highlights: ► Compounds in polyamine catabolic pathway were determined by a column-free ESI-TOF MS. ► N 1 - and N 8 -acetylspermidine were determined by a column-free ESI-MS/MS. ► The method was applied to determine activities of APAO, SMO, and SSAT in the pathway. ► The assay method contained stable isotope-labeled natural substrates. ► It is applicable to biological samples containing natural substrate and product. - Abstract: An analytical method for the determination of three polyamines (putrescine, spermidine, and spermine) and five acetylpolyamines [N 1 -acetylspermidine (N 1 AcSpd), N 8 -acetylspermidine (N 8 AcSpd), N 1 -acetylspermine, N 1 ,N 8 -diacetylspermidine, and N 1 ,N 12 -diacetylspermine] involved in the polyamine catabolic pathway has been developed using a hybrid tandem mass spectrometer. Heptafluorobutyryl (HFB) derivatives of these compounds and respective internal standards labeled with stable isotopes were analyzed simultaneously by TOF MS, based on peak areas appearing at appropriate m/z values. The isomers, N 1 AcSpd and N 8 AcSpd were determined from their fragment ions, the acetylamidopropyl and acetylamidobutyl groups, respectively, using MS/MS with 13 C 2 -N 1 AcSpd and 13 C 2 -N 8 AcSpd which have the 13 C 2 -acetyl group as an internal standard. The TOF MS method was successfully applied to measure the activity of enzymes involved in polyamine catabolic pathways, namely N 1 -acetylpolyamine oxidase (APAO), spermine oxidase (SMO), and spermidine/spermine N 1 -acetyltransferase (SSAT). The following natural substrates and products labeled with stable isotopes considering the application to biological samples were identified; for APAO, [4,9,12- 15 N 3 ]-N 1 -acetylspermine and [1,4,8- 15 N 3 ]spermidine ( 15 N 3 -Spd), respectively; for SMO, [1,4,8,12- 15 N 4 ]spermine and 15 N 3 -Spd, respectively; and for SSAT, 15 N 3 -Spd and [1,4,8- 15 N 3 ]-N 1 -acetylspermidine, respectively.

  10. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Shunsuke; Iwasaki, Kaori [Department of Molecular Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Samejima, Keijiro, E-mail: samejima-kj@igakuken.or.jp [Department of Molecular Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Takao, Koichi [Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 (Japan); Kohda, Kohfuku [Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585 (Japan); Hiramatsu, Kyoko; Kawakita, Masao [Department of Molecular Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo 156-8506 (Japan)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer Compounds in polyamine catabolic pathway were determined by a column-free ESI-TOF MS. Black-Right-Pointing-Pointer N{sup 1}- and N{sup 8}-acetylspermidine were determined by a column-free ESI-MS/MS. Black-Right-Pointing-Pointer The method was applied to determine activities of APAO, SMO, and SSAT in the pathway. Black-Right-Pointing-Pointer The assay method contained stable isotope-labeled natural substrates. Black-Right-Pointing-Pointer It is applicable to biological samples containing natural substrate and product. - Abstract: An analytical method for the determination of three polyamines (putrescine, spermidine, and spermine) and five acetylpolyamines [N{sup 1}-acetylspermidine (N{sup 1}AcSpd), N{sup 8}-acetylspermidine (N{sup 8}AcSpd), N{sup 1}-acetylspermine, N{sup 1},N{sup 8}-diacetylspermidine, and N{sup 1},N{sup 12}-diacetylspermine] involved in the polyamine catabolic pathway has been developed using a hybrid tandem mass spectrometer. Heptafluorobutyryl (HFB) derivatives of these compounds and respective internal standards labeled with stable isotopes were analyzed simultaneously by TOF MS, based on peak areas appearing at appropriate m/z values. The isomers, N{sup 1}AcSpd and N{sup 8}AcSpd were determined from their fragment ions, the acetylamidopropyl and acetylamidobutyl groups, respectively, using MS/MS with {sup 13}C{sub 2}-N{sup 1}AcSpd and {sup 13}C{sub 2}-N{sup 8}AcSpd which have the {sup 13}C{sub 2}-acetyl group as an internal standard. The TOF MS method was successfully applied to measure the activity of enzymes involved in polyamine catabolic pathways, namely N{sup 1}-acetylpolyamine oxidase (APAO), spermine oxidase (SMO), and spermidine/spermine N{sup 1}-acetyltransferase (SSAT). The following natural substrates and products labeled with stable isotopes considering the application to biological samples were identified; for APAO, [4,9,12-{sup 15}N{sub 3}]-N{sup 1}-acetylspermine and [1,4,8-{sup 15}N{sub 3

  11. Enzyme active site mimics based on TriAzaCyclophane (TAC)-scaffolded peptides and amino acid residues

    NARCIS (Netherlands)

    Albada, H.B.

    2009-01-01

    This thesis describes the scope and limitations of the application of TriAzaCyclophane (TAC)-scaffolded peptides or amino acid residues as enzyme active site mimics, as ligands in asymmetric catalysis and as hydrolysis catalysts attached to vancomycin. For the mimicry of functional group enzymes, of

  12. Proteinaceous inhibitors of carbohydrate-active enzymes in cereals – Implication in agriculture, cereal-processing and nutrition

    DEFF Research Database (Denmark)

    Juge, N.; Svensson, Birte

    2006-01-01

    Enzymes that degrade, modify, or create glycosidic bonds are involved in carbohydrate biosynthesis and remodelling. Microbial carbohydrate-active enzymes form the basis of current green technology in the food, feed, starch, paper and pulp industries and the revolution in genomics may offer long...

  13. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  14. Activation of Pseudomonas aeruginosa elastase in Pseudomonas putida by triggering dissociation of the propeptide-enzyme complex

    NARCIS (Netherlands)

    Braun, P; Bitter, W; Tommassen, J

    2000-01-01

    The propeptide of Pseudomonas aeruginosa elastase functions both as an intramolecular chaperone required for the folding of the enzyme and as an inhibitor that prevents activity of the enzyme before its secretion into the extracellular medium. Since expression of the lasB gene, which encodes

  15. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    Science.gov (United States)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system

  16. Quantification of Galactose-1-Phosphate Uridyltransferase Enzyme Activity by Liquid Chromatography–Tandem Mass Spectrometry

    Science.gov (United States)

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    Background The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS)–based assay for GALT enzyme activity measurement. Method Our assay used stable isotope-labeled α-galactose-1-phosphate ([13C6]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([13C6]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [13C6]-Glu-1-P (265 > 79) as an internal standard. Results The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) µmol · (gHgb)−1 · h−1 in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 µmol · (g Hgb)−1 · h−1 (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent Km of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. Conclusions This LC-MS/MS–based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities. PMID:20348403

  17. Quantification of galactose-1-phosphate uridyltransferase enzyme activity by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Li, Yijun; Ptolemy, Adam S; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T

    2010-05-01

    The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay for GALT enzyme activity measurement. Our assay used stable isotope-labeled alpha- galactose-1-phosphate ([(13)C(6)]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([(13)C(6)]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [(13)C(6)]-Glu-1-P (265 > 79) as an internal standard. The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) mumol x (g Hgb)(-1) x h(-1) in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 micromol x (g Hgb)(-1) x h(-1) (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent K(m) of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. This LC-MS/MS-based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities.

  18. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Directory of Open Access Journals (Sweden)

    Fernando D Villarreal

    Full Text Available Myo-inositol (Ins is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus. Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS and inositol monophosphatase (IMPase, by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1 were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P, mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  19. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean

    Science.gov (United States)

    Pimentel, Marta S.; Faleiro, Filipa; Diniz, Mário; Machado, Jorge; Pousão-Ferreira, Pedro; Peck, Myron A.; Pörtner, Hans O.; Rosa, Rui

    2015-01-01

    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems. PMID:26221723

  20. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean.

    Directory of Open Access Journals (Sweden)

    Marta S Pimentel

    Full Text Available Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm significantly decreased metabolic rates (up to 27.4 % of flatfish larvae, Solea senegalensis, at both present (18 °C and warmer temperatures (+4 °C. Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT and glutathione S-transferase (GST, mainly in post-metamorphic larvae (30 dph. The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase and intestinal enzymes (up to 36.1 % for alkaline phosphatase in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems.

  1. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Science.gov (United States)

    Villarreal, Fernando D; Kültz, Dietmar

    2015-01-01

    Myo-inositol (Ins) is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus). Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS) and inositol monophosphatase (IMPase), by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1) were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P), mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P) is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  2. Antioxidant Enzyme Activity and Meat Quality of Meat Type Ducks Fed with Dried Oregano ( L. Powder

    Directory of Open Access Journals (Sweden)

    J. H. Park

    2015-01-01

    Full Text Available One-day-old Cherry valley meat-strain ducks were used to investigate the effect of supplemental dried oregano powder (DOP in feed on the productivity, antioxidant enzyme activity, and breast meat quality. One hundred sixty five ducks were assigned to 5 dietary treatments for 42 days. The dietary treatment groups were control group (CON; no antibiotic, no DOP, antibiotic group (ANT; CON+0.1% Patrol, 0.1% DOP (CON+0.1% DOP, 0.5% DOP (CON+0.5% DOP, and 1.0% DOP (CON+1.0% DOP. Upon feeding, 1,1-diphenyl-2-picryl-hydrazyl (DPPH radical scavenging activity of oregano extracts was higher than that of tocopherol, although it was less than that of ascorbic acid. As a result of in vivo study, DOP in the diet showed no effects on final body weight, feed intake, or feed conversion ratio. However, dietary 0.5% and 1% DOP supplementation caused a significant increase in the serum enzyme activity of superoxide dismutase (SOD compared with CON and ANT, while glutathione peroxidase (GPx in tissue was increased as compared to ANT (p<0.05. Cooking loss from ducks fed with DOP decreased compared with the control ducks. Thiobarbituric acid reactive substance (TBARS values of duck breast meat at 5 d post slaughter was found to be significantly reduced in ducks whose diets were supplemented with 0.5% and 1% DOP (p<0.05. These results suggest that diets containing 0.5% and 1% DOP may beneficially affect antioxidant enzyme activity of GPx and SOD, improve meat cooking loss, and reduce TBARS values in breast meat at 5 d of storage in ducks.

  3. Effects of Aluminum Stress on Protective Enzyme Activity in Tie Guanyin leaves

    Science.gov (United States)

    Sun, JingWei; Du, NaiChen; Zhang, YunFeng

    2018-01-01

    The experiment was adopted to study the change of SOD, CAT and POD activity of Tie guanyin (new leaf and old leaf blade of different concentrations of aluminum stress; in this paper, 0 (CK), 40, 200, four gradients of 400mg/L concentration of Al3+ in acidic conditions, Tieguanyin tea leaf SOD, cat and POD activity changes. The results showed that high concentrations of aluminum stress on antioxidant enzyme system activity cannot continue to increase; at the same time showed that SOD is sensitive to aluminum toxicity concentration change, its sensitivity is higher than CAT and POD, SOD and CAT activity and the aging and decline of plant There was a positive correlation.

  4. Regulatory proteins (inhibitors or activators) affect estimates of Msub(r) of enzymes and receptors by radiation inactivation

    International Nuclear Information System (INIS)

    Potier, M.; Giroux, S.

    1985-01-01

    The radiation-inactivation method allows the determination of the Msub(r) of enzymes and receptors by monitoring the decay of biological activity as a function of absorbed dose. The presence of regulatory or effector proteins (inhibitors or activators) associated with an enzyme or receptor, or released in the preparation after tissue homogenization, may affect the decay of biological activity. How the activity is affected, however, will depend on the type of inhibition (competitive or non-competitive), the inhibitor or activator concentration, the dissociation constant of the enzyme-effector system, and the effector Msub(r) relative to that of the enzyme. Since little is known on how effector proteins influence radiation inactivation of enzymes and receptors, we have considered a theoretical model in an effort to provide a framework for the interpretation of experimentally obtained data. Our model predicts that competitive and non-competitive inhibitors of enzymes could be distinguished by analysing irradiated samples with various substrate concentrations. Inhibitors will decrease whereas activators will increase the apparent target size of enzymes or receptors. (author)

  5. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils.

    Science.gov (United States)

    Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang

    2017-12-01

    A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  7. Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer's disease.

    Science.gov (United States)

    Pocernich, Chava B; Butterfield, D Allan

    2003-01-01

    In Alzheimer's disease (AD) brain increased lipid peroxidation and decreased energy utilization are found. Mitochondria membranes contain a significant amount of arachidonic and linoleic acids, precursors of lipid peroxidation products, 4-hydroxynonenal (HNE) and 2-propen-1-al (acrolein), that are extremely reactive. Both alkenals are increased in AD brain. In this study, we examined the effects of nanomolar levels of acrolein on the activities of pyruvate dehydrogenase (PDH) and Alpha-ketoglutarate dehydrogenase (KGDH), both reduced nicotinamide adenine dinucleotide (NADH)-linked mitochondrial enzymes. Acrolein decreased PDH and KGDH activities significantly in a dose-dependent manner. Using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS), acrolein was found to bind lipoic acid, a component in both the PDH and KGDH complexes, most likely explaining the loss of enzyme activity. Acrolein also interacted with oxidized nicotinamide adenine dinucleotide (NAD(+)) in such a way as to decrease the production of NADH. Acrolein, which is increased in AD brain, may be partially responsible for the dysfunction of mitochondria and loss of energy found in AD brain by inhibition of PDH and KGDH activities, potentially contributing to the neurodegeneration in this disorder.

  8. Fluvoxamine alters the activity of energy metabolism enzymes in the brain.

    Science.gov (United States)

    Ferreira, Gabriela K; Cardoso, Mariane R; Jeremias, Isabela C; Gonçalves, Cinara L; Freitas, Karolina V; Antonini, Rafaela; Scaini, Giselli; Rezin, Gislaine T; Quevedo, João; Streck, Emilio L

    2014-09-01

    Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  9. The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yan [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shen Guoqing, E-mail: gqsh@sjtu.edu.c [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Yu Yueshu; Zhu Hongling [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2009-11-15

    The hormetic dose-response relationships induced by environmental toxic agents are often characterized by low-dose stimulation and high-dose inhibition. Confirmation of the general phenomenon of hormesis may have significant implications for ecological risk assessment, although the mechanisms that underlie hormesis remain an enigma. In this study, a model-based approach for describing a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of the hormetic effect of cadmium (Cd) on the activity of antioxidant enzymes in the earthworm Eisenia fetida. The results showed that Cd at low concentrations induced an increase in the activity of catalase and superoxide dismutase (SOD), but high concentrations inhibited the enzymes, and this was reflected in an inverted U-shaped curve. The maximum hormetic magnitude of SOD activity was higher than that of catalase. The presence of hormesis induced by cadmium in the earthworm may be related to activation of adaptive pathways. - A model-based approach and careful preliminary experiments are needed for detecting and estimating the hormetic effect.

  10. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    Science.gov (United States)

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Activity of angiotensin-converting enzyme and risk of severe hypoglycaemia in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Agerholm-Larsen, Birgit; Pramming, S

    2001-01-01

    BACKGROUND: The insertion (I) allele of the angiotensin-converting-enzyme (ACE) gene occurs at increased frequency in endurance athletes. This association suggests that low ACE activity is favourable for performance in conditions with limited substrate availability. Such conditions occur in endur......BACKGROUND: The insertion (I) allele of the angiotensin-converting-enzyme (ACE) gene occurs at increased frequency in endurance athletes. This association suggests that low ACE activity is favourable for performance in conditions with limited substrate availability. Such conditions occur...... in endurance athletes during competition and in diabetic patients during insulin-induced hypoglycaemia. Patients rely on preserved functional capacity to recognise hypoglycaemic episodes and avoid progression by self-treatment. We studied whether ACE activity is related to the risk of severe hypoglycaemia....... Multiple regression analysis showed that the effect of the ACE genotype was explained by its influence on serum ACE activity and that the only other significant determinants of the risk of severe hypoglycaemia were the degree of hypoglycaemia awareness, b-cell function, and duration of diabetes of more...

  12. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehy